

# Upgrades to Chatswood Public School and Chatswood High School

Results of Geotechnical, Environmental and Hazmat Investigation

PSM3730-006R Rev3

18 February 2020



# **Table of Contents**

| 1 | Intro | oduction                                      | 4  |
|---|-------|-----------------------------------------------|----|
| 2 | Bac   | kground                                       | 4  |
| 3 | Geo   | technical Investigation                       | 4  |
|   | 3.1   | Fieldwork                                     | 5  |
|   | 3.2   | Geotechnical Laboratory Testing               | 5  |
|   |       | 3.2.1 California Bearing Ratio (CBR)          |    |
|   |       | 3.2.2 Atterberg Limits                        | 6  |
|   | 3.3   | Analytical Laboratory Testing                 | 7  |
|   |       | 3.3.1 Soil Chemistry                          | 10 |
| 4 | Site  | Conditions                                    | 10 |
|   | 4.1   | Geological Setting                            | 10 |
|   | 4.2   | Surface Conditions                            | 10 |
|   | 4.3   | Subsurface Conditions                         | 12 |
|   | 4.4   | Groundwater                                   | 15 |
| 5 | Disc  | ussion                                        | 15 |
|   | 5.1   | Excavation Conditions                         | 15 |
|   | 5.2   | Earthworks and Disposal of Excavated Material | 15 |
|   | 5.3   | Site Classification                           | 16 |
|   | 5.4   | Permanent and Temporary Batters               | 16 |
|   | 5.5   | Retaining Walls                               | 17 |
|   | 5.6   | Foundations                                   | 19 |
|   |       | 5.6.1 Shallow Footings                        | 19 |
|   |       | 5.6.2 Piles                                   | 19 |
|   | 5.7   | Pavements                                     | 20 |
| 6 | Saliı | nity and Aggressivity Assessment              | 20 |
|   | 6.1   | Salinity                                      | 20 |
|   | 6.2   | Corrosivity / Aggressivity                    | 21 |
|   | 6.3   | Sodicity                                      | 21 |
| 7 | Envi  | ironmental and Contamination Investigation    | 21 |
| 8 | Haza  | ardous Materials Assessment                   | 22 |



# **List of Tables**

| Table 1 – CBR Test Results                                                                     | 6  |
|------------------------------------------------------------------------------------------------|----|
| Table 2 – Summary of Atterberg Limits                                                          |    |
| Table 3 – Summary of Laboratory Analytical Testing Results                                     | 9  |
| Table 4 – Summary of inferred subsurface conditions encountered in the boreholes               | 12 |
| Table 5 – Approximate depth to the top of inferred geotechnical units encountered in boreholes | 14 |
| Table 6 – Batter Slope Angles                                                                  | 17 |
| Table 7 – Engineering Parameters of Inferred Geotechnical Units                                | 19 |
| Table 8 – Salinity Classification                                                              | 20 |

# **List of Appendices**

Appendix A Geotechnical Engineering Borehole Logs

Appendix B Point Load Test Results

Appendix C CBR testing results

Appendix D Atterberg Limit Test Results

Appendix E Environmental testing results

Appendix F JBS&G Environmental Assessment Report

Appendix G JBS&G Hazardous Material Assessment Report



### 1 Introduction

This report presents the results of the geotechnical and contamination investigation undertaken by Pells Sullivan Meynink (PSM) at Chatswood High School and Chatswood Public School. The work has been undertaken in accordance with the Services Agreement (No.181204) dated 5 December 2018.

### 2 Background

To assist in the geotechnical investigation, we were provided with and reviewed the following documents:

- RFQ Services Brief (Ref. RFQ201809-131, dated 30/10/2018)
- Information documents including:
  - Concept Design Report Option 3 (Ref. 3814 CD1001-1003 RevC dated 18.05.25, DC1009 RevA dated 12.06.18, CD10014-10015 RevF CD10018 RevD and CD10019RevC dated 13.07.18)
  - Douglas Partners Preliminary Geotechnical Report (Ref.86260.00.R.001.Rev1, dated 12/03/2018)
  - Site investigation area (Ref. App. A site investigation Area.pdf)
  - Report on preliminary Site (Contamination) Investigation with Limited Sampling (Ref. 86260.01.R.001.Rev0.PSI, dated 16/04/2018)
  - AutoCAD plan drawings of both sites containing survey elevations (Ref. 11915Adetail 1, 17485detail 1)
  - A mark-up with proposed borehole locations by Wood and Grieve (Ref. 17485detail 1)
  - An Endorsed Revised Precinct Masterplan Prepared by Architectus.

We understand that the current proposed development includes:

- · Upgrades to Chatswood Public School including the provision of:
  - 53 x homebases (comprising 25 existing and 28 new spaces)
  - 4 x special program classrooms (music, language etc)
  - 3 x special support unit classrooms
  - Increased quality active play spaces
  - Retaining Heritage buildings A and B
  - New hall
  - New car parking facilities, and
  - Associated site works and landscaping.
- Upgrades to Chatswood High School including the provision of:
  - 123 Classrooms (comprising 21 existing and 102 new spaces)
  - New administration and staff facilities
  - New hall, and
  - Associated site works and landscaping.

The project would involve primarily the following:

- Construction of three new buildings on the Pacific Highway site (Building P1, P2 and G) and three buildings on the Centennial Avenue site (Building Q, S and T)
- On grade carparks, landscaping and various sports fields and playgrounds.

# 3 Geotechnical Investigation

PSM have completed a geotechnical investigation for both sites. An environmental and hazardous material assessment has also been completed for both sites and are reported separately.



### 3.1 Fieldwork

The fieldwork for the geotechnical investigation at the Centenial Avenue site was undertaken on:

- 23 to 25 of January 2019
- 15 to 16 of April 2019

The fieldwork for the geotechnical invesitgaion at the Pacific Highway site was undertaken on:

- 16 to 17 of February 2019
- 10 to 12 of October 2019.

All work was conducted under the full-time supervision of a PSM geotechnical engineer, who undertook the following tasks:

- Directing the investigation locations
- Directing the reinstatement of concrete and asphalt surfaces where required
- Preparing engineering logs of the material encountered
- Collection of disturbed samples for laboratory testing
- Point load testing of recovered core samples.

Prior to testing, on-site service location "scans" were undertaken by a licenced service locator in the presence of a PSM geotechnical engineer to asses if the test locations were free from buried utilities.

Seventeen (17) boreholes (BH01 to BH17) were drilled at the Centnnial Avenue site on 23 to 25 of January and six (6) boreholes (BH18 to BH23) were drilled at the Pacific Highway site using a tracked geotechnical drill rig. A further five (5) boreholes (BH24 to BH28) were drilled at the Centennial Avenue site on 15 and 16 of April. A futher eleven (11) boreholes were drilled at the Pacfic Highway site on 10 to 12 October 2019.

The investigation locations were recorded with a hand-held GPS unit with a horizontal accuracy of approximately +/- 5 m. Figure 1A and 2 presents the test locations. Figure 1B presents a long section through the proposed buildings along the northern boundary of the Centennial Avenue site.

Boreholes were drilled to depths of bewteen 2.6 m and 9.0 m with augering through soils and low strength rock to refusal using a tungsten carbide bit (TC-bit) or a maximum of 8 m depth. Rock coring was undertaken for selected boreholes (BH06, BH07, BH18, BH19, BH26, BH28, BH33 and BH36). The geotechnical borehole logs together with explanation sheets are presented in Appendix A. The logs for augered only boreholes are presented in a tabulated form while cored boreholes are presented as geotechnical logs with core photos. Point load strength index testing was performed on the recovered core at approximately one metre intervals with results tabulated in Appendix B.

At the completion of the fieldwork, the boreholes were backilled with excavated spoil and lightly tamped with a shovel. Where the boreholes were drilled on hardstand surfaces, the surface was reinstated with cold-mix asphalt. Figures 3 and 4 present selected photos of the fieldwork.

### 3.2 Geotechnical Laboratory Testing

### 3.2.1 California Bearing Ratio (CBR)

Five (5) bulk soil samples from the Centennial Avenue site and seven (7) bulk soil samples from the Pacific Highway site were recovered for California Bearing Ratio (CBR) testing at an accredited geotechnical laboratory.

The following sample preparation was undertaken for the CBR testing:

- Compact to 98% standard MDD, at optimum moisture content (OMC);
- Four (4) day soaked sample; and
- 4.5 kg surcharge.

Table 1 presents a summary of the CBR test results. The test result sheets are included in Appendix C.



Table 1 - CBR Test Results

| Sample ID<br>(depth)         | Material Description         | Soaked CBR<br>(%) | OMC (%) | Standard<br>Maximum Dry<br>Density (t/m3) | Swell (%) |  |  |  |  |  |  |  |  |
|------------------------------|------------------------------|-------------------|---------|-------------------------------------------|-----------|--|--|--|--|--|--|--|--|
| CENTENNIAL AV                | CENTENNIAL AVENUE SITE       |                   |         |                                           |           |  |  |  |  |  |  |  |  |
| BH02<br>(0.1 - 0.5 m)        | SILTY CLAY                   | 9.0*              | 13.4    | 1.83                                      | 0.5       |  |  |  |  |  |  |  |  |
| Centre of Site (0.1 – 0.3 m) | SILTY CLAY                   | 4.5*              | 15.6    | 1.73                                      | 1.0       |  |  |  |  |  |  |  |  |
| BH05<br>(0.1 - 0.3 m)        | SILTY CLAY                   | 6.0**             | 17.5    | 1.65                                      | 0.5       |  |  |  |  |  |  |  |  |
| BH07<br>(0.1 - 0.3 m)        | SILTY CLAY                   | 7.0**             | 18.0    | 1.59                                      | 0.0       |  |  |  |  |  |  |  |  |
| BH10<br>(0.1 - 0.3 m)        | CLAY                         | 5.0**             | 19.4    | 2.05                                      | 0.5       |  |  |  |  |  |  |  |  |
| PACIFIC HIGHWA               | AY SITE                      |                   |         |                                           |           |  |  |  |  |  |  |  |  |
| BH18<br>(0.1 - 1.5 m)        | SILTY CLAY                   | 2.5*              | 12.9    | 1.74                                      | 3.0       |  |  |  |  |  |  |  |  |
| BH19<br>(0.1 - 1.5 m)        | SILTY CLAY                   | 2.0*              | 12.9    | 1.79                                      | 1.5       |  |  |  |  |  |  |  |  |
| BH21<br>(0.1 - 1.5 m)        | CLAY                         | 4.0*              | 20.0    | 1.69                                      | 1.5       |  |  |  |  |  |  |  |  |
| BH29<br>(0.095 - 1.0 m)      | CLAY                         | 1.5*              | 16.5    | 1.76                                      | 3.0       |  |  |  |  |  |  |  |  |
| BH30<br>(0.02 - 1.0 m)       | CLAY with Sand and<br>Gravel | 2.0*              | 16.3    | 1.73                                      | 1.5       |  |  |  |  |  |  |  |  |
| BH37<br>(0.5 - 1.5 m)        | CLAY with some<br>Gravel     | 2.0*              | 23.4    | 1.52                                      | 0.5       |  |  |  |  |  |  |  |  |
| BH39<br>(0.5 - 1.5 m)        | SANDY GRAVELLY<br>CLAY       | 4.0**             | 21.8    | 1.62                                      | 0.5       |  |  |  |  |  |  |  |  |

Note: \* Indicates Soaked CBR value at 2.5mm penetration

### 3.2.2 Atterberg Limits

Ten (10) soil samples from the Centennial Avenue site and five (5) from the Pacific Highway site were recovered for Atterberg limit tests. Table 2 presents a summary of the test results. The results all plot above the A-line on Cassagrande's plasticity chart (Figure 5), ranging from low to high plasticity (i.e., CL to CH), with majority of the samples indicating medium to high plasticity. The test result sheets are included in Appendix D.



<sup>\*\*</sup> Indicates Soaked CBR value at 5.0mm penetration

Table 2 – Summary of Atterberg Limits

| Sample ID             |                                      | Atterberg Limits |                   |                      |  |  |  |  |
|-----------------------|--------------------------------------|------------------|-------------------|----------------------|--|--|--|--|
| (depth)               | Sample Description                   | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index (%) |  |  |  |  |
| CENTENNIAL AVEN       | IUE SITE                             |                  |                   |                      |  |  |  |  |
| BH02<br>(1.5 m)       | Brown Silty Clay                     | 35               | 19                | 16                   |  |  |  |  |
| BH04<br>(1.0 m)       | Grey Brown Sandy<br>Gravelly Clay    | 31               | 17                | 14                   |  |  |  |  |
| BH05<br>(1.0 m)       | Light Brown Gravelly<br>Clay (Shale) | 44               | 21                | 23                   |  |  |  |  |
| BH07<br>(1.7 m)       | Light Brown Silty Clay               | 37               | 19                | 18                   |  |  |  |  |
| BH08<br>(1.5 m)       | Brown Silty Clay                     | 56               | 26                | 30                   |  |  |  |  |
| BH09<br>(1.0 m)       | Brown Silty Clay                     | 55               | 23                | 32                   |  |  |  |  |
| BH11<br>(0.2 - 0.5 m) | Grey Brown Silty Clay.               | 52               | 22                | 30                   |  |  |  |  |
| BH12<br>(1.0 m)       | Grey Brown Gravelly<br>Clay (Shale)  | 41               | 20                | 21                   |  |  |  |  |
| BH14<br>(2.1 m)       | Grey Gravelly Silty Clay             | 33               | 19                | 14                   |  |  |  |  |
| BH16<br>(1.0 m)       | Orange Brown Silty Clay              | 48               | 22                | 26                   |  |  |  |  |
| PACIFIC HIGHWAY       | SITE                                 |                  |                   |                      |  |  |  |  |
| BH18<br>(1.5 m)       | Brown Clay                           | 46               | 20                | 26                   |  |  |  |  |
| BH19<br>(0.5 m)       | Brown Clay                           | 42               | 20                | 22                   |  |  |  |  |
| BH20<br>(0.5 m)       | Brown Clay                           | 41               | 20                | 21                   |  |  |  |  |
| BH22<br>(0.5 - 1.0 m) | Grey Brown Clay                      | 43               | 21                | 22                   |  |  |  |  |
| BH23<br>(0.5 - 1.0 m) | Brown Clay                           | 66               | 23                | 43                   |  |  |  |  |

### 3.3 Analytical Laboratory Testing

Ten (10) and five (5) disturbed soil samples were retrieved at the Centennial Avenue and Pacific Highway sites, respectively, by a PSM Geotechnical Engineer for testing in an analytical laboratory. The disturbed soil samples were sent to a NATA accredited analytical laboratory and the following tests were undertaken:



- Cation Exchange Capacity (CEC) of calcium, magnesium, potassium and sodium
- Exchange sodium percentage
- Salinity (EC 1:5, one part soil to five parts water)
- Soil pH
- Chlorides
- Sulphates
- Moisture content.

Table 3 presents a summary of the results. The laboratory result sheets are presented in Appendix E.



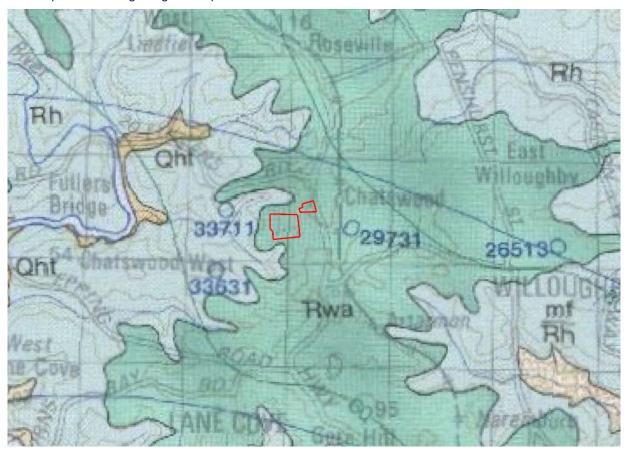
Table 3 – Summary of Laboratory Analytical Testing Results

| Sample ID              | рН   | Electrical<br>Conductivity | Moisture<br>Content | Chloride By Discrete | Soluble<br>Sulfate by<br>icpaes | Exchange<br>[meq/100 | eable Cation | าร  |     |      | ESP [%] |
|------------------------|------|----------------------------|---------------------|----------------------|---------------------------------|----------------------|--------------|-----|-----|------|---------|
|                        |      | [µS/cm]                    | [%]                 | Analyser<br>[mg/kg]  | [mg/kg]                         | Ca                   | Mg           | К   | Na  | CEC  |         |
| CENTENNIAL AVENUE SITE |      |                            |                     |                      |                                 |                      |              |     |     |      | ·       |
| BH01 – 2.0m            | 4.8  | 92                         | 7.2                 | 70                   | 70                              | 1.3                  | 1.2          | 0.3 | 0.4 | 3.2  | 11.4    |
| BH03 - 2.0m            | 7.8  | 180                        | 11.6                | 10                   | 200                             | 12.8                 | 1.9          | 0.3 | 0.5 | 15.5 | 3.2     |
| BH05 - 0.2m            | 4.7  | 75                         | 16.7                | 40                   | 100                             | 1.9                  | 0.8          | 0.2 | 0.2 | 3.5  | 7.9     |
| BH07 - 2.5m            | 5.1  | 48                         | 7.3                 | 10                   | 60                              | 1.0                  | 1.0          | 0.3 | 0.2 | 2.5  | 6.8     |
| BH08 - 2.5m            | 5.8  | 19                         | 6.0                 | <10                  | 20                              | <0.1                 | 0.9          | 0.3 | 0.2 | 1.5  | 14.8    |
| BH09 - 0.5m            | 6.7  | 208                        | 23.6                | 20                   | 340                             | 9.8                  | 2.2          | 0.3 | 0.3 | 12.5 | 2.3     |
| BH11 - 6.0m            | 6.0  | 51                         | 32.6                | 40                   | 70                              | <0.1                 | 1.8          | 0.4 | 0.8 | 3.1  | 26.4    |
| BH12 - 0.3 – 0.4m      | 4.9  | 83                         | 13.5                | 60                   | 110                             | 2.5                  | 1.8          | 0.3 | 0.4 | 5.0  | 7.9     |
| BH14 - 0.1 – 1.0m      | 4.9  | 119                        | 24.5                | 110                  | 100                             | 1.3                  | 1.1          | 1.0 | 0.3 | 3.8  | 9.3     |
| BH16 - 2.5m            | 4.9  | 106                        | 5.8                 | 90                   | 100                             | <0.1                 | 0.6          | 0.2 | 0.6 | 1.5  | 41.8    |
| PACIFIC HIGHWAY        | SITE |                            |                     |                      | •                               |                      |              |     |     |      | ·       |
| BH18 – 1.0m            | 5.3  | 90                         | 18.3                | 20                   | 140                             | 15                   | 1.4          | 0.6 | 0.5 | 17.4 | 2.6     |
| BH19 – 2.6m            | 5.6  | 17                         | 9.2                 | 10                   | 20                              | <0.1                 | 1.3          | 0.3 | 0.9 | 2.6  | 33.7    |
| BH20 – 7.0m            | 6.3  | 25                         | 7.4                 | <10                  | 20                              | 4.4                  | 4.5          | 0.2 | 0.7 | 9.8  | 6.9     |
| BH21 – 0.5m            | 5.5  | 47                         | 17.0                | 20                   | 70                              | 0.8                  | 3.1          | 0.6 | 1.2 | 5.7  | 21.6    |
| BH22 – 1.5m            | 5.0  | 58                         | 10.1                | <10                  | 50                              | 1.6                  | 2.1          | 0.5 | 0.3 | 4.4  | 6.4     |



### 3.3.1 Soil Chemistry

The laboratory test results summarised in Table 3 indicates de following:


- pH of the soil samples analysed range from 4.7 to 7.8, with an average of 5.6
- The 1:5 soil to water extraction and subsequent electrical conductivity (EC<sub>1:5</sub>) of the soil samples analysed range from 17 µS/cm to 208 µS/cm
- Concentrations of chlorides in samples analysed ranged from <10 mg/kg to 110 mg/kg</li>
- Concentrations of soluble sulfate in samples analysed ranged from 20 mg/kg to 340 mg/kg
- Cation Exchange Capacity (CEC) in samples analysed ranged from 1.5 meq/100g to 17.4 meq/100g
- Exchange Sodium Percentage (ESP) in samples analysed ranged from 2.3% to 41.8%.

### 4 Site Conditions

### 4.1 Geological Setting

The 1:100,000 Sydney Geological Map indicates that both sites are underlain by Ashfield Shale of the Wianamatta group (Rwa) which consist of black to dark-grey shale and laminate.

Inset 1 presents the geological map of the site.



Inset 1: Sydney geological map indicating approximate site location

### 4.2 Surface Conditions

Both sites comprise a number of existing school buildings and facilities with concrete pathways, sealed bitumen surfaces and some grassed and landscaped areas. Some demountable buildings also occupy both sites.

The Centennial Avenue site is approximately 6.5 ha in area, and it is bound by Dardanelles Road and De Villiers Avenue to the west, Eddy Road to the south, Centennial Avenue to the north and residential buildings to the east.



This site has a gentle fall from the northern boundary towards the southwest corner and a steep fall from the Centennial Avenue to the Bush Campus along the eastern boundary.

At the time of the Centennial Avenue fieldwork, the surfaces were dry with minimal foot traffic on site. The majority of the boreholes were drilled through topsoil on the surface with the exception of seven boreholes drilled through concrete/asphalt driveway.

The Pacific Highway site is approximately 1.2 ha in area and is bound by Jenkins Street to the west, Centennial Avenue to the south, Pacific Highway to the east and residential and commercial buildings to the north. This site has a gentle fall from the eastern boundary towards the west. A gentle drop to the northwest corner is addressed with terracing and sports courts on separate levels.

On 16 and 17 February during the Pacific Highway fieldwork, the surfaces were dry with considerable foot traffic on site. PSM coordinated with members of the public using the school facilities to minise risk exposure. The majority of the boreholes were drilled through asphalt-paved areas with the exception of one borehole drilled through astroturf.

On 10 to 12 October during the Pacific Highway fieldwork, the surfaces were dry to moist due to rain events occuring during the fieldwork. The boreholes were drilled on asphalt-paved surfaces and through astroturf on the sports courts.

Inset 2 presents an aerial photo of both sites.



Inset 2: Aerial photograph of site (source: Nearmap, 27 December 2018)



### 4.3 Subsurface Conditions

The subsurface conditions encountered within the boreholes are summarised in Table 4 and Table 5. The Ashfield Shale bedrock unit has been classified using the system developed by Pells et al (1998).

Table 4 – Summary of inferred subsurface conditions encountered in the boreholes

| Inferred Unit          | Inferred top of unit depth below ground surface (m) | Description                                                                                                                                                                                         |
|------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CENTENNIAL AVENUE SITE |                                                     |                                                                                                                                                                                                     |
| Concrete/Asphalt       | 0.0                                                 | 100 to 150 mm thick.                                                                                                                                                                                |
| Topsoil                | 0.0                                                 | Silty CLAY; dark brown, non-plastic to low plasticity, trace of gravel up to 5 mm, subangular to angular, soft to stiff consistency, dry. Roots, rootlets, bark and grasses observed throughout.    |
| Fill                   | 0.0 to 0.2                                          | CLAY; grey, orange/red, pale and dark<br>brown, generally low to medium plasticity,<br>with silt, trace of gravel up to 20 mm, sub-<br>angular to angular, stiff to hard consistency,<br>dry.       |
| Residual Soil          | 1.0 to 6.0                                          | CLAY; grey, red, orange and brown, generally medium to high plasticity, very stiff to hard consistency, mostly dry.                                                                                 |
|                        | 1.2 to 7.2                                          | LAMINITE (Class IV/V); dark grey and grey with orange banding, fine grained sandstone, rock fabric faint with developed bedding. Extremely to highly weathered. Extremely low to very low strength. |
|                        | 5.8 to 8.6                                          | LAMINITE (Class III); black with occasional orange banding, fine grained sandstone, rock fabric visible with developed bedding. Moderately to slightly weathered. Low to high strength.             |
| Bedrock                | 3.4 to 9.4                                          | SILTSTONE (Class IV/V); dark grey and brown with orange banding, rock fabric faint with poorly developed to developed bedding, extremely to slightly weathered, very low to low strength.           |
|                        | 7.2 to 8.6                                          | SILTSTONE (Class III); dark grey and grey, bedding fabric visible with well developed bedding, slightly weathered, low to medium strength.                                                          |
|                        | 9.5 to 11.5                                         | Interbedded SILTSONE and SANDSTONE (Class III); fine to medium grained, thinly developed bedding, slightly weathered to fresh, medium to high strength.                                             |
| PACIFIC HIGHWAY SITE   | 1                                                   |                                                                                                                                                                                                     |
| Asphalt/Astroturf      | 0.0                                                 | 10 to 200 mm thick                                                                                                                                                                                  |



| Inferred Unit | Inferred top of unit depth below ground surface (m) | Description                                                                                                                                                                                                                                                   |
|---------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill          | 0.01 to 0.2                                         | Silty CLAY; dark grey, orange, brown and pale brown, low to medium plasticity, trace of gravel up to 30 mm, sub-angular, dry and very stiff to hard consistency.                                                                                              |
| Residual Soil | 0.1 to 1.6                                          | CLAY; high plasticity, orange, yellow and red-brown, moist and stiff to very stiff consistency, some roots and weathered shale fragments observed as residual soil grades to bedrock.                                                                         |
|               | 1.0 to 2.5                                          | SILTSTONE (Class IV/V); dark grey, pale grey with orange banding, thin fine-grained sandstone laminations observed, rock fabric faint with poorly developed bedding. Highly to slightly weathered. Very low to low strength.                                  |
| Bedrock       | 4.5 to 6.1                                          | SILTSTONE (Class III); grey and dark grey with orange banding, thin fine-grained sandstone laminations observed.  Moderately to slightly weathered. Low to medium strength.                                                                                   |
|               | 4.1 to 4.2                                          | LAMINITE (Class III); dark grey with sandstone laminations, 70-80% siltstone, 20-30% fine grained sandstone, well to very well developed bedding fabric, distinct thinly laminated bedding, moderately weathered to fresh, typically medium to high strength. |
|               |                                                     | Note that there is a layer of Class V siltstone between depth of 5.2 m and 5.8 m in BH36. This layer underlies approximately 1 m thick Class III laminite.                                                                                                    |



Table 5 – Approximate depth to the top of inferred geotechnical units encountered in boreholes

|            | Approximate depth to top of inferred geotechnical units (m) |          |      |                  |         |                         |                   |      |  |  |
|------------|-------------------------------------------------------------|----------|------|------------------|---------|-------------------------|-------------------|------|--|--|
| Test<br>ID | Concrete/<br>Asphalt                                        | Topsoil  | Fill | Residual<br>Soil | Bedrock | Class<br>V / IV<br>Rock | Class III<br>Rock | ЕОН  |  |  |
| CENT       | ENNIAL AVE                                                  | NUE SITE |      |                  |         |                         |                   |      |  |  |
| BH01       | N/E                                                         | 0.0      | 0.1  | N/E              | 2.0     | N/A                     | N/A               | 2.6  |  |  |
| BH02       | N/E                                                         | 0.0      | 0.1  | N/E              | 1.8     | N/A                     | N/A               | 3.2  |  |  |
| BH03       | N/E                                                         | 0.0      | 0.05 | 3.0              | 5.8     | N/A                     | N/A               | 6.0  |  |  |
| BH04       | N/E                                                         | 0.0      | 0.1  | 6.0              | N/E     | N/A                     | N/A               | 7.5  |  |  |
| BH05       | N/E                                                         | 0.0      | 0.1  | N/E              | 1.2     | N/A                     | N/A               | 2.8  |  |  |
| BH06       | N/E                                                         | 0.0      | 0.1  | 2.0              | 3.0     | 3.0                     | 5.8               | 8.2  |  |  |
| BH07       | N/E                                                         | 0.0      | 0.2  | 1.6              | 2.5     | 2.5                     | 7.2               | 9.4  |  |  |
| BH08       | 0.0                                                         | N/E      | 0.15 | 1.5              | 1.9     | N/A                     | N/A               | 6.3  |  |  |
| BH09       | 0.0                                                         | N/E      | 0.1  | 2.5              | 3.2     | N/A                     | N/A               | 9.0  |  |  |
| BH10       | N/E                                                         | 0.0      | 0.2  | N/E              | 4.2     | N/A                     | N/A               | 8.0  |  |  |
| BH11       | N/E                                                         | 0.0      | 0.1  | N/E              | 2.5     | N/A                     | N/A               | 8.0  |  |  |
| BH12       | N/E                                                         | 0.0      | 0.1  | N/E              | 1.5     | N/A                     | N/A               | 5.2  |  |  |
| BH13       | N/E                                                         | N/E      | 0.0  | N/E              | 1.5     | N/A                     | N/A               | 5.0  |  |  |
| BH14       | N/E                                                         | 0.0      | 0.1  | 2.0              | 2.5     | N/A                     | N/A               | 3.0  |  |  |
| BH15       | N/E                                                         | 0.0      | 0.1  | 1.0              | 3.0     | N/A                     | N/A               | 6.3  |  |  |
| BH16       | N/E                                                         | 0.0      | 0.1  | 1.3              | 2.0     | N/A                     | N/A               | 4.5  |  |  |
| BH17       | N/E                                                         | 0.0      | 0.2  | N/E              | 2.0     | N/A                     | N/A               | 3.0  |  |  |
| BH24       | 0.0                                                         | N/E      | N/E  | 0.16             | 2.5     | N/A                     | N/A               | 8.0  |  |  |
| BH25       | 0.0                                                         | N/E      | N/E  | 0.08             | 1.2     | N/A                     | N/A               | 8.0  |  |  |
| BH26       | 0.0                                                         | N/E      | N/E  | 0.15             | 1.8     | 1.8                     | 7.2               | 8.6  |  |  |
| BH27       | 0.0                                                         | N/E      | N/E  | 0.08             | 1.5     | N/A                     | N/A               | 8.0  |  |  |
| BH28       | 0.0                                                         | N/E      | N/E  | 0.04             | 3.3     | 3.3                     | 9.5               | 11.5 |  |  |
| PACIF      | IC HIGHWAY                                                  | SITE     |      |                  |         |                         |                   |      |  |  |
| BH18       | 0.0                                                         | N/E      | 0.2  | N/E              | 1.8     | 1.8                     | 6.1               | 9.6  |  |  |
| BH19       | 0.0                                                         | N/E      | 0.2  | N/E              | 1.5     | 1.5                     | 4.5               | 8.2  |  |  |
| BH20       | 0.0                                                         | N/E      | 0.1  | N/E              | 1.5     | N/A                     | N/A               | 7.6  |  |  |
| BH21       | 0.0                                                         | N/E      | 0.15 | N/E              | 1.2     | N/A                     | N/A               | 4.8  |  |  |
| BH22       | N/E                                                         | N/E      | 0.0  | N/E              | 1.3     | N/A                     | N/A               | 5.5  |  |  |
| BH23       | 0.0                                                         | N/E      | 0.1  | N/E              | 1.3     | N/A                     | N/A               | 5.8  |  |  |
| BH29       | 0.0                                                         | N/E      | N/E  | 0.1              | 1.7     | N/A                     | N/A               | 4.0  |  |  |



|            | Approximate depth to top of inferred geotechnical units (m) |         |      |                  |         |                         |                   |     |  |
|------------|-------------------------------------------------------------|---------|------|------------------|---------|-------------------------|-------------------|-----|--|
| Test<br>ID | Concrete/<br>Asphalt                                        | Topsoil | Fill | Residual<br>Soil | Bedrock | Class<br>V / IV<br>Rock | Class III<br>Rock | ЕОН |  |
| BH30       | N/E                                                         | N/E     | 0.0  | 0.7              | 1.6     | N/A                     | N/A               | 4.0 |  |
| BH31       | 0.0                                                         | N/E     | 0.1  | 0.8              | 3.0     | N/A                     | N/A               | 4.0 |  |
| BH32       | N/E                                                         | N/E     | 0.0  | 1.5              | 3.2     | N/A                     | N/A               | 4.0 |  |
| BH33       | 0.0                                                         | N/E     | 0.04 | 0.9              | 2.5     | 2.5                     | 4.1               | 8.2 |  |
| BH34       | N/E                                                         | N/E     | 0.0  | 0.5              | 1.7     | N/A                     | N/A               | 4.0 |  |
| BH35       | 0.0                                                         | N/E     | 0.05 | N/E              | 0.5     | N/A                     | N/A               | 4.0 |  |
| BH36       | 0.0                                                         | N/E     | 0.03 | 0.6              | 1.0     | 1.0                     | 4.2*              | 8.2 |  |
| BH37       | 0.0                                                         | N/E     | 0.09 | 0.5              | 2.3     | N/A                     | N/A               | 4.0 |  |
| BH38       | 0.0                                                         | N/E     | 0.18 | 1.6              | 2.3     | N/A                     | N/A               | 4.0 |  |
| BH39       | 0.0                                                         | N/E     | 0.02 | N/E              | 1.6     | N/A                     | N/A               | 4.0 |  |

Note: \*Note that there is a 0.6 m thick layer of Class V siltstone below the Class III laminite.

EOH = End of Hole N/E = Not Encountered

### 4.4 Groundwater

No groundwater was observed within the boreholes during the investigation.

### 5 Discussion

### 5.1 Excavation Conditions

It is unclear at the time of the investigation if any basements are proposed. Depending on the required earthworks or excavations for the development and based on the geotechnical investigation, excavation may include Topsoil, Fill, Residual Soil and Bedrock units. Excavation in the Topsoil, Fill, Residual Soil and weathered Bedrock should be achievable using conventional earth moving equipment with minor rock breaking. Excavation of more competent Bedrock may require the use of hydraulic impact breakers, rock saws and/or rock grinders and must be undertaken by contractors with suitable experience in rock excavation close to existing structures. Please note that auger TC bit refusal was encountered in most boreholes.

Prospective contractors should make their own assessment of excavatability based on the borehole logs and their site inspection and experience. It is our experience that excavatability is heavily dependent on both the operator and the plant used. Heavy rock breaking equipment will generate vibrations that may impact on neighbouring structures. Where controls on vibrations are required, the contractor should consider the use of smaller hammers, rock saws and grinders to undertake the excavation. The contractor should recognise that there is a potential for damage to adjacent buildings or infrastructure (if any) and consider this in its planning.

### 5.2 Earthworks and Disposal of Excavated Material

We anticipate that some earthworks may be required as part of the redevelopment. We consider that topsoil is not suited for reuse as engineered fill (but could be potentially blended in small quantities) but may be reused for landscaping purposes. It is our opinion that most of the remaining cut material (i.e., Fill, Residual Soil and Bedrock) would be suitable for reuse on the site as engineered fill.

We envisage that the earthworks proposed at the site will require the preparation of a detailed fill specification developed following the guidelines in AS 3798 (2007), "Guidelines on earthworks for commercial and residential



*developments*". Preparation of this fill specification is outside the scope of this report. We consider, however, that the fill specification should address at least the following:

- 1. Subgrade preparation and base geometry requirements.
- 2. Material requirements, including a clear definition of:
  - a. Suitable and unsuitable material.
  - b. Grading or maximum particle size requirements. We note that a conservative definition of maximum particle size may result in some of the materials on site being excluded from reuse as engineered fill. It is our opinion that this restriction may not significantly benefit fill performance.
- 3. Fill placement requirements, including a clear definition of compacted layer thickness, we suggest 300 mm.
- 4. Compaction requirements. We suggest that a minimum and maximum density ratio be adopted to control any potential shrink swell of the clayey fill material and to limit the effect of fill material variability on the fill performance, we suggest 98 to 102 % standard.
- 5. Moisture control requirements. We consider that control on placement moisture variation should be adopted to control any potential shrink swell of the clayey fill material, we suggest moisture variation of +- 2%.
- 6. Inspection and testing requirements, including a clear definition of:
  - a. Level of control testing, e.g. Level 1 as per AS3798
  - b. Lot testing, this is an important aspect of earthworks control but often ignored in acceptance of the works
  - c. Testing methodology
  - d. Testing frequency.
- 7. Responsibilities of the contractor. We envisage that such responsibilities would include:
  - a. Undertake the earthworks in accordance with fill specification
  - b. Seek approvals by the GITA as required by the fill specification, in particular prior to placing any new fill
  - c. Responsibilities of the Geotechnical Inspection and Testing Authority (GITA). The fill specification should define:
  - d. The inspection and testing responsibilities of the GITA
  - e. The reporting responsibilities of the GITA
  - f. The final certification responsibilities of the GITA. We note that the specification should require the GTA to certify that "all the earthworks have been documented and have been undertaken in accordance with the relevant fill specification". It is not adequate just to refer to AS3798 Level 1.

For disposal purposes, it is likely the Residual Soil and Bedrock units are able to be validated as Virgin Excvataed Natural Material (VENM). However, the Fill unit encountered can either be disposed as General Solid Waste or validated as Excavated Natural Material (ENM).

The most economical outcome would be to re-use the existing fill on site as much as possible and dispose the VENM off site. VENM verification would be required during construction for material disposal. Based on the Fill observed during the geotechnical investigation, we have not found attributes that can be assessed visually (e.g. rubber, plastic, bitumen, paper, cloth, paint and wood) that would preclude ENM validation. We consider it is likely that the existing fill will be able to be so validated but this can only be done once the material is stockpiled on site during construction. We note that the earthwork contractor should go to considerable extent to segregate different materials (eg Topsoil, Fill and Residual Soils).

### 5.3 Site Classification

Based on the field observations and the inferred geotechnical units from the boreholes, we recommend that structures within scope of AS2870 be designed for a site classification of Class "M" for both sites. This is due to the presence of clay fill layer deeper than 1.0 m over the majority of the sites. The site can be re-classified during the works for specific areas where required.

### 5.4 Permanent and Temporary Batters



The batter slope angles shown in Table 6 are recommended for the design of batters up to 5 m height subject to the following recommendations:

- The batters shall be protected from erosion. Permanent batters will need face support such as vegetation or shotcrete
- Permanent batters shall be drained for a distance behind the faces at least equal to the height
- Temporary batters shall not be left unsupported for more than 2 months without further advice, and inspection by a suitably experienced geotechnical engineer should be undertaken following significant rain events
- No buildings, surcharge loads or services should be located within 1 batter height of the crest.

If the conditions above cannot be met, further advice should be sought.

Where Fill is not engineered/controlled fill, batter slope angles should be assessed by a suitable experienced geotechnical engineer.

Exposed rock faces should be inspected by a geotechnical engineer or engineering geologist to assess the need for localised rock bolting to control adverse jointing in the Bedrock unit and shotcreting for overall face support and weather protection.

Table 6 - Batter Slope Angles

| Unit            | Temporary | Permanent |
|-----------------|-----------|-----------|
| ENGINEERED FILL | 2H: 1V    | 2.5H : 1V |
| RESIDUAL SOIL   | 1.5H : 1V | 2H: 1V    |
| BEDROCK         | 0.5H : 1V | 1H:1V     |

Steeper batters may be possibly subject to further advice, probably including inspection during construction and shortcreting and rock bolting etc.

### 5.5 Retaining Walls

Cuts in the Fill, Residual Soil and Bedrock units steeper than the recommended permanent batter slopes in Table 6 will need to be supported by some form of retaining structure.

The selection of the appropriate retention system is a matter of design. The designer should consider the following factors in making its selection:

- Technical factors
  - Performance
  - Ground conditions (this is addressed below with the design parameters)
  - Surcharge loading and
  - Proximity of structures, buildings and roads, etc.
- Non- technical factors
  - Cost (to build and to maintain)
  - Other constraints such as real estate, neighbouring site / boundary, aesthetics, legislation, etc.

The design of these structures should be based on the following geotechnical properties:

- Effective strength parameters in Table 7 when assessing the earth pressure on retaining structures
- A lateral pressure of 10 kPa for vertical cuts in the Bedrock units (Class III or better). This is to allow for blocks
  and rock wedges formed due to adverse defects that may exist within the unit
- Water pressure (depending on the type of structure).

Note that design of retention systems may be based on either  $K_a$  or  $K_o$  earth pressures. Design using active earth pressures provides the minimum lateral earth pressure that must be supported to avoid failure and requires a wall



that can rotate or translate to allow the pressures to reduce to these values (vertical and lateral movements up to 2% of height may occur, typical movements will be much less).

Where the design is based on  $K_0$  pressures, construction should be carefully controlled to avoid unwanted effects. It should be noted that designing for  $K_0$  pressures do not, of themselves, ensure that movement does not occur. Movements are controlled by the construction method, especially sequence.

Both surface and sub-surface drainage needs to be designed and constructed properly to prevent pore water pressures from building up behind the retaining walls or appropriate water pressures must be included in the design.



Table 7 - Engineering Parameters of Inferred Geotechnical Units

|                                                              | Bulk Unit<br>Weight<br>(kN/m3) | Effective<br>Strength<br>Parameters |             | Ultimate<br>Bearing<br>Pressure                     | Allowable<br>Bearing<br>Pressure                 | Ultimate                   | Elastic Parameters                                             |                        |
|--------------------------------------------------------------|--------------------------------|-------------------------------------|-------------|-----------------------------------------------------|--------------------------------------------------|----------------------------|----------------------------------------------------------------|------------------------|
| Inferred Unit                                                |                                | c'<br>(kPa)                         | Ф'<br>(deg) | under<br>Vertical<br>Centric<br>Loading2<br>1 (kPa) | under<br>Vertical<br>Centric<br>Loading<br>(kPa) | Shaft<br>Adhesion<br>(kPa) | Young's<br>Modulus<br>(MPa)                                    | Poisso<br>n's<br>Ratio |
| Engineered Fill                                              | 18                             | 0                                   | 30          | 4001                                                | 1501                                             | N.A.                       | Engineer<br>ed Fill                                            | 18                     |
| Residual Soil                                                | 18                             | 0                                   | 30          | 4001                                                | 1501                                             | N.A.                       | Residual<br>Soil                                               | 18                     |
| Siltstone/Laminite<br>V/IV                                   | 22                             | 10                                  | 30          | 30002                                               | 7003                                             | 50                         | Siltstone/<br>Laminite<br>V/IV                                 | 22                     |
| Siltstone/Laminite / Interbedded siltstone and sandstone III | 24                             | N.A.                                | N.A.        | 60002                                               | 20003                                            | 350                        | Siltstone/ Laminite/ Interbedd ed siltstone and sandston e III | 24                     |

Note: 1. Minimum plan dimension of 1.0 m and a minimum embedment depth of 0.5 m.

### 5.6 Foundations

### 5.6.1 Shallow Footings

Pad footings can be proportioned on the basis of an allowable bearing pressure (ABP) for centric vertical loads provided in Table 7.

We note that an allowable bearing pressure (ABP) is not a soil property. It depends on many factors such as the size of the footings, the embedment depth, the load direction and eccentricity, the stiffness of the footing, the adopted factor of safety (FOS), as well as the soil properties. As footings get bigger or deeper the capacity increases rapidly. As the load gains eccentricity or becomes inclined, the capacity reduces rapidly.

Settlements in the can be estimated using the elastic parameters provided in Table 7. When assessing the settlement of the shallow footings, the designer needs to consider the additional ground settlement due to the total building load on both shallow and deeper units. The differential settlement due to the building load shall also be assessed.

Foundations conditions at the proposed shallow pad footings locations should be inspected by a suitably qualified geotechnical engineer prior to the pouring of concrete.

### 5.6.2 Piles

We envisage that piles would be founded within the Bedrock unit.



<sup>2.</sup> Ultimate bearing pressure for bedrock assumes a settlement of approximately 5% of the least footing dimension for footings in rock.

<sup>3.</sup> Allowable bearing pressure assumes a settlement of approximately 1% of the least footing dimension for footings in rock.

Piles should be designed in accordance with the requirements in AS 2159 (2009), Piling – Design and Installation. The parameters provided in Table 7may be adopted in the design of piles founded in Bedrock unit.

The designer should note the following with regards to the pile design:

- The ABP needs to be confirmed by a geotechnical engineer through pile inspections prior to pouring concrete
- Under permanent load, the contribution of side adhesion for soils including Fill and Residual Soil should be ignored
- Deflection should be checked using the recommended elastic parameters in Table 7
- Where adjacent foundation details differ (e.g., pile and pad, differing loads or ground conditions), differential settlement should also be assessed.

The bearing capacities provided are contingent on piles or footings being vertically and centrally loaded. Further advice should be sought if the footings are not vertically centrically loaded. Should higher bearing capacities be required of the Bedrock, this may be available subject to further advice.

With regards to the pile design we recommend that:

- A geotechnical strength reduction factor,  $\Phi_g$  = 0.60 (AS2159 CL. 4.3.2) be adopted for a high redundancy system for an assessed average risk rating (ARR) between 2.5 and 3.0. This should be reviewed to suit the specific design and appropriate pile testing proposed by the structural designers in accord with the requirements of AS2159
- It may be possible to increase the pile reduction factors, if the details of the proposed pile installation procedures indicate a high level of quality control with regards to concrete placement, base cleanliness, etc
- If a geotechnical strength reduction factor,  $\Phi_g$  = 0.40 is adopted then no pile testing will be required (AS2159 Clause 8.2.4 (b)).

### 5.7 Pavements

Subgrade CBR for pavement design depends on the material at the finished subgrade levels. Based on the CBR tests undertaken by PSM (refer to Table 1) we recommend a design subgrade CBR of 2% be adopted for the pavement design at both sites. Should a higher design CBR be required, further testing at specific locations may be required and further advice should be sought.

# 6 Salinity and Aggressivity Assessment

### 6.1 Salinity

Site Investigations for Urban Salinity (DLWC 2002) classify soil salinity based on electrical conductivity (ECe). The method of conversion from EC1:5 to ECe (electrical conductivity of saturated extract) is based on DLWC (2002) and given by ECe = EC1:5 x M, where M is the multiplication factor based on "Soil Texture Group".

The "Soil Texture Group" of the samples tested were assessed during our investigation. The salinity classification for the soil samples that were tested are presented in Table 8.

Table 8 - Salinity Classification

| Commis ID              | EC1:5  | Call Tarre |     | ECe    | Salinity Class |  |  |  |  |  |  |
|------------------------|--------|------------|-----|--------|----------------|--|--|--|--|--|--|
| Sample ID              | (dS/m) | Soil Type  | М   | (dS/m) |                |  |  |  |  |  |  |
| CENTENNIAL AVENUE SITE |        |            |     |        |                |  |  |  |  |  |  |
| BH01 – 2.0m            | 0.092  | Clay Loam  | 9   | 0.828  | Non-saline     |  |  |  |  |  |  |
| BH03 - 2.0m            | 0.180  | Light Clay | 8.5 | 1.53   | Non-saline     |  |  |  |  |  |  |
| BH05 - 0.2m 0.075      |        | Light Clay | 8.5 | 0.638  | Non-saline     |  |  |  |  |  |  |
| BH07 - 2.5m 0.048      |        | Clay Loam  | 9   | 0.432  | Non-saline     |  |  |  |  |  |  |



| Sample ID            | EC1:5  | Soil Type         | М   | ECe    | Salinity Class |  |
|----------------------|--------|-------------------|-----|--------|----------------|--|
|                      | (dS/m) |                   |     | (dS/m) |                |  |
| BH08 - 2.5m          | 0.019  | Clay Loam         | 9   | 0.171  | Non-saline     |  |
| BH09 - 0.5m          | 0.208  | Light Clay        | 8.5 | 1.768  | Non-saline     |  |
| BH11 - 6.0m          | 0.051  | Clay Loam         | 9   | 0.459  | Non-saline     |  |
| BH12 - 0.3 – 0.4m    | 0.083  | Medium Clay       | 7   | 0.581  | Non-saline     |  |
| BH14 - 0.1 – 1.0m    | 0.119  | Light Clay        | 8.5 | 1.012  | Non-saline     |  |
| BH16 - 2.5m          | 0.106  | Clay Loam         | 9   | 0.954  | Non-saline     |  |
| PACIFIC HIGHWAY SITE |        |                   |     |        |                |  |
| BH18 – 1.0m          | 0.090  | Light Medium Clay | 8   | 0.72   | Non-saline     |  |
| BH19 – 2.6m          | 0.017  | Clay Loam         | 9   | 0.153  | Non-saline     |  |
| BH20 – 7.0m          | 0.025  | Clay Loam         | 9   | 0.225  | Non-saline     |  |
| BH21 – 0.5m          | 0.047  | Medium Clay       | 7   | 0.329  | Non-saline     |  |
| BH22 – 1.5m          | 0.058  | Clay Loam         | 9   | 0.522  | Non-saline     |  |

It is assessed that the soils on site are classified as "non-saline". We have referred to Clause 4.8.2 of Australian Standard AS3600-2009 "Concrete Structures" and note that the assessed soil electrical conductivity ( $EC_e$ ) is less than the upper limit of the "A2" exposure classification for both sites.

### 6.2 Corrosivity / Aggressivity

Table 6.4.2(C) of Australian Standard AS2159:2009, Piling – Design and Installation provides criteria for exposure classification for concrete piles based on sulfates in the soil and groundwater, soil and groundwater pH, and chlorides in groundwater. On the basis of the soil sulfates and pH testing completed we assess the exposure classification for concrete piles in the soil to be mild for both sites.

Table 6.5.2(C) of Australian Standard AS2159:2009, Piling – Design and Installation provides criteria for exposure classification for steel piles based on resistivity, soil and groundwater pH, and chlorides in soil and groundwater. On the basis of soil chlorides and pH testing completed we assess the exposure classification for steel piles in the soil to be non-aggressive for both sites.

### 6.3 Sodicity

Sodicity provides a measure of the likely dispersion on wetting and to shrink/swell properties of a soil. Soil sodicity is classified based on the Exchangeable Sodium Percentage (ESP) which is the amount of exchangeable sodium as a percentage of the Cation Exchange Capacity (DLWC, 2002).

The Exchangeable Sodium Percentages calculated from these laboratory results, ranging from 2.3% to 41.8%, indicates that the soils on both sites are highly sodic when compared to criteria listed in "Site Investigations for Urban Salinity", DLWC (2002).

# 7 Environmental and Contamination Investigation

An environmental and contamination site investigation has been undertaken by JBS&G for both sites and the results of the investigation is presented in Appendix F. The main conclusions are extracted from the JBS&G report and presented below.

### 7.1 Chatswood High School



Based on the scope of works undertaken, and in accordance with the limitations outlined in Section 12 of the report in Appendix F1, it is considered that the site does not present any unacceptable risks to human and ecological health, pursuant to NEPC (2013), and is considered suitable for use as a primary and secondary school facility. JBS&G recommend the formulation of an Unexpected Finds Protocol (UFP) for the site to address any unexpected finds that may be encountered during the redevelopment of the site.

### 7.2 Chatswood Public School

Based on the scope of investigation undertaken, and in accordance with the limitations in Section 12 of the report in Appendix F2, the following conclusions are made:

- Potentially unacceptable concentrations of COPCs were identified within soils at the site, primarily associated with petroleum hydrocarbons and PAHs;
- Based on the current configuration and uses of the site, JBS&G do not consider there to be complete sourcereceptor pathways that would result in potentially unacceptable risk to current site users (i.e. concrete hardstand separates impacted soils from the ground surface);
- Should excavation works be required prior to the commencement of redevelopment activities at the site, JBS&G
  recommend the development of a CEMP, or similar, to ensure that the current site configuration that enables
  the site to be considered suitable under the current site uses, are maintained; and
- JBS&G recommend the development of a RAP to guide the required management of identified soil
  contamination during and after development such that the site can be considered suitable for the proposed
  educational land use.

### 8 Hazardous Materials Assessment

A hazardous materials (hazmat) assessment has been undertaken by JBS&G for both sites and the results of the assessment is presented in Appendix G. The main conclusions are extracted from the JBS&G report and presented below.

### 8.1 Chatswood High School

Based on the scope of this assessment and with reference to the limitations included in Section 6, the following conclusions are made with respect to the Hazardous Building Materials Survey completed at the Chatswood High School site.

### 8.1.1 Hazardous Materials

Identified and suspected hazardous materials were observed throughout the site as a result of visual identification and laboratory analysis. The following recommendations are made for the removal of the identified hazardous materials to potentially mitigate harmful effects as a result of the proposed works program. The person with management or control of the site, must ensure so far as is reasonably practicable that the identified hazardous materials are removed prior to the commencement of demolition and refurbishment works.

The identified and suspected hazardous materials are presented in the Hazardous Materials Register included in Appendix G1.

- Friable Asbestos Containing Dust: friable ACD has been identified at the site. Prior to the demolition of the structures it is recommended that the following work is undertaken:
  - A Class A (friable and non-friable) licensed asbestos removalist shall be engaged to remove all asbestos containing dust as identified in the Hazardous Materials Register, included in Appendix G1
  - SafeWork NSW is to be notified of all asbestos removal work with appropriate permits to remove friable asbestos obtained prior to works commencing. In addition, an asbestos removal control plan is to be developed by the engaged licensed asbestos removalist prior to the removal works outlining the specific control measures necessary to minimise any risk from exposure to asbestos. All removal and disposal of friable asbestos materials shall be conducted in accordance with Work Health and Safety Act (2011), Work Health and Safety Regulation (2017) and SWA2018a. The materials should be disposed of to an



- appropriately licensed landfill in accordance with the Waste Classification Guidelines Part 1: Classifying Waste (NSW EPA, 2014)
- Air monitoring is required to be conducted by an independent Licensed Asbestos Assessor (LAA) before and during the removal of the friable asbestos containing dust identified within Room R1007 in Building A, Room R1009 in Building B and Room R1005 in Building C. Air monitoring must also be conducted as part of the clearance inspection
- Following removal works, a clearance inspection shall be undertaken by the appointed LAA to ensure that the friable ACD materials identified in the Asbestos Register have been removed to a satisfactory industry standard or have been maintained in a manner that does not present an exposure hazard to current or future site occupants. Following the completion of the clearance inspection, a clearance certificate shall be issued by the LAA to confirm that the friable ACD has been successfully removed and that the removal area is suitable for planned demolition works to commence.
- Non-Friable Asbestos Containing Materials: non-friable ACM has been identified at the site. Prior to the demolition and/or refurbishment of the structures it is recommended that the following work is undertaken:
  - A Class A or B licensed asbestos removalist shall be engaged to remove all asbestos containing materials as identified in the Hazardous Materials Register (Appendix G1). Removal and disposal of non-friable asbestos materials shall be undertaken in accordance with the Work Health and Safety Act (2011), Work Health and Safety Regulation (2017) and SWA2018a
  - While not mandatory during the removal of non-friable ACM, it is considered best practice and recommended that asbestos air monitoring is undertaken during any non-friable asbestos removal works
  - Following removal works, a clearance inspection shall be completed by a competent person or LAA to ensure that the asbestos materials identified at the site have been removed to a satisfactory standard. Following the completion of the clearance inspection, a clearance certificate shall be issued by the competent person or LAA to confirm that the ACM has been successfully removed and that the site is suitable for planned demolition works to commence.
- Lead Containing Dust: elevated levels of lead in dust above the adopted site criteria were identified at the site. A
  suitably experienced hazardous materials removal contractor should be engaged to remove the lead containing
  dust prior to the commencement of demolition and refurbishment works
- Lead Based Paints: lead based paints identified in Hazardous Materials Register (Appendix G1) should be managed in accordance with the AS4361.2-2017. If peeling or deteriorated they should be removed under controlled conditions by an experienced contractor prior to demolition and refurbishment. Stable lead based paints adhered to building fabric can be removed as general solid waste provided care is taken to minimise any potential for paint flakes to be dispersed onto ground surfaces
- Synthetic Mineral Fibres: the synthetic mineral fibres encountered during this inspection were generally contained and deemed to be low risk. These SMF materials can be removed with the building and demolition waste with care taken not to generate fibres. Appropriate PPE is recommended including the use of P2 respirator as minimum and appropriate removal methodology as outlined in [NOHSC: 1004(1990)] and [NOHSC: 2006(1990)]
- Polychlorinated Biphenyls: all old fluorescent light fittings throughout the site are to be treated as containing PCB capacitors unless further investigation confirms otherwise. These light fittings should be removed and disposed of as Scheduled Waste or re-inspected once isolated from the electrical system to confirm the presence or absence of PCB capacitors.

### 8.1.2 Inaccessible Areas

Areas inaccessible during the current HBMS should be inspected by a suitably qualified competent person prior to any works commencing. Suspected ACM should be sampled by a suitably qualified competent person prior to any works commencing.

### 8.1.3 Unexpected Finds

Any materials deemed to be consistent with those detailed in the Hazardous Materials Register that have not been previously identified should be assumed to have the same content and be treated accordingly. Should any



additional suspected hazardous materials be observed during or prior to demolition works, works should cease until a suitably qualified occupational hygienist can assess the suspected hazardous material and provide appropriate recommendations for management and/or removal.

### 8.2 Chatswood Public School

Based on the scope of this assessment and with reference to the limitations included in Section 6, the following conclusions are made with respect to the Hazardous Building Materials Survey completed at the Chatswood Public School site.

### 8.2.1 Hazardous Materials

Identified and suspected hazardous materials were observed throughout the site as a result of visual identification and laboratory analysis. The following recommendations are made for the removal of the identified hazardous materials to potentially mitigate harmful effects as a result of the proposed works program. The person with management or control of the site, must ensure so far as is reasonably practicable that the identified hazardous materials are removed prior to the commencement of demolition and refurbishment works.

The identified and suspected hazardous materials are presented in the Hazardous Materials Register included in Appendix G2.

- Asbestos Containing Materials: non-friable ACM has been identified at the site. Prior to the demolition and/or refurbishment of the structures it is recommended that the following work is undertaken:
  - A Class A or B licensed asbestos removalist shall be engaged to remove all asbestos containing materials as identified in the Hazardous Materials Register (Appendix G2). Removal and disposal of non-friable asbestos materials shall be undertaken in accordance with the Work Health and Safety Act (2011), Work Health and Safety Regulation (2017) and SWA2018a
  - While not mandatory during the removal of non-friable ACM, it is considered best practice and recommended that asbestos air monitoring is undertaken during any non-friable asbestos removal works
  - Following removal works, a clearance inspection shall be completed by a competent person or licensed asbestos assessor to ensure that the asbestos materials identified at the site have been removed to a satisfactory standard. Following the completion of the clearance inspection, a clearance certificate shall be issued by the competent person or LAA to confirm that the ACM has been successfully removed and that the site is suitable for planned demolition works to commence.
- Lead Containing Dust: elevated levels of lead in dust above the adopted site criteria were identified at the site. A
  suitably experienced hazardous materials removal contractor should be engaged to remove the lead containing
  dust prior to the commencement of demolition and refurbishment works
- Lead Based Paints: lead based paints identified in Hazardous Materials Register (Appendix G2) should be
  managed in accordance with the AS4361.2-2017. If peeling or deteriorated they should be removed under
  controlled conditions by an experienced contractor prior to demolition and refurbishment. Stable lead based
  paints adhered to building fabric can be removed as general solid waste provided care is taken to minimise any
  potential for paint flakes to be dispersed onto ground surfaces
- Synthetic Mineral Fibres: the synthetic mineral fibres encountered during this inspection were generally contained and deemed to be low risk. These SMF materials can be removed with the building and demolition waste with care taken not to generate fibres. Appropriate PPE is recommended including the use of P2 respirator as minimum and appropriate removal methodology as outlined in [NOHSC: 1004(1990)] and [NOHSC: 2006(1990)]
- Polychlorinated Biphenyls: all old fluorescent light fittings throughout the site are to be treated as containing PCB capacitors unless further investigation confirms otherwise. These light fittings should be removed and disposed of as Scheduled Waste or re-inspected once isolated from the electrical system to confirm the presence or absence of PCB capacitors.

### 8.2.2 Inaccessible Areas



Areas inaccessible during the current HBMS should be inspected by a suitably qualified competent person prior to any works commencing. Suspected ACM should be sampled by a suitably qualified competent person prior to any works commencing.

### 8.2.3 Unexpected Finds

Any materials deemed to be consistent with those detailed in the Hazardous Materials Register that have not been previously identified should be assumed to have the same content and be treated accordingly. Should any additional suspected hazardous materials be observed during or prior to demolition works, works should cease until a suitably qualified occupational hygienist can assess the suspected hazardous material and provide appropriate recommendations for management and/or removal.

Should there be any queries, do not hesitate to contact the undersigned.

For and on behalf of PELLS SULLIVAN MEYNINK

YUN BAI

SENIOR GEOTECHNICAL ENGINEER

BERNARD SHEN PRINCIPAL

Encl.

Figure 1A Test Locations (Centennial Avenue)

Figure 1B Long Section View Along A'A'

Figure 2 Test Locations (Pacific Highway)

Figure 3 Selected Photos (1 of 2)

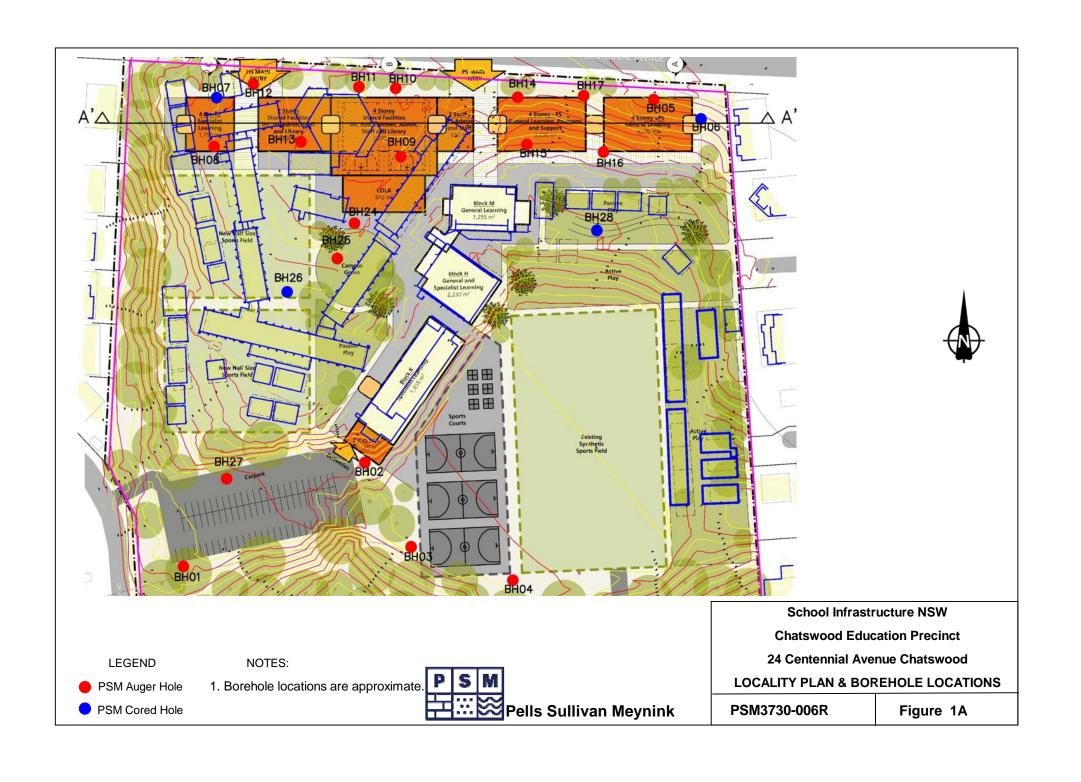
Figure 4 Selected Photos (2 of 2)

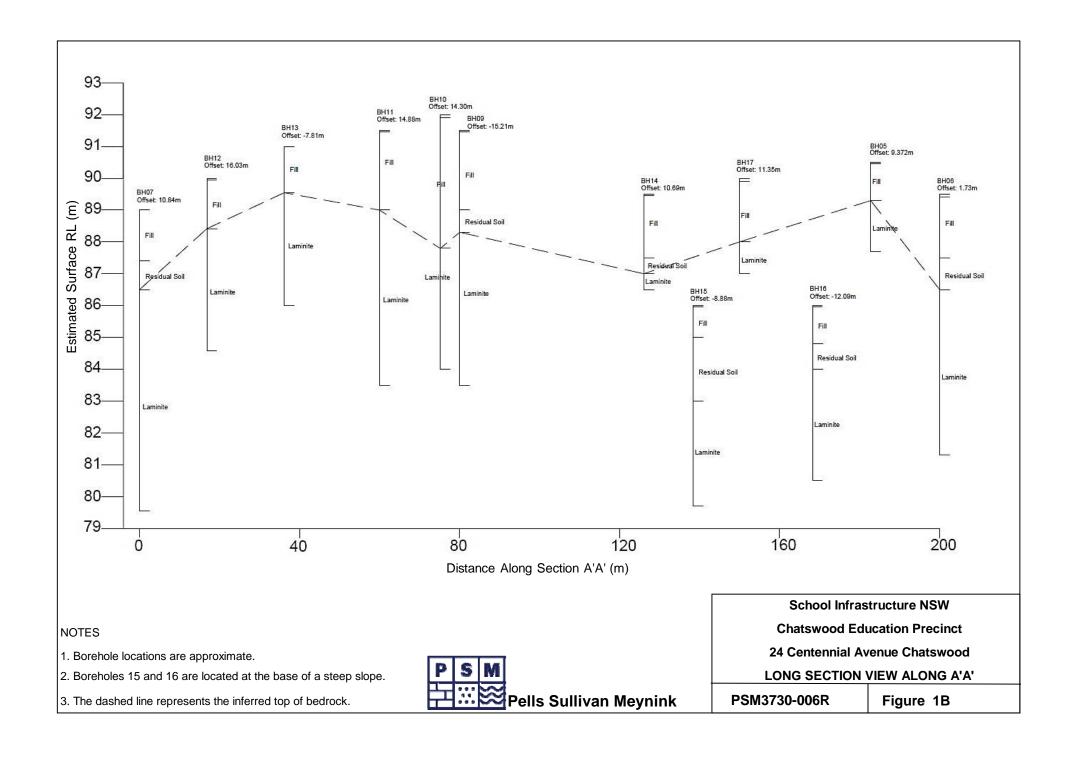
Figure 5 Atterberg Limits Graph

Appendix A Geotechnical Engineering Borehole Logs

Appendix B Point Load Test Results

Appendix C CBR testing results


Appendix D Atterberg Limit Test Results


Appendix E Environmental testing results

Appendix F JBS&G Environmental Assessment Report

Appendix G JBS&G Hazardous Material Assessment Report







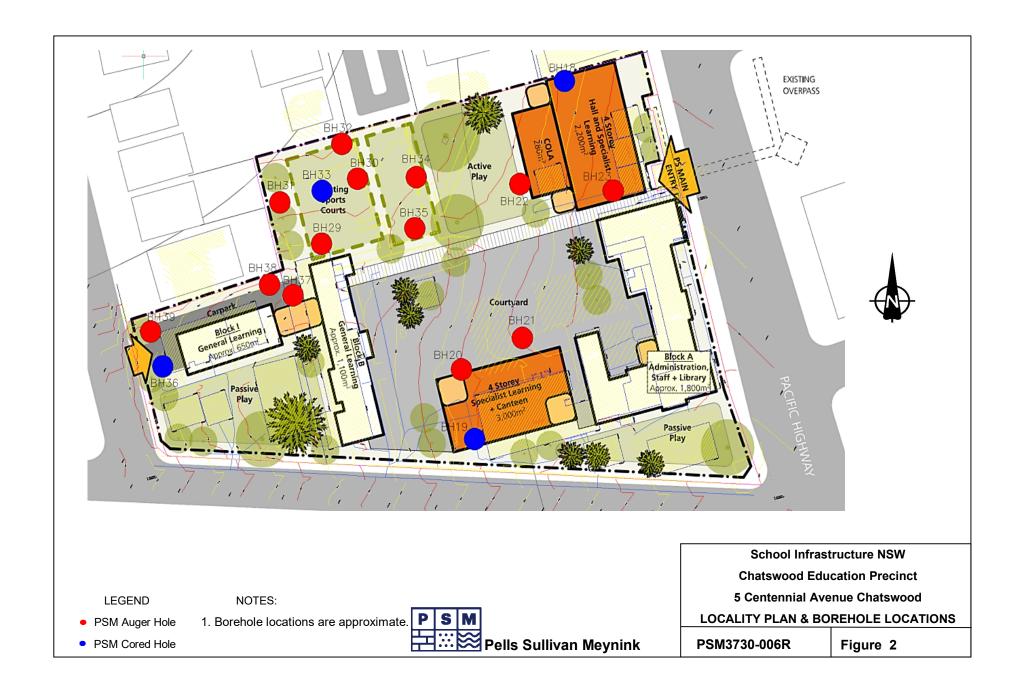





Photo 1: General site conditions - Centennial Avenue site facing South towards BH03



Photo 2: General site condtions - Centennial Avenue site facing East towards BH11

School Infrastructure NSW
Chatswood Education Precinct
5 & 24 Centennial Avenue Chatswood
SELECTED SITE PHOTOS (SHEET 1 OF 2)

Pells Sullivan Meynink

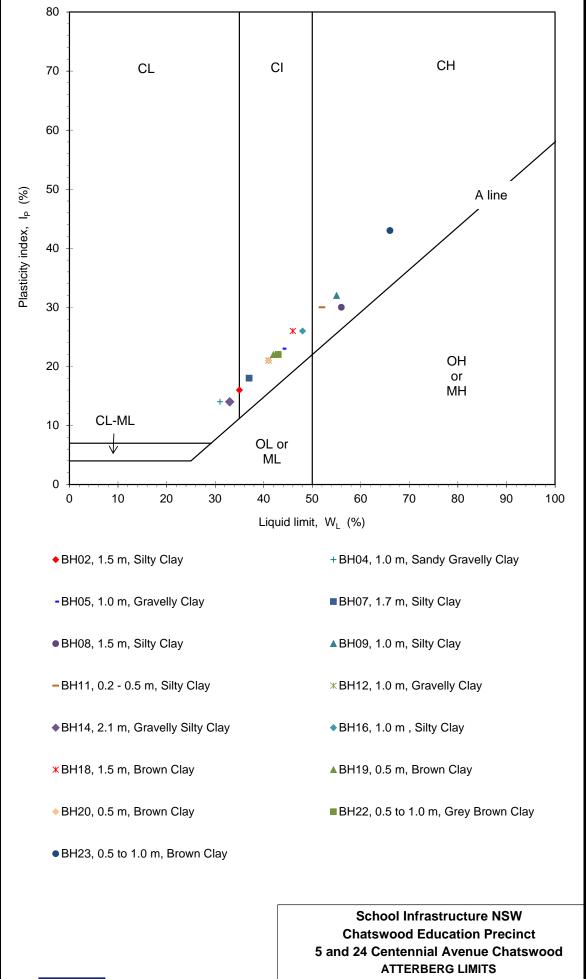
PSM3730-006R

Figure 3



Photo 3: General site conditions - Pacific Highway site facing East towards BH19




Photo 4: Typical Rig Coring setup - Centennial Avenue site facing East towards BH07

School Infrastructure NSW
Chatswood Education Precinct
5 & 24 Centennial Avenue Chatswood
SELECTED SITE PHOTOS (SHEET 2 OF 2)

P S M Pells Sullivan Meynink

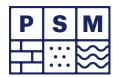

PSM3730-006R

Figure 4



**PLASTICITY CHART** 

# Appendix A Geotechnical Engineering Borehole Logs



# Centennial Avenue Site

### Attachment A1: Tabulated Borehole Logs

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                              | Notes                                                  |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| BH01<br>(RL 79.0m)                             | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, dry and soft consistency, roots and rootlets present.                     | Topsoil                                                |
|                                                |                      |                                                                                                                   | Inferred Fill                                          |
|                                                | 0.1 – 2.0 m          | Silty CLAY; dark brown, low plasticity, trace gravel up to 10 mm, sub-angular, dry and hard consistency.          | SPT at 1.5 m:<br>3, 35, 45, N = 80                     |
|                                                |                      | Becomes brown at 0.5 m.                                                                                           | ES collected at 2.0 m.                                 |
|                                                | 2.0 – 2.6 m          | LAMINITE; grey and dark grey, extremely low to low strength, extremely weathered. Sandstone laminations observed. | Inferred Bedrock  Description based on drill cuttings. |
|                                                | 2.6 m                | Hole terminated at 2.6 m.                                                                                         | TC-bit refusal.                                        |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                      | Notes                                                                               |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| BH02<br>(RL 79.5m)                             | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, moist, soft consistency, roots and rootlets present.                                              | Topsoil  CBR sample collected at 0.1 – 0.5m.                                        |
|                                                | 0.1 – 1.8 m          | Silty CLAY; brown, low plasticity, trace gravel up to 10 mm, sub-angular to angular, dry, hard consistency.  Becomes pale brown at 1.0 m. | Inferred Fill  SPT at 1.0 m: 10, 13, 27, N= 40  Atterberg sample collected at 1.5m. |
|                                                | 1.8 – 3.2 m          | LAMINITE; grey and black, extremely low strength, extremely weathered. Sandstone laminations observed.                                    | Inferred Bedrock  Description based on drill cuttings.  SPT at 2.5 m: Refusal.      |
|                                                | 3.2 m                | Hole terminated at 3.2 m.                                                                                                                 | TC-bit refusal.                                                                     |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                      | Notes                                                                                        |
|------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                | 0 – 0.05 m           | Silty CLAY; dark brown, low plasticity, moist and soft consistency, roots and rootlets present.                           | Topsoil                                                                                      |
|                                                | 0.05 – 1.0 m         | Silty Sand; grey, medium grained sand, trace gravel up to 10mm, sub-angular to angular, dry and medium dense consistency. | Inferred Fill  SPT at 1.0 m: 5, 18, 17, N = 35                                               |
|                                                | 1.0 – 3.0 m          | Silty CLAY; red and grey, low plasticity, with gravel up to 15mm, sub-angular, dry and very stiff consistency.            | Inferred Fill ES collected at 2.0m. SPT at 2.5m:                                             |
| BH03<br>(RL 77.5m)                             | 3.0 – 5.8 m          | CLAY; red and brown, medium to high plasticity, with gravel up to 10mm, angular, dry, very stiff to hard consistency.     | 5, 9, 15, N = 24 Inferred Residual Soil SPT at 4.0m: 6, 10, 21, N = 31 SPT at 5.5m: Refusal. |
|                                                | 5.8 – 6.0 m          | LAMINITE; grey, extremely low strength, extremely weathered. Sandstone laminations observed.                              | Inferred Bedrock  Description based on drill cuttings.                                       |
|                                                | 6.0 m                | Hole terminated at 6.0 m.                                                                                                 | TC-bit refusal.                                                                              |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                          | Notes                                         |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, moist and soft consistency, roots and rootlets present.                               | Topsoil                                       |
|                                                |                      |                                                                                                                               | Inferred Fill                                 |
|                                                |                      |                                                                                                                               | SPT at 1.0 m:<br>2, 4, 8. N = 12              |
|                                                |                      | CLAY; orange and brown, low to medium plasticity, with silt, trace gravel up to 5mm, subangular, moist and stiff consistency. | Atterberg<br>sample<br>collected at 1.0<br>m. |
|                                                |                      | Becomes dark brown at 2.0 m.                                                                                                  | Occasional gravel fill                        |
| BH04                                           | 0.1 – 6.0 m          | Becomes dark brown and orange, stiff to very stiff at 3.0 m.                                                                  | observed from<br>2.0 m.                       |
| (RL 77.5m)                                     |                      | Becomes hard at 5.5 m.                                                                                                        | SPT at 2.5 m:<br>3, 5, 6, N = 11              |
|                                                |                      |                                                                                                                               | SPT at 4.0 m:<br>3, 7, 13, N = 20             |
|                                                |                      |                                                                                                                               | SPT at 5.5 m:                                 |
|                                                |                      |                                                                                                                               | 11, 14, 30, N=<br>44                          |
|                                                | 6.0 – 7.5 m          | Sandy CLAY; grey, yellow and brown, medium plasticity, fine grained sand, dry to moist, hard consistency.                     | Inferred<br>Residual Soil                     |
|                                                |                      |                                                                                                                               |                                               |
|                                                | 7.5 m                | Hole terminated at 7.5 m.                                                                                                     | TC-bit refusal.                               |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                            | Notes                                                                                                                                            |
|------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, with gravel up to 2mm, sub-angular to angular, dry and soft consistency, roots and rootlets present.                                                                    | Topsoil                                                                                                                                          |
| BH05<br>(RL 90.5m)                             | 0.1 – 1.2 m          | CLAY; dark brown, low plasticity, with silt, trace gravel up to 2mm, angular, dry and hard consistency.  Becomes pale brown and grey at 1.0 m.                                                                  | Inferred Fill  CBR sample collected at 0.1 – 0.3 m.  ES collected at 0.2 m.  Atterberg sample collected at 1.0m  SPT at 1.0 m: 4, 20, 32, N = 52 |
|                                                | 1.2 – 2.8 m          | LAMINITE; grey with yellow staining, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes highly weathered at 2.5 m. | Inferred Bedrock  Description based on drill cuttings.                                                                                           |
|                                                | 2.8 m                | Hole terminated at 2.8 m.                                                                                                                                                                                       | TC-bit refusal.                                                                                                                                  |



#### **BH06**

Page 1 of 3

# **Engineering Log - Non Cored Borehole**

Client: SINSW Commenced: 23/01/2019 Project Name: **Chatswood Education Precinct** Completed: 23/01/2019

Project No.:

PSM3730

Chatswood High School BH06 Hole Location: Logged By: MB Hole Position: 331198.0 m E 6258628.0 m N Checked By: YΒ

|                                                                                                                                  | Drill Model and Mounting: Hanjin DB8 Hole Diameter: 110 mm |                                             |                                   |                                         |                                                                                   | rack Mounted Inclination: -90° RL Surface: 89.50 m  Bearing: Datum: AHD O |              |                 |             |                          | perator: BG Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                       |                                                                     |                       |                                   |     |                              |                |                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|-----------------|-------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|-----------------------------------|-----|------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                |                                                            |                                             |                                   | Drill                                   | ing Informa                                                                       | tion                                                                      |              |                 |             |                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil Description                                                                                                                                                      | on                                                                  |                       |                                   |     |                              |                | Observations                                                                                                                                                                      |
|                                                                                                                                  | Method                                                     | Penetration                                 | Support                           | Water                                   | Samples<br>Tests<br>Remarks                                                       | Recovery                                                                  | RL<br>(m)    | Depth (m)       | Graphic Log | Classification<br>Symbol | SOIL NAME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al Description<br>: Colour, structur<br>ty, additional                                                                                                                | e,                                                                  | Moisture<br>Condition | Consistency /<br>Relative Density | Pen | Hand<br>etron<br>UCS<br>(kPa | nete<br>3<br>) | r Structure and<br>Additional Observations                                                                                                                                        |
| 5.PJ <-DawingFile>> 270022019 10:36 8:30.003 Datget Lab and in Situ Tod - DGD   Lib: PSM 300.22015-10-23 Pt; PSM 2.01 2015-04-07 | AD/T                                                       |                                             | Z                                 | Not Observed                            | SPT<br>1.00 - 1.45 m<br>2, 5, 12<br>N = 17<br>SPT<br>2.50 - 2.65 m<br>10, Refusal |                                                                           |              | 1— 1— 2— 3— 4—  |             | CL                       | Silty CLAY; dark brows and coarse-grained (protlets observed. CLAY; orange and dwith silt, with gravel users orange and silty CLAY; pale browplasticity. Laminite fragments of low strength, extremed continued on cored continued conti | d red.  d red.  wn and grey, low observed from 2.                                                                                                                     | ts and / lasticity, angular.                                        | D                     | St to VSt                         |     |                              |                | O.00: Topsoil O.10: Inferred FILL  1.00: SPT recovered: 0.45 m.  2.00: Inferred residual soil.  2.50: SPT recovered: 0.15 m.  3.00: Rock properties inferred from drill cuttings. |
| NONCORE_BH_NZ_AU PSM3750 GINT LOGS.GPJ                                                                                           | Al                                                         | D/T -                                       | leth:                             | er dri                                  | lling TC bit                                                                      | Pe                                                                        | enetra:      | tion            | ا د         | <i>W</i> ∂<br>>> Inflo   | ater<br>>w U -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Samples and T                                                                                                                                                         | nple                                                                | N                     | loistu                            | - Г | rv                           |                | VS - Verv soft                                                                                                                                                                    |
| M 3.00.2 LIB V2.GLB Log IS_AU_                                                                                                   | Al<br>SI<br>P                                              | D/V -<br>'B -W<br>PT-St<br>T - Pi<br>S - Ai | Aug<br>rash<br>and<br>ush<br>uger | er dri<br>bore<br>ard p<br>tube<br>Scre | lling V bit<br>enetration test                                                    | ons and                                                                   | throi<br>ref | ugh to<br>fusal |             | ✓ Par                    | tial Loss D -<br>SPT -<br>mplete Loss ES -<br>TW -<br>LB -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Disturbed Samp<br>Standard Peneti<br>Environmental S<br>Thin Walled<br>Large Disturbed<br>Classification S<br>and soil descrip<br>based on Unifie<br>Classification S | le<br>ration Test<br>Sample<br>Sample<br>rmbols<br>otions<br>d Soil |                       | M                                 | - Ñ | Moist<br>Wet                 |                | S - Soft F - Firm St - Stiff VSt - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense VD - Very dense Ce - Cemented C - Compact                |





Page 2 of 3

# **Engineering Log - Cored Borehole**

Client:SINSWCommenced:23/01/2019Project Name:Chatswood Education PrecinctCompleted:23/01/2019

Project No.:

PSM3730

Hole Location: Chatswood High School BH06 Logged By: MB Hole Position: 331198.0 m E 6258628.0 m N Checked By: YB

| $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | Posi                                                                  |                                                                 |                                                                      |            |                   |                                                                                                       | 020.U III IN                                                                                    |                                                                                                                                                                                                                                       |                                                                  | •                                                                                                                                                                                                                                      | 10                                                                                                                                                            |                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|------------|-------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                       |                                                                 | d Mounti<br>id Lengt                                                 | •          | •                 |                                                                                                       |                                                                                                 | clination: -90°<br>earing:                                                                                                                                                                                                            | RL Su<br>Datum                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                               | erator: BG Drilling                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Drill                                                                 | ling l                                                          | nformat                                                              | ion        |                   |                                                                                                       | F                                                                                               | Rock Substance                                                                                                                                                                                                                        |                                                                  | F                                                                                                                                                                                                                                      | Rock Mass Defects                                                                                                                                             |                                                                                                                                                                               |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water                             | TCR (%)                                                               | RQD (%)                                                         | SAMPLES &<br>FIELD TESTS                                             | RL<br>(m)  | Depth<br>(m)      | Graphic Log                                                                                           | Material Des<br>ROCK TYPE: Colour, g<br>(texture, fabric, mineral co<br>alteration, cementation | grain size, structure emposition, hardness,                                                                                                                                                                                           | Weathering                                                       | O - Diametral                                                                                                                                                                                                                          | Defect<br>Spacing<br>(mm)                                                                                                                                     | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                       |                                                                 |                                                                      | 88.5       | -<br>-<br>1—<br>- |                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                               |
| ON 0.00. E. CO. 10. E. C. 10. E. C. 10. E. C. 10. C |                                   |                                                                       |                                                                 |                                                                      | 87.5       | 2-                |                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                               |
| וזייס היסיניסט פמוקטו במימוח וויסום ויסים דבורי ויסוד ובהי ויסוד מיסיב במים ויסים וויסים במיסים מיסיב                                                                                                                                                                                                                                                                    |                                   |                                                                       |                                                                 |                                                                      | 86.5       | 3                 |                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                       |                                                                 |                                                                      | 85.5       | 4-                |                                                                                                       | Continued from non-cored                                                                        | borehole sheet                                                                                                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                               |
| NMLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Observed                      | 29                                                                    | 24                                                              |                                                                      |            | -                 |                                                                                                       | No core: 400 mm.  LAMINITE; dark grey with c bedding fabric faint, some h                       | orange banding,<br>nard clay.                                                                                                                                                                                                         |                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                               | —SM 0° CL SN PR S 10 mm<br>→ BP 0° FE SN IR S                                                                                                                                 |
| WILL STATE TO A THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ADA<br>WE<br>HQ<br>PQ<br>SP<br>PT | /T - Aug<br>/V - Aug<br>8 - Wa<br>3- Wir<br>3- Wir<br>T- Sta<br>- Pus | ger drill<br>shbore<br>eline o<br>eline o<br>ndard p<br>sh tube | ing TC bit<br>ing V bit<br>ore (63.5 m<br>ore (85.0 m<br>benetration | m)<br>test | Grap              | <ul> <li>Inflow</li> <li>Partial</li> <li>Complete</li> <li>Core resindical</li> <li>No co</li> </ul> | al Loss olete Loss og/Core Loss ecovered (hatching es material) re recovery                     | Weathering  EW - Extremely Weather  HW - Highly Weathered  MW - Moderately Weath  SW - Slightly Weathered  F - Fresh  Strength  EL - Extremely Low  VL - Very Low  L - Low  M - Medium  H - High  VH - Very High  EH - Extremely High | ed FT - SS - Pered SZ - BP - SM - IS - CO - CZ - VN - FZ - BSH - | efect Type Fault Shear Surface Shear Zone Bedding parting Seam Joint Contact Crushed Zone Vein Fracture Zone Bedding Shear Difflight Fracture Zone | Infiling/Coa CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fr G - Gravel S - Sand Z - Silt CA - Calcine CL - Clay FE - Iron QZ - Quartz X - Carbon | Inting  Roughness SL - Slickensided POL - Polished S - Smooth G RF - Rough Agaments VR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular |





Page 3 of 3

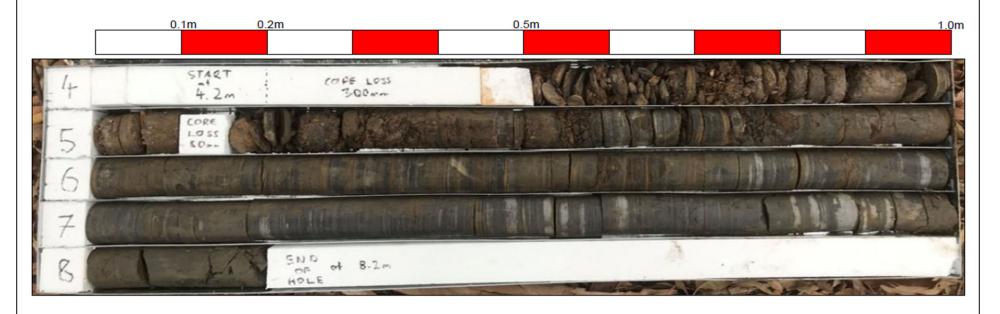
# **Engineering Log - Cored Borehole**

Client:SINSWCommenced:23/01/2019Project Name:Chatswood Education PrecinctCompleted:23/01/2019

Project No.:

PSM3730

Hole Location: Chatswood High School BH06 Logged By: MB Hole Position: 331198.0 m E 6258628.0 m N Checked By: YB


| $\vdash$                                                                                                                                                                                        |                                                                                                                                                                                                                                                |         |          |                                                                                              |                     |              |                                  | 28.0 M N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                                                  | ea By:                                                                                 | ′В                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------------------------------------------------------------------------------------------|---------------------|--------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |         |          | d Mounti<br>nd Lengt                                                                         | 0                   | ,            | DB8 T<br>Tube 1                  | rack Mounted Inclination: 00mm Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -90°                                          | RL Sur<br>Datum                                                                  |                                                                                        |                                                                                                                                                                               | rator: BG Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                | Dr      | illing   | Informat                                                                                     | ion                 |              |                                  | Rock Sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stance                                        |                                                                                  |                                                                                        | R                                                                                                                                                                             | Rock Mass Defects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Method                                                                                                                                                                                          | Water                                                                                                                                                                                                                                          | TCR (%) | RQD (%)  | SAMPLES &<br>FIELD TESTS                                                                     | RL<br>(m)           | Depth<br>(m) | Graphic Log                      | Material Description<br>ROCK TYPE: Colour, grain size, s<br>(texture, fabric, mineral composition,<br>alteration, cementation, etc as ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , hardness,                                   | Weathering                                                                       | Strength Is(50)                                                                        | Defect<br>Spacing<br>(mm)                                                                                                                                                     | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.00.2 LIB VZ.GLB. Log IS. AU_CORRHI_PSM PSM3790 GN I LOGS/GPJ <-Chamngaries > 277022019 10:56 8.30.006 bagget Lab and in Smi 1 con - DGD   Lib; PSM 3.00.2 2015-10:23 Prj; PSM 2.01.2015-44-47 | Not Observed                                                                                                                                                                                                                                   | 100     | 66 66 24 | 6.00m<br>01 is(50)<br>(d=0.1<br>a=0.5<br>MPa<br>6.90m<br>02 is(50)<br>(d=0.6<br>a=1.3<br>MPa | 80.5 81.5 82.5 83.5 | 6            |                                  | AMINITE; dark grey with orange ban edding fabric faint, some hard clay. (consider the common section of the co | continued) ge banding, andstone               |                                                                                  |                                                                                        |                                                                                                                                                                               | BP 3° FE SN ST RF BP 1° FE SN PR S BP 0° FE SN PR S BP 0° FE SN PR S 3 mm Heavily fractured along bedding planes.  BP 0° FE SN PR S BP 0° FE SN CU RF  DB BP 0° FE SN PR S BP 0° CN ST RF  BP 3° FE SN PR S |
| 5 I                                                                                                                                                                                             | Method  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT- Standard penetration test PT - Push tube  See Explanatory Notes for details of abbreviations and |         |          |                                                                                              |                     | Grap         | Core rec<br>indicates<br>No core | EW - Ex   HW - HW   HW - HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ength<br>tremely Low<br>ery Low<br>w<br>edium | d FT -   SS - : ed SZ - : BP -   SM - : IS -   CO -   CZ -   VN - * FZ -   BSH - | Shear Surface Shear Zone Bedding parting Seam Infilled Seam Joint Contact Crushed Zone | Infilling/Coa  CN - Clean  SN - Stain  VN - Veneer  CO - Coating  RF - Rock fre  G - Gravel  S - Sand  Z - Silt  CA - Calcite  CL - Clay  FE - Iron  QZ - Quartz  X - Carbone | SL - Slickensided POL - Polished S - Smooth RF - Rough yR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



PROJECT: Chatswood Education Precinct

LOCATION: Chatswood High

FROM: 4.2m TO: 8.2m DATE: 23/1/19





# SCHOOL INFRASTRUCTURE NSW Chatswood Education Precinct

Chatswood High School Centennial Avenue CORE PHOTOS BH06

(SHEET 1 OF 1)

PSM3730-006R

Figure 1



#### **BH07**

Page 1 of 3

# **Engineering Log - Non Cored Borehole**

Client: SINSW Commenced: 24/01/2019 Project Name: **Chatswood Education Precinct** Completed: 24/01/2019

Project No.:

PSM3730

Chatswood High School BH07 Logged By: MB Hole Location: Hole Position: 330982.0 m E 6258641.0 m N Checked By: YΒ

| 1                                                                                                                        | Drill Model and Mounting: Hanjin DB8 Hole Diameter: 100 mm |                                |                                            |          |           | B8 Tr                         | ack M       | ounted                   |                                                                                                                           | RL Surfa                                   | ce:                   |                                   | .00 m                                 |                       |                                                     |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|--------------------------------------------|----------|-----------|-------------------------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|-----------------------------------|---------------------------------------|-----------------------|-----------------------------------------------------|
| Hole                                                                                                                     | e Dia                                                      | met                            | er:                                        | 100      | ) mm      |                               | <u> </u>    |                          | Bearing:                                                                                                                  | Datum:                                     |                       | AF                                | HD                                    |                       | Operator: BG Drilling                               |
|                                                                                                                          |                                                            | Dr                             | illing Informa                             | tion     |           |                               |             |                          | Soil Desc                                                                                                                 | ription                                    |                       |                                   |                                       |                       | Observations                                        |
| Method                                                                                                                   | reneualion                                                 | Support                        | Samples<br>Tests<br>Remarks                | Recovery | RL<br>(m) | Depth<br>(m)                  | Graphic Log | Classification<br>Symbol | Material Descripti<br>SOIL NAME: Colour, st<br>plasticity, addition                                                       | on<br>ructure,<br>al                       | Moisture<br>Condition | Consistency /<br>Relative Density | Hai<br>Penetro<br>UC<br>(kP           | mete<br>S<br>a)       | Additional Observations                             |
|                                                                                                                          | <br>     <br>     <br>     <br>                            |                                | CBR<br>0.10-0.30 m                         |          |           | -                             |             |                          | Sitty CLAY; pale brown, non-pla<br>gravel up to 3 mm, sub-angular<br>roots and rootlets observed.<br>Becoming dark brown. | astic, with<br>to angular,                 |                       |                                   |                                       |                       | 0.20: FILL                                          |
| 4-07 AD/V                                                                                                                |                                                            | 2                              | SPT:<br>1.00 - 1.45 m<br>2, 5, 8<br>N = 13 |          | 88.0      | 1-                            |             |                          | Silty CLAY; grey, orange and y plasticity.                                                                                | ellow, low                                 |                       | St                                |                                       |                       | 1.00: SPT recovered: 0.45 m.                        |
| 2.01 2015-04                                                                                                             |                                                            |                                | D 1.70 m                                   |          |           | _                             | × ×         | CI-CH                    | Silty CLAY; pale brown, mediur plasticity.                                                                                | n to high                                  |                       |                                   |                                       |                       | 1.60: Inferred residual soil.                       |
| PSM 3.00.2 2015-10-23 Prj; PSM                                                                                           |                                                            | beyraeadO toN                  |                                            |          | 87.0      | 2-                            | X           |                          | Laminite fragments observed fi                                                                                            | rom 2.0 m.                                 |                       | VSt                               |                                       |                       | 1.80: V-bit Refusal.                                |
| In Situ Tool - DGD   Lib:                                                                                                |                                                            | toN                            | ES 2.50 m                                  |          | 0         | -                             |             |                          | LAMINITE; grey, black and ora low strength, extremely weather                                                             | nge, extremely red.                        | D                     |                                   |                                       |                       | 2.50: Rock properties inferred from drill cuttings. |
| gFlee> z7/022019 10:56 8.30.003 Daggel Lab and In Stu Tod - DCD   Lb. PSM 3.00.2.2015-10-22-Pt. PSM 2.01 2015-04-07 ADJT | 2                                                          | 2                              | SPT<br>3.00 - 3.10<br>Refusal              |          | 0.98      |                               |             |                          |                                                                                                                           |                                            |                       |                                   |                                       |                       | 3.00: SPT recovered: 0.10 m.                        |
| RE_BH_NZ_AU PSM0750 GINT LOGS.GPJ < <drawingfiles></drawingfiles>                                                        |                                                            |                                |                                            |          | 85.0      |                               |             |                          |                                                                                                                           |                                            |                       |                                   |                                       |                       |                                                     |
| AD/N<br>WB<br>SPT                                                                                                        | / - Au<br>-Was                                             | ger o<br>ger o<br>hbor<br>dard | penetration test                           | Pe       | thro      | tion<br>sistancugh to<br>usal |             | >> Inflo<br><□ Par       | tial Loss SPT - Standard SPT - ES - Environme TW - Thin Walle                                                             | Sample<br>Penetration Test<br>ental Sample |                       | ioistu<br>D<br>M<br>W             | re Cond<br>- Dry<br>- Mois<br>' - Wet | i <b>itio</b> r<br>st | Consistency/Relative Density                        |

PT - Push tube AS - Auger Screwing

See Explanatory Notes for details of abbreviations and basis of descriptions.

ES - Environmental
TW - Thin Walled
LB - Large Disturbed Sample
Classification symbols
and soil descriptions
based on Unified Soil
Classification System



**BH07** 

Page 2 of 3

#### **Engineering Log - Non Cored Borehole**

SINSW 24/01/2019 Client: Commenced: 24/01/2019 Project Name: **Chatswood Education Precinct** Completed:

Logged By: Hole Location: Chatswood High School BH07 MB Hole Position: 330982.0 m E 6258641.0 m N Checked By: YΒ

Drill Model and Mounting: Hanjin DB8 Track Mounted Inclination: -90° RL Surface: 89.00 m

Project No.:

PSM3730

| L                                                                                                                                                                         | Hol | Hole Diameter: 100 mm |            |         |                             |          | Bearing: Datum: AHD Operator: BG Drilling |                 |             |                          |                                                                                         | Operator: BG Drilling |                       |                                   |      |                              |                 |                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|------------|---------|-----------------------------|----------|-------------------------------------------|-----------------|-------------|--------------------------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------------|------|------------------------------|-----------------|-------------------------------------------------------|
|                                                                                                                                                                           |     |                       | L          | Drillin | ng Informatio               | n        |                                           |                 |             |                          | Soil Description                                                                        |                       |                       |                                   |      |                              |                 | Observations                                          |
| 14041000                                                                                                                                                                  | No. | Penetration           | Support    | Water   | Samples<br>Tests<br>Remarks | Recovery | RL<br>(m)                                 | Depth<br>(m)    | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional         |                       | Moisture<br>Condition | Consistency /<br>Relative Density | Pen  | Hane<br>etror<br>UCS<br>(kPa | nete<br>S<br>1) | Additional Observations                               |
| Ę                                                                                                                                                                         |     |                       | z          |         |                             |          |                                           | _               |             |                          | LAMINITE; grey, black and orange, extren low strength, extremely weathered. (continued) | mely                  | D                     |                                   |      |                              |                 |                                                       |
|                                                                                                                                                                           |     | <del>111</del>        |            |         |                             |          |                                           |                 |             |                          | Continued on cored borehole sheet                                                       |                       |                       |                                   |      |                              |                 |                                                       |
| 1 2015-04-07                                                                                                                                                              |     |                       |            |         |                             |          | <br>  83.0                                | 6               |             |                          |                                                                                         |                       |                       |                                   |      |                              |                 |                                                       |
| d In Situ Tool - DGD   Lib; PSM 3.00.2 2015-10-23 Prj; PSM 2.0                                                                                                            |     |                       |            |         |                             |          | 0 82.0                                    | 7               |             |                          |                                                                                         |                       |                       |                                   |      |                              |                 |                                                       |
| NONCORE_BH_NZ_AU_PSNR750 GINT LOGS.GPJ < ChawingFile>> 27/02/2019 10:35 8:30.003 DatgetLab and in Situ Tod - DGD   Lib. PSIN 3:00.2.2015-10:23 Prj. PSIN 2:01 2:015-04-07 |     |                       |            |         |                             |          | 80.0<br>80.0                              | 8— 9—           |             |                          |                                                                                         |                       |                       |                                   |      |                              |                 |                                                       |
| NONCORE                                                                                                                                                                   |     | Ме                    | tho<br>uge |         | ng TC bit                   |          | netrat<br>No re                           | ion<br>sistance | e [         | <b>₩</b><br>> Inflo      | tater Samples and Tests  Samples and Tests  Sample Sample  Disturbed Sample             | s                     | M                     | loistui                           | re C | ondi<br>Ory                  | itioi           | Consistency/Relative Density  VS - Very soft S - Soft |

AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore SPT - Standard penetration test PT - Push tube AS - Auger Screwing

See Explanatory Notes for details of abbreviations and basis of descriptions

No resistance through to refusal

Partial Loss ■ Complete Loss

U - Undisturbed Sample
D - Disturbed Sample
SPT - Standard Penetration Test
ES - Environmental Sample
TW - Thin Walled
LB - Large Disturbed Sample

Classification symbols and soil descriptions based on Unified Soil Classification System

M - Moist W - Wet

Very soft
Soft
Soft
Firm
Stiff
Very stiff
Hard
Very loose
Loose
Medium dense
Dense
Very dense
Very dense
Cemented
Compact S F St VSt H VL MD D VD Ce C





Page 3 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 24/01/2019
Project Name: Chatswood Education Precinct Completed: 24/01/2019

Project No.:

PSM3730

Hole Location: Chatswood High School BH07 Logged By: MB Hole Position: 330982.0 m E 6258641.0 m N Checked By: YB

| $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOI                                                                                                                                                                                     | e Pos   | ilion.  | ٥,                                       | 30982     | .0 m E       | 6258                                                                | 641.0 m N                                                                                                                                                           | Checked By: YB                                                    |                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------------------------|-----------|--------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |         |         | d Mount<br>nd Leng                       | •         | •            |                                                                     | Track Mounted Inclination: -90° 100mm Bearing:                                                                                                                      | RL Su<br>Datum                                                    |                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         | Dri     | lling   | Informa                                  | tion      |              |                                                                     | Rock Substance                                                                                                                                                      |                                                                   |                                                                                                             | F                                                                                                                                                              | Rock Mass Defects                                                                                                                                                                                        |  |  |  |  |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water                                                                                                                                                                                   | TCR (%) | RQD (%) | SAMPLES &<br>FIELD TESTS                 | RL<br>(m) | Depth<br>(m) | Graphic Log                                                         | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable) | Weathering                                                        | Strength Is(50)  - Axial - Diametral                                                                        | Defect<br>Spacing<br>(mm)                                                                                                                                      | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         |         |         |                                          |           | -            |                                                                     | Continued from non-cored borehole sheet No core: 400 mm.                                                                                                            |                                                                   |                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         |         |         |                                          | 83.0      | 6-           |                                                                     | LAMINITE; dark grey and grey with orange banding, bedding fabric faint.                                                                                             |                                                                   |                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                          |  |  |  |  |
| NMLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Observed                                                                                                                                                                            | 833     | - ∞     | 7.56m<br>ls(50)<br>d=0.7<br>a=0.1<br>MPa | 82.0      | 7-           |                                                                     | Bedding fabric visible, fine-grained thin sandstone laminations.                                                                                                    |                                                                   |                                                                                                             |                                                                                                                                                                | - Heavily fractured along bedding planes.  BP 5° FE SN PR RF - BP 30° FE SN CU RF - BP 2° FE SN PR RF - BP 2° FE SN PR RF - BP 0° FE SN PR S |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         | 100     | 88      | 8.39m<br>Is(50)<br>d=1.2<br>a=0.9<br>MPa | 80.0      | 8            |                                                                     |                                                                                                                                                                     |                                                                   |                                                                                                             |                                                                                                                                                                | BP 5° FE SN UN S JT 60° FE SN PR RF  BP 6° FE SN ST RF  JT 90° FE SN ST RF Healed joint  BP 0° FE SN ST S  BP 3° FE SN PR RF  BP 8° FE SN PR S                                                           |  |  |  |  |
| מססיב בום לביסים בעל וס"ל לביסים בעל וסוונים וסוונים סיונים וסוונים מיים ביסים בעל מונים מיים ביסים |                                                                                                                                                                                         |         |         | 9.34m<br>Is(50)<br>d=0.5<br>a=1.2<br>MPa |           | -            |                                                                     | Hole Terminated at 9.40 m                                                                                                                                           |                                                                   |                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                          |  |  |  |  |
| : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT - Standard penetration test PT - Push tube |         |         |                                          |           |              | > Inflov<br>☐ Parti<br>☐ Com<br>Dhic Lo<br>☐ Core indica<br>☐ No co | ILOS                                                                                                                                                                | d FT - SS - ed SZ - BP - SM - IS - JT - CO - CZ - VN - FZ - BSH - | Shear Surface<br>Shear Zone<br>Bedding parting<br>Seam<br>Infilled Seam<br>Joint<br>Contact<br>Crushed Zone | Infilling/Coa CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fr G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbon | SL - Slickensided POL - Polished S - Smooth RF - Rough VR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular                                                         |  |  |  |  |



JOB No.: PSM 3730

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood High

FROM: 5.4m TO: 9.4m DATE: 24/1/19





#### SCHOOL INFRASTRUCTURE NSW

BH ID: BH 07

Chatswood Education Precinct
Chatswood High School Centennial Avenue
CORE PHOTOS BH07
(SHEET 1 OF 1)

PSM3730-006R

Figure 1

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                         | Notes                                              |
|------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                | 0 – 0.15 m           | ASPHALT; 150 mm thick.                                                                                                       |                                                    |
|                                                | 0.15 – 0.25 m        | SAND; orange, medium to coarse grained, with sandstone gravel up to 20mm, sub-angular to angular, dry compacted consistency. | Inferred Fill                                      |
|                                                |                      | Becomes brown at 0.5 m.                                                                                                      |                                                    |
|                                                | 0.25 – 1.5 m         | Silty CLAY; dark brown, low plasticity, trace gravel up to 5mm, sub-angular, moist, stiff consistency.                       | Inferred Fill<br>SPT at 1.0 m:<br>3, 4, 6, N = 10. |
| BH08                                           |                      | Becomes pale brown and grey at 1.0m.                                                                                         | Atterberg<br>sample<br>collected at 1.5<br>m.      |
| (RL 89.0m)                                     | 1.5 – 1.9 m          | CLAY; orange, brown and grey, high plasticity, moist and stiff consistency.                                                  | Inferred<br>Residual Soil                          |
|                                                |                      | Organic material and siltstone fragments encountered at 1.6 m.                                                               | V-bit refusal at<br>1.9 m.                         |
|                                                | 1.9 – 6.3 m          | Inferred Bedrock  Description based on drill cuttings.                                                                       |                                                    |
|                                                |                      | Becomes dark grey at 5.0 m.                                                                                                  | ES collected at 2.5 m.                             |
|                                                | 6.3 m                | Hole terminated at 6.3 m.                                                                                                    | TC-bit refusal.                                    |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                  | Notes                                                                                    |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                          | 0 – 0.1 m            | Concrete, 100 mm thick.                                                                                                                                                               |                                                                                          |
|                                          | 0.1 – 0.5 m          | CLAY; dark brown, low plasticity, with gravel up to 10 mm, angular, moist, compacted.  Becomes brown at 0.5 m.                                                                        | Inferred Fill ES collected at 0.5 m.                                                     |
|                                          | 0.5 – 1.5 m          | CLAY; orange-brown, low to medium plasticity, trace gravel up to 8mm, angular, ironstone gravels, moist and stiff consistency.  Becomes mottled grey and orange at 1.5m.              | Inferred Fill  Atterberg sample collected at 0.5 – 1.0 m.  SPT at 1.0 m: 3, 4, 7, N = 11 |
| BH09<br>(RL 91.5m)                       | 1.5 – 2.5 m          | Silty Gravelly CLAY; red and brown, low to medium plasticity, sub-angular gravel up to 5 mm, dry, very stiff consistency.                                                             | Inferred Fill  SPT at 2.5 m: 3, 10, 17, N = 27                                           |
|                                          | 2.5 – 3.2 m          | CLAY; grey and red, low to medium plasticity, dry and very stiff consistency.                                                                                                         | Inferred Residual<br>Soil<br>V-bit refusal at<br>3.2 m.                                  |
|                                          | 3.2 – 9.0 m          | LAMINITE; grey, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes dark grey from 4.5 m. | Inferred Bedrock  Description based on drill cuttings.  SPT at 4.0 m:                    |
|                                          | 9.0 m                | Hole terminated at 9.0 m.                                                                                                                                                             | 18, Refusal.  TC-bit auger did not refuse.                                               |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                         | Notes                                                                                           |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.2 m            | Silty CLAY; dark brown, low plasticity, dry, soft consistency, roots and rootlets observed.                                                                                                                  | CBR sample collected at 0.1 - 0.3 m.                                                            |
| BH10<br>(RL 92.0m)                             | 0.2 – 4.2 m          | CLAY; red and brown, low plasticity, trace gravel up to 5mm, angular, dry and very stiff consistency.  With silt, dark brown and red at 1.0 m.  Becomes grey and red at 1.5 m.  Becomes mostly red at 2.5 m. | Inferred Fill  SPT at 1.0 m: 3, 10, 19, N = 29  V-bit refusal at 2.3 m.  SPT at 2.5 m: Refusal. |
|                                                | 4.2 – 8.0 m          | LAMINITE; grey, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.                                                       | Inferred Bedrock  Description based on drill cuttings.                                          |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                                                    | Maximum depth reached. Auger did not refuse.                                                    |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                       | Notes                                                                                                                                |
|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, dry, soft consistency, bark observed.                                                                                              | Topsoil                                                                                                                              |
| BH11<br>(RL 91.5m)                             | 0.1 – 2.5 m          | Silty CLAY; red and grey, medium plasticity, dry and very stiff consistency.  Angular ironstone gravels up to 2mm at 1.5 m.  Mostly red with siltstone fragments at 2.0 m. | Inferred Fill  Atterberg sample at 0.2 – 0.5 m.  V-bit refusal at 0.5 m.  SPT at 1.0 m: 2, 7, 23, N = 30  SPT at 2.5 m: 20, Refusal. |
|                                                | 2.5 – 8.0 m          | LAMINITE; grey and red, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.             | Inferred Bedrock  Description based on drill cuttings.  ES collected at 6.0 m.  Maximum depth                                        |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                  | reached. Auger<br>did not refuse.                                                                                                    |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                           | Notes                                                  |  |  |
|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, dry, soft consistency, roots and rootlets observed.                    | Topsoil                                                |  |  |
|                                                | 0.1 – 1.5 m          |                                                                                                                | Inferred Fill                                          |  |  |
|                                                |                      |                                                                                                                | ES collected at 0.4 m.                                 |  |  |
| BH12                                           |                      | Silty CLAY; pale brown, medium plasticity, trace gravel, dry and hard consistency.                             | V-bit refusal at<br>0.5 m on<br>possible tree<br>root. |  |  |
| (RL 90.0m)                                     |                      |                                                                                                                | Atterberg sample collected at 1.0m.                    |  |  |
|                                                |                      |                                                                                                                | SPT at 1.0 m:<br>4, 24, 39, N = 63                     |  |  |
|                                                |                      | LAMINITE; grey, extremely low strength,                                                                        | Inferred Bedrock                                       |  |  |
|                                                | 1.5 – 5.2 m          | extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth. | Description based on drill cuttings.                   |  |  |
|                                                | 5.2 m                | Hole terminated at 5.2 m.                                                                                      | TC-bit refusal.                                        |  |  |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth |                                                                                                                                                                                                                     |                                                        |  |  |  |  |
|------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
|                                                | 0 – 1.5 m            | Silty CLAY; grey and red, low plasticity, dry and very stiff consistency, roots and rootlets present.  Laminite fragments observed from surface.                                                                    | V-bit refusal at 0.3 m.                                |  |  |  |  |
|                                                |                      | Becomes pale brown at 1.0 m.                                                                                                                                                                                        | SPT at 1.0 m:<br>3, 19, 26, N = 45                     |  |  |  |  |
| BH13<br>(RL 91.0m)                             | 1.5 – 5.0 m          | LAMINITE; grey, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes slightly red at 2.0 m.  Becomes dark grey at 3.0 m. | Inferred Bedrock  Description based on drill cuttings. |  |  |  |  |
|                                                | 5.0 m                | Hole terminated at 5.0 m.                                                                                                                                                                                           | TC-bit refusal.                                        |  |  |  |  |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                             | Notes                                                                                |
|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, trace gravel up to 10mm, sub-angular, dry, soft consistency, roots and rootlets present. | Topsoil                                                                              |
|                                                | 0.1 – 1.5 m          | Silty CLAY; dark brown, low plasticity, dry, soft to firm consistency, roots and rootlets present.                               | Inferred Fill  ES collected at 0.5 – 1.0 m.  SPT at 1.5 m: 6, 12, 33, N= 45          |
|                                                | 1.5 – 2.0 m          | CLAY; pale brown, high plasticity, with silt, dry and very stiff consistency.                                                    | Inferred Fill                                                                        |
| BH14<br>(RL 89.5m)                             | 2.0 – 2.5 m          | CLAY; grey, medium to high plasticity, dry and hard consistency.                                                                 | Inferred Residual Soil  V-bit refusal at 2.1 m.  Atterberg sample collected at 2.1m. |
|                                                | 2.5 – 3.0 m          | LAMINITE; grey, extremely low strength, extremely weathered.                                                                     | Inferred Bedrock  Description based on drill cuttings.  SPT at 3.0 m: Refusal.       |
|                                                | 3.0 m                | Hole terminated at 3.0 m.                                                                                                        | TC-bit refusal.                                                                      |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                 | Notes                                                                 |  |  |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|                                                | 0 – 0.1 m            | CLAY; dark brown, low plasticity, trace gravel up to 5 mm, sub-angular, dry, soft consistency, roots and rootlets observed.                                                          | Topsoil                                                               |  |  |
|                                                | 0.1 – 1.0 m          | Silty CLAY; grey and pale brown, low plasticity, dry and stiff consistency.                                                                                                          | Inferred Fill  SPT at 1.0 m: 2, 9, 12, N = 21                         |  |  |
|                                                | 1.0 – 3.0 m          | CLAY; orange and dark brown, low plasticity, dry and very stiff consistency.                                                                                                         | Inferred<br>Residual Soil                                             |  |  |
| BH15<br>(RL 86.0m)                             |                      | Becomes grey and medium plasticity at 2.5 m.                                                                                                                                         | V-bit refusal at<br>2.6 m.                                            |  |  |
| (INE OU.UIII)                                  | 3.0 – 6.3 m          | LAMINITE; pale brown, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes grey at 4.5 m. | Inferred Bedrock  Description based on drill cuttings.  SPT at 4.0 m: |  |  |
|                                                | 6.3 m                | Hole terminated at 6.3 m.                                                                                                                                                            | 2, 25, Refusal.  TC-bit refusal.                                      |  |  |
|                                                |                      |                                                                                                                                                                                      |                                                                       |  |  |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                | Notes                                                                                                         |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; pale brown, low plasticity, trace gravel up to 10mm, sub-angular, dry and soft consistency, roots and rootlets present. | Topsoil                                                                                                       |
|                                                | 0.1 – 1.3 m          | CLAY; orange-brown, low plasticity, with silt, dry and very stiff consistency.  Becomes brown at 0.5 m.                             | Atterberg<br>sample collected<br>at 1.0 m                                                                     |
|                                                |                      |                                                                                                                                     | SPT at 1.0 m:<br>2, 10, 17, N = 27                                                                            |
|                                                | 1.3 – 2.0 m          | CLAY; grey and brown, medium plasticity, dry and very stiff consistency.                                                            | Inferred<br>Residual Soil                                                                                     |
| BH16<br>(RL 86.0m)                             |                      | Siltstone fragments observed at 1.5 m.                                                                                              | V-bit refusal at<br>1.8 m.                                                                                    |
|                                                | 2.0 – 4.5 m          | LAMINITE; grey, extremely to low strength, extremely weathered.                                                                     | Inferred Bedrock  Description based on drill cuttings.  ES collected at 2.5 m.  SPT at 2.5 m: 2, 19, Refusal. |
|                                                | 4.5 m                | Hole terminated at 4.5 m.                                                                                                           | TC-bit refusal.                                                                                               |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                         | Notes                                                                                                         |  |  |
|------------------------------------------------|----------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
|                                                | 0 – 0.2 m            | Topsoil                                                                      |                                                                                                               |  |  |
|                                                | 0.2 – 2.0 m          | CLAY; orange and dark brown, low plasticity, dry and very stiff consistency. | Inferred Fill                                                                                                 |  |  |
|                                                |                      | Becomes mottled grey and brown at 1.0 m.                                     | SPT at 1.0 m:<br>4, 8, 12, N = 20                                                                             |  |  |
| BH17<br>(RL 90.0m)                             | 2.0 – 3.0 m          | LAMINITE; grey, extremely low strength, extremely weathered.                 | Inferred Bedrock  Description based on drill cuttings.  V-bit refusal at 2.6 m.  SPT at 2.5 m: 2, 3, Refusal. |  |  |
|                                                | 3.0 m                | Hole terminated at 3.0 m.                                                    | TC-bit refusal.                                                                                               |  |  |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                          | Notes                                                                                             |  |  |  |  |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                | 0 – 0.16 m           | Concrete; 160 mm thick.                                                                                                       |                                                                                                   |  |  |  |  |
|                                                | 0.16 – 0.4 m         | CLAY; orange-brown and grey, high plasticity, moist and stiff consistency.                                                    |                                                                                                   |  |  |  |  |
|                                                | 0.4 – 1.0 m          | CLAY; grey and red-brown, medium plasticity, trace of ironstone gravel, sub-angular, up to 13 mm moist and stiff consistency. | SPT at 1.0 m:<br>7, 8, 11, N = 19<br>SPT at 2.0 m:<br>19, Refusal.<br>Roots observed<br>at 2.0 m. |  |  |  |  |
| BH24<br>(RL 90.3m)                             | 1.0 – 2.5 m          | CLAY; grey and yellow-brown, medium to high plasticity, moist, very stiff consistency.                                        |                                                                                                   |  |  |  |  |
|                                                | 2.5 – 8.0 m          | LAMINITE; dark grey, very low strength, extremely to highly weathered.                                                        | Inferred Bedrock  Description based on drill cuttings.                                            |  |  |  |  |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                     | Maximum depth reached. V-bit auger did not refuse.                                                |  |  |  |  |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth |                                                                                           |                                                    |  |  |  |  |  |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
|                                                | 0 – 0.08 m           | Concrete; 80 mm thick.                                                                    |                                                    |  |  |  |  |  |
|                                                | 0.08 – 1.2 m         | CLAY; grey, medium to high plasticity, moist and stiff consistency.                       | Inferred<br>Residual Soil                          |  |  |  |  |  |
|                                                |                      | Trace of ironstone gravel, sub-angular up to 10 mm observed at 1.0 m.                     | SPT at 1.0 m:<br>8, 13, 12, N = 25                 |  |  |  |  |  |
|                                                |                      |                                                                                           | Inferred Bedrock                                   |  |  |  |  |  |
| BH25<br>(RL 89.5m)                             |                      | LAMINITE; dark grey, very low strength, highly weathered. Increasing strength with depth. | Description based on drill                         |  |  |  |  |  |
| (1.12.00.01.1)                                 | 1.2 – 8.0 m          | Becomes dark grey and red-brown from 2.0 m.                                               | cuttings.                                          |  |  |  |  |  |
|                                                | 2 0.0                | Increased drill resistance from 5.0 m.                                                    |                                                    |  |  |  |  |  |
|                                                |                      | Becomes dark grey from 7.0 m.                                                             | SPT at 2.0 m:                                      |  |  |  |  |  |
|                                                |                      |                                                                                           | 20, Refusal.                                       |  |  |  |  |  |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                 | Maximum depth reached. V-bit auger did not refuse. |  |  |  |  |  |



**BH26** 

Page 1 of 3

# **Engineering Log - Non Cored Borehole**

Client: SINSW 15/04/2019 Commenced: 15/04/2019 Project Name: **Chatswood Education Precinct** Completed:

Logged By: Hole Location: Chatswood High School MB Hole Position: 331032.0 m E 6258551.0 m N Checked By: BS

Drill Model and Mounting: Rig 8 Track Mounted Inclination: -90° RL Surface: 88.50 m

Hole Diameter 120 mm Datum: ΔHD Operator: BG Drilling Rearing:

Project No.:

PSM3730

| Hole Diamete                                 | r: 1                        | 120 m                | m                          |                   |             |                          | Bearing: Datum:                                                                  |                       | Al                                | AHD Op                         |                             |       | perator: BG Drilling                                          |  |  |
|----------------------------------------------|-----------------------------|----------------------|----------------------------|-------------------|-------------|--------------------------|----------------------------------------------------------------------------------|-----------------------|-----------------------------------|--------------------------------|-----------------------------|-------|---------------------------------------------------------------|--|--|
| Drii                                         | lling Informatio            | n                    |                            |                   |             |                          | Soil Description                                                                 |                       |                                   |                                |                             |       | Observations                                                  |  |  |
| Method Penetration Support Water             | Samples<br>Tests<br>Remarks | Recovery             |                            | epth<br>n)        | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional  | Moisture<br>Condition | Consistency /<br>Relative Density | Pene (F                        | land<br>trom<br>JCS<br>(Pa) | neter | Structure, Zoning, Origin,<br>Additional Observations         |  |  |
| 5 //// z                                     |                             |                      |                            | . 4               | 1 4         |                          | CONCRETE: 145 mm thick.                                                          |                       |                                   |                                |                             |       |                                                               |  |  |
| Not Observed                                 | SPT:<br>1.00 - 1.45 m       | 87.6                 | 2.                         | -<br>-<br>-<br>1- |             | CH                       | CLAY: high plasticity, grey and pale brown.  Becomes dark grey and orange-brown. | М                     | St                                |                                |                             |       | 0.15: Inferred residual soil.  1.00: SPT recovered: 450 mm.   |  |  |
| ADVA                                         | 3, 5, 7<br>N = 12           |                      |                            | -                 |             |                          | Shale fragments observed.  SILTSTONE: dark grey and orange-brown,                |                       |                                   | -                              |                             |       | 1.80: Inferred bedrock. Rock propertie                        |  |  |
|                                              | SPT:                        | , u                  | 3                          | 2-                |             |                          | very low strength, extremely to highly weathered.                                | D                     |                                   |                                |                             |       | inferred from drill cuttings. 2.00: SPT recovered: 140 mm.    |  |  |
|                                              | 20,Refusal                  | _ <u> </u>           |                            | 3-                |             |                          | Continued on cored borehole sheet                                                |                       |                                   |                                |                             |       |                                                               |  |  |
|                                              |                             | _ <u>~</u> ~         |                            | 4                 |             |                          |                                                                                  |                       |                                   |                                |                             |       |                                                               |  |  |
| Mathad                                       |                             | Pomrá                | rotica                     |                   |             | 147                      | Now Commissional T4-                                                             |                       | loist:                            |                                | ncl?                        | tia-  | Consistency/Balativa Barret                                   |  |  |
| Method<br>AD/T - Auger dr<br>AD/V - Auger dr |                             | <i>Penet</i><br>⊲ No | ration<br>resista<br>rough |                   | [           | > Inflo                  | ater Samples and Tests by U - Undisturbed Sample tial Loss D - Disturbed Sample  | ,                     |                                   | <b>ire Co</b><br>- Di<br>1 - M |                             |       | Consistency/Relative Density VS - Very soft S - Soft F - Firm |  |  |

AD/V - Auger drilling V bit
AD/V - Auger drilling V bit
WB - Washbore
SPT - Standard penetration test
PT - Push tube
AS - Auger Screwing

through to refusal

Partial Loss Complete Loss D - Disturbed Sample SPT - Standard Penetration Test ES - Environmental Sample TW - Thin Walled LB - Large Disturbed Sample

M - Moist W - Wet

- Soff Firm Stiff - Very stiff - Hard - Very loose - Loose - Medium dense - Dense - Very dense - Cemented - Compact S F St VSt H VL

MD D VD Ce C

See Explanatory Notes for details of abbreviations and basis of descriptions.

Soil and rock descriptions in accordance with AS 1726:2017





Page 2 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW 15/04/2019 Commenced: **Chatswood Education Precinct** Completed: 15/04/2019 Project Name:

Project No.:

PSM3730

Hole Location: Chatswood High School Logged By: MB Hole Position: 331032.0 m E 6258551.0 m N Checked By: BS

| - 1                                                                                                                                                       |                                                           |                    | el and More and I                                                                                                               |               | •         | Rig 8        |                                       | Mounted                                                                                                                                                                                         | Inclinati<br>Bearing                                                                     |                                                                                                     | RL S           |                         |                                                 | 88.50<br>AHD  |                  | Op                                              | pera             | ator:                                                                                                                                       | BG Drillin                                                                                                                                                                                                                 | ıg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------------------------------|---------------|------------------|-------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                           |                                                           | Dril               | ling Info                                                                                                                       | ormat         | tion      |              |                                       |                                                                                                                                                                                                 | Rock                                                                                     | Substance                                                                                           |                |                         |                                                 |               |                  | Rock Mass Defects                               |                  |                                                                                                                                             |                                                                                                                                                                                                                            | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Method                                                                                                                                                    | Water                                                     | RQD (%)            | SAMPLES &<br>FIELD TESTS                                                                                                        | WPT (Lugeons) | RL<br>(m) | Depth<br>(m) | Graphic Log                           | ROCK TYPE<br>(texture, fabric,<br>alteration, cel                                                                                                                                               | aterial Descript<br>: Colour, grain<br>mineral compo<br>mentation, etc<br>s and minor co | size, structure<br>sition, hardness,<br>as applicable),                                             | Weath          | J                       | Streng<br>Is(50<br>• - Ax<br>• - Diam           | ial<br>netral | Sp:<br>(n        | efect<br>acing<br>nm)                           |                  | Descri                                                                                                                                      | otion, alpha                                                                                                                                                                                                               | s / Commen<br>/beta, infilling<br>, roughness,<br>other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.GPJ. < <drawingfile>&gt; 02/09/2019 11:41 10.00 00.069 DatgeFerce and Map Too!   Lib: PSM 3.02 t 2019-03-06 Pt; PSM 2.01 2015-04-07  NMLC</drawingfile> | Not Observed                                              | 52                 | 2.41m<br>C Is(50)<br>d=0.1<br>a=0.7<br>MPa<br>3.32m<br>C Is(50)<br>d=0.3<br>a=0.4<br>MPa<br>4.43m<br>C Is(50)<br>d=0.1<br>a=0.1 |               |           |              | x x x x x x x x x x x x x x x x x x x | Continued from not SILTSTONE: dark some hard clay. LAMINITE: dark gr bands, Thinly Lam grained sandstone sandstone.  LAMINITE: dark gr Thinly Laminated, grained sandstone sandstone sandstone. | ey and grey, winated, develope aminations, 7                                             | developed bedding,<br>hite and orange<br>hed bedding, fine<br>0% siltstone, 30%                     |                |                         |                                                 |               |                  |                                                 |                  | BP, 0° BP, 0° BP, 1° BP, 1° BP, 0° | , KL, PR, S<br>, FE SN, P,<br>, FE SN, P,<br>, FE SN, P,<br>, FE SN, P,<br>, FE SN, S,<br>, FE SN, U<br>d joint<br>, FE SN, U<br>d, CL, PR, S,<br>, FE SN, U<br>d, CL, PR, S,<br>, FE SN, P,<br>, FE SN, P,<br>, FE SN, P, | R, S<br>, R, R<br>, R, S<br>, 15 mm<br>ST, RF, 1 mr<br>U, S<br>R<br>ST, RF<br>R, S<br>ST, RF<br>R, S<br>T, RF<br>T, RF<br>R, RF |
| PSM AU CORE BH PSM3730 GINT LOGS.GPJ                                                                                                                      | AD                                                        | T - Aug<br>V - Aug | ethod<br>ger drilling <sup>1</sup><br>ger drilling <sup>1</sup><br>shbore                                                       | TC bit        |           | <            | > Inflov<br>☐ Partia                  | al Loss                                                                                                                                                                                         | HW<br>MW                                                                                 | Weathering  - Extremely Weathered  - Highly Weathered  - Moderately Weathered  - Slightly Weathered | FT<br>SS<br>SZ | - Fau<br>- She<br>- She | ct Type  lit ear Surface ear Zone dding parting |               | SN<br>VN         | ing/Co<br>- Clea<br>- Stair<br>- Veno<br>- Coat | an<br>in<br>ieer | −BP, 0°                                                                                                                                     |                                                                                                                                                                                                                            | R, S<br>ghness<br>lickensided<br>olished<br>mooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Log PSI                                                                                                                                                   | HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) |                    |                                                                                                                                 |               |           |              | olete Loss                            | FR                                                                                                                                                                                              | - Fresh  Strength                                                                        | SN<br>IS                                                                                            | 1 - Sea        | im<br>led Seam          | ,                                               | RF<br>G       | - Rock<br>- Grav | k frag<br>vel                                   | jments           | VR - V                                                                                                                                      | ery Rough                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

SPT- Standard penetration test
PT - Push tube

Graphic Log/Core Loss

SPT - Standard penetration test PT - Push tube Core recove indicates ma No core recove See Explanatory Notes for details of abbreviations and basis of descriptions. Core recovered (hatching indicates material) No core recovery

 Strength

 VL
 - Very Low

 L
 - Low

 M
 - Medium

 H
 - High

 VH
 - Very High

 EH
 - Extremely High

IS - Infilled Seam
JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break

G - Gravei
G - Gravei
S - Sand
Z - Silt
CA - Calcite
CL - Clay
FE - Iron
QZ - Quartz
X - Carbonaceous

Shape
PR - Planar
CU - Curved
UN - Undulating
ST - Stepped
IR - Irregular





Page 3 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 15/04/2019 Project Name: **Chatswood Education Precinct** Completed: 15/04/2019

Project No.:

PSM3730

Chatswood High School Hole Location: Logged By: MB Hole Position: 331032.0 m E 6258551.0 m N Checked By: BS

|        |                                |                                                         | el and More and L                                                                                      |                           | •         | Rig 8                                                                                                                                       |                                         | Mounted Inclination: -90°<br>Bearing:                                                                                                                                                       | RL Surface: 88.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         | rator: BG Drilling                                                                                                                                                                                                                                                                                                                                    |
|--------|--------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                | Dril                                                    | ling Info                                                                                              | rmat                      | tion      |                                                                                                                                             |                                         | Rock Substance                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                                                                                                       | Rock Mass Defects                                                                                                                                                                                                                                                                                                                                     |
| Method | Water                          | RQD (%)                                                 | SAMPLES &<br>FIELD TESTS                                                                               | WPT (Lugeons)             | RL<br>(m) | Depth<br>(m)                                                                                                                                | Graphic Log                             | Material Description ROCK TYPE: Colour, grain size, structure (texture, fabric, mineral composition, hardness, alteration, cementation, etc as applicable), inclusions and minor components | Strength Is(50)  Weathering ○ - Axial ○ - Diametral  Note: Single of the single of th | Defect<br>Spacing<br>(mm)                                                                               | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                                                                                                                                                                     |
|        |                                | 46 52                                                   | 5.35m<br>C Is(50)<br>d=0.1<br>a=0.6<br>MPa                                                             |                           |           |                                                                                                                                             |                                         | LAMINITE: dark grey, white and orange bands,<br>Thinly Laminated, well developed bedding, fine<br>grained sandstone laminations, 80% siltstone, 20%<br>sandstone.(continued)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         | -BP, 0°, FE SN, PR, RF<br>-BP, 3°, FE SN, UN, RF, 1 mm<br>BP, 3°, FE SN, UN, S<br>-BP, 5°, FE SN, PR, S<br>-BP, 2°, FE SN, PR, S<br>-BP, 0°, FE SN, PR, S<br>-BP, 0°, FE SN, IR, RF<br>-BP, 0°, FE SN, IR, RF<br>-BP, 0°, FE SN, PR, S<br>-BP, 0°, FE SN, PR, S                                                                                       |
| NMLC   | Not Observed                   |                                                         | 6.35m<br>C Is(50)<br>d=0.1<br>a=0.3<br>MPa                                                             |                           | 82.5      | 6-                                                                                                                                          |                                         | Laminations inclined up to 30°.                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         | BP, 0°, FE SN, PR, S<br>  BP, 0°, FE SN, PR, S<br>  SM, 15°, CL, IR, S, 20 mm<br>  SM, 15°, CL, IR, S, 10 mm<br>  BP, 1°, FE SN, UN, RF<br>  BP, 30°, CL, PR, S, 1 mm<br>  JT, 0°, RF, PR, RF, 1 mm<br>  BP, 30°, CL, PR, S, 1 mm<br>  BP, 15°, Fe & Clay SN, PR, S<br>  BP, 3°, FE SN, PR, RF<br>  BP, 0°, FE SN, CU, RF<br>  JT, 10°, FE SN, CU, RF |
|        |                                | 70                                                      | 7.12m<br>C Is(50)<br>d=0.1<br>a=0.5<br>MPa                                                             |                           | 81.5      | 7 SILTSTONE: dark grey and grey, Thinly Laminated, well developed bedding, Laminations inclined up to 30°.  Laminations inclined up to 10°. | Φ • I I I I I I I I I I I I I I I I I I |                                                                                                                                                                                             | BP, 10°, FE SN, PR, RF  JT, 30°, FE SN, PR, RF  BP, 5°, FE SN, IR, RF  BP, 0°, FE SN, PR, RF  BP, 5°, FE SN, PR, RF  —BP, 3°, FE SN, PR, S  —Healed joint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|        |                                |                                                         | 8.09m<br>C Is(50)<br>d=1<br>a=0.4<br>MPa                                                               |                           | 80.5      | 8-                                                                                                                                          | -                                       |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         | — JT, 40°, FE SN, PR, RF<br>— BP, 10°, FE SN, PR, RF<br>— BP, 15°, FE SN, PR, S<br>— BP, 13°, FE SN, PR, S<br>— BP, 45°, FE SN, PR, S                                                                                                                                                                                                                 |
|        |                                |                                                         |                                                                                                        |                           | 79.5      | 9-                                                                                                                                          |                                         | Hole Terminated at 8.61 m                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|        | AD/<br>WB<br>HQ3<br>PQ3<br>SP1 | T - Aug<br>V - Aug<br>- Wa<br>3- Wir<br>3- Wir<br>- Sta | ethod ger drilling \ ger drilling \ ger drilling \ shbore eline core ( eline core ( ndard pene sh tube | / bit<br>63.5 m<br>85.0 m | m)        | <                                                                                                                                           | > Inflow<br>☐ Partia ☐ Com              | inginy vicanicio                                                                                                                                                                            | Defect Type FT - Fault SS - Shear Surface SZ - Shear Zone BP - Bedding parting SM - Seam IS - Infilled Seam JT - Joint CO - Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Infilling/Coa  CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fr G - Gravel S - Sand Z - Silt | SL - Slickensided POL - Polished S - Smooth RF - Rough                                                                                                                                                                                                                                                                                                |

SPT - Standard penetration test Graphic Log/Co
PT - Push tube
Core recove indicates ma
No core reco Core recovered (hatching indicates material) No core recovery

 VL
 - Very Low

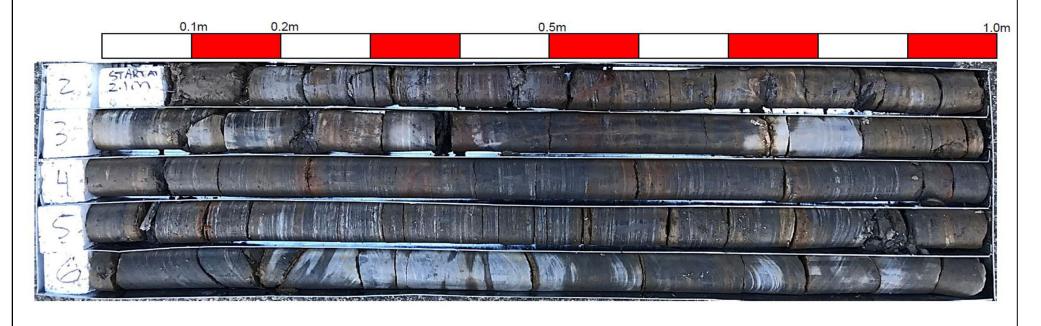
 L
 - Low


 M
 - Medium

 H
 - High

 VH
 - Very High

 EH
 - Extremely High


JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break S - Salid
C - Silt
CA - Calcite
CL - Clay
FE - Iron
QZ - Quartz
X - Carbonaceous CU - Curved UN - Undulating ST - Stepped IR - Irregular



PROJECT: Chatswood Education Precinct

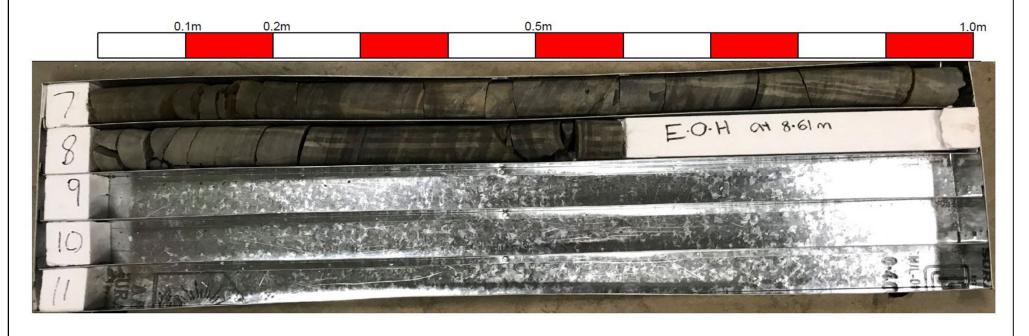
LOCATION: Chatswood High

FROM: 2.1m TO: 7.0m DATE: 15/4/19



P S M
Pells Sullivan Meynink

SCHOOL INFRASTRUCTURE NSW
Chatswood Education Precinct
Chatswood High School Centennial Avenue
CORE PHOTOS BH26
(SHEET 1 OF 2)


PSM3730-006R Figure 1



PROJECT: Chatswood Education Precinct

LOCATION: Chatswood High

FROM: 7.0m TO: 8.61m DATE: 15/4/19



P S M
Pells Sullivan Meynink

SCHOOL INFRASTRUCTURE NSW
Chatswood Education Precinct
Chatswood High School Centennial Avenue
CORE PHOTOS BH26
(SHEET 2 OF 2)

PSM3730-006R Figure 1

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                        | Notes                                              |  |  |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
|                                                | 0 – 0.08 m           | Asphalt; 80 mm thick.                                                                                                                                                                                       |                                                    |  |  |
|                                                | 0.08 – 1.5 m         | Silty CLAY; non-plastic, pale brown, with some gravel, sub-angular up to 10 mm, dry and compact consistency.                                                                                                | Inferred Fill.  SPT at 1.0 m: Refusal.             |  |  |
| BH27<br>(RL 80.0m)                             | 1.5 – 8.0 m          | LAMINITE; pale brown, very low strength, extremely weathered. Increasing strength with depth.  1.5 – 8.0 m  Becomes grey from 5.0 m.  Increased drill resistance from 6.0 m.  Becomes dark grey from 7.5 m. |                                                    |  |  |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                                                   | Maximum depth reached. V-bit auger did not refuse. |  |  |



**BH28** 

Page 1 of 4

# **Engineering Log - Non Cored Borehole**

Client: SINSW Commenced: 16/04/2019 Project Name: **Chatswood Education Precinct** Completed: 16/04/2019

Project No.:

PSM3730

Hole Location: Chatswood High School Logged By: MB Hole Position: 331153.0 m E 6258580.0 m N Checked By: BS

| Drill Model and Mounting: Rig 8 Track M Hole Diameter: 120 mm |             |         |              |                                              |          |           | ack Mo       |                                           |                                                              |                                                                                                                                    |              |                                   | Operator: BG Drilling        |                 |                                                                                                  |   |  |  |                                                    |
|---------------------------------------------------------------|-------------|---------|--------------|----------------------------------------------|----------|-----------|--------------|-------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|------------------------------|-----------------|--------------------------------------------------------------------------------------------------|---|--|--|----------------------------------------------------|
| Drilling Information                                          |             |         |              |                                              |          |           |              | Soil Description                          |                                                              |                                                                                                                                    |              |                                   | Observations                 |                 |                                                                                                  |   |  |  |                                                    |
| Method                                                        | Penetration | Support | Water        | Samples<br>Tests<br>Remarks                  | Recovery | RL<br>(m) | Depth<br>(m) | Graphic Log                               | Classification<br>Symbol                                     | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional                                                    | Moisture     | Consistency /<br>Relative Density | Har<br>Penetro<br>UC<br>(kPa | mete<br>S<br>a) | Additional Observations                                                                          |   |  |  |                                                    |
| AD/III                                                        |             | Z       |              |                                              |          |           |              |                                           |                                                              | ASPHALT: 40 mm thick.                                                                                                              | <del>/</del> | _                                 |                              | ÌÌ              | 0.04: Inferred FILL.                                                                             |   |  |  |                                                    |
|                                                               |             |         |              |                                              |          |           | -            |                                           | СН                                                           | Gravelly SAND: medium to coarse grained, dark brown; gravel angular, up to 5 mm.  CLAY: high plasticity, dark brown, grey and red. |              | C<br>                             | -                            |                 | 0.30: Inferred residual soil.                                                                    |   |  |  |                                                    |
|                                                               |             |         |              | D.                                           | D.       | D.        |              | SPT:<br>1.00 - 1.45 m<br>2, 3, 4<br>N = 7 |                                                              | 82.0                                                                                                                               | 1            |                                   |                              |                 |                                                                                                  | F |  |  | 1.00: SPT recovered: 450 mm. 1.20: Roots observed. |
| ADV                                                           |             | z       | Not Observed | SPT:<br>2.00 - 2.45 m<br>6, 9, 10<br>N = 19  |          | <br>81.0  | 2            |                                           |                                                              | Becomes red-brown and grey.                                                                                                        | М            | St                                |                              |                 | 2.00: SPT recovered: 450 mm.                                                                     |   |  |  |                                                    |
|                                                               |             |         |              | SPT:<br>3.00 - 3.45 m<br>8, 14, 25<br>N = 39 |          | 80.0      | 3-           |                                           |                                                              | SILTSTONE: grey, red and yellow-brown, low<br>\strength, extremely weathered.                                                      | D            | <br>Н                             |                              |                 | 3.00: SPT recovered: 450 mm.  3.30: Inferred bedrock. Rock propert inferred from drill cuttings. |   |  |  |                                                    |
|                                                               |             |         |              |                                              |          | 79.0      | 4            |                                           |                                                              | Continued on cored borehole sheet                                                                                                  |              |                                   |                              |                 |                                                                                                  |   |  |  |                                                    |
|                                                               |             | loth    |              |                                              | Be       | notro     | -<br>-       |                                           | 144                                                          | afor Samples and Tart                                                                                                              |              | Maiote                            | uro Const                    | litio           | Consistance/Polative De-                                                                         |   |  |  |                                                    |
| WB - Washbore                                                 |             |         |              |                                              |          |           |              |                                           | VS - Very soft S - Soft F - Firm St - Stiff VSt - Very stiff |                                                                                                                                    |              |                                   |                              |                 |                                                                                                  |   |  |  |                                                    |

Soil and rock descriptions in accordance with AS 1726:2017

L - Loose
MD - Medium dense
D - Dense
VD - Very dense
Ce - Cemented
C - Compact





Page 2 of 4

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 16/04/2019
Project Name: Chatswood Education Precinct Completed: 16/04/2019

Project No.:

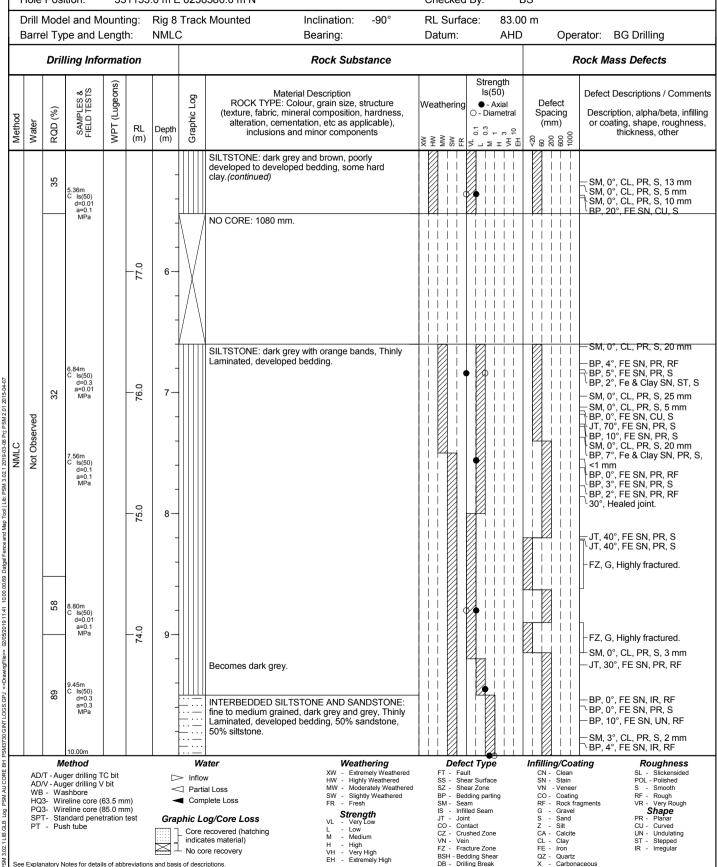
PSM3730

Hole Location:Chatswood High SchoolLogged By:MBHole Position:331153.0 m E 6258580.0 m NChecked By:BS

| '      | Hole Position: 331153.0 m E 6258580.0 m N |                                                                                                    |                                                                                                           |                             |                |              |                                             |                                                                                                                                                    |                                                                                                                                                            | Checked By: BS                                                                           |                                                                            |                                                                                                                                       |                                                                                                                                                                                       |  |  |  |
|--------|-------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        |                                           | ill Model and Mounting: Rig 8 Track Mounted Inclination: -90° urrel Type and Length: NMLC Bearing: |                                                                                                           |                             |                |              |                                             |                                                                                                                                                    |                                                                                                                                                            |                                                                                          | ace: 83.00                                                                 |                                                                                                                                       |                                                                                                                                                                                       |  |  |  |
| Е      | sarre                                     | el l'y                                                                                             | pe and L                                                                                                  | .engtl                      | า:             | NMLC         | <i>)</i>                                    | Bearing                                                                                                                                            |                                                                                                                                                            | Datum:                                                                                   | AHD                                                                        | Operator: BG Drilling                                                                                                                 |                                                                                                                                                                                       |  |  |  |
|        |                                           | Dril                                                                                               | ling Info                                                                                                 | rmat                        | ion            |              |                                             | Rock                                                                                                                                               | Substance                                                                                                                                                  |                                                                                          |                                                                            | F                                                                                                                                     | Rock Mass Defects                                                                                                                                                                     |  |  |  |
| Method | Water                                     | RQD (%)                                                                                            | SAMPLES &<br>FIELD TESTS                                                                                  | WPT (Lugeons)               | RL<br>(m)      | Depth<br>(m) | Graphic Log                                 | Material Descripti<br>ROCK TYPE: Colour, grain s<br>(texture, fabric, mineral compos<br>alteration, cementation, etc a<br>inclusions and minor cor | olour, grain size, structure<br>neral composition, hardness,<br>ntation, etc as applicable),                                                               |                                                                                          | Strength Is(50)                                                            | Defect<br>Spacing<br>(mm)                                                                                                             | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                     |  |  |  |
|        |                                           |                                                                                                    |                                                                                                           |                             | 80.0 81.0 82.0 | 1—           |                                             |                                                                                                                                                    |                                                                                                                                                            |                                                                                          |                                                                            |                                                                                                                                       |                                                                                                                                                                                       |  |  |  |
|        |                                           |                                                                                                    |                                                                                                           |                             |                |              |                                             | Continued from non-cored boreho<br>SILTSTONE: orange-brown, poorl<br>bedding, hard clay observed throu                                             | y developed                                                                                                                                                |                                                                                          |                                                                            |                                                                                                                                       |                                                                                                                                                                                       |  |  |  |
| NMLC   | Not Observed                              | 28                                                                                                 | 3.90m<br>C Is(50)<br>d=0.1<br>a=0.1<br>MPa                                                                |                             | 79.0           | 4            |                                             | SILTSTONE: dark grey, orange br<br>grey, poorly developed to develop<br>hard clay.                                                                 |                                                                                                                                                            |                                                                                          |                                                                            |                                                                                                                                       | —SM, 0°, CL, PR, S, 20 mm  —SM, 0°, CL, PR, S, 10 mm  BP, 0°, FE SN, PR, S  SM, 0°, CL, PR, S, 20 mm  —SM, 0°, CL, PR, S, 90 mm  —SM, 0°, CL, PR, S, 10 mm  —SM, 0°, CL, PR, S, 40 mm |  |  |  |
|        |                                           | 35                                                                                                 | 4.78m<br>C Is(50)<br>d=0.7                                                                                |                             |                | _            |                                             | NO CORE: 172 mm. SILTSTONE: dark grey, developed                                                                                                   | d bedding.                                                                                                                                                 |                                                                                          |                                                                            |                                                                                                                                       | —JT, 85°, CL, ST, S, 1 mm                                                                                                                                                             |  |  |  |
|        | Method Water                              |                                                                                                    |                                                                                                           |                             |                |              |                                             | NO CORE: 110 mm.                                                                                                                                   | Moathorina                                                                                                                                                 | Dos                                                                                      | ect Type                                                                   | Infilling/Coa                                                                                                                         | SM, 0°, CL, PR, S, 100 mm                                                                                                                                                             |  |  |  |
|        | AD/<br>WB<br>HQ:<br>PQ:<br>SP             | /T - Aug<br>/V - Aug<br>/J - Wa<br>/J - Wi<br>/J - Wi<br>/J - Sta                                  | ger drilling T<br>ger drilling V<br>ishbore<br>reline core (i<br>reline core (i<br>indard pene<br>sh tube | ' bit<br>63.5 mr<br>85.0 mr | n)             | <            | > Inflor □ Parti ■ Com □ Core □ Core indica | XW                                                                                                                                                 | Weathering  Extremely Weathered Highly Weathered Moderately Weathered Slightly Weathered Fresh  Strength Very Low Low Medium High Very High Extremely High | FT - Fa SS - Sh SZ - Sh BP - Be SM - Se IS - Inf JT - Jo CO - Cc CZ - Cr VN - Ve FZ - Fn | ult ear Surface ear Zone dding parting am illed Seam int intact ushed Zone | CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fr G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                                                                                       |  |  |  |






Page 3 of 4

Project No.: PSM3730

**Engineering Log - Cored Borehole** 

Client: SINSW Commenced: 16/04/2019
Project Name: Chatswood Education Precinct Completed: 16/04/2019

Hole Location:Chatswood High SchoolLogged By:MBHole Position:331153.0 m E 6258580.0 m NChecked By:BS







Page 4 of 4

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 16/04/2019 Project Name: **Chatswood Education Precinct** Completed: 16/04/2019

Project No.:

PSM3730

Chatswood High School MB Hole Location: Logged By: Hole Position: 331153.0 m E 6258580.0 m N Checked By: BS

|                                                                                                                                                                        |                                                                                                                                                                                         |         | el and M                                                  |               | -              | Rig 8              |                               | Mounted Inclination: -9 Bearing:                                                                                                                                                                               | 90°                               | RL Surface: 83.00 Datum: AHD                                                                                                        |                                                                                                          | rator: BG Drilling                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|---------------|----------------|--------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                        |                                                                                                                                                                                         |         | ing Info                                                  |               |                |                    |                               | Rock Substan                                                                                                                                                                                                   | се                                |                                                                                                                                     | Rock Mass Defects                                                                                        |                                                                                                                       |  |  |
| Method                                                                                                                                                                 | Water                                                                                                                                                                                   | RQD (%) | SAMPLES &<br>FIELD TESTS                                  | WPT (Lugeons) | RL<br>(m)      | Depth (m)          | Graphic Log                   | Material Description ROCK TYPE: Colour, grain size, struct (texture, fabric, mineral composition, hard alteration, cementation, etc as applicat inclusions and minor components                                | dness,<br>ble),                   | Strength Is(50)  Weathering ○ - Axial ○ - Diametral                                                                                 | Defect<br>Spacing<br>(mm)                                                                                | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other     |  |  |
| Olm                                                                                                                                                                    | Not Observed                                                                                                                                                                            | 68      | C Is(50) d=0.9 d=0.5 MPa  11.22m C Is(50) d=1.8 d=2.7 MPa |               | 72.0           | -<br>-<br>-<br>11- |                               | INTERBEDDED SILTSTONE AND SANDS fine to medium grained, dark grey and grey, Laminated, developed bedding, 50% sands 50% siltstone.(continued) Becomes well developed.  Becomes 80% sandstone and 20% siltstone | , Thinly<br>tone,                 |                                                                                                                                     |                                                                                                          | — BP, 0°, CL, IR, RF, <1 mm<br>— SM, 0°, CL, PR, S, 20 mm<br>— BP, 0°, CL, PR, S, <1 mm<br>— BP, 0°, S, PR, RF, <1 mm |  |  |
| GLB Log PSM AU CORE BH PSN 3730 GINT LOGS GPJ < DrawingFile> 22/05/2019 11:41 10:00:00:06 Datge Ferce and Map Tool   Lb; PSM 3.02 1.2019-03-05 Pt; PSM 2.01 2015-04-07 |                                                                                                                                                                                         |         |                                                           |               | 69.0 70.0 71.0 | 12—                |                               | Hole Terminated at 11.52 m                                                                                                                                                                                     |                                   |                                                                                                                                     |                                                                                                          |                                                                                                                       |  |  |
| SLB Log PSM AU CORE BH                                                                                                                                                 | Method  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (65.0 mm) SPT - Standard penetration test PT - Push tube |         |                                                           |               |                |                    | > Inflov<br>☐ Partia<br>■ Com | iiii iiigiiij iioc                                                                                                                                                                                             | Weathered<br>athered<br>Weathered | Defect Type FT - Fault SS - Shear Surface SZ - Shear Zone BP - Bedding parting SM - Seam IS - Infilled Seam JT - Joint CO - Contact | Infilling/Coat CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel S - Sand Z - Silt | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                       |  |  |

SP1 - Standard penetration test Graphic Log/Co Core recovered (hatching indicates material) 
 VL
 - Very Low

 L
 - Low

 M
 - Medium

 H
 - High

 VH
 - Very High

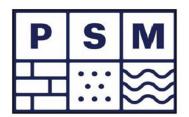
 EH
 - Extremely High

JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break S - Salid
C - Silt
CA - Calcite
CL - Clay
FE - Iron
QZ - Quartz
X - Carbonaceous CU - Curved UN - Undulating ST - Stepped IR - Irregular



PROJECT: Chatswood Education Precinct

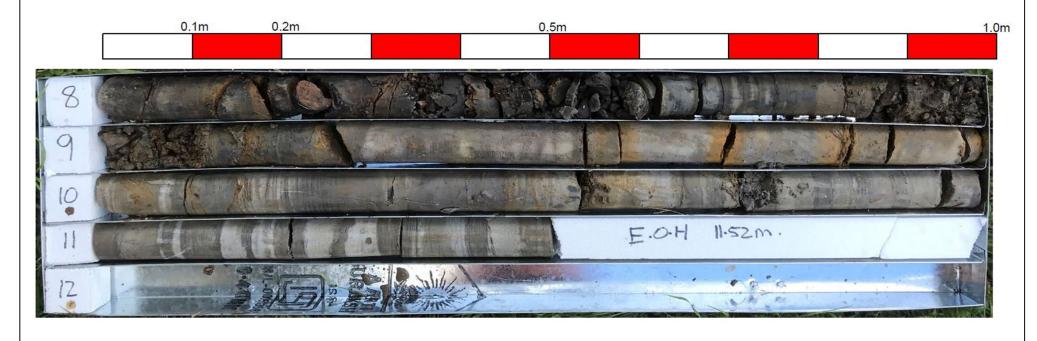
LOCATION: Chatswood High


FROM: 3.4m TO: 8.0m DATE: 16/4/19



P S M
Pells Sullivan Meynink

SCHOOL INFRASTRUCTURE NSW
Chatswood Education Precinct
Chatswood High School Centennial Avenue
CORE PHOTOS BH28
(SHEET 1 OF 2)


PSM3730-006R Figure 1



PROJECT: Chatswood Education Precinct

LOCATION: Chatswood High

FROM: 8.0m TO: 11.52m DATE: 16/4/19



P S M
Pells Sullivan Meynink

SCHOOL INFRASTRUCTURE NSW
Chatswood Education Precinct
Chatswood High School Centennial Avenue
CORE PHOTOS BH28
(SHEET 2 OF 2)

Figure 1

PSM3730-006R

Pacific Highway Site



#### **BH18**

Page 1 of 3

# **Engineering Log - Non Cored Borehole**

Client: SINSW Commenced: 16/02/2019 Project Name: **Chatswood Education Precinct** Completed: 16/02/2019

Project No.:

PSM3730

Chatswood Primary School BH18 Hole Location: Logged By: MB Hole Position: 331321.0 m E 6258757.0 m N Checked By: YΒ

|                                                                                                                             | Drill Model and Mounting: Hanjin DB8 T<br>Hole Diameter: 110 mm                                                                    |         |              |                                                                      |          |                   |              | ack M             | ounted                                                                                                                                    | Inclination: -90°<br>Bearing:                                                  | RL Surfa<br>Datum: | ice:                  | 10<br>Al-                         | 6.00<br>ID | m         | 0                                                                                                                   | perator: BG Drilling                                               |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|----------------------------------------------------------------------|----------|-------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|-----------------------|-----------------------------------|------------|-----------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                             |                                                                                                                                    |         | Drill        | ling Informat                                                        | ion      |                   |              |                   |                                                                                                                                           | Soil Descr                                                                     | iption             |                       |                                   |            |           |                                                                                                                     | Observations                                                       |
| Mothod                                                                                                                      | Penetration                                                                                                                        | Support | Water        | Samples<br>Tests<br>Remarks                                          | Recovery | RL<br>(m)         | Depth<br>(m) | Graphic Log       | Classification<br>Symbol                                                                                                                  | Material Description<br>SOIL NAME: Colour, stru<br>plasticity, additional      | cture,             | Moisture<br>Condition | Consistency /<br>Relative Density | Penet<br>U | CS<br>Pa) | netei<br>;<br>)                                                                                                     | r Structure and<br>Additional Observations                         |
| F C                                                                                                                         |                                                                                                                                    | z       |              | CBR<br>0.20-1.50 m                                                   |          |                   | -            |                   |                                                                                                                                           | ASPHALT; 200 mm thick.  Silty CLAY; dark brown, orange a to medium plasticity. | and grey, low      |                       |                                   |            |           |                                                                                                                     | 0.20: Inferred FILL                                                |
| 15-04-07                                                                                                                    | ACCE                                                                                                                               | Z       |              | ES 1.00 m<br>SPT<br>1.00 - 1.45 m<br>4, 10, 14<br>N = 24<br>D 1.50 m |          | 105.0             | 1-           |                   |                                                                                                                                           |                                                                                |                    |                       | VSt                               |            |           |                                                                                                                     | 1.00: SPT recovered: 0.45 m.                                       |
| 0.2 2015-10-23 Prj; PSM 2.01 20′                                                                                            |                                                                                                                                    |         | ved          |                                                                      |          | 104.0             | 2-           |                   |                                                                                                                                           | SILTSTONE; grey, orange and re<br>low strength, extremely weathere             |                    |                       |                                   |            |           |                                                                                                                     | 1.80: V-bit refusal. Rock properties inferred from drill cuttings. |
| 7/02/2019 09:58 8:30 003 Datgel Lab and In Situ Tool - DGD   Lib: PSM 3.00.2 2015-10-23 Prj: PSM 2.01 2015-04-07<br>A D. 77 |                                                                                                                                    | Z       | Not Observed | SPT<br>2.50 - 2.95 m<br>4, 12, 25<br>N = 37                          |          | 103.0             | 3-           |                   |                                                                                                                                           |                                                                                |                    | D                     |                                   |            |           |                                                                                                                     | 2.50: SPT recovered: 0.45 m.                                       |
| BH_NZ_AU PSM3750 GINT LOGS.GPJ < <drawingfile>&gt; 2</drawingfile>                                                          |                                                                                                                                    |         |              | SPT<br>4.00 - 4.45 m<br>11, 20, 27<br>N = 47                         |          | 102.0             | 4            |                   |                                                                                                                                           | Becoming red and grey.                                                         |                    |                       |                                   |            |           |                                                                                                                     | 4.00: SPT recovered: 0.45 m.                                       |
| SLB Log IS_AU_NONCORE_                                                                                                      | Method Penetration  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit  MVD Woodberg drilling V bit  No resistant through to |         |              |                                                                      |          | sistanc<br>ugh to | -            | > Inflo<br>✓ Part | ater Samples a w U - Undisturbed ial Loss D - Disturbed S SPT - Standard P nplete Loss ES - Environmen TW - Thin Walled LB - Large Distur | Sample<br>ample<br>enetration Test<br>tal Sample                               |                    | D<br>M                | re Cor<br>- Dr<br>- Mo            | y<br>oist  |           | Consistency/Relative Density  VS - Very soft S - Soft F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose |                                                                    |

AS - Auger Screwing

See Explanatory Notes for details of abbreviations and basis of descriptions.

LB - Large Disturbed Sample Classification symbols and soil descriptions based on Unified Soil Classification System

VSI - Very sill |
H - Hard |
VL - Very loose |
L - Loose |
MD - Medium dense |
D - Dense |
VD - Very dense |
Ce - Cemented |
C - Compact |



**BH18** 

Page 2 of 3

PSM3730

Project No.:

## **Engineering Log - Non Cored Borehole**

Client: SINSW Commenced: 16/02/2019 16/02/2019 Project Name: **Chatswood Education Precinct** Completed:

Hole Location: Chatswood Primary School BH18 Logged By: MB Hole Position: 331321.0 m E 6258757.0 m N Checked By: YΒ

Hanjin DB8 Track Mounted Drill Model and Mounting: Inclination: -90° RL Surface: 106.00 m

Hole Diameter: 110 mm Rearing: Datum: AHD Operator: BG Drilling

| L                                                                                                                                                                  | Hole Diameter: 110 mm |             |              |                                     |          |                |                   |             |                          | Bea                                  | aring:         |                                                  | Datum:      |                       | Αŀ                                | <del>I</del> D |                          | С              | Operator: BG Drilling        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|--------------|-------------------------------------|----------|----------------|-------------------|-------------|--------------------------|--------------------------------------|----------------|--------------------------------------------------|-------------|-----------------------|-----------------------------------|----------------|--------------------------|----------------|------------------------------|
|                                                                                                                                                                    | Drilling Information  |             |              |                                     |          |                |                   |             |                          |                                      | So             | oil Descripti                                    | ion         |                       |                                   |                |                          |                | Observations                 |
|                                                                                                                                                                    | Method                | Penetration | Water        | Samples<br>Tests<br>Remarks         | Recovery | RL<br>(m)      | Depth (m)         | Graphic Log | Classification<br>Symbol | SC                                   | OIL NAME: (    | Description<br>Colour, structur<br>r, additional | re,         | Moisture<br>Condition | Consistency /<br>Relative Density | Pen            | Handetron<br>UCS<br>(kPa | nete<br>3<br>) | Additional Observations      |
|                                                                                                                                                                    | AD/I                  | 2           | Not Observed | SPT<br>5.50 - 5.65 m<br>14, Refusal |          | 100.0          | -<br>-<br>-<br>6— |             |                          | SILTSTON<br>low streng<br>(continued | th, extremel   | ange and red,<br>ly weathered.                   | extremely   | D                     |                                   |                |                          |                | 5.50: SPT recovered: 0.15 m. |
| NONCORE_BH_NZ_AU PSN8750 GINT LOGS GPJ <-DrawingFile>> ZN0Z2019 09:38 8:30,003 Dagol Lab and in Shu Tod - DGD   Lib: PSM 3.00,22015-10-23 Prj: PSM 2.01 2015-04-07 |                       |             |              |                                     |          | 0.66 0.86 0.76 |                   |             | 144                      | Continued                            |                | orehole sheet                                    | Toetr       |                       | Joistu                            |                |                          |                | Consistency/Relative Density |
| NONC                                                                                                                                                               | AD/T                  |             |              | illing TC bit<br>illing V bit       |          |                | sistance          | e [         | > Inflo                  | OW                                   | U - L<br>D - E | Indisturbed Sa<br>Disturbed Samp                 | mple<br>ole |                       | D<br>M                            | ] -<br>N -     | Ory<br>Moist             |                | VS - Very soft<br>S - Soft   |

AD/I - Auger drilling V bit
AD/V - Auger drilling V bit
WB - Washbore
SPT - Standard penetration test
PT - Push tube
AS - Auger Screwing

See Explanatory Notes for details of abbreviations and basis of descriptions

through to refusal

Partial Loss Complete Loss

- Unitaritied Sample
- Disturbed Sample
SPT - Standard Penetration Test
ES - Environmental Sample
TW - Thin Walled
LB - Large Disturbed Sample

Classification symbols and soil descriptions based on Unified Soil Classification System

M - Moist W - Wet

- Very soil
- Soft
- Firm
- Stiff
- Very stiff
- Very loose
- Loose
- Medium dense
- Dense
- Very dense
- Cemented
- Compact S F St VSt H VL MD D VD Ce C





**BH18** Page 3 of 3

**Engineering Log - Cored Borehole** 

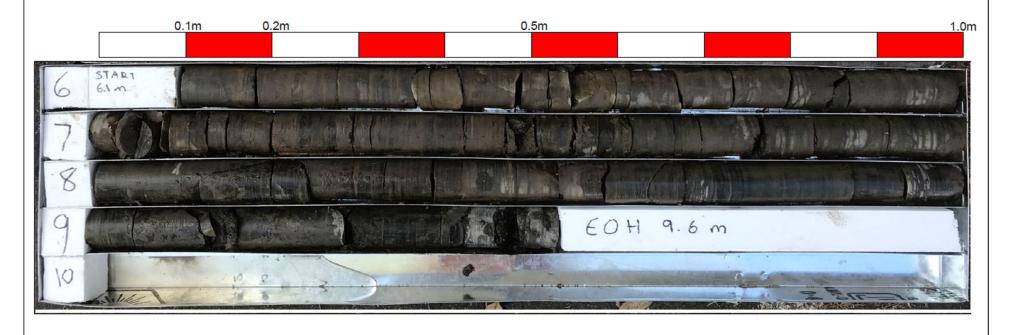
Client: SINSW Commenced: 16/02/2019 Project Name: **Chatswood Education Precinct** Completed: 16/02/2019

Project No.:

PSM3730

Chatswood Primary School BH18 Logged By: МВ Hole Location: Hole Position: 331321.0 m E 6258757.0 m N Checked By: YΒ

| ⊢      | TOILE                                                                                                        |         |         |                                                           |           |                   |             | 757.0 III N                                                                                                                                                         | Checke                                                              |                                                                                        | ь                                                                                                                                                                           |                                                                                                                                                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------------|---------|---------|-----------------------------------------------------------|-----------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                              |         |         | d Mount<br>nd Lengt                                       | •         | ,                 |             | Track Mounted Inclination: -90° 100mm Bearing:                                                                                                                      | RL Sur<br>Datum                                                     |                                                                                        |                                                                                                                                                                             | rator: BG Drilling                                                                                                                                                                                                          |
|        |                                                                                                              | Drill   | ling    | Informa                                                   | tion      |                   |             | Rock Substance                                                                                                                                                      |                                                                     |                                                                                        | F                                                                                                                                                                           | Rock Mass Defects                                                                                                                                                                                                           |
| Method | Water                                                                                                        | TCR (%) | RQD (%) | SAMPLES &<br>FIELD TESTS                                  | RL<br>(m) | Depth<br>(m)      | Graphic Log | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable) | Weathering                                                          | Strength Is(50)                                                                        | Defect<br>Spacing<br>(mm)                                                                                                                                                   | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                                           |
|        |                                                                                                              |         |         | 6.28m<br>01.is/50)                                        | 100.0     | -<br>-<br>-<br>6- |             | Continued from non-cored borehole sheet SILTSTONE; dark grey with orange banding, developed bedding, distinct thin fine-grained                                     |                                                                     |                                                                                        |                                                                                                                                                                             | −BP 0° Fe & Clay SN UN S                                                                                                                                                                                                    |
|        |                                                                                                              | 100 100 | 83      | 01 Is(50)<br>d=0.03<br>a=0.2<br>MPa<br>7.21m<br>02 Is(50) | 0.96      | -<br>-<br>7-      |             | sandstone laminations.  Becoming well developed.                                                                                                                    |                                                                     |                                                                                        |                                                                                                                                                                             | BP 0° FE SN PR S JT 90° FE SN PR S  —BP 2° FE SN UN S BP 10° FE SN PR S SM 0° CL PR S 19 mm  —BP 0° FE SN PR S                                                                                                              |
| NMLC   | Not Observed                                                                                                 |         | 2.2     | d=0.02<br>a=0.12<br>MPa<br>8.38m<br>03 Is(50)<br>d=0.18   | 98.0      | -<br>-<br>8-<br>- |             | Deceming non-developed.                                                                                                                                             |                                                                     |                                                                                        |                                                                                                                                                                             | BP 0° Fe & Clay SN UN S 1 mm BP 0° FE SN UN S BP 0° FE SN UN S  -BP 0° Fe & Clay SN PR S 1 mm BP 0° FE SN PR S BP 0° Fe & Clay SN PR S BP 0° CN PR S  -JT 70° CN UN RF -JT 50° CL UN S  -BP 0° FE SN PR S -BP 0° FE SN PR S |
| See    |                                                                                                              |         |         | 9.30m<br>04 Is(50)<br>d=0.44<br>a=0.35<br>MPa             | 97.0      | 9-                |             |                                                                                                                                                                     |                                                                     |                                                                                        |                                                                                                                                                                             | BP 0° FE SN PR RF JT 70° CN UN S SM CL 10 mm  JT 60° CN UN S                                                                                                                                                                |
|        |                                                                                                              | 8.5     | 04h     |                                                           |           | -                 | 144         | Hole Terminated at 9.60 m                                                                                                                                           |                                                                     | foot Tyre                                                                              | Infilling (Oct                                                                                                                                                              | ting Powerbase                                                                                                                                                                                                              |
| See    | AD/V - Auger drilling V bit<br>WB - Washbore<br>HQ3- Wireline core (63.5 mm)<br>PQ3- Wireline core (85.0 mm) |         |         |                                                           |           | Gra               | → Inflov    | Al Loss                                                                                                                                                             | ed FT - SS - red SZ - BP - SM - IS - JT - CO - CZ - VN - FZ - BSH - | Shear Surface Shear Zone Bedding parting Seam Infilled Seam Joint Contact Crushed Zone | Infilling/Coa CN - Clean SN - Stain SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbons | SL - Slickensided POL - Polished S - Smooth RF - Rough VR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular                                                                            |




JOB No.: PSM 3730

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood Primary

FROM: 6.1m TO: 9.6m DATE: 16/02/19





SCHOOL INFRASTRUCTURE NSW
Chatswood Education Precinct
Chatswood Primary School
CORE PHOTO BH18
(SHEET 1 OF 1)

**BH ID: BH 18** 

PSM3730-006R



#### **BH19**

Page 1 of 3

## **Engineering Log - Non Cored Borehole**

Client: SINSW Commenced: 16/02/2019 **Chatswood Education Precinct** 16/02/2019 Project Name: Completed:

Project No.:

PSM3730

Hole Location: Chatswood Primary School BH19 Logged By: MB Hole Position: 331294.0 m E 6258692.0 m N Checked By: YΒ

Drill Model and Mounting: Hanjin DB8 Track Mounted RL Surface: 103.00 m Inclination: -90°

| Drilling Information |         |              |                                               |          |            |           |             |                          | Soil Description                                                                    |          |                                   |                                |                  | Observations                                                                                        |
|----------------------|---------|--------------|-----------------------------------------------|----------|------------|-----------|-------------|--------------------------|-------------------------------------------------------------------------------------|----------|-----------------------------------|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------|
| Penetration          | Support | Water        | Samples<br>Tests<br>Remarks                   | Recovery | RL<br>(m)  | Depth (m) | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional     | Moisture | Consistency /<br>Relative Density | Han<br>Penetror<br>UCS<br>(kPa | meter<br>S<br>ı) | Structure and Additional Observations                                                               |
|                      | z       |              | CBR<br>0.20-1.50 m<br>D 0.50 m                |          | 0          | -         |             |                          | ASPHALT; 200 mm thick.  Sitty CLAY; grey and light brown, low to medium plasticity. | -        | Н                                 |                                |                  | 0.20: Inferred Fill 0.50: Small siltstone fragments observed.                                       |
|                      |         | Not Observed | SPT:<br>1.00 - 1.45 m<br>3, 16, 23<br>N = 39  |          | 102.0      |           |             |                          | SILTSTONE; pale grey, red and orange, extremely low strength, extremely weathered.  | _<br>D   |                                   |                                |                  | 1.00: SPT recovered: 0.45 m.     1.30: V-bit Refusal. Rock properties inferred from drill cuttings. |
|                      | z       |              | SPT<br>2.5 - 2.65<br>11, Refusal<br>ES 2.60 m |          | 101.0      | 2         |             |                          | Becoming grey.  Continued on cored borehole sheet                                   |          |                                   |                                |                  | 2.50: SPT recovered: 0.15 m.                                                                        |
|                      |         |              |                                               |          | 0.00 100.0 | 3-        |             |                          |                                                                                     |          |                                   |                                |                  |                                                                                                     |
|                      |         |              |                                               |          |            | -         |             |                          |                                                                                     |          |                                   |                                |                  |                                                                                                     |

WB -Washbore SPT-Standard penetration test PT - Push tube AS - Auger Screwing

See Explanatory Notes for details of abbreviations and basis of descriptions

Complete Loss

SF I - Standard Penetration Test
ES - Environmental Sample
TW - Thin Walled
LB - Large Disturbed Sample

Classification symbols and soil descriptions based on Unified Soil Classification System

F - Stiff
St - Stiff
H - Hard
VL - Very loose
L - Loose
MD - Medium dense
D - Dense
VD - Very dense
C - Cemented
C - Compact





Page 2 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 16/02/2019 Project Name: **Chatswood Education Precinct** Completed: 16/02/2019

Project No.:

PSM3730

Hole Location: Chatswood Primary School BH19 Logged By: МВ Hole Position: 331294.0 m E 6258692.0 m N Checked By: YΒ

| H                                                                                                           |                                                                                                                                                                                                                                                     | POSI    |         |                                            |             |                  |                 | 092.U III N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         | Checked by. 15                                                                                                   |                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------------------------|-------------|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                             |                                                                                                                                                                                                                                                     |         |         | d Mounti<br>d Lengt                        | U           | •                |                 | Track Mounted Inclination 100mm Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n: -90°                                                                                                                                                                 | RL Sur<br>Datum:                                                                                                 |                                                                                       |                                                                                                                                                                              | rator: BG Drilling                                                                                                                                                                                                          |  |
|                                                                                                             |                                                                                                                                                                                                                                                     | Drill   | ling l  | nformat                                    | ion         |                  |                 | Rock S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ubstance                                                                                                                                                                |                                                                                                                  |                                                                                       | R                                                                                                                                                                            | Pock Mass Defects                                                                                                                                                                                                           |  |
| Mothod                                                                                                      | Water                                                                                                                                                                                                                                               | TCR (%) | RQD (%) | SAMPLES &<br>FIELD TESTS                   | RL<br>(m)   | Depth<br>(m)     | Graphic Log     | Material Description<br>ROCK TYPE: Colour, grain size<br>(texture, fabric, mineral compositic<br>alteration, cementation, etc as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on, hardness,                                                                                                                                                           | Weathering                                                                                                       | Strength Is(50)                                                                       | Defect<br>Spacing<br>(mm)                                                                                                                                                    | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                                           |  |
| 09:59 8:30 003 Datget Lab and in Situ Tool - DGD   Lab: PSM 3:00 22015-10 23 Prj: PSM 2:01 2015-04 07       |                                                                                                                                                                                                                                                     |         |         |                                            | 101.0 102.0 |                  |                 | Continued from non-cored borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                  |                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                             |  |
| 09:58 8:30.003 Datgel Lab and In Situ Tool                                                                  | rved                                                                                                                                                                                                                                                | 100     | 59      | 3.13m<br>Is(50)<br>d=0.22<br>a=0.35<br>MPa | 100.0       | 3                |                 | SILTSTONE; dark grey, pale grey v banding, bedding fabric faint, poorly bedding, distinct thin sandstone lan Some clay infilled seams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | developed                                                                                                                                                               |                                                                                                                  |                                                                                       |                                                                                                                                                                              | -FZ SM CL S 20 mm JT 70° FE SN PR S BP 0° FE SN PR S BP 0° FE SN PR S BP 0° FE SN FR S BP 0° FE SN IR S BP 0° FE SN IR S BP 0° FE SN IR S                                                                                   |  |
| PSM 3.00.2 LIB V2.GLB Log IS_AU_CORE_BH_PSM PSM3750 GNT LOGS.GPJ < <drawingfile> 27/02/2019 I</drawingfile> | Not Obser                                                                                                                                                                                                                                           | 100     | 99      | 4.58m<br>Is(50)<br>d=0.02<br>a=0.21<br>MPa | 0.99.0      | -<br>4<br>-<br>- |                 | Bedding becomes developed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                  |                                                                                       |                                                                                                                                                                              | Heavily fractured along bedding planes.  BP 3° FE SN PR S BP 0° Fe & Clay SN IR S 2 mm BP 0° FE SN UN S BP 4° FE SN ST S BP 0° Fe & Clay SN PR S 1 mm BP 5° FE SN IR S SM CL 10 mm JT 75° Fe & Clay SN PR S 1 mm SM CL 5 mm |  |
| PSM 3.00.2 LIB V2.GLB Log IS_AU_CORE_BP                                                                     | Method  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT - Standard penetration test PT - Push tube  See Explanatory Notes for details of abbreviations and bit |         |         |                                            |             | Grap             | Core roindicate | EW -   HW - | Veathering Extremely Weathered Highly Weathered Moderately Weathered Slightly Weathered Fresh Fresh Trength Extremely Low Very Low Medium High Very High Extremely High | d FT - I<br>SS - S<br>ed SZ - S<br>BP - I<br>SM - S<br>IS - I<br>CO - G<br>CZ - G<br>VN - V<br>FZ - I<br>BSH - I | Shear Surface Shear Zone Bedding parting Seam nfilled Seam Joint Contact Crushed Zone | Infilling/Coat CN - Clean CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbons | SL - Slickensided POL - Polished S - Smooth RF - Rough yr - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular                                                                            |  |





Page 3 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 16/02/2019 Project Name: **Chatswood Education Precinct** Completed: 16/02/2019

Project No.:

PSM3730

Chatswood Primary School BH19 Logged By: Hole Location: MB Hole Position: 331294.0 m E 6258692.0 m N Checked By: YΒ

|                         |                                                        |                                                        | d Mounti<br>nd Lengt                                                                    | •         | •            |                          | Track Mounted Inclination: -90° 100mm Bearing:                                                                                                                                                                               | RL Sur<br>Datum                                                           |                                                                         |                                                                                                         | rator: BG Drilling                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|--------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Dril                                                   | ling                                                   | Informat                                                                                | ion       |              |                          | Rock Substance                                                                                                                                                                                                               |                                                                           |                                                                         | F                                                                                                       | Rock Mass Defects                                                                                                                                                                                                                                                                                                                                    |
| Water                   | TCR (%)                                                | RQD (%)                                                | SAMPLES &<br>FIELD TESTS                                                                | RL<br>(m) | Depth<br>(m) | Graphic Log              | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable)                                                          | Weathering                                                                | Strength Is(50)                                                         | Defect<br>Spacing<br>(mm)                                                                               | Defect Descriptions / Comment<br>Description, alpha/beta, infilling<br>or coating, shape, roughness,<br>thickness, other                                                                                                                                                                                                                             |
| ved                     | 100                                                    | 56                                                     | 5.23m<br>Is(50)<br>d=0.02<br>a=0.14<br>MPa                                              | 97.0      | 6-           |                          | SILTSTONE; dark grey, pale grey with orange banding, bedding fabric faint, poorly developed bedding, distinct thin sandstone laminations. Some clay infilled seams. (continued) Fine-grained sandstone laminations observed. |                                                                           | 0                                                                       |                                                                                                         | BP 0° FE SN PR RF 1 mm SM 9° CL 8 mm BP 5° FE SN PR RF 2 mm BP 0° FE SN PR S BP 0° FE SN PR S BP 0° FE SN PR S BP 3° FE SN PR S  JT 85° FE SN PR S  FE SN PR S  BP 3° FE SN PR S  JT 50° FE SN PR S  JT 50° FE SN PR S  BP 3° FE SN PR S  BP 5° FE SN PR S  BP 5° FE SN PR S  BP 6° FE SN PR S |
| NMLC<br>Not Observed    | 100                                                    | 88                                                     | 6.67m<br>Is(50)<br>d=0.31<br>a=0.44<br>MPa<br>7.55m<br>Is(50)<br>d=0.31<br>a=0.2<br>MPa | 96.0      | 7-           |                          | Becomes grey and dark grey.                                                                                                                                                                                                  |                                                                           |                                                                         |                                                                                                         | BP 0° FE SN PR S  BP 0° FE SN PR S  BP 0° FE SN PR S 2 mm  BP 0° FE SN PR S  SM CL 4 mm  JT 80° FE SN IR RF                                                                                                                                                                  |
|                         |                                                        |                                                        |                                                                                         | 95.0      | 8-           |                          | Hole Terminated at 8.20 m                                                                                                                                                                                                    |                                                                           |                                                                         |                                                                                                         | - BP 15° Fe & Clay SN PR S<br>2 mm<br>- JT 70° FE SN UN S                                                                                                                                                                                                                                                                                            |
|                         |                                                        |                                                        |                                                                                         | 94.0      | 9-           |                          |                                                                                                                                                                                                                              |                                                                           |                                                                         |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      |
| AI<br>W<br>H<br>P<br>SI | D/T - Aug<br>D/V - Aug<br>B - Wa<br>Q3- Wii<br>Q3- Wii | ger drill<br>ashbore<br>reline c<br>reline c<br>andard | ling TC bit<br>ling V bit<br>e<br>ore (63.5 m<br>ore (85.0 m<br>penetration             | m)        | Gra          | > Inflow ☐ Partia ☐ Comp | Title Tilgrily Troublotte                                                                                                                                                                                                    | ed FT -  <br>SS - :<br>red SZ - :<br>BP -  <br>SM - :<br>IS -  <br>JT - : | Shear Surface<br>Shear Zone<br>Bedding parting<br>Seam<br>Infilled Seam | Infilling/Coa  CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fr G - Gravel S - Sand Z - Silt | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                                                                                                                                                                                                                                                      |

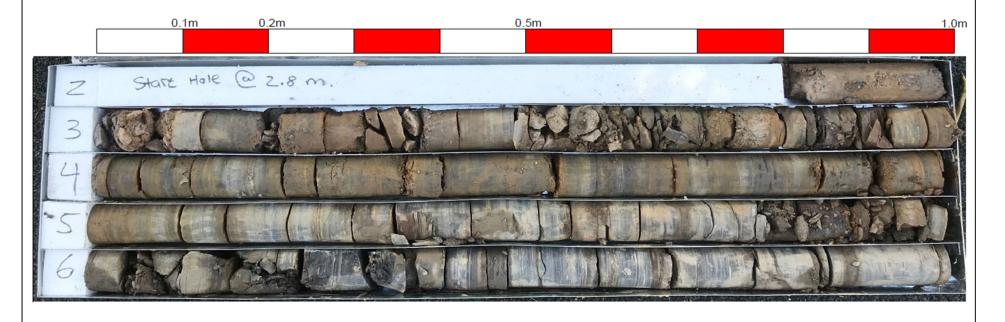
Core recovered (hatching indicates material) No core recovery

- Very Low - Low - Medium - High - Very High - Extremely High

CO - Contact CZ - Crushed Zone VN - Vein FZ - Fracture Zone BSH - Bedding Shear DB - Drilling Break

Z - Silt
CA - Calcite
CL - Clay
FE - Iron
QZ - Quartz
X - Carbonaceous

CU - Curved UN - Undulating ST - Stepped IR - Irregular



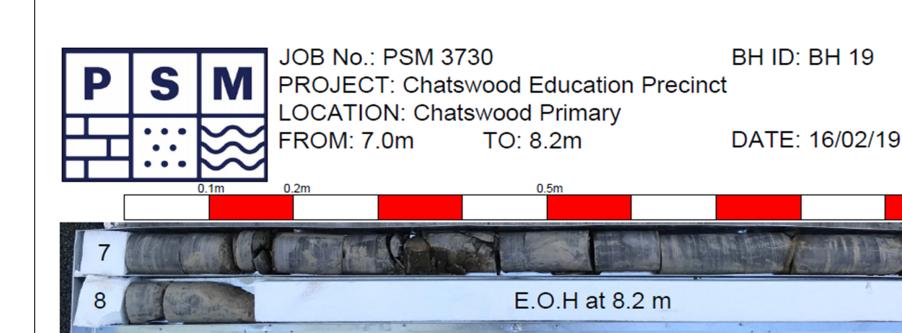

**JOB No.: PSM 3730** 

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood Primary

FROM: 2.8m TO: 7.0m DATE: 16/02/19






# SCHOOL INFRASTRUCTURE NSW

**BH ID: BH 19** 

Chatswood Education Precinct
Chatswood Primary School
CORE PHOTO BH19
(SHEET 1 OF 2)

PSM3730-006R





Chatswood Education Precinct
Chatswood Primary School
CORE PHOTO BH19

(SHEET 2 OF 2)

P S M
Pells Sullivan Meynink

PSM3730-006R

Figure 2

1.0m

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                                 | Notes                                                                                                                               |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.1 m            | ASPHALT; 100 mm thick.                                                                                                                                                                                                               |                                                                                                                                     |
|                                          | 0.1 – 0.5 m          | CLAY; dark grey and brown, low plasticity, with silt, dry and very stiff consistency.                                                                                                                                                | Inferred Fill  Atterberg sample collected at 0.5 m.                                                                                 |
|                                          | 0.5 – 1.5 m          | Silty CLAY; pale brown, medium plasticity, dry and hard consistency.                                                                                                                                                                 | SPT at 1.0 m:<br>5, 18, Refusal.                                                                                                    |
| BH20<br>(RL 104.5m)                      | 1.5 – 7.6 m          | SILTSTONE; grey, orange and brown, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes dark brown at 2.5 m.  Becomes dark grey at 6.5 m. | Inferred Bedrock  Description based on drill cuttings.  V-bit refusal at 2.0 m.  SPT at 2.5 m: 11, Refusal.  ES collected at 7.0 m. |
|                                          | 7.6 m                | Hole terminated at 7.6 m.                                                                                                                                                                                                            | TC-bit refusal.                                                                                                                     |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                              | Notes                                                                              |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                          | 0 – 0.15 m           | ASPHALT; 150 mm thick.                                                                                                                                                                            |                                                                                    |
|                                          | 0.15 – 1.0 m         | CLAY; mottled grey and red, medium to high plasticity, trace of gravel up to 3mm, angular, dry and stiff to very stiff consistency.                                                               | Inferred Fill  CBR sample collected at 0.2 – 1.2 m.  ES collected at 0.5 m         |
| BH21<br>(RL 106.0m)                      | 1.0 – 1.2 m          | Silty CLAY; pale red and brown, medium plasticity, dry and very stiff to hard consistency.                                                                                                        | SPT at 1.0 m:<br>14, Refusal.<br>V-bit refusal at<br>1.2 m.                        |
|                                          | 1.2 – 4.8 m          | SILTSTONE; grey, orange and brown, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes grey at 2.5 m. | Inferred Bedrock  Description based on drill cuttings.  SPT at 2.5 m: 13, Refusal. |
|                                          | 4.8 m                | Hole terminated at 4.8 m.                                                                                                                                                                         | TC-bit refusal.                                                                    |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                           | Notes                                                                                                                               |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.01 m           | ASTROTURF; 10 mm thick.                                                                                                                                                                                        |                                                                                                                                     |
|                                          | 0.01 – 1.3 m         | Silty CLAY; dark brown, low plasticity, trace of gravel up to 3mm, sub-angular, dry and very stiff consistency.  Gravel content and size increases up to 30mm at 0.5 m.                                        | Atterberg sample collected at 0.5 to 1.0 m.                                                                                         |
|                                          |                      | Becomes hard consistency at 1.0 m.                                                                                                                                                                             | SPT at 1.0 m:<br>5, 19, Refusal.                                                                                                    |
| BH22<br>(RL 105.0m)                      | 1.3 – 5.5 m          | SILTSTONE; pale grey and orange, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes grey and dark brown at 3.0 m. | Inferred Bedrock  Description based on drill cuttings.  ES collected at 1.5 m.  V-bit refusal at 1.9 m.  SPT at 2.5 m: 12, Refusal. |
|                                          | 5.5 m                | Hole terminated at 5.5 m.                                                                                                                                                                                      | TC-bit refusal.                                                                                                                     |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                            | Notes                                                                                                       |
|------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.1 m            | ASPHALT; 100 mm thick.                                                                                                                                                                          |                                                                                                             |
|                                          | 0.1 – 1.3 m          | CLAY; dark brown, orange and grey, low plasticity, with silt, dry and very stiff consistency.                                                                                                   | Inferred Fill  Atterberg sample collected at 0.5 to 1.0 m.  SPT at 1.0 m: 4, 11, Refusal.                   |
| BH23<br>(RL 107.0m)                      | 1.3 – 5.8 m          | SILTSTONE; grey, orange and red, extremely low strength, extremely weathered. Sandstone laminations observed. Increasing strength and decreasing weathering with depth.  Becomes grey at 3.0 m. | Inferred Bedrock  Description based on drill cuttings.  V-bit refusal at 1.4 m.  SPT at 2.5 m: 12, Refusal. |
|                                          | 5.8 m                | Hole terminated at 5.8 m.                                                                                                                                                                       | TC-bit refusal.                                                                                             |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                            | Notes                                              |
|------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick, some sand, medium grained, yellow-brown.                                |                                                    |
|                                          | 0.015 – 0.095<br>m   | ASPHALT; 80 mm thick.                                                                           |                                                    |
|                                          |                      |                                                                                                 | Inferred<br>Residual Soil                          |
|                                          |                      | CLAY; high plasticity, dark grey & red-brown, dry to moist and stiff to very stiff consistency. | SPT at 0.5 m:<br>5, 9, 12, N = 21                  |
| BH29<br>(RL 95.5 m)                      | 0.095 – 1.7 m        | Becomes orange, grey & red-brown at 0.8 m.  Minor siltstone fragments observed at 1.0 m.        | CBR sample collected at 0.095 – 1.0 m.             |
|                                          |                      | Roots observed at 1.5 m.                                                                        | SPT at 1.5 m:<br>5, 12, 14, N =<br>26              |
|                                          |                      |                                                                                                 | Inferred<br>Bedrock                                |
|                                          | 1.7 – 4.0 m          | SILTSTONE; red-brown & grey, very low strength, extremely to highly weathered.                  | Rock<br>description<br>based on drill<br>cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                       |                                                    |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                               | Notes                                                                              |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                                                                            |                                                                                    |
|                                          | 0.015 – 0.7 m        | CLAY with sand and gravel; medium to high plasticity, dark grey & brown, medium to coarse grained sand, sub-angular to angular gravel, up to 30 mm, moist and stiff consistency.  Some sandstone gravels observed. | Inferred FILL  CBR sample collected at 0.02 – 1.0 m.  SPT at 0.5 m: 2, 3, 6, N = 9 |
| BH30<br>(RL 94.6 m)                      | 0.7 – 1.6 m          | CLAY; high plasticity, grey and red-brown, moist, stiff to very stiff consistency, roots and rootlets present, highly weathered siltstone fragments observed.                                                      | Inferred<br>Residual Soil.<br>SPT at 1.5 m:<br>4, 8, 8, N = 16                     |
|                                          | 1.6 – 4.0 m          | SILTSTONE; grey, red-brown and yellow, highly to extremely weathered, and very low strength.                                                                                                                       | Inferred Bedrock  Rock description based on drill cuttings.                        |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                                          |                                                                                    |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth                                                      | Material Encountered                                                                                                                                                                | Notes                                                         |
|------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                          | 0 – 0.015 m                                                               | ASTROTURF; 15 mm thick.                                                                                                                                                             |                                                               |
|                                          | 0.015 – 0.095<br>m                                                        |                                                                                                                                                                                     |                                                               |
|                                          | 0.095 – 0.8 m                                                             | CLAY trace gravel; high plasticity, dark brown, red and grey, angular gravel, up to 5 mm, moist and stiff consistency.                                                              | Inferred FILL  SPT at 0.5 m: 1, 4, 5, N = 9                   |
| BH31<br>(RL 94.5 m)                      | 0.8 – 3.0 m                                                               | CLAY; high plasticity, orange-brown and red, moist, stiff consistency, roots and rootlets present, weathered siltstone fragments observed.  Becomes grey and yellow-brown at 1.5 m. | Inferred<br>Residual Soil<br>SPT at 1.5 m:<br>2, 4, 7, N = 11 |
|                                          | 3.0 – 4.0 m SILTSTONE; dark grey, extremely weathered, very low strength. |                                                                                                                                                                                     | Inferred Bedrock  Rock description based on drill cuttings.   |
|                                          | 4.0 m                                                                     | Hole terminated at 4.0 m.                                                                                                                                                           |                                                               |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                          | Notes                                                                                                 |
|------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                                                       |                                                                                                       |
|                                          | 0.015 – 0.5 m        | Sandy CLAY with some gravel; low to medium plasticity, dark brown and pale grey, medium grained sand, sub-angular gravel, up to 10 mm, moist and stiff consistency.                           | Inferred FILL                                                                                         |
|                                          | 0.5 – 1.5 m          | CLAY with some gravel; medium plasticity, orange and dark brown, sub-angular gravel, up to 5 mm, moist, firm to stiff consistency, roots and rootlets observed.                               | Inferred FILL  SPT at 0.5 m: 3, 4, 5, N = 9                                                           |
| BH32<br>(RL 94.0 m)                      | 1.5 – 3.2 m          | CLAY; high plasticity, grey, orange and red-<br>brown, moist, firm to very stiff consistency,<br>stiffness increases with depth, roots present and<br>weathered siltstone fragments observed. | Inferred<br>Residual Soil<br>SPT at 1.5 m:<br>3, 4, 5, N = 9<br>SPT at 3.0 m:<br>5, 10, 15, N =<br>25 |
|                                          | 3.2 – 4.0 m          | SILTSTONE; dark grey and red-brown, extremely weathered, very low strength.                                                                                                                   | Inferred Bedrock  Rock description based on drill cuttings.                                           |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                     |                                                                                                       |



#### **BH33**

Page 1 of 3

PSM3730

Project No.:

# **Engineering Log - Non Cored Borehole**

SINSW Client: 10/10/2019 Commenced: Chatswood Education Precinct Completed: 10/10/2019 Project Name: Hole Location: Chatswood Primary School Logged By: MB

Hole Position: 321259.0 m E 6258737.0 m N Checked By: YΒ

Drill Model and Mounting: Christie Rig - Track Mounted RL Surface: Inclination: -90° 94.70 m

|                                                                                                                                                                     | Hole Diameter: 85 mm |             |                              |                    |                                                                        |          |                    | .9 .         |             |                          | Bearing: Datum:                                                                                                                                                                                                                                                        |          | Al                                | HD           | •••                           | С               | perator: BG Drilling                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|------------------------------|--------------------|------------------------------------------------------------------------|----------|--------------------|--------------|-------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------|--------------|-------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                     |                      |             | ı                            | Drill              | ing Informati                                                          | ion      |                    |              |             |                          | Soil Description                                                                                                                                                                                                                                                       |          |                                   |              |                               |                 | Observations                                                                                                   |
| Method                                                                                                                                                              |                      | Penetration | Support                      | Water              | Samples<br>Tests<br>Remarks                                            | Recovery | RL<br>(m)          | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Material Description  SOIL NAME: Plasticity, behaviour or particle characteristics of primary component, colour, secondary components, additional observations                                                                                                         | Moisture | Consistency /<br>Relative Density | Per          | Hand<br>netror<br>UCS<br>(kPa | netei<br>3<br>) | Additional Observations                                                                                        |
| AD/T DIT                                                                                                                                                            |                      | 7774        |                              | Not Observed       | SPT:<br>1, 3, 3<br>N = 6<br>SPT:<br>1.50 - 1.95 m<br>5, 4, 8<br>N = 12 |          | 92.7               | 1            |             | СН                       | ASTROTURF - 15 mm thick ASPAHLT - 25 mm thick. CLAY trace gravel: high plasticity, red-brown and grey; gravel sub-angular, up to 3 mm.  CLAY: high plasticity, grey and yellow-brown; some roots observed.  Becomes grey and red-brown with weathered shale fragments. |          | F                                 | 001          | 200                           | 400             | 0.04: Inferred FILL.  0.50: SPT recovered: 0.3 m.  0.90: Inferred Residual Soil.  1.50: SPT recovered: 0.35 m. |
| A A U NONCORE BH NZ AU PSN/750 GINT LOGS GPJ «OnewingFile» 23°10/2019 16:33 10.01.00.01 Dagel Fence and Map Too  Lib: PSM 3.02.1.2019-03-06 PJ; PSM 2.01.2015-04-07 |                      |             |                              |                    |                                                                        |          | 7.19               | 3            |             |                          | SILTSTONE: red-brown, extremely weathered and very low strength.  Continued on cored borehole sheet                                                                                                                                                                    |          |                                   |              |                               |                 | 2.50: Inferred Bedrock.                                                                                        |
| U NONCORE BH NZ AU PSM3750 GINT LOGS.GPJ <⊲                                                                                                                         | AE                   |             | <b>letho</b><br>Auge<br>Auge | r drill<br>r drill | ing TC bit<br>ing V bit                                                |          | enetrat<br>o resis |              |             | <b>W</b>                 | D D:-t                                                                                                                                                                                                                                                                 |          | <b>Moist</b> u<br>D<br>M          | <i>ire C</i> | ondi<br>Dry<br>Moist          | tion            | Consistency/Relative Density  VS - Very soft S - Soft F - Firm S + Suiff                                       |

AD/V - Auger drilling V bit WB - Washbore SPT - Standard penetration test PT - Push tube AS - Auger Screwing

Complete Loss

SPT - Standard Penetration Test
ES - Environmental Sample
TW - Thin Walled
LB - Large Disturbed Sample

S - Soft
F - Firm
St - Stiff
VSt - Very stiff
H - Hard
VL - Very loose
L - Loose
MD - Medium dense
D - Dense
VD - Very dense
Ce - Cemented
C - Compact

Logged in accordance with AS 1726:2017 Geotechnical site investigations





Page 2 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW Commenced: 10/10/2019
Project Name: Chatswood Education Precinct Completed: 10/10/2019

Project No.:

PSM3730

Hole Location: Chatswood Primary School Logged By: MB
Hole Position: 321259.0 m E 6258737.0 m N Checked By: YB

|                                                                                  | Н                                                                                                      | ole          | Posit   | ion:                                                                |               |           |                            | -                                                    | 737.0 m N                                                                                                                                                                                                                           | Checked                                                                                                                                | -                                                                     | /B                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|---------|---------------------------------------------------------------------|---------------|-----------|----------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                  |                                                                                                        |              |         | and Mo                                                              |               | _         |                            | _                                                    | - Track Mounted Inclination: -90°                                                                                                                                                                                                   | ace: 94.70                                                                                                                             |                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                      |  |
| F                                                                                | Ba                                                                                                     | arre         | І Тур   | e and Le                                                            | ength:        |           | 3.2 m                      | - NM                                                 | LC Bearing:                                                                                                                                                                                                                         | Datum:                                                                                                                                 | AHD                                                                   | Oper                                                                                                                                                                         | rator: BG Drilling                                                                                                                                                                                                                                                                                   |  |
|                                                                                  |                                                                                                        |              | Drill   | ing Info                                                            | rmati         | ion       |                            |                                                      | Rock Substance                                                                                                                                                                                                                      |                                                                                                                                        |                                                                       | Rock Mass Defects                                                                                                                                                            |                                                                                                                                                                                                                                                                                                      |  |
| Mothod                                                                           | Nacional .                                                                                             | Water        | RQD (%) | Samples and<br>Field Tests                                          | WPT (Lugeons) | RL<br>(m) | Depth<br>(m)               | Graphic Log                                          | Material Description  ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteration                                                                  | Weathering                                                                                                                             | O - Diametral                                                         | Defect<br>Spacing<br>(mm)                                                                                                                                                    | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                                                                                                                    |  |
| Datgel Fence and Map Tool   Lib: PSM 3 (02.1 2019-03-06 Pt); PSM 2.01 2015-04-07 |                                                                                                        |              |         |                                                                     |               | 92.7 93.7 |                            |                                                      | Continued from non-cored borehole sheet                                                                                                                                                                                             |                                                                                                                                        |                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                      |  |
| d Map Tool   Lib: PSM 3.0                                                        |                                                                                                        |              | 0       |                                                                     |               | 91.7      | 3-                         |                                                      | SILTSTONE: red-brown, poorly developed bedding fabric, some hard clay throughout.  SILTSTONE: dark grey and brown, developed bedding                                                                                                |                                                                                                                                        |                                                                       |                                                                                                                                                                              | — SM, CL, 30 mm<br>¬ SM, CL, 70 mm<br>— SM, CL, 50 mm                                                                                                                                                                                                                                                |  |
| PSM3750 GINT LOGS.GPJ <-DrawingFile>> 23/10/2019 16:28 10:01.00.01               |                                                                                                        | Not Observed | 71      | Is(50)<br>d=0.1<br>a=0.01<br>MPa<br>Is(50)<br>d=0.1<br>a=1.3<br>MPa |               | 7.06      | -<br>-<br>-<br>4<br>-<br>- |                                                      | fabric, indistinct thinly laminated bedding.  LAMINITE: dark grey and brown with pale grey sandstone laminations, 70% siltstone and 30% fine grained sandstone, well developed bedding fabric, distinctly thinly laminated bedding. |                                                                                                                                        |                                                                       |                                                                                                                                                                              | BP, 0°, FE SN, PR, S  - SM, CL, 20 mm  - SM, 30°, CL, 3 mm  - BP, 0°, FE SN, CU, S  - SM, 20°, CL, 20 mm  - BP, 10°, FE SN, PR, S  - SM, 0°, CL, 10 mm  - SM, CL, 40 mm  - SM, CL, 20 mm  - BP, 0°, FE SN, CU, S  - SM, 5°, CL, 1 mm  - BP, 2°, FE SN, PR, S  - SM, 0°, 5 mm  - BP, 0°, FE SN, UN, S |  |
| PSM 3.02.2 LIB.GLB Log PSMAU CORE BH                                             | PQ3 - Wireline core (85.0 mm) SPT - Standard penetration test PT - Push tube WPT - Water pressure test |              |         |                                                                     |               |           | Gra                        | ➤ Inflov ☐ Parti ☐ Com  phic Lo ☐ Core mater — No co | MW - Moderately Weathered                                                                                                                                                                                                           | FT - Far<br>SS - Sh<br>SZ - Sh<br>BP - Be<br>SM - Se<br>IS - Infi<br>JT - Joi<br>CO - Co<br>CZ - Cn<br>VN - Ve<br>FZ - Fra<br>BSH - Be | ear Surface ear Zone dding parting am illed Seam int ntact ushed Zone | Infilling/Coat CN - Clean CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbona | SL - Slickensided POL - Polished S - Smooth RF - Rough VR - Very Rough  Shape PR - Plahar CU - Curved UN - Undulating ST - Stepped IR - Irregular                                                                                                                                                    |  |





Page 3 of 3

PSM3730

Project No.:

# **Engineering Log - Cored Borehole**

Client: SINSW 10/10/2019 Commenced: Chatswood Education Precinct Completed: 10/10/2019 Project Name:

Chatswood Primary School Logged By: MB Hole Location: 321259.0 m E 6258737.0 m N Hole Position: Checked By: YΒ

Drill Model and Mounting: Christie Rig - Track Mounted \_an° RL Surface: 94.70 m Inclination:

|                                                                                                   |                                           |         | l and Mo                                                    |               | -         |                   |                      | - Track Mounted Inclin                                                                                                                    | ) m                                                                                                                             |                                  |                                                                                 |                                                                                                |                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------|-------------------------------------------|---------|-------------------------------------------------------------|---------------|-----------|-------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                 | Barre                                     | el Typ  | e and Le                                                    | ength:        |           | 3.2 m             | - NM                 | LC Bear                                                                                                                                   | ing:                                                                                                                            | Datum:                           | AHD                                                                             | Oper                                                                                           | ator: BG Drilling                                                                                                                                                                               |
|                                                                                                   |                                           | Drill   | ing Info                                                    | rmat          | ion       |                   |                      | Ro                                                                                                                                        | ck Substance                                                                                                                    |                                  |                                                                                 | R                                                                                              | ock Mass Defects                                                                                                                                                                                |
| Method                                                                                            | Water                                     | RQD (%) | Samples and<br>Field Tests                                  | WPT (Lugeons) | RL<br>(m) | Depth<br>(m)      | Graphic Log          | Material Desc<br>ROCK NAME: particle/gr:<br>colour, fabric/texture, inc<br>components, moisture, mineral                                  | ain characteristics,<br>clusions or minor                                                                                       | Weathering  X ₹ ₩ % ₩            | Strength Is(50)  ● - Axial O - Diametral  □ ○ ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | Defect<br>Spacing<br>(mm)                                                                      | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                               |
|                                                                                                   |                                           | 71      | Is(50)<br>d=0.2<br>a=0.8<br>MPa                             |               | <br>      |                   |                      | LAMINITE: dark grey and browr<br>sandstone laminations, 70% silts<br>grained sandstone, well develo<br>distinctly thinly laminated beddir | ped bedding fabric,                                                                                                             |                                  |                                                                                 |                                                                                                | BP, 0°, FE SN, UN, S  BP, 2°, FE SN, UN, S  BP, 2°, FE SN, UN, S  SM, 0°, CL, 3 mm  BP, 10°, FE SN, CU, S  BP, 0°, FE SN, PR, S  JT, 45°, Healed Joint  BP, 0°, FE SN, PR, S  SM, 0°, CL, 10 mm |
| M2.01 2015-04-07 NMLC                                                                             | Not Observed                              | 97      | Is(50)<br>d=0.3<br>a=2.1<br>MPa                             |               | 7.78      | -<br>-<br>-<br>7- |                      | Bedding fabric becomes very well developed.                                                                                               |                                                                                                                                 |                                  |                                                                                 | — JT, 45°, Healed Joint  — BP, 0°, FE SN, CU, S  — BP, 0°, FE SN, PR, S  — JT, 50°, CN, UN, RF |                                                                                                                                                                                                 |
| 16:28 10.01.00.01 Datgel Ferce and Map Tool   Lib: PSM 3.02.1.2019-03-06 Ptj: PSM 2.01.2015-04-07 |                                           |         | Is(50)<br>d=0.6<br>a=2.7<br>MPa<br>Is(50)<br>d=0.7<br>a=1.7 |               | 7.98      | - 8-              |                      |                                                                                                                                           |                                                                                                                                 |                                  |                                                                                 |                                                                                                | — BP, 0°, FE SN, IR, S<br>→ BP, 0°, FE SN, IR, S<br>— BP, 0°, FE SN, ST, S<br>¬ BP, 0°, FE SN, ST, S                                                                                            |
| PSM AU CORE BH PSM3750 GINT LOGS,GPJ <-DrawingFile>> 2310/2019 16:28 10.01.00.01 Datgel Fence     |                                           |         | MPa                                                         |               | 85.7      | 9                 |                      | Hole Terminated at 8.23 m                                                                                                                 |                                                                                                                                 |                                  |                                                                                 |                                                                                                |                                                                                                                                                                                                 |
| Log PSMAU CORE BH P                                                                               | AD/V - Auger drilling V bit WB - Washbore |         |                                                             |               |           | <                 | > Inflov<br>☐ Partia | v<br>al Loss                                                                                                                              | Weathering XW - Extremely Weathered HW - Highly Weathered MW - Moderately Weathered SW - Slightly Weathered FR - Fresh Strenath | FT - Fau<br>SS - She<br>SZ - She | ear Surface<br>ear Zone<br>dding parting<br>am                                  | Infilling/Coate CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel        | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                                                                                                 |

AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT- Standard penetration test PT - Push tube

Logged in accordance with AS 1726:2017 Geotechnical site investigations

Graphic Log/Core Loss

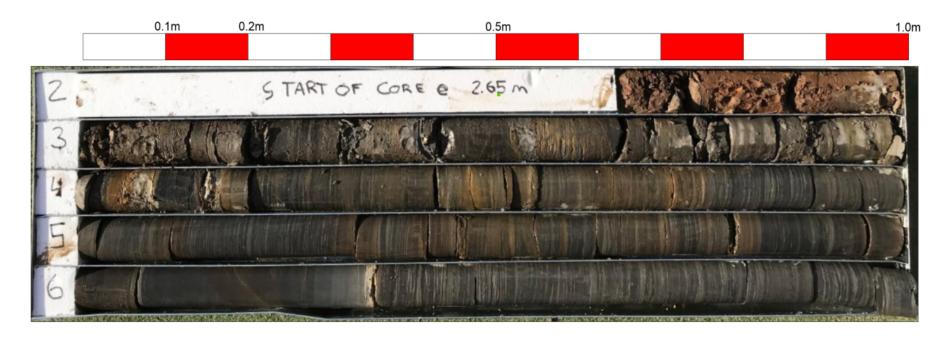
Core recovered (hatching indicates material)
No core recovery

Strength
- Very Low
- Low
- Medium
- High
- Very High
- Extremely High

SS - Shear Surface
SZ - Shear Zone
BP - Bedding parting
SM - Seam
JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break

S - Smooth RF - Rough VR - Very Rough

Shape
PR - Planar
CU - Curved
UN - Undulating
ST - Stepped
IR - Irregular




JOB No.: PSM 3730 BH ID: BH 33

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood Primary

FROM: 2.65m TO: 7.0 m DATE: 10/10/19





Pells Sullivan Meynink

#### **SCHOOL INFRASTRUCTURE NSW**

**Chatswood Education Precinct** 

**Chatswood Primary School** 

**CORE PHOTOS BH33** 

(SHEET 1 OF 2)

PSM3730-006R



JOB No.: PSM 3730 BH ID: BH 33

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood Primary

FROM: 7.0 m TO: 8.23 m DATE: 10/10/19





Pells Sullivan Meynink

SCHOOL INFRASTRUCTURE NSW

**Chatswood Education Precinct** 

**Chatswood Primary School** 

**CORE PHOTOS BH33** 

(SHEET 2 OF 2)

PSM3730-006R

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                      | Notes                                                          |
|------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                   |                                                                |
|                                          | 0.015 – 0.2 m        | Sandy CLAY with gravel; medium plasticity, greybrown and yellow-brown, medium grained sand, sub-angular gravel, up to 10 mm, moist and stiff consistency. | Inferred FILL                                                  |
| BH34                                     | 0.2 – 0.5 m          | CLAY trace gravel; medium plasticity, red-<br>brown, sub-angular gravel, up to 3 mm, moist<br>and firm consistency.                                       | Inferred FILL  SPT at 0.5 m: 2, 4, 5, N = 9                    |
| (RL 98.0 m)                              | 0.5 – 1.7 m          | CLAY; high plasticity, red-brown and yellow,<br>moist, stiff consistency, and traces of weathered<br>siltstone observed.                                  | Inferred<br>Residual Soil<br>SPT at 1.5 m:<br>7, 8, 11, N = 19 |
|                                          | 1.7 – 4.0 m          | SILSTONE; dark grey and red-brown, highly to extremely weathered and very low strength.                                                                   | Inferred Bedrock  Rock description based on drill cuttings.    |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                 |                                                                |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                               | Notes                                                                                      |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                            |                                                                                            |
|                                          | 0.015 – 0.045<br>m   | ASPHALT; 30 mm thick.                                                                                              |                                                                                            |
|                                          | 0.045 - 0.5 m        | CLAY with gravel; low plasticity, light brown, sub-<br>angular gravel, up to 5 mm, moist and stiff<br>consistency. | Inferred FILL                                                                              |
| BH35<br>(RL 98.5 m)                      | 0.5 – 4.0 m          | SILTSTONE; dark grey and red-brown, highly to extremely weathered, very low strength.                              | Inferred Bedrock  Rock description based on drill cuttings.  SPT at 0.5 m: 5, 8, 8, N = 16 |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                          |                                                                                            |



**BH36** 

Page 1 of 3

PSM3730

Project No.:

## **Engineering Log - Non Cored Borehole**

Client: SINSW 11/10/2019 Commenced: Chatswood Education Precinct Completed: 11/10/2019 Project Name: Chatswood Primary School Logged By: MB Hole Location:

Hole Position: 331216.0 m E 6258692.0 m N Checked By: YΒ

Christie Rig - Track Mounted Drill Model and Mounting: Inclination: -90° RL Surface: 97.00 m

|                                                                                                                                                                                      | Hole Diameter: 85 mm                                                                                                     |         |              |                                          |             |                                           |                                                                                                  |             | Bearing:                 | Datum:                                                                                                                     |                                                                                            | Αŀ                    | łD                                                                                        |      | O           | perator: BG Drilling |                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|--------------|------------------------------------------|-------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------|------|-------------|----------------------|---------------------------------------------------------------------------------|
|                                                                                                                                                                                      |                                                                                                                          | ı       | Drill        | ing Informati                            | ion         |                                           |                                                                                                  |             |                          | So                                                                                                                         | il Description                                                                             |                       |                                                                                           |      |             |                      | Observations                                                                    |
|                                                                                                                                                                                      | Method<br>Penetration                                                                                                    | Support | Water        | Samples<br>Tests<br>Remarks              | Recovery    | RL<br>(m)                                 | Depth<br>(m)                                                                                     | Graphic Log | Classification<br>Symbol | SOIL NAME: Plas<br>particle characte<br>component, colour, se                                                              | Description  ticity, behaviour or  pristics of primary  scondary components,  abservations | Moisture<br>Condition | Consistency /<br>Relative Density                                                         | Pene | JCS<br>kPa) | eter                 | Structure, Zoning, Origin,<br>Additional Observations                           |
| 7                                                                                                                                                                                    |                                                                                                                          |         | served       | SPT:<br>0.5 - 0.95 m<br>3, 3, 4<br>N = 7 |             | 0                                         | -                                                                                                |             | СН                       | ASPHALT: 30 mm thick. Gravelly CLAY: medium orange-brown and grey; mm.  CLAY: high plasticity, greweathered shale fragment | gravel angular, up to 20  gravel angular, up to 20  gravel and yellow-brown;               | М                     | F                                                                                         |      |             |                      | 0.03: Inferred FILL.  0.50: SPT recovered: 0.4 m. 0.60: Inferred Residual Soil. |
|                                                                                                                                                                                      | ADI                                                                                                                      | z       | Not Observed |                                          |             | 1<br>95.0<br>96.0                         | 1                                                                                                |             |                          | SILTSTONE: red-brown, very low strength.                                                                                   | extremely weathered,                                                                       |                       |                                                                                           |      |             |                      | 1.00: Inferred Bedrock.                                                         |
| SMAU NONCORE BH NZAU PSNØ750 GINT LOGS GPJ <drawngfile>&gt; 23/10/2019 16:34 10:01:00.1 Datgel Fence and Map Tool   Lib: PSM 3 02;1 2019-03-06 Prj; PSM 2.01 2015-04-07</drawngfile> |                                                                                                                          |         |              |                                          |             | 93.0                                      | 3                                                                                                |             |                          | Continued on cored bore                                                                                                    | chole sheet                                                                                |                       |                                                                                           |      |             |                      |                                                                                 |
| SM AU NONCORE BH                                                                                                                                                                     | Method Penetration  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore SPT_Standard nepetration test |         |              |                                          | Inflo ✓ Par | ow U - Ur<br>tial Loss D - Di<br>SPT - St | Samples and Tests Indisturbed Sample sturbed Sample andard Penetration Test Invironmental Sample | /           | Moistu<br>D<br>M<br>W    | re Co<br>- D<br>- N                                                                                                        | nditi<br>ry<br>oist<br>/et                                                                 | ion                   | Consistency/Relative Density  VS - Very soft S - Soft F - Firm St - Stiff VS - Very stiff |      |             |                      |                                                                                 |

AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB -Washbore SPT -Standard penetration test PT - Push tube AS - Auger Screwing

Logged in accordance with AS 1726:2017 Geotechnical site investigations

No resistance Refusal

U - Undisturbed Sample - Disturbed Sample - Standard Penetration Test ES - Environmental Sample TW - Thin Walled LB - Large Disturbed Sample

VS - Very soft
S - Soft
F - Firm
St - Stiff
VSt - Very stiff
H - Hard
VL - Very loose
L - Loose
MD - Medium dense
D - Dense
VD - Very dense
Ce - Cemented
C - Compact





Page 2 of 3

# **Engineering Log - Cored Borehole**

Client: SINSW 11/10/2019 Commenced: 11/10/2019 Project Name: Chatswood Education Precinct Completed: MB

Project No.:

PSM3730

Logged By: Checked By Hole Location: Chatswood Primary School

|                                                                               | Hole Position: 331216.0 m E 6258692.0 m N                                                                   |              |         |                                                                     |               |                     |                     |                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   | Checked By: YB                         |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------|---------|---------------------------------------------------------------------|---------------|---------------------|---------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ī                                                                             |                                                                                                             |              |         | and Mo                                                              |               | -                   |                     | _                        | - Track Mounted Inclination: -90°                                                                                                                                                                                                                                                                                                                                                           | RL Surface: 97.00 m                                                                                                                                                                                               |                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ŀ                                                                             | В                                                                                                           | Barre        | l Typ   | e and Le                                                            | ength         |                     | 3.2 m               | - NMI                    | LC Bearing:                                                                                                                                                                                                                                                                                                                                                                                 | Datum:                                                                                                                                                                                                            | AHD                                    | Oper                                                                                                                                      | ator: BG Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                               |                                                                                                             |              | Drill   | ing Info                                                            | ormat         | ion                 |                     |                          | Rock Substance                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                        | R                                                                                                                                         | ock Mass Defects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                               | Method                                                                                                      | Water        | RQD (%) | Samples and<br>Field Tests                                          | WPT (Lugeons) | RL<br>(m)           | Depth<br>(m)        | Graphic Log              | Material Description  ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteration                                                                                                                                                                                                                          | Weathering                                                                                                                                                                                                        | Strength Is(50)  • - Axial - Diametral | Defect<br>Spacing<br>(mm)                                                                                                                 | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PSM3750 GINT LOGS.GPJ < <drawingfile>&gt; 23/10/2019 16:30 10.0</drawingfile> | NMLC                                                                                                        | Not Observed | 68.4 63 | Is(50)<br>d=0.01<br>a=0.1<br>MPa<br>Is(50)<br>d=0.1<br>a=0.1<br>MPa |               | 93.0 94.0 95.0 96.0 | 1— 1— 2— 3— 4— 4— — |                          | Continued from non-cored borehole sheet  NO CORE: 100 mm.  SILTSTONE: dark grey with pale grey and orange banding, developed bedding fabric, indistinct thinly laminated bedding.  Bedding fabric becomes poorly developed.  LAMINITE: dark grey with pale grey banding, 80% sittstone, 20% fine grained sandstone, well developed bedding fabric, with dinstinct thinly laminated bedding. |                                                                                                                                                                                                                   |                                        |                                                                                                                                           | Heavily fractured  JT, 45°, S, Healed Joint  BP, 0°, CL, PR, S, <1 mm  BP, 3°, FE SN, PR, S  BP, 3°, FE SN, PR, S  BP, 3°, FE SN, PR, S  BP, 0°, FE SN, PR, S  BP, 0°, FE SN, PR, S  SM, CL, S, 5 mm  SM, CL, S, 50 mm  SM, CL, S, 50 mm  SM, CL, S, 50 mm  BP, 0°, FE SN, IR, S  JT, 70°, CL, S  JT, 70°, CL, S  BP, 0°, FE SN, PR, S |  |
| 3.02.2 LIB. GLB Log PSMAU CORE BH                                             | Method  AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) |              |         |                                                                     |               |                     | <                   | > Inflov ☐ Partia ☐ Comp |                                                                                                                                                                                                                                                                                                                                                                                             | Pefect   FT - Fault   SS - Shear S   SZ - Shear S   SZ - Shear Z   BP - Bedding SM - Seam   IS - Infilled S   JT - Joint   CO - Contact   CZ - Crushec   VN - Vein   Vein   CO - CO | Surface<br>cone<br>g parting<br>Seam   | Infilling/Coat  CN - Clean  SN - Stain  VN - Veneer  CO - Coating  RF - Rock fra  G - Gravel  S - Sand  Z - Silt  CA - Calcite  CL - Clay | SL - Slickensided POL - Polished S - Smooth RF - Rough VR - Very Rough  Shape PR - Plahar CU - Curved UN - Undulating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| -                                                                             |                                                                                                             |              |         |                                                                     |               |                     |                     |                          | re recovery VH - Very High                                                                                                                                                                                                                                                                                                                                                                  | FZ - Fracture<br>BSH - Bedding<br>DB - Drilling B                                                                                                                                                                 | g Shear                                | FE - Iron<br>QZ - Quartz<br>X - Carbona                                                                                                   | ST - Stepped<br>IR - Irregular<br>ceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |





Page 3 of 3

PSM3730

Project No.:

# **Engineering Log - Cored Borehole**

Client: SINSW 11/10/2019 Commenced: Chatswood Education Precinct 11/10/2019 Project Name: Completed:

Chatswood Primary School Hole Location: Logged By:  $\mathsf{MB}$ 331216.0 m E 6258692.0 m N Hole Position: Checked By: YΒ

Drill Model and Mounting: Christie Rig - Track Mounted Inclination: -90° RL Surface: 97.00 m

|                                                                                                                                                                     |                                                                                                                                              |         | e and Le                                                           |               | -         | 3.2 m        | ·                    | - Track Mounted Inclination: -90  LC Bearing:                                                                                                                                                                           | Datum:                                                                                  | 97.00<br>AHD                       | Opera                                                                                                      | ator: BG Drilling                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|---------------|-----------|--------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                     |                                                                                                                                              |         | ing Info                                                           |               |           |              |                      | Rock Substance                                                                                                                                                                                                          |                                                                                         |                                    | ·                                                                                                          | ock Mass Defects                                                                                                                                                                        |
| Method                                                                                                                                                              | Water                                                                                                                                        | RQD (%) | Samples and<br>Field Tests                                         | WPT (Lugeons) | RL<br>(m) | Depth<br>(m) | Graphic Log          | Material Description  ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteration                                                      | Weathering O -                                                                          | Strength Is(50)  - Axial Diametral | Defect<br>Spacing<br>(mm)                                                                                  | Defect Descriptions / Comments  Description, alpha/beta, infilling or coating, shape, roughness, thickness, other                                                                       |
| OIMN                                                                                                                                                                | Not Observed                                                                                                                                 | 87      | Is(50)<br>d=0.1<br>a=0.3<br>MPa<br>Is(50)<br>d=0.5<br>a=0.4<br>MPa |               | 91.0      | 6            |                      | LAMINITE: dark grey with pale grey banding, 80% siltstone, 20% fine grained sandstone, well developed bedding fabric, with dinstinct thinly laminated bedding. (continued)  Bedding fabric becomes very well developed. |                                                                                         |                                    |                                                                                                            | **BP, 5", FE SN, PR, S  BP, 0", FE SN, PR, S  BP, 0", FE SN, PR, S  JT, 25", S, Healed Joint  SM, CL, S, 2 mm  SM, CL, S, 40 mm  SM, CL, S, 100 mm  SM, CL, S, 100 mm  SM, CL, S, 55 mm |
| .                                                                                                                                                                   |                                                                                                                                              |         | Is(50)<br>d=0.4<br>a=0.7<br>MPa                                    |               | 0.08      | 7            | 1                    | Becomes 70% siltstone and 30% sandstone.                                                                                                                                                                                |                                                                                         |                                    |                                                                                                            | — ВР, 0°, CL, PR, S, <1 mm<br>— ВР, 0°, CN, PR, S                                                                                                                                       |
| og PSM AU CORE BH PSNR750 GINT LOGS GPJ <-DrawingFile>> 23/10/2019 16:30 10.01.00.01 Datgel Fence and Map Tool   Lib: PSM 3.02.1.2019-03-06 Pg; PSM 2.01.2015-04-07 |                                                                                                                                              |         | MPa                                                                |               | 88.0      | 9-           |                      | Hole Terminated at 8.23 m                                                                                                                                                                                               |                                                                                         |                                    |                                                                                                            |                                                                                                                                                                                         |
| og PSMAU CORE BH F                                                                                                                                                  | Method  AD/T - Auger drilling TC bit  AD/V - Auger drilling V bit  WB - Washbore  HQ3- Wireline core (63.5 mm)  PQ3- Wireline core (85.0 mm) |         |                                                                    |               |           | <            | > Inflov<br>☐ Partia | Titl Tilgrily Troduction                                                                                                                                                                                                | Defect T FT - Fault SS - Shear Su SZ - Shear Zo BP - Bedding SM - Seam IS - Infilled Si | urface<br>one<br>parting           | Infilling/Coati<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock frag<br>G - Gravel | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                                                                                         |

HQ3- Wireline core (63.5 mm)
PQ3- Wireline core (85.0 mm)
SPT- Standard penetration test
PT - Push tube

Logged in accordance with AS 1726:2017 Geotechnical site investigations

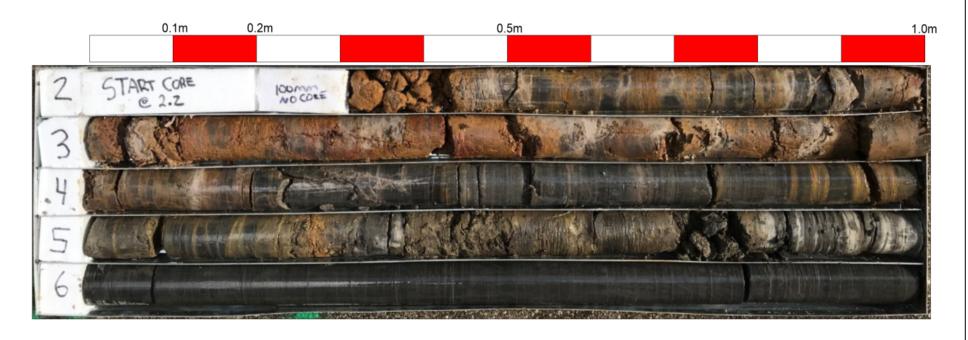
WPT - Water pressure test

Graphic Log/Core Loss Core recovered (hatching indicates material) No core recovery

BP - Bedding parting
SM - Seam
IS - Infilled Seam
JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break

CO - Coating
RF - Rock fragments
G - Gravel
S - Sand
Z - Silt
CA - Calcite
CL - Clay
FE - Iron
QZ - Quartz
X - Carbonaceous

Shape
PR - Planar
CU - Curved
UN - Undulating
ST - Stepped
IR - Irregular




JOB No.: PSM 3730 BH ID: BH 36

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood Primary

FROM: 2.2m TO: 7.0 m DATE: 11/10/19





**Pells Sullivan Meynink** 

#### **SCHOOL INFRASTRUCTURE NSW**

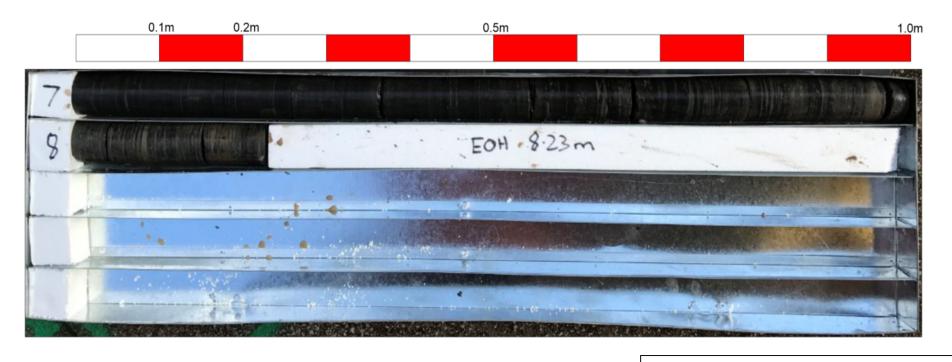
**Chatswood Education Precinct** 

**Chatswood Primary School** 

**CORE PHOTOS BH36** 

(SHEET 1 OF 2)

PSM3730-006R




JOB No.: PSM 3730 BH ID: BH 36

PROJECT: Chatswood Education Precinct

LOCATION: Chatswood Primary

FROM: 7.0 m TO: 8.23 m DATE: 11/10/19



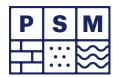


**Pells Sullivan Meynink** 

SCHOOL INFRASTRUCTURE NSW
Chatswood Education Precinct

Chatswood Primary School
CORE PHOTOS BH36

(SHEET 2 OF 2)


PSM3730-006R

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                 | Notes                                              |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                          | 0 – 0.09 m           | ASPHALT; 90 mm thick.                                                                                                |                                                    |
|                                          |                      | CLAY with gravel; high plasticity, grey and dark                                                                     | Inferred FILL                                      |
|                                          | 0.09 – 0.5 m         | brown, sub-angular gravel, up to 20 mm, moist and stiff consistency.                                                 | CBR sample collected at 0.02 – 1.5 m.              |
|                                          |                      |                                                                                                                      | Inferred<br>Residual Soil                          |
| BH37<br>(RL 99.0 m)                      | 0.5 – 2.3 m          | CLAY; high plasticity, orange-brown and grey, moist, stiff consistency, some weathered siltstone fragments observed. | SPT at 0.5 m:<br>4, 5, 6, N = 11                   |
|                                          |                      |                                                                                                                      | SPT at 1.5 m<br>4, 7, 8, N = 15                    |
|                                          |                      |                                                                                                                      | Inferred<br>Bedrock                                |
|                                          | 2.3 – 4.0 m          | SILTSTONE; grey and red-brown, extremely to highly weathered, very low strength.                                     | Rock<br>description<br>based on drill<br>cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                            |                                                    |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                | Notes                                                       |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                          | 0 – 0.18 m           | CONCRETE; 180 mm thick.                                                                                                                                             |                                                             |
|                                          | 0.18 – 0.7 m         | Sandy CLAY with gravel; medium plasticity, pale brown, coarse grained sand, sub-angular gravel, up to 10 mm, moist and very loose consistency.                      | Inferred FILL  SPT at 0.5 m: 1, 0, 2, N = 2                 |
| BH38<br>(RL 98.5 m)                      | 0.7 – 1.6 m          | CLAY with sand and trace gravel; high plasticity, dark brown and grey, medium to coarse grained sand, sub-angular gravel, up to 10 mm, moist and stiff consistency. | Inferred FILL  SPT at 1.5 m  3, 5, 6, N = 11                |
| (ICL 90.5 III)                           | 1.6 – 2.3 m          | CLAY; high plasticity, orange-brown and grey, moist, stiff consistency, roots present, weathered siltstone fragments observed.                                      | Inferred<br>Residual Soil                                   |
|                                          | 2.3 – 4.0 m          | SILTSTONE; red-brown and grey, highly to extremely weathered, very low strength.                                                                                    | Inferred Bedrock  Rock description based on drill cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                           |                                                             |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                               | Notes                                                                                                            |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.02 m           | ASPHALT; 20 mm thick.                                                                                                                                                                              |                                                                                                                  |
| BH39<br>(RL 97.0 m)                      | 0.02 – 1.6 m         | Sandy gravelly CLAY; low plasticity, dark brown and grey, coarse grained sand, angular gravel, up to 20 mm, moist and stiff consistency.  Some shale fill cobbles, up to 90 mm, observed at 1.0 m. | Inferred FILL  CBR sample collected at 0.5 – 1.5 m.  SPT at 0.5 m 5, 4, 6, N = 10.  SPT at 1.5 m 7, 12, Refusal. |
|                                          | 1.6 – 4.0 m          | SILSTONE; orange-brown and grey, highly to extremely weathered, very low strength.                                                                                                                 | Inferred Bedrock  Rock description based on drill cuttings.                                                      |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                          |                                                                                                                  |

# **Appendix B Point Load Test Results**





# **Pells Sullivan Meynink**

# POINT LOAD STRENGTH INDEX TEST RESULTS

| Job No.      | PSM3730-006                | îR      |              |             |           |           |                             |                     |                           |                                         |                                                               |           |                         |                             | Sheet   | 1     | of     | 2                 |  |  |  |  |
|--------------|----------------------------|---------|--------------|-------------|-----------|-----------|-----------------------------|---------------------|---------------------------|-----------------------------------------|---------------------------------------------------------------|-----------|-------------------------|-----------------------------|---------|-------|--------|-------------------|--|--|--|--|
| Project      | Chatswood E                | ducatio | on Precii    | nct         |           |           |                             |                     |                           |                                         |                                                               |           |                         |                             |         |       |        |                   |  |  |  |  |
| Test Machine | Purposes, Dete<br>GSA 6500 |         |              |             |           |           |                             |                     | NLMC<br>North F<br>Natura | or core                                 | Sampling Date 23/01 t<br>Testing Date 23/01 t<br>Tested By MB |           |                         | to 12/10<br>to 12/10        |         |       |        |                   |  |  |  |  |
| J            |                            |         |              |             |           |           |                             | < 30 se             | econds                    | *************************************** |                                                               |           |                         |                             |         |       |        |                   |  |  |  |  |
|              |                            |         | Danth        | Diametral T |           |           |                             | ests                |                           | llock, a                                | mp Tests                                                      |           |                         | AS 1726                     |         |       |        |                   |  |  |  |  |
| Rock Ty      | /pe Loc                    | cation  | Depth<br>(m) | D<br>(mm)   | L<br>(mm) | P<br>(kN) | I <sub>s(50)</sub><br>(MPa) | Failure Mode        | W<br>(mm)                 | D<br>(mm)                               | L<br>(mm)                                                     | P<br>(kN) | I <sub>s</sub><br>(MPa) | I <sub>s(50)</sub><br>(MPa) | Fail    | ure M | ode    | Strengtl<br>Class |  |  |  |  |
| Laminite     | В                          | 3H06    | 6.00         | 50          | 81        | 0.1       | 0.1                         | Parallel to bedding | 50                        | 43                                      | anna dan aran an aran aran aran aran ara                      | 1.5       | 0.5                     | 0.5                         | Through | sub:  | stance | VL / M            |  |  |  |  |
| Laminite     | В                          | 3H06    | 6.90         | 50          | 69        | 1.5       | 0.6                         | Parallel to bedding | 50                        | 36                                      |                                                               | 3         | 1.3                     | 1.3                         | Through | sub:  | stance | M/H               |  |  |  |  |
| Laminite     | В                          | 3H06    | 7.79         | 50          | 90        | 0.2       | 0.1                         | Parallel to bedding | 50                        | 41                                      |                                                               | 3.3       | 1.3                     | 1.3                         | Through | sub:  | stance | VL / H            |  |  |  |  |
| Laminite     | В                          | 3H07    | 7.56         | 50          | 56        | 1.9       | 0.7                         | Parallel to bedding | 50                        | 29                                      |                                                               | 0.1       | 0.1                     | 0.1                         | Through | sub:  | stance | VL / M            |  |  |  |  |
| Laminite     | В                          | 3H07    | 8.39         | 50          | 99        | 3         | 1.2                         | Parallel to bedding | 50                        | 46                                      |                                                               | 2.4       | 0.8                     | 0.9                         | Through | ı sub | stance | M/H               |  |  |  |  |
| Laminite     | В                          | 3H07    | 9.34         | 50          | 56        | 1.2       | 0.5                         | Parallel to bedding | 50                        | 28                                      |                                                               | 2.2       | 1.2                     | 1.2                         | Through | sub:  | stance | M/H               |  |  |  |  |
| Siltstone    | В                          | BH18    | 6.28         | 50          | 90        | 0.1       | 0                           | Parallel to bedding | 50                        | 42                                      |                                                               | 0.5       | 0.2                     | 0.2                         | Through | sub:  | stance | VL / L            |  |  |  |  |
| Siltstone    | В                          | 3H18    | 7.21         | 50          | 92        | 0         | 0                           | Parallel to bedding | 50                        | 39                                      |                                                               | 0.3       | 0.1                     | 0.1                         | Through | sub:  | stance | VL / L            |  |  |  |  |
| Siltstone    | В                          | 3H18    | 8.38         | 50          | 72        | 0.5       | 0.2                         | Parallel to bedding | 50                        | 38                                      |                                                               | 1.3       | 0.6                     | 0.5                         | Through | sub:  | stance | L/M               |  |  |  |  |
| Siltstone    | В                          | 3H18    | 9.30         | 50          | 83        | 1.1       | 0.4                         | Parallel to bedding | 50                        | 33                                      |                                                               | 0.8       | 0.4                     | 0.4                         | Through | ı sub | stance | М                 |  |  |  |  |
| Siltstone    | В                          | 3H19    | 3.13         | 50          | 66        | 0.6       | 0.2                         | Parallel to bedding | 50                        | 28                                      |                                                               | 0.7       | 0.4                     | 0.3                         | Through | sub:  | stance | L/M               |  |  |  |  |
| Siltstone    | В                          | BH19    | 4.58         | 50          | 89        | 0         | 0                           | Parallel to bedding | 50                        | 42                                      |                                                               | 0.6       | 0.2                     | 0.2                         | Through | ı sub | stance | VL / L            |  |  |  |  |
| Siltstone    |                            | BH19    | 5.23         | 50          | 67        | 0.1       | 0                           | Parallel to bedding | 50                        | 31                                      |                                                               | 0.3       | 0.1                     | 0.1                         | Through |       |        | VL / L            |  |  |  |  |
| Siltstone    | В                          | 3H19    | 6.67         | 50          | 90        | 0.8       | 0.3                         | Parallel to bedding | 50                        | 26                                      |                                                               | 0.8       | 0.5                     | 0.4                         | Through | ı sub | stance | М                 |  |  |  |  |
| Siltstone    | В                          | 3H19    | 7.55         | 50          | 80        | 0.8       | 0.3                         | Parallel to bedding | 50                        | 32                                      |                                                               | 0.4       | 0.2                     | 0.2                         | Through |       |        | L/M               |  |  |  |  |
| Laminite     | В                          | 3H26    | 2.41         | 50          | 60        | 0.2       | 0.1                         | Along defect        | 50                        | 30                                      |                                                               | 1.5       | 0.8                     | 0.7                         | Through | ı sub | stance | VL / M            |  |  |  |  |
| Laminite     | В                          | 3H26    | 3.32         | 50          | 60        | 0.6       | 0.3                         | Along defect        | 50                        | 25                                      |                                                               | 0.8       | 0.5                     | 0.4                         | Through | sub:  | stance | L/M               |  |  |  |  |
| Laminite     | В                          | 3H26    | 4.43         | 50          | 68        | 0.2       | 0.1                         | Along defect        | 50                        | 34                                      |                                                               | 0.9       | 0.4                     | 0.4                         | Through | sub:  | stance | VL / M            |  |  |  |  |
| Laminite     | В                          | 3H26    | 5.35         | 50          | 55        | 0.3       | 0.1                         | Along defect        | 50                        | 32                                      |                                                               | 1.3       | 0.6                     | 0.6                         | Through | sub:  | stance | L/M               |  |  |  |  |
| Laminite     | В                          | 3H26    | 6.35         | 50          | 80        | 0.2       | 0.1                         | Along defect        | 50                        | 45                                      |                                                               | 0.9       | 0.3                     | 0.3                         | Through | sub:  | stance | VL / M            |  |  |  |  |
| Siltstone    | В                          | 3H26    | 7.12         | 50          | 84        | 0.2       | 0.1                         | Along defect        | 50                        | 19                                      |                                                               | 0.7       | 0.6                     | 0.5                         | Through | sub:  | stance | VL / M            |  |  |  |  |
| Siltstone    | В                          | 3H26    | 8.09         | 50          | 57        | 2.4       | 1                           | Along defect        | 50                        | 37                                      |                                                               | 1.1       | 0.5                     | 0.4                         | Through | sub:  | stance | М                 |  |  |  |  |
| Siltstone    | В                          | 3H28    | 3.90         | 50          | 57        | 0.1       | 0.1                         | Along defect        | 50                        | 35                                      |                                                               | 0.2       | 0.1                     | 0.1                         | Through |       |        | VL                |  |  |  |  |
| Siltstone    | В                          | 3H28    | 4.78         | 50          | 75        | 1.6       | 0.7                         | Parallel to bedding | 50                        | 33                                      |                                                               | 2.5       | 1.2                     | 1.1                         | Through |       |        | M/H               |  |  |  |  |
| Siltstone    | В                          | 3H28    | 5.36         | 50          | 51        | 0.1       | 0                           | Along defect        | 50                        | 27                                      |                                                               | 0.1       | 0.1                     | 0.1                         | Through |       |        | VL                |  |  |  |  |
|              | МВ                         | 1       |              | Check       | æd:       | BS        |                             | , ,                 | 1                         |                                         |                                                               |           |                         |                             | Date:   |       | 12/10  | /2019             |  |  |  |  |



# **Pells Sullivan Meynink**

# POINT LOAD STRENGTH INDEX TEST RESULTS

| Job No. P           | SM3730-006R                                            |                                                             |                           |           |           |                             |                     |                               |                      |           |             |                         |                             | Sheet    | 2       | of     | 2                |
|---------------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------------|-----------|-----------|-----------------------------|---------------------|-------------------------------|----------------------|-----------|-------------|-------------------------|-----------------------------|----------|---------|--------|------------------|
| Project C           | hatswood Educati                                       | on Preci                                                    | nct                       |           |           |                             |                     |                               |                      |           |             |                         |                             |          |         |        |                  |
| Pı                  | S 4133.4.1 - 1993 M<br>urposes, Determinati<br>SA 6500 | Sampling Technique<br>Storage History<br>Moisture Condition | NLMC<br>North I<br>Natura | Ryde off  | ïce indo  | or core                     | area                | Sampling<br>Testing D         | to 12/10<br>to 12/10 |           |             |                         |                             |          |         |        |                  |
| Calibration Date 3/ | 12/2012                                                |                                                             |                           |           |           |                             | Loading Rate        | < 30 s                        | econds               |           |             |                         |                             |          |         |        |                  |
|                     |                                                        | ь и                                                         |                           |           | Dia       | ametral 1                   | ests                | Axial, Block, and Irregular L |                      |           |             |                         |                             | mp Tests | AS 1726 |        |                  |
| Rock Type           | e Location                                             | Depth<br>(m)                                                | D<br>(mm)                 | L<br>(mm) | P<br>(kN) | I <sub>s(50)</sub><br>(MPa) | Failure Mode        | W<br>(mm)                     | D<br>(mm)            | L<br>(mm) | P<br>(kN)   | I <sub>s</sub><br>(MPa) | I <sub>s(50)</sub><br>(MPa) | Failu    | ıre Mo  | ode    | Strengt<br>Class |
| Siltstone           | BH28                                                   | 6.84                                                        | 50                        | 50        | 0.8       | 0.3                         | Along defect        | 50                            | 43                   |           | 0.1         | 0                       | 0                           | Through  | subs    | tance  | VL / L           |
| Siltstone           | BH28                                                   | 7.56                                                        | 50                        | 62        | 0.1       | 0.1                         | Along defect        | 50                            | 23                   |           | 0.2         | 0.1                     | 0.1                         | Through  | subs    | tance  | VL / L           |
| Siltstone           | BH28                                                   | 8.80                                                        | 50                        | 53        | 0         | 0                           | Along defect        | 50                            | 37                   |           | 0.1         | 0.1                     | 0.1                         | Through  |         |        | VL               |
| Laminite            | BH28                                                   | 9.45                                                        | 50                        | 79        | 0.6       | 0.3                         | Along defect        | 50                            | 35                   |           | 0.7         | 0.3                     | 0.3                         | Through  |         |        | L                |
| Laminite            | BH28                                                   | 10.00                                                       | 50                        | 100       | 2.1       | 0.9                         | Along defect        | 50                            | 32                   |           | 1.1         | 0.6                     | 0.5                         | Through  |         |        | М                |
| Laminite            | BH28                                                   | 11.22                                                       | 50                        | 57        | 4.4       | 1.8                         | Parallel to bedding | 50                            | 41                   |           | 6.9         | 2.6                     | 2.7                         | Through  |         |        | Н                |
| Siltstone           | ВН33                                                   | 3.56                                                        | 50                        | 93        | 0.2       | 0.1                         | Parallel to bedding | 50                            | 37                   |           | 0.1         | 0                       | 0                           | Through  |         |        | VL               |
| Laminite            | ВН33                                                   | 4.55                                                        | 50                        | 93        | 0.3       | 0.1                         | Parallel to bedding | 50                            | 28                   |           | 2.5         | 1.4                     | 1.3                         | Through  |         |        | L/H              |
| Laminite            | ВН33                                                   | 5.55                                                        | 50                        | 65        | 0.4       | 0.2                         | Parallel to bedding | 50                            | 37                   |           | 1.8         | 0.8                     | 0.8                         | Through  |         |        | L/M              |
| Laminite            | ВН33                                                   | 6.48                                                        | 50                        | 81        | 0.7       | 0.3                         | Parallel to bedding | 50                            | 36                   |           | 4.9         | 2.1                     | 2.1                         | Through  |         |        | L/H              |
| Laminite            | ВН33                                                   | 7.42                                                        | 50                        | 70        | 1.4       | 0.6                         | Parallel to bedding | 50                            | 30                   |           | 5. <i>4</i> | 2.8                     | 2.7                         | Through  |         |        | M/H              |
| Laminite            | ВН33                                                   | 8.00                                                        | 50                        | 80        | 1.8       | 0.7                         | Parallel to bedding | 50                            | 39                   |           | 4.2         | 1.7                     | 1.7                         | Through  | subs    | tance  | M/H              |
| Siltstone           | BH36                                                   | 2.40                                                        | 50                        | 90        | 0         | 0                           | Parallel to bedding | 50                            | 35                   |           | 0.2         | 0.1                     | 0.1                         | Through  |         |        | VL               |
| Siltstone           | BH36                                                   | 3.43                                                        | 50                        | 80        | 0.2       | 0.1                         | Parallel to bedding | 50                            | 30                   |           | 0.2         | 0.1                     | 0.1                         | Through  |         |        | VL               |
| Laminite            | BH36                                                   | 4.61                                                        | 50                        | 59        | 0.4       | 0.2                         | Parallel to bedding | 50                            | 27                   |           | 0.3         | 0.2                     | 0.1                         | Through  |         |        | L                |
| Laminite            | BH36                                                   | 5.00                                                        | 50                        | 70        | 0.3       | 0.1                         | Parallel to bedding | 50                            | 17                   |           | 0.4         | 0.3                     | 0.3                         | Through  |         |        | L                |
| Laminite            | BH36                                                   | 6.01                                                        | 50                        | 70        | 1.2       | 0.5                         | Parallel to bedding | 50                            | 30                   |           | 0.8         | 0.4                     | 0.4                         | Through  |         |        | М                |
| Laminite            | BH36                                                   | 7.00                                                        | 50                        | 62        | 1         | 0.4                         | Parallel to bedding | 50                            | 29                   |           | 1.3         | 0.7                     | 0.7                         | Through  |         |        | М                |
| Laminite            | ВН36                                                   | 8.05                                                        | 50                        | 53        | 0.8       | 0.3                         | Parallel to bedding | 50                            | 26                   |           | 3.6         | 2.2                     | 2                           | Through  | subs    | tance  | M/H              |
|                     |                                                        |                                                             |                           |           |           |                             |                     |                               |                      |           |             |                         |                             |          |         |        |                  |
| By: <i>M</i>        | /B                                                     |                                                             | Check                     | red:      | BS        |                             |                     |                               |                      |           |             |                         |                             | Date:    |         | 12/10/ | 2019             |

# Appendix C CBR testing results



 Telephone:
 02 9888 5000

 Facsimile:
 02 9888 5001

 Email:
 dtreweek@jkgroup.net.au





### FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

Client:

Pells Sullivan Meynink

PSM Job No.: PSM3730

Ref No:

L4246E

Report:

1

Report Date:

6/02/2019

Page 1 of 1

| BOREHOLE NUM      | MBER                | BH 2        | BH Middle   | BH 5        | BH 7        | BH 10       | <del></del> |
|-------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| DEPTH (m)         |                     | 0.10 - 0.30 | 0.10 - 0.20 | 0.10 - 0.20 | 0.10 - 0.20 | 0.10 - 0.20 |             |
| Surcharge (kg)    |                     | 4.5         | 4.5         | 4.5         | 4.5         | 4.5         |             |
| Maximum Dry Dei   | nsity (t/m³)        | 1.83 STD    | 1.73 STD    | 1.65 STD    | 1.59 STD    | 2.05 STD    |             |
| Optimum Moisture  | e Content (%)       | 13.4        | 15.6        | 17.5        | 18.0        | 19.4        |             |
| Moulded Dry Dens  | sity (t/m³)         | 1.79        | 1.69        | 1.62        | 1.57        | 2.00        |             |
| Sample Density R  | Ratio (%)           | 98          | 98          | 98          | 99          | 98          |             |
| Sample Moisture   | Ratio (%)           | 103         | 98          | 100         | 91          | 96          |             |
| Moisture Contents | \$                  |             |             |             |             |             |             |
| Insitu (%)        |                     | 10.7        | 9.9         | 11.4        | 8.4         | 8.3         |             |
| Moulded (%)       | )                   | 13.9        | 15.2        | 17.4        | 16.4        | 18.7        |             |
| After soaking     | g and               |             |             |             |             |             |             |
| After Test, T     | op 30mm(%)          | 19.6        | 21.7        | 24.9        | 23.9        | 21.9        |             |
|                   | Remaining Depth (%) | 16.3        | 17.0        | 20.2        | 20.1        | 19.5        |             |
| Material Retained | on 19mm Sieve (%)   | 10*         | 1*          | 2*          | 1*          | 1*          |             |
| Swell (%)         |                     | 0.5         | 1.0         | 0.5         | 0.0         | 0.5         |             |
| C.B.R. value:     | @2.5mm penetration  | 9           | 4.5         |             |             |             |             |
|                   | @5.0mm penetration  |             |             | 6           | 7           | 5           |             |

**NOTES:** Sampled and supplied by client.

- · Refer to appropriate Borehole logs for soil descriptions
- Test Methods: AS 1289 6.1.1, 5.1.1 & 2.1.1.
- Date of receipt of sample: 25/01/2019.
- \* Denotes not used in test sample.

NATA Accredited Laboratory A Number:1327 T

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except in full.

Approved Signatory / Date (D. Treweek) 6/2/19

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670

**Telephone:** 02 9888 5000 **Facsimile:** 02 9888 5001



FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

Client:

Pells Sullivan Meynink

PSM Job No.: PSM3730

Ref No:

L4251E

Report:

.

Report Date:

27/02/2019

Page 1 of 1

| BOREHOLE NUMBER                     | BH 18       | BH 19       | BH 21       |
|-------------------------------------|-------------|-------------|-------------|
| DEPTH (m)                           | 0.20 - 1.50 | 0.20 - 1.50 | 0.20 - 1.50 |
| Surcharge (kg)                      | 4.5         | 4.5         | 4.5         |
| Maximum Dry Density (t/m³)          | 1.74 STD    | 1.79 STD    | 1.69 STD    |
| Optimum Moisture Content (%)        | 12.9        | 12.9        | 20.0        |
| Moulded Dry Density (t/m³)          | 1.72        | 1.76        | 1.65        |
| Sample Density Ratio (%)            | 99          | 98          | 98          |
| Sample Moisture Ratio (%)           | 104         | 104         | 103         |
| Moisture Contents                   |             |             |             |
| Insitu (%)                          | 10.8        | 12.4        | 17.4        |
| Moulded (%)                         | 13.4        | 13.4        | 20.5        |
| After soaking and                   |             |             |             |
| After Test, Top 30mm(%)             | 23.7        | 22.5        | 24.7        |
| Remaining Depth (%)                 | 20.6        | 19.4        | 21.4        |
| Material Retained on 19mm Sieve (%) | 0           | 0           | 0           |
| Swell (%)                           | 3.0         | 1.5         | 1.5         |
|                                     |             |             |             |
| C.B.R. value: @2.5mm penetration    | 2.5         | 2.0         | 4.0         |
|                                     |             |             |             |

#### NOTES:

- Refer to appropriate Borehole logs for soil descriptions
- Test Methods: AS 1289 6.1.1, 5.1.1 & 2.1.1.
- Date of receipt of sample: 18/02/2019.

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except

· Sampled and supplied by client.



Authori



115 Wicks Road Macquarie Park, NSW 2113 PO Box 976

North Ryde, Bc 1670 Telephone: 02 9888 5000

Facsimile: 02 9888 5001 Email: dtreweek@jkgroup.net.au



### FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

Client:

Pells Sullivan Meynink

PSM Job No.: PSM3730

Ref No:

L4356E

Report:

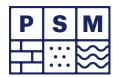
**Report Date:** 

23/10/2019

Page 1 of 1

| <b>BOREHOLE NUM</b> | BER                 | BH 29        | BH 30       | BH 37       | BH 39       |  |
|---------------------|---------------------|--------------|-------------|-------------|-------------|--|
| DEPTH (m)           |                     | 0.095 - 1.00 | 0.02 - 1.00 | 0.50 - 1.50 | 0.50 - 1.50 |  |
| Surcharge (kg)      |                     | 4.5          | 4.5         | 4.5         | 4.5         |  |
| Maximum Dry Den     | sity (t/m³)         | 1.76 STD     | 1.73 STD    | 1.52 STD    | 1.62 STD    |  |
| Optimum Moisture    | Content (%)         | 16.5         | 16.3        | 23.4        | 21.8        |  |
| Moulded Dry Dens    | sity (t/m³)         | 1.73         | 1.69        | 1.49        | 1.59        |  |
| Sample Density Ra   | atio (%)            | 98           | 98          | 98          | 98          |  |
| Sample Moisture F   | Ratio (%)           | 97           | 101         | 98          | 99          |  |
| Moisture Contents   |                     |              |             |             |             |  |
| Insitu (%)          |                     | 20.1         | 20.7        | 27.0        | 24.8        |  |
| Moulded (%)         |                     | 16.0         | 16.5        | 23.0        | 21.6        |  |
| After soaking       | g and               |              |             |             |             |  |
| After Test, To      | op 30mm(%)          | 24.0         | 23.8        | 30.9        | 26.3        |  |
|                     | Remaining Depth (%) | 21.0         | 20.8        | 27.9        | 24.0        |  |
| Material Retained   | on 19mm Sieve (%)   | 0            | 0           | 0           | 1*          |  |
| Swell (%)           |                     | 3.0          | 1.5         | 0.5         | 0.5         |  |
| C.B.R. value:       | @2.5mm penetration  | 1.5          | 2.0         | 2.0         |             |  |
|                     | @5.0mm penetration  |              |             |             | 4.0         |  |

NOTES: Sampled and supplied by client. Samples tested as received.


- Refer to appropriate Borehole logs for soil descriptions
- Test Methods: AS 1289 6.1.1, 5.1.1 & 2.1.1.
- Date of receipt of sample: 14/10/2019.
- \* Denotes not used in test sample. Accredited for compliance with ISO/IEC 17025 Testing.

This document shall not be reproduced except

In full without approval of the laboratory. Results relate only to the items tested or



# **Appendix D Atterberg Limit Test Results**





Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW

# **Test Results - Atterberg Limits**

| Client:                      | PSM    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Job No.:                               | GT3023                                    |
|------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|
| Project:                     | Materi | al Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | Report No.:                            | GTR3023-L3                                |
| Location:                    | Chats  | wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | Test Date:                             | 05-Feb-19                                 |
| Contact:                     | Yun B  | ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | Client Ref No:                         | PSM3730                                   |
| Sample Location              |        | BH02 (1.5m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH04 (1.0m)                            | BH05 (1.0m)                            | BH07 (1.7m)                               |
| Sample Number                |        | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L3                                     | L4                                     | L5                                        |
| Test Procedure               | Т      | AS1289 3.1.2,3.2.1,3.3.1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4.1, 2.1.1                           |                                        |                                           |
| ATTERBERG LIMITS             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                           |
| Liquid Limit                 | %      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                     | 44                                     | 37                                        |
| Plastic Limit                | %      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                     | 21                                     | 19                                        |
| Plasticity Index             | %      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                     | 23                                     | 18                                        |
| Linear Shrinkage             | %      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                     | ND                                     | ND                                        |
| Curling/ Crumbling/ Cracking |        | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                   | None                                   | None                                      |
| Sample History               |        | Low Temperature Oven<br>Dried, Dry Sieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Temperature Oven Dried, Dry Sieved | Low Temperature Oven Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved |
| Sample Description           |        | Brown Silty Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grey Brown Sandy<br>Gravelly Clay      | Light Brown Gravelly<br>Clay (Shale)   | Light Brown Silty Clay                    |
|                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                           |
|                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                           |
|                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                           |
|                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                           |
| Comments:                    |        | Sampling Method: Sample Sample Sample Sampled: Sample Samp |                                        |                                        |                                           |

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory No. 14343
Accredited for compliance with ISO/IEC 17025-Testing
The results of the tests, calibrations and/or measurements in this document are traceable to Australian/National Standards

Mero

**Mahamood Firoz** 

Approved Signatory

Date of issue 6/02/2019



Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW

# **Test Results - Atterberg Limits**

| Client:                      | PSM    |                                           |                                        | Job No.:                                  | GT3023                                    |
|------------------------------|--------|-------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------|
| Project:                     | Materi | al Testing                                |                                        | Report No.:                               | GTR3023-L4                                |
| Location:                    | Chats  | wood                                      |                                        | Test Date:                                | 05-Feb-19                                 |
| Contact:                     | Yun B  | ai                                        |                                        | Client Ref No:                            | PSM3730                                   |
| Sample Location              |        | BH8 (1.5m)                                | BH09 (1.0m)                            | BH11 (0.2 - 0.5m)                         | BH12 (1.0m)                               |
| Sample Number                |        | L6                                        | <b>L7</b>                              | L8                                        | L9                                        |
| Test Procedure               |        | AS1289 3.1.2,3.2.1,3.3.1,                 | 3.4.1, 2.1.1                           |                                           |                                           |
| ATTERBERG LIMITS             |        |                                           |                                        |                                           |                                           |
| Liquid Limit                 | %      | 56                                        | 55                                     | 52                                        | 41                                        |
| Plastic Limit                | %      | 26                                        | 23                                     | 22                                        | 20                                        |
| Plasticity Index             | %      | 30                                        | 32                                     | 30                                        | 21                                        |
| Linear Shrinkage             | %      | ND                                        | ND                                     | ND                                        | ND                                        |
| Curling/ Crumbling/ Cracking |        | None                                      | None                                   | None                                      | None                                      |
| Sample History               |        | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved |
| Sample Description           |        | Brown Silty Clay                          | Brown Silty Clay                       | Grey Brown Silty Clay                     | Grey Brown Gravelly<br>Clay (Shale)       |
|                              |        |                                           |                                        |                                           |                                           |
|                              |        |                                           |                                        |                                           |                                           |
|                              |        |                                           |                                        |                                           |                                           |
|                              |        |                                           |                                        |                                           |                                           |
| Comments:                    |        | Sampling Method: Sample Samples           |                                        |                                           |                                           |

NATA

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory No. 14343
Accredited for compliance with ISO/IEC 17025-Testing
The results of the tests, calibrations and/or measurements in this document are traceable to Australian/National Standards

MERO

**Mahamood Firoz** 

Approved Signatory

Date of issue 6/02/2019



Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW

# **Test Results - Atterberg Limits**

| Client:                      | PSM     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Job No.:       | GT3023     |
|------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|------------|
| Project:                     | Materia | al Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Report No.:    | GTR3023-L5 |
| Location:                    | Chatsv  | wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Test Date:     | 05-Feb-19  |
| Contact:                     | Yun Ba  | ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Client Ref No: | PSM3730    |
| Sample Location              |         | BH14 (2.1m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH16 (1.0m)                           |                |            |
| Sample Number                |         | L10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L11                                   |                |            |
| Test Procedure               |         | AS1289 3.1.2,3.2.1,3.3.1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                |            |
| ATTERBERG LIMITS             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |            |
| Liquid Limit                 | %       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                                    |                |            |
| Plastic Limit                | %       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                    |                |            |
| Plasticity Index             | %       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                                    |                |            |
| Linear Shrinkage             | %       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                    |                |            |
| Curling/ Crumbling/ Cracking |         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  |                |            |
| Sample History               |         | Low Temperature Oven Dried, Dry Sieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dried, Dry Sieved                     |                |            |
| Sample Description           |         | Grey Gravelly Silty<br>Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Orange Brown Silty<br>Clay            |                |            |
|                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |            |
|                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |            |
|                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |            |
| Comments:                    |         | Sampling Method: Sample Sumple Sumpled: Sample Sumpled: Sample Sumple Su |                                       |                |            |
|                              |         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , , , , , , , , , , , , , , , , , , , | A Since        |            |

**Mahamood Firoz** 

Approved Signatory

6/02/2019

Date of issue

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory No. 14343

Accredited for compliance with ISO/IEC 17025-Testing

The results of the tests, calibrations and/or measurements in

this document are traceable to Australian/National Standards



Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW PO Box 1121 Green Valley NSW 2168

Ph: (02) 8783 8200 Email: lab@groundtech.com.au

# **Test Results - Atterberg Limits**

| Client:                      | PSM     |                                                 |                                           | Job No.:                                  | GT3023                                    |  |
|------------------------------|---------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| Project:                     | Materia | al Testing                                      |                                           | Report No.:                               | GTR3023-L7                                |  |
| Location:                    | Chatsv  | vood                                            |                                           | Test Date:                                | 22-Feb-19                                 |  |
| Contact:                     | Matias  | Braga                                           |                                           | Client Ref No:                            | PSM3730                                   |  |
| Sample Location              |         | BH18 (1.5m)                                     | BH19 (0.5m)                               | BH20 (0.5m)                               | BH22 (0.5 to 1.0m)                        |  |
| Sample Number                |         | L15                                             | L16                                       | L17                                       | L18                                       |  |
| Test Procedure               | _       | AS1289 3.1.2,3.2.1,3.3.1,3                      | 3.4.1, 2.1.1                              |                                           | _                                         |  |
| ATTERBERG LIMITS             |         |                                                 |                                           |                                           |                                           |  |
| Liquid Limit                 | %       | 46                                              | 42                                        | 41                                        | 43                                        |  |
| Plastic Limit                | %       | 20                                              | 20                                        | 20                                        | 21                                        |  |
| Plasticity Index             | %       | 26                                              | 22                                        | 21                                        | 22                                        |  |
| Linear Shrinkage             | %       | ND                                              | ND                                        | ND                                        | ND                                        |  |
| Curling/ Crumbling/ Cracking |         | None                                            | None                                      | None                                      | None                                      |  |
| Sample History               |         | Low Temperature Oven<br>Dried, Dry Sieved       | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved |  |
| Sample Description           |         | Brown Clay                                      | Brown Clay                                | Brown Clay                                | Grey Brown Clay                           |  |
|                              |         |                                                 |                                           |                                           |                                           |  |
|                              |         |                                                 |                                           |                                           |                                           |  |
|                              |         |                                                 |                                           |                                           |                                           |  |
|                              |         |                                                 |                                           |                                           |                                           |  |
| Comments:                    |         | Sampling Method: Sample Date Sampled: Sample su |                                           |                                           |                                           |  |



NATA Accredited Laboratory No. 14343 Accredited for compliance with ISO/IEC 17025-Testing The results of the tests, calibrations and/or measurements in this document are traceable to Australian/National Standards

**Mahamood Firoz** 

Approved Signatory

Date of issue 26/02/2019



Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200

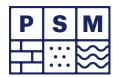
Email: lab@groundtech.com.au

# **Test Results - Atterberg Limits**

| Client:                      | PSM    |                                                                                     | Job No.:       | GT3023                  |  |  |
|------------------------------|--------|-------------------------------------------------------------------------------------|----------------|-------------------------|--|--|
| Project:                     | Materi | al Testing                                                                          | Report No.:    | GTR3023-L8<br>22-Feb-19 |  |  |
| Location:                    | Chats  | wood                                                                                | Test Date:     |                         |  |  |
| Contact:                     | Matias | Braga                                                                               | Client Ref No: | PSM3730                 |  |  |
| Sample Location              |        | BH23 (0.5 to 1.0m)                                                                  |                |                         |  |  |
| Sample Number                |        | L19                                                                                 |                |                         |  |  |
| Sample Number Test Procedure |        | AS1289 3.1.2,3.2.1,3.3.1,3.4.1, 2.1.1                                               |                |                         |  |  |
| 1000110000010                |        | 7.0.1200 0.1.2,0.2.1,0.0.1,0.1.1, 2.1.1                                             |                |                         |  |  |
| ATTERBERG LIMITS             |        |                                                                                     |                |                         |  |  |
|                              |        | 66                                                                                  |                |                         |  |  |
| Liquid Limit                 | %      | 66                                                                                  |                |                         |  |  |
| Plastic Limit                | %      | 23                                                                                  |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
| Plasticity Index             | %      | 43                                                                                  |                |                         |  |  |
| Linear Shrinkage             | %      | ND                                                                                  |                |                         |  |  |
| Linear Criminage             | 70     |                                                                                     |                |                         |  |  |
| Curling/ Crumbling/ Cracking |        | None                                                                                |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
| Sample History               |        | Low Temperature Oven Dried, Dry Sieved                                              |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
| Sample Description           |        | Brown Clay                                                                          |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
|                              |        |                                                                                     |                |                         |  |  |
| Comments:                    |        | Sampling Method: Sample supplied by Client  Date Sampled: Sample supplied by Client | t              |                         |  |  |
|                              |        |                                                                                     | ntro           |                         |  |  |
|                              |        |                                                                                     | 1,, ,          |                         |  |  |

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory No. 14343
Accredited for compliance with ISO/IEC 17025-Testing
The results of the tests, calibrations and/or measurements in this document are traceable to Australian/National Standards


NEW

**Mahamood Firoz** 

Approved Signatory

Date of issue 26/02/2019

# Appendix E Environmental testing results





### **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1902686** Page : 1 of 4

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD Laboratory : Environmental Division Sydney

Contact : YUN BAI Contact : Customer Services ES

Address : G3, 56 DELHI ROAD Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH RYDE NSW, AUSTRALIA 2113

 Telephone
 : +61 02 9812 5000
 Telephone
 : +61-2-8784 8555

 Project
 : Chatswood High
 Date Samples Received
 : 25-Jan-2019 15:47

Order number : PSM3730 Date Analysis Commenced : 30-Jan-2019

C-O-C number : ---- Issue Date : 08-Feb-2019 16:53

Sampler : Matias Braga

No. of samples received : 10

No. of samples analysed : 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: EN/333

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

#### **Signatories**

Site

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Ankit Joshi      | Inorganic Chemist     | Sydney Inorganics, Smithfield, NSW |
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Dian Dao         |                       | Sydney Inorganics, Smithfield, NSW |
| Ivan Taylor      | Analyst               | Sydney Inorganics, Smithfield, NSW |

Page : 2 of 4
Work Order : ES1902686

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

Project : Chatswood High

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

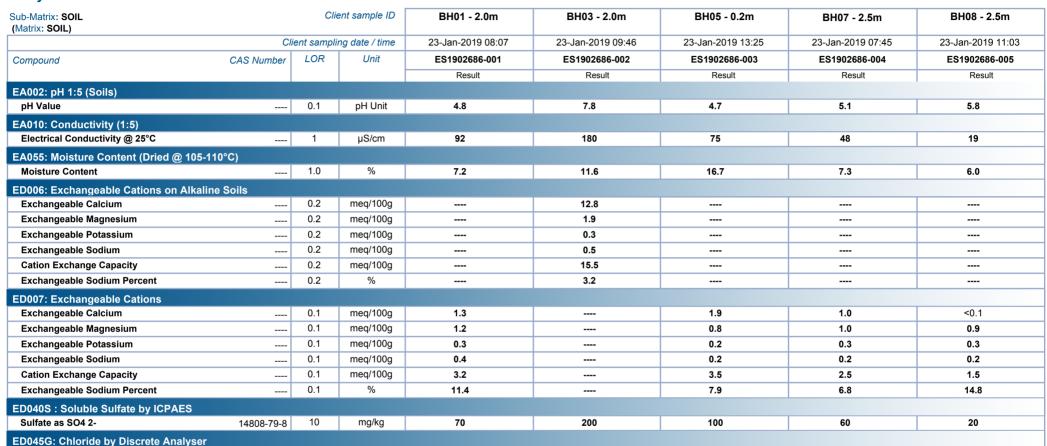
- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

Page : 3 of 4 Work Order : ES1902686

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

10

16887-00-6


mg/kg

70

Project : Chatswood High

#### **Analytical Results**

Chloride



10

40

10

<10




Page : 4 of 4 Work Order : ES1902686

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

Project : Chatswood High

#### Analytical Results







### **CERTIFICATE OF ANALYSIS**

Work Order : **ES1905009** 

: PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

Contact : YUN BAI

Address : G3, 56 DELHI ROAD

NORTH RYDE NSW, AUSTRALIA 2113

Telephone : +61 02 9812 5000

Project : Chatswood Primary School

Order number

Client

C-O-C number : ----

Sampler : MATIAS BRAGA

Site : ---

Quote number : EN/333

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 2

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 18-Feb-2019 15:20

Date Analysis Commenced : 18-Feb-2019

Issue Date : 21-Feb-2019 12:23

Sydney Inorganics, Smithfield, NSW



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

Ivan Taylor

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories | Position          | Accreditation Category             |
|-------------|-------------------|------------------------------------|
| Ankit Joshi | Inorganic Chemist | Sydney Inorganics, Smithfield, NSW |
| Dian Dao    |                   | Sydney Inorganics, Smithfield, NSW |

Analyst

Page : 2 of 2 Work Order : ES1905009

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

Project : Chatswood Primary School

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

#### Analytical Results

| Sub-Matrix: SOIL Client sample ID (Matrix: SOIL) |            |           |                | BH18 - 1.0m       | BH19 - 2.6m       | BH20 - 7.0m       | BH21 - 0.5m       | BH22 - 1.5m       |
|--------------------------------------------------|------------|-----------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                  | Clier      | nt sampli | ng date / time | 16-Feb-2019 07:40 | 16-Feb-2019 12:30 | 17-Feb-2019 08:30 | 17-Feb-2019 08:40 | 17-Feb-2019 10:09 |
| Compound                                         | CAS Number | LOR       | Unit           | ES1905009-001     | ES1905009-002     | ES1905009-003     | ES1905009-004     | ES1905009-005     |
|                                                  |            |           |                | Result            | Result            | Result            | Result            | Result            |
| EA002: pH 1:5 (Soils)                            |            |           |                |                   |                   |                   |                   |                   |
| pH Value                                         |            | 0.1       | pH Unit        | 5.3               | 5.6               | 6.3               | 5.5               | 5.0               |
| EA010: Conductivity (1:5)                        |            |           |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                   |            | 1         | μS/cm          | 90                | 17                | 25                | 47                | 58                |
| EA055: Moisture Content (Dried @ 105             | -110°C)    |           |                |                   |                   |                   |                   |                   |
| Moisture Content                                 |            | 0.1       | %              | 18.3              | 9.2               | 7.4               | 17.0              | 10.1              |
| ED007: Exchangeable Cations                      |            |           |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                             |            | 0.1       | meq/100g       | 15.0              | <0.1              | 4.4               | 0.8               | 1.6               |
| Exchangeable Magnesium                           |            | 0.1       | meq/100g       | 1.4               | 1.3               | 4.5               | 3.1               | 2.1               |
| Exchangeable Potassium                           |            | 0.1       | meq/100g       | 0.6               | 0.3               | 0.2               | 0.6               | 0.5               |
| Exchangeable Sodium                              |            | 0.1       | meq/100g       | 0.5               | 0.9               | 0.7               | 1.2               | 0.3               |
| Cation Exchange Capacity                         |            | 0.1       | meq/100g       | 17.4              | 2.6               | 9.8               | 5.7               | 4.4               |
| Exchangeable Sodium Percent                      |            | 0.1       | %              | 2.6               | 33.7              | 6.9               | 21.6              | 6.4               |
| ED040S : Soluble Sulfate by ICPAES               |            |           |                |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                                | 14808-79-8 | 10        | mg/kg          | 140               | 20                | 20                | 70                | 50                |
| ED045G: Chloride by Discrete Analyse             | r          |           |                |                   |                   |                   |                   |                   |
| Chloride                                         | 16887-00-6 | 10        | mg/kg          | 20                | 10                | <10               | 20                | <10               |



# Appendix F JBS&G Environmental Assessment Report



# **Appendix F1 Chatswood High School**





Chatswood High School Chatswood Education Precinct

Detailed Site Investigation

24 Centennial Avenue, Chatswood NSW

1 March 2019

55579 - 120512 (Rev A)

JBS&G Australia Pty Ltd

Chatswood High School Chatswood Education Precinct Detailed Site Investigation

> 24 Centennial Avenue, Chatswood NSW

1 March 2019 55579 – 120512 (Rev A) JBS&G Australia Pty Ltd



## **Table of Contents**

| Abbre | eviatio  | ns          |                                                   | vi  |
|-------|----------|-------------|---------------------------------------------------|-----|
| Execu | ıtive Sı | ummary      |                                                   | vii |
| 1.    | Introd   | duction     |                                                   | 1   |
|       | 1.1      | Backgrou    | und                                               | 1   |
|       | 1.2      | Objective   | es                                                | 1   |
|       | 1.3      | Scope of    | Works                                             | 1   |
| 2.    | Site C   | onditions   | and Surrounding Environment                       | 3   |
|       | 2.1      | Site Iden   | tification                                        | 3   |
|       | 2.2      | Site Desc   | cription                                          | 3   |
|       | 2.3      | Surround    | ding Land Use                                     | 3   |
|       | 2.4      | Environn    | nental Setting                                    | 4   |
|       |          | 2.4.1       | Topography                                        | 4   |
|       |          | 2.4.2       | Geology & Soil                                    | 4   |
|       |          | 2.4.3       | Acid Sulfate Soils                                | 4   |
|       |          | 2.4.4       | Hydrology                                         | 4   |
|       |          | 2.4.5       | Hydrogeology                                      | 5   |
| 3.    | Site H   | listory     |                                                   | 6   |
|       | 3.1      | EPA Per-    | and Poly- Fluoroalkyl Substances (PFAS) Register  | 6   |
|       | 3.2      |             | r Trading Loose Fill Asbestos Insulation Register |     |
|       | 3.3      |             | y of Site History                                 |     |
| 4.    | Previo   | ous Invest  | igations                                          | 7   |
|       | 4.1      | Prelimina   | ary Site (Contamination) Investigation (DP 2018)  | 7   |
| 5.    | Conce    | eptual Site | e Model                                           | 8   |
|       | 5.1      | Potentia    | l Areas of Environmental Concern                  | 8   |
|       | 5.2      |             | lly Contaminated Media                            |     |
|       | 5.3      |             | ,<br>I for Migration                              |     |
|       | 5.4      |             | l Exposure Pathways                               |     |
|       | 5.5      |             | tial Pathways                                     |     |
| 6.    | Samp     | ling and A  | Analytical Plan                                   | 11  |
|       | 6.1      | Data Qua    | ality Objectives                                  | 11  |
|       |          | 6.1.1       | State the Problem                                 | 11  |
|       |          | 6.1.2       | Identify the Decision                             | 11  |
|       |          | 6.1.3       | Identify Inputs to the Decision                   |     |
|       |          | 6.1.4       | Define the Study Boundaries                       | 12  |
|       |          | 6.1.5       | Develop a Decision Rule                           | 12  |
|       |          |             |                                                   |     |



|     |        | 6.1.6                                      | Specific Limits on Decision Errors | 13 |  |  |  |
|-----|--------|--------------------------------------------|------------------------------------|----|--|--|--|
|     | 6.2    | Optimise                                   | e the Design of Obtaining Data     | 14 |  |  |  |
|     |        | 6.2.1                                      | Sampling Methodology               | 15 |  |  |  |
|     |        | 6.2.2                                      | Laboratory Analysis                | 16 |  |  |  |
| 7.  | Asses  | sment Cr                                   | iteria                             | 17 |  |  |  |
|     | 7.1    | Regulato                                   | 17                                 |    |  |  |  |
|     | 7.2    | Assessment Criteria – Soil                 |                                    |    |  |  |  |
| 8.  | Quali  | Quality Assurance and Quality Control      |                                    |    |  |  |  |
|     | 8.1    | QA/QC Conclusion                           |                                    |    |  |  |  |
| 9.  | Resul  | Results                                    |                                    |    |  |  |  |
|     | 9.1    | Observa                                    | tions                              | 19 |  |  |  |
|     | 9.2    | Analytical Results                         |                                    |    |  |  |  |
|     |        | 9.2.1                                      | Heavy Metals                       | 19 |  |  |  |
|     |        | 9.2.2                                      | PAHs                               | 20 |  |  |  |
|     |        | 9.2.3                                      | TRH/BTEX and VOCs                  | 20 |  |  |  |
|     |        | 9.2.4                                      | OCPs and PCBs                      | 20 |  |  |  |
|     |        | 9.2.1                                      | Asbestos                           | 20 |  |  |  |
| 10. | Site C | Characteri                                 | isation                            | 21 |  |  |  |
|     | 10.1   | Potential Risks to Future Onsite Receptors |                                    |    |  |  |  |
|     | 10.2   | Background Soil Concentrations             |                                    |    |  |  |  |
|     | 10.3   | 3 Chemical Mixtures                        |                                    |    |  |  |  |
|     | 10.4   | 4 Aesthetic Issues                         |                                    |    |  |  |  |
|     | 10.5   | 5 Potential Migration of Contaminants      |                                    |    |  |  |  |
|     | 10.6   | Site Management Strategy                   |                                    |    |  |  |  |
| 11. | Conc   | lusions                                    |                                    | 23 |  |  |  |
| 12. | Limita | ations                                     |                                    | 24 |  |  |  |

### **List of Tables**

Table A – Soil Analytical Results DP (2018)

# **List of Figures**

| Figure 1 | Site Location |
|----------|---------------|
| Figure 2 | Site Layout   |

Figure 3 Soil Sampling Locations

Figure 4 Soil Exceedances (DP 2018 & JBS&G 2019)



### **Appendices**

Appendix A Photographic Log

Appendix B PFAS Register

Appendix C Loose-Fill Asbestos Insulation Register

Appendix D Borelogs

Appendix E PID Calibration and Decontamination Field Forms

Appendix F QAQC Assessment

Appendix G Statistical Assessment of B(a)P

Appendix H Laboratory Documentation



## **Abbreviations**

| Term     | Definition                                              |
|----------|---------------------------------------------------------|
| ACM      | Asbestos Containing Materials                           |
| AF/FA    | Asbestos fines and friable asbestos                     |
| AEC      | Areas of Environmental Concern                          |
| AHD      | Australian Height Datum                                 |
| ASRIS    | Australian Soil Resource Information System             |
| ASS      | Acid Sulfate Soils                                      |
| BTEXN    | Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene |
| CLM Act  | NSW Contaminated Land Management Act 1997               |
| COC      | Chain of Custody                                        |
| COPC     | Contaminants of Potential Concern                       |
| CSM      | Conceptual Site Model                                   |
| DBYD     | Dial Before You Dig                                     |
| DP       | Deposited Plan                                          |
| DQI      | Data Quality Indicators                                 |
| DQO      | Data Quality Objectives                                 |
| DSI      | Detailed Site Investigation                             |
| EIL      | Ecological Investigation Levels                         |
| EPA      | NSW Environment Protection Authority                    |
| ESA      | Environmental Site Assessment                           |
| ESLs     | Ecological Screening Levels                             |
| ha       | Hectare                                                 |
| HILs     | Health Investigation Levels                             |
| HSLs     | Health Screening Levels                                 |
| JBS&G    | JBS&G Australia Pty Ltd                                 |
| JRA      | Job Risk Assessment                                     |
| LEP      | Local Environment Plan                                  |
| LOR      | Limit of Reporting                                      |
| NATA     | National Accreditation Testing Authority                |
| ОСР      | Organochlorine Pesticides                               |
| OPP      | Organophosphorous Pesticides                            |
| PAH      | Polycyclic Aromatic Hydrocarbons                        |
| PCB      | Polychlorinated Biphenyls                               |
| PID      | Photoionisation Detector                                |
| POEO Act | NSW Protection of the Environment Operations Act 1997   |
| PSI      | Preliminary Site Investigation                          |
| QA/QC    | Quality Assurance/Quality Control                       |
| RPD      | Relative Percentage Difference                          |
| SAQP     | Sampling Analytical and Quality Plan                    |
| SWMS     | Safe Work Method Statement                              |
| TRH      | Total Recoverable Hydrocarbons                          |
| UCL      | Upper Confidence Limit                                  |
| VOC      | Volatile Organic Compounds                              |



#### **Executive Summary**

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of Johnstaff, to complete a Detailed Site Investigation (DSI) for the Chatswood High School site, located at 24-58 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 725204, Lots 20, 21, 22, 23 in Section 6 DP2273, Lots 18, 19, 20, 21 in Section 7 DP2273, and Lots 16, 17, 18, 19, 20 in Section 8 DP2273. The site covers an area of approximately 5.9 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood Public School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (Chatswood High School) will be upgraded and combine kindergarten to year 6 and years 7 to 9, whilst the Chatswood Public School site will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The DSI documented herein relates to the current Chatswood High School site and is required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483. Specifically, the DSI seeks to address SEARs Key Issue 13 Contamination, being, to assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with *State Environmental Planning Policy 55 – Remediation of Land* (SEPP 55).

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the land for use as a primary and secondary school, or, to make recommendations to enable such conclusions.

Data utilised for the assessment of site suitability as documented herein were collected over a five-day period from the 21<sup>st</sup> to 25<sup>th</sup> January. JBS&G undertook an intrusive investigation which advanced 30 soil boreholes across the site utilising a combination of judgemental and systematic sampling regimes consistent with EPA (1995) guidelines. Analytical results were assessed alongside those of fifteen sample locations available in a previously completed preliminary site assessment (PSI) presented by Douglas Partners (DP 2018<sup>1</sup>).

All locations with the exception of BH25 were observed to contain fill materials between the ground surface (or below hardstand) to a maximum depth of 2.2 m below ground surface (m bgs) (BH15) and generally comprised a dark brown gravelly silty sand with gravel inclusions. Some locations exhibited minor inclusions of concrete, brick, glass, ash and metal fragments. No hydrocarbon odours or staining were observed at any of the sample locations or during site inspections. Inspection of fill materials did not identify fragments of suspected asbestos containing materials (ACM). One fragment of asbestos containing material (ACM) was identified on the ground surface approximately 5 m west of BH13. This fragment was collected and dispatched to the laboratory for analysis. No other fragments of ACM were observed during the investigation.

The natural material underlying fill materials typically comprised a grey - brown (with brown and yellow mottling) silty clay overlying a grey weathered laminated shale.

The site's analytical data set was compared against the most conservative land use scenario, pursuant to the *National Environmental Protection Measure (NEPM)* (NEPC 2013) – residential with

Report on Preliminary Site (Contamination) Investigation with Limited Sampling: Proposed Redevelopment Chatswood Public School, High School and Public School "Bush Campus", Chatswood, Douglas Partners 2018 (DP 2018)



accessible soils, which is equally protective of human and ecological health for preschool and primary school land use scenarios.

The analytical data indicated that materials from the site were below the applicable health based criteria, with only at two locations reported in excess of the adopted site criteria - as reported in DP (2018) – BH11-0-0.1 (5.6 mg/kg) and BH13-0-0.1 (3.2 mg/kg). JBS&G note that both of these locations are in areas of the site that are covered by asphalt on the ground surface and is likely to be the source of elevated PAHs within these samples. As noted in NEPC (2013), where B(a)P exists in bitumen it is relatively immobile an does not represent a significant health risk. Furthermore, statistical analysis of the site's data set, pursuant to NEPC (2013), indicated that the 95% upper confidence limit (UCL) of the mean was below the adopted land use criteria and therefore the reported concentration was assessed as not presenting an unacceptable risk to future users of the site.

In relation to ecological considerations, concentrations of COPCs were generally reported below the adopted ecological criteria (ESLs/EILs), with the exception of the heavy metals nickel and zinc, reported in excess of the EIL at 6 and 9 locations, respectively, petroleum hydrocarbons at three locations, and B(a)P at four locations.

A review of the encountered soils which were largely reworked natural materials and noting the site's geological setting indicate that the reported concentrations of the heavy metals of nickel and zinc are likely attributed to the parent material of the site's soils, likely to be shales from the Wianamatta Group that are naturally enriched in nickel and zinc.

In relation to the reported concentrations of B(a)P and TRH reported in excess of the adopted ecological screening levels, observations made during the completion of field works indicated vegetation in proximity to sampling locations that reported elevated levels of these compounds, and across the site in general, appeared to healthy, with no visual indicators of vegetative stress, indicating that soil processes responsible for ecological health did not appear to be inhibited. Furthermore, NEPC (2013) notes that high molecular weight PAHs such as B(a)P are not readily taken up by plants, and as such are unlikely to pose an unacceptable risk to plant growth.

Based on the scope of works undertaken, and in accordance with the limitations in **Section 12**, JBS&G consider that the site is suitable for the development and intended use as a primary and secondary school facility.

JBS&G recommend the formulation of an Unexpected Finds Protocol (UFP) for the site to address any unexpected finds that may be encountered during redevelopment of the site.



#### 1. Introduction

#### 1.1 Background

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of John Staff, to complete a Detailed Site Investigation (DSI) for the Chatswood High School site, located at 24-58 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 725204, Lots 20, 21, 22, 23 in Section 6 DP2273, Lots 18, 19, 20, 21 in Section 7 DP2273, and Lots 16, 17, 18, 19, 20 in Section 8 DP2273. The site covers an area of approximately 5.9 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood Public School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (Chatswood High School) will be upgraded and combine kindergarten to year 6 and years 7 to 9, whilst the Chatswood Public School site, subject of a separate DSI report, will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The report documented herein relates to the current Chatswood High School site and will assess site suitability, as required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483, specifically relating to SEARs Key Issue 13 Contamination, being, to:

 Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.

A Preliminary Site Investigation with limited soil sampling was undertaken at the site by Douglas Partners in 2018 (DP 2018<sup>2</sup>), the findings of which recommend a detailed investigation to assess the suitability of the site for the proposed land uses. The DSI presented herein has been developed in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA), including the *National Environmental Protection Council* (NEPC) (2013) *National Environmental Protection (Assessment of Site Contamination) Measure* (NEPM), and relevant Australian Standards.

#### 1.2 Objectives

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the site for the proposed land use, or, to make recommendations to enable such conclusions.

#### 1.3 Scope of Works

The scope of works for the assessment included:

- A desktop review of available site history information, including:
  - Review of previously completed environmental assessment and geotechnical reports relating to the site and surrounding area, as provided by the client;
- A detailed site inspection to identify potential AECs;

Report on Preliminary Site (Contamination) Investigation with Limited Sampling: Proposed Redevelopment Chatswood Public School, High School and Public School "Bush Campus", Chatswood, Douglas Partners 2018 (DP 2018)



- Development and documentation of a conceptual site model (CSM) based on the available information;
- Development and documentation of the SAQP, with data quality objectives (DQOs) for the DSI in accordance with relevant EPA guidelines;
- Implementation of an intrusive investigation program based on the SAQP presented in this report;
- Analysis of collected soil samples at two NATA accredited laboratories: Eurofins MGT and Envirolab;
- Comparison of collected data against NSW EPA published / endorsed investigation criteria to facilitate an assessment of land use suitability; and
- Preparation of a DSI report in general accordance with relevant EPA guidelines.



### 2. Site Conditions and Surrounding Environment

#### 2.1 Site Identification

The location of the site is shown in **Figure 1**, and the current layout is shown in **Figure 2**. The site details are summarised in **Table 2.1**.

Table 2.1: Site Details

|                                           | Lot 1, DP 725204                                     |
|-------------------------------------------|------------------------------------------------------|
| Lot / DP Number                           | Lots 20, 21, 22, 23 Section 6, DP2273                |
| Lot / DP Number                           | Lots 18, 19, 20, 21 Section 7, DP2273                |
|                                           | Lots 16, 17, 18, 19, 20 Section 8, DP2273            |
| Street Address                            | 24 – 58 Centennial Avenue, Chatswood                 |
| Local Government Authority                | Willoughby City Council                              |
|                                           | Approximate centre of site:                          |
| Site Area                                 | 331070.397 E                                         |
|                                           | 6258544.008 N (GDA94-MGA56)                          |
| Current Zoning                            | SP2 Infrastructure (Educational Establishment)       |
| Current Zoning                            | E2 Environmental Conservation (south western corner) |
| Geographic Coordinates                    | Approximately 5.1 ha                                 |
| Previous Land Use                         | High school                                          |
| Current Land Use                          | High school                                          |
| Potential Future Use and Permissible Uses | Primary and high school                              |

#### 2.2 Site Description

A detailed site inspection was undertaken on 9 January 2019, and field works were completed on 21, 22, 23,24 and 25 January 2019, by two of JBS&G's trained and experienced field scientists. Site observations are discussed below, and a photographic log is included as **Appendix A**.

The site comprises a rectangular parcel of land of approximately 5.1 hectares, measuring approximately 230 m x 280 m. The site is secured at its perimeter with fencing and multiple access points to the site are provided via locked gates. Two access points are located on the eastern boundary (Oliver Road and Freeman Road), on the northern and north-western boundary of the site (Centennial Avenue), and on the southern boundary of the site via Eddy Road. Vehicular access is also provided via an entrance located south-west of the site on De Villiers Avenue which leads to a car park located in the southwestern portion of the site. The site generally slopes in a south/south westerly direction, from Centennial Avenue towards Eddy Road.

The site is generally split into two halves, with the northern half of the site containing a majority of buildings and hardstand areas of the site. The southern half of the site largely comprises recreational areas, including a synthetically turfed sports field, basketball courts, an asphalt carpark and a corridor of dense vegetation at the southern boundary of the site – Eddy Rd.

Concrete and asphalt hardstand covered all ground surfaces between the various buildings and demountables within the northern portion of the site, with purpose-built planter boxes present throughout containing soils, mulch, and plants. The site layout is shown in **Figure 2**.

#### 2.3 Surrounding Land Use

Surrounding land-uses at the time of site inspection are described following:

- North Centennial Avenue forms the northern boundary of the site with residential dwellings present further north;
- South Eddy Road forms the southern boundary of the site, with residential dwellings
  present further south. JBS&G note that a review of aerial photography indicates that a Caltex
  Service Station is located approximately 400 m south east of the site on the corner of
  Pacific Highway and Moriarty Road;



- East high density residential dwellings of up to 6 storeys share the eastern boundary of the site. Further to the east exists the Pacific Highway; and
- West The western boundary of the site was formed by Dardanelles Road, adjacent to residential dwellings. Ferndale Park and Swaines Creek are located further west.

#### 2.4 Environmental Setting

#### 2.4.1 Topography

A review of topographical information available on SIX Maps indicated the site's relief is approximately 20m – with the elevation of the northern boundary approximately 95 m Australian Height Datum (m AHD), and approximately 75 m AHD at the southern boundary.

The site appears to have undergone cut and fill activities based on observations made during the site inspection.

#### 2.4.2 Geology & Soil

A review of the Soil Landscapes of the Sydney 1:100,000 Geological Series Sheet 9130 Sheet (1983<sup>3</sup>) indicates the site and surrounds are underlain by the Mesozoic Ashfield Shale of the Wianamatta Group, comprising dark grey to black marine-deposited shale.

Reference to the online ESPADE tool hosted by the NSW Office of Environment and Heritage (OEH 2018<sup>4</sup>) indicated the site is underlain by the Blacktown Soil Landscape Group. These soils comprise shallow to moderately deep (<100 cm) red and brown podzolic soils in well-drained areas, and deep (150-300 cm) yellow podzolic soils and soloths on lower slopes and poorly drained areas. Limitations of this group include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.

DP (2018) identified fill material of various consistency and origin in boreholes advanced at the site. A large portion of filling encountered was variably compacted predominantly silty clay material with carious inclusions, which was observed to have "similar classification to the natural clay present at the site and in some instances was hard to distinguish from natural clays" (DP 2018). Natural silty clays were observed overlying shale bedrock at a majority of locations (DP 2018).

#### 2.4.3 Acid Sulfate Soils

A review of the *Acid Sulfate Soil Risk Map for Botany Bay*<sup>5</sup> indicates that the site is located in an area of no-known occurrences of ASS.

Based on observations made during the intrusive investigation across the site, sediments typical of potential and actual ASS were not observed (i.e. absence of grey, organic rich, hydrogen sulphide odour etc) in the lithological profile.

The Section 10.7 Planning Certificate (presented in DP, 2018) indicates that the site does not have the likelihood of occurrence of acid sulfate soils. This is consistent with the site's topographical and geological setting.

#### 2.4.4 Hydrology

Precipitation to fall onto buildings and paved areas will flow into engineered drainage lines and the local stormwater system. Rainfall will potentially penetrate the soft ground (e.g. garden beds, unpaved areas across the school grounds) and migrate as shallow/perched groundwater towards Swaines Creek, and/or to stormwater infrastructure. It is anticipated that surface run-off will flow to

Soil Landscapes of the Sydney 1:100,000 Sheet (9130) Edition 2 (DECCW 2009)

ESAPDE, NSW Office of Environment and Heritage, http://www.environment.nsw.gov.au/eSpade2Webapp, 4 February 2018 (OEH 2018)

<sup>&</sup>lt;sup>5</sup> Acid Sulfate Soil Risk Map – Botany Bay, Edition 2, 1997. 1:25 000 Ref: 91 30S3. NSW DLWC



engineered stormwater infrastructure and towards the nearby Swaines Creek, located approximately 450 m west of the site.

#### 2.4.5 Hydrogeology

A search for registered groundwater borehole information was undertaken on Water NSW<sup>6</sup> website indicated seventeen groundwater bores within 500 m of the site (**Table 2.2**). Summary pages of groundwater bore information provided by Water NSW is presented in **Appendix B**. Fourteen of the groundwater bore summary pages provided by Water NSW did not provide information regarding standing water level (SWL) or lithological logs. As such they have not been included in this summary.

Based on the reported geology and surrounding topography it is anticipated the direction of groundwater flow is towards the west towards the Lane Cove River.

Groundwater at the site is not expected to occur within bedrock, with perched groundwater existing at interfaces of soils and underlying bedrock.

| Bore ID  | Depth<br>(mbgs) | SWL<br>(mbgs) | Distance<br>from site<br>(m) | Date<br>Installed | Use                         | Lithology                                                                                                                                   |
|----------|-----------------|---------------|------------------------------|-------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| GW029731 | 21.6            | Unknown       | 480 E                        | 01/04/1967        | Recreation<br>(Groundwater) | Clay to 6.7 m, shale to 17.98, sandstone to 21.6 m.                                                                                         |
| GW107757 | 162.6           | 25.6          | 490 E                        | 29/07/2005        | Recreation<br>(Groundwater) | Fill to 1.4 m, clay to 5.1 m, shale to 5.1 m, clay to 16.7 m, sandstone to 65.7 m, shale to 66.7 m, sandstone with shale lenses to 162.6 m. |
| GW111773 | 5.5             | Unknown       | 500 SE                       | 16/03/2012        | Monitoring                  | Concrete to 0.2 m, fill to 0.8 m, clay to 6 m.                                                                                              |

©JBS&G Australia Pty Ltd | 55579 – 120512 (Rev A)

 $<sup>^{6}</sup>$  Water NSW website accessed 16/01/2019, https://realtimedata.waternsw.com.au/



### 3. Site History

The site history has been documented in DP (2018). JBS&G's review of the site history have identified additional searches that are relevant and applicable to understanding the historical and environmental setting.

#### 3.1 EPA Per- and Poly- Fluoroalkyl Substances (PFAS) Register

A search of the EPA's PFAS register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix C**.

#### 3.2 NSW Fair Trading Loose Fill Asbestos Insulation Register

A search of the NSW Fair Trading loose fill asbestos insulation register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix D**.

#### 3.3 Summary of Site History

Based on a review of available historical records, the site appears to have been utilised for a dwelling and estate in private ownership prior to the redevelopment of the site as Chatswood High School. The site appears to have undergone redevelopment at various stages since the 1950s and is likely to have undergone cut and fill activities during these periods, as reported in DP (2018) and confirmed by observations made during the current investigation.

Based on the historical site uses, JBS&G do not consider that there are significant risks for widespread impacts across the site. Based on the range of sources and the general consistency of the historical information, it is considered that the historical assessment has an acceptable level of accuracy with respect to the potentially contaminating activities historically occurring at the site.



#### 4. Previous Investigations

#### 4.1 Preliminary Site (Contamination) Investigation (DP 2018)

Douglas Partners (DP) completed a preliminary environmental site assessment (ESA; referred to as Preliminary Site Investigation (PSI) in this report) of the Chatswood High School site in addition to assessment of the nearby Chatswood Public School. The investigation entailed a desktop review of publicly available documents pertaining to the site history, and preliminary intrusive sampling associated with the geotechnical investigation.

A review of the site's history indicated that the site was part of a residential estate before being redeveloped into a high school in the 1950s.

DP (2018) identified the following AECs at the site:

- Filling potential for filling (likely from cut and fill) activities for the purpose of levelling the site for development. Associated contaminants of potential concern (COPC) identified were TRH, BTEX, PAHs, PCBs, OCPs, OPPs, phenols and asbestos;
- Building material potentially contaminating materials that will result from demolition of buildings previously at the site. COPCs identified were asbestos, synthetic mineral fibres (SMF), PCBs, PAHs and coal tar;
- Soils and contaminants associated with surrounding land uses such as Chatswood Toyota.
   Associated COPCs identified were metals, TRH, BTEX, PAHs, PCBs, OCPs, OPPs, VOCs, phenols and asbestos.

DP (2018) undertook a limited intrusive assessment that was completed via solid flight auger and hand auger at 12 locations across the site. DP (2018) adopted the most conservative human and ecological health assessment criteria, including; health investigation level (HIL) A for non-petroleum chemical contaminants, health screening levels (HSLs) A and B for vapour intrusion, HSL A for direct contact, and management limits for TPH.

Fill materials were encountered from 0.15 m bgs to 2.1 m bgs and was variably compacted predominantly silty clay material with carious inclusions, which was observed to have "similar classification to the natural clay present at the site and in some instances was hard to distinguish from natural clays" (DP 2018). Elevated concentrations of zinc (one sample), nickel (one sample), benzo(a)pyrene (two samples), TRH >C<sub>16</sub>-C<sub>34</sub>(F3) (three samples), and BaP TEQ (one sample) were detected at isolated locations, all encountered within surface or near-surface fill material. Only one result exceeded health-based criteria (BaP TEQ at BH11 0-0.1m), in an area where asphalt may have been present. DP (2018) suggests that there is a low risk of gross or widespread contamination at the site, with some elevated metals and hydrocarbons relating to inclusions of ash and asphalt in fill. The other elevated concentrations exceeded ecological criteria only.

No groundwater was encountered at any location during the sampling event.

The report concluded that exceedances of adopted site criteria were observed and as such, remediation may be required pending results from subsequent detailed site investigations (DSIs).



#### 5. Conceptual Site Model

Based on the desktop review and observations from the site inspection, the following conceptual site model (CSM) has been developed for the site.

#### 5.1 Potential Areas of Environmental Concern

Based on the objectives of the assessment, desktop review and observations made during the site inspection, AECs and associated COPCs were identified at the site, as noted in **Table 5.1**.

Table 5.1: Areas of Environmental Concern and Associated Contaminants of Potential Concern

| Area of Environmental Concern (AEC)                                                                                                                                                   | Potentially<br>Affected Media | Contaminant of Potential Concern (COPC)                                                                                                                                                     | Risk Profile |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Fill Materials  Imported and/or reworked fill materials used to create site levels (comprising material of unknown character and/or origin)                                           | Soil                          | Heavy metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylenes (BTEX), PAHs, polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), and asbestos | Moderate     |
| The demolition of former structures at the site prior to and during the various stages of redevelopment may have resulted in cross-contamination to underlying and surrounding soils. | Soil                          | Heavy metals, TRH/BTEX, PAHs, PCBs, asbestos                                                                                                                                                | Low          |

#### 5.2 Potentially Contaminated Media

Potentially contaminated media comprise:

- Fill Materials; and
- Underlying Natural Soils.

Review of site historical information, DP (2018) and findings from the site inspection indicate that the site has historically unlikely to have involved significant contaminating historical uses. The review identified the potential for cut and fill activities to have occurred at the site. Fill materials may contain COPCs at concentrations that exceed the applicable human and ecological assessment criteria and therefore may present an unacceptable risk to human and ecological receptors for the future use of the site.

The historical review of the site layout identified several historical structures which were demolished as part of the site's redevelopment in the 1950s. Noting the age of the site's structures (ongoing since 1950s), construction of buildings at the site may have utilised hazardous building materials. JBS&G consider it unlikely that contamination to the underlying soils from these materials has occurred noting that the structures have not undergone significant refurbishment since construction.

A review of the site history did not identify point sources and/or liquid contaminants at the site that are likely to pose a significant risk for the migration of contamination to underlying natural materials and groundwater.

JBS&G consider the potential for contamination to the underlying natural lithologies/geology to be a function of the primary contamination in soil. Noting the historical and current site uses, JBS&G do not consider primary contamination in soils are likely to be in concentrations that would result in significant contamination to underlying strata.



Noting contaminants likely to exist at the site are in solid form and unlikely to be significantly leachable, contaminants within fill material and other surface soils, and the historical uses of the site, vertical migration through the fill profile into the underlying natural soils and groundwater is unlikely to have occurred.

#### 5.3 Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The propensity for contaminants to migrate is dependent on:

- The nature of the contaminants (solid/liquid/gas and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site area history review and previous investigation are generally in a solid form (e.g. heavy metals, asbestos, etc.).

Although the site is partially unsealed, dense grass and shrub cover and the predominantly paved nature of the site reduces the potential for windblown dust migration of contamination from the site, should contamination exist in surface soils.

There is a low potential for vertical migration of surface waters where hardstand pavements exhibit extensive cracking and / or along joints, and in areas of soft ground cover. Additionally, there is low potential for vertical contaminant migration from soils to shallow (perched) groundwater, if present, via infiltration. As noted above, the potential for contaminant migration to deeper groundwater is unlikely.

#### 5.4 Potential Exposure Pathways

Potential human receptors of environmental impact include future site users (school students, users of open spaces), visitors and construction/maintenance contractors engaged to work at the site who may potentially be exposed to COPCs through inhalation, direct contact and/or ingestion (children) of impacted soils.

Exposure to windblown dusts may pose a potential risk to sensitive human receptors however these are also considered unlikely given the predominantly vegetated site surfaces.

During redevelopment of the site, potential human receptors will include:

- Inhalation of potential COPC dust and migrating upwards from fill material of unknown origins; and/ or
- Potential dermal and oral contact to impacted soils as present at shallow depths and/ or accessible by future service excavations across the extent of the site; and/ or
- Surface water runoff.

The site contains areas covered by vegetation, presenting ongoing potential ecological receptors, although no vegetation stress relating to potential contamination from known AECs was observed during site inspection. Flora on site are potential receptors of shallow soil contamination if present. Possible off-site ecological receptors include potential surface water receptors (i.e. Swains Creek to the southwest of the site).

#### 5.5 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPC as either liquids or gasses.



Man-made preferential pathways may be present at the site, associated with areas of disturbed natural/fill material, service easements and stormwater/retention basins on site.

Natural preferential pathways are likely limited to natural lithological boundaries, such as between porous soils and weathered/residual bedrock, where infiltrating groundwater is vertically confined and begins to migrate laterally, and surface water drainage features.



# 6. Sampling and Analytical Plan

### 6.1 Data Quality Objectives

Data quality objectives (DQOs) are statements that define the confidence required in conclusions drawn for data produced for a project, and which must be set to realistically define and measure the quality of data needed.

DQOs have been developed for this DSI, as discussed in the following sections.

### 6.1.1 State the Problem

The site is proposed to be redeveloped for a mixed primary and high school campus providing facilities for students between the years of Kindergarten to Year 10. As such, an assessment is required to characterise potential contamination at the site, and to assess whether potential contamination from historical activities at the site may pose an unacceptable risk to future receptors for the proposed mixed primary and high school campus, or, to make recommendations to enable such conclusions to be made.

### 6.1.2 Identify the Decision

The decisions below generally follow the EPA (2017<sup>7</sup>) decision making process for assessing urban redevelopment sites:

- 1. Are there any unacceptable risks to likely future on-site receptors?
- 2. Are there any issues relating to background soil concentrations that exceed appropriate site soil criteria?
- 3. Are there any impacts of chemical mixtures?
- 4. Are there any aesthetic issues at the site?
- 5. Is there any evidence of, or potential for, migration of contaminants from the site?
- 6. Is a site management strategy required?

### 6.1.3 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- Historical site information and inspection of the site to identify and/or confirm potential AECs and COPCs at the site;
- The collection and interpretation of environmental data through collection and analysis of soil;
- Laboratory analysis of samples of potentially contaminated media for COPC; and
- Confirmation that data generated by sample analyses were of sufficient quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control (QA/QC).

Specifically, sufficient data needs to be collected from each of the identified potentially impacted media (e.g. fill material and natural soils) at the site relating to the in the identified AECs and associated COPC.

<sup>&</sup>lt;sup>7</sup> Guidelines for the NSW Site Auditor Scheme (3<sup>rd</sup> Edition). NSW Environment Protection Authority, October 2017, EPA 2017;



### 6.1.4 Define the Study Boundaries

The study boundaries are limited to cadastral site boundaries as shown on Figure 2.

The vertical extent of the soil investigation was to a maximum depth of 2.8 m bgs.

Due to the project objectives, seasonality was not assessed as part of this investigation. Data are therefore representative of the timing and duration of the current investigation and DP (2018).

### 6.1.5 Develop a Decision Rule

Analytical data was assessed against NSW EPA endorsed criteria, presented in Section 7.

Statistical analyses of the data was undertaken, where required, in accordance with relevant guidance documents. The following statistical criteria was adopted:

- The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section 6.1.2** are summarised in **Table 6.1**.

**Table 6.1 Summary of Decision Rules** 

| Decisions Required to be Made                                                           | Decision Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Are there any unacceptable risks to on-                                              | Analytical data will be compared against EPA endorsed criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Are there any unacceptable risks to on-<br>site future receptors?                       | Statistical analysis of the data will be completed, where necessary, in accordance with relevant guidance documents, as appropriate, to facilitate the decisions. The criteria in <b>Section 6</b> were adopted with respect to soil. Either: the reported concentrations were all below the Site criteria; Or: no single analyte concentration exceeded 250 % of the adopted site criterion; and the standard deviation of the results was less than 50 % of the Site criterion; And: the 95 % UCL of the average concentration for each analyte was below the adopted site criterion. If the statistical criteria stated above were satisfied, the answer to the decision was <b>No</b> . |
|                                                                                         | If the statistical criteria were not satisfied, the answer to the decision was <b>Yes</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. Are there any issues relating to the local                                           | If COPC concentrations in soils exceeded published background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| area background soil concentrations that                                                | concentrations (NEPC 2013), the answer to the decision is <b>Yes</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| exceed appropriate soil criteria?                                                       | Otherwise the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3. Are there any chemical mixtures?                                                     | Were there more than one group of contaminants present which increase the risk of harm?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | If there is, the answer to the decision is <b>Yes</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. Are there any aesthetic issues?                                                      | If there were any asbestos containing material (ACM) fragments on the ground surface, any unacceptable odours or soil discolouration, or excessive extraneous/foreign/waste materials, the answer to the decision is <b>Yes</b> . Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5. Is there any evidence of, or potential for, migration of contaminants from the site? | Based on assessment results, is there any evidence of, or the potential for, migration of unacceptable contaminant concentrations to migrate from the site?  If yes, the answer to the decisions is <b>Yes</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         | Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6. Is a site management strategy required?                                              | Is the answer to any of the above decisions Yes?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         | If yes, a site management strategy is required. If no, a site management strategy is not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



### **6.1.6** Specific Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate indicators of data quality (DQIs used to assess QA/QC) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for completeness, comparability, representativeness, precision and accuracy.

The pre-determined Data Quality Indicators (DQIs) established for the project are discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters), and are shown in **Table 6.2**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory
  data that are generated during this study is a measure of the closeness of the analytical
  results obtained by a method to the 'true' value. Accuracy is assessed by reference to the
  analytical results of laboratory control samples, laboratory spikes and analyses against
  reference standards.
- Representativeness —expresses the degree which sample data accurately and precisely
  represent a characteristic of a population or an environmental condition.
   Representativeness is achieved by collecting samples on a representative basis across the
  site, and by using an adequate number of sample locations to characterise the site to the
  required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted criteria.

If any of the DQIs are not met, further assessment of the data set is required to determine whether the non-conformance has significant effects on the usefulness of the data. Corrective action to correct an adverse impact on the reliability of the dataset may include, but is not limited to, the request of further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data.



**Table 6.2: Summary of Data Quality Indicators** 

| Data Quality Indicators                                             | Frequency           | Data Quality Criteria                     |
|---------------------------------------------------------------------|---------------------|-------------------------------------------|
| Precision                                                           |                     |                                           |
| Duplicates (intra-laboratory)                                       | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Triplicates (inter-laboratory)                                      | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Laboratory Duplicates                                               | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Accuracy                                                            |                     |                                           |
| Surrogate spikes                                                    | All organic samples | 70-130% recovery                          |
|                                                                     | Phenols             | 30-130% recovery                          |
| Laboratory control samples                                          | 1 per lab batch     | 70-130% recovery                          |
| Matrix spikes                                                       | 1 per lab batch     | 70-130% recovery (phenols 30-130%)        |
| Representativeness                                                  |                     |                                           |
| Sampling appropriate for media and analytes                         | All samples         | _2                                        |
| Samples extracted and analysed within holding times.                | -                   | Organics (14 days), inorganics (6 months) |
| Laboratory Blanks                                                   | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip blanks                                                         | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip spike                                                          | 1 per lab batch     | 70-130% recovery                          |
| Storage blank                                                       | 1 per lab batch     | <lor< td=""></lor<>                       |
| Rinsate sample                                                      | 1 per sampling      | <lor< td=""></lor<>                       |
| '                                                                   | event/media         |                                           |
| Comparability                                                       |                     |                                           |
| Standard operating procedures for sample collection & handling      | All Samples         | All Samples                               |
| Standard analytical methods used for all analyses                   | All Samples         | NATA accreditation                        |
| Consistent field conditions, sampling staff and laboratory analysis | All Samples         | All samples <sup>2</sup>                  |
| Limits of reporting appropriate and consistent                      | All Samples         | All samples <sup>2</sup>                  |
| Completeness                                                        |                     |                                           |
| Sample description and Chain of Custody (COCs)                      | All Samples         | All samples <sup>2</sup>                  |
| completed and appropriate                                           |                     |                                           |
| Appropriate documentation                                           | All Samples         | All samples <sup>2</sup>                  |
| Satisfactory frequency and result for QC samples                    | ·                   | 95% compliance                            |
| Data from critical samples is considered valid                      | -                   | Critical samples valid                    |
| Sensitivity                                                         |                     |                                           |
| Analytical methods and limits of recovery appropriate for           | All samples         | LOR<= site assessment criteria            |

<sup>&</sup>lt;sup>1</sup> If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment was made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

### 6.2 Optimise the Design of Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995<sup>8</sup>), including judgemental, random, systematic and stratified sampling patterns.

### **Soil Investigation**

For a site of approximately 5.1 ha, Table A of NSW EPA (2012) recommend a minimum of 55 soil sampling locations. However, noting DP (2018) suggests that there is a low risk of gross or widespread contamination at the site, with some elevated metals and hydrocarbons relating to inclusions of ash and asphalt in fill, and the potential for asbestos. No point sources such as underground storage tanks (USTs) were reported. Filling reported appears to be predominantly consistent with reworking of excavated surficial natural soil/rock materials in some areas, rather

<sup>&</sup>lt;sup>2</sup> A qualitative assessment of compliance with standard procedures and appropriate sample collection methods was completed during the DQI compliance assessment.

<sup>&</sup>lt;sup>8</sup> Contaminated Sites: Sampling Design Guidelines. NSW EPA 1995 (EPA 1995)



than importation. Review of historical aerial imagery provided by DP (2018) indicate that the site is unlikely to have been subject to high-risk contaminating activities.

As such, JBS&G undertook a comprehensive soil investigation at the site which involved the advancement of 30 boreholes utilising a combination of judgemental and systematic sampling regimes. The sample locations advanced by JBS&G were in addition to the 15 previously advanced by Douglas Partners, reported in DP (2018). JBS&G note that this is slightly less than Table A of NSW EPA (1995), however considering the site's historical an environmental setting, this is considered suitably robust to draw conclusions regarding the site's suitability.

Systematic sampling locations were generally advanced across the accessible site area, with the exception of the newly installed sports field (synthetic turf area in south eastern portion of the site) to assess more widespread soil contamination.

Soil sampling locations, including those from DP (2018), are shown in Figure 3.

### 6.2.1 Sampling Methodology

### 6.2.1.1 Soil Sampling Methodology

Soil sampling was completed utilising an excavator equipped with an auger or via manual excavation utilising a hand auger.

Soil samples were generally collected at surface (0-0.15 m) or directly underneath hardstand pavement, 0.5 m and then at 0.5 m intervals to a maximum depth of 2.8 m bgs (BH15) or a minimum of 0.5 m into natural material (or prior refusal), whichever was the shallower. Where physical evidence of potential contamination was identified during the works, sampling locations were extended to vertically delineate contamination, where practicable. Following shallow refusal at 0.3 m bgs, BH02 was reattempted (BH02a) within proximity. During the collection of soil samples at all locations, features such as seepage, discolouration, staining, odours and other indicators of contamination, if present, were noted on borelogs, provided in **Appendix D**.

Collected samples were immediately transferred to laboratory supplied sample jars and bags. The sample jars were then transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Based upon field observations, selected samples were analysed in accordance with the laboratory schedule (**Table 6.2**).

JBS&G note that not all soil samples collected were analysed. All samples will remain at the primary laboratory for a period of two months from the date of sampling. This will allow future analysis to be completed in the event that further information is required to characterise site conditions, provided that proposed analytes remain within technical holding times.

### **6.2.1.2 Field PID Screening**

During site works, sufficient sample material was collected to allow for field testing using a photo-ionisation detector (PID) and laboratory analyses to assess the potential presence of VOCs including petroleum hydrocarbons. Samples obtained for PID screening were placed in a sealed plastic bag for approximately 2 minutes to equilibrate, prior to a PID being attached to the bag. Readings were then monitored for a period of approximately 30 seconds or until values stabilised and the stabilise/highest reading recorded on field logs. The PID was calibrated prior to the commencement of field works and then check readings were completed on a daily basis during the field program using suitable calibration gas (isobutylene – 100 ppm). Field calibration forms are provided in **Appendix E**. PID results are provided in the logs in **Appendix D**.

### 6.2.1.3 Duplicate and Triplicate Sample Preparation

At selected sample points, sufficient soil was collected to provide primary, blind (duplicate intralaboratory), and split (triplicate inter-laboratory) replicate samples. In order to minimise the loss of



potential volatiles, soil samples were not homogenised. Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

### 6.2.1.4 Equipment Decontamination

Where sampling equipment was required to be reused, i.e. augers, appropriate decontamination procedures, including brushing and rinsing augers, if required, in accordance with standard JBS&G operating procedures were adhered to. Decontamination forms are provided in **Appendix E**.

New nitrile gloves were utilised for the collection of each soil sample to avoid cross contamination between samples and locations.

### 6.2.2 Laboratory Analysis

JBS&G contracted Eurofins | MGT Australia (Eurofins) at Lane Cove, NSW, as the primary laboratory for the required analyses. Envirolab Services Pty Ltd (Envirolab) in Chatswood, NSW, were contracted for analysis of triplicate samples. Eurofins and Envirolab are NATA registered for the required analyses. In addition, the laboratory was required to meet JBS&G internal QA/QC requirements. Laboratory analysis of samples was conducted as summarised in **Table 6.2**.

**Table 6.1: Sampling and Analytical Program** 

| Sample Type | Number of Sample Locations | Analyses (excluding QA/QC)                     |
|-------------|----------------------------|------------------------------------------------|
| Soil        | 30 boreholes               | Asbestos in soil (500 mL per NEPM): 30 samples |
|             |                            | Metals (x8) and PAHs: 30 samples               |
|             |                            | TRH, BTEX: 5 samples                           |
|             |                            | OCPs: 5 samples                                |
|             |                            | PCBs: 5 samples                                |

In addition to the above primary analyses, to address the DQIs, field duplicate and triplicate soil samples were analysed at a rate of at least 1/20 primary samples. A rinsate sample was collected from non-disposable soil sampling equipment, and trip blank and trip spike samples will be submitted with each batch of samples.



### 7. Assessment Criteria

### 7.1 Regulatory and Technical Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Measure 2013 (as amended 2013). National Environment Protection Council (NEPC 2013);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW EPA, 1997 (OEH 2011);
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 3<sup>rd</sup> Edition. NSW EPA, 2017 (EPA 2017); and
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997. NSW EPA 2015 (EPA 2015).

### 7.2 Assessment Criteria – Soil

The NEPC (2013) NEPM provides risk-based investigation and screening levels for selected organic and inorganic chemicals in soils. Different levels are provided for a variety of exposure settings including residential, open-space / parks / recreational and commercial / industrial land uses.

It is understood that the site is proposed to be redeveloped to incorporate educational facilities for primary and high school aged students. In accordance with the applicable land uses outlined in NEPC (2013) and the respective risk assessment assumptions utilised in their formulation, analytical data from previous (DP 2018) investigations and the current investigation will be compared against the following human health and ecological investigation and screening levels (HILs/HSLs and EILs/ESLs):

- HIL-A and HSL-A: Residential with accessible soils (includes preschools and primary schools);
- EIL & ESL urban residential and public open space (coarse soil); and
- In addition to the above, aesthetic considerations as per NEPC (2013) will be considered during the current investigation.



# 8. Quality Assurance and Quality Control

Detailed discussion of the QAQC assessment of the dataset is included in Appendix F.

### 8.1 QA/QC Conclusion

The field sampling and handling procedures across the site produced QA/QC results which indicate that data collected is of an acceptable quality for the DSI objectives.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data are of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



### 9. Results

Soil sampling locations are shown on **Figure 3** and a summary of soil analytical data with comparison to the adopted site criteria is presented in **Table A**. Detailed laboratory reports and chain of custody documentation is provided in **Appendix H**. Borehole logs are presented in **Appendix D**.

### 9.1 Observations

A photographic log documenting key observations made during the current investigation is provided in **Appendix A**.

A total of 30 soil sampling locations were advanced across the site by JBS&G. All locations except BH25 were observed to contain fill materials between the ground surface (or below hardstand) to a maximum depth of 2.2 m bgs (BH15). Fill materials generally comprised a grey or brown gravelly silty sand with gravel inclusions and some minor inclusions of concrete, brick, glass, ash, geofabric and metal fragments.

No hydrocarbon odours or staining was observed at any of the sample locations or during site inspections. This was corroborated by measurements of volatile compounds as measured utilising a PID, with low concentrations of volatile compounds between 0.6 ppm (BH02) and 9.8 ppm (BH04).

Inspection of fill materials did not identify fragments of suspected asbestos containing materials (ACM). JBS&G did however, identify a fragment of ACM on the ground surface in proximity (circa 5m) to BH15. Laboratory analysis confirmed the fragment to contain chrysotile and amosite asbestos fibres. The fragment of ACM was collected by JBS&G and dispatched forto the laboratory for analysis. No other visible ACM was observed during the investigation

Natural material underlying the site typically comprised a grey - brown (with brown and yellow mottling) silty clay overlying a grey weathered laminated shale.

It is further noted that no indicators of potential acid sulphate soils were observed during intrusive works at the site.

### 9.2 Analytical Results

Full copies of the laboratory documentation are provided in **Attachment L**. Summarised laboratory results from JBS&G 2019 are presented in **Table A**. Analytical data from DP (2018) are presented in the **Table** section of this report and have been included in the sections below for completeness.

### 9.2.1 Heavy Metals

All individual heavy metals concentrations were reported at levels less than the adopted site assessment criteria for human health.

In relation to ecological criteria, the following exceedances are reported:

- EIL Urban Residential: Nickel limit of 30 mg/kg
  - BH03\_0.4-0.5 97 mg/kg;
  - o BH18 0.7-0.8 41 mg/kg;
  - BH29\_0-0.15 (Primary) 44 mg/kg (highest of duplicate pairs);
  - BH8 / 0-0.1 m (DP 2018) 46 mg/kg;
- EIL Urban Residential: Zinc limit of 70 mg/kg
  - BH01\_0-0.15 88 mg/kg;
  - BH02A\_0-0.15 71 mg/kg;
  - BH08\_0-0.15 100 mg/kg;



- BH10\_1-1.1 690 mg/kg;
- BH11\_0-0.15 150 mg/kg;
- BH12\_0.4-0.5 77 mg/kg;
- o BH14 0-0.15 70 mg/kg;
- BH21\_0-0.15 160 mg/kg; and
- BH1 / 0.5-0.6 m (DP 2018) 490 mg/kg.

### 9.2.2 PAHs

Total PAH and Benzo(a)pyrene (B(a)P) TEQ values for analysed samples were reported at concentrations less than the adopted assessment criteria, with the following exceptions:

- HIL A Residential with accessible soil: B(a)P TEQ limit of 3 mg/kg
  - o BH11 / 0.0-0.1 m (DP 2018) 5.6 mg/kg
  - BH13 / 0.0-0.1 located within Chatswood Public School Bush Campus (DP 2018) 3.2 mg/kg and 3.4 mg/kg
- ESL Urban Residential and Public Open Space, Coarse Soil: B(a)P limit of 0.7 mg/kg
  - BH01\_0-0.15 1 mg/kg
  - o BH4 / 0-0.1 m (DP 2018) 0.73 mg/kg
  - o BH11 / 0.0-0.1 m (DP 2018) 3.9 mg/kg
  - BH13 / 0.0-0.1 located within Chatswood Public School Bush Campus (DP 2018) 2.2 mg.kg and 2.3 mg/kg

### 9.2.3 TRH/BTEX and VOCs

Concentrations of all TRH, BTEX and VOCs were reported below the adopted site assessment criteria in analysed soil samples with the following exceptions:

- ESL Urban Residential and Public Open Space, Coarse Soil TRH >C16-C34 (F3) limit of 300 mg/kg:
  - BH10-0.05-0.15 (duplicate) 440 mg/kg;
  - o BH8 / 0-0.1 m (DP2018) 600 mg/kg
  - BH9 / 0.2-0.3 m (DP2018) 550 mg/kg
  - o BH12 / 0-0.1 m (DP2018) 530 mg/kg

### 9.2.4 OCPs and PCBs

Concentrations of OCP and PCB compounds were reported below the adopted health and ecological assessment criteria for all analysed soil samples.

### 9.2.1 Asbestos

No Asbestos Fines or Fibrous Asbestos (AF/FA) were reported above the health-based assessment criterial or laboratory limit of detection for all samples submitted for analysis.

One fragment of ACM collected from the ground surface in proximity to BH13 (BH13-FRAG) was confirmed to contain chrysotile and amosite asbestos fibres. This fragment was removed for analysis. No other fragments of ACM were observed in proximity to the collected sample. In addition, no other fragments of ACM were observed within fill materials or on the ground surface during the completion of the field works.



### 10. Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017) and discussed in **Section 6.1.2**, the decisions required to be made are discussed below.

### 10.1 Potential Risks to Future Onsite Receptors

The following discussion relates to the site's data set, and includes analytical data collected from DP (2018), in addition to analytical data collected by JBS&G, as documented herein.

The assessment of site suitability is generally undertaken with consideration to the risks various compounds in the environment potentially pose to human and ecological health under one or more land use scenarios. A Tier 1 assessment of potential risk is undertaken by comparison with generic land use criteria such as published by NEPC (2013).

In consideration of the site's data set, potentially unacceptable risks to the health of human receptors at the site under the most conservative land use, pursuant to NEPC (2013), were constrained to PAHs, specifically, carcinogenic PAHS as B(a)P TEQ, reported in excess of the adopted site criterion at two locations, as discussed below.

Concentrations of carcinogenic PAHs (B(a)P TEQ) were reported marginally in excess of the applicable human-health land use criteria of 3 mg/kg (HIL A) at two locations, as reported in DP (2018) – BH11-0-0.1 (5.6 mg/kg) and BH13-0-0.1 (3.2 mg/kg). JBS&G note that both of these locations are in areas of the site that are covered by asphalt on the ground surface and is likely to be the source of elevated PAHs within these samples. As noted in NEPC (2013), where B(a)P exists in bitumen it is relatively immobile an does not represent a significant health risk. In accordance with provisions in NEPC (2013), statistical assessment of Tier 1 soil exceedances is permitted to assess the potential risk of the site's soils as a whole, to future receptors of the site. As such, the site data set for fill material was statistically assessed utilising the 95% upper confidence limit (UCL) for carcinogenic PAHs as B(a)P TEQ. Qualifications for the utilisation of statistical assessment are provided below:

- All samples utilised for the statistical assessment were derived from fill material which exhibited similar characteristics;
- No data point used in the statistical assessment was greater than 250 % of the HIL-A criterion for carcinogenic PAHs (3 mg/kg);
- The number of samples used in the assessment was 48 (n=48);
- The maximum value was 5.6 mg/kg and the minimum value was LOR (0.605 mg/kg half LOR); and
- The standard deviation was 0.815, less than 50 % of the HIL-A criterion.

As such, the data set was considered suitable for statistical assessment. The 95% UCL for fill material at the site was assessed as 1 mg/kg, below the HIL-A criterion of 3 mg/kg. As such, JBS&G consider that the reported concentrations of carcinogenic PAHs as B(a)P TEQ at BH11-0-0.1 and BH13-0-0.1 do not represent an unacceptable risk to human health for the proposed future use of the site. The statistical calculations are provided in **Appendix G.** 

JBS&G note that one fragment of ACM was identified in proximity to BH13 which was confirmed by the laboratory to contain chrysotile and amosite asbestos. This fragment was removed to facilitate analysis and no other ACM was observed on the site surface.

Risks to ecological health are often considered in respect to the risks various compounds within the environment pose to ecological health under a given land use scenario and exist for the protection of soil processes, plant species and organisms that inhabit or contact soils.



In relation to the site's data set, concentrations of COPCs were generally reported below the adopted ecological criteria (ESLs/EILs), with the exception of the heavy metals of nickel and zinc, reported in excess of the EIL at 6 and 9 locations, respectively, petroleum hydrocarbons at three locations, and B(a)P at four locations, as presented in **Section 9**.

A review of the site's geological setting (**Section 2**) and soil/geological profiles encountered during the completion of the DSI indicate that the reported concentrations of the heavy metals of nickel and zinc are likely attributed to the parent material of the site's soils, likely to be shales from the Wianamatta Group that are naturally enriched in nickel and zinc.

In relation to the reported concentrations of B(a)P and TRH reported in excess of the adopted ecological screening levels, observations made during the completion of field works indicated that vegetation in proximity to sampling locations that reported elevated levels of these compounds, and across the site in general, appeared to healthy, with no visual indicators of vegetative stress, indicating that soil processes responsible for ecological health did not appear to be inhibited. Furthermore, NEPC (2013) notes that high molecular weight PAHs such as B(a)P are not readily taken up by plants, and as such are unlikely to pose an unacceptable risk to plant growth.

### 10.2 Background Soil Concentrations

Soil samples collected from natural material indicated metal concentrations were below the background metal concentrations provided in Olszowy et. al. (1995) and were below the adopted site criteria (**Section 7**) (for natural materials only).

### 10.3 Chemical Mixtures

There were no potential chemical mixtures identified during the investigation that may pose an unacceptable contamination risk at the site with respect to future site users.

### 10.4 Aesthetic Issues

Little to no anthropogenic material was noted on the ground surface across the site that would present an aesthetic issue for the future use of the site. JBS&G note that the single fragment of ACM that was identified in proximity to BH13 was removed for laboratory analysis thereby removing the aesthetic risk presented. Minor inclusions of anthropogenic materials were identified within some fill materials across the site during intrusive sampling at the site, however due to the small sizes, composition and concentration within sols, these are not considered represent an unacceptable aesthetic risk for the intended land use. No unacceptable staining or odourous materials were observed.

### **10.5** Potential Migration of Contaminants

The potential for migration of contaminants offsite is considered low given the nature, magnitude, distribution and depth of identified contamination (ecological only).

### 10.6 Site Management Strategy

With consideration to the site conditions as reported herein, JBS&G consider that the site does not present unacceptable risks to human and ecological health that require further management and/or remediation to make the site suitable for ongoing use as an educational facility (senior) and future use as a mixed primary and high school. Typical unexpected find protocols can be implemented during future maintenance/development works involving ground disturbance to deal with any unidentified contamination.



## 11. Conclusions

Based on the scope of works undertaken, and in accordance with the limitations in **Section 12**, JBS&G consider that the site does not present any unacceptable risks to human and ecological health, pursuant to NEPC (2013), and is considered suitable for use as a primary and secondary school facility.

JBS&G recommend the formulation of an Unexpected Finds Protocol (UFP) for the site to address any unexpected finds that may be encountered during the redevelopment of the site.



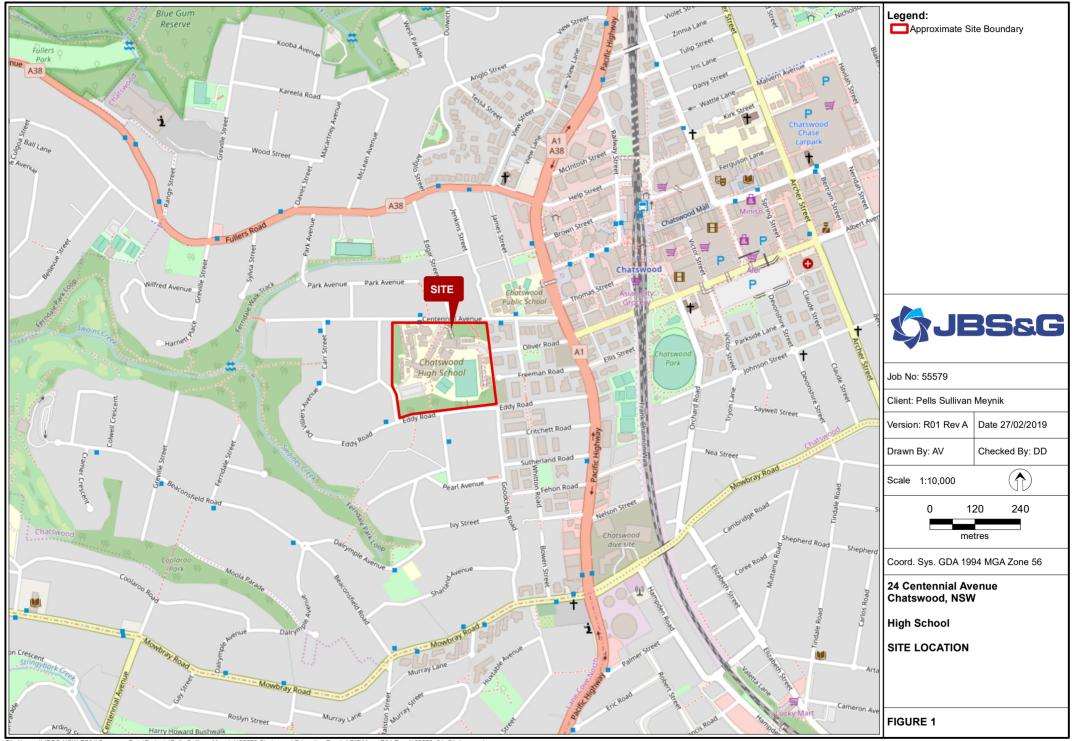
### 12. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquires.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.



# **Figures**



File Name: \\UBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R01 Rev A\55579\_01\_SiteLoc.mxd Reference: @ OpenStreetMap (and) contributors, CC-BY-SA



Legend:

Approximate Site Boundary Demountable Buildings



Job No: 55579

Client: Pells Sullivan Meynik

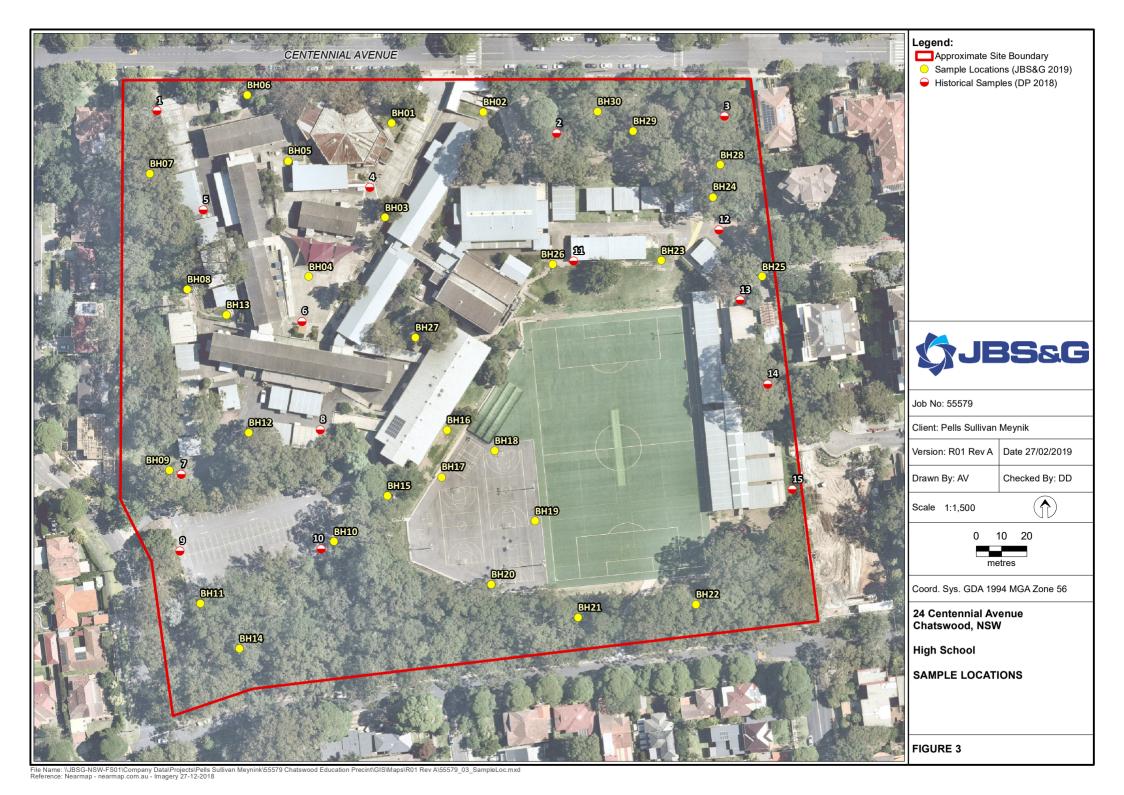
Version: R01 Rev A Date 27/02/2019

Drawn By: AV

Checked By: DD

Scale 1:1,500




Coord. Sys. GDA 1994 MGA Zone 56

24 Centennial Avenue Chatswood, NSW

High School

SITE LAYOUT

FIGURE 2





# **Tables**

### Table A - Summary Analytical Results (Soil)

Project Number: 55579 Project Name: Chatswood High School DSI



|                                         |                         |                          |                 |         | M        | etals &  | Metall   | oids        |                  |               |              |              |            |              |                |                                 |                          |                         | Poly              | cyclic A           | romatic             | Hydro        | carbons               |                      |                |          |               |              |              |         |                |                | TPHs             | (NEPC       | 1999)       |                  | $\overline{}$ | _                 | TRHs       | (NEPC 2          | 2013)                 | —               |              |
|-----------------------------------------|-------------------------|--------------------------|-----------------|---------|----------|----------|----------|-------------|------------------|---------------|--------------|--------------|------------|--------------|----------------|---------------------------------|--------------------------|-------------------------|-------------------|--------------------|---------------------|--------------|-----------------------|----------------------|----------------|----------|---------------|--------------|--------------|---------|----------------|----------------|------------------|-------------|-------------|------------------|---------------|-------------------|------------|------------------|-----------------------|-----------------|--------------|
| <b>S</b> J                              | BS                      | s.G                      | (Pal)           |         | (Total)  |          |          | organic)    |                  |               | ene          | Jene         |            | racene       | rene           | nzo(a)pyrene TEQ (lower bound)* | rene TEQ (medium bound)* | rene TEQ (upper bound)* | uoranthene        | nzo(g,h,i)perylene | oranthene           |              | anthracene            | ic PAHs as B(a)P TEQ | eu eu          |          | 3-c,d)pyrene  | ine          |              |         | ve PAHs        | ion            | ction            | action      | action      | ction (Total)    | action        | action            | action     | Fraction (Total) | less Naphthalene (F2) | tion            | BTEX (F1)    |
|                                         |                         |                          | Arsenic (Total) | Cadmium | Chromium | Copper   | Lead     | Mercury (In | Nickel           | Zinc          | Acenaphthene | Acenaphthyle | Anthracene | Benz(a)anthr | Benzo(a)pyrene | æ                               | Benzo(a)pyr              | Benzo(a)pyrene          | Benzo(b,j)fluoran | <u> </u>           | Benzo(k)fluoranthen | Chrysene     | Dibenz(a,h)anthracene | Carcinogen           | Fluoranthe     | Fluorene | Indeno(1,2,3- | Phenanthrene | PAHs (Total) | Pyrene  | Total Positive | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fra | C29-C36 Fra | C10-C36 Fraction | >C10-C16 Fi   | >C16-C34 Fraction | ×C34-C40 F | ×C10-C40         | ×C10-C16              | C6-C10 Fraction | C6-C10 less  |
|                                         |                         |                          |                 |         |          |          |          |             |                  |               |              |              |            |              |                |                                 |                          |                         |                   |                    |                     |              | mg/kg                 | mg/kg                |                |          |               |              |              |         |                |                |                  |             |             |                  |               |                   |            |                  |                       | mg/kg           |              |
| EQL                                     | rban Residential (gene  | oris)                    | 100             | 0.4     | 1        | _        |          |             |                  |               | 0.1          | 0.1          | 0.1        | 0.1          | 0.05           | 0.5                             | 0.5                      | 0.5                     | 0.5               | 0.1                | 0.5                 | 0.1          | 0.1                   |                      | 0.1            | 0.1      | 0.1           | 0.1          | 0.5          | 0.1     | 0.05           | 20             | 20               | 50          | 50          | 50               | 50            | 100               | 100        | 50               | 50                    | 20              | 20           |
|                                         |                         | ublic Open Space, Coa    |                 |         | 190**    | 60"      | 1100     |             | 30 <sup>#3</sup> | 70**          | -            |              |            |              | 0.7#5          |                                 |                          |                         |                   |                    |                     |              |                       |                      | +              | -        |               |              |              |         |                |                | _                |             |             |                  | $\vdash$      | 200#5             | 2000#5     | $\vdash$         | 120#6                 | $\vdash$        | 400#5        |
|                                         |                         | d ACM - Residential -    |                 | -       |          |          | +        |             |                  |               |              |              |            |              | 0.7            |                                 |                          |                         |                   |                    |                     |              |                       |                      | +              |          |               |              |              |         |                |                |                  |             |             |                  |               | 300               | 2800*5     |                  | 120#6                 |                 | 180**5       |
| NEPM 2013 HSL As                        | bestos in Soil - FA & A | AF - HSL                 | 1               |         |          |          |          |             |                  |               |              |              |            |              |                |                                 |                          |                         |                   |                    |                     |              |                       |                      | +              |          |               |              |              |         |                |                |                  |             |             |                  |               |                   |            |                  |                       |                 |              |
| NEPM 2013 Soil HI                       |                         |                          | 100*9           | 20      | 100*10   | 6000     | 300#11   | 40#12       | 400              | 7400          |              |              |            |              |                | 3                               | 3                        | 3                       |                   |                    |                     |              |                       | 3#14                 |                |          |               |              | 300#15       |         |                |                |                  |             |             |                  |               |                   |            |                  |                       |                 |              |
| NEPM 2013 Soil HS                       | L A & HSL B for Vapor   | ur Intrusion - Sand 0 to | o <1m           |         |          |          |          |             |                  |               |              |              |            |              |                |                                 |                          |                         |                   |                    |                     |              |                       |                      |                |          |               |              |              |         |                |                |                  |             |             |                  |               |                   |            |                  | 110#17                |                 | 45#18        |
|                                         |                         |                          |                 |         |          |          |          |             |                  |               |              |              |            |              |                |                                 |                          |                         |                   |                    |                     |              |                       |                      |                |          |               |              |              |         |                |                |                  |             |             |                  |               |                   |            |                  |                       |                 |              |
| Field_ID                                |                         | e Lab_Report_Numbe       |                 | I a.    | Laa      | 1        | 1 00     |             |                  | 00            | 0.5          | 0.5          | 0.5        |              |                |                                 |                          |                         |                   |                    |                     |              |                       |                      | 1              | 1 00     |               |              |              |         |                |                |                  | 450         | 1           | Laca             | T             | Lass              | 1 400      | T 222            |                       |                 |              |
| BH01_0-0.15<br>BH02A_0-0.15             | 21/01/2019              | 637804                   | 5.1             | <0.4    |          |          |          | <0.1        |                  | 88<br>71      |              | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      |                         | <0.5              |                    |                     | <0.5         |                       | 1.566°<br><1.21°     | 4 2.8<br>9 0.8 |          |               |              | 11.7         | 0.8     | -              | <20            | <20              | 150         | 110         | 260              | <50           | 220               | <100       | 220              | <50                   | <20             | <20          |
| BH03_0.4-0.5                            | 21/01/2019              | 637804                   | 2.8             |         |          | 32       |          | <0.1        | 97               |               |              | <0.5         | <0.5       | <0.5         |                | <0.5                            | 0.6                      |                         |                   |                    |                     | <0.5         |                       | <1.21<br><1.21       |                |          |               |              | <0.5         | <0.5    |                | -              | -                | -           | 1           | 1                | H             | H                 | H.         | H                | ٣                     | $\pm$           |              |
| BH04_0.2-0.3                            | 21/01/2019              | 637804                   | 3.9             | 1011    | _        | 22       |          | <0.1        | 8.9              |               |              | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | -              | <40            | <20              | <50         | <50         | <50              | <50           | <100              | <100       | <100             | <50                   | <40             | <40          |
| BH05_1.0-1.1                            | 21/01/2019              | 637804                   | 6.7             | _       | _        | 18       |          | <0.1        | <5               | $\overline{}$ |              | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       | <1.21                |                | -        | _             |              | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                | 1             | -                 | -          | -                | ۳                     | -               | -            |
| BH06_0.4-0.5                            | 21/01/2019              | 637804                   | 17              | <0.4    | _        | 11       | _        | <0.1        | 6.6              |               |              | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       |                      |                |          | _             |              | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                | 1             | -                 | -          | -                |                       |                 |              |
| BH07_0.5-0.6                            | 24/01/2019              | 637804                   | 11              | <0.4    | 14       | 23       | 24       | <0.1        | 5.6              | 27            | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       | <1.21                | 9 <0.5         | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | -              | -                | -           | -           |                  | 1             | T-                |            |                  |                       | -               | -            |
| BH08_0-0.15                             | 25/01/2019              | 637804                   | 6.3             | <0.4    | 15       | 27       | 40       | 0.5         | <5               | 100           | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              | <0.5               | <0.5                | <0.5         |                       |                      |                | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | <20            | <20              | <50         | <50         | <50              | <50           | <100              | <100       | <100             | <50                   | <20             | <20          |
| BH09_0.4-0.5                            | 21/01/2019              | 637804                   | 7               | <0.4    | 12       | 14       | 27       | <0.1        | 6.8              | 38            | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              | <0.5               | <0.5                | <0.5         | <0.5                  | <1.21                | 9 <0.5         | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                |               | -                 | -          | -                |                       | -               |              |
| BH10_1-1.1                              | 21/01/2019              | 637804                   | 13              | 1       | 16       | 26       | 110      | <0.1        | 7.9              | 690           | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              | <0.5               | <0.5                | <0.5         |                       |                      |                | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | <20            | <20              | <50         | <50         | <50              | <50           | <100              | <100       | <100             | <50                   | <20             | <20          |
| BH11_0-0.15                             | 21/01/2019              | 637804                   | 5               | <0.4    | 12       | 18       |          | <0.1        | 12               |               |              | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       |                      |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                |               | -                 | -          | -                | -                     | -               | -            |
| BH12_0.4-0.5                            | 21/01/2019              | 637804                   | 9.2             | <0.4    | 15       | 22       |          | <0.1        | 10               | _             |              | <0.5         | <0.5       | <0.5         |                |                                 | 0.6                      | 1.2                     |                   | <0.5               |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                |               | -                 | -          | -                |                       | -               | -            |
| BH13_0.7-0.8                            | 25/01/2019              | 637804                   | 5.7             | <0.4    | 14       | 17       | 17       | <0.1        | 6.7              | 22            | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              | <0.5               | <0.5                | <0.5         | <0.5                  | <1.21                | 9 <0.5         | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                | Ŀ             | <u>  -  </u>      | -          | ا نا             | لنب                   | -               | · .          |
| BH13-FRAG                               | 24/01/2019              | 637804                   | -               | -       | -        | -        | -        | -           |                  |               | -            | -            | -          | -            | -              | -                               | -                        | -                       | -                 |                    | -                   | -            | -                     | -                    | -              |          | -             | -            | -            | -       | -              | -              | -                | -           |             |                  | <u> </u>      |                   |            | ╨                | لنے                   |                 |              |
| BH14_0-0.15                             | 25/01/2019              | 637804                   | 6.9<br>2.9      | <0.4    | 17       | 21       | 43       | 0.1<br><0.1 | 9.7<br>6.1       | 70<br>61      |              | <0.5         | <0.5       | <0.5         |                | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5<br><0.5 |                       |                      |                | -        |               |              | <0.5         | <0.5    | -              | -              | -                | -           | i i         | i i              | ÷             | <del>  -</del> '  | i i        | <b>-</b> ∸-      | انا                   |                 |              |
| BH15_0-0.15<br>BH16_0.4-0.5             | 21/01/2019              | 637804                   | 6.6             | <0.4    | 11       | 26       | 37       | <0.1        | 5.8              |               |              | <0.5         | <0.5       | <0.5         |                |                                 | 0.6                      | 1.2                     |                   | <0.5               |                     | <0.5         |                       | <1.21 <sup>#</sup>   |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           | i i         | H÷.              | ÷             | H                 | · ·        | H                | انے                   | $\vdash$        |              |
| BH17_0.4-0.5                            | 22/01/2019              | 637804                   | 4.6             | <0.4    | 42       | 12       | 60       | <0.1        | <5               |               |              | <0.5         | <0.5       | <0.5         |                |                                 | 0.6                      |                         | <0.5              |                    |                     | <0.5         |                       | <1.21<br><1.21       |                |          |               |              | <0.5         | <0.5    |                | -              | -                | -           | 1           | 1                | H             | H                 | H.         | H                | ٣                     | $\pm$           |              |
| BH18_0.7-0.8                            | 22/01/2019              | 637804                   | 4.8             | <0.4    | 47       | 17       |          | <0.1        | 41               |               |              | <0.5         | <0.5       |              |                | <0.5                            | 0.6                      |                         | <0.5              |                    |                     | <0.5         |                       | <1.21                |                |          |               | <0.5         | <0.5         | <0.5    | -              | -              | -                | -           | -           | 1                | +             | H                 | -          | -                | $\overline{}$         | -               | <u> </u>     |
| BH19_0.4-0.5                            | 22/01/2019              | 637804                   | 2.1             | <0.4    | 12       | 10       |          | <0.1        | 11               |               |              | <0.5         | <0.5       |              | <0.5           |                                 | 0.6                      |                         |                   |                    |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           |             |                  | 1             | Η-                |            |                  | $\Box$                |                 |              |
| BH20_1-1.1                              | 22/01/2019              | 637804                   | 15              | <0.4    | 20       | 14       |          | <0.1        | <5               |               |              | <0.5         | <0.5       |              | <0.5           |                                 | 0.6                      |                         | <0.5              |                    |                     | <0.5         |                       | <1.21                |                | _        |               | <0.5         | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                | 1             | -                 | -          | -                |                       |                 |              |
| BH21_0-0.15                             | 22/01/2019              | 637804                   | 6.2             | <0.4    | 17       | 33       |          | <0.1        | 9.6              |               |              | <0.5         | <0.5       |              | <0.5           |                                 | 0.6                      | 1.2                     |                   |                    |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           | -           |                  | 1             | T-                |            |                  |                       | -               | -            |
| BH22_1-1.1                              | 22/01/2019              | 637804                   | 15              | <0.4    | 24       | 16       | 24       | <0.1        | <5               | 23            | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              | <0.5               | <0.5                | <0.5         |                       | <1.21                |                | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | -              | -                | -           |             |                  | T-            | - '               |            | -                |                       | - 1             |              |
| BH23_0.4-0.5                            | 22/01/2019              | 637804                   | 12              | <0.4    | 16       | 10       | 28       | <0.1        | <5               |               |              | <0.5         | <0.5       | <0.5         |                | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         | <0.5                  | <1.21                | 9 <0.5         | <0.5     | <0.5          |              | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                |               | -                 | -          | -                | - 1                   | - 1             |              |
| BH24_0-0.15                             | 22/01/2019              | 637804                   | 2.6             | <0.4    | 12       | 16       | 25       | <0.1        | 7.5              | -             |              | <0.5         | <0.5       | <0.5         |                |                                 | 0.6                      | 1.2                     |                   | <0.5               |                     | <0.5         | <0.5                  | <1.21                | 9 <0.5         |          |               |              | <0.5         | <0.5    | -              | <20            | <20              | <50         | 130         | 130              | <50           | 120               | 130        | 250              | <50                   | <20             | <20          |
| BH25_0.5-0.6                            | 22/01/2019              | 637804                   | 14              | <0.4    |          | 14       |          | <0.1        | 7.1              |               |              | <0.5         | <0.5       |              | <0.5           |                                 | 0.6                      | 1.2                     |                   |                    |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           | -           | -                | Ŀ             | <u>  -  </u>      | -          | النا             | لنب                   | -               |              |
| BH26_1-1.1                              | 22/01/2019              | 637804                   | 10              | <0.4    |          | 18       |          | <0.1        | <5               |               |              | <0.5         | <0.5       |              | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | -              | -              | -                | -           |             |                  | <u></u>       | <u>  -  </u>      |            | -                | لنے                   | -               | <u> </u>     |
| BH27_0.4-0.5<br>BH28 1-1.1              | 25/01/2019              | 637804                   | 7.1             | <0.4    |          | 10       |          | <0.1        | 5.2<br><5        |               |              | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       | <1.21                |                |          |               |              | <0.5         | <0.5    | $\vdash$       | -              | -                | -           | H-          | H-               | ÷             | ∸'                | H-         | ۳                | لنے                   | $\vdash$        |              |
| BH28_1-1.1<br>BH29_0-0.15               | 24/01/2019              | 637804                   | 4.5             | <0.4    |          | 23       |          | <0.1        | 44               |               |              | <0.5         | <0.5       | <0.5         |                | <0.5                            | 0.6                      | 1.2                     | <0.5              |                    |                     | <0.5         |                       | <1.21 <sup>#</sup>   |                |          |               |              | <0.5         | <0.5    | H              | -              | -                | -           | 1           | H                | +             | H:-'              | H:         | H                | ابن                   | $\vdash$        | <del>-</del> |
| BH30 0-0.15                             | 24/01/2019              | 637804                   | 8.4             | <0.4    |          | 19       |          | <0.1        | <5               |               |              | <0.5         | <0.5       |              |                |                                 | 0.6                      | 1.2                     |                   |                    |                     | <0.5         |                       | <1.21<br><1.21       |                |          |               |              | <0.5         | <0.5    | H              | -              |                  | H.          | H.          | H                | +             | H                 | H.         | H                | بنے                   |                 |              |
| QA20190121RC_0:                         |                         | 210425                   | 10              | <0.4    |          | 42       |          | <0.1        | 23               |               |              | <0.1         | <0.1       |              |                | <0.5                            | <0.5                     | <0.5                    |                   | 0.2                | - 10.5              | 0.1          |                       | 0.168                |                |          |               |              | -0.5         | 0.3     | 1.3            | <25            | <50              | 100         | 410         |                  | <50           | 380               | 500        | 880              | <50                   | <25             | <25          |
| QA20190123RC 0:                         |                         | 210425                   | <4              | <0.4    |          | 14       |          |             | 4                |               |              | <0.1         | <0.1       |              |                | <0.5                            | <0.5                     | <0.5                    | -                 | 0.1                |                     | 0.2          |                       | 0.283                |                |          |               |              | -            | 0.3     | 1.5            | <25            | <50              | <100        | <100        | -                | <50           |                   | <100       |                  | <50                   | <25             | <25          |
| QA20190124RC_0:                         | 1 24/01/2019            | 210425                   | <4              | <0.4    | 25       | 23       | 25       | <0.1        | 31               | 30            | <0.1         | <0.1         | <0.1       | 0.1          | 0.1            | <0.5                            | <0.5                     | <0.5                    | -                 | <0.1               | -                   | 0.1          | <0.1                  | 0.1665               | 13 0.2         | <0.1     | <0.1          | 0.1          | -            | 0.2     | 0.83           | <25            | <50              | <100        | <100        | -                | <50           | <100              | <100       | <50              | <50                   | <25             | <25          |
| QC20190121RC_01                         | 21/01/2019              | 637848                   | 13              | <0.4    | 14       | 33       | 17       | <0.1        | 23               | 59            | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      |                         | <0.5              |                    |                     | <0.5         | <0.5                  | <1.21                | 9 <0.5         | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | <20            | <20              | 150         | 410         | 560              | <50           | 440               | 400        | 840              | <50                   | <20             | <20          |
| QC20190123RC_01                         |                         | 637848                   | 4.6             | <0.4    |          | 8.6      |          | <0.1        |                  |               |              |              |            | <0.5         |                |                                 |                          |                         |                   |                    |                     | <0.5         | <0.5                  | <1.21                | 9 <0.5         |          |               | <0.5         | <0.5         | <0.5    | -              | <20            | <20              | <50         | <50         |                  |               |                   |            |                  |                       | <20             | <20          |
| QC20190124RC_01                         | 1 24/01/2019            | 637848                   | 5.1             | <0.4    | 42       | 24       | 31       | <0.1        | 42               | 41            | <0.5         | <0.5         | <0.5       | <0.5         | <0.5           | <0.5                            | 0.6                      | 1.2                     | <0.5              | <0.5               | <0.5                | <0.5         | <0.5                  | <1.21                | 9 <0.5         | <0.5     | <0.5          | <0.5         | <0.5         | <0.5    | -              | <20            | <20              | <50         | <50         | <50              | <50           | <100              | <100       | <100             | <50                   | <20             | <20          |
|                                         |                         |                          |                 |         |          |          |          |             |                  |               |              |              |            |              |                |                                 |                          |                         |                   |                    |                     |              |                       |                      |                |          |               |              |              |         |                |                |                  |             |             |                  |               |                   |            |                  |                       |                 |              |
| Statistical Summar<br>Number of Results | ry                      |                          | I               |         | Lac      | 1 00     | Lac      |             | 0.0              | ac I          | ac I         | 0.0          | 2.0        | 0.0          |                |                                 |                          |                         |                   |                    |                     |              |                       |                      | Lac            | Lac      |               |              |              |         |                |                |                  |             |             |                  | T             | T                 |            |                  |                       |                 |              |
| Number of Results<br>Number of Detects  |                         |                          | 36<br>34        | 36<br>1 | 36<br>35 | 36<br>36 | 36<br>36 | 36<br>2     | 36<br>26         | 36<br>34      | 36<br>0      | 36<br>0      | 36<br>0    | 36<br>4      | 36<br>4        | 36<br>1                         | 36<br>33                 | 36<br>33                | 33                | 36                 | 33                  | 36<br>4      | 36<br>0               | 36<br>4              | 36<br>5        | 36       | 36            | 36<br>2      | 33           | 36<br>5 | 3              | 11<br>0        | 11               | 11<br>3     | 11          | 8                | 11            | 11                | 11         | 11               | 11<br>0               | 11              | 0            |
| Minimum Concent                         |                         |                          | 2.1             | <0.4    |          |          |          | <0.1        | 4                |               |              | <0.1         | <0.1       | 0.1          | 0.1            | <0.5                            | <0.5                     | <0.5                    |                   |                    |                     | 0.1          |                       | 0.1665               |                |          |               |              | <0.5         | 0.2     | 0.83           | <20            | <20              | <50         | <50         | _                |               |                   | _          | _                | <50                   | <20             | <20          |
| Minimum Detect                          |                         |                          | 2.1             | 1       | 8.7      | 8.6      | -        | 0.1         | 4                | 5.2           | ND ND        | ND           | ND         | 0.1          | 0.1            | 1.3                             | 0.6                      | 1.2                     | 0.6               | 0.1                | 0.8                 | 0.1          |                       | 0.1665               |                | ND       |               | 0.1          | 1.6          | 0.2     | 0.83           | ND ND          | ND               | 100         | 110         |                  |               | 120               | 130        | 220              | ND                    | ND ND           | ND ND        |
| Maximum Concent                         | tration                 |                          | 17              | 1       | 87       | 42       |          |             | 97               |               | _            | <0.5         | <0.5       | 1.3          | 1              | 1.3                             | 1.6                      | 1.8                     | 0.6               | 0.5                | 0.8                 | 1.6          | <0.5                  | 1.566                |                |          |               |              | 11.7         | 3.1     | 1.5            | <40            | <50              | 150         | 410         | 560              |               |                   | 500        |                  | <50                   | <40             | <40          |
| Maximum Detect                          |                         |                          | 17              | 1       | 87       | 42       |          |             | 97               | 690           | ND           | ND           | ND         | 1.3          | 1              | 1.3                             | 1.6                      | 1.8                     | 0.6               | 0.5                | 0.8                 | 1.6          | ND                    | 1.566                |                | ND       |               | 0.2          | 11.7         | 3.1     | 1.5            | ND             | ND               | 150         | 410         | 560              |               | 440               | 500        | 880              | ND                    | ND              | ND           |
| Average Concentra                       | ition                   |                          | 7.4             | 0.22    | 20       | 20       |          | 0.064       | 13               |               | 0.23         | 0.23         | 0.23       | 0.27         |                | 0.28                            | 0.6                      | 1.1                     | 0.26              | 0.25               | 0.27                | 0.28         | 0.23                  | 0.6                  | 0.33           | 0.23     | 0.23          | 0.24         | 0.64         | 0.35    | 1.2            | 12             | 14               | 59          | 117         | 134              |               | 137               | 130        | 226              | 25                    | 12              | 12           |
| Median Concentra                        |                         |                          | 6.45            | 0.2     | 14.5     | 18       |          | 0.05        | 6.75             | _             |              |              |            | 0.25         |                |                                 | 0.6                      |                         | 0.25              |                    |                     | 0.25         | 0.25                  |                      |                |          |               | 0.25         | 0.25         | 0.25    | 1.3            | 10             | 10               | 25          | 50          | 25               | 25            | 50                | 50         | 50               | 25                    | 10              | 10           |
| Standard Deviation                      |                         |                          | 4.1             | 0.13    |          | 8        |          | 0.075       |                  | 113           |              |              |            |              |                |                                 |                          |                         |                   |                    |                     |              | 0.056                 |                      | 0.43           |          |               | 0.042        | 2            |         | 0.34           | 3              | 7                | 50          | 149         |                  |               | 145               | 162        |                  | 0                     | 3               | 3            |
| Number of Guideli                       |                         |                          | 0               | 0       | 0        | 0        | 0        | 0           | 5                | 8             | 0            | 0            | 0          | 0            | 1              | 0                               | 0                        | 0                       | 0                 | 0                  | 0                   | 0            | 0                     | 0                    | 0              | 0        | 0             | 0            | 0            | 0       | 0              | 0              | 0                | 0           | 0           | 0                | 0             | 2                 | 0          | 0                | 0                     | 0               | 0            |
| Number of Guideli                       | ne Exceedances(Dete     | cts Only)                | 0               | 0       | 0        | 0        | 0        | 0           | 5                | 8             | 0            | 0            | 0          | 0            | 1              | 0                               | 0                        | 0                       | 0                 | 0                  | 0                   | 0            | 0                     | 0                    | 0              | 0        | 0             | 0            | 0            | 0       | 0              | 0              | 0                | 0           | 0           | 0                | 0             | 2                 | 0          | 0                | 0                     | 0               | 0            |

Env Stds Comments
#13:TV taken for Chromium (III), Clay Content of 1%
#27:TV taken for Chromium (III), Clay Content of 1%
#27:TV taken for Pit 4-5
#28:TV taken for Pit 4-5
#28:TV taken for Pit 4-5
#28:TV taken for Pit 4-3

Data Comments
#1 No asbestos detected at the reporting limit of 0.001% w/w.\*Synthetic mineral fibre detected. Organic fibre detected. No respirable fibres detected.
#2 No asbestos detected at the reporting limit of 0.001% w/w.\*Organic fibre detected. No respirable fibres detected.
#3 ESDAT Combined with Non-Detect Multiplier of 0.5.
#4 ESDAT Combined with Non-Detect Multiplier of 0.5.
#5 Chrysotile and amosite asbestos detected.
#6 Synthetic mineral fibres detected.
#7 No respirable fibres detected.
#8 Organic fibres detected.
#8 Organic fibres detected.
#9 ESDAT Combined.
#10 114x40x3
#11 Nil



| I                                                             |          |                  |      | BTE   | VNI   | _          |            |         |       |       |                             |       |             |       |       |      |        |        | Oro                     | anochl  | rino D       | neticid                                 | loc         |                 |        |              |            |          |         |                |       |           |       |         |         | Poly    | hlorina  | tod Ri   | nhonyl   | le .    |        | le le   | hlorinated Benzene: | $\overline{}$   | _                     |                           | Asbes  | etne                  |                |                      | $\Box$              | Other                 | TA VIII                      | - IWRG                             |
|---------------------------------------------------------------|----------|------------------|------|-------|-------|------------|------------|---------|-------|-------|-----------------------------|-------|-------------|-------|-------|------|--------|--------|-------------------------|---------|--------------|-----------------------------------------|-------------|-----------------|--------|--------------|------------|----------|---------|----------------|-------|-----------|-------|---------|---------|---------|----------|----------|----------|---------|--------|---------|---------------------|-----------------|-----------------------|---------------------------|--------|-----------------------|----------------|----------------------|---------------------|-----------------------|------------------------------|------------------------------------|
|                                                               | $\vdash$ |                  |      | DIL   | NIV.  | -          |            | _       |       |       |                             |       |             |       |       | 1    |        | 1      | UIS                     | anocini | mile r       | esticio                                 | 163         | _               | -      | -            | -          | -        |         | -              |       |           |       | _       | 1       | roly    | 11101111 | iteu bij | pitettyt | 13      | _      | _       | anomateu benzene:   | ←               | $\overline{}$         |                           | ASUCS  | 3103                  | 1 1            | $\overline{}$        | — "                 | Julei                 | - VIC                        | - 100110                           |
| <b>SJBS&amp;G</b>                                             | ene      | benzene          | ane  | (0)   |       | ie (m & p) | ie (Total) | thalene | JO.   | _     | n + Dieldrin (Sum of Total) | -внс  | ı-Chlordane | внс   | dane  |      |        | rin    | -DDE+DDD (Sum of Total) | -вис    | sulfan alpha | and | sulfan beta | suitan sulphate | E      | na-Chlordane | n aldehyde | n ketone | achlor  | achlor Epoxide | ne    | ioxychlor | phene | or 1016 | or 1221 | or 1232 | or 1242  | or 1248  | or 1254  | 07.1360 | 7 7 7  | (Total) | chlor obenzene      | ox. Sample Mass | stos from ACM in Soil | stos from FA & AF in Soil | ACM    | Asbestos in ACM<br>FA | Asbestos in FA | AF<br>Asbestos in AF | Asbestos in FA & AF | visture 103oC<br>ture | nochlorine Pesticides EPAVic | r Organochlorine Pesticides EPAVic |
|                                                               | Benz     | Ethy             | 를    | X     | .   _ | ¥          | Xyler      | Nap     | 4,4-€ | Aldri | Aldri                       | alph  | alphi       | beta  | GP CP | QQQ  | PDT    | Dielc  | DOT-                    | delta   | Endo         |                                         |             |                 | Endr   | gam          | Endr       | Endr     | Hept    | Hept           | Lind  | Meth      | Тоха  | Aroc    | Aroc    | Aroc    | Aroc     | Aroc     | Aroc     |         | 3      | 8       | Неха                | App             | Aspe                  | Aspe                      | Mass   | Mass                  | Mass           | Mass                 | Mass                | Mois R                | o.                           | g<br>g                             |
|                                                               | mg/kg    | mg/kg            | mg/k | g mg/ | kg m  | g/kg n     | ng/kg      | ng/kg   | mg/kg | mg/kg | mg/kg                       | mg/kg | mg/kg       | mg/kg | mg/kg | mg/k | g mg/k | g mg/k | g mg/l                  | kg mg/l | g mg/        | kg mg                                   | g/kg mg     | /kg m           | g/kg m | g/kg m       | g/kg m     | ng/kg n  | ng/kg r | mg/kg          | mg/kg | mg/kg     | mg/kg | mg/kg   | mg/kg   | mg/k    | g mg/k   | g mg/l   | kg mg/   | kg mg   | /kg mg | g/kg    | mg/kg               | g %             | /w/w                  | %w/w                      | g      | g g                   | g              | g g                  | g 9                 | % %                   | mg/l                         | kg mg/k                            |
| EQL                                                           | 0.1      | 0.1              | 0.1  | 0.:   | 1 (   | 0.2        | 0.3        | 0.1     | 0.05  | 0.05  | 0.05                        | 0.05  | 0.1         | 0.05  | 0.1   | 0.05 | 0.05   | 0.05   | 0.0                     | 0.0     | 0.0          | 5 0.                                    | 05 0.       | 05 0            | 0.05   | 0.1 0        | .05 (      | 0.05     | 0.05    | 0.05           | 0.05  | 0.05      | 1     | 0.1     | 0.1     | 0.1     | 0.1      | 0.1      | 0.3      | 1 0.    | .1 (   | 0.1     | 0.05                | $\Box$          | $\Box$                |                           | П      |                       | $\Box$         | $\perp$              | 1                   | 1 0.1                 | 0.1                          | 0.1                                |
| NEPM 2013 EIL - Urban Residential (generic)                   |          |                  |      |       |       |            |            | 170     |       |       |                             |       |             |       |       |      | 180    |        |                         |         |              |                                         |             |                 |        |              |            |          |         |                |       |           |       |         |         |         |          |          |          |         |        |         |                     |                 |                       |                           |        |                       |                |                      |                     |                       |                              |                                    |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coa    | 50#5     | 70 <sup>#5</sup> | 85*5 | 5     |       | 1          | 105#5      |         |       |       |                             |       |             |       |       |      |        |        |                         |         |              |                                         |             |                 |        |              |            |          |         |                |       |           |       |         |         |         |          |          |          |         |        |         |                     |                 |                       |                           |        |                       |                |                      |                     |                       |                              |                                    |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Residential - I |          |                  |      |       |       |            |            |         |       |       |                             |       |             |       |       |      |        |        |                         |         |              |                                         |             |                 |        |              |            |          |         |                |       |           |       |         |         |         |          |          |          |         |        |         |                     | 0               | 0.01#7                |                           |        |                       |                |                      |                     |                       |                              |                                    |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                |          |                  |      |       |       |            |            |         |       |       |                             |       |             |       |       |      |        |        |                         |         |              |                                         |             |                 |        |              |            |          |         |                |       |           |       |         |         |         |          |          |          |         |        |         |                     |                 |                       | 0.001#8                   | 3      |                       |                |                      |                     |                       |                              |                                    |
| NEPM 2013 Soil HIL A                                          |          |                  | 160* | 13    |       |            |            |         |       |       | 6                           |       |             |       | 50    |      |        |        | 240                     |         |              |                                         |             |                 | 10     |              |            |          | 6       |                |       | 300       | 20    |         |         |         |          |          |          |         | 1      | #16     | 10                  |                 |                       |                           | $\Box$ |                       | $\Box$         |                      |                     |                       |                              |                                    |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to | 0.5      | 55               | 160  |       |       |            | 40         | 3       |       |       |                             |       |             |       |       |      |        |        |                         |         |              |                                         |             |                 |        |              |            |          |         |                |       |           |       |         |         |         |          |          |          |         |        |         |                     |                 |                       |                           |        |                       | $\perp$        |                      |                     |                       |                              |                                    |
| Field_ID Sampled_Date-Time Lab_Report_Number                  |          |                  |      |       |       |            |            |         |       |       |                             |       |             |       |       |      |        |        |                         |         |              |                                         |             |                 |        |              |            |          |         |                |       |           |       |         |         |         |          |          |          |         |        |         |                     |                 |                       |                           |        |                       |                |                      |                     |                       |                              |                                    |

| See   Per   Per  | Field ID      | Sampled Date-Ti | me Lab Report Number | r    |      |      |      |       |         |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |      |      |        |         |      |        |       |       |       |        |        |         |      |       |         |        |        |         |        |    |      |      |      |        |      |      |        |        |        |     |   |         |            |     |    |   |       |     |     |     |      |        | _  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|----------------------|------|------|------|------|-------|---------|--------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|------|--------|---------|------|--------|-------|-------|-------|--------|--------|---------|------|-------|---------|--------|--------|---------|--------|----|------|------|------|--------|------|------|--------|--------|--------|-----|---|---------|------------|-----|----|---|-------|-----|-----|-----|------|--------|----|
| Seed    | -             |                 |                      |      | <0.1 | <0.1 | <0   | 1 <0  | 2 <     | 0.3    | 0.5    | . [    | - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1    | -    | .    | . [  | . [    | . [     | . [  | -      |       |       | Ι.    | Ι.     | 1 .    | Τ.      |      | ١.    | Τ.      | Τ.     | Τ.     | Τ.      |        | Ι. | Τ.   | Τ.   | Τ.   | Τ.     | Ι.   | Τ.   | Τ.     | 1 -    |        | 617 | 0 | $T_{i}$ | 17         | ıΤο | Ιo | 0 | o I c | 10  | 17  |     | _    | $\Box$ |    |
| Selection   Sele |               |                 |                      | -    | -    | -    | -    | -     |         |        |        | 0.05 < | :0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05 < | 2.05 | . <  | 0.05 | :0.1   | :0.05   | 0.05 | < 0.05 | <0.05 | <0.0  | <0.0  | <0.0   | 5 <0.0 | 5 <0.05 |      | <0.0  | 5 < 0.0 | 5 <0.0 | 5 <0.0 | 5 <0.05 | < 0.05 | <1 |      |      | 1    | 1 -    | 1 -  | ٠.   | 1 -    |        | < 0.05 |     |   | +       |            |     |    |   |       |     |     |     | <0.1 | <0     | 1  |
| 904. 154. 154. 154. 154. 154. 154. 154. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BH03 0.4-0.5  |                 |                      |      | -    | -    | 1 -  | -     | $\top$  | _      | -      | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     | -      |        | -       |      | -     | -       | -      | -      | -       |        |    |      | 1    | 1    | -      |      |      | -      | -      | -      |     |   |         |            |     |    |   |       |     |     |     | _    | 1      | 1  |
| Mile    | BH04 0.2-0.3  |                 |                      | <0.2 | <0.2 | <0.2 | <0   | 2 <0. | .4 <    | 0.6 <  | 0.5    | - 1    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1    | -    | - 1  | - 1  | -      | - 1     | -    | -      | -     |       | 1 -   |        | 1 -    | 1 -     |      | -     | ١.      | ٦.     | 1 -    | ١.      |        | ٠. | 1    | ١.   | 1 -  | 1 -    | 1 -  | 1 -  | 1 -    | -      |        |     |   |         |            |     |    |   |       |     |     |     |      | 1      | П. |
| Martin   M | BH05 1.0-1.1  | 21/01/2019      | 637804               |      | -    | -    | 1 -  | ٦.    | $\top$  | - <    | 0.5    | - 1    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1    | -    | - 1  | - 1  | -      | - 1     | -    | -      | -     |       | 1 -   |        | 1 -    | 1 -     |      | -     | ١.      | ٦.     | 1 -    | ١.      |        | ٠. | 1    | ١.   | 1 -  | 1 -    | 1 -  | 1 -  | 1 -    | -      |        | 874 | 0 | 1       | , (        | 0   | 0  | 0 | 0 0   | 0   | 11  |     |      | 1      | 7  |
| See   See  | BH06_0.4-0.5  | 21/01/2019      | 637804               |      | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     | -      |        | -       | -    | -     | -       | -      | -      | -       |        | -  |      | -    | -    | -      | -    | -    | -      | -      | -      | 669 | 0 | 1       | , (        | 0   | 0  | 0 | 0 0   | 0   | 19  | -   | -    | -      | 7  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BH07_0.5-0.6  | 24/01/2019      | 637804               |      | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     | -      |        | -       | -    | -     | -       | -      | -      | -       |        | -  |      | -    | -    | -      | -    | -    | -      | -      | -      | 763 | 0 | 1       | , (        | 0   | 0  | 0 | 0 0   | 0   | 13  | -   | -    | -      | 7  |
| SHIP    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    149    | BH08_0-0.15   | 25/01/2019      | 637804               | <0.1 | <0.1 | <0.1 | <0   | 1 <0. | .2 <    | 0.3 <  | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1    | -    | -    | -    | -      | - 1     | -    | -      | -     | -     | 1 -   | -      |        | 1 -     | -    | -     | -       | -      | 1 -    | 1 -     |        |    |      | 1 -  |      | 1 -    | 1 -  | 1 -  | -      | -      | -      | 722 | 0 | 1       | 1          | 0 ( | 0  | 0 | 0 0   | 0   | 13  |     | -    | 1      | 7  |
| HI DIA 19   HI D | BH09_0.4-0.5  | 21/01/2019      | 637804               |      | -    | -    | -    | -     |         | - <    | :0.5 < | 0.05 < | :0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05 < | 0.05 | - <  | 0.05 | <0.1 · | <0.05 < | 0.05 | <0.05  | <0.05 | <0.05 | <0.05 | <0.0!  | 5 <0.0 | < 0.05  | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | < 0.05  | <0.05  | <1 |      | -    | -    | -      | -    | -    | -      | -      | <0.05  | 669 | 0 | 1       | 1          | 0   | 0  | 0 | 0 0   | 0   | 14  | -   | <0.1 | <0     | .1 |
| SHIP    | BH10_1-1.1    | 21/01/2019      | 637804               | <0.1 | <0.1 | <0.1 | <0   | 1 <0. | .2 <    | 0.3 <  | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1    | -    | -    | -    | -      | - 1     | -    | -      | -     | -     | 1 -   | -      |        | 1 -     | -    | -     | -       | -      | 1 -    | 1 -     |        |    |      | 1 -  |      | 1 -    | 1 -  | 1 -  | -      | -      | -      | 715 | 0 | 1       | 1          | 0 ( | 0  | 0 | 0 0   | 0   | 13  |     | -    | 1      | 7  |
| H3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BH11_0-0.15   | 21/01/2019      | 637804               |      | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1    | -    | -    | -    | -      | - 1     | -    | -      | -     | -     | 1 -   |        |        | 1 -     | -    | -     | -       | -      | 1 -    | 1 -     |        |    |      | 1 -  |      | 1 -    | 1 -  | 1 -  | -      | -      | -      | 636 | 0 | 1       | 1          | 0 ( | 0  | 0 | 0 0   | 0   | 18  |     | -    | 1      | 7  |
| 91134-9145-915-915-915-915-915-915-915-915-915-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BH12_0.4-0.5  | 21/01/2019      | 637804               |      | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | - 1     | -    | -      | -     | -     | -     |        |        |         |      |       | -       |        |        |         |        |    |      | 1 -  |      | -      |      | 1 -  | -      | -      | -      | 599 | 0 | 1       | (          | 0 ( | 0  | 0 | 0 0   | 0   | 14  | -   | -    | 1      | 7  |
| 144   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145  | BH13_0.7-0.8  | 25/01/2019      | 637804               |      | -    | -    | -    | -     | Т       | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | - 1     | -    | -      | -     | -     | -     |        |        |         |      | -     | -       | -      | -      | -       |        | -  |      | -    | -    | -      |      | -    | -      | -      | -      | 669 | 0 | (       | 1          | 0 0 | 0  | 0 | 0 0   | 0 ( | 17  | -   | -    | Τ.     | ٦. |
| HIS   SIZION   SIZI | BH13-FRAG     |                 |                      | -    | -    | -    | -    | -     |         | -      | -      | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     | -      | -      | -       | -    | -     | -       | -      | -      | -       | -      | -  | -    | -    | -    | -      | -    | -    | -      | -      | -      | 17  | 0 | (       |            |     |    |   |       |     |     | -   | -    |        |    |
| HI S   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BH14_0-0.15   | 25/01/2019      |                      | -    | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     | -      | -      |         | -    | -     | -       | -      | -      | -       | -      | -  | -    | -    | -    | -      | -    | -    | -      | -      | -      |     |   |         | / C        | 0 ( | 0  | 0 | 0 0   | 0 ( | 16  | -   | -    |        |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BH15_0-0.15   | 21/01/2019      |                      | -    | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     | -      | -      | -       | -    | -     | -       | -      | -      | -       | -      | -  | <0.1 | <0.1 | <0.: | 1 <0.: | <0.1 | <0.3 | l <0.1 | <0.1   | -      |     |   |         | 1 (        | 0 ( | 0  | 0 | 0 0   | 0 ( | 32  |     |      |        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH16_0.4-0.5  |                 |                      | -    | -    | -    | -    | -     |         | - <    | :0.5 < | 0.05 < | :0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05 < | 0.05 | - <  | 0.05 | <0.1 · | <0.05   | 0.05 | <0.05  | <0.05 | <0.05 | <0.05 | <0.0!  | 5 <0.0 | < 0.05  | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | < 0.05  | <0.05  | <1 | -    | -    | -    | -      | -    | -    | -      | -      | <0.05  |     |   |         |            |     |    |   |       |     |     |     | <0.1 | <0     | .1 |
| HI   SA   SA   SA   SA   SA   SA   SA   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH17_0.4-0.5  |                 |                      | -    | -    | -    | -    | -     |         |        |        | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        |        |         | -    | -     | -       |        |        |         |        |    |      |      |      | -      | -    | -    | -      | -      | -      |     |   |         |            |     |    |   |       |     |     |     |      |        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH18_0.7-0.8  |                 |                      | -    | -    | -    | -    |       |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        | -      | -       | -    | -     | -       | -      | -      | -       | -      | -  |      | -    | -    | -      | -    | -    | -      | -      |        |     |   |         |            |     |    |   |       |     |     |     |      | ┸.     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH19_0.4-0.5  |                 |                      | -    | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        | -      | -       |      |       | -       | -      | -      | -       | -      |    |      | -    |      | -      | -    |      | -      | -      | -      |     |   | Щ.      |            |     |    |   |       |     |     |     |      | ┸.     |    |
| HZZ_111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                 |                      | -    | -    | -    | -    |       |         |        |        | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        | -      | -       | -    | -     | -       | -      | -      | -       | -      | -  |      | -    | -    | -      | -    | -    | -      | -      |        |     |   |         |            |     | _  |   |       |     | _   |     |      | ┸.     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                 |                      |      | -    | -    | -    | -     | $\perp$ | _      |        | 0.05 < | .0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05 < | 0.05 | - <  | 0.05 | <0.1 · | <0.05 < | 0.05 | < 0.05 | <0.05 | <0.05 | <0.05 | <0.0!  | 5 <0.0 | < 0.05  | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | < 0.05  | <0.05  | <1 |      | -    | -    | -      | -    | -    | -      | -      | <0.05  |     |   |         |            |     |    |   |       |     |     |     | <0.1 | <0     | .1 |
| H42_0.0.15   270/1.0.19   637804   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   |               |                 |                      |      | -    | -    | -    | -     | $\perp$ |        |        | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        |        |         | -    | -     | -       | -      |        | -       |        | -  |      |      | -    | -      | -    | -    | -      | -      | -      |     |   | 1       |            |     |    |   |       |     |     |     | -    | ┶      | _  |
| HRZ-0-5-0-6   27/01/2019   637894   7.   7.   7.   7.   7.   7.   7.   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                 |                      |      | -    | -    | -    | -     | $\perp$ |        |        | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        |        |         | -    | -     | -       | -      |        | -       |        | -  |      |      | -    | -      | -    | -    | -      | -      | -      |     |   |         |            |     |    |   |       |     |     |     | -    | ┶      | _  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                 |                      | <0.1 | <0.1 | <0.1 | <0.  | 1 <0. | .2 <    |        |        | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    |      | -      | -       | -    | -      | -     |       |       |        | -      | -       |      |       | -       | -      | -      | -       | -      |    |      | -    |      | -      | -    | -    | -      | -      | -      |     |   | _       |            |     |    |   |       |     |     |     |      | ┵      | _  |
| HRY_0.4.0.5 25/01/2019 637804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |                      |      | -    | -    | -    | -     | $\perp$ |        |        | 0.05 < | .0.05 </td <td>0.05 &lt;</td> <td>0.05</td> <td>- &lt;</td> <td>0.05</td> <td>&lt;0.1 ·</td> <td>&lt;0.05 &lt;</td> <td>0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.0!</td> <td>5 &lt;0.0</td> <td>&lt; 0.05</td> <td>-</td> <td>&lt;0.05</td> <td>5 &lt;0.0</td> <td>5 &lt;0.0</td> <td>5 &lt;0.0</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;1</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>&lt;0.05</td> <td></td> <td>&lt;0.1</td> <td>&lt;0</td> <td>.1</td>                          | 0.05 < | 0.05 | - <  | 0.05 | <0.1 · | <0.05 < | 0.05 | <0.05  | <0.05 | <0.05 | <0.05 | <0.0!  | 5 <0.0 | < 0.05  | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | <0.05   | <0.05  | <1 |      |      | -    | -      | -    | -    | -      | -      | <0.05  |     |   |         |            |     |    |   |       |     |     |     | <0.1 | <0     | .1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                 |                      |      | -    | -    | -    | -     | _       | _      | _      | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     |       | -     |        |        |         |      |       | -       |        |        | -       |        |    |      |      |      | -      |      | -    | -      | -      | -      |     |   |         |            |     |    |   |       |     |     |     |      | ╆:     | _  |
| 8H29_0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BH27_0.4-0.5  |                 |                      | -    | -    | -    | -    |       |         |        |        | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | ļ -   |        | -      | -       | -    | -     | -       | -      | -      | -       | -      |    |      | -    |      | -      | -    | -    | -      | -      |        |     |   |         |            |     |    |   |       |     |     |     |      | ┸.     |    |
| HRINGOLIS   47/11/11/11/11/11/11/11/11/11/11/11/11/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BH28_1-1.1    |                 |                      | -    | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        | -      | -       |      |       | -       | -      | -      | -       | -      |    |      | -    |      | -      | -    |      | -      | -      | -      |     |   | Щ.      |            |     |    |   |       |     |     |     |      | ┸.     |    |
| 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BH29_0-0.15   |                 |                      | -    | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        | -      | -       |      | -     | -       | -      | -      | -       | -      | -  | <0.1 | <0.1 | <0.: | 1 <0.: | <0.1 | <0.3 | L <0.1 | . <0.1 | -      | 654 | 0 |         | <u>, c</u> | 1 0 | 0  | 0 | 0 0   | 1 0 | 9.7 | -   | -    |        |    |
| 0.00190123RC 0] 2/01/2019 210425 0.02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH30_0-0.15   | 24/01/2019      | 637804               | -    | -    | -    | -    | -     |         | - <    | 0.5    | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | -    | -    | -    | -      | -       | -    | -      | -     | -     | -     |        | -      | -       | -    | -     | -       | -      | -      | -       | -      | -  | -    | -    | -    | -      | -    | -    | -      | -      | -      | 542 | 0 | (       | 1          | 0 ( | 0  | 0 | 0 0   | 0 ( | 16  | -   | -    |        |    |
| 0.201990124RC 0] 1.2010/2019 2 1.201125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QA20190121RC_ | 01 21/01/2019   |                      | <0.2 | <1   | <0.5 | <:   | . <   | 2       | <1 <   | 0.1 <  | <0.1   | <0.1 </td <td>0.2*9</td> <td>0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>l &lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>&lt;0.1</td> <td>1 &lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.3</td> <td>1 &lt;0.3</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>L &lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td>- 1</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>6.1</td> <td>-</td> <td>-</td> <td></td>   | 0.2*9  | 0.1  | <0.1 | <0.1 | -      | <0.1    | <0.1 | <0.1   | <0.1  | <0.1  | <0.1  | <0.1   | l <0.1 | <0.1    | <0.1 | <0.1  | -       | <0.1   | 1 <0.1 | <0.1    | <0.1   | -  | <0.1 | <0.1 | <0.3 | 1 <0.3 | <0.1 | <0.1 | L <0.1 | <0.1   | <0.1   | -   | - |         | 1          | - 1 | -  | - |       | -   | -   | 6.1 | -    | -      |    |
| 020190121RC_01 21/01/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QA20190123RC_ | 01 23/01/2019   | 210425               | <0.2 | <1   | <0.5 | <:   | . <   | 2 -     | <1 <   | 0.1 <  | <0.1   | <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2*9  | 0.1  | <0.1 | <0.1 | -      | <0.1    | <0.1 | < 0.1  | <0.1  | <0.1  | <0.1  | <0.1   | l <0.1 | <0.1    | <0.1 | <0.1  | -       | <0.1   | 1 <0.1 | <0.1    | <0.1   | -  | <0.1 | <0.1 | <0.1 | 1 <0.1 | <0.1 | <0.1 | l <0.1 | <0.1   | <0.1   | -   | - |         | 1          | - 1 | -  | - | -   - | -   | -   | 18  | -    |        |    |
| QC20190123RC_01 [23/01/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QA20190124RC_ | 01 24/01/2019   | 210425               | <0.2 | <1   | <0.5 | <:   | . <   | 2       | <1 <   | 0.1 <  | <0.1   | <0.1 </td <td>0.2*9</td> <td>0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt; 0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>l &lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>&lt;0.1</td> <td>1 &lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td></td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>1 &lt;0.:</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>L &lt;0.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td>-</td> <td>-</td> <td></td> <td>Π.</td> <td>- [</td> <td>1</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>7.9</td> <td>-</td> <td>-</td> <td>7</td> | 0.2*9  | 0.1  | <0.1 | <0.1 | -      | <0.1    | <0.1 | < 0.1  | <0.1  | <0.1  | <0.1  | <0.1   | l <0.1 | <0.1    | <0.1 | <0.1  | -       | <0.1   | 1 <0.1 | <0.1    | <0.1   |    | <0.1 | <0.1 | <0.1 | 1 <0.: | <0.1 | <0.1 | L <0.1 | <0.1   | <0.1   | -   | - |         | Π.         | - [ | 1  | - |       | -   | -   | 7.9 | -    | -      | 7  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC20190121RC_ | 01 21/01/2019   | 637848               | <0.1 | <0.1 | <0.1 | <0   | 1 <0  | .2 <    | :0.3 < | 0.5 <  | 0.05 < | 0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05 < | 0.05 | - <  | 0.05 | <0.1 · | <0.05   | 0.05 | < 0.05 | <0.05 | <0.05 | <0.05 | < 0.0! | 5 <0.0 | < 0.05  | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | < 0.05  | <0.05  | <1 | <0.1 | <0.1 | <0.  | 1 <0.: | <0.1 | <0.3 | 1 <0.3 | <0.1   | <0.05  |     |   |         | , (        | 0 ( | 0  | 0 | 0 0   | ) 0 | 8.8 | -   | <0.1 | <0     | .1 |
| \[ \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \\ \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \\ \( \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QC20190123RC_ | 01 23/01/2019   | 637848               | <0.1 | <0.1 | <0.1 | <0   | 1 <0  | .2 <    | 0.3 <  | 0.5    | 0.05 < | 0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05 < | 0.05 | - <  | 0.05 | (0.1 · | <0.05   | 0.05 | < 0.05 | <0.05 | <0.05 | <0.05 | < 0.0! | 5 <0.0 | < 0.05  | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | < 0.05  | <0.05  | <1 | <0.1 | <0.1 | <0.: | 1 <0.: | <0.1 | <0.1 | 1 <0.1 | <0.1   | <0.05  |     |   |         |            |     |    |   |       |     |     |     | <0.1 | <0     | .1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC20190124RC_ | 01 24/01/2019   | 637848               | <0.1 | <0.1 | <0.1 | . <0 | 1 <0  | .2 <    | 0.3 <  | 0.5 <  | 0.05 < | 0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05 < | 0.05 | - <  | 0.05 | (0.1 · | <0.05   | 0.05 | <0.05  | <0.05 | <0.05 | <0.05 | <0.0!  | 5 <0.0 | 5 <0.05 | -    | <0.05 | 5 <0.0  | 5 <0.0 | 5 <0.0 | 5 <0.05 | <0.05  | <1 | <0.1 | <0.1 | <0.: | 1 <0.: | <0.1 | <0.1 | l <0.1 | <0.1   | <0.05  | 635 | 0 |         | , (        | 0 ( | 0  | 0 | 0 0   | ) 0 | 11  | -   | <0.1 | <0     | .1 |

| Statistical | Summary   |
|-------------|-----------|
| Number o    | f Results |

| Statistical Summary                           |       |      |       |      |      |      |        |        |         |        |        |      |       |      |       |       |       |       |       |       |       |         |       |        |        |       |       |          |         |       |       |      |        |        |      |        |       |       |      |        |     |    |    |    |       |      |       |      |         |        |      |      |
|-----------------------------------------------|-------|------|-------|------|------|------|--------|--------|---------|--------|--------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|---------|-------|--------|--------|-------|-------|----------|---------|-------|-------|------|--------|--------|------|--------|-------|-------|------|--------|-----|----|----|----|-------|------|-------|------|---------|--------|------|------|
| Number of Results                             | 11    | 11   | 11    | 11   | 11   | 11   | 36     | 11     | . 11    | 11     | 11     | 3    | 11    | 8    | 11    | 11    | 11    | 11    | 11    | 11    | 11    | 11      | 11    | 3      | 11     | 8     | 11    | 11       | 11 1    | 11    | 8     | 8    | 8      | 8      | 8    | 8      | 8     | 8     | 8    | 11     | 34  | 34 | 34 | 34 | 34 34 | 34 3 | 34 34 | 34 3 | 33 3    | . 8    | T    | 8    |
| Number of Detects                             | 0     | 0    | 0     | 0    | 0    | 0    | 0      | 0      | 0       | 0      | 0      | 0    | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0     | 0      | 0      | 0     | 0     | 0        | 0       | 0     | 0     | 0    | 0      | 0      | 0    | 0      | 0     | 0     | 0    | 0      | 34  | 34 | 34 | 34 | 34 34 | 34 3 | 34 34 | 34 3 | 33 3    | 0      | T    | 0    |
| Minimum Concentration                         | <0.1  | <0.1 | <0.1  | <0.1 | <0.2 | <0.3 | 3 <0.1 | <0.0   | 0.0>    | 5 <0.0 | < 0.05 | <0.1 | <0.05 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 < | <0.05 | <0.1 < | 0.05 < | <0.05 | (0.05 | <0.05 <0 | 0.05 <0 | 0.05  | <1 <  | 0.1  | <0.1 < | <0.1 < | <0.1 | <0.1 < | 0.1 < | 0.1   | <0.1 | < 0.05 | 17  | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0 8  | 8.8 6.1 | 1 <0.: | .1 < | :0.1 |
| Minimum Detect                                | ND    | ND   | ND    | ND   | ND   | ND   | ND     | ND     | ) NE    | ND.    | ND     | ND   | ND    | ND   | ND    | ND    | ND    | ND    | ND    | ND    | ND    | ND      | ND    | ND     | ND     | ND    | ND    | ND I     | ND N    | 1 dv  | 1 DI  | ND   | ND     | ND     | ND   | ND I   | ND I  | ND    | ND   | ND     | 17  | ND | ND | ND | ND ND | NDN  | ND ND | ND 8 | 8.8 6.1 | 1 NE   | ٥    | ND   |
| Maximum Concentration                         | <0.2  | <1   | <0.5  | <1   | <2   | <1   | <0.5   | <0.3   | 1 <0.   | 1 <0.2 | <0.1   | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1    | <0.1  | <0.1   | <0.1 < | <0.05 | <0.1  | <0.1 <   | 0.1 <   | 0.1   | <1 <  | 0.1  | <0.1   | <0.1   | <0.1 | <0.1 < | 0.1 < | 0.1   | <0.1 | <0.1   | 887 | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0 3  | 32 18   | 3 <0.  | .1 < | :0.1 |
| Maximum Detect                                | ND    | ND   | ND    | ND   | ND   | ND   | ND.    | ND     | ) NE    | ND ND  | ND     | ND   | ND    | ND   | ND    | ND    | ND    | ND    | ND    | ND    | ND    | ND      | ND    | ND     | ND     | ND    | ND    | ND I     | ND N    | 1 dv  | 1 DI  | ND   | ND     | ND     | ND   | ND I   | ND I  | ND    | ND   | ND     | 887 | ND | ND | ND | ND ND | NDN  | ND ND | ND 3 | 32 18   | 3 NE   | 5    | ND   |
| Average Concentration                         | 0.068 | 0.18 | 0.11  | 0.18 | 0.35 | 0.26 | 6 0.23 | 0.03   | 32 0.03 | 0.04   | 0.032  | 0.05 | 0.032 | 0.05 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 0 | 0.032 | 0.05 0 | .032 0 | 0.025 | 0.032 | 0.032 0. | 032 0.0 | 032 ( | 0.5 0 | 0.05 | 0.05   | 0.05   | 0.05 | 0.05   | .05 0 | .05   | 0.05 | 0.032  | 630 | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0 1  | 17 11   | 1 0.0  | J5 ( | J.05 |
| Median Concentration                          | 0.05  | 0.05 | 0.05  | 0.05 | 0.1  | 0.15 | 5 0.25 | 0.02   | 25 0.02 | 5 0.02 | 0.025  | 0.05 | 0.025 | 0.05 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 0 | 0.025 | 0.05 0 | .025 0 | 0.025 | 0.025 | 0.025 0. | 025 0.0 | 025 ( | 0.5 0 | 0.05 | 0.05   | 0.05   | 0.05 | 0.05   | .05 0 | .05 ( | 0.05 | 0.025  | 645 | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0 1  | 16 7.9  | 9 0.0  | J5 ( | 1.05 |
| Standard Deviation                            | 0.025 | 0.21 | 0.092 | 0.21 | 0.42 | 0.16 | 6 0.05 | 6 0.01 | 12 0.01 | 2 0.03 | 0.012  | 0    | 0.012 | 0    | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 0 | 0.012 | 0 0    | .012   | 0 (   | 0.012 | 0.012 0. | 012 0.0 | 012   | 0     | 0    | 0      | 0      | 0    | 0      | 0     | 0     | 0    | 0.012  | 152 | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0 5  | 5.9 6.4 | 4 0    |      | 0    |
| Number of Guideline Exceedances               | 0     | 0    | 0     | 0    | 0    | 0    | 0      | 0      | 0       | 0      | 0      | 0    | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0     | 0      | 0      | 0     | 0     | 0        | 0       | 0     | 0     | 0    | 0      | 0      | 0    | 0      | 0     | 0     | 0    | 0      | 0   | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0    | 0 0     | 0      | T    | 0    |
| Number of Guideline Exceedances(Detects Only) | 0     | 0    | 0     | 0    | 0    | 0    | 0      | 0      | 0       | 0      | 0      | 0    | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0     | 0      | 0      | 0     | 0     | 0        | 0       | 0     | 0     | 0    | 0      | 0      | 0    | 0      | 0     | 0     | 0    | 0      | 0   | 0  | 0  | 0  | 0 0   | 0    | 0 0   | 0    | 0 0     | 0      |      | 0    |

Number of Guideline Exceedances(Detects Only)

Env Stds Comments
#1:TV taken for Chromium (III), Clay Content of 1%
#2:TV taken for pH 4.5
#3:TV taken for pH 4.5
#3:ESLs are of low reliability,
#7:Residential A with garden/accessible soil also includes childi
#8:The screening level of 0.001% w/w subsets or in soil for FA an
#9:Key limitations of HSL should be referred to prior to applicat
#10:TV adopted from Chromium (V)
#11:Assumptions of HSL are presented in Friebel and Nadebau
#12:Refer to HSL and soil saturation concentration limit.
#13:Sensitive setting HSL & & HSL B Sand Om to <1m criteria ad
#14:Refer to Section 8.2 and Appendix in Friebel and Nadebau
#15:TV maybe be multiplied by a factor to account for biodegri
#16:HIL relates to non-dioxin-flue PCBs only. If PCB source is su:
#17:To obtain F2 subtract naohthalene from <10-C16.
#18:To obtain F1 subtract the sum of BTEX from C6-C10.

- Data Comments
  #1 No asbestos detected at the reporting limit of 0.001% w/w.
  #2 No asbestos detected at the reporting limit of 0.001% w/w.
  #3 ESDAT Combined with Non-Detect Multiplier of 0.5. Some.
  #4 ESDAT Combined with Non-Detect Multiplier of 0.5.
  #5 Chrysotile and amosite asbestos detected.
  #6 Synthetic mineral fibres detected.
  #7 No respirable fibres detected.
  #8 Organic fibres detected.
  #8 Organic fibres detected.
  #9 DESDAT Combined.
  #10 114x40x3
  #11 Nii



|                                                 |              |                            |                      |              |                  |             | Н          | eavy Metals    | 3       |              |           |            |                    |              | P.                | AH                |          |              | TRH                 | /TPH <sup>†</sup>                   |
|-------------------------------------------------|--------------|----------------------------|----------------------|--------------|------------------|-------------|------------|----------------|---------|--------------|-----------|------------|--------------------|--------------|-------------------|-------------------|----------|--------------|---------------------|-------------------------------------|
| Sample                                          | (C=          | il Type<br>coarse<br>fine) | Date<br>Sampled      | As           | Cd               | Cr °        | Cu         | Pb             | TCLP Pb | Hg           | Ni        | Zn         | total <sup>d</sup> | TCLP total   | BaP TEQ           | ВаР               | TCLP BaP | Naphthalene  | ီ၁ - <sup>9</sup> ၁ | C <sub>10</sub> - C <sub>36</sub> ° |
|                                                 |              |                            |                      | mg/kg        | mg/kg            | mg/kg       | mg/kg      | mg/kg          | mg/L    | mg/kg        | mg/kg     | mg/kg      | mg/kg              | mg/L         | mg/kg             | mg/kg             | mg/L     | mg/kg        | mg/kg               | mg/kg                               |
| Soil Assessment Criter                          |              | NEPM (a                    | s amended            | d 2013) (ref | er to report     | body for de | etails)    |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| Residential with Access                         | sible Soil   |                            |                      |              |                  |             | 1          |                |         |              |           |            |                    |              |                   |                   |          | 1            |                     |                                     |
| HIL A                                           |              |                            |                      | 100          | 20               | 100 °       | 6,000      | 300            |         | 40           | 400       | 7,400      | 300                |              | 3                 | 0.7               |          | 470          |                     |                                     |
| EIL/ ESL<br>EIL/ ESL                            |              | oarse<br>fine              |                      | 100          |                  | 250<br>640  | 110<br>110 | 1,100<br>1,100 |         |              | 35<br>270 | 250<br>290 |                    |              |                   | 0.7               |          | 170<br>170   |                     |                                     |
| Management Limit                                |              | oarse                      |                      | 100          |                  | 040         | 110        | 1,100          |         |              | 210       | 290        |                    |              |                   | 0.7               |          | 170          |                     |                                     |
| Management Limit                                | 1            | fine                       |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| HSL A&B, vapour intrusion                       |              |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          | 3            |                     |                                     |
| HSL A&B, vapour intrusion HSL A, direct contact | on, 0-<1m, c | clay                       |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          | 5            |                     |                                     |
| Waste Classification Th                         | rocholde     |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          | 1,400        |                     |                                     |
| Waste Glassification 11                         | ii esiioius  | СТ                         | 1                    | 100          | 20               | 100         |            | 100            |         | 4            | 40        |            | 200                |              |                   | 0.8               |          | 1            | 650                 | 10,00                               |
| General Solid                                   |              | SCC1/T                     |                      | 500          | 100              | 1,900       |            | 1,500          | 5       | 50           | 1,050     |            | 200                |              |                   | 10                | 0.04     |              | 650                 | 10,00                               |
|                                                 |              | CT                         |                      | 400          | 80               | 400         |            | 400            | 3       | 16           | 160       |            | 800                |              |                   | 3.2               | 0.04     |              | 2,600               | 40,000                              |
| Restricted Solid                                |              | SCC2/T                     |                      | 2,000        | 400              | 7,600       |            | 6,000          | 20      | 200          | 4,200     |            | 800                |              |                   | 23                | 0.16     |              | 2,600               | 40,000                              |
| Published Background                            |              |                            |                      |              |                  | 1,000       | <u> </u>   | 0,000          | 20      | 200          | 1,200     | <u> </u>   | 1 000              | <u> </u>     | <u> </u>          | 1 20              | 1 0.10   | <u> </u>     | 2,000               | +0,000                              |
| NEPC (1999)                                     |              | 1.2003                     |                      | 1-50         | 1                | 5-1000      | 2-100      | 2-200          |         | 0.03         | 5-500     | 10-300     | <u> </u>           |              |                   |                   |          | 1            |                     | П                                   |
| ANZECC (1992)                                   |              |                            |                      | 0.2-30       | 0.04-2           | 0.5-110     | 1-190      | <2-200         |         | 0.001-0.1    | 2-400     | 2-180      | 0.95-5             |              |                   |                   |          |              |                     | 1                                   |
| ANZECC (2000)                                   |              |                            |                      | 1-53         | 0.016-0.78       | 2.5-673     | 0.4-412    | 2-81           |         |              | 1-517     | 1-263      |                    |              |                   |                   |          |              |                     |                                     |
| <b>Laboratory Results</b>                       |              |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| High School                                     |              |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| 1 / 0.5-0                                       | 0.6 fill     | lling-F                    | 22/01/18             | 6            | <0.4             | 12          | 20         | 52             |         | <0.1         | 8         | 280        | < 0.05             |              | <0.5              | < 0.05            |          | <0.1         | <25                 | <250                                |
| REPLICATE1-2201                                 | 18 fill      | lling-F                    | 22/01/18             | 13           | <0.4             | 16          | 27         | 58             |         | <0.1         | 13        | 490        | <0.5               |              | <0.5              | <0.5              |          | <0.5         |                     |                                     |
| 2 / 0.1                                         | 1 silty      | y clay?                    | 23/01/18             | 4            | <0.4             | 14          | 13         | 70             |         | <0.1         | 3         | 86         | 0.2                |              | <0.5              | <0.05             |          | <0.1         | <25                 | 195                                 |
| 3 / 0-0.                                        | .1 silty     |                            | 23/01/18             | 5            | <0.4             | 12          | 14         | 18             |         | <0.1         | 3         | 15         | 0.51               |              | <0.5              | 0.09              |          | <0.1         | <25                 | <250                                |
| Replicate 6                                     | silty        | y clay?                    | 23/01/18             | 5            | <0.4             | 12          | 15         | 33             |         | <0.1         | 4         | 28         | 2.6                |              | <0.5              | 0.2               |          | <0.1         |                     |                                     |
| 4 / 0-0.                                        | .1 fill      | lling-C                    | 22/01/18             | 9            | <0.4             | 11          | 25         | 62             |         | 0.1          | 7         | 120        | 8                  |              | 1                 | 0.73              |          | <0.1         | <25                 | <250                                |
| 5 / 1-1.                                        | .1 fill      | lling-F                    | 22/01/18             | 7            | <0.4             | 14          | 18         | 26             |         | <0.1         | 7         | 34         | <0.05              |              | <0.5              | < 0.05            |          | <0.1         | <25                 | <250                                |
| 6 / 0.2-0                                       | 0.3 silt     | ty clay                    | 22/01/18             | <4           | <0.4             | 5           | 8          | 16             |         | <0.1         | 1         | 3          | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 7 / 0-0.                                        |              | lling-C                    | 23/01/18             | 7            | <0.4             | 28          | 36         | 38             |         | <0.1         | 25        | 83         | 0.1                |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 7 / 0.5-0                                       | 0.6 fill     | lling-F                    | 23/01/18             | 7            | <0.4             | 12          | 30         | 130            | 0.07    | <0.1         | 8         | 82         | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 8 / 0-0.                                        |              | lling-C                    | 23/01/18             | <4           | <0.4             | 41          | 51         | 15             |         | <0.1         | 46        | 59         | 0.2                |              | <0.5              | <0.05             |          | <0.1         | <25                 | 770                                 |
| 8 / 0.7-0                                       |              | Ŭ                          | 23/01/18             | 8            | <0.4             | 10          | 19         | 16             |         | <0.1         | 7         | 31         | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 9 / 0.2-0                                       |              |                            | 22/01/18             | 12           | <0.4             | 8           | 56         | 8              |         | <0.1         | 33        | 35         | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | 775                                 |
| 10 / 2-2                                        |              |                            | 22/01/18             | 8            | <0.4             | 13          | 21         | 24             |         | <0.1         | 9         | 53         | 0.3                |              | <0.5              | 0.06              |          | <0.1         | <25                 | <250                                |
| 11 / 0-0.                                       |              |                            | 23/01/18             | 6            | <0.4             | 11          | 21         | 27             |         | <0.1         | 5         | 40         | 46                 | 0.004        | 5.6               | 3.9               | <0.001   | <1 - 0.6     | <25                 | 225                                 |
| 12 / 0-0.                                       |              | -                          | 23/01/18             | <4           | <0.4             | 21          | 35         | 11             |         | <0.1         | 25        | 34         | 4.1                |              | <0.5              | 0.3               |          | <0.1         | <25                 | 835                                 |
| Public School and E                             |              |                            | 23/01/18             | 1            | -0.4             | 9           | 15         | 95             |         | I 0.4 I      | 7         | 97         | 23                 | NIL (+)VE    | 2.2               | 2.2               | <0.001   | -0.4         | <25                 | 120                                 |
| Replicate 4                                     |              |                            | 23/01/18             | 4            | <0.4<br><0.4     | 16          | 45<br>34   | 95<br>88       |         | 0.4          | 7<br>11   | 83         | 27                 | INIL (+)VE   | 3.2<br>3.4        | 2.2               | <0.001   | <0.1<br>0.2  | <20                 | 120                                 |
| 13 / 0.4-0                                      |              |                            | 23/01/18             | 5            | <0.4             | 18          | 35         | 52             |         | 0.4          | 9         | 82         | 6.1                |              | 1                 | 0.64              |          | <0.1         | <25                 | <250                                |
| 14 / 0.0-0                                      | 0.1 fill     | lling-F                    | 23/01/18             | 5            | <0.4             | 10          | 23         | 29             |         | <0.1         | 4         | 64         | < 0.05             |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 15 / 0-0.                                       |              |                            | 19/01/18             | 5            | <0.4             | 9           | 31         | 18             | 0.00    | <0.1         | 10        | 62         | <0.05              | NIII / 33.45 | <0.5              | <0.05             | 0.001    | <0.1         | <25                 | 120                                 |
| 16 / 0.0-0<br>17 / 0.3-0                        |              |                            | 24/01/18<br>24/01/18 | 6<br><4      | <0.4<br><0.4     | 8<br>20     | 89<br>2    | 130<br>22      | 0.08    | <0.1<br><0.1 | 3         | 58<br>5    | 86<br>3.4          | NIL (+)VE    | <b>16</b> 0.5     | 0.4               | <0.001   | 0.3<br><0.1  | <25<br><25          | 570<br><250                         |
| 18 / 0.5                                        |              |                            | 23/01/18             | <4           | <0.4             | 30          | 39         | 31             |         | <0.1         | 34        | 44         | 470                |              | 44                | 30                |          | 8            | <25                 | 1,440                               |
| 18 / 1.0-1                                      |              | lling-F                    | 23/01/18             | <4           | <0.4             | 13          | 16         | 25             |         | <0.1         | 5         | 14         | 620                | 0.08         | 56                | 38                | <0.001   | 9.2          | <25                 | 1,800                               |
| 18 / 1.5                                        |              |                            | 23/01/18             |              |                  |             |            |                |         |              |           |            | 190                |              | 17                | 12                |          | 3            | <25                 | 620                                 |
| 19 / 0-0.                                       |              |                            | 19/01/18             | <4           | <0.4             | 9           | 20         | 62             |         | <0.1         | 5         | 80         | 22                 | -            | 2.1               | 1.4               |          | <0.1         | <25                 | <250                                |
| 20 / 0.0-0<br>21 / 0.0-0                        |              |                            | 24/01/18<br>24/01/18 | <4<br><4     | <0.4<br><0.4     | 16<br>35    | 28<br>22   | 24<br>61       |         | 0.1<br><0.1  | 19<br>38  | 48<br>48   | 0.94<br>460        | 0.004        | <0.5<br><b>57</b> | 0.08<br><b>39</b> | <0.001   | <0.1<br>0.7  | <25<br><25          | 1,470<br>4,100                      |
| 21 / 0.0-0                                      |              |                            | 24/01/18             | ` ` `        | \U. <del>4</del> | - 55        |            | 01             |         | \U.1         | 30        | 70         | 14                 | 0.004        | 1.7               | 1.2               | \0.001   | <0.1         | <25                 | <250                                |
| 22 / 0.3-0                                      |              |                            | 24/01/18             | <4           | <0.4             | 19          | 12         | 66             |         | <0.1         | 6         | 30         | 15                 |              | 2.8               | 1.8               |          | <0.1         | <25                 | <250                                |
| 23 / 0-0.                                       |              | lling-F                    | 19/01/18             | 5            | <0.4             | 10          | 19         | 81             |         | <0.1         | 5         | 69         | 31                 |              | 3.4               | 2.3               |          | 0.1          | <25                 | 110                                 |
| 24 / 0.3-0                                      |              |                            | 24/01/18             | 4            | <0.4             | 13          | 21         | 150            | 0.06    | 0.2          | 7         | 100        | 23                 | NIL (+)VE    | 3.5               | 2.3               | <0.001   | <0.1         | <25                 | 440                                 |
| 25 / 0.2-0<br>26 / 0.2-0                        |              |                            | 24/01/18<br>24/01/18 | <4<br>7      | <0.4<br><0.4     | 4<br>12     | 2<br>16    | 3<br>26        |         | <0.1<br><0.1 | 6         | 3<br>48    | <0.05<br>4.6       |              | <0.5<br>0.6       | <0.05<br>0.4      |          | <0.1<br><0.1 | <25<br><25          | <250<br>280                         |
| 27 / 0-0.2-0                                    |              |                            | 19/01/18             | 5            | 0.5              | 16          | 170        | 120            |         | 0.1          | 7         | 1,000      | 0.3                | +            | <0.5              | 0.4               | +        | <0.1         | <25<br><25          | 4,395                               |
| 28 / 0.4-0                                      |              |                            | 19/01/18             | <4           | <0.4             | 29          | 26         | 91             |         | <0.1         | 19        | 150        | 21                 | NIL (+)VE    |                   | 1.9               | <0.001   | 0.1          | <25                 | 760                                 |
| REPLICATE1-1901                                 |              |                            | 19/01/18             | 3.6          | < 0.4            | 13          | 23         | 85             |         | < 0.1        | 9.8       | 170        | 15.7               | ` '          | 2.2               | 1.7               |          | < 0.5        |                     |                                     |



| Table K1: Summary of Labo                                |                                   |                      |            | T          | TRH (NE                    | PM 2013) i                           |               |               |                                                  | I (NEPM 2                                        |              |              | ВТ                                      | EX           |          |            |                 |                  |                  |               |
|----------------------------------------------------------|-----------------------------------|----------------------|------------|------------|----------------------------|--------------------------------------|---------------|---------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|-----------------------------------------|--------------|----------|------------|-----------------|------------------|------------------|---------------|
| Sample                                                   | Soil Type<br>(C=coarse<br>F=fine) | Date<br>Sampled      | C6-C10     | >C10-C16   | C6 – C10 less<br>BTEX (F1) | >C10-C16 less<br>naphthalene<br>(F2) | >C16-C34 (F3) | >C34-C40 (F4) | >C10-C16 <sup>j (F2)</sup> ,                     | >C16-C34 (F3 age representation)                 | >C34-C40 (F4 | Benzene      | Toluene                                 | Ethylbenzene | xylene   | phenol     | PC B            | p d O O C b      | ОРР              | asbestos      |
| Soil Assessment Criteria (S.                             | AC\ NEDM (                        | o omende             | mg/kg      | mg/kg      | mg/kg                      | mg/kg                                | mg/kg         | mg/kg         | mg/kg                                            | mg/kg                                            | mg/kg        | mg/kg        | mg/kg                                   | mg/kg        | mg/kg    | mg/kg      | mg/kg           | mg/kg            | mg/kg            | 0.1g/l        |
| Residential with Accessible                              | -,                                | is amended           |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  |                  |               |
| HIL A                                                    | 3011                              |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          | 3,000      | 1               | 6                | 340              | $\overline{}$ |
| EIL/ ESL                                                 | coarse                            |                      |            | 120        | 180                        |                                      | 300           | 2,800         | 120                                              | 300                                              | 2,800        | 50           | 85                                      | 70           | 105      | 0,000      |                 | 180 (DDT)        | 0.0              |               |
| EIL/ ESL                                                 | fine                              |                      |            | 120        | 180                        |                                      | 1,300         | 5,600         | 120                                              | 1,300                                            | 5,600        | 65           | 105                                     | 125          | 45       |            |                 | 180 (DDT)        |                  |               |
| Management Limit                                         | coarse                            |                      | 700        | 1,000      |                            |                                      | 2,500         | 10,000        | 1,000                                            | 2,500                                            | 10,000       |              |                                         |              |          |            |                 |                  |                  |               |
| <b>Management Limit</b><br>HSL A&B, vapour intrusion, 0- | fine                              |                      | 800        | 1,000      | 45                         | 110                                  | 3,500         | 10,000        | 1,000                                            | 3,500                                            | 10,000       | 0.5          | 160                                     | 55           | 40       |            |                 |                  |                  |               |
| HSL A&B, vapour intrusion, 0-                            |                                   |                      |            |            | 50                         | 280                                  |               |               | 280                                              |                                                  |              | 0.5          | 480                                     | NL           | 110      |            |                 |                  |                  | _             |
| HSL A, direct contact                                    | ,,                                |                      |            |            | 4,400                      | 3,300                                | 4,500         | 6,300         | 3,300                                            | 4,500                                            | 6,300        | 100          | 14,000                                  | 4,500        | 12,000   |            |                 |                  |                  |               |
| Waste Classification Thresh                              | olds                              |                      |            | •          |                            |                                      |               | •             |                                                  |                                                  |              |              |                                         |              |          | •          | •               |                  |                  |               |
| General Solid                                            | C                                 | Γ1                   |            |            |                            |                                      |               |               |                                                  |                                                  |              | 10           | 288                                     | 600          | 1,000    | 288        | <50             | <50 <sup>f</sup> | 4 <sup>9</sup>   | nil           |
| General Sullu                                            | SCC1/                             | TCLP1                |            |            |                            |                                      |               |               |                                                  |                                                  |              | 18           | 518                                     | 1,080        | 1,800    | 518        | <50             | <50 <sup>f</sup> | 7.5 <sup>g</sup> | nil           |
| Restricted Solid                                         | C <sup>-</sup>                    |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 40           | 1,152                                   | 2,400        | 4,000    | 1,152      | <50             | <50 <sup>f</sup> | 16 <sup>g</sup>  | nil           |
|                                                          | SCC2/                             |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 72           | 2,073                                   | 4,320        | 7,200    | 2,070      | <50             | <50 <sup>f</sup> | 30 <sup>g</sup>  | nil           |
| Published Background Ran                                 | ges for Asses                     | sment of N           |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  |                  |               |
| NEPC (1999)                                              |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 0.0=         | 0.1.                                    |              |          | 0.00       | 0.00            | 0.001            |                  | <u> </u>      |
| ANZECC (1992)<br>ANZECC (2000)                           |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 0.05 - 1     | 0.1 - 1                                 |              |          | 0.03 - 0.5 | 0.02 - 0.1      | <0.001 - <0.97   | <del> </del>     | +             |
| ,                                                        |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  |                  | <u> </u>      |
| Laboratory Results                                       |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  |                  |               |
| High School                                              | _                                 |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  |                  |               |
| 1 / 0.5-0.6                                              | filling-F                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| REPLICATE1-220118                                        | filling-F                         | 22/01/18             |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  | <u> </u>         |               |
| 2 / 0.1                                                  | silty clay?                       | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | 120           |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 3 / 0-0.1                                                | silty clay?                       | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| Replicate 6                                              | silty clay?                       | 23/01/18             |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 |                  | <u> </u>         | <u> </u>      |
| 4 / 0-0.1                                                | filling-C                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 5 / 1-1.1                                                | filling-F                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 6 / 0.2-0.3                                              | silty clay                        | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | —             |
| 7 / 0-0.1                                                | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 7 / 0.5-0.6                                              | filling-F                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | <u> </u>      |
| 8 / 0-0.1<br>8 / 0.7-0.8                                 | filling-C<br>filling-F            | 23/01/18<br>23/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 600<br><100   | 570<br><100   | -                                                | -                                                |              | <0.2<br><0.2 | <0.5<br><0.5                            | <1<br><1     | <1<br><1 | <5<br><5   | <0.1<br><0.1    | <0.1<br><0.1     | <0.1<br><0.1     | NAD<br>NAD    |
| 9 / 0.2-0.3                                              | filling-F                         | 22/01/18             | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 550           | 700           | -                                                | -                                                |              | <0.2         | <0.5                                    | <1           | <1       | <5<br><5   | <0.1            | <0.1             | <0.1             | NAD           |
| 10 / 2-2.1                                               | filling-F                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 11 / 0-0.1                                               | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 210           | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 12 / 0-0.1                                               | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 530           | 800           |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| Public School and Busl                                   |                                   | 20/01/10             | \20        | 100        | \20                        | 100                                  | 000           | 000           |                                                  |                                                  | <u> </u>     | \\\ 0.Z      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |              | _ ``     | 1 10       | νο.1            | νο.1             | 10.1             | 11010         |
| 13 / 0.0-0.1                                             | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 160           | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| Replicate 4                                              | filling-C                         | 23/01/18             |            |            |                            |                                      |               |               |                                                  |                                                  |              |              |                                         |              |          |            |                 | -                |                  |               |
| 13 / 0.4-0.5                                             | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       |            |                 |                  |                  | NAD           |
| 14 / 0.0-0.1                                             | filling-F                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5<br>.F   | <0.1            | <0.1             | <0.1             | NAD           |
| 15 / 0-0.1<br>16 / 0.0-0.1                               | filling-F<br>filling-C            | 19/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 100<br>500    | <100<br>140   |                                                  |                                                  |              | <0.2<br><0.2 | <0.5<br><0.5                            | <1<br><1     | <1<br><1 | <5<br><5   | <0.1<br><0.5    | <0.1<br><0.1     | <0.1             | NAD<br>NAD    |
| 17 / 0.3-0.4                                             | silty clay?                       | 24/01/18             | <25        | <50<br><50 | <25                        | <50<br><50                           | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5<br><5   | <0.5            | <0.1             | <0.1             | INAL          |
| 18 / 0.5                                                 | filling-F                         | 23/01/18             | <25        | 87         | <25                        | 79                                   | 1,300         | 210           |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       |            |                 |                  |                  | NAD           |
| 18 / 1.0-1.1                                             | filling-F                         | 23/01/18             | <25        | 140        | <25                        | 130                                  | 1,600         | 220           | 89                                               | 940                                              | <100         | <0.2         | <0.5                                    | <1           | <1       | <5         | <1              | <0.1             | <0.1             | NAD           |
| 18 / 1.5                                                 | filling-F                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 570           | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       |            |                 | 2.4              | <u> </u>         | 1115          |
| 19 / 0-0.1<br>20 / 0.0-0.1                               | filling-C<br>filling-C            | 19/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br>1,100 | <100<br>1,100 |                                                  |                                                  |              | <0.2<br><0.2 | <0.5<br><0.5                            | <1<br><1     | <1<br><1 | <5<br><5   | <0.1<br><0.1    | <0.1<br><0.1     | <0.1<br><0.1     | NAD<br>NAD    |
| 21 / 0.0-0.1                                             | filling-C                         | 24/01/18             | <25<br><25 | <50<br>80  | <25<br><25                 | <50<br>80                            | 3,500         | 1,100         | <50                                              | 1,400                                            | 790          | <0.2         | <0.5                                    | <1           | <1       | <5<br><5   | <0.1            | <0.1<br><1       | <0.1             | NAD           |
| 21 / 1-1.1                                               | silty clay?                       | 24/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          | 100                                              | .,                                               |              | <0.2         | <0.5                                    | <1           | <1       | "          | <del>  ''</del> |                  | <del></del>      | 1.57,2        |
| 22 / 0.3-0.4                                             | filling-F                         | 24/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             |               |
| 23 / 0-0.1                                               | filling-F                         | 19/01/18             | <25        | <50        | <25                        | <50                                  | 160           | <100          |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAE           |
| 24 / 0.3-0.4                                             | filling-F                         | 24/01/18             | <25        | <50<br><50 | <25<br><25                 | <50<br><50                           | 350<br><100   | 280<br><100   | -                                                | -                                                |              | <0.2         | <0.5<br><0.5                            | <1           | <1       | <5         | <0.1<br><0.1    | <0.1<br><0.1     | <0.1             | NAC           |
| 25 / 0.2-0.3<br>26 / 0.2-0.3                             | filling-C<br>filling-C            | 24/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 300           | 240           | <del>                                     </del> | <del>                                     </del> | -            | <0.2<br><0.2 | <0.5                                    | <1<br><1     | <1<br><1 | <5<br><5   | <0.1            | <0.1<br><0.1     | <0.1             | NAL           |
| 27 / 0-0.3                                               | filling-C                         | 19/01/18             | <25        | 100        | <25                        | 100                                  | 2,800         | 2,000         | <50                                              | 230                                              | <100         | <0.2         | <0.5                                    | <1           | <1       | 98         | <0.1            | <0.1             | <0.1             | NAD           |
| 28 / 0.4-0.45                                            | filling-C                         | 19/01/18             | <25        | <50        | <25                        | <50                                  | 580           | 570           |                                                  |                                                  |              | <0.2         | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| REPLICATE1-190118                                        | filling-C                         | 19/01/18             |            | I          |                            | I                                    |               |               |                                                  |                                                  |              |              |                                         |              | I        | I          |                 |                  | T                | T             |



# Appendix A Photographic Log











4. SOUTHERN ENTRANCE ONTO FOOTBALL FIELD -

Client: Pells Sullivan Meynink

Version: R01 Rev A Date: 05.02.2019

Drawn By:MN Checked By:DD

Not to Scale

Job No: 55579

Coord. Sys n/a

**Chatswood High School** 

24 Centennial Avenue, Chatswood, NSW





2. BH04 EXCAVATOR WITH SOLID FLIGHT AUGER – 21.01.2019







| Job No: 5557 | 79 |  |  |
|--------------|----|--|--|

JUD 140. JJJ1 9

Client: Pells Sullivan Meynink

Version: R01 Rev A Date: 05.02.2019

Drawn By: MN Checked By: DD

Not to Scale

Coord. Sys n/a

**Chatswood High School** 

24 Centennial Avenue, Chatswood, NSW











Job No: 55579

Client: Pells Sullivan Meynink

Version: R01 Rev A Date: 05.

ersion:R01 Rev A Date:05.02.2019

Drawn By:MN Checked By:DD

Not to Scale

Coord. Sys n/a

**Chatswood High School** 

24 Centennial Avenue, Chatswood, NSW





2. ACM FRAGMENT FOUND ON THE SURFACE 5 METERS TO



3. ACM FRAGMENT FOUND ON THE SURFACE 5 METERS TO THE WEST OF BH13 - 25.01.2019



4. ACM FRAGMENT FOUND ON THE SURFACE 5 METERS TO THE WEST OF BH13 - 25.01.2019



Job No: 55579

Client: Pells Sullivan Meynink

Version: R01 Rev A Date: 05.02.2019

Drawn By: MN Checked By: DD

Not to Scale

Coord. Sys n/a

**Chatswood High School** 

24 Centennial Avenue, Chatswood, NSW











Client: Pells Sullivan Meynink

Version: R01 Rev A Date: 05.02.2019

Drawn By:MN Checked By:DD

Not to Scale

Job No: 55579

Coord. Sys n/a

**Chatswood High School** 

24 Centennial Avenue, Chatswood, NSW









\_\_\_\_\_\_

Client: Pells Sullivan Meynink

Version: R01 Rev A Date: 05.02.2019

Checked By:DD

Drawn By:MN

Not to Scale

Job No: 55579

Coord. Sys n/a

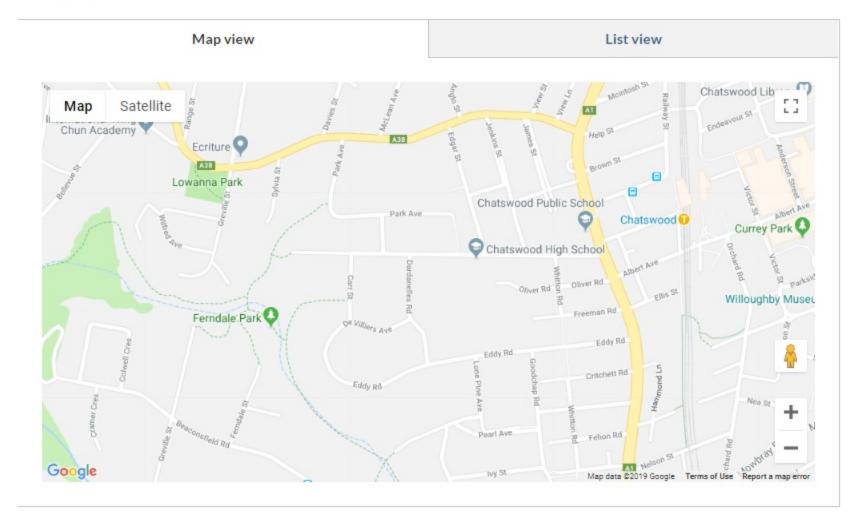
**Chatswood High School** 

24 Centennial Avenue, Chatswood, NSW



# Appendix B PFAS Register

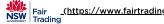
JBS&G Company Sha MPW UF Map PSI Search


| Contaminated land                    |
|--------------------------------------|
| Managing contaminated land           |
| Notification policy 🔻                |
| NSW site auditor scheme              |
| Preventing contaminated land         |
| Assessment and Remediation           |
| PFAS investigation program           |
| PFAS investigation process           |
| PFAS investigation program FAQs      |
| Other contamination issues           |
| Contaminated land management program |

# The NSW Government PFAS Investigation Program

NSW has a nation leading, state-wide PFAS investigation program underway to identify the use and impacts of legacy PFAS.

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Taskforce, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.


Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:





# Appendix C Loose-Fill Asbestos Insulation Register





Home (https://www.fairtrading.nsw.gov.au)

# Loose-fill asbestos insulation register

 $(https://app-oc.readspeaker.com/cgi-bin/rsent? customerid=7371\& lang=en\_au\& readid=page-content\& url=https://www.fairtrading.nsw.gov.au/loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbestos-insulation-loose-fill-asbest$ 

### Look up the premises address

Please enter exact address information (including street type) of the address you wish to search (Note, the search fields are not case sensitive).

If a match is found, the premises has been identified as containing loose-fill asbestos insulation.

Results will **only** appear if an **exact match** of an address is found.

(The fields marked with \* are required.)

| Submit                   |                                                                          |   |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------|---|--|--|--|--|--|
| Postcode                 |                                                                          |   |  |  |  |  |  |
| Suburb*                  |                                                                          |   |  |  |  |  |  |
| Street type*             | Alley                                                                    | • |  |  |  |  |  |
| Street name*             |                                                                          |   |  |  |  |  |  |
| Street number*           |                                                                          |   |  |  |  |  |  |
| Unit                     |                                                                          |   |  |  |  |  |  |
| This information is corr | ct at the time of the search                                             |   |  |  |  |  |  |
|                          | ntennial Avenue Chatswood                                                |   |  |  |  |  |  |
|                          | earch match was not found in the Loose-IIII Aspestos Insulation Register |   |  |  |  |  |  |

Privacy policy Site map (https://www.fairtrading.nshttps://www.fairtrading.nshttps://www.youtube.com/fairtradingNSW/) (https://www.youtube.com/fairtradingNSW/) (https://www.youtube.com/fairtradingNSW/) policy) <u>map)</u>

<u>Accessibility</u> Disclaimer

(https://www.fairtrading.nshttppsy/alu/vsracfesisileaidin)g.nsw.gov.au/disclaimer)

Copyright NSW.gov.au (https://www.fairtrading.nshutpo//ans//capvrauht)



# Appendix D Borelogs



# **BH01**

Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

Bore Diameter (mm): 150 Elevation (m):

| Method | Depth (mbgs)               | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                          | Samples<br>Tests<br>Remarks | Additional Observations                             |
|--------|----------------------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|
| SFA    | -<br>-<br>-                | 0.15           |             | Fill                  | Fill - Silty Sand, brown, damp, heterogeneous, loose, with inclusions of rootlets and trace brick  Fill - Clay, brown, damp, homogeneous, medium plasticity, firm | BH01_0.15                   | No odour, ACM or staining                           |
|        | 0.5                        | 0.60           |             | CL-ML                 | Silty Clay, brown, damp, homogeneous, medium plasticity, firm                                                                                                     | BH01_0.5                    | No odour, ACM or staining                           |
|        | 1 <u>.0</u>                | 1.10           |             | CL-ML                 | Silty Clay, brown with grey mottling, damp, homogeneous, medium plasticity, firm                                                                                  | BH01_1.1                    | No odour, ACM or staining                           |
|        | _<br>_<br>_<br>1 <u>.5</u> |                |             |                       |                                                                                                                                                                   |                             | No odour, ACM or staining  End of hole at 1.6 m bgs |
|        |                            | 1.60           |             |                       | Borehole BH01 terminated at 1.6m                                                                                                                                  | BH01_1.5                    |                                                     |
|        | 3.5                        |                |             |                       |                                                                                                                                                                   |                             |                                                     |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

| Method | Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class | Lithological Description                                                                                                                                                           | Samples<br>Tests<br>Remarks | Additional Observations                                            |
|--------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|
| HA     | - 0.30 - 0.5 - 1.0 - 1.0 - 1.5                             | Fill - Gravelly Sitty Sand, brown / grey, heterogeneous, dry, medium dense, poorly graded, with inclusions of rootlets, brick, plastic and paper  Borehole BH02 terminated at 0.3m | BH02_0.15<br>PID = 0.6 ppm  | No odour, ACM or staining End of hole at 0.3 m bgs, moved to BH02a |



# BH02a

Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.6 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                        | Samples<br>Tests<br>Remarks | Additional Observations                                                                                   |
|--------|------------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|
| HA     | -                |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, dry, loose, with inclusions of gravels and glass       | BH02a_0.15<br>PID = 1.5 ppm | No odour, ACM or staining                                                                                 |
|        | _<br>_<br>_      | 0.20           |             | Fill                  | Fill - Silty Sand, light brown, heterogeneous, dry, loose, with inclusions of gravels and glass | BH02a 0.5                   |                                                                                                           |
|        | 0.5              | 0.60           |             |                       | Borehole BH02a terminated at 0.6m                                                               | BH02a_0.5<br>PID = 2.9 ppm  | No odour, ACM or staining End of hole at 0.6 m bgs. Tried two other locations, hard surface, very shallow |
|        | -<br>-           |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | 1 <u>.0</u>      |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | -<br>-           |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | -<br>1 <u>.5</u> |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | -                |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | _<br>            |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | 2 <u>.0</u>      |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | -<br>-           |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | 2 <u>.5</u>      |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | -                |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | 3.0              |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | _                |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        |                  |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | 3 <u>.5</u>      |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        |                  |                |             |                       |                                                                                                 |                             |                                                                                                           |
|        | 4 <u>.0</u>      |                |             |                       |                                                                                                 |                             |                                                                                                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

| Method | Depth (mbgs)                                                                                                                         | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                      | Samples<br>Tests<br>Remarks | Additional Observations   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| SFA    |                                                                                                                                      |                |             | Fill                  | Fill - Silty Sand, brown, damp, heterogeneous, loose, with inclusions of rootlets, cobbles of rock and roots  | BH03_0.15<br>PID = 6.3 ppm  | No odour, ACM or staining |
|        | _<br>_<br>_<br>_<br>_<br>0.5                                                                                                         | 0.15           |             | Fill                  | Fill - Sitty Clayey Sand, moist, heterogeneous, brown, medium dense, low plasticity, with inclusions of roots | BH03_0.5<br>PID = 3.6 ppm   | - Stanling                |
|        | -<br>-                                                                                                                               | 0.80           |             | CL                    | Clay, grey with slight yellow / brown mottling, moist, homogeneous, firm, medium plasticity                   |                             | No odour, ACM or staining |
|        | 1.0                                                                                                                                  |                |             |                       |                                                                                                               | BH03_1.1<br>PID = 3.4 ppm   | No odour, ACM or staining |
|        | -                                                                                                                                    |                |             |                       |                                                                                                               | PID = 3.4 ppm               | End of jole at 1.2 m bgs  |
|        | 1.5<br>-<br>-<br>2.0<br>-<br>-<br>2.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.20           |             |                       | Borehole BH03 terminated at 1.2m                                                                              |                             |                           |
|        | 3.5                                                                                                                                  |                |             |                       |                                                                                                               |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                 | Samples<br>Tests<br>Remarks | Additional Observations                             |
|--------|------------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|
| S      |                  |                | $\bowtie$   | Fill                  | Fill - Concrete Slab                                                                                     |                             |                                                     |
| SFA    |                  | 0.15           |             | Fill                  | Fill - Gravelly Clay, dark grey with brown mottling, damp, hard, high plasicity                          | BH04_0.3<br>PID = 1.2 ppm   | No odour, ACM or staining                           |
|        | -<br>0 <u>.5</u> | 0.30           |             | CL-GC                 | Gravelly Clay, dark grey with brown mottling, damp, hard, high plasticity, with inclusions of rootlets   | BH04_0.5<br>PID = 6.6 ppm   |                                                     |
|        | -                | 0.80           |             | CL-GC                 | Gravelly Clay, dark grey with brown mottling, damp, hard, high plasticity, with inclusions of hard shale |                             | No odour, ACM or staining                           |
|        | 1.0              |                |             |                       |                                                                                                          | BH04_1.1<br>PID = 9.8 ppm   | No odour, ACM or staining  End of hole at 1.2 m bgs |
|        | 1.5              | 1.20           |             |                       | Borehole BH04 terminated at 1.2m                                                                         |                             |                                                     |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

| -      | 1            |                |             |                       | T                                                                                                                                                                                                |                             | <u> </u>                          |
|--------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                         | Samples<br>Tests<br>Remarks | Additional Observations           |
| SFA    | _            | 0.15           |             | Fill                  | Fill - Gravelly Silty Sand (topsoil), brown, loose, heterogeneous, damp, with inclusions of rootlet and mulch  Fill - Gravelly Sand, grey, damp, heterogeneous, medium dense, with inclusions of | BH05_0.15<br>PID = 1.1 ppm  | No odour, ACM or staining         |
|        | -            | 0.15           |             | FIII                  | shale and sandstone                                                                                                                                                                              |                             |                                   |
|        | 0.5          |                |             |                       |                                                                                                                                                                                                  | BH05_0.5<br>PID = 1 ppm     |                                   |
|        | _            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | _            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | 1.0          | 1.00           |             | SM                    | Crushed Shale, recovered as Silty Sand, grey, dry, heterogeneous, medium dense, with inclusions of shale                                                                                         | BH05_1.1<br>PID = 4.8 ppm   | No odour, ACM or staining         |
|        |              |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | -            |                |             |                       |                                                                                                                                                                                                  | BH05_1.5<br>PID = 2.2 ppm   | No odour, ACM or staining         |
|        | 1.5          | 1.50           |             |                       | Borehole BH05 terminated at 1.5m                                                                                                                                                                 | PID = 2.2 ppm               | End of hole at 1.5 m bgs on shale |
|        |              |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | 2.0          |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | _            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        |              |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | 2 <u>.5</u>  |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | -            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | _            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | 3.0          |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | -            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | 3.5          |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | -            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | -            |                |             |                       |                                                                                                                                                                                                  |                             |                                   |
|        | 4.0          |                |             |                       |                                                                                                                                                                                                  |                             |                                   |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

| Memod | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                           | Samples<br>Tests<br>Remarks | Additional Observations   |
|-------|------------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| A L   | -                |                |             | Fill                  | Fill - Clayey Sand, heterogeneous, brown, damp, medium plasticity, firm, with inclusions of rootlets, trace of sandstone and shale | BH06_0.15<br>PID = 2 ppm    | No odour, ACM or staining |
|       | _                | 0.15           |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, damp, loose, with inclusions of trace brick and shale                                     |                             |                           |
|       | 0.5              |                |             |                       |                                                                                                                                    | BH06_0.5<br>PID = 3.3 ppm   |                           |
|       | 1.0              | 1.00           |             | CL                    | Clay, brown with yelllow / brown motttling, increased grey motling with depth                                                      | BH06_1.1<br>PID = 2.3 ppm   | No odour, ACM or staining |
|       |                  |                |             |                       |                                                                                                                                    | г ID – 2.3 ррIII            | No odour, ACM or staining |
| +     |                  | 1.30           |             |                       | Borehole BH06 terminated at 1.3m                                                                                                   |                             | End of hole at 1.3 m bgs  |
|       | -<br>1 <u>.5</u> |                |             |                       |                                                                                                                                    |                             |                           |
|       |                  |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       | 2.0              |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       |                  |                |             |                       |                                                                                                                                    |                             |                           |
|       | 2.5              |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       |                  |                |             |                       |                                                                                                                                    |                             |                           |
|       | 3.0              |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       |                  |                |             |                       |                                                                                                                                    |                             |                           |
|       | _                |                |             |                       |                                                                                                                                    |                             |                           |
|       | 3.5              |                |             |                       |                                                                                                                                    |                             |                           |
|       | -                |                |             |                       |                                                                                                                                    |                             |                           |
|       |                  |                |             |                       |                                                                                                                                    |                             |                           |
|       |                  |                |             |                       |                                                                                                                                    |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

| ВО     | re Dia       | amete          | er (mm      | i): 50                | Elevation (m):                                                                                 |                             |                                                                                          |
|--------|--------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------|
| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                       | Samples<br>Tests<br>Remarks | Additional Observations                                                                  |
| НА     | -            |                |             | Fill                  | Fill - Silty Sand, brown, damp, heterogeneous, loose                                           | BH07_0.15<br>PID = 1.3 ppm  |                                                                                          |
|        | 0.5          | 0.30           |             | Fill                  | Silty Clay, Light brown, heterogeneous,damp, stiff, medium plasticity, with inclusion of shale |                             | No odour, ACM or staining                                                                |
|        | -<br>-       |                |             |                       |                                                                                                | BH07_0.6<br>PID = 1.6 ppm   | -                                                                                        |
|        | 1.0          | 1.00           |             |                       | Develop DUOT terminated at time                                                                |                             | No odour, ACM or staining<br>End of hole at 1.0 m bgs on hard<br>surface, possibly shale |
|        | _<br>_       | 1.00           |             |                       | Borehole BH07 terminated at 1m                                                                 |                             |                                                                                          |
|        | 1 <u>.5</u>  |                |             |                       |                                                                                                |                             |                                                                                          |
|        | -            |                |             |                       |                                                                                                |                             |                                                                                          |
|        | 2.0          |                |             |                       |                                                                                                |                             |                                                                                          |
|        | -<br>-       |                |             |                       |                                                                                                |                             |                                                                                          |
|        | 2.5          |                |             |                       |                                                                                                |                             |                                                                                          |
|        | -            |                |             |                       |                                                                                                |                             |                                                                                          |
|        | 3.0          |                |             |                       |                                                                                                |                             |                                                                                          |
|        | -<br>-       |                |             |                       |                                                                                                |                             |                                                                                          |
|        | 3 <u>.5</u>  |                |             |                       |                                                                                                |                             |                                                                                          |
|        | -<br>-       |                |             |                       |                                                                                                |                             |                                                                                          |
|        | 4 <u>.0</u>  |                |             |                       |                                                                                                |                             |                                                                                          |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:25/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                            | Samples<br>Tests<br>Remarks | Additional Observations                              |
|--------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------|
| Ĭ      | -            |                |             | Fill                  | Fill - Silty Clayey Sand, brown, dry, heterogeneous, loose, with inclusions of shale, trace brick, rootlets and rock                                | BH08_0.15<br>PID = 1.5 ppm  | No odour, ACM or staining                            |
|        | -            | 0.20           |             | Fill                  | Fill - Silty Clay, brown with light grey / white / red mottling, heterogeneous, firm, dry, low plasticity, with inclusions of shale rock            |                             |                                                      |
|        | 0.5          |                |             |                       |                                                                                                                                                     | BH08_0.50<br>PID = 3.8 ppm  | No advantage AGM as at signing                       |
|        | +            | 0.60           |             | Fill                  | Fill - Silty Clay, dark brown with light brown mottling, damp, low plasticity, firm, heterogeneous, with inclusions of shale rock and trace gravels |                             | No odour, ACM or staining  No odour, ACM or staining |
|        |              | 0.70           |             | Fill                  | Fill - Silty Clay, dark brown with light brown mottling, moist, medium plasticity, firm, heterogeneous, with inclusions of more shale rock          | BH08_0.90<br>PID = 6.5 ppm  |                                                      |
|        | 1.0          | 1.00           |             | Fill                  | Fill - Clayey Silt, dark brown, moist, soft, medium plasticity, heterogeneous, with                                                                 | 1 12 0.0 ррш                | No odour, ACM or staining                            |
|        | +            | 1.10           |             | CL-ML                 | inclusions of shale  Silty Clay, light brown, stiff, moist, heterogeneous, with inclusions of shale                                                 |                             | No odour, ACM or staining                            |
|        | -            |                |             |                       |                                                                                                                                                     | BH08_1.30<br>PID = 4 ppm    |                                                      |
|        | 1.5          | 1.40           |             | CL-ML                 | Silty Clay, light brown / light orange, stiff, moist, heterogeneous, with inclusions of shale                                                       |                             | No odour, ACM or staining  No odour, ACM or staining |
|        |              | 1.60           |             |                       | Borehole BH08 terminated at 1.6m                                                                                                                    | BH08_1.60<br>PID = 4.4 ppm  | End of hole at 1.6 m bgs                             |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                                      |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                           | Samples<br>Tests<br>Remarks | Additional Observations           |
|--------|------------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| SFA    | -                |                |             | Fill                  | Fill - Silty Clayey Sand, brown, damp, heterogeneous, medium dense, with inclusions of gravel, trace ash, rootlets and trace brick | BH09_0.15<br>PID = 4 ppm    | No odour, ACM or staining         |
|        | _                | 0.20           |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, damp, loose, with inclusions of shale                                                     | _                           |                                   |
|        | 0.5              | 0.50           |             | CL-ML                 | Silty Clay, brown, heterogeneous, damp, low plasticity, firm, with inclusions of shale                                             | BH09_0.5<br>PID = 2.1 ppm   | No odour, ACM or staining         |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | 1 <u>.0</u>      |                |             |                       |                                                                                                                                    | RH09 11                     |                                   |
|        | -                |                |             |                       |                                                                                                                                    | BH09_1.1<br>PID = 3 ppm     |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | 1.5              | 1.60           |             |                       | Borehole BH09 terminated at 1.6m                                                                                                   |                             | End of hole ay 1.6 m bgs on shale |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | 2 <u>.0</u>      |                |             |                       |                                                                                                                                    |                             |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | 2 <u>.5</u><br>– |                |             |                       |                                                                                                                                    |                             |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | 3.0              |                |             |                       |                                                                                                                                    |                             |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | 3.5              |                |             |                       |                                                                                                                                    |                             |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |
|        | -                |                |             |                       |                                                                                                                                    |                             |                                   |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

| Method | Depth (mbgs)  | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                             | Samples<br>Tests<br>Remarks | Additional Observations                                           |
|--------|---------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|
| 5      | -             | 0.05           |             | Fill<br>Fill<br>Fill  | Fill - Asphalt  Fill - Sandy Silty Gravel, brown, dry, dense, sub-angular, with inclusions of mulch  Fill - Gravelly Silty Sand, light brown, heterogeneous, dry, medium dense, with | BH10_0.15<br>PID = 4 ppm    | QA20190121RC_01 /<br>QC20190121RC_01<br>No odour, ACM or staining |
|        | 0.5           |                |             |                       | inclusions of shale                                                                                                                                                                  | BH10_0.50<br>PID = 1.8 ppm  | No odour, ACM or staining                                         |
|        |               | 0.50           |             | Fill                  | Fill - Gravelly Silty Sand, more silty, light brown, heterogeneous, dry, medium dense, with inclusions of shale                                                                      | BH10_1.10<br>PID = 3.2 ppm  |                                                                   |
|        | -<br>-<br>1.5 |                |             |                       |                                                                                                                                                                                      | PID = 3.2 ppm               | No odour, ACM or staining                                         |
|        | -             | 1.50           |             | CL-ML                 | Silty Clay, creamy brown, homogeneous, dry, stiff, low plasticity                                                                                                                    | BH10_1.70<br>PID = 2.8 ppm  |                                                                   |
|        | 2.0           |                |             |                       |                                                                                                                                                                                      |                             | No odour, ACM or staining End of hole at 2.0 m bgs                |
|        | 2.5           | 2.00           |             |                       | Borehole BH10 terminated at 2m                                                                                                                                                       |                             |                                                                   |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

|        | Depth (mbgs)               | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                    | Samples<br>Tests<br>Remarks | Additional Observations      |
|--------|----------------------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|
| Į<br>L | _                          |                |             | Fill                  | Fill - Gravely Silty Sand, brown, heterogeneous, damp, medium dense, with inclusions of rootlets and shale  | BH11_0.15<br>PID = 1.9 ppm  | No odour, ACM or staining    |
|        | 0.5                        | 0.15           |             | Fill                  | Fill - Silty Sand, light brown, damp, heterogeneous, loose, with inclusions of shale                        | BH11_0.5<br>PID = 1.2 ppm   | No occur, Acid of Statisting |
|        | -<br>-<br>-<br>1 <u>.0</u> |                |             |                       |                                                                                                             |                             | No odour, ACM or staining    |
|        | +                          | 1.30           |             | SM                    | Silty Sand / crushed shale, hard surface, light brown, damp, heterogeneous, loose, with inclusions of shale | BH11_1.4<br>PID = 1.4 ppm   | No odour, ACM or staining    |
|        | 1.5                        |                |             |                       |                                                                                                             |                             | End of hole at 1.5 m bgs     |
|        | _                          | 1.50           |             |                       | Borehole BH11 terminated at 1.5m                                                                            |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | +                          |                |             |                       |                                                                                                             |                             |                              |
|        | 2.0                        |                |             |                       |                                                                                                             |                             |                              |
|        | _                          |                |             |                       |                                                                                                             |                             |                              |
|        | 4                          |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | 2.5                        |                |             |                       |                                                                                                             |                             |                              |
|        |                            |                |             |                       |                                                                                                             |                             |                              |
|        | _                          |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | 3.0                        |                |             |                       |                                                                                                             |                             |                              |
|        | _                          |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | 3.5                        |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |
|        | -                          |                |             |                       |                                                                                                             |                             |                              |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

| Method | Depth (mbgs)      | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                        | Samples<br>Tests<br>Remarks | Additional Observations              |
|--------|-------------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|
| SFA    |                   | 0.20           |             | Fill                  | Fill - Silty Sand, dark brown / black, moist, heterogeneous, loose, with inclusions of mulch and bark chip (organic peat)  Fill - Silty Sand, light brown, loose, damp, with inclusions of gravels and rootlets | BH12_0.15<br>PID = 2.8 ppm  | No odour, ACM or staining            |
|        | 0.5               | 0.50           |             | Fill                  | Silty Sand, light brown, loose, damp, with inclusions of shale                                                                                                                                                  | BH12_0.5<br>PID = 3.9 ppm   | No odour, ACM or staining            |
|        | _                 |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | 1.0               |                |             |                       |                                                                                                                                                                                                                 | BH12_1.1<br>PID = 2.1 ppm   | No odour, ACM or staining            |
|        | -<br>-            |                |             |                       |                                                                                                                                                                                                                 |                             | End of hole at 1.5 m bgs on shale    |
|        | 1.5<br>_          | 1.50           |             |                       | Borehole BH12 terminated at 1.5m                                                                                                                                                                                |                             | Lita of hole at 1.0 iii aga on shale |
|        | 2.0               |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | -<br>-            |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | 2 <u>.5</u>       |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | _                 |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | 3.0               |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | _<br>_<br>_       |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | 3 <u>.5</u><br>_  |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |
|        | -<br>4 <u>.</u> 0 |                |             |                       |                                                                                                                                                                                                                 |                             |                                      |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:25/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

| DOLLINA | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                               | Samples<br>Tests<br>Remarks       | Additional Observations                              |
|---------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|
| ב       | -            |                |             | Fill                  | Fill - Silty Sand (topsoil), dark brown, heterogeneous, loose, dry, with inclusions of rootlets and trace rock                                         | BH13_0.15<br>PID = 2.1 ppm        | _                                                    |
|         | -            | 0.30           |             | Fill                  | Fill - Clayey Silty Sand, dark brown with light grey mottling, heterogeneous, loose, damp, with inclusions of igenous rock and trace brick             | BH13 <u>0.50</u><br>PID = 2.1 ppm | No odour, ACM or staining  No odour, ACM or staining |
|         | 0.5          | 0.50           |             | Fill                  | Fill - Silty Clay, brown with light brown / grey mottling, heterogenous, firm, medium plasticity, damp, with inclusions of shale and trace brick       | PID = 2.1 ppm                     | No odour, ACM or staining  No odour, ACM or staining |
|         | +            | 0.70           |             | Fill                  | Fill - Silty Clay, dark brown with light brown / grey mottling, heterogenous, firm, medium plasticity, moist, with inclusions of shale and trace brick | BH13_0.80<br>PID = 3.4 ppm        | No odour, ACM or staining                            |
|         | 1.0          | 0.90           |             | CL                    | Clay, brown / red, homogeneous, damp, hard, high plasticity                                                                                            |                                   |                                                      |
|         | _<br>_       |                |             |                       |                                                                                                                                                        | BH13_1.30<br>PID = 6.5 ppm        | No odayr ACM or staining                             |
|         | 1.5          | 1.50           |             |                       | Borehole BH13 terminated at 1.5m                                                                                                                       |                                   | No odour, ACM or staining End of hole at 1.5 m bgs   |
|         | -            |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | 2.0          |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         |              |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         |              |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | 2.5          |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | -<br>-       |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | 3 <u>.0</u>  |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | -<br>-       |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | 3.5          |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         |              |                |             |                       |                                                                                                                                                        |                                   |                                                      |
|         | -            |                |             |                       |                                                                                                                                                        |                                   |                                                      |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:25/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                     | Samples<br>Tests<br>Remarks | Additional Observations                            |
|--------|------------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| HA     | _<br>_<br>_      |                |             | Fill                  | Fill - Silty Sand, brown, loose, heterogenous, damp, with inclusions of rootlets                             | BH14_0.15<br>PID = 1.8 ppm  | No odour, ACM or staining                          |
|        | 0.5              | 0.40           |             | Fill                  | Fill - Silty Sand, brown, loose, heterogeneous, damp, with inclusions of rootlets, becomes slightly gravelly |                             | No odour, ACM or staining                          |
|        | _                | 0.60           |             | Fill                  | Fill - Clayey Silty Sand, light brown / orangy, soft, heterogenous, damp, with inclusions of roots           | BH14_0.7<br>PID = 1.3 ppm   | No odour, ACM or staining                          |
|        | _<br>1 <u>.0</u> | 0.80           |             | CL-ML                 | Silty Clay, light brown / orangy with cream mottling, homogeneous, hard, medium plasticity                   |                             |                                                    |
|        | <br> -<br> -     |                |             |                       |                                                                                                              | BH14_1.1<br>PID = 2.5 ppm   | _                                                  |
|        | _                | 1.40           |             |                       | Borehole BH14 terminated at 1.4m                                                                             |                             | No odour, ACM or staining End of hole at 1.4 m bgs |
|        | 1 <u>.5</u>      | 1.40           |             |                       | Brende Bill Ferninaed & FIII                                                                                 |                             |                                                    |
|        | _<br>_           |                |             |                       |                                                                                                              |                             |                                                    |
|        | 2 <u>.0</u>      |                |             |                       |                                                                                                              |                             |                                                    |
|        | _<br>_           |                |             |                       |                                                                                                              |                             |                                                    |
|        | 2.5              |                |             |                       |                                                                                                              |                             |                                                    |
|        | _                |                |             |                       |                                                                                                              |                             |                                                    |
|        | _<br>_           |                |             |                       |                                                                                                              |                             |                                                    |
|        | 3.0              |                |             |                       |                                                                                                              |                             |                                                    |
|        |                  |                |             |                       |                                                                                                              |                             |                                                    |
|        | 3 <u>.5</u>      |                |             |                       |                                                                                                              |                             |                                                    |
|        | -<br>  -         |                |             |                       |                                                                                                              |                             |                                                    |
|        |                  |                |             |                       |                                                                                                              |                             |                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:21/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 2.8 Reference Level: Ground Surface

| nonnan      | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                               | Samples<br>Tests<br>Remarks | Additional Observations           |
|-------------|--------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| ָלָ<br>בַּי | -            | 0.20           |             | Fill<br>Fill          | Fill - Silty Sand, damp, heterogenous, dark, brown, with inclusions of gravels and rootlets  Fill - Gravelly Silty Sand, heterogeneous, brown, with inclusions of gravels and rootlets | BH15_0.15<br>PID = 1.8 ppm  | No odour, ACM or staining         |
|             | 0.5          | 0.50           |             | Fill                  | Fill - Gravelly Silty Sand, heterogeneous, brown, with inclusions of shale                                                                                                             | BH15_0.50<br>PID = 4.7 ppm  | No odour, ACM or staining         |
|             |              |                |             |                       |                                                                                                                                                                                        |                             |                                   |
|             | 1.0          | 1.20           |             |                       |                                                                                                                                                                                        | BH15_1.10<br>PID = 1.5 ppm  | No odour, ACM or staining         |
|             | 1.5          | 1.60           |             | CL-ML                 | Silty Clay, brown, homogeneous, damp, medium plasticty, stiff, with inclusions of trace ash                                                                                            | BH15_1.60<br>PID = 3 ppm    | No odour, ACM or staining         |
|             | 2.0          |                |             |                       |                                                                                                                                                                                        | BH15_2.30<br>PID = 1.8 ppm  | No odour, ACM or staining         |
|             |              |                |             | CL                    | Clay, brown, dry, homogeneous, hard, medium plasticity, with inclusions of minor ash and shale                                                                                         | PiD = 1.6 ppm               | End of hole ay 2.8 m bgs on shale |
|             | 3.0          | 2.80           |             |                       | Borehole BH15 terminated at 2.8m                                                                                                                                                       |                             |                                   |
|             | 3.5<br>-     |                |             |                       |                                                                                                                                                                                        |                             |                                   |
|             | -            |                |             |                       |                                                                                                                                                                                        |                             |                                   |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 2.2 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                              | Samples<br>Tests<br>Remarks                              | Additional Observations                                                        |
|--------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|
| SFA    | 0.5          |                |             | Fill                  | Fill - Silty Sand, dark brown, heterogeneous, damp, loose, with inclusions of rootlets, shale and trace gravels       | BH16_0.15<br>PID = 6 ppm                                 |                                                                                |
|        | 1 <u>.0</u>  | 1.20           |             | Fill                  | Fill - Silty Clay, brown, damp, heterogeneous, low plasticity, soft, with inclusions of shale                         | BH16_1.10<br>PID = 4.3 ppm<br>BH16_1.60<br>PID = 4.2 ppm | No odour, ACM or staining                                                      |
|        | 2.0          | 1.90           |             | CL                    | Clay, brown with white / grey mottling, homogeneous, damp, stiff, medium plasticity  Borehole BH16 terminated at 2.2m | BH16_2.10<br>PID = 4.8 ppm                               | No odour, ACM or staining  No odour, ACM or staining  End of hole at 2.2 m bgs |
|        | 2.5          |                |             |                       |                                                                                                                       |                                                          |                                                                                |
|        | 3.5          |                |             |                       |                                                                                                                       |                                                          |                                                                                |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

| <b>D</b> 0. | 10 01        | amete          | ; (11111    | i): 150               | Elevation (m):                                                                                                                           |                             |                                                    |
|-------------|--------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| Method      | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                 | Samples<br>Tests<br>Remarks | Additional Observations                            |
| SFA         | -            |                |             | Fill                  | Fill - Grout Concrete, dry, dense, light grey, heterogeneous, with inclusions of gravel and boulders of rock                             | BH17_0.15<br>PID = 5.7 ppm  | No odour, ACM or staining                          |
|             | -            | 0.15           |             | Fill                  | Fill - Sandy Clay, grey with red / brown mottling, damp, heterogeneous, firm, medium plasticity, with inclusions of gravel and geofabric |                             |                                                    |
|             | 0 <u>.5</u>  |                |             |                       |                                                                                                                                          | BH17_0.50<br>PID = 3.6 ppm  |                                                    |
|             | _<br>_       |                |             |                       |                                                                                                                                          |                             | No odour, ACM or staining                          |
|             | 1.0          | 0.80           |             | Fill                  | Fill - Silty Clay, grey with red / brown mottling, damp, heterogeneous, firm, medium plasticity, with inclusions of trace gravel         |                             |                                                    |
|             | _<br>_       |                |             |                       |                                                                                                                                          | BH17_1.10<br>PID = 8.4 ppm  |                                                    |
|             | _            | 1.30           |             | CL                    | Clay, brown with dark grey mottling, hard, high plasticity, damp, homogeneous                                                            | _                           | Very slight organic odour, no ACM staining         |
|             | 1 <u>.5</u>  |                |             |                       |                                                                                                                                          | BH17_1.60<br>PID = 4.4 ppm  |                                                    |
|             | _<br>_       |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | 2.0          | 2.00           |             |                       | Borehole BH17 terminated at 2m                                                                                                           |                             | No odour, ACM or staining End of hole at 2.0 m bgs |
|             | -<br>-       |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | 2.5          |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | -            |                |             |                       |                                                                                                                                          |                             |                                                    |
|             |              |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | 3.0          |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | -<br>-       |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | 3 <u>.5</u>  |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | -<br>  -     |                |             |                       |                                                                                                                                          |                             |                                                    |
|             | 4.0          |                |             |                       |                                                                                                                                          |                             |                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                       | Samples<br>Tests<br>Remarks | Additional Observations                             |
|--------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|
| SFA    | -            |                |             | Fill                  | Fill - Silty Gravel, grey, dry, homogeneous, dense, medium gravel, angular, with inclusions of geofabric                       | BH18_0.15<br>PID = 5.1 ppm  | No odour, ACM or staining                           |
|        | 0.5          | 0.20           |             | Fill                  | Fill - Gravelly Sand, light grey, damp, medium dense, heterogeneous, with inclusions of shale, metal wire and geofabric        | BH18_0.50                   |                                                     |
|        | _<br>_<br>_  | 0.60           |             | Fill                  | Fill - Silty Clay, grey / brown, heterogeneous, damp, firm, medium plasticity, with inclusions of gravel, shale and metal wire | BH18_0.80<br>PID = 4.8 ppm  | No odour, ACM or staining                           |
|        | 1 <u>.0</u>  | 1.00           |             | CL                    | Clay, brown with grey mottling, heterogeneous, medium plasticity, stiff, with inclusions of trace shale                        | BH18_1.10<br>PID = 6.5 ppm  | No odour, ACM or staining                           |
|        | _            |                |             |                       | or race shale                                                                                                                  | PID = 6.5 ppm               | No odour, ACM or staining  End of hole at 1.3 m bgs |
|        | 1.5          |                |             |                       |                                                                                                                                |                             |                                                     |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                      | Samples<br>Tests<br>Remarks | Additional Observations                            |
|--------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| SFA    | _            |                |             | Fill                  | Fill - Crushed Concrete: Silty gravel, light grey, heterogeneous, dry, dense, with inclusions of asphalt                      | BH19_0.15<br>PID = 6.4 ppm  | No odour, ACM or staining                          |
|        |              | 0.20           |             | Fill                  | Fill - Crushed Concrete, sandy, light grey, medium sand, medium dense, with inclusions of gravel, shale, metal wire and metal |                             |                                                    |
|        | 0.5          |                |             |                       |                                                                                                                               | BH19_0.50<br>PID = 7.4 ppm  |                                                    |
|        |              | 0.70           |             | Fill                  | Fill - Sandy Clay, brown / grey, heterogeneous, damp, medium plasticity, firm, with inclusions of gravel and shale            | BH19_0.80<br>PID = 6.2 ppm  | No odour, ACM or staining                          |
|        | 1.0          |                |             |                       |                                                                                                                               |                             | No odour, ACM or staining                          |
|        | -            | 1.00           |             | CL                    | Clay, brown with red mottling, damp, heterogeneous, hard, high plasticity, with inclusions of shale                           | BH19_1.10<br>PID = 2.6 ppm  |                                                    |
|        | -            |                |             |                       |                                                                                                                               |                             | No odour, ACM or staining End of hole at 1.4 m bgs |
|        | 1.5          | 1.40           |             |                       | Borehole BH19 terminated at 1.4m                                                                                              |                             |                                                    |
|        | -            |                |             |                       |                                                                                                                               |                             |                                                    |
|        | -            |                |             |                       |                                                                                                                               |                             |                                                    |
|        | 2.0          |                |             |                       |                                                                                                                               |                             |                                                    |
|        | -            |                |             |                       |                                                                                                                               |                             |                                                    |
|        | 2 <u>.5</u>  |                |             |                       |                                                                                                                               |                             |                                                    |
|        | -            |                |             |                       |                                                                                                                               |                             |                                                    |
|        | -            |                |             |                       |                                                                                                                               |                             |                                                    |
|        | 3.0          |                |             |                       |                                                                                                                               |                             |                                                    |
|        |              |                |             |                       |                                                                                                                               |                             |                                                    |
|        | 3.5          |                |             |                       |                                                                                                                               |                             |                                                    |
|        | _            |                |             |                       |                                                                                                                               |                             |                                                    |
|        | _            |                |             |                       |                                                                                                                               |                             |                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

| Method | Depth (mbgs)                                                     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                              | Samples<br>Tests<br>Remarks | Additional Observations                            |
|--------|------------------------------------------------------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| SFA    | -                                                                |                |             | Fill                  | Fill - Silty Gravel, light grey, heterogeneous, dry, dense, with inclusionsa of plastic and asphalt                                   | BH20_0.15<br>PID = 3.2 ppm  | No odour, ACM or staining                          |
|        | -<br>0.5                                                         | 0.20           |             | Fill                  | Fill - Gravelly Silty Sand, brown / light grey, damp, heterogeneous, medium dense, with inclusions of shale and cobbles of rock       | BH20_0.50<br>PID = 4.1 ppm  |                                                    |
|        | -<br>-<br>-<br>1 <u>.0</u>                                       | 0.60           |             | Fill                  | Fill - Silty Clay, brown / red with light grey mottling, damp, hard, medium plasticity, heterogeneous, with inclusions of trave shale |                             | No odour, ACM or staining                          |
|        | _                                                                |                |             |                       |                                                                                                                                       | BH20_1.10<br>PID = 2.9 ppm  | No odour, ACM or staining                          |
|        |                                                                  | 1.20           |             | CL-ML                 | Silty Clay, red with light grey mottling, damp, homogeneous, high plasticity, stiff                                                   |                             |                                                    |
|        | 1.5                                                              |                |             |                       |                                                                                                                                       | BH20_1.60<br>PID = 6.8 ppm  | No odour, ACM or staining End of hole at 1.6 m bgs |
|        | 2.0<br>-<br>-<br>-<br>2.5<br>-<br>-<br>3.0<br>-<br>-<br>-<br>3.5 |                |             |                       |                                                                                                                                       |                             |                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                 | Samples<br>Tests<br>Remarks           | Additional Observations                              |
|--------|------------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|
| SFA    | -                | 0.20           |             | Fill<br>Fill          | Fill - Gravelly Silty Sand, medium dense, grey, sub-angular, with inclusions of rootlets                                                                 | BH21_0.15<br>PID = 1.8 ppm            | No odour, ACM or staining                            |
|        | _                | 0.20           |             | 1 111                 | Fill - Gravelly Silty Clay, brown / red with white mottling, heterogeneous, stiff, medium plasticity, with inclusions of trace sandstone and trace shale | BH21_0.5<br>PID = 2.1 ppm             | No odour, ACM or staining                            |
|        | 0 <u>.5</u>      | 0.50           |             | SG-SM                 | Gravelly Silty Sand, brown, heterogeneous, moist, dense, with inclusions of shale                                                                        | PID = 2.1 ppm  BH21_1.1 PID = 2.8 ppm | No odour, ACM or staining  No odour, ACM or staining |
|        | -<br>1 <u>.5</u> | 1.20           | ò (         |                       | Borehole BH21 terminated at 1.2m                                                                                                                         |                                       | End of hole at 1.2 m bgs                             |
|        | 2.0              |                |             |                       |                                                                                                                                                          |                                       |                                                      |
|        | 2.5              |                |             |                       |                                                                                                                                                          |                                       |                                                      |
|        | 3.0              |                |             |                       |                                                                                                                                                          |                                       |                                                      |
|        | 3 <u>.5</u>      |                |             |                       |                                                                                                                                                          |                                       |                                                      |
|        | 4.0              |                |             |                       |                                                                                                                                                          |                                       |                                                      |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

| Method | Depth (mbgs)          | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                         | Samples<br>Tests<br>Remarks | Additional Observations   |
|--------|-----------------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| SFA    | -<br>-                | 0.15           |             | Fill<br>Fill          | Fill - Sand, brown / yellow, damp, heterogeneous, soft, with inclusions of gravel and rootlets  Fill - Silty Sand, dark brown / grey, damp, heterogeneous, soft, with inclusions of trave gravel | BH22_0.15<br>PID = 8.4 ppm  | No odour, ACM or staining |
|        | -<br>0 <u>.5</u>      |                |             |                       |                                                                                                                                                                                                  | BH22_0.5<br>PID = 2.4 ppm   |                           |
|        | -<br>-                | 0.80           |             | SHALE                 | Weathered Shale, red / yellow, damp, firm                                                                                                                                                        |                             | No odour, ACM or staining |
|        | 1 <u>.0</u><br>_      |                |             |                       |                                                                                                                                                                                                  | BH22_1.10<br>PID = 4.4 ppm  | No odour, ACM or staining |
|        | 1.5                   | 1.40           |             |                       | Borehole BH22 terminated at 1.4m                                                                                                                                                                 |                             | End of hole at 1.4 m bgs  |
|        | -<br>-                |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | 2 <u>.0</u><br>_      |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | _<br>_<br>2 <u>.5</u> |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | -<br>-<br>-           |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | 3 <u>.0</u>           |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | _<br>_<br>_<br>3.5    |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | -                     |                |             |                       |                                                                                                                                                                                                  |                             |                           |
|        | 4.0                   |                |             |                       |                                                                                                                                                                                                  |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

| nomina  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                            | Samples<br>Tests<br>Remarks | Additional Observations   |
|---------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| ָב<br>ס | -            |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, damp, very loose, with inclusions of rootlets and anthropotic              | BH23_0.15<br>PID = 2.6 ppm  | No odour, ACM or staining |
|         |              | 0.20           |             | Fill                  | Fill - Silty Clay, brown / white with grey / red mottling, medium plasticity, damp, homogeneous                     |                             |                           |
|         | 0.5          |                |             |                       |                                                                                                                     | BH23_0.5<br>PID = 4.4 ppm   | No odour, ACM or staining |
|         | 1.0          | 0.60           |             | Fill                  | Fill - Silty Clayey Sand, brown, damp, homogeneous, loose, (firm clay)                                              |                             |                           |
|         | -            |                |             |                       |                                                                                                                     | BH23_1.1<br>PID = 4.3 ppm   | <u></u>                   |
|         | -            | 1.20           |             | Fill                  | Fill - Silty Sand, dark brown / black, homogeneous, damp, very loose                                                |                             | No odour, ACM or staining |
|         | 1 <u>.5</u>  | 1.40           |             | Fill                  | Fill - Silty Sand, dark brown / black, heterogeneous, damp, very loose, with inclusions of metal and cloats of clay | BH23_1.4<br>PID = 3.5 ppm   | No odour, ACM or staining |
|         | -            | 1.70           |             | CL-ML                 | Silty Clay, brown/ grey, damp, homogeneous, high plasticity, hard                                                   | BH23_1.8<br>PID = 6.1 ppm   | No odour, ACM or staining |
|         | -            |                |             |                       |                                                                                                                     | PID = 6.1 ppm               | No odour, ACM or staining |
|         | 2.0          | 2.00           |             |                       | Borehole BH23 terminated at 2m                                                                                      |                             | End of hole 2.0 m bgs     |
|         | -            |                |             |                       |                                                                                                                     |                             |                           |
|         | _<br>2.5     |                |             |                       |                                                                                                                     |                             |                           |
|         | -            |                |             |                       |                                                                                                                     |                             |                           |
|         | -            |                |             |                       |                                                                                                                     |                             |                           |
|         | 3.0          |                |             |                       |                                                                                                                     |                             |                           |
|         | -            |                |             |                       |                                                                                                                     |                             |                           |
|         | -            |                |             |                       |                                                                                                                     |                             |                           |
|         | 3.5          |                |             |                       |                                                                                                                     |                             |                           |
|         | _            |                |             |                       |                                                                                                                     |                             |                           |
|         |              |                |             |                       |                                                                                                                     |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

| Method | Depth (mbgs)                                                | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                       | Samples<br>Tests<br>Remarks | Additional Observations                             |
|--------|-------------------------------------------------------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|
| SFA    | _                                                           |                |             | Fill                  | Fill - Silty Gravelly Sand, brown, damp, heterogeneous, medium dense, coarse gravel, with inclusions of trace brick, rootlets and bits of wood | BH24_0.1<br>PID = 6.8 ppm   | No odour, ACM or staining                           |
|        | _                                                           | 0.20           |             | Fill                  | Fill - Silty Clay, brown / light grey mottling, heterogeneous, damp, hard, medium plasticity with inclusions of trace gravels                  |                             |                                                     |
|        | 0.5                                                         |                |             |                       |                                                                                                                                                | BH24_0.5<br>PID = 11.4 ppm  |                                                     |
|        | _                                                           |                |             |                       |                                                                                                                                                |                             | No odour, ACM or staining                           |
|        | _<br>1 <u>.0</u>                                            | 0.80           |             | CL-ML                 | Silty Clay, brown, damp, medium plasticity, hard, heterogeneous                                                                                |                             |                                                     |
|        | _                                                           |                |             |                       |                                                                                                                                                | BH24_1.1<br>PID = 2.5 ppm   |                                                     |
|        |                                                             | 1.30           |             | CL                    | Clay, brown, homogeneous, damp, hard, medium plasticity                                                                                        |                             | No odour, ACM or staining                           |
|        | 1 <u>.5</u>                                                 |                |             |                       |                                                                                                                                                | BH24_1.5<br>PID = 1.4 ppm   | No odour, ACM or staining  End of hole at 1.6 m bgs |
|        | 2.0<br>-<br>-<br>2.5<br>-<br>-<br>3.0<br>-<br>-<br>-<br>3.5 |                |             |                       |                                                                                                                                                |                             |                                                     |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                        | Samples<br>Tests<br>Remarks | Additional Observations   |
|--------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| 3      |              |                |             | Fill                  | Fill - Concrete Slab                                                                            |                             |                           |
| A L    | -            | 0.20           |             | Fill                  | Fill - Silty Clay, brown / white with red mottling, damp, homogeneous, stiff, medium plasticity | BH25_0.3<br>PID = 3.4 ppm   | -                         |
|        | -            |                |             |                       |                                                                                                 |                             | No odour, ACM or staining |
|        | 0.5          | 0.50           |             | Fill                  | Fill - Clay, brown / red, damp, homogeneous, hard, high plastcity                               | BH25_0.6<br>PID = 3.7 ppm   | -                         |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        | 1.0          | 1.00           |             | CL                    | Clay, damp, brown with light red mottling, homogeneous, hard, high plasticity                   |                             | No odour, ACM or staining |
|        | _            |                |             |                       | , in a second                                                                                   | BH25_1.2<br>PID = 7.2 ppm   | _                         |
|        |              |                |             |                       |                                                                                                 |                             | No odour, ACM or staining |
| 4      | 1.5          | 1.50           |             |                       | Borehole BH25 terminated at 1.5m                                                                |                             | End of hole at 1.5 m bgs  |
|        | -            | 1.50           |             |                       | Bridiole Brizs terminated at 1.5m                                                               |                             |                           |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        |              |                |             |                       |                                                                                                 |                             |                           |
|        | 2.0          |                |             |                       |                                                                                                 |                             |                           |
|        | 4            |                |             |                       |                                                                                                 |                             |                           |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        | 2.5          |                |             |                       |                                                                                                 |                             |                           |
|        | _            |                |             |                       |                                                                                                 |                             |                           |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        | 3.0          |                |             |                       |                                                                                                 |                             |                           |
|        |              |                |             |                       |                                                                                                 |                             |                           |
|        | _            |                |             |                       |                                                                                                 |                             |                           |
|        | 4            |                |             |                       |                                                                                                 |                             |                           |
|        | 4            |                |             |                       |                                                                                                 |                             |                           |
|        | 3.5          |                |             |                       |                                                                                                 |                             |                           |
|        | -            |                |             |                       |                                                                                                 |                             |                           |
|        | _            |                |             |                       |                                                                                                 |                             |                           |
|        |              |                | 1 1         |                       |                                                                                                 |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                      | Samples<br>Tests<br>Remarks | Additional Observations   |
|--------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| SFA    | -            |                |             | Fill                  | Fill - Silty Clay, light grey with red mottling, damp, heterogeneous, hard, medim plasticity, with inclusions of gravel and asphalt           | BH26_0.1<br>PID = 7 ppm     | No odour, ACM or staining |
|        | 0.5          | 0.20           |             | Fill                  | Fill - Silty Clay, light grey with red mottling, damp, heterogeneous, hard, medim plasticity, with inclusions of shale and brick              | BH26_0.5<br>PID = 2.6 ppm   |                           |
|        | 1 <u>.0</u>  |                |             |                       |                                                                                                                                               | BH26_1.1<br>PID = 6.4 ppm   | No odour, ACM or staining |
|        | _            | 1.50           |             | CL-ML                 | Silty Clay, brown with red mottling, hard, heterogeneous, damp, medium plasticity, with inclusions of shale, colour change to grey with depth | BH26_1.6<br>PID = 5.5 ppm   | No odour, ACM or staining |
|        | 2.0          | 1.80           |             |                       | Borehole BH26 terminated at 1.8m                                                                                                              |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:25/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                | Samples<br>Tests<br>Remarks | Additional Observations     |
|--------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| SFA    | -            |                |             | Fill                  | Fill - Silty Sand (topsoil), dark brown, heterogeneous, loose, with inclusions of plastic, trace shale and rootlets     | BH27_0.1<br>PID = 0.8 ppm   | _                           |
|        | -            | 0.30           |             | Fill                  | Fill - Silty Sand, dark brown, heterogeneous, loose, with inclusions of trace shale and rootlets                        | BH27 0.5                    | No odour, ACM or staining   |
|        | 0.5          | 0.60           |             | Fill                  | Fill - Gravelly Silty Sand, brown / grey, dry, heterogeneous, medium dense, with inclusions of rootlets and trace shale | BH27_0.5<br>PID = 0.9 ppm   | No odour, ACM or staining   |
|        | -            |                |             |                       | inclusions of rootlets and trace shale                                                                                  | BH27_0.8<br>PID = 1.8 ppm   | No odour, ACM or staining   |
|        | 1.0          | 0.90           |             | Fill                  | Fill - Silty Clayey Sand, brown / grey, stiff, homogeneous, dry                                                         | BH27_1.1<br>PID = 5 ppm     | - No odour, Aow or staining |
|        | -            | 1.20           |             | CL-ML                 | Silty Clay, grey with light brown mottling, homogeneou, dry, hard, medium plasticity                                    | - 110 – 3 ppm               | No odour, ACM or staining   |
|        | 1.5          |                |             |                       |                                                                                                                         | BH27_1.4<br>PID = 5.3 ppm   | End of hole 1.5 m bgs       |
|        | -            | 1.50           |             |                       | Borehole BH27 terminated at 1.5m                                                                                        |                             |                             |
|        | -            |                |             |                       |                                                                                                                         |                             |                             |
|        | 2.0          |                |             |                       |                                                                                                                         |                             |                             |
|        | -            |                |             |                       |                                                                                                                         |                             |                             |
|        | 2 <u>.5</u>  |                |             |                       |                                                                                                                         |                             |                             |
|        | -            |                |             |                       |                                                                                                                         |                             |                             |
|        | 3.0          |                |             |                       |                                                                                                                         |                             |                             |
|        | -            |                |             |                       |                                                                                                                         |                             |                             |
|        | -            |                |             |                       |                                                                                                                         |                             |                             |
|        | 3.5          |                |             |                       |                                                                                                                         |                             |                             |
|        | -            |                |             |                       |                                                                                                                         |                             |                             |
|        | 4.0          |                |             |                       |                                                                                                                         |                             |                             |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                            | Samples<br>Tests<br>Remarks | Additional Observations                            |
|--------|------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| SFA    | -                | 0.20           |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, heterogeneous, medium dense, with inclusions of gravel, brick and plastic  Fill - Silty Sand, brown, heterogeneous, heterogeneous, medium dense, with inclusions of gravel | BH28_0.1<br>PID = 1.6 ppm   | No odour, ACM or staining                          |
|        | 0.5              |                |             |                       | inclusions of gravel                                                                                                                                                                                                | BH28_0.5<br>PID = 3.8 ppm   | _                                                  |
|        | -<br>-           | 0.80           |             | Fill                  | Fill - Silty Clay, brown / red, damp, heterogeneous, hard, medium plasticity, with inclusions of shale, metal rod and rootlets                                                                                      |                             | No odour, ACM or staining                          |
|        | 1 <u>.0</u><br>_ |                |             |                       |                                                                                                                                                                                                                     | BH28_1.1<br>PID = 2.6 ppm   | _                                                  |
|        | 1.5              | 1.40           |             | CL                    | Clay, red / brown with grey mottling, homogeneous, damp, hard, medium plasticity                                                                                                                                    | _                           | No odour, ACM or staining                          |
|        | -                | 1.80           |             |                       | Borehole BH28 terminated at 1.8m                                                                                                                                                                                    | BH28_1.7<br>PID = 7.9 ppm   | No odour, ACM or staining End of hole at 1.8 m bgs |
|        | 2.0              | 1.60           |             |                       | Buleriule Brizo terrimitated at 1.6mi                                                                                                                                                                               |                             |                                                    |
|        | _<br>_           |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |
|        | 2 <u>.5</u>      |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |
|        | -<br>-<br>-      |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |
|        | 3 <u>.0</u><br>_ |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |
|        | 3.5              |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |
|        | _                |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |
|        | 4 <u>.0</u>      |                |             |                       |                                                                                                                                                                                                                     |                             |                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.8 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                             | Samples<br>Tests<br>Remarks | Additional Observations                                           |
|--------|------------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|
| H      | -                |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, dry, medium dense, with inclusions of twigs and gravel      | BH29_0.1<br>PID = 2.2 ppm   | QA20190124RC_01 /<br>QC20190124RC_01<br>No odour, ACM or staining |
|        | 0.5              | 0.30           |             | Fill                  | Fill - Silty Clayey Sand, light brown / yellow, heterogeneous, damp, loose, with inclusions of shale | BH29_0.5<br>PID = 1.2 ppm   | _                                                                 |
|        | _<br>_<br>1.0    | 0.80           |             |                       | Borehole BH29 terminated at 0.8m                                                                     |                             | No odour, ACM or staining End of hole at 0.8 m bgs                |
|        | -                |                |             |                       |                                                                                                      |                             |                                                                   |
|        | -<br>1 <u>.5</u> |                |             |                       |                                                                                                      |                             |                                                                   |
|        | 2.0              |                |             |                       |                                                                                                      |                             |                                                                   |
|        | -                |                |             |                       |                                                                                                      |                             |                                                                   |
|        | 2 <u>.5</u>      |                |             |                       |                                                                                                      |                             |                                                                   |
|        | 3.0              |                |             |                       |                                                                                                      |                             |                                                                   |
|        | -<br>-<br>-      |                |             |                       |                                                                                                      |                             |                                                                   |
|        | 3 <u>.5</u>      |                |             |                       |                                                                                                      |                             |                                                                   |
|        | -                |                |             |                       |                                                                                                      |                             |                                                                   |



Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24/01/2019Eastings (GDA 94):Logged By:RC, MNNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.8 Reference Level: Ground Surface

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                              | Samples<br>Tests<br>Remarks | Additional Observations                            |
|--------|------------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| HA     | -                |                |             | Fill                  | Fill - Silty Clayey Sand, brown , heterogeneous, dry, loose, with inclusions of twigs and trace shale | BH30_0.1<br>PID = 2 ppm     | No odour, ACM or staining                          |
|        | 7                | 0.30           |             | Fill                  | Fill - Silty Sand, brown, dry, heterogeneous, with inclusions of shale, well graded                   |                             | No odour, ACM or staining                          |
|        | 0.5              | 0.40           |             | CL-ML                 | Silty Clay, light grey / brown, heterogeneous, damp, stiff, low plasticity, with inclusions of shale  | BH30_0.5<br>PID = 2.2 ppm   |                                                    |
|        |                  |                |             |                       |                                                                                                       |                             | No odour, ACM or staining End of hole at 0.8 m bgs |
|        | 1.0<br>- 1.5<br> | 0.80           |             |                       | Borehole BH30 terminated at 0.8m                                                                      |                             | End of note at 0.6 m bgs                           |
|        | 3.0              |                |             |                       |                                                                                                       |                             |                                                    |
|        | 3 <u>.5</u>      |                |             |                       |                                                                                                       |                             |                                                    |
|        | -                |                |             |                       |                                                                                                       |                             |                                                    |



# **Appendix E PID Calibration and Decontamination Field Forms**

# Field Equipment Calibration and Decontamination



PROJECT NAME: Chartswood Education Precinctproject No: 55579
FIELD DATES: 21/1/19 - 25/1/19
FIELD STAFF: MN, RC

calibration summary

EQUIPMENT: PID

Calibration standard: 100ppm isobutylene.

| DATE     | TIME   | READING (ppm <sub>v</sub> ) | COMMENTS    |
|----------|--------|-----------------------------|-------------|
| 21/1/19  | 7:00am | 0                           | Ambient     |
| 21/1/19  | 7:03am | 100                         | isobutylene |
| 21/1/19  | 7:05an | 100.2                       | Bump.       |
| 22/1/19  | 7.00am | 0                           | Ambient     |
| 22/1/19  |        | 001                         | isobutylene |
| 22/1/19  |        | 100.5                       | bump.       |
| 23/1/19  | 7:00am | 0                           | Ambient     |
| 23/1/19  | 7:03am | 100                         | isobutylene |
| 23/1/19  | 7:06am | 99.8                        | bump        |
| 24/1/19- |        | 0                           | Anbient.    |
| 24/1/197 |        |                             |             |
| 24/1/197 | 1:05am | 1801                        | Bump        |

| DECONTAMINATION SUMMARY                                                                                                                                        |            |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|
| EQUIPMENT: Auger.                                                                                                                                              |            |      |      |
| washed with decontamination water before                                                                                                                       | e co1      | lect | win  |
| each sample collection.                                                                                                                                        | a fo       | r    |      |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?                                                                          | (V)        | N    | NA   |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                             | <u> </u>   | N    | NA   |
| 3. Was the equipment contaminated with grease, tar or similar material?  If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? | Y<br>Y     | (N)  | (NA) |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                    | (r)        | N    | NA   |
| 5. Was the equipment rinsed with clean water?                                                                                                                  | <u>(3)</u> | N    | NA   |
| 6. Was the equipment then rinsed with deionised water?                                                                                                         | <u> </u>   | N N  | NA.  |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                   |            |      | (NA) |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                        |            |      | (NA) |
|                                                                                                                                                                |            |      |      |

# Field Equipment Calibration and Decontamination



| PROJECT NA       | ME: Cha          | tswood Ed                                                                   | PROJECT                               | rno: 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 579         | 1           |
|------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| FIELD DATES      | 21/1             | 119-25/1/19                                                                 | FIELD ST                              | AFF: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ν, Ι        | RC          |
| CALIBRATION      | SUMMARY          |                                                                             |                                       | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del> | <del></del> |
| EQUIPMENT:       |                  | ) .                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| CALIBRATION      | <u> </u>         | <del></del>                                                                 | 1101-11 101-1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  |                                                                             | sobutylene                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del> |             |
| DATE             | TIME             | READING (ppm <sub>v</sub> )                                                 | COMMENTS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| 25/1/19          | 7:00ar           | w 0                                                                         | Ambient                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| 25/1/19          | 7:05cm           | 100                                                                         | isobutylene                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| 25/1/19          | 7:07a            | m 100.2                                                                     | bump.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  |                                                                             |                                       | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |
|                  | <del></del>      |                                                                             |                                       | White the same the supplemental black design on the same state of |             |             |
|                  |                  |                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 77          |
|                  |                  |                                                                             | • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  |                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  |                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  | ·                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  |                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| <del>_</del>     | <del></del>      |                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| DECONTAMINA      | <del></del>      | <del> </del>                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| EQUIPMENT:       |                  | Aid                                                                         | ger<br>tamination wa                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
| collect          | a transfer       | of her bucon                                                                | tamination wa                         | ter b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | repai       | re          |
|                  |                  | for each s                                                                  | aples. Nitrile que ample collection   | , v E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :vev        | *           |
|                  |                  | inated appropriately prior to sampli                                        | TR at each location?                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  | raping, brushing or wiping with disp                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | NA<br>NA    |
| . Was the equipr | ment contamina   | ted with grease, tar or similar mate<br>eaned or rinsed with pesticide-grad | rial?                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y Ø         | NA<br>NA    |
|                  |                  | used to wash the equipment?                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N (§        | NA          |
| . Was the equipn | nent rinsed with | clean water?                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>    | NA          |
| . Was the equipm | nent then rinsed | with deionised water?                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | NA NA       |
| Were all sample  | containers clea  | ned and acid or solvent washed prid                                         | or to sample collection?              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | (NA)        |
| ERE ANY ADDITI   | ONAL DECONTA     | AMINATION MEASURES REQUIRED                                                 | PROVIDE DETAILS.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                  |                  |                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |



# Appendix F QAQC Assessment

Table 1 - QA/QC Results Summary

| Data Quality Indicator                                                                                 | Results                                                                                                                                                                  | DQI met?             |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                        | Precision                                                                                                                                                                |                      |
| Soil                                                                                                   |                                                                                                                                                                          |                      |
| Soil Blind duplicates (intra laboratory)                                                               | 0-178% RPD                                                                                                                                                               | Partial <sup>1</sup> |
| , , , , , , , , , , , , , , , , , , , ,                                                                | Intra laboratory samples were analysed at a rate                                                                                                                         |                      |
|                                                                                                        | greater than 1 in 20 samples.                                                                                                                                            |                      |
| Soil Blind triplicates (inter laboratory)                                                              | 0-140% RPD                                                                                                                                                               | Partial <sup>1</sup> |
| , , , , , , , , , , , , , , , , , , , ,                                                                | Inter laboratory samples were analysed at a rate                                                                                                                         |                      |
|                                                                                                        | greater than 1 in 20 samples.                                                                                                                                            |                      |
|                                                                                                        | 0-110% RPD                                                                                                                                                               | Partial              |
| Laboratory duplicates                                                                                  | Intra laboratory samples were analysed at a rate                                                                                                                         |                      |
|                                                                                                        | greater than 1 in 20 samples.                                                                                                                                            |                      |
|                                                                                                        | Accuracy                                                                                                                                                                 | ı                    |
| Soil                                                                                                   |                                                                                                                                                                          |                      |
| Surrogate spikes                                                                                       | 50-129% Recovery                                                                                                                                                         | Partial <sup>1</sup> |
|                                                                                                        | Surrogate spikes were completed for all organic                                                                                                                          |                      |
|                                                                                                        | samples                                                                                                                                                                  |                      |
| Laboratory Control Samples                                                                             | 74-123% Recovery                                                                                                                                                         | Yes                  |
| ,                                                                                                      | Laboratory control samples were completed for all                                                                                                                        |                      |
|                                                                                                        | organic and metals samples                                                                                                                                               |                      |
| Matrix spikes                                                                                          | 49-130% Recovery                                                                                                                                                         | Partial <sup>1</sup> |
|                                                                                                        | Matrix spikes were completed for all organic and                                                                                                                         |                      |
|                                                                                                        | metals samples                                                                                                                                                           |                      |
|                                                                                                        | Representativeness                                                                                                                                                       |                      |
| Soil                                                                                                   |                                                                                                                                                                          |                      |
| Sampling appropriate for media and                                                                     | All sampling conducted in accordance with JBS&G                                                                                                                          | Yes                  |
| analytes                                                                                               | procedures                                                                                                                                                               |                      |
| Laboratory blanks                                                                                      | <lor< td=""><td>Yes</td></lor<>                                                                                                                                          | Yes                  |
| Samples extracted and analysed within                                                                  | All samples were extracted and analysed within holding                                                                                                                   | Yes                  |
| nolding times.                                                                                         | times less than 14 days.                                                                                                                                                 |                      |
| Trip spikes                                                                                            | NA                                                                                                                                                                       | No <sup>1</sup>      |
| Гrip blanks                                                                                            | NA                                                                                                                                                                       | No <sup>1</sup>      |
| Rinsate blank                                                                                          | <lor, equal="" lor<="" results="" td="" to="" two=""><td>Partial<sup>1</sup></td></lor,>                                                                                 | Partial <sup>1</sup> |
|                                                                                                        | Comparability                                                                                                                                                            |                      |
| Standard operating procedures used for                                                                 | Field staff used same standard operating procedures                                                                                                                      | Yes                  |
| sample collection & handling                                                                           | throughout works                                                                                                                                                         |                      |
| Standard analytical methods used                                                                       | Standard analytical methods used.                                                                                                                                        | Yes                  |
| Consistent field conditions, sampling staff                                                            | Sampling was conducted by a field scientist using                                                                                                                        | Yes                  |
| and laboratory analysis                                                                                | standard operating procedures in the same conditions                                                                                                                     |                      |
|                                                                                                        | throughout the works. The laboratories remained                                                                                                                          |                      |
| <del> </del>                                                                                           | consistent throughout the investigation.                                                                                                                                 |                      |
| Limits of reporting appropriate and                                                                    | Limits of reporting were consistent and appropriate.                                                                                                                     | Yes                  |
|                                                                                                        |                                                                                                                                                                          |                      |
| consistent                                                                                             |                                                                                                                                                                          |                      |
|                                                                                                        | Completeness                                                                                                                                                             | V                    |
| Soil/water description & COCs completed                                                                | All bore logs and COCs were completed appropriately.                                                                                                                     | Yes                  |
| Soil/water description & COCs completed Appropriate documentation                                      | All bore logs and COCs were completed appropriately.  All appropriate field documentation is included in the Appendices.                                                 | Yes                  |
| Soil/water description & COCs completed Appropriate documentation Satisfactory frequency/result for QC | All bore logs and COCs were completed appropriately.  All appropriate field documentation is included in the Appendices.  The QC results are considered adequate for the |                      |
| Soil/water description & COCs completed Appropriate documentation                                      | All bore logs and COCs were completed appropriately.  All appropriate field documentation is included in the Appendices.                                                 | Yes                  |

<sup>1.</sup> See discussion of DQI exceedances below.



### **QA/QC Discussion**

### **Precision**

### <u>Duplicates (intra-laboratory) and triplicate (Inter-laboratory) samples</u>

The rate of duplicate and triplicate sampling and analysis was 2 duplicates/ triplicates per 30 primary samples for heavy metals, asbestos and PAH (6.7 %), 1 duplicate/ triplicate per 5 primary samples for TRH/BTEX, OCPs and OCPs (20 %), and 1 duplicate/ triplicate per 2 primary samples for PCBs (50%). As such, the frequency of duplicate sample analysis for all key contaminants of concern met/exceeded the nominated 5 % frequency.

### **Laboratory Duplicates**

The laboratory completed a total of 9 laboratory duplicate samples, meeting the JBS&G acceptance criteria of 1 in 20 samples. Nine analyses from two laboratory duplicate samples exceeded the JBS&G DQI of 0%-50%. JBS&G note that reported RPDs pass the Eurofins | mgt's QC - Acceptance Criteria and as such are not considered to affect the precision of results.

### **Accuracy**

### **Laboratory Control Samples**

Laboratory control samples were generally within the range of 70-130% RPD for all analytes.

### Soil Surrogate Spikes

Surrogate spike exceedances are considered acceptable as they are within the laboratory acceptance criteria of 50-150% recovery for surrogate spikes.

### Soil Matrix Spikes

Matrix spike recoveries were within the acceptable range of 70-130% with the exception of sample S19-Ja24092 (benzene recovery 49% and toluene recovery 60%). These recoveries are not considered to be reflective of an unacceptable level of accuracy in the dataset as an acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

### Representativeness

The extraction and analysis of selected samples was completed within the recommended holding times for all analytes.

JBS&G note that no trip spikes or trip blanks (TS/TB) were analysed as part of the assessment herein. Notwithstanding, JBS&G note that all sample handling procedures, including the storage of samples on ice were adhered to prior to, and during shipment to the testing laboratory. As such, JBS&G do not consider the omission of TB/TS samples adversely affect the representativeness of the data set. Furthermore, JBS&G note that the data set does not report the presence of any volatile hydrocarbons within samples.

All laboratory blanks analysed reported no concentrations above the laboratory LOR.

All field equipment was decontaminated and calibrated appropriately.

A rinsate sample was collected following decontamination of all non-disposable sampling equipment for the intrusive investigation. All analyte concentrations in the rinsate blanks were below the laboratory limit of reporting (LOR) with the exception of S19-Ja24422, which returned results equal to the LOR for 0.0001 for DDT+DDE+DDD (Total) and 4.4′-DDT. JBS&G does not consider this result indicative of contamination

### Comparability

Eurofins | mgt, the primary laboratory, and Envirolab Services, the secondary laboratory, are NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the



analytical data were comparable between laboratories as indicated by the results of duplicate analysis. Where different LORs were adopted by the laboratories, consideration of the data set was not impacted.

The samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

### **Completeness**

All laboratory and field documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix H**.

The frequency of analysis of all QC samples was considered appropriate and valid.

### Sensitivity

The adopted analytical methods provided suitable LORs with respect to the adopted site assessment criteria for all mediums.

### **QA/QC** Conclusions

The field sampling and handling procedures across the site produced QA/QC results which indicate that data collected is of an acceptable quality.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



# Appendix G Statistical Assessment of B(a)P

|                                                                                                                      | Α         | В            | С                                    | D                                                                                                                                                                         | E                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G                                                                        | Н                      |                                                |                                             | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K                                                                                                                        |                                          | L                                            |
|----------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|
| 1                                                                                                                    |           | _            |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for Uncenso                                                              |                        | Data Sets                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,                                                                                                                       |                                          |                                              |
| 2                                                                                                                    |           |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 3                                                                                                                    |           | User Selec   | ted Options                          |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 4                                                                                                                    | Date      | e/Time of Co | <u> </u>                             | 26/02/2019 2:2                                                                                                                                                            |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 5                                                                                                                    |           |              | From File                            | WorkSheet.xls                                                                                                                                                             | 5                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 6                                                                                                                    |           |              | Precision                            | OFF                                                                                                                                                                       |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 7                                                                                                                    |           | Confidence C |                                      | 95%                                                                                                                                                                       |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 8                                                                                                                    | Number of | Bootstrap C  | perations                            | 2000                                                                                                                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 9                                                                                                                    |           |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 10                                                                                                                   | BaP       |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 12                                                                                                                   |           |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 13                                                                                                                   |           |              |                                      |                                                                                                                                                                           |                                                                                          | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Statistics                                                               |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 14                                                                                                                   |           |              | Total I                              | Number of Obse                                                                                                                                                            | ervations                                                                                | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                        | Numbe                                          | er of Dist                                  | inct O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bservat                                                                                                                  | ions                                     | 5                                            |
| 15                                                                                                                   |           |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        | Numbe                                          | er of Miss                                  | ing O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bservat                                                                                                                  | ions                                     | 4                                            |
| 16                                                                                                                   |           |              |                                      | N                                                                                                                                                                         | Minimum                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                                                                                                                        | lean                                     | 0.788                                        |
| 17                                                                                                                   |           |              |                                      | N                                                                                                                                                                         | /laximum                                                                                 | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me                                                                                                                       | dian                                     | 0.6                                          |
| 18                                                                                                                   |           |              |                                      |                                                                                                                                                                           | SD                                                                                       | 0.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                        |                                                | S                                           | Std. Er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ror of M                                                                                                                 | lean                                     | 0.118                                        |
| 19                                                                                                                   |           |              |                                      | Coefficient of V                                                                                                                                                          | Variation                                                                                | 1.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skewr                                                                                                                    | ness                                     | 5.154                                        |
| 20                                                                                                                   |           |              |                                      | Mean of logg                                                                                                                                                              | ged Data                                                                                 | -0.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                        |                                                | S                                           | SD of l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ogged [                                                                                                                  | Data                                     | 0.423                                        |
| 21                                                                                                                   |           |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
|                                                                                                                      |           |              |                                      |                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 22                                                                                                                   |           |              |                                      |                                                                                                                                                                           | •                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Free UC                                                             |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 23                                                                                                                   |           |              |                                      |                                                                                                                                                                           | •                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Free UC<br>ernible Distri                                           |                        |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 23<br>24                                                                                                             |           |              |                                      |                                                                                                                                                                           | do not fo                                                                                | llow a Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ernible Distri                                                           | bution (0              |                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          |                                              |
| 23<br>24<br>25                                                                                                       |           |              | 05% N                                | Data                                                                                                                                                                      | do not fo                                                                                | llow a Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          | bution (C              | 0.05)                                          | divisted for                                | or Sko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wnocc)                                                                                                                   |                                          |                                              |
| 23<br>24<br>25<br>26                                                                                                 |           |              | 95% N                                | Data                                                                                                                                                                      | do not fo                                                                                | llow a Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ernible Distri                                                           | bution (Control on 95° | 0.05)<br>% UCLs (Ad                            | -                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                          | 1 075                                        |
| 23<br>24<br>25<br>26<br>27                                                                                           |           |              | 95% No                               | Data                                                                                                                                                                      | do not fo                                                                                | llow a Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ernible Distri                                                           | bution (Control on 95° | 0. <b>05)</b><br>% UCLs (Ad<br>95% Adjust      | ed-CLT (                                    | JCL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chen-19                                                                                                                  | 995)                                     | 1.075                                        |
| 23<br>24<br>25<br>26<br>27<br>28                                                                                     |           |              | 95% N                                | Data                                                                                                                                                                      | do not fo                                                                                | llow a Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ernible Distri                                                           | bution (Control on 95° | 0.05)<br>% UCLs (Ad                            | ed-CLT (                                    | JCL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chen-19                                                                                                                  | 995)                                     | 1.075                                        |
| 23<br>24<br>25<br>26<br>27<br>28<br>29                                                                               |           |              | 95% N                                | Data                                                                                                                                                                      | Ass                                                                                      | uming Norn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ernible Distri                                                           | bution (Con            | 0. <b>05)</b><br>% UCLs (Ad<br>95% Adjust      | ed-CLT (                                    | JCL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chen-19                                                                                                                  | 995)                                     |                                              |
| 23<br>24<br>25<br>26<br>27<br>28<br>29                                                                               |           |              | 95% N                                | Data<br>ormal UCL<br>95% Student                                                                                                                                          | Ass                                                                                      | uming Norn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eernible Distri                                                          | bution (Con            | 0. <b>05)</b><br>% UCLs (Ad<br>95% Adjust      | ed-CLT (                                    | JCL ((<br>L (Joh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chen-19                                                                                                                  | 995)<br>978)                             |                                              |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                                                                         |           |              |                                      | Data<br>ormal UCL<br>95% Student                                                                                                                                          | Ass tt's-t UCL  Nonpara                                                                  | uming Noru  0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eernible Distri                                                          | bution (Con            | 0. <b>05)</b><br>% UCLs (Ad<br>95% Adjust      | ed-CLT (ied-t UCI                           | JCL ((<br>L (Joh<br>% Jac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chen-19                                                                                                                  | 995)<br>978)<br>UCL                      | 1                                            |
| 23<br>224<br>225<br>226<br>227<br>228<br>229<br>330<br>331                                                           |           |              | 95% \$                               | Data  ormal UCL  95% Student                                                                                                                                              | Ass t's-t UCL  Nonpara CLT UCL trap UCL                                                  | uming Norr  0.985  ametric Dis  0.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eernible Distri                                                          | bution (Con            | 0.05)<br>% UCLs (Ad<br>95% Adjust<br>95% Modif | ed-CLT (ied-t UCI                           | JCL ((<br>L (Joh<br>% Jac<br>5 Boot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chen-19 nson-19 ckknife U                                                                                                | 995)<br>978)<br>UCL<br>UCL               | 0.985                                        |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                                       |           |              | 95% S                                | Data  Dormal UCL  95% Student  95% C  Standard Bootst                                                                                                                     | Ass t's-t UCL  Nonpara CLT UCL trap UCL trap UCL                                         | uming Norm  0.985  ametric Dis  0.981  0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eernible Distri                                                          | bution (Con            | 0.05)<br>% UCLs (Ad<br>95% Adjust<br>95% Modif | ed-CLT (ied-t UCI                           | JCL ((<br>L (Joh<br>% Jac<br>5 Boot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chen-19 nson-19 ckknife U                                                                                                | 995)<br>978)<br>UCL<br>UCL               | 0.985<br>1.624                               |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34                                                 |           |              | 95% \$<br>95<br>9                    | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst                                                                                                   | Ass  Nonpara  CLT UCL  trap UCL  trap UCL  trap UCL                                      | uming Norm  0.985  ametric Dis  0.981  0.978  1.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eernible Distri                                                          | bution (Con            | % UCLs (Ad<br>95% Adjust<br>95% Modif          | ed-CLT (ied-t UCI                           | JCL ((<br>L (Joh<br>% Jac<br>6 Boot<br>ile Boo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chen-19 nson-19 ckknife t strap-t t                                                                                      | 995)<br>978)<br>UCL<br>UCL<br>UCL        | 0.985<br>1.624                               |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                               |           |              | 95% \$<br>95<br>90% Che              | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst                                                                                    | Ass t's-t UCL  Nonpara CLT UCL trap UCL trap UCL trap UCL Sd) UCL                        | 0.985  ametric Dis 0.978 1.868 1.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eernible Distri                                                          | bution (Con            | 95% Modiff                                     | 95<br>9ed-CLT UCI                           | JCL ((<br>L (Joh<br>% Jac<br>6 Boot<br>ile Boo<br>v(Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chen-19 nson-19 ckknife U strap-t U otstrap U                                                                            | 995) 978) UCL UCL UCL                    | 1<br>0.985<br>1.624<br>0.992                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                                           |           |              | 95% \$<br>95<br>90% Che              | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  byshev(Mean,                                                                      | Ass t's-t UCL  Nonpara CLT UCL trap UCL trap UCL trap UCL Sd) UCL                        | 0.985  ametric Dis 0.981 0.978 1.868 1.104 1.14 1.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mal Distributi                                                           | bution (Con            | 95% Modiff                                     | ed-CLT Uied-t UCI 95 95% Percenti           | JCL ((<br>L (Joh<br>% Jac<br>6 Boot<br>ile Boo<br>v(Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chen-19 nson-19 ckknife U strap-t U otstrap U                                                                            | 995) 978) UCL UCL UCL                    | 1<br>0.985<br>1.624<br>0.992                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                                           |           |              | 95% \$<br>95<br>90% Che              | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  bbyshev(Mean,  bbyshev(Mean,                                                      | Nonpara CLT UCL trap UCL trap UCL Sd) UCL                                                | 0.985  metric Dis 0.981 0.978 1.868 1.104 1.14 1.522  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eernible Distri                                                          | bution (Con            | 95% Modiff                                     | 95<br>95%<br>Percenti<br>hebyshe            | JCL ((<br>L (Joh<br>% Jac<br>6 Boot<br>ille Boo<br>v(Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chen-19 nson-19 ckknife U strap-t U otstrap U nn, Sd) U                                                                  | 995)<br>978)<br>UCL<br>UCL<br>UCL<br>UCL | 1<br>0.985<br>1.624<br>0.992<br>1.3<br>1.958 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>33<br>31<br>32<br>33<br>34<br>35<br>36<br>37                               |           |              | 95% \$<br>95<br>90% Che              | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  byshev(Mean,                                                                      | Nonpara CLT UCL trap UCL trap UCL Sd) UCL                                                | 0.985  ametric Dis 0.981 0.978 1.868 1.104 1.14 1.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mal Distributi                                                           | bution (Con            | 95% Modiff                                     | 95<br>95%<br>Percenti<br>hebyshe            | JCL ((<br>L (Joh<br>% Jac<br>6 Boot<br>ille Boo<br>v(Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chen-19 nson-19 ckknife U strap-t U otstrap U                                                                            | 995)<br>978)<br>UCL<br>UCL<br>UCL<br>UCL | 1<br>0.985<br>1.624<br>0.992                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>33<br>31<br>32<br>33<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40       |           |              | 95% \$<br>95<br>90% Che<br>97.5% Che | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  bbyshev(Mean,  bbyshev(Mean,  95% Student                                         | Ass t's-t UCL  Nonpara CLT UCL trap UCL trap UCL trap UCL Sd) UCL Sd) UCL                | 0.985  ametric Dis 0.981 0.978 1.868 1.104 1.14 1.522  Suggested 0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mal Distributi  tribution Free  UCL to Use                               | on 95°                 | 95% Adjust 95% Modiff 95% C 99% C              | 95<br>95%<br>Percenti<br>hebyshe<br>hebyshe | JCL (( L (Joh  % Jac  6 Boot  6 Boot  v(Mea  v(Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chen-19 nson-19 ckknife I strap-t I otstrap I nn, Sd) I nn, Sd) I                                                        | 995) 978) UCL UCL UCL UCL UCL            | 1<br>0.985<br>1.624<br>0.992<br>1.3<br>1.958 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40             |           |              | 95% \$ 95 90% Che 97.5% Che          | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  byshev(Mean,  ebyshev(Mean,  95% Student  g the selection of                                     | Nonpara CLT UCL trap UCL trap UCL Sd) UCL Sd) UCL Sd) UCL                                | 0.985  ametric Dis 0.981 0.978 1.868 1.104 1.14 1.522  Suggested 0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mal Distributi  tribution Free  UCL to Use                               | on 95°                 | 95% Adjust 95% Modiff 95% C 99% C              | 95 95% Percenti hebyshe or 950              | JCL ((L (John September 1998) Jacob September 1998) Jacob September 1998 | Chen-19 nson-19 ckknife t strap-t t otstrap t in, Sd) t in, Sd) t diffied-t t                                            | 995) 978) UCL UCL UCL UCL UCL UCL        | 1<br>0.985<br>1.624<br>0.992<br>1.3<br>1.958 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41       |           | nese recomn  | 95% 5<br>95<br>90% Che<br>97.5% Che  | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  bbyshev(Mean,  bbyshev(Mean,  g the selection of  are based upor                  | Nonpara CLT UCL trap UCL trap UCL Sd) UCL Sd) UCL sd) UCL                                | uming Norm  0.985  ametric Dis  0.981  0.978  1.868  1.104  1.522  Suggested  0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mal Distributi  tribution Free  UCL to Use  ovided to hel  mulation stud | on 95°                 | 95% Adjust<br>95% Modifi<br>95% C<br>99% C     | 95 95% Percenti hebyshe hebyshe or 956      | JCL ((L (John) ) Jack Son Boot Son Boot Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chen-19 nson-19 ckknife I strap-t I otstrap I in, Sd) I in, Sd) I in, Sd) I in Sd) I | 995) 978) UCL UCL UCL UCL UCL UCL        | 1<br>0.985<br>1.624<br>0.992<br>1.3<br>1.958 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 |           | nese recomn  | 95% 5<br>95<br>90% Che<br>97.5% Che  | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  ebyshev(Mean,  ebyshev(Mean,  g the selection of  are based upor  nd Singh (2003) | Nonpara CLT UCL trap UCL trap UCL Sd) UCL Sd) UCL Sd) UCL of a 95% In the resu ). Howeve | uming Normalistand Summing Nor | tribution Free  UCL to Use  ovided to hel mulation stud ons results wi   | on 95°                 | 95% Adjust 95% Modif                           | 95 95% Percenti hebyshe hebyshe or 956      | JCL ((L (John) ) Jack Son Boot Son Boot Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chen-19 nson-19 ckknife I strap-t I otstrap I in, Sd) I in, Sd) I in, Sd) I in Sd) I | 995) 978) UCL UCL UCL UCL UCL UCL        | 1<br>0.985<br>1.624<br>0.992<br>1.3<br>1.958 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41       |           | nese recomn  | 95% 5<br>95<br>90% Che<br>97.5% Che  | Data  Dormal UCL  95% Student  95% C  Standard Bootst  5% Hall's Bootst  5% BCA Bootst  ebyshev(Mean,  ebyshev(Mean,  g the selection of  are based upor  nd Singh (2003) | Nonpara CLT UCL trap UCL trap UCL Sd) UCL Sd) UCL Sd) UCL of a 95% In the resu ). Howeve | uming Normalistand Summing Nor | mal Distributi  tribution Free  UCL to Use  ovided to hel  mulation stud | on 95°                 | 95% Adjust 95% Modif                           | 95 95% Percenti hebyshe hebyshe or 956      | JCL ((L (John) ) Jack Son Boot Son Boot Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chen-19 nson-19 ckknife I strap-t I otstrap I in, Sd) I in, Sd) I in, Sd) I in Sd) I | 995) 978) UCL UCL UCL UCL UCL UCL        | 1<br>0.985<br>1.624<br>0.992<br>1.3<br>1.958 |



# Appendix H Laboratory Documentation

07563

# CHAIN OF CUSTODY

Euls first of



| PROJECT NO .: 55574                   |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | L        | ABO    | RAT   | ORY     | BATO         | HN     | ٦ ·     | STAGE   | élina   | (Bre     | ES#3F   | 1440     |         | E to    | Superior Control | Circle Comm   | 1 1 GO +1     | ar de la compa |          | SMIT W | E I   |
|---------------------------------------|---------------------------------------|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--------|-------|---------|--------------|--------|---------|---------|---------|----------|---------|----------|---------|---------|------------------|---------------|---------------|----------------|----------|--------|-------|
| PROJECT NAME: Chats                   | toob E                                | ducation         | Proc!      | + Primary Chos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |          |        |       |         | Rel          |        |         |         |         | DOL S    | Hepton  |          | CENTRAL | F25 110 |                  | Parities      |               | 100            |          | REVILL | K WEY |
| DATE MEEDED BY: 37D                   |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |        |       |         | PM (2        |        |         |         |         |          | -       | _        |         |         |                  |               |               |                |          |        |       |
| PHONE: Sydney: 02 8245 030            | 00   Perth:                           | 08 9488 01       | 100   Bris | sbane: 07 3112 2688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | _        |        |       |         |              |        |         |         |         |          |         |          |         |         |                  |               |               |                |          |        |       |
| SEND REPORT & INVOICE TO              | : (1) admin                           | nsw@jbsg.        | .com.au;   | (2) Denals @jb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sg.com.          | au;      | (3).   |       | M       | חנטח         | 2.~    |         | @       | ibsg.   | com.     | au      | 1        | 2ch     | Down    | w.E              | 2:16          | 54.0          | Con.           |          |        |       |
| COMMENTS / SPECIAL HANDLING / STOR    | RAGE OR DISPOS                        | AL:              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 2        | 0      | 1     | 0       | 700          | 1      |         |         | , 3     | T        |         | T        | 1       |         | T                | TYPE          | OF            | 01172          |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | \$       | 里      | 至     | S       | 5            | 2      |         |         |         |          |         |          |         |         |                  | ASBES         | STOS          |                |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Metals   | 5      | 3     | ~       | 100          |        |         |         |         |          |         |          |         |         |                  | ATION         |               |                |          |        |       |
| SAMPLE ID                             | MATRIX                                | DATE             | TIME       | TYPE & PRESERVATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pH               |          |        | 7,    |         | PCB CHARLAND | 7      |         |         |         |          |         |          |         |         |                  | DENTIFICATION | NEPM/WA       | NOTES          |          |        |       |
| K-120.46                              | Mater                                 | 23/1/14          |            | Emirolatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/4.0kv          | X        | X      | X     | X       | ×            | $\top$ |         |         | $\top$  | +        | $\Box$  |          | $\top$  | +       | +                | 5             | 2             | NOTES:         |          |        |       |
| Rinsate                               | V                                     | 25/11/19         |            | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | X        | X      | ×     | X       | X            |        |         |         | $\neg$  | +        |         |          | $\top$  | +       | +                | $\vdash$      | $\dashv$      |                |          |        |       |
| QC 201901 21 RC-01                    | 19.02                                 | 21/1/19          |            | boy, jack tice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | ×        |        | ×     |         | V            | T      | T       |         | +       | +        | +       |          | 7       | -       | +                |               | X             |                | -        |        | 16    |
| 10-29 15 10 6102 40                   |                                       | 7                |            | المام إعداء: دو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | _        | 250    |       | 1       | 1            | 0      | 11      | - \     |         | +        | +       | $\vdash$ | +       | +       | +                | $\vdash$      | 7             |                |          | 100    | - 17  |
| QC 20190123 RC01                      |                                       | 23/1/19          |            | 3097 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |          | X      |       | 7       | X            | YA     | 11,     | 01      | 7/2     | +        |         |          | +       | +       | +                | $\vdash$      | X             |                |          | -40    | -     |
| 8A20120123 RC-01                      |                                       | T.               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | F        | 3      | V3    | 6       | +3           | 0      | 12      | . (     | 21      | +        |         |          | +       | +       | +                |               | 4             |                | -        |        | -     |
| QC 2019 0124 RC-01                    |                                       | 24/1/19          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | X        | V      |       | X       | X            | -      | 0       | 0       | w.vs    | +        |         |          | +       | +       | +-               | $\vdash$      | /             |                |          |        |       |
| 10-23 42 10 6102 AB                   |                                       | 1                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          | -0     |       |         | 40           | en     | ,,,     | \       |         | +        | +       |          | +       | +       | +                |               | 4             |                |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <u> </u> | 011    | wa    | 43      | +5           | -      | h /1    | 0/      | 214     | +        | +       | -        | +       | +       | +                | $\vdash$      |               | - 90           |          |        |       |
|                                       |                                       | - 1              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |        |       |         | _            | +      |         |         | +       | +        | +       | +        | +       | +       | +-               | $\vdash$      | $\dashv$      | - 1            | 100      |        | -     |
| Title I                               |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $\vdash$ | -      |       |         | +            | +      | +       |         | +       | +        | +       | +        | +       | +       | +                | $\vdash$      | $\rightarrow$ |                |          |        |       |
| x Algi                                |                                       |                  | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $\vdash$ |        |       | -       | -            | +      | +       |         | +       | +        | +       | -        | +       | +       | +                | $\vdash$      | -             | Y              |          | 100    |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $\vdash$ |        |       | -       | +            | +      | +       |         | +       | +        | +-      | -        | +       | +       | +                | $\vdash$      | $\dashv$      |                |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |        |       | +       | _            | +      |         |         | +       | +        | +       | +        | +       | +       | +-               | $\vdash$      | $\dashv$      |                |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |        |       |         | _            | +      |         |         | +       | +        | +       | -        | +       | +       | +                | $\vdash$      | $\dashv$      |                |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |          |        |       | -       | +            | +      | -       |         | +       | +        | +-      | -        | +       | +       | +                |               | $\dashv$      |                |          |        |       |
|                                       |                                       |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |        |       |         |              | +      |         |         | -       | +        | 1       | -        | +       | +       | +                |               | -             |                |          |        | - //  |
|                                       |                                       |                  |            | The state of the s |                  |          |        |       |         | -            | +      | -       |         |         | +        | +       | -        |         | +       | +                | $\vdash$      | $\rightarrow$ |                |          |        |       |
|                                       | · · · · · · · · · · · · · · · · · · · | 7 74 7           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |        |       |         | -            | +      | -       |         | -       | +        |         | -        | +       |         | -                | $\vdash$      | -             |                |          |        |       |
| RELINQUISHED BY:                      | D. S. JY                              | 1-1              | - 21       | METHOD OF SHIPMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |          |        |       | RE      | CEIVED       | DV.    |         |         |         | E - 1954 | 1       |          | FO      |         | 1                |               | $\perp$       |                |          |        |       |
| NAME: DATE: 20                        | 0/11/9                                | CONS             | IGNMENT    | NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                | N/       | AME:   | 110   |         | D            |        | ·Dis    | 19      |         | COOL     | ER SEA  | AL - Y   | es      | . No    | CEIVIN           | Inta          | dB US         | E ONLY:        | en.      |        |       |
| OF: JBS&G                             |                                       | TRANS            | SPORT CO.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | DA       | ATE:   | 1010  |         | ns           | 11/7   | -5      | 8       | em      |          |         |          |         |         | 3,               | 5             | 1             | DIOK           |          |        |       |
| NAME: DATE:                           |                                       |                  | IGNMENT    | NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | N/       | AME:   | ure   | 101     | rio          | inch   | ATE:    |         |         | COOL     | ER TEN  | MP       | de      | g C     | 31               | 0             | _             | Brok           |          | E SU   |       |
| OF:                                   |                                       | TRANS            | CD TOOR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | OF       |        |       |         |              |        |         |         |         |          |         |          |         |         |                  | inta          | ict           | Brok           | en       |        | 5 9   |
|                                       | stic; J = Soil Jar;                   | B = Glass Bottle | SPORT CO   | Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hydrochlor       | ic Aci   | d Deer | rd Ma | 1.1/5   | Cult         | A 47-2 | D 11    | 0-1-5   |         | COOL     | ER TEN  | ИP       | de      | gC      |                  | 198           |               |                |          |        | H. H  |
| IMSO FormsO13 - Chain of Custody - Ge | eneric                                |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i i yui oci ilor | IC ACI   | u PISI | u via | i, v5 = | Sulturio     | Acid   | ersvd \ | /ial; S | = Sulfu | ric Aci  | d Prsvd | ; Z = 2  | Zinc Pr | svd; E  | = EDT/           | A Prsv        | d; ST         | = Sterile B    | ottle; O | Other  |       |



# Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St **Sydney NSW 2000** 

**Daniel Denaro** Attention: Report 637848-AID

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL **Project Name** 

**Project ID** 55579

**Received Date** Jan 23, 2019 Feb 04, 2019 **Date Reported** 

### Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres** 

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the

nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.



Project Name CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID 55579

**Date Sampled** Jan 21, 2019 to Jan 24, 2019

Report 637848-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                                           | Result                                                                                                             |
|------------------|------------------------------|--------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| QC20190121RC_01  | 19-Ja24424                   | Jan 21, 2019 | Approximate Sample 887g<br>Sample consisted of: Brown coarse-grained soil, rocks and<br>bituminous fragments | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. |
| QC20190123RC_01  | 19-Ja24425                   | Jan 23, 2019 | Approximate Sample 668g<br>Sample consisted of: Brown coarse-grained soil and rocks                          | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. |
| QC20190124RC_01  | 19-Ja24426                   | Jan 24, 2019 | Approximate Sample 635g<br>Sample consisted of: Brown coarse-grained soil and rocks                          | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. |



### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJan 29, 2019Indefinite

Report Number: 637848-AID



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Melbourne 6 Monterey Road

Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Site # 23736

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261

JBS & G Australia (NSW) P/L **Company Name:** 

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

**Project Name:** Project ID:

55579

Fax:

637848

02 8245 0300

Received: Jan 25, 2019 5:50 PM Due: Feb 4, 2019

Priority: 5 Day

**Contact Name: Daniel Denaro** 

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                     | Sa              | mple Detail      |       |      |             | Asbestos - WA guidelines | HOLD | Moisture Set | JBS&G Suite 2 |
|------|---------------------|-----------------|------------------|-------|------|-------------|--------------------------|------|--------------|---------------|
| Melb | ourne Laborato      | ory - NATA Site | # 1254 & 142     | 271   |      |             |                          | Х    | Х            | Х             |
| Sydi | ney Laboratory      | - NATA Site # 1 | 8217             |       |      |             | Х                        |      |              |               |
| Bris | bane Laboratory     | y - NATA Site # | 20794            |       |      |             |                          |      |              |               |
| Pert | h Laboratory - N    | IATA Site # 237 | 36               |       |      |             |                          |      |              |               |
| Exte | rnal Laboratory     |                 |                  |       |      |             |                          |      |              |               |
| No   | Sample ID           | Sample Date     | Sampling<br>Time | Ма    | trix | LAB ID      |                          |      |              |               |
| 1    | RINSATE             | Jan 23, 2019    |                  | Water |      | S19-Ja24422 |                          |      |              | Х             |
| 2    | RINSATE             | Jan 25, 2019    |                  | Water |      | S19-Ja24423 |                          |      |              | Х             |
| 3    | QC20190121R<br>C_01 | Jan 21, 2019    |                  | Soil  |      | S19-Ja24424 | Х                        |      | Х            | х             |
| 4    | QC20190123R<br>C_01 | Jan 23, 2019    |                  | Soil  |      | S19-Ja24425 | Х                        |      | Х            | х             |
| 5    | QC20190124R<br>C_01 | Jan 24, 2019    |                  | Soil  |      | S19-Ja24426 | Х                        |      | Х            | Х             |
| 6    | TRIP SPIKE          | Jan 17, 2019    |                  | Water |      | S19-Ja24427 |                          | Х    |              |               |
| 7    | TRIP BLANK          | Jan 17, 2019    |                  | Water |      | S19-Ja24428 |                          | Х    |              |               |

Page 4 of 7



**Company Name:** 

**Project Name:** 

Address:

mgt

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

 Level 1, 50 Margaret St
 Report #:
 637848
 Due:
 Feb 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Daniel Denaro

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|       |                | Sa              | ımple Detail |       |             | Asbestos - WA guidelines | HOLD | Moisture Set | JBS&G Suite 2 |
|-------|----------------|-----------------|--------------|-------|-------------|--------------------------|------|--------------|---------------|
| Melb  | ourne Laborato | ory - NATA Site | # 1254 & 142 | 271   |             |                          | Х    | Х            | Χ             |
| Sydr  | ney Laboratory | - NATA Site # 1 | 8217         |       |             | Х                        |      |              |               |
| Brisl | bane Laborator | y - NATA Site # | 20794        |       |             |                          |      |              |               |
| Perti | Laboratory - N | NATA Site # 237 | 736          |       |             |                          |      |              |               |
| 8     | TRIP SPIKE     | Jan 09, 2019    |              | Water | S19-Ja24429 |                          | Х    |              |               |
| 9     | TRIP BLANK     | Jan 09, 2019    |              | Water | S19-Ja24430 |                          | Х    |              |               |
| Test  | Counts         |                 |              |       |             | 3                        | 4    | 3            | 5             |

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Page 5 of 7



#### **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

#### Units

% w/w: weight for weight basis
Filter loading:

Reported Concentration:
Flowrate:

**Terms** 

**Dry** Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standard

Date Reported: Feb 04, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

grams per kilogram

fibres/mL L/min

fibres/100 graticule areas

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

AF

Aspestos Fines. Aspestos containing materiais, including mable, weathered and boilded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPW a

equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Report Number: 637848-AID



#### Comments

## Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

#### **Qualifier Codes/Comments**

Code Description N/A Not applicable

#### **Asbestos Counter/Identifier:**

Laxman Dias Senior Analyst-Asbestos (NSW)

#### Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

## Glenn Jackson General Manager

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



Report Number: 637848-AID



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Daniel Denaro

Report 637848-S

Project name CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID 55579
Received Date Jan 23, 2019

| Client Sample ID                          |          |      |       | QC20190121R<br>C_01 | QC20190123R<br>C_01 | QC20190124R<br>C_01 |
|-------------------------------------------|----------|------|-------|---------------------|---------------------|---------------------|
| Sample Matrix                             |          |      |       | Soil                | Soil                | Soil                |
| Eurofins   mgt Sample No.                 |          |      |       | S19-Ja24424         | S19-Ja24425         | S19-Ja24426         |
| Date Sampled                              |          |      |       | Jan 21, 2019        | Jan 23, 2019        | Jan 24, 2019        |
| Test/Reference                            |          | LOR  | Unit  |                     |                     |                     |
| Total Recoverable Hydrocarbons - 1999 NEI | PM Fract | ions |       |                     |                     |                     |
| TRH C6-C9                                 |          | 20   | mg/kg | < 20                | < 20                | < 20                |
| TRH C10-C14                               |          | 20   | mg/kg | < 20                | < 20                | < 20                |
| TRH C15-C28                               |          | 50   | mg/kg | 150                 | < 50                | < 50                |
| TRH C29-C36                               |          | 50   | mg/kg | 410                 | < 50                | < 50                |
| TRH C10-36 (Total)                        |          | 50   | mg/kg | 560                 | < 50                | < 50                |
| BTEX                                      |          |      |       |                     |                     |                     |
| Benzene                                   |          | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Toluene                                   |          | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Ethylbenzene                              |          | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| m&p-Xylenes                               |          | 0.2  | mg/kg | < 0.2               | < 0.2               | < 0.2               |
| o-Xylene                                  |          | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Xylenes - Total                           |          | 0.3  | mg/kg | < 0.3               | < 0.3               | < 0.3               |
| 4-Bromofluorobenzene (surr.)              |          | 1    | %     | 74                  | 69                  | 67                  |
| Total Recoverable Hydrocarbons - 2013 NEI | PM Fract | ions | ,     |                     |                     |                     |
| Naphthalene <sup>N02</sup>                |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| TRH C6-C10                                |          | 20   | mg/kg | < 20                | < 20                | < 20                |
| TRH C6-C10 less BTEX (F1)N04              |          | 20   | mg/kg | < 20                | < 20                | < 20                |
| TRH >C10-C16                              |          | 50   | mg/kg | < 50                | < 50                | < 50                |
| TRH >C10-C16 less Naphthalene (F2)N01     |          | 50   | mg/kg | < 50                | < 50                | < 50                |
| TRH >C16-C34                              |          | 100  | mg/kg | 440                 | < 100               | < 100               |
| TRH >C34-C40                              |          | 100  | mg/kg | 400                 | < 100               | < 100               |
| TRH >C10-C40 (total)*                     |          | 100  | mg/kg | 840                 | < 100               | < 100               |
| Polycyclic Aromatic Hydrocarbons          |          |      |       |                     |                     |                     |
| Benzo(a)pyrene TEQ (lower bound) *        |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(a)pyrene TEQ (medium bound) *       |          | 0.5  | mg/kg | 0.6                 | 0.6                 | 0.6                 |
| Benzo(a)pyrene TEQ (upper bound) *        |          | 0.5  | mg/kg | 1.2                 | 1.2                 | 1.2                 |
| Acenaphthene                              |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Acenaphthylene                            |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Anthracene                                |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benz(a)anthracene                         |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(a)pyrene                            |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(b&j)fluoranthene <sup>N07</sup>     |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(g.h.i)perylene                      |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(k)fluoranthene                      |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Chrysene                                  |          | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |



| mat   |       |    |       |
|-------|-------|----|-------|
|       | H-CO- | 20 | ne de |
| 11121 | -11   | 13 | Ľι    |

| Client Sample ID                                        |      |       | QC20190121R<br>C_01 | QC20190123R<br>C_01 | QC20190124R<br>C_01 |
|---------------------------------------------------------|------|-------|---------------------|---------------------|---------------------|
| Sample Matrix                                           |      |       | Soil                | Soil                | Soil                |
| Eurofins   mgt Sample No.                               |      |       | S19-Ja24424         | S19-Ja24425         | S19-Ja24426         |
| Date Sampled                                            |      |       | Jan 21, 2019        | Jan 23, 2019        | Jan 24, 2019        |
| Test/Reference                                          | LOR  | Unit  |                     | 04.1 20, 2010       | July 21, 2010       |
| Polycyclic Aromatic Hydrocarbons                        | LOIC | Offic |                     |                     |                     |
| Dibenz(a.h)anthracene                                   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Fluoranthene                                            | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Fluorene                                                | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Indeno(1.2.3-cd)pyrene                                  | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Naphthalene                                             | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Phenanthrene                                            | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Pyrene                                                  | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Total PAH*                                              | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| 2-Fluorobiphenyl (surr.)                                | 1    | %     | 106                 | 54                  | 64                  |
| p-Terphenyl-d14 (surr.)                                 | 1    | %     | 102                 | 76                  | 86                  |
| Organochlorine Pesticides                               |      |       |                     |                     |                     |
|                                                         | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| 4.4'-DDD                                                | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| 4.4'-DDE                                                | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| 4.4'-DDT                                                | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| a-BHC                                                   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Aldrin                                                  | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| b-BHC                                                   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| d-BHC                                                   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Dieldrin                                                | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endosulfan I                                            | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endosulfan II                                           | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endosulfan sulphate                                     | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endrin                                                  | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endrin aldehyde                                         | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endrin ketone                                           | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| g-BHC (Lindane)                                         | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Heptachlor                                              | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Heptachlor epoxide                                      | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Hexachlorobenzene                                       | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Methoxychlor                                            | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Toxaphene                                               | 1    | mg/kg | < 1                 | < 1                 | < 1                 |
| Aldrin and Dieldrin (Total)*                            | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| DDT + DDE + DDD (Total)*                                | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Vic EPA IWRG 621 OCP (Total)*                           | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Vic EPA IWRG 621 Other OCP (Total)*                     | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Dibutylchlorendate (surr.)                              | 1    | %     | 124                 | 70                  | 56                  |
| Tetrachloro-m-xylene (surr.)                            | 1    | %     | 102                 | 77                  | 76                  |
| Polychlorinated Biphenyls                               | 1    |       |                     |                     |                     |
| Arcelor-1016                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Arcelor 1020                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Arcelor 1232                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Arcelor 1242                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor 1254                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor 1254                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1260                                            | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Total PCB*                                              | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.) | 1    | %     | 124<br>102          | 70<br>77            | 56<br>76            |

Report Number: 637848-S



| Client Sample ID          |     |       | QC20190121R<br>C_01 | QC20190123R<br>C_01 | QC20190124R<br>C_01 |
|---------------------------|-----|-------|---------------------|---------------------|---------------------|
| Sample Matrix             |     |       | Soil                | Soil                | Soil                |
| Eurofins   mgt Sample No. |     |       | S19-Ja24424         | S19-Ja24425         | S19-Ja24426         |
| Date Sampled              |     |       | Jan 21, 2019        | Jan 23, 2019        | Jan 24, 2019        |
| Test/Reference            | LOR | Unit  |                     |                     |                     |
| Heavy Metals              |     |       |                     |                     |                     |
| Arsenic                   | 2   | mg/kg | 13                  | 4.6                 | 5.1                 |
| Cadmium                   | 0.4 | mg/kg | < 0.4               | < 0.4               | < 0.4               |
| Chromium                  | 5   | mg/kg | 14                  | 9.7                 | 42                  |
| Copper                    | 5   | mg/kg | 33                  | 8.6                 | 24                  |
| Lead                      | 5   | mg/kg | 17                  | 11                  | 31                  |
| Mercury                   | 0.1 | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Nickel                    | 5   | mg/kg | 23                  | 7.3                 | 42                  |
| Zinc                      | 5   | mg/kg | 59                  | 14                  | 41                  |
|                           |     |       |                     |                     |                     |
| % Moisture                | 1   | %     | 8.8                 | 9.1                 | 11                  |





#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                            | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------|--------------|--------------|--------------|
| JBS&G Suite 2                                                          |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                   | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| BTEX                                                                   | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                       | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water               |              |              |              |
| Organochlorine Pesticides                                              | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Polychlorinated Biphenyls                                              | Melbourne    | Jan 30, 2019 | 28 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Metals M8                                                              | Melbourne    | Jan 30, 2019 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS   |              |              |              |
| % Moisture                                                             | Melbourne    | Jan 30, 2019 | 14 Day       |



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637848
 Due:
 Feb 4, 2019

Priority: 5 Day

Contact Name: Daniel Denaro

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

HOLD Moisture JBS&G Asbestos Suite Set -WA guidelines Sample Detail Х Χ Χ Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Χ Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 **External Laboratory** No Sample ID Sample Date Sampling Matrix LAB ID Time RINSATE Jan 23, 2019 Water S19-Ja24422 Х RINSATE Х Jan 25, 2019 Water S19-Ja24423 QC20190121R Soil Jan 21, 2019 S19-Ja24424 Χ Х Χ C 01 QC20190123R Jan 23, 2019 Soil S19-Ja24425 Х Χ Χ C\_01 QC20190124R Jan 24, 2019 Soil S19-Ja24426 Х Χ C 01 Jan 17, 2019 Χ TRIP SPIKE Water S19-Ja24427 Х TRIP BLANK Jan 17, 2019 Water S19-Ja24428

> Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 5 of 14

Report Number: 637848-S

Date Reported:Feb 04, 2019 ABN: 50 005 085 521 Telephone: +61 2 9900 8400



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Project Name:

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637848
 Due:
 Feb 4, 2019

**Due:** Feb 4, 2019 **Priority:** 5 Day

Contact Name: Daniel Denaro

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                                      | Sa              | mple Detail  |       |             | Asbestos - WA guidelines | HOLD | Moisture Set | JBS&G Suite 2 |  |
|------|--------------------------------------|-----------------|--------------|-------|-------------|--------------------------|------|--------------|---------------|--|
| Melk | ourne Laborato                       | ory - NATA Site | # 1254 & 142 | 71    |             |                          | Х    | Х            | Х             |  |
| Syd  | ney Laboratory                       | - NATA Site # 1 | 8217         |       |             | Х                        |      |              |               |  |
| Bris | bane Laborator                       | y - NATA Site # | 20794        |       |             |                          |      |              |               |  |
| Pert | Perth Laboratory - NATA Site # 23736 |                 |              |       |             |                          |      |              |               |  |
| 8    | TRIP SPIKE                           | Jan 09, 2019    |              | Water | S19-Ja24429 |                          | Х    |              |               |  |
| 9    | TRIP BLANK                           | Jan 09, 2019    |              | Water | S19-Ja24430 |                          | Х    |              |               |  |
| Test | Counts                               |                 |              |       |             | 3                        | 4    | 3            | 5             |  |



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

**Terms** 

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 7 of 14

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 637848-S



## **Quality Control Results**

| Test                                           | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------|---------|----------|----------------------|----------------|--------------------|
| Method Blank                                   |         |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fra | actions |          |                      |                |                    |
| TRH C6-C9                                      | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C10-C14                                    | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C15-C28                                    | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH C29-C36                                    | mg/kg   | < 50     | 50                   | Pass           |                    |
| Method Blank                                   |         |          |                      |                |                    |
| ВТЕХ                                           |         |          |                      |                |                    |
| Benzene                                        | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Toluene                                        | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Ethylbenzene                                   | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| m&p-Xylenes                                    | mg/kg   | < 0.2    | 0.2                  | Pass           |                    |
| o-Xylene                                       | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Xylenes - Total                                | mg/kg   | < 0.3    | 0.3                  | Pass           |                    |
| Method Blank                                   | 1 3 3   |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fra | actions |          |                      |                |                    |
| Naphthalene                                    | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| TRH C6-C10                                     | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH >C10-C16                                   | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH >C16-C34                                   | mg/kg   | < 100    | 100                  | Pass           |                    |
| TRH >C34-C40                                   | mg/kg   | < 100    | 100                  | Pass           |                    |
| Method Blank                                   | 1 3 3   |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons               |         |          |                      |                |                    |
| Acenaphthene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                                 | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                                     | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                              | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                 | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                           | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                           | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                                       | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                          | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                                       | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                                    | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                   |         |          |                      | 1 5.55         |                    |
| Organochlorine Pesticides                      |         |          |                      |                |                    |
| Chlordanes - Total                             | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| 4.4'-DDD                                       | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDE                                       | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDT                                       | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| a-BHC                                          | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Aldrin                                         | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| b-BHC                                          | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| d-BHC                                          | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Dieldrin                                       | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan I                                   | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan II                                  | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |



| Test                                          | Units          | Result 1       | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------|----------------|----------------|----------------------|----------------|--------------------|
| Endosulfan sulphate                           | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Endrin                                        | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Endrin aldehyde                               | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Endrin ketone                                 | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| g-BHC (Lindane)                               | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Heptachlor                                    | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Heptachlor epoxide                            | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Hexachlorobenzene                             | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Methoxychlor                                  | mg/kg          | < 0.05         | 0.05                 | Pass           |                    |
| Toxaphene                                     | mg/kg          | <1             | 1                    | Pass           |                    |
| Method Blank                                  |                |                |                      | 7 0.00         |                    |
| Polychlorinated Biphenyls                     |                |                |                      |                |                    |
| Aroclor-1016                                  | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
| Aroclor-1221                                  | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
| Aroclor-1232                                  | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
| Aroclor-1242                                  | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
| Aroclor-1248                                  | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
|                                               |                |                |                      | Pass           |                    |
| Aroclor-1254<br>Aroclor-1260                  | mg/kg<br>mg/kg | < 0.1<br>< 0.1 | 0.1                  | Pass           |                    |
|                                               |                |                |                      |                |                    |
| Total PCB*                                    | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
| Method Blank                                  |                | <u> </u>       |                      |                |                    |
| Heavy Metals                                  |                |                |                      |                |                    |
| Arsenic                                       | mg/kg          | < 2            | 2                    | Pass           |                    |
| Cadmium                                       | mg/kg          | < 0.4          | 0.4                  | Pass           |                    |
| Chromium                                      | mg/kg          | < 5            | 5                    | Pass           |                    |
| Copper                                        | mg/kg          | < 5            | 5                    | Pass           |                    |
| Lead                                          | mg/kg          | < 5            | 5                    | Pass           |                    |
| Mercury                                       | mg/kg          | < 0.1          | 0.1                  | Pass           |                    |
| Nickel                                        | mg/kg          | < 5            | 5                    | Pass           |                    |
| Zinc                                          | mg/kg          | < 5            | 5                    | Pass           |                    |
| LCS - % Recovery                              |                |                |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fr | actions        |                |                      |                |                    |
| TRH C6-C9                                     | %              | 96             | 70-130               | Pass           |                    |
| TRH C10-C14                                   | %              | 106            | 70-130               | Pass           |                    |
| LCS - % Recovery                              |                |                |                      |                |                    |
| BTEX                                          |                |                |                      |                |                    |
| Benzene                                       | %              | 87             | 70-130               | Pass           |                    |
| Toluene                                       | %              | 97             | 70-130               | Pass           |                    |
| Ethylbenzene                                  | %              | 101            | 70-130               | Pass           |                    |
| m&p-Xylenes                                   | %              | 99             | 70-130               | Pass           |                    |
| Xylenes - Total                               | %              | 98             | 70-130               | Pass           |                    |
| LCS - % Recovery                              |                |                |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fr | actions        |                |                      |                |                    |
| Naphthalene                                   | %              | 78             | 70-130               | Pass           |                    |
| TRH C6-C10                                    | %              | 92             | 70-130               | Pass           |                    |
| TRH >C10-C16                                  | %              | 105            | 70-130               | Pass           |                    |
| LCS - % Recovery                              |                |                |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons              |                |                |                      |                |                    |
| Acenaphthene                                  | %              | 125            | 70-130               | Pass           |                    |
| Acenaphthylene                                | %              | 119            | 70-130               | Pass           |                    |
| Anthracene                                    | %              | 109            | 70-130               | Pass           |                    |
| Benz(a)anthracene                             | %              | 99             | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                | %              | 84             | 70-130               | Pass           |                    |
| DoneO(a)Pyrono                                | /0             | ı              | 1 10-130             | 1 033          | l                  |



|   | 100            |
|---|----------------|
| m | ort.           |
|   | $\mathbf{z}$ L |
|   | 0-             |

| Test                             |               |              | Units        | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|---------------|--------------|--------------|----------|----------------------|----------------|--------------------|
| Benzo(g.h.i)perylene             |               |              | %            | 84       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             |               |              | %            | 83       | 70-130               | Pass           |                    |
| Chrysene                         |               |              | %            | 82       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            |               |              | %            | 82       | 70-130               | Pass           |                    |
| Fluoranthene                     |               |              | %            | 115      | 70-130               | Pass           |                    |
| Fluorene                         |               |              | %            | 120      | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           |               |              | %            | 94       | 70-130               | Pass           |                    |
| Naphthalene                      |               |              | %            | 111      | 70-130               | Pass           |                    |
| Phenanthrene                     |               |              | %            | 112      | 70-130               | Pass           |                    |
| Pyrene                           |               |              | %            | 125      | 70-130               | Pass           |                    |
| LCS - % Recovery                 |               |              |              |          |                      |                |                    |
| Organochlorine Pesticides        |               |              |              |          |                      |                |                    |
| Chlordanes - Total               |               |              | %            | 100      | 70-130               | Pass           |                    |
| 4.4'-DDE                         |               |              | %            | 108      | 70-130               | Pass           |                    |
| 4.4'-DDT                         |               |              | %            | 88       | 70-130               | Pass           |                    |
| a-BHC                            |               |              | %            | 83       | 70-130               | Pass           |                    |
| Aldrin                           |               |              | %            | 100      | 70-130               | Pass           |                    |
| b-BHC                            |               |              |              | 72       | 70-130               | Pass           |                    |
| d-BHC                            |               |              |              |          | 70-130               | Pass           |                    |
| Dieldrin                         |               |              |              |          | 70-130               | Pass           |                    |
| Endosulfan I                     |               |              |              |          | 70-130               | Pass           |                    |
| Endosulfan II                    |               |              |              |          | 70-130               | Pass           |                    |
| Endosulfan sulphate              |               | %            | 86<br>71     | 70-130   | Pass                 |                |                    |
| Endrin                           |               | %            | 120          | 70-130   | Pass                 |                |                    |
| Endrin aldehyde                  |               | %            | 83           | 70-130   | Pass                 |                |                    |
| Endrin ketone                    |               |              | %            | 88       | 70-130               | Pass           |                    |
| g-BHC (Lindane)                  |               |              | <del>%</del> | 92       | 70-130               | Pass           |                    |
| Heptachlor                       |               |              | <del>%</del> | 92       | 70-130               | Pass           |                    |
| Heptachlor epoxide               |               |              | %            | 80       | 70-130               | Pass           |                    |
| Hexachlorobenzene                |               |              | %            | 110      | 70-130               | Pass           |                    |
| Methoxychlor                     |               |              | %            | 76       | 70-130               | Pass           |                    |
| LCS - % Recovery                 |               |              | /0           | 70       | 70 130               | 1 433          |                    |
| Polychlorinated Biphenyls        |               |              |              |          |                      |                |                    |
| Aroclor-1260                     |               |              | %            | 87       | 70-130               | Pass           |                    |
| LCS - % Recovery                 |               |              | /0           | 01       | 70-130               | 1 033          |                    |
| Heavy Metals                     |               |              |              |          |                      |                |                    |
| Arsenic                          |               |              | %            | 115      | 80-120               | Pass           |                    |
| Cadmium                          |               |              | %            | 104      | 80-120               | Pass           |                    |
| Chromium                         |               |              | %            | 120      | 80-120               | Pass           |                    |
| Copper                           |               |              | %            | 118      | 80-120               | Pass           |                    |
| Lead                             |               |              | %            | 116      | 80-120               | Pass           |                    |
|                                  |               |              | %            | 109      |                      | Pass           |                    |
| Mercury                          |               |              |              |          | 75-125               |                |                    |
| Nickel                           |               |              | %            | 115      | 80-120               | Pass           |                    |
| Zinc                             |               |              | %            | 114      | 80-120               | Pass           | Ouelife            |
| Test                             | Lab Sample ID | QA<br>Source | Units        | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery               |               |              |              |          |                      |                |                    |
| Total Recoverable Hydrocarbons - |               |              |              | Result 1 |                      |                |                    |
| TRH C6-C9                        | S19-Ja22195   | NCP          | %            | 84       | 70-130               | Pass           |                    |
| TRH C10-C14                      | M19-Ja23438   | NCP          | %            | 95       | 70-130               | Pass           |                    |
| Spike - % Recovery               |               |              |              |          |                      |                |                    |
| BTEX                             |               | T . T        |              | Result 1 |                      |                |                    |
| Benzene                          | S19-Ja22195   | NCP          | %            | 82       | 70-130               | Pass           |                    |
| Toluene                          | S19-Ja22195   | NCP          | %            | 96       | 70-130               | Pass           |                    |
|                                  | S19-Ja22195   | NCP          | %            | 102      | 70-130               | Pass           |                    |



| Test                          | Lab Sample ID        | QA<br>Source | Units        | Result 1                                         | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|----------------------|--------------|--------------|--------------------------------------------------|----------------------|----------------|--------------------|
| m&p-Xylenes                   | S19-Ja22195          | NCP          | %            | 101                                              | 70-130               | Pass           |                    |
| o-Xylene                      | S19-Ja22195          | NCP          | %            | 102                                              | 70-130               | Pass           |                    |
| Xylenes - Total               | S19-Ja22195          | NCP          | %            | 101                                              | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |              |                                                  |                      |                |                    |
| Total Recoverable Hydrocarbo  | ns - 2013 NEPM Fract | ions         |              | Result 1                                         |                      |                |                    |
| Naphthalene                   | S19-Ja22195          | NCP          | %            | 77                                               | 70-130               | Pass           |                    |
| TRH C6-C10                    | S19-Ja22195          | NCP          | %            | 82                                               | 70-130               | Pass           |                    |
| TRH >C10-C16                  | M19-Ja23438          | NCP          | %            | 94                                               | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |              |                                                  |                      |                |                    |
| Polycyclic Aromatic Hydrocarb | oons                 |              |              | Result 1                                         |                      |                |                    |
| Acenaphthene                  | P19-Ja24685          | NCP          | %            | 103                                              | 70-130               | Pass           |                    |
| Acenaphthylene                | P19-Ja24685          | NCP          | %            | 103                                              | 70-130               | Pass           |                    |
| Anthracene                    | P19-Ja24685          | NCP          | %            | 84                                               | 70-130               | Pass           |                    |
| Benz(a)anthracene             | P19-Ja24685          | NCP          | %            | 97                                               | 70-130               | Pass           |                    |
| Benzo(a)pyrene                | P19-Ja24685          | NCP          | %            | 98                                               | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene        | P19-Ja24685          | NCP          | %            | 86                                               | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene          | P19-Ja24685          | NCP          | %            | 80                                               | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          | P19-Ja24685          | NCP          | %            | 102                                              | 70-130               | Pass           |                    |
| Chrysene                      | P19-Ja24685          | NCP          | %            | 79                                               | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene         | P19-Ja24685          | NCP          | %            | 101                                              | 70-130               | Pass           |                    |
| Fluoranthene                  | P19-Ja24685          | NCP          | <del>%</del> | 85                                               | 70-130               | Pass           |                    |
| Fluorene                      | P19-Ja24685          | NCP          | %            | 97                                               | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        | P19-Ja24685          | NCP          | %            | 88                                               | 70-130               | Pass           |                    |
| Naphthalene                   | P19-Ja24685          | NCP          | %            | 109                                              | 70-130               | Pass           |                    |
| '                             |                      | NCP          |              |                                                  |                      |                |                    |
| Phenanthrene                  | P19-Ja24685          |              | %            | 85                                               | 70-130               | Pass           |                    |
| Pyrene Spike W Because        | P19-Ja24685          | NCP          | %            | 88                                               | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |              | Decult 4                                         |                      | Т              |                    |
| Organochlorine Pesticides     | M40 I=00000          | NCD          | 0/           | Result 1                                         | 70.400               | Dana           |                    |
| Chlordanes - Total            | M19-Ja23309          | NCP          | %            | 111                                              | 70-130               | Pass           |                    |
| 4.4'-DDE                      | M19-Ja23309          | NCP          | %            | 121                                              | 70-130               | Pass           |                    |
| a-BHC                         | M19-Ja23309          | NCP          | %            | 90                                               | 70-130               | Pass           |                    |
| Aldrin                        | M19-Ja23309          | NCP          | %            | 104                                              | 70-130               | Pass           |                    |
| b-BHC                         | M19-Ja23309          | NCP          | %            | 82                                               | 70-130               | Pass           |                    |
| d-BHC                         | M19-Ja23309          | NCP          | %            | 84                                               | 70-130               | Pass           |                    |
| Dieldrin                      | M19-Ja23309          | NCP          | %            | 124                                              | 70-130               | Pass           |                    |
| Endosulfan I                  | M19-Ja23309          | NCP          | %            | 103                                              | 70-130               | Pass           |                    |
| Endosulfan II                 | M19-Ja23309          | NCP          | %            | 106                                              | 70-130               | Pass           |                    |
| Endosulfan sulphate           | M19-Ja23309          | NCP          | %            | 70                                               | 70-130               | Pass           |                    |
| Endrin                        | M19-Ja23309          | NCP          | %            | 125                                              | 70-130               | Pass           |                    |
| Endrin aldehyde               | M19-Ja23309          | NCP          | %            | 89                                               | 70-130               | Pass           |                    |
| Endrin ketone                 | M19-Ja23309          | NCP          | %            | 114                                              | 70-130               | Pass           |                    |
| g-BHC (Lindane)               | M19-Ja23309          | NCP          | %            | 99                                               | 70-130               | Pass           |                    |
| Heptachlor                    | M19-Ja23309          | NCP          | %            | 95                                               | 70-130               | Pass           |                    |
| Heptachlor epoxide            | M19-Ja23309          | NCP          | %            | 85                                               | 70-130               | Pass           |                    |
| Hexachlorobenzene             | M19-Ja23309          | NCP          | %            | 115                                              | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |              |                                                  |                      |                |                    |
| Polychlorinated Biphenyls     |                      |              |              | Result 1                                         |                      |                |                    |
| Aroclor-1016                  | M19-Ja24646          | NCP          | %            | 72                                               | 70-130               | Pass           |                    |
| Aroclor-1260                  | M19-Ja24646          | NCP          | %            | 92                                               | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |              |                                                  |                      |                |                    |
| Heavy Metals                  |                      |              |              | Result 1                                         |                      |                |                    |
| Arsenic                       | M19-Ja24618          | NCP          | %            | 117                                              | 75-125               | Pass           |                    |
| Cadmium                       | M19-Ja24618          | NCP          | %            | 108                                              | 75-125               | Pass           |                    |
|                               | <del> </del>         |              |              | <del>                                     </del> | <del></del>          | +              | 1                  |



| Test                           | Lab Sample ID       | QA<br>Source | Units   | Result 1 |          |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|---------------------|--------------|---------|----------|----------|----------|----------------------|----------------|--------------------|
| Copper                         | M19-Ja24618         | NCP          | %       | 170      |          |          | 75-125               | Fail           | Q08                |
| Lead                           | M19-Ja24618         | NCP          | %       | 219      |          |          | 75-125               | Fail           | Q08                |
| Mercury                        | M19-Ja24618         | NCP          | %       | 106      |          |          | 70-130               | Pass           |                    |
| Nickel                         | M19-Ja24618         | NCP          | %       | 115      |          |          | 75-125               | Pass           |                    |
| Zinc                           | M19-Ja24618         | NCP          | %       | 150      |          |          | 75-125               | Fail           | Q08                |
| Test                           | Lab Sample ID       | QA<br>Source | Units   | Result 1 |          |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                      |                     | 1000.00      |         |          |          |          | 2                    |                | 5545               |
| Total Recoverable Hydrocarbons | s - 1999 NEPM Fract | tions        |         | Result 1 | Result 2 | RPD      |                      |                |                    |
| TRH C6-C9                      | S19-Ja22194         | NCP          | mg/kg   | < 20     | < 20     | <1       | 30%                  | Pass           |                    |
| TRH C10-C14                    | M19-Ja25129         | NCP          | mg/kg   | < 20     | < 20     | <1       | 30%                  | Pass           |                    |
| TRH C15-C28                    | M19-Ja25129         | NCP          | mg/kg   | < 50     | < 50     | <1       | 30%                  | Pass           |                    |
| TRH C29-C36                    | M19-Ja25129         | NCP          | mg/kg   | < 50     | < 50     | <1       | 30%                  | Pass           |                    |
| Duplicate                      | 10110 0020120       | 1101         | mg/ng   | 1 00     | 100      | ``       | 3070                 | 1 400          |                    |
| BTEX                           |                     |              |         | Result 1 | Result 2 | RPD      |                      |                |                    |
| Benzene                        | S19-Ja22194         | NCP          | mg/kg   | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| Toluene                        | S19-Ja22194         | NCP          | mg/kg   | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| Ethylbenzene                   | S19-Ja22194         | NCP          | mg/kg   | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| m&p-Xylenes                    | S19-Ja22194         | NCP          | mg/kg   | < 0.1    | < 0.2    | <1       | 30%                  | Pass           |                    |
| o-Xylene                       | S19-Ja22194         | NCP          | mg/kg   | < 0.2    | < 0.2    | <1       | 30%                  | Pass           |                    |
| Xylenes - Total                | S19-Ja22194         | NCP          | mg/kg   | < 0.1    | < 0.3    | <1       | 30%                  | Pass           |                    |
| Duplicate                      | 319-Ja22194         | INCF         | ilig/kg | V 0.3    | < 0.5    |          | 30%                  | Fass           |                    |
| Total Recoverable Hydrocarbons | s - 2013 NEPM Fract | ione         |         | Result 1 | Result 2 | RPD      |                      |                |                    |
| Naphthalene                    | S19-Ja22194         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| TRH C6-C10                     | S19-Ja22194         | NCP          | mg/kg   | < 20     | < 20     | <1       | 30%                  | Pass           |                    |
| TRH >C10-C16                   | M19-Ja25129         | NCP          | mg/kg   | < 50     | < 50     | <1       | 30%                  | Pass           |                    |
| TRH >C16-C34                   | M19-Ja25129         | NCP          | mg/kg   | < 100    | < 100    | <1       | 30%                  | Pass           |                    |
| TRH >C34-C40                   | M19-Ja25129         | NCP          | mg/kg   | < 100    | < 100    | <1       | 30%                  | Pass           |                    |
| Duplicate                      | W119-0820129        | INCI         | ilig/kg | 100      | <u> </u> |          | 3078                 | 1 033          |                    |
| Polycyclic Aromatic Hydrocarbo | ns                  |              |         | Result 1 | Result 2 | RPD      |                      |                |                    |
| Acenaphthene                   | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Acenaphthylene                 | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Anthracene                     | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benz(a)anthracene              | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benzo(a)pyrene                 | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene         | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene           | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene           | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Chrysene                       | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene          | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Fluoranthene                   | M19-Ja23308         | NCP          |         | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Fluorene                       | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
|                                | M19-Ja23308         | NCP          | mg/kg   | 1        |          | <1       | 30%                  |                |                    |
| Indeno(1.2.3-cd)pyrene         | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1<br><1 |                      | Pass           |                    |
| Naphthalene                    |                     | NCP          | mg/kg   | < 0.5    | < 0.5    |          | 30%                  | Pass           |                    |
| Phenanthrene                   | M19-Ja23308         |              | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Pyrene                         | M19-Ja23308         | NCP          | mg/kg   | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Organochlorine Pesticides      |                     |              |         | Result 1 | Result 2 | RPD      |                      |                |                    |
| Chlordanes - Total             | M19-Ja23308         | NCP          | mg/kg   | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| 4.4'-DDD                       |                     | NCP          |         | < 0.05   | < 0.1    | <1<br><1 | 30%                  |                |                    |
|                                | M19-Ja23308         |              | mg/kg   |          |          |          |                      | Pass           |                    |
| 4.4'-DDE                       | M19-Ja23308         | NCP          | mg/kg   | < 0.05   | < 0.05   | <1       | 30%                  | Pass           |                    |
| 4.4'-DDT                       | M19-Ja23308         | NCP          | mg/kg   | < 0.05   | < 0.05   | <1       | 30%                  | Pass           |                    |
| a-BHC                          | M19-Ja23308         | NCP          | mg/kg   | < 0.05   | < 0.05   | <1       | 30%                  | Pass           |                    |
| Aldrin                         | M19-Ja23308         | NCP          | mg/kg   | < 0.05   | < 0.05   | <1       | 30%                  | Pass           |                    |
| b-BHC                          | M19-Ja23308         | NCP          | mg/kg   | < 0.05   | < 0.05   | <1       | 30%                  | Pass           |                    |



| Duplicate                 |             |     |       |          |          |     |     |      |  |
|---------------------------|-------------|-----|-------|----------|----------|-----|-----|------|--|
| Organochlorine Pesticides |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| d-BHC                     | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Dieldrin                  | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endosulfan I              | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endosulfan II             | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endosulfan sulphate       | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endrin                    | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endrin aldehyde           | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endrin ketone             | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| g-BHC (Lindane)           | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Heptachlor                | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Heptachlor epoxide        | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Hexachlorobenzene         | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Methoxychlor              | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Duplicate                 |             |     |       |          |          |     |     |      |  |
| Heavy Metals              |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| Arsenic                   | M19-Ja24617 | NCP | mg/kg | < 2      | < 2      | <1  | 30% | Pass |  |
| Cadmium                   | M19-Ja24617 | NCP | mg/kg | < 0.4    | < 0.4    | <1  | 30% | Pass |  |
| Chromium                  | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Copper                    | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Lead                      | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Mercury                   | M19-Ja24617 | NCP | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| Nickel                    | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Zinc                      | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Duplicate                 |             |     |       |          |          |     |     |      |  |
|                           |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| % Moisture                | M19-Ja23454 | NCP | %     | 14       | 15       | 3.0 | 30% | Pass |  |



#### Comments

### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q08

#### **Authorised By**

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Nibha Vaidva Senior Analyst-Asbestos (NSW) Emily Rosenberg Senior Analyst-Metal (VIC)

### Glenn Jackson **General Manager**

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Report Number: 637848-S



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Daniel Denaro

Report 637848-W

Project name CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID 55579
Received Date Jan 23, 2019

| Client Sample ID                             |          |      | DINIOATE         | DINGATE          |
|----------------------------------------------|----------|------|------------------|------------------|
| •                                            |          |      | RINSATE<br>Water | RINSATE<br>Water |
| Sample Matrix                                |          |      | 1111111          |                  |
| Eurofins   mgt Sample No.                    |          |      | S19-Ja24422      | S19-Ja24423      |
| Date Sampled                                 |          |      | Jan 23, 2019     | Jan 25, 2019     |
| Test/Reference                               | LOR      | Unit |                  |                  |
| Total Recoverable Hydrocarbons - 1999 NEPM F | ractions |      |                  |                  |
| TRH C6-C9                                    | 0.02     | mg/L | < 0.02           | < 0.02           |
| TRH C10-C14                                  | 0.05     | mg/L | < 0.05           | < 0.05           |
| TRH C15-C28                                  | 0.1      | mg/L | < 0.1            | < 0.1            |
| TRH C29-C36                                  | 0.1      | mg/L | < 0.1            | < 0.1            |
| TRH C10-36 (Total)                           | 0.1      | mg/L | < 0.1            | < 0.1            |
| ВТЕХ                                         |          |      |                  |                  |
| Benzene                                      | 0.001    | mg/L | < 0.001          | < 0.001          |
| Toluene                                      | 0.001    | mg/L | < 0.001          | < 0.001          |
| Ethylbenzene                                 | 0.001    | mg/L | < 0.001          | < 0.001          |
| m&p-Xylenes                                  | 0.002    | mg/L | < 0.002          | < 0.002          |
| o-Xylene                                     | 0.001    | mg/L | < 0.001          | < 0.001          |
| Xylenes - Total                              | 0.003    | mg/L | < 0.003          | < 0.003          |
| 4-Bromofluorobenzene (surr.)                 | 1        | %    | 99               | 107              |
| Total Recoverable Hydrocarbons - 2013 NEPM F | ractions |      |                  |                  |
| Naphthalene <sup>N02</sup>                   | 0.01     | mg/L | < 0.01           | < 0.01           |
| TRH C6-C10                                   | 0.02     | mg/L | < 0.02           | < 0.02           |
| TRH C6-C10 less BTEX (F1)N04                 | 0.02     | mg/L | < 0.02           | < 0.02           |
| TRH >C10-C16                                 | 0.05     | mg/L | < 0.05           | < 0.05           |
| TRH >C10-C16 less Naphthalene (F2)N01        | 0.05     | mg/L | < 0.05           | < 0.05           |
| TRH >C16-C34                                 | 0.1      | mg/L | < 0.1            | < 0.1            |
| TRH >C34-C40                                 | 0.1      | mg/L | < 0.1            | < 0.1            |
| TRH >C10-C40 (total)*                        | 0.1      | mg/L | < 0.1            | < 0.1            |
| Polycyclic Aromatic Hydrocarbons             |          |      |                  |                  |
| Acenaphthene                                 | 0.001    | mg/L | < 0.001          | < 0.001          |
| Acenaphthylene                               | 0.001    | mg/L | < 0.001          | < 0.001          |
| Anthracene                                   | 0.001    | mg/L | < 0.001          | < 0.001          |
| Benz(a)anthracene                            | 0.001    | mg/L | < 0.001          | < 0.001          |
| Benzo(a)pyrene                               | 0.001    | mg/L | < 0.001          | < 0.001          |
| Benzo(b&j)fluorantheneN07                    | 0.001    | mg/L | < 0.001          | < 0.001          |
| Benzo(g.h.i)perylene                         | 0.001    | mg/L | < 0.001          | < 0.001          |
| Benzo(k)fluoranthene                         | 0.001    | mg/L | < 0.001          | < 0.001          |
| Chrysene                                     | 0.001    | mg/L | < 0.001          | < 0.001          |
| Dibenz(a.h)anthracene                        | 0.001    | mg/L | < 0.001          | < 0.001          |
| Fluoranthene                                 | 0.001    | mg/L | < 0.001          | < 0.001          |
| Fluorene                                     | 0.001    | mg/L | < 0.001          | < 0.001          |



| Client Sample ID                    |        |       | RINSATE      | RINSATE      |
|-------------------------------------|--------|-------|--------------|--------------|
| Sample Matrix                       |        |       | Water        | Water        |
| Eurofins   mgt Sample No.           |        |       | S19-Ja24422  | S19-Ja24423  |
| Date Sampled                        |        |       | Jan 23, 2019 | Jan 25, 2019 |
| ·                                   | LOR    | Linit | Jan 23, 2019 | Jan 25, 2019 |
| Test/Reference                      | LOR    | Unit  |              |              |
| Polycyclic Aromatic Hydrocarbons    |        |       | 0.007        | 2 2 2 4      |
| Indeno(1.2.3-cd)pyrene              | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Naphthalene                         | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Phenanthrene                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Pyrene                              | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Total PAH*                          | 0.001  | mg/L  | < 0.001      | < 0.001      |
| 2-Fluorobiphenyl (surr.)            | 1      | %     | 62           | 54           |
| p-Terphenyl-d14 (surr.)             | 1      | %     | 91           | 96           |
| Organochlorine Pesticides           |        |       |              |              |
| Chlordanes - Total                  | 0.001  | mg/L  | < 0.001      | < 0.001      |
| 4.4'-DDD                            | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| 4.4'-DDE                            | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| 4.4'-DDT                            | 0.0001 | mg/L  | 0.0001       | < 0.0001     |
| a-BHC                               | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Aldrin                              | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| b-BHC                               | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| d-BHC                               | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Dieldrin                            | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Endosulfan I                        | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Endosulfan II                       | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Endosulfan sulphate                 | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Endrin                              | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Endrin aldehyde                     | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Endrin ketone                       | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| g-BHC (Lindane)                     | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Heptachlor                          | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Heptachlor epoxide                  | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Hexachlorobenzene                   | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Methoxychlor                        | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| Toxaphene                           | 0.01   | mg/L  | < 0.01       | < 0.01       |
| Aldrin and Dieldrin (Total)*        | 0.0001 | mg/L  | < 0.0001     | < 0.0001     |
| DDT + DDE + DDD (Total)*            | 0.0001 | mg/L  | 0.0001       | < 0.0001     |
| Vic EPA IWRG 621 OCP (Total)*       | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Dibutylchlorendate (surr.)          | 1      | %     | 90           | 75           |
| Tetrachloro-m-xylene (surr.)        | 1      | %     | 60           | 69           |
| Polychlorinated Biphenyls           |        |       |              |              |
| Aroclor-1016                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Aroclor-1221                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Aroclor-1232                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Aroclor-1242                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Aroclor-1248                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Aroclor-1254                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Aroclor-1260                        | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Total PCB*                          | 0.001  | mg/L  | < 0.001      | < 0.001      |
| Dibutylchlorendate (surr.)          | 1      | %     | 90           | 75           |
| Tetrachloro-m-xylene (surr.)        | 1      | %     | 60           | 69           |

Report Number: 637848-W



| Client Sample ID          |        |      | DINICATE         | DINCATE          |
|---------------------------|--------|------|------------------|------------------|
| Sample Matrix             |        |      | RINSATE<br>Water | RINSATE<br>Water |
| •                         |        |      |                  | 1                |
| Eurofins   mgt Sample No. |        |      | S19-Ja24422      | S19-Ja24423      |
| Date Sampled              |        |      | Jan 23, 2019     | Jan 25, 2019     |
| Test/Reference            | LOR    | Unit |                  |                  |
| Heavy Metals              |        |      |                  |                  |
| Arsenic                   | 0.001  | mg/L | < 0.001          | < 0.001          |
| Cadmium                   | 0.0002 | mg/L | < 0.0002         | < 0.0002         |
| Chromium                  | 0.001  | mg/L | < 0.001          | < 0.001          |
| Copper                    | 0.001  | mg/L | < 0.001          | < 0.001          |
| Lead                      | 0.001  | mg/L | < 0.001          | < 0.001          |
| Mercury                   | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Nickel                    | 0.001  | mg/L | < 0.001          | < 0.001          |
| Zinc                      | 0.005  | mg/L | < 0.005          | < 0.005          |



Report Number: 637848-W



- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                            | Testing Site | Extracted    | <b>Holding Time</b> |
|------------------------------------------------------------------------|--------------|--------------|---------------------|
| JBS&G Suite 2                                                          |              |              |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 7 Day               |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |                     |
| BTEX                                                                   | Melbourne    | Jan 31, 2019 | 14 Day              |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices |              |              |                     |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Jan 31, 2019 | 7 Day               |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |                     |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 7 Day               |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |                     |
| Polycyclic Aromatic Hydrocarbons                                       | Melbourne    | Feb 01, 2019 | 7 Day               |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water               |              |              |                     |
| Organochlorine Pesticides                                              | Melbourne    | Feb 04, 2019 | 7 Day               |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |                     |
| Polychlorinated Biphenyls                                              | Melbourne    | Feb 01, 2019 | 7 Days              |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |                     |
| Metals M8                                                              | Melbourne    | Jan 31, 2019 | 28 Days             |



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Jan 25, 2019 5:50 PM

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

 Report #:
 637848
 Due:
 Feb 4, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Daniel Denaro

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|       |                     | Asbestos - WA guidelines | HOLD             | Moisture Set | JBS&G Suite 2 |   |   |   |   |  |
|-------|---------------------|--------------------------|------------------|--------------|---------------|---|---|---|---|--|
|       | ourne Laborato      |                          | Х                | Х            | Х             |   |   |   |   |  |
|       | ney Laboratory      |                          |                  |              |               | Х |   |   |   |  |
| Brisl | pane Laboratory     | y - NATA Site #          | 20794            |              |               |   |   |   |   |  |
|       | n Laboratory - N    |                          | 36               |              |               |   |   |   |   |  |
| Exte  | rnal Laboratory     |                          |                  | 1            | T             |   |   |   |   |  |
| No    | Sample ID           | Sample Date              | Sampling<br>Time | Matrix       | LAB ID        |   |   |   |   |  |
| 1     | RINSATE             | Jan 23, 2019             |                  | Water        | S19-Ja24422   |   |   |   | Х |  |
| 2     | RINSATE             | Jan 25, 2019             |                  | Water        | S19-Ja24423   |   |   |   | Х |  |
| 3     | QC20190121R<br>C_01 | Jan 21, 2019             |                  | Soil         | S19-Ja24424   | х |   | Х | Х |  |
| 4     | QC20190123R<br>C_01 | Jan 23, 2019             |                  | Soil         | S19-Ja24425   | Х |   | Х | Х |  |
| 5     | QC20190124R<br>C_01 | Jan 24, 2019             |                  | Soil         | S19-Ja24426   | Х |   | Х | Х |  |
| 6     | TRIP SPIKE          | Jan 17, 2019             |                  | Water        | S19-Ja24427   |   | Х |   |   |  |
| 7     | TRIP BLANK          | Jan 17, 2019             |                  | Water        | S19-Ja24428   |   | Х |   |   |  |

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 5 of 14

Date Reported:Feb 04, 2019

Report Number: 637848-W



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637848
 Due:
 Feb 4, 2019

637848 **Due:** Feb 4, 2019 02 8245 0300 **Priority:** 5 Day

Contact Name: Daniel Denaro

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

| Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271 |                                      |                 |              |       |             | Asbestos - WA guidelines | HOLD | Moisture Set | JBS&G Suite 2 |  |  |  |
|----------------------------------------------------------------|--------------------------------------|-----------------|--------------|-------|-------------|--------------------------|------|--------------|---------------|--|--|--|
| Ме                                                             | lbourne Laborate                     | ory - NATA Site | # 1254 & 142 | 271   |             |                          | Х    | Х            | Х             |  |  |  |
| Sy                                                             | dney Laboratory                      | - NATA Site # 1 | 8217         |       |             | Х                        |      |              |               |  |  |  |
| Bri                                                            | sbane Laborator                      | y - NATA Site # | 20794        |       |             |                          |      |              |               |  |  |  |
| Pe                                                             | Perth Laboratory - NATA Site # 23736 |                 |              |       |             |                          |      |              |               |  |  |  |
| 8                                                              | TRIP SPIKE                           | Jan 09, 2019    |              | Water | S19-Ja24429 |                          | Х    |              |               |  |  |  |
| 9                                                              | TRIP BLANK                           | Jan 09, 2019    |              | Water | S19-Ja24430 |                          | Х    |              |               |  |  |  |
| Tes                                                            | est Counts                           |                 |              |       |             |                          |      | 3            | 5             |  |  |  |



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

**Terms** 

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 637848-W



## **Quality Control Results**

| Test                                                 | Units | Result 1     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|--------------|----------------------|----------------|--------------------|
| Method Blank                                         |       |              |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions | 1     |              |                      |                |                    |
| TRH C6-C9                                            | mg/L  | < 0.02       | 0.02                 | Pass           |                    |
| TRH C10-C14                                          | mg/L  | < 0.05       | 0.05                 | Pass           |                    |
| TRH C15-C28                                          | mg/L  | < 0.1        | 0.1                  | Pass           |                    |
| TRH C29-C36                                          | mg/L  | < 0.1        | 0.1                  | Pass           |                    |
| Method Blank                                         |       |              |                      |                |                    |
| BTEX                                                 |       |              |                      |                |                    |
| Benzene                                              | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Toluene                                              | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Ethylbenzene                                         | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| m&p-Xylenes                                          | mg/L  | < 0.002      | 0.002                | Pass           |                    |
| o-Xylene                                             | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Xylenes - Total                                      | mg/L  | < 0.003      | 0.003                | Pass           |                    |
| Method Blank                                         |       |              |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |              |                      |                |                    |
| Naphthalene                                          | mg/L  | < 0.01       | 0.01                 | Pass           |                    |
| TRH C6-C10                                           | mg/L  | < 0.02       | 0.02                 | Pass           |                    |
| TRH >C10-C16                                         | mg/L  | < 0.05       | 0.05                 | Pass           |                    |
| TRH >C16-C34                                         | mg/L  | < 0.1        | 0.1                  | Pass           |                    |
| TRH >C34-C40                                         | mg/L  | < 0.1        | 0.1                  | Pass           |                    |
| Method Blank                                         | ,g/=  | 1            |                      | 1              |                    |
| Polycyclic Aromatic Hydrocarbons                     |       | T I          |                      |                |                    |
| Acenaphthene                                         | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Acenaphthylene                                       | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Anthracene                                           | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Benz(a)anthracene                                    | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Benzo(a)pyrene                                       | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Benzo(b&j)fluoranthene                               | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Benzo(g.h.i)perylene                                 | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Benzo(k)fluoranthene                                 | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Chrysene                                             | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Dibenz(a.h)anthracene                                | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| ` '                                                  |       |              |                      |                |                    |
| Fluoranthene                                         | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Fluorene                                             | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Naphthalene                                          | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Phenanthrene                                         | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Pyrene                                               | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| Method Blank                                         |       | <del> </del> |                      | T              |                    |
| Organochlorine Pesticides                            | 1 ,   | 2 2 2 4      |                      | +_             |                    |
| Chlordanes - Total                                   | mg/L  | < 0.001      | 0.001                | Pass           |                    |
| 4.4'-DDD                                             | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| 4.4'-DDE                                             | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| 4.4'-DDT                                             | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| a-BHC                                                | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| Aldrin                                               | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| b-BHC                                                | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| d-BHC                                                | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| Dieldrin                                             | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| Endosulfan I                                         | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |
| Endosulfan II                                        | mg/L  | < 0.0001     | 0.0001               | Pass           |                    |



| Test                                                | Units  | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------|--------|----------|----------------------|----------------|--------------------|
| Endosulfan sulphate                                 | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Endrin                                              | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Endrin aldehyde                                     | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Endrin ketone                                       | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| g-BHC (Lindane)                                     | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Heptachlor                                          | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Heptachlor epoxide                                  | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Hexachlorobenzene                                   | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Methoxychlor                                        | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Toxaphene                                           | mg/L   | < 0.01   | 0.01                 | Pass           |                    |
| Method Blank                                        |        |          |                      |                |                    |
| Polychlorinated Biphenyls                           |        |          |                      |                |                    |
| Aroclor-1016                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Aroclor-1221                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Aroclor-1232                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Aroclor-1242                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Aroclor-1248                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Aroclor-1246                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Aroclor-1260                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Total PCB*                                          | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Method Blank                                        | IIIg/L | < 0.001  | 0.001                | газз           |                    |
| Heavy Metals                                        | _      | T        | T I                  |                |                    |
| •                                                   | m a/l  | .0.001   | 0.004                | Door           |                    |
| Arsenic                                             | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Characteristics                                     | mg/L   | < 0.0002 | 0.0002               | Pass           |                    |
| Chromium                                            | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Copper                                              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Lead                                                | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Mercury                                             | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Nickel                                              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Zinc                                                | mg/L   | < 0.005  | 0.005                | Pass           |                    |
| LCS - % Recovery                                    |        |          | 1                    |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fraction |        |          |                      |                |                    |
| TRH C6-C9                                           | %      | 109      | 70-130               | Pass           |                    |
| TRH C10-C14                                         | %      | 97       | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |        | 1        | <u> </u>             |                |                    |
| BTEX                                                |        |          |                      |                |                    |
| Benzene                                             | %      | 83       | 70-130               | Pass           |                    |
| Toluene                                             | %      | 88       | 70-130               | Pass           |                    |
| Ethylbenzene                                        | %      | 106      | 70-130               | Pass           |                    |
| m&p-Xylenes                                         | %      | 109      | 70-130               | Pass           |                    |
| Xylenes - Total                                     | %      | 108      | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |        |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fraction |        |          |                      |                |                    |
| Naphthalene                                         | %      | 92       | 70-130               | Pass           |                    |
| TRH C6-C10                                          | %      | 113      | 70-130               | Pass           |                    |
| TRH >C10-C16                                        | %      | 99       | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |        |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                    |        |          |                      |                |                    |
| Acenaphthene                                        | %      | 123      | 70-130               | Pass           |                    |
| Acenaphthylene                                      | %      | 107      | 70-130               | Pass           |                    |
| Anthracene                                          | %      | 124      | 70-130               | Pass           |                    |
| Benz(a)anthracene                                   | %      | 91       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                      | %      | 84       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                              | %      | 86       | 70-130               | Pass           |                    |



| Test                        |                 |         | Units        | Result 1 | Acceptance<br>Limits | Pass<br>Limits       | Qualifying<br>Code |                    |
|-----------------------------|-----------------|---------|--------------|----------|----------------------|----------------------|--------------------|--------------------|
| Benzo(g.h.i)perylene        |                 |         | %            | 80       | 70-130               | Pass                 |                    |                    |
| Benzo(k)fluoranthene        |                 |         | %            | 74       | 70-130               | Pass                 |                    |                    |
| Chrysene                    |                 |         |              | %        | 88                   | 70-130               | Pass               |                    |
| Dibenz(a.h)anthracene       |                 |         | %            | 92       | 70-130               | Pass                 |                    |                    |
| Fluoranthene                |                 |         | %            | 94       | 70-130               | Pass                 |                    |                    |
| Fluorene                    |                 |         | %            | 103      | 70-130               | Pass                 |                    |                    |
| Indeno(1.2.3-cd)pyrene      |                 |         |              | %        | 115                  | 70-130               | Pass               |                    |
| Naphthalene                 |                 |         |              | %        | 96                   | 70-130               | Pass               |                    |
| Phenanthrene                |                 |         |              | %        | 120                  | 70-130               | Pass               |                    |
| Pyrene                      |                 |         |              | %        | 95                   | 70-130               | Pass               |                    |
| LCS - % Recovery            |                 |         |              |          |                      |                      |                    |                    |
| Organochlorine Pesticides   |                 |         |              |          |                      |                      |                    |                    |
| Chlordanes - Total          |                 |         |              | %        | 101                  | 70-130               | Pass               |                    |
| 4.4'-DDD                    |                 |         |              | %        | 90                   | 70-130               | Pass               |                    |
| 4.4'-DDE                    |                 |         |              | %        | 114                  | 70-130               | Pass               |                    |
| 4.4'-DDT                    |                 |         |              | %        | 95                   | 70-130               | Pass               |                    |
| a-BHC                       |                 |         |              | <u>%</u> | i                    | 70-130               |                    |                    |
| Aldrin                      |                 |         |              | <u>%</u> | 79                   | 70-130               | Pass               |                    |
|                             |                 |         |              |          | 79                   |                      | Pass               |                    |
| b-BHC                       |                 | -       |              | %        | 88                   | 70-130               | Pass               |                    |
| d-BHC                       |                 |         |              | %        | 102                  | 70-130               | Pass               |                    |
| Dieldrin                    |                 |         |              | %        | 110                  | 70-130               | Pass               |                    |
| Endosulfan I                |                 |         |              | %        | 78                   | 70-130               | Pass               |                    |
| Endosulfan II               |                 |         |              | %        | 80                   | 70-130               | Pass               |                    |
| Endosulfan sulphate         |                 |         |              | %        | 90                   | 70-130               | Pass               |                    |
| Endrin                      |                 |         |              | %        | 87                   | 70-130               | Pass               |                    |
| Endrin aldehyde             |                 |         |              | %        | 75                   | 70-130               | Pass               |                    |
| Endrin ketone               |                 |         |              | %        | 116                  | 70-130               | Pass               |                    |
| g-BHC (Lindane)             |                 |         |              | %        | 79                   | 70-130               | Pass               |                    |
| Heptachlor                  |                 |         |              | %        | 74                   | 70-130               | Pass               |                    |
| Heptachlor epoxide          |                 |         |              | %        | 84                   | 70-130               | Pass               |                    |
| Hexachlorobenzene           |                 |         |              | %        | 80                   | 70-130               | Pass               |                    |
| Methoxychlor                |                 |         |              | %        | 118                  | 70-130               | Pass               |                    |
| LCS - % Recovery            |                 |         |              |          |                      |                      |                    |                    |
| Heavy Metals                |                 |         |              |          |                      |                      |                    |                    |
| Arsenic                     |                 |         |              | %        | 88                   | 80-120               | Pass               |                    |
| Cadmium                     |                 |         |              | %        | 88                   | 80-120               | Pass               |                    |
| Chromium                    |                 |         |              | %        | 88                   | 80-120               | Pass               |                    |
| Copper                      |                 |         |              | %        | 87                   | 80-120               | Pass               |                    |
| Lead                        |                 |         |              | %        | 89                   | 80-120               | Pass               |                    |
| Mercury                     |                 |         |              | %        | 88                   | 75-125               | Pass               |                    |
| Nickel                      |                 | 7       |              | %        | 87                   | 80-120               | Pass               |                    |
| Zinc                        |                 |         |              | %        | 89                   | 80-120               | Pass               |                    |
| Test                        | Lab Sampl       | le ID   | QA<br>Source | Units    | Result 1             | Acceptance<br>Limits | Pass<br>Limits     | Qualifying<br>Code |
| Spike - % Recovery          |                 |         |              |          |                      |                      |                    | 3040               |
| Total Recoverable Hydrocarb | ons - 1999 NFPM | Fractio | ns           |          | Result 1             |                      |                    |                    |
| TRH C6-C9                   | S19-Ja222       |         | NCP          | %        | 113                  | 70-130               | Pass               |                    |
| TRH C10-C14                 | M19-Ja276       |         | NCP          | %        | 110                  | 70-130               | Pass               |                    |
| Spike - % Recovery          | W113-Ja270      | 001     | 1401-        | /0       | 110                  | 10-130               | 1 033              |                    |
| BTEX                        |                 |         |              |          | Result 1             |                      |                    |                    |
|                             | C40 le000       | 225     | NCD          | 0/       |                      | 70.420               | Desa               |                    |
| Benzene                     | S19-Ja222       |         | NCP          | %        | 88                   | 70-130               | Pass               |                    |
| Toluene                     | S19-Ja222       |         | NCP          | %        | 95                   | 70-130               | Pass               |                    |
| Ethylbenzene                | S19-Ja222       |         | NCP          | %        | 104                  | 70-130               | Pass               |                    |
| m&p-Xylenes                 | S19-Ja222       |         | NCP          | %        | 108                  | 70-130               | Pass               |                    |
| o-Xylene                    | S19-Ja222       | 235     | NCP          | %        | 105                  | 70-130               | Pass               |                    |



| Test                                  | Lab Sample ID     | QA<br>Source | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------|-------------------|--------------|-------|----------|----------------------|----------------|--------------------|
| Xylenes - Total                       | S19-Ja22235       | NCP          | %     | 107      | 70-130               | Pass           |                    |
| Spike - % Recovery                    |                   |              |       |          |                      |                |                    |
| <b>Total Recoverable Hydrocarbons</b> | - 2013 NEPM Fract | ions         |       | Result 1 |                      |                |                    |
| Naphthalene                           | S19-Ja22235       | NCP          | %     | 94       | 70-130               | Pass           |                    |
| TRH C6-C10                            | S19-Ja22235       | NCP          | %     | 114      | 70-130               | Pass           |                    |
| TRH >C10-C16                          | M19-Ja27601       | NCP          | %     | 115      | 70-130               | Pass           |                    |
| Spike - % Recovery                    |                   |              |       |          |                      | T              |                    |
| Polycyclic Aromatic Hydrocarbor       | ıs                |              |       | Result 1 |                      |                |                    |
| Acenaphthene                          | M19-Ja19670       | NCP          | %     | 112      | 70-130               | Pass           |                    |
| Acenaphthylene                        | M19-Ja19670       | NCP          | %     | 95       | 70-130               | Pass           |                    |
| Anthracene                            | M19-Ja19670       | NCP          | %     | 81       | 70-130               | Pass           |                    |
| Benz(a)anthracene                     | M19-Ja19670       | NCP          | %     | 113      | 70-130               | Pass           |                    |
| Benzo(a)pyrene                        | M19-Ja19670       | NCP          | %     | 116      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                | M19-Ja19670       | NCP          | %     | 80       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene                  | M19-Ja19670       | NCP          | %     | 100      | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene                  | M19-Ja19670       | NCP          | %     | 93       | 70-130               | Pass           |                    |
| Chrysene                              | M19-Ja19670       | NCP          | %     | 103      | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene                 | M19-Ja19670       | NCP          | %     | 88       | 70-130               | Pass           |                    |
| Fluoranthene                          | M19-Ja19670       | NCP          | %     | 94       | 70-130               | Pass           |                    |
| Fluorene                              | M19-Ja19670       | NCP          | %     | 89       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                | M19-Ja19670       | NCP          | %     | 114      | 70-130               | Pass           |                    |
| Naphthalene                           | M19-Ja19670       | NCP          | %     | 96       | 70-130               | Pass           |                    |
| Phenanthrene                          | M19-Ja19670       | NCP          | %     | 104      | 70-130               | Pass           |                    |
| Pyrene                                | M19-Ja19670       | NCP          | %     | 95       | 70-130               | Pass           |                    |
| Spike - % Recovery                    |                   |              |       | T T      |                      | T              |                    |
| Heavy Metals                          |                   |              |       | Result 1 |                      |                |                    |
| Arsenic                               | M19-Ja19906       | NCP          | %     | 102      | 75-125               | Pass           |                    |
| Cadmium                               | M19-Ja19906       | NCP          | %     | 102      | 75-125               | Pass           |                    |
| Chromium                              | M19-Ja19906       | NCP          | %     | 101      | 75-125               | Pass           |                    |
| Copper                                | M19-Ja19906       | NCP          | %     | 101      | 75-125               | Pass           |                    |
| Lead                                  | M19-Ja19906       | NCP          | %     | 101      | 75-125               | Pass           |                    |
| Mercury                               | M19-Ja19906       | NCP          | %     | 104      | 70-130               | Pass           |                    |
| Nickel                                | M19-Ja19906       | NCP          | %     | 100      | 75-125               | Pass           |                    |
| Zinc                                  | M19-Ja19906       | NCP          | %     | 104      | 75-125               | Pass           |                    |
| Spike - % Recovery                    |                   |              |       | Ι =      |                      |                |                    |
| Organochlorine Pesticides             | T                 | I I          |       | Result 1 |                      | _              |                    |
| Chlordanes - Total                    | M19-Ja23029       | NCP          | %     | 107      | 70-130               | Pass           |                    |
| 4.4'-DDD                              | M19-Ja23029       | NCP          | %     | 89       | 70-130               | Pass           |                    |
| 4.4'-DDE                              | M19-Ja23029       | NCP          | %     | 114      | 70-130               | Pass           |                    |
| 4.4'-DDT                              | M19-Ja23029       | NCP          | %     | 98       | 70-130               | Pass           |                    |
| a-BHC                                 | M19-Ja23029       | NCP          | %     | 92       | 70-130               | Pass           |                    |
| Aldrin                                | M19-Ja23029       | NCP          | %     | 81       | 70-130               | Pass           |                    |
| b-BHC                                 | M19-Ja23029       | NCP          | %     | 91       | 70-130               | Pass           |                    |
| d-BHC                                 | M19-Ja23029       | NCP          | %     | 96       | 70-130               | Pass           |                    |
| Dieldrin                              | M19-Ja23029       | NCP          | %     | 101      | 70-130               | Pass           |                    |
| Endosulfan I                          | M19-Ja23029       | NCP          | %     | 78       | 70-130               | Pass           |                    |
| Endosulfan II                         | M19-Ja23029       | NCP          | %     | 95       | 70-130               | Pass           |                    |
| Endosulfan sulphate                   | M19-Ja23029       | NCP          | %     | 77       | 70-130               | Pass           |                    |
| Endrin                                | M19-Ja23029       | NCP          | %     | 106      | 70-130               | Pass           |                    |
| Endrin aldehyde                       | M19-Fe01757       | NCP          | %     | 105      | 70-130               | Pass           |                    |
| Endrin ketone                         | M19-Ja23029       | NCP          | %     | 79       | 70-130               | Pass           |                    |
| g-BHC (Lindane)                       | M19-Ja23029       | NCP          | %     | 87       | 70-130               | Pass           |                    |
| Heptachlor                            | M19-Ja23029       | NCP          | %     | 79       | 70-130               | Pass           |                    |

Report Number: 637848-W



| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Hexachlorobenzene            | M19-Ja23029   | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Methoxychlor                 | M19-Ja23029   | NCP          | %     | 120      |          |     | 70-130               | Pass           |                    |
| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                    |               |              |       | ı        | 1 1      |     |                      |                |                    |
| Total Recoverable Hydrocarbo |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                    | M19-Ja21481   | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                  | M19-Ja27069   | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                  | M19-Ja27069   | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                  | M19-Ja27069   | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Duplicate                    |               |              |       | l        |          |     |                      |                |                    |
| BTEX                         | 1             |              |       | Result 1 | Result 2 | RPD |                      | _              |                    |
| Benzene                      | M19-Ja21481   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Toluene                      | M19-Ja21481   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                 | M19-Ja21481   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                  | M19-Ja21481   | NCP          | mg/L  | < 0.002  | < 0.002  | <1  | 30%                  | Pass           |                    |
| o-Xylene                     | M19-Ja21481   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Xylenes - Total              | M19-Ja21481   | NCP          | mg/L  | < 0.003  | < 0.003  | <1  | 30%                  | Pass           |                    |
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
| Total Recoverable Hydrocarbo |               |              |       | Result 1 | Result 2 | RPD |                      | _              |                    |
| Naphthalene                  | M19-Ja21481   | NCP          | mg/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                   | M19-Ja21481   | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16                 | M19-Ja27069   | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                 | M19-Ja27069   | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH >C34-C40                 | M19-Ja27069   | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocar |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                 | M19-Ja23872   | NCP          | mg/L  | 0.021    | 0.026    | 24  | 30%                  | Pass           |                    |
| Acenaphthylene               | M19-Ja23872   | NCP          | mg/L  | 0.049    | 0.065    | 29  | 30%                  | Pass           |                    |
| Anthracene                   | M19-Ja23872   | NCP          | mg/L  | 0.018    | 0.022    | 21  | 30%                  | Pass           |                    |
| Benz(a)anthracene            | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene               | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene       | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene         | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene         | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Chrysene                     | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene        | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Fluoranthene                 | M19-Ja23872   | NCP          | mg/L  | 0.006    | 0.008    | 33  | 30%                  | Fail           | Q15                |
| Fluorene                     | M19-Ja23872   | NCP          | mg/L  | 0.070    | 0.10     | 39  | 30%                  | Fail           | Q02                |
| Indeno(1.2.3-cd)pyrene       | M19-Ja23872   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Naphthalene                  | M19-Ja23872   | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Phenanthrene                 | M19-Ja23872   | NCP          | mg/L  | 0.057    | 0.073    | 25  | 30%                  | Pass           |                    |
| Pyrene                       | M19-Ja23872   | NCP          | mg/L  | 0.005    | 0.007    | 44  | 30%                  | Fail           | Q15                |
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                 |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic                      | M19-Ja19906   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Cadmium                      | M19-Ja19906   | NCP          | mg/L  | < 0.0002 | < 0.0002 | <1  | 30%                  | Pass           |                    |
| Chromium                     | M19-Ja19906   | NCP          | mg/L  | 0.001    | 0.001    | 10  | 30%                  | Pass           |                    |
| Copper                       | M19-Ja19906   | NCP          | mg/L  | 0.001    | 0.001    | 8.0 | 30%                  | Pass           |                    |
| Lead                         | M19-Ja19906   | NCP          | mg/L  | 0.001    | 0.001    | 3.0 | 30%                  | Pass           |                    |
| Mercury                      | M19-Ja19906   | NCP          | mg/L  | < 0.0001 | < 0.0001 | <1  | 30%                  | Pass           |                    |
| Nickel                       | M19-Ja19906   | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Zinc                         | M19-Ja19906   | NCP          | mg/L  | 0.005    | 0.005    | 1.0 | 30%                  | Pass           |                    |



| Duplicate                 |             |     |      |          |          |     |     |      |
|---------------------------|-------------|-----|------|----------|----------|-----|-----|------|
| Organochlorine Pesticides |             |     |      | Result 1 | Result 2 | RPD |     |      |
| Chlordanes - Total        | M19-Ja23028 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30% | Pass |
| 4.4'-DDD                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| 4.4'-DDE                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| 4.4'-DDT                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| a-BHC                     | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Aldrin                    | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| b-BHC                     | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| d-BHC                     | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Dieldrin                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Endosulfan I              | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Endosulfan II             | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Endosulfan sulphate       | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Endrin                    | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Endrin aldehyde           | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Endrin ketone             | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| g-BHC (Lindane)           | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Heptachlor                | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Heptachlor epoxide        | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Hexachlorobenzene         | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |
| Methoxychlor              | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |

Report Number: 637848-W



### Comments

### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

### **Qualifier Codes/Comments**

| Code | Description |
|------|-------------|
|      |             |

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### **Authorised By**

N02

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Emily Rosenberg Senior Analyst-Metal (VIC)

### Glenn Jackson **General Manager**

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mg be liable for consequential changes including, but not limited to, lost profits, damages for infallate to meet deadlines and lost production arising from this report. This document shall be reported used everyein full and are fetted sonly to the letters tested. Unless indicated otherwise, the tests were performed on the samples as receiving the samples as received in full and retales only to the literal stead of the l



### 015559

# CHAIN OF CUSTODY EUTOFINS 1096



|                                                                                   |                                 |                                                     | LABORATORY RATCH NO                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NAME: Chatswoo                                                            | 2                               | Education Precinct                                  | SAMPLERS: PC/M                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   |                                 | ارا                                                 | QC LEVEL: NEPM (2013                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHONE: Sydney: 02 8245 0300   Perth                                               | n: 08 9488 0100   Br            | Perth: 08 9488 0100   Brisbane: 07 3112 2688        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) . D. Deynour@jbsg.com.au; | innsw@jbsg.com.au               | ; (2) .D.Dex@jbsg.c                                 | CALLO (NOW IN (E)                                           | ochamana a seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                                | OSAL:                           |                                                     | 17.L.P. no.<br>2.830<br>19.20<br>19.20<br>19.49.T           | SINGUING STANDARD STA |
| SAMPLE ID MATRIX                                                                  | DATE TIME                       | TYPE & PRESERVATIVE                                 | XS;                                                         | PM/WA DAPICO ON NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BHO1-0-0-15 Soil                                                                  | 21/1/19                         | 1,00                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8401_0.4-0.5                                                                      |                                 |                                                     | >>>                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8401-1.0-1.1                                                                      |                                 |                                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8401-1.4-1.5                                                                      | _                               | Jour + ice                                          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | 24/1/19                         | socral bay, Jar+ica                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 6.4                                                                             | £ -                             | · ·                                                 | X                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H03-0-0                                                                           | 21/1/19                         |                                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                 |                                 | +                                                   | X                                                           | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11.01                                                                             |                                 | Jan + ice                                           |                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.0                                                                              |                                 | 500ml bag jour + ica                                | XXXX                                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                 |                                 | 4                                                   |                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H04-1-0                                                                           |                                 | Jan + 1 ce                                          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21001010.10                                                                       |                                 | 500ml bas martice                                   |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8405-04-05                                                                        |                                 |                                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BHC5-1-0-1-1                                                                      |                                 |                                                     | <                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8705-1-4-1-5                                                                      |                                 |                                                     | >                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8406-0-0.15                                                                       |                                 |                                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8H06-0.4-0.5                                                                      | +                               | 4                                                   | X                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY:                                                                  |                                 | METHOD OF SHIPMENT:                                 | RECEIVED BY:                                                | EOR BECEWING LAD INCOME.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OF: JBS&G                                                                         |                                 | NOTE NO.                                            | DATE: RIVER                                                 | COOLER SEAL - Yes No Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NAME: DATE:                                                                       | CONSIGNMENT NOTE NO.            | NOTE NO.                                            | NAME:                                                       | COOLER TEMP deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OF:                                                                               | TRANSPORT CO                    |                                                     | OF:                                                         | COOLER SEAL Tes No Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IMSO FormsO13 ~ Chain of Custody - Generic                                        | r; 8 = Glass Bottle; N = Nitric | Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydro | chloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = | ISO FormsO13 - Chain of Custody - Generic Services - Ferror - Chain of Custody - Generic - Ferror - Chain of Custody - Generic - Chain of Custody - Chain  |

015560

### CHAIN OF CUSTODY

### Evoting 2096



| NAME   DATE   THAT   THAT   THAT   THAT   DATE   THAT      | ()                               |                       | THE RESIDENCE OF LAND STREET, NAME AND ADDRESS OF THE PARTY OF THE PAR |                                             |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|
| RECIDENT:   The   RECORD   Parts   Ward   Precinct   Ward   War   | COOLER TEMP deg C CN + SO +      |                       | O Control of the cont | : J = Soil Jar: B = Glass Bottle: N = Nitri | ontainer & Preservative Codes: P = Plastic |
| RECT NAME:   CANACT NAME:   CANACT NAME:   CANACTERS:   NC / M   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                |                       | THE COUNTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                            |
| IECT NAME: Charlest-worded   Education   Precinate Name   Made   Manufacture Name   Man   | COOLER TEMP deg C                | 10-                   | T NOTE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONSIGNMENT                                 | NAME: DATE:                                |
| IRCT NAME: Charactanopack   Education   Precinct   High Mina)   SAMPLES   RECTION   ACTIVE NEW (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                       | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRANSPORT CO                                | OF: JBS&G                                  |
| IRCT NAME:   CANACTS WOOCK   Edward Now   Precinct   High Sinh   SAMPEERS   Now   Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121                              | 0                     | AT NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>-</u><br>Z                               | DATE:                                      |
| DEEDRING TO ANTER CHARLAS CONTROL E CHARLES AND PRESENTANCE INC. P. MARTERS N.C. / A P. DEEDRING NO.C. INC. STATES OF A STATES |                                  |                       | SHIPWENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                            |
| SAMPLE DECORNE CHACK SUCCEST STATE OF THE RESERVANCE OF THE STATE OF T |                                  |                       | bag. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £                                           | 10                                         |
| SAMPLE CHARLE CHARLES CONTROL E CHARLES ON PRECINCE MANDE CONTROL BARRIERS NC/N N  ENERGH BRY, TYS.  DEPORT & INVOICE TO: (1) administration of 13112 2688  DEPORT & INVOICE TO: (1) administration of 13112 2688  SAMPLE D: (1) Administration of 10 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 1-8-18-1                                   |
| NAME: CAGALINGO DETINO 80488 0100   Brithane: 07 3112 2688  PORT & INVOICE TO (1) admininsw@ bsg.com.au; (2) N.N. RAM/LERS: N.C./M P  PORT & INVOICE TO (1) admininsw@ bsg.com.au; (2) N.N. RAM/LERS: N.C./M P  SAMPLE D  MATRIX DATE TIME TYPE & PRESERVATIVE DATE TYPE TYPE TYPE TYPE TYPE TYPE TYPE TY                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                |                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 11000                                      |
| NAME: CALLANCECT ECLICATION PROCINCY MATERY BATCH NO:  NAME: CALLANCE CONTROL DISTRICT NO:  NAME: CALLANCE CONTROL DISTRIC | <                                | XX                    | bound becon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             | #11-0-0-1                                  |
| INAMELED SAMPLED  SAMPLED  SAMPLED  MATRIX DATE TIME TYPE & PRESERVATIVE DEL SAMPLES  1.2-0.4-0.5  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.11  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.13  1.2-1.1 | >                                |                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 10-1.6-1.                                  |
| EDED BY: TYN CONTROL ECLUCATION PRECING WATCHNO:  INAME: CNACT SWARD NO COLLEGATION BATCH NO:  MARKET NO. 12 (2) 1 Adminiss@jbsg.com.au; (2) .D.N. A.M. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C                                | X<br>X<br>X           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 10-1-1.1                                   |
| EEDED BY: TYN  EEDED BY: TYN  EEDED BY: TYN  Sydney: 028245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  PORT & INVOICE TO: (1) adminiss@ bsg.com.au; (2). Dibe.An.An.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | -0.4-0.                                    |
| INAME: CHALLS WOOCH Education Precing that Shoul Samplers: RC/M P  Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  PORT & INVOICE TO: (1) administed bis. com.au; (2) DD. A.A.A.A.C.  SAMPLE ID  MATRIX DATE TIME TYPE & PRESERVATIVE PH  TO: 0-0-15  1-0-0-15  24/1/9  500m.l bog stown-like  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  TO: 0-0-15  24/1/9  500m.l bog stown-like  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  TO: 0-0-15  25/1/9  500m.l bog stown-like  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  TO: 0-0-15  25/1/9  500m.l bog stown-like  NOTES: NEW MATRIX No. MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  TO: 0-0-15  25/1/9  500m.l bog stown-like  NOTES: NEW MATRIX No. MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE & PRESERVATIVE PH  NOTES: NEW MATRIX DATE TIME TYPE A PRESERVATIVE PH  NOTES: NEW MATRIX DATE TYPE A PRESERVATIVE PH  NOTES: NE |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 410-                                       |
| EEDED BY: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  PORT & INVOICE TO: (1) adminisw@jbsg.com.au; (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                |                       | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                           | 1                                          |
| EEDED BY: The Sydney: Oz 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  PORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) .D.N.R.A.R.A.F.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <                                | XXX                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 10.4-                                      |
| FORT & INVOICE TO: (1) adminiss@jbsg.com.au; (2). D.D.R.A.R.A.V.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                       | pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | 0-0-0                                      |
| THAME: MACHS WOOD   Education   Precinct With Khad   SAMPLERS: RC/M W   CLEVEL: NEPM (2013)   SAMPLERS: RC/M W   SOCIAL BANGWAY.  SAMPLE ID   MATRIX   DATE   TIME   TYPE & PRESERVATIVE   DH   SOCIAL BOOK + I CLE   TYPE & PRESERVATIVE   DH   SOCIAL BOOK + I CLE   SAMPLE ID    |                                  |                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                           | 1                                          |
| INAME: MALES MOCKET EQUICATION PRECINE WATGINGS SAMPLERS: NC/N N  Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  PORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) .D.D.R.M.M.M.M. (3) .D.M.N.M.M.M. (2013)  SAMPLE ID  MATRIX DATE TIME TYPE & PRESERVATIVE DH  The O-0-15 1 24/1/19 SOCAL BOQ ABOVE 1 CA  The O-0-15 25/1/19 SOCAL BOQ ABOVE 1 CA  The O-0-15 25/1/19 SOCAL BOQ ABOVE 1 CA  The O-0-15 25/1/19 SOCAL BOQ ABOVE 1 CA  THE TYPE & PRESERVATIVE DH  The O-0-15 25/1/19 SOCAL BOQ ABOVE 1 CA  THE O-0-15 2 CA |                                  |                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 1                                          |
| NAME: NO. 1 TO STORAGE OR DISPOSAL:  SAMPLE IDED BY: TYPE & PRESERVATIVE PH PR |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 0.8                                        |
| NAME: Mochs woch Education Precinct High Shool SAMPLERS: RC/M PEDED BY: TYPE  EDED BY: TYPE  ORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) .D.D.R.M.R.M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                | )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | -0.4-                                      |
| NAME: Machine Bolth Bolth Control Bolth Control Brisbane: 0731122688  ORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2).D.D.C.A.C.A.C.C.C.C.C.C.C.C.C.C.C.C.C.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25/1/19                                     | [1]                                        |
| T NAME: Molts woch Education Precinct Hanshad Samplers: RC/M PEDED BY: The Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  EPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) .D.D.E.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ب                                           | 7-05-0                                     |
| IABORATORY BATCH NO.:  T NAME: Chartswood Education Precint with Shool SAMPLERS: RC/M R  EEDED BY: 575  Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  EPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) .D.D.C.A.S.A.C.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24/1/19                                     | 1-0-0-1                                    |
| LABORATORY BATCH NO.:   Education   Precingt High Shool   SAMPLERS: RC/M   Preservative   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   Occlevel: Nepm (2013)     9488 0100   Brisbane: 07 3112 2688   O   | NE                               | 2442                  | 4 (CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                           | 6-1-1.1                                    |
| LABORATORY BATCH NO:   Education Precing + High School SAMPLERS: RC/M ト   OC LEVEL: NEPM (2013)   9488 0100   Brisbane: 07 3112 2688   W@jbsg.com.au; (2)@jbsg.com.au; (3)@jbsg.com.au (とんの中へのいと) b5g.com.au; (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM/W                             | 141/2)<br>X31         | TYPE & PRESERVATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE                                        | AL I                                       |
| LABORATORY BATCH NO.:   Education   Precing + Wigh School   SAMPLERS: RC/M   Precing + Wigh School   SAMPLERS: RC/M   Precing + Wigh School   Rolling   Precing + Wigh School   Rolling    | ASBESTON<br>ASBESTON<br>ANALYSIS | 1877<br>19X<br>1841   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                            |
| LABORATORY BATCH NO SAMPLERS: RC/M QC LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rechargement 1659.               | (3)                   | il; (2) . D. NEWWAY. C@jbsg.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | it or disposal:                             | OMMENTS / SPECIAL HANDLING / STORAG        |
| LABORATORY BATCH NC SAMPLERS: R.C / M QC LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | •                     | srisbane: 07 3112 2688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1) 24min 2488 U100   B                      | END REPORT & INVOICE TO: (                 |
| chartswood Education Precinet With School SAMPLERS: RC/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | NEPM (2013)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | HOME: Sydney: 03 03 4E 0300                |
| LABORATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 8/38                  | Precingt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | 0                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | LABORATORY BATCH NO.: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                            |

### CHAIN OF CUSTODY

EVAPIN 30 PG STANDER



| MATE REEDED 87: 17-5    |                             | ric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Su | ss Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochlo | IMSO FormsO13 - Chain of Custody - Generic                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ME: CLASS SOLD E CLU COXTON PARCHNO:  ME: CLASS SOLD   Feth: 08 948 010   Feth: 07 312 2688  TRINVOICE TO: (1) adminiss@bsc.com.au; (2) DDe.NAGAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | C                                                          | TRANSPORT CO                                                                  | Container & Preservative Codes: P = Plactic:   = Coil last B = Cl. |
| ME: CLALLESWOOD E CANCANDA PRESENTANCE  ME: CLALLESWOOD Perth: 08 9488 0100   Brisbane: 07 3112 2888  TREWOICE TO: (1) adminisswellbise.com.au; (2). DDenalaka.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                         |                                                            |                                                                               | OF:                                                                |
| MR: CLALASSWOOD E CLU CONTON PARCENAIN SAMPLERS: CLIPTON PARCENAINS SAMPLERS: CLIPTON SAMPLERS: CLIPTO  |                             |                                                            | CONSIGNMENT NOTE NO.                                                          |                                                                    |
| ME: CLASS SOID E CALL COLHON PARCANCE NAME IN MANY SAMPLESS: 12/17/3  BBR: CLASS SOID FRETH: 08 9488 0100   Brisbane 07 3112 2888  OCCUPIENT TO (1) administrational processors and (2) DD examples of many sources of many so  | 0                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      | TRANSPORT CO.                                                                 |                                                                    |
| ME: CLALLS SAFOOO E CLUCALTON PLEASURED IN INNOVERS IN INDIVIDUAL IN INNOVERS IN INNOVERS IN INDIVIDUAL IN INDIVIDUAL IN INDIVIDUAL IN INDIVIDUAL IN INDIVIDUAL IN INDIVIDUAL IN INDIVIDUA  | FOR RECEIVING LAB USE ONLY: | DECEMBER BY:                                               | CONSIGNMENT NOTE NO.                                                          |                                                                    |
| DECINAME: CALL SOLVED E CALL COLLON PLACE With John JAMPIERS: NAME (AND SAMPLERS: NAME)  DEPORT & INVOICE TO: (1) adminismed bise comay; (2) DDENAMACO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | DECENTED BY                                                | METHOD OF SHIPMENT:                                                           | RELINQ                                                             |
| DECTINANCE: CALL SOLVED CONTROL EXCLUSION PLACE CANCE NAN INDIA DATE NO.:  REIEDED BY: The Control of Season I Pertho 98 9488 0100 I Britsonie: 07 3112 2688  DREPORT 8. INVOICE TO. (1) administration place comman; (2) D. D. P. CALAGAMACO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                            | +                                                                             | h                                                                  |
| DECINANTE: CLABASSINOCC ECLUS COLUMNO, PRECINCE NICH NICH NICH NICH NO.  REIEDED BY: TYN  DEBORT & INVOICE TO: (1) administration bis communication bis comm  |                             |                                                            | <b>L</b>                                                                      | HI6- 1-5-1.                                                        |
| DET NAME: CLALL SCAPE OF ECHACON PRECINCE NICH NICH NICH NAME RATCHNO:  RREDED BY: TN  OCLEVE: NEMM (2013)  DREDORT & INVOICE TO: (1) adminissw@lbsg.com.au; (2) DDENAMAC@lbsg.com.au; (3) JANIMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                           | 1                                                          |                                                                               | 16 - 181 -1                                                        |
| DECONAME: CLALKS-VOCCOL ECLAL CONTON PURE CANCER PSYNTYLON SAMPLERS: NOTE: STORE TO (1) adminissymble compan; (2) DEPORT & INVOICE TO (1) adminiss  |                             | <                                                          |                                                                               | H6-C.4-0-3                                                         |
| DEFORT & INVOICE TO (1) adminiss@bsg.com.au (2) D.D.E.A.A.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                            | -                                                                             | -6.15                                                              |
| DEPORT & INVOICE TO: (1) adminissw@lbsg.com.au; (2) D.D.D.A.A.A.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                            |                                                                               | - 2.2 -                                                            |
| IJECT NAME: Charts would Education precinct than the Chart No.:  ENERDED BY: And Death of Precince than the Chart No.:  ENERDED BY: And Death of Section (I) adminiss@blsg.com.au; (2) D.D.D.E.M.A.M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                            |                                                                               | 115_1.5-1.                                                         |
| IECT NAME: CLALLES WOOCK E CLA COLTON POPE CANCE WAY, NAW   SAMPLERS: NAME: NOTE: NEW (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                            |                                                                               | 8H15-1-1.1                                                         |
| INAME: CALLESSACOCCI ECALICATION PRECINCE THAT INDUSTRIBUTION BATCH NO.:  EEDED BY: Synthy: C2 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  EPORT & INVOICE TO: (1) adminissw@ibsg.com.au; (2) D.D.E.M.O.M.C@ibsg.com.au; (3) J.D.M.D.C.M.O.M.O.M.O.J.D.C.S.  5/ SPECIAL HANDOUNG / STORAGE OR DISPOSAL:  SAMPLE ID  MATRIX DATE TIME TYPE & PRESERVATIVE DH  C-C-4-C-5  Soil 21/1/19  SOC. M. H. O.G. J. D.M. H. C.C.  A - 0-C-15  23/1/19  SOC. M. H. O.G. J. D.M. H. C.C.  SOC. M. H. D.M. H. C.C.  SOC. M. H. D.M. H. C.C.  SOC. M. H. O.G. J. D.M. H. C.C.  SOC. M. H. O.G. J. D.M. H. C.C.  SOC. M. H. D.M. H.               | ×                           | >                                                          |                                                                               | 15-0-4-0-                                                          |
| DREFORT & INVOICE TO: (1) adminiss@ibsg.com.au; (2) D.D.E.XAQ.A.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                     |                                                                               | 0-0-0-15                                                           |
| DECT NAME: CLAST SWOOCH Education precinct hish John SAMPLERS: 2/1/2  NE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  DEFEORT & INVOICE TO: (1) adminnsw@lbsg.com.au; (2) D.D.D.E.M.A.M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                                            |                                                                               | -1-1-1                                                             |
| DREPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2). D.D.E.MAD.A.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                           |                                                            | 7                                                                             | -0.6-0.                                                            |
| ILABORATORY BATCH NO.:  ILABORATOR SAMPLERS:   \( \) \( \) \( \) \( \) \( \) \( \) \( \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                                            |                                                                               | 11-0-0-13                                                          |
| DIECT NAME: CLOCK SWOOCH ECLICATION PRECINCE HISTORY BATCH NO:  E NEEDED BY: TO  NE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688  D REPORT & INVOICE TO: (1) adminissw@jbsg.com.au; (2) D.D.D.A.A.A.A.C@jbsg.com.au; (3) .D.M.N.D.A.A.A.A.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                           |                                                            | CV+(.                                                                         | 13-1.2-1                                                           |
| DIECT NAME: CLOCK SWOOCH E CLU COLON OF ECLIVE HISTORY BATCH NO.:  I NEEDED BY: The involce to: (1) admininsw@jbsg.com.au; (2) .D.D.E.M.A.M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                            | 4                                                                             | #15-0. +-0.                                                        |
| LABORATORY BATCH NO.:   E   H2th 1 (h2th)   SAMPLERS:   NAMPLERS:   NAMPLES:   NAMPL     |                             |                                                            |                                                                               | -0-4-0-5                                                           |
| LABORATORY BATCH NO.:   を 説され りに hand   SAMPLERS:   と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                            | 5/1/19                                                                        | 51.0-0-0-                                                          |
| LABORATORY BATCH NO.:  \$ PHYTH J Chay   SAMPLERS:   RAMPLERS:   RA | X                           | <i>x</i>                                                   |                                                                               | -1-1.1                                                             |
| LABORATORY BATCH NO.:   * 刊され」にかい   SAMPLERS:   RATCH NO.:   OCLEVEL: NEPM (2013)   OCCEPTED (2013)   OCCEP      | NEPI                        | 7                                                          | 1/19 500-1 100 10-1100                                                        | 12-0-4-0-5 Soil                                                    |
| LABORATORY BATCH NO.:   ** やかいたい   SAMPLERS:   とかい   SAMPLERS:      | _                           | X3/                                                        | TIME TYPE & PRESERVATIVE                                                      | MATRIX                                                             |
| LABORATORY BATCH NO.:   LABORATORY BATCH NO.:   SAMPLERS:   と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASBESTOS ANALYSIS           | D. moths<br>2CP 5<br>2H/ B<br>2H/ B                        |                                                                               |                                                                    |
| LABORATORY BATCH NO.:  SAMPLERS:  V///    OC LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KChapman (a) bsg.           | 7                                                          | ) pag ( )                                                                     | CUMINIZIN 15 / SPECIAL HANDLING / STORAGE OR DISPOSAL:             |
| CC LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 2                                                          | @jbsg.com.au; (2).D.D.e.M.Q                                                   | SEND REPORT & INVOICE TO: (1) adminnsw                             |
| Chartswood Education precinct High John SAMPLERS: 12/1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                                            | 1488 0100   Brithago: 07 3113 3030                                            | PHONE: Sydney: 02 8245 0300   Perth: 08                            |
| LABORATORY BATCH NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | SAMPLERS                                                   | chication precinct                                                            | 777                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | LABORATORY BATCH NO.:                                      |                                                                               | 100                                                                |

### CHAIN OF CUSTODY





|                                    |                                             | 123 NOT CO                                                         |                                                                              | Contai    |
|------------------------------------|---------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|
| COOLER SEAL - Yes No Intact Broken | OF: DATE:                                   | TRANSPORT CO                                                       |                                                                              | QF:       |
| COOLER TEMP deg C                  | 11102                                       | CONSIGNMENT NOTE NO                                                | AE: DATE:                                                                    | NAME:     |
| COOLER SEAL – Yes No Intact Broken |                                             | TRANSPORT OO                                                       | ŧ                                                                            | OF: JBS&G |
| FOR RECEIVING LAB USE ONLY:        | RECEIVED BY:                                | METHOD OF SHIPMENT:                                                | NAME DATE: C ( 10                                                            | NAME      |
|                                    |                                             |                                                                    | 21-1                                                                         | BT        |
| ×                                  | )                                           | 10000                                                              | 121-0-4-0-5                                                                  | 10        |
|                                    | γ ×                                         | 559                                                                | 121-0-0.15                                                                   | 120       |
| ×                                  |                                             | Jan +100                                                           | 120-1-5-1.6                                                                  | 50        |
|                                    | X                                           | 4                                                                  | 20-1-1.                                                                      | かば        |
|                                    |                                             | -                                                                  | 120-0.4-0.5                                                                  | 51        |
|                                    |                                             | 500 ml bag Jan +1 ce                                               | 10-6-0 L                                                                     | 17        |
|                                    |                                             | 20 1+ wal                                                          | #(~_1.0-1.)                                                                  | T.        |
| >                                  |                                             | <i>E</i>                                                           | I                                                                            | S 600     |
| <                                  | X                                           |                                                                    | -6.4-0.5                                                                     | X         |
|                                    |                                             | 500 ml bag tar + ice                                               | -                                                                            | N. I.     |
| 2                                  |                                             | Jan + ice                                                          | 0 1 1-1-1                                                                    | 0 0       |
| <                                  | X                                           | <i>←</i>                                                           | 718-004-0.8                                                                  | 0 G       |
|                                    |                                             | -                                                                  | H18-0.4-0.5                                                                  | OK<br>T   |
|                                    |                                             | SCOM bag 100+100                                                   | H10-0-0-1                                                                    | KT        |
|                                    |                                             | Jan + ice                                                          | I                                                                            | 00        |
|                                    |                                             | +                                                                  | #1+-1.0-1·1                                                                  | 次工        |
| <                                  | ×                                           |                                                                    | +11+-0-4-0-5                                                                 | 150       |
| +                                  | K                                           | 11/19 50 oml bag dow + 1ca                                         | #17-0-0-1                                                                    |           |
| DENTIFICA<br>Z                     | MPA (                                       | DATE TIME TYPE & PRESERVATIVE                                      | SAMPLE ID MATRIX                                                             | 3         |
| - è % č                            | 18mes 2<br>2CPS<br>2CPS<br>PAH/BT<br>PAH/BT |                                                                    |                                                                              |           |
| @jbsg.com.au & Chopmon             | (3) MNNs                                    | SCHOOL REPORT & INVOICE (U: (1) adminisw@jbsg.com.au; (2) かかまなのかだり | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                           | COM       |
|                                    |                                             | 88 0100   Brisbane: 07 3112 2688                                   | FIGURE: Sydifey: UZ 8245 U3UU   Perth: 08 9488 0100   Brisbane: 07 3112 2688 | 200       |
|                                    |                                             | EMECATION PRECIMENTIALITY                                          | DATE NEEDED BY:                                                              | DAT       |
|                                    | LABORATORY BATCH NO.:                       |                                                                    | 2 000                                                                        | DECT NAM  |

## CHAIN OF CUSTODY





| TEMP TO THE STORE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL CONTROL TO THE PROPERTY OF THE PROPERTY  | THEO E                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| וווערן                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CODIEB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitric Acid Presed: C = Soil Jar; B = Glass Bottle: N = Nitri | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Gl |
| D Intact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OF: DATE: COOLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OF:                                                               |
| COOLER TEMP deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LI HOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONSIGNMENT NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAME: DATE:                                                       |
| COULTRISEAL - res No Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRANSPORT CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86                                                                |
| ΙZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONSIGNMENT NOTE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE: 25                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BECENTED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OD OF SHIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RELINQ                                                            |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan +1 Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8476-1.2-1.6                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1726-1-1                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$176 64-0 V                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | scent beg journ ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-0-0-15                                                          |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan + ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8H2S-1:1-1:2                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8725-05-0·8                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | soon bus Jourtice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5H25 -0-0:15                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan + 1 Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 4-1                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H24-1-1-1                                                         |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5424-04-05                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sooml bed Jartice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-0-6                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan + 1 ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1723-1.4-                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23-1.3                                                            |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8423-1-1.1                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0423 -0.4-0.5                                                     |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B#23-0-0:15                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8422-1-1.1                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H22-0-4-0:5                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5H22 - 0-0-15 Soil 2                                              |
| NTIFICA<br>M/WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE TIME TYPE & PRESERVATIVE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID MATRIX                                                  |
| RESTOS<br>ALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TUPMPL<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS<br>PRHIS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |
| ou & Charpmane 1650 com an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3) 17(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.8sg(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1) adminnsw@ibsg.com an: (2) The A ONCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEND REPORT & INVOICE TO: (1) adminnsw                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QC LEVEL: NEPM (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Brithana OT 2112 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ecucation Precinct Hithschoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DATE NEEDED BY:                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LABORATORY BATCH NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT NAME:                                                     |

| 02   |
|------|
| S    |
|      |
| ູ້ທີ |
| Ö    |

| 20                                                                                                                                   |                                                           | LABORATORY BATCH NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE NEEDED BY:                                                                                                                      | from Precinct High Rhave                                  | SAMPLERS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brishans: 07 3112 2688                                                           | Brichana: 07 2117 1600                                    | QC LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) Detracy 0 @ibsg.com.au; (3) MA                                               | au; (2) Dourson @ibse                                     | ST. 12) MNOWOLTE MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                                                                                   | ), ()                                                     | DE 2000 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KCURP TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLE ID                                                                                                                            | TYPE & PRESERVATIVE                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PENTIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7-0-0-15                                                                                                                             | somebay jartice                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SH27-0.4-C-S                                                                                                                         | 1                                                         | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| +                                                                                                                                    | E                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| +- 1.5-1                                                                                                                             | JON + CE                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N L O                                                                                                                                | socul box Jow+10                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                      | +                                                         | <i>X Y</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                    | Jew + Ce                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8H79-0-4-0-5                                                                                                                         | \$500ml bag Jaw +ico                                      | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8430-6-6.15                                                                                                                          |                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8 H3C-C-4-0-5 V                                                                                                                      | -                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RELINOUISHED BY:                                                                                                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/11/5                                                                                                                               | CONSIGNMENT NOTE NO.                                      | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FOR RECEIVING LAB USE ONLY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                      | CO.                                                       | 対けると                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COOLER SEAL – Yes No Intact Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NAME: DATE: CONSIGNMENT OF: TRANSPORT CO                                                                                             | CONSIGNMENT NOTE NO.                                      | NAME: DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Container & Preservative Codes: $P = Plastic; J = Soil Jar; B = Glass Bottle; N = N MSO Forms: 0.13 \sim Chain of Cristody. General$ | itric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydro | chloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial: S = S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd: 7 = 70 pm d 5 |
| MSO FormsO13 ~ Chain of Custody - Generic                                                                                            |                                                           | C = C flots that along a minimum and the side of the s | Juliunic Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterije Bottle: O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### Enviro Sample NSW

RE: \*\*FW: COCs Job Number 55579 Wibha Vaidya; COC NSW

#637804

:oT

Subject:

Sent: Friday, 25 January 2019 6:41 PM From: Milad Moujaim [mailto:mnoujaim@jbsg.com.au]

To: Nibha Vaidya

Subject: Re: COCs Job Number 55579

EXTERNAL EMAIL\*

Hey Nibha,

Can we also do asbestos identification on BH13-frag. It was left out of the COC.

Трапк уоц

Get Outlook for iOS

From: Nibha Vaidya <mibhavaidya@eurofins.com>

Sent: Friday, January 25, 2019 5:50 PM

misįuoM beliM:oT

Subject: RE: COCs Job Number 55579

Great, thanks Milad.

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415

Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

---- Original Message-----

From: Milad Noujaim [mailto:mnoujaim@ibsg.com.au]



### Certificate of Analysis





**NATA Accredited Accreditation Number 1261** Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney **NSW 2000** 

Attention: **Daniel Denaro** 637804-AID Report

CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL **Project Name** 

**Project ID** 55579

**Received Date** Jan 25, 2019 Feb 04, 2019 **Date Reported** 

### Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres** 

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be subsampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.







Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 18

Report Number: 637804-AID

**Project Name** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

**Project ID** 55579

Date Reported: Feb 04, 2019

**Date Sampled** Jan 21, 2019 to Jan 25, 2019

Report 637804-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                       | Result                                                                                                              |
|------------------|------------------------------|--------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BH01_0-0.15      | 19-Ja24069                   | Jan 21, 2019 | Approximate Sample 617g Sample consisted of: Brown coarse-grained soil and rocks         | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH02A_0-0.15     | 19-Ja24070                   | Jan 24, 2019 | Approximate Sample 516g<br>Sample consisted of: Dark brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH03_0.4-0.5     | 19-Ja24071                   | Jan 21, 2019 | Approximate Sample 629g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH04_0.2-0.3     | 19-Ja24072                   | Jan 21, 2019 | Approximate Sample 484g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH05_1.0-1.1     | 19-Ja24073                   | Jan 21, 2019 | Approximate Sample 874g Sample consisted of: Brown coarse-grained soil and rocks         | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH06_0.4-0.5     | 19-Ja24074                   | Jan 21, 2019 | Approximate Sample 669g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH07_0.5-0.6     | 19-Ja24075                   | Jan 24, 2019 | Approximate Sample 763g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |

ABN: 50 005 085 521 Telephone: +61 2 9900 8400







### NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                  | Result                                                                               |
|------------------|------------------------------|--------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| BH08_0-0.15      | 19-Ja24076                   | Jan 25, 2019 | Approximate Sample 722g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              |              | · ·                                                                                 | No respirable fibres detected.                                                       |
| BH09_0.4-0.5     | 19-Ja24077                   | Jan 21, 2019 | Approximate Sample 669g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              |              |                                                                                     | No respirable fibres detected.                                                       |
| BH10_1-1.1       | 19-Ja24078                   | Jan 21, 2019 | Approximate Sample 715g Sample consisted of: Brown coarse-grained soil and rocks    | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              |              |                                                                                     | No respirable fibres detected.                                                       |
| BH11_0-0.15      | 19-Ja24079                   | Jan 21, 2019 | Approximate Sample 636g Sample consisted of: Brown coarse-grained soil and rocks    | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              |              | Campio condicioa di. Biowii coarco giamba con ana rocko                             | No respirable fibres detected.                                                       |
| BH12_0.4-0.5     | 19-Ja24080                   | Jan 21, 2019 | Approximate Sample 599g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
| _                |                              |              | Sample consisted of. Brown coarse-grained soil and rocks                            | No respirable fibres detected.                                                       |
| BH13 0.7-0.8     | 19-Ja24081                   | Jan 25, 2019 | Approximate Sample 669g Sample consisted of: Brown coarse-grained soil and rocks    | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
| _                |                              | ,            | Sample consisted of. Brown coarse-grained soil and rocks                            | No respirable fibres detected.                                                       |
| BH14 0-0.15      | 19-Ja24082                   | Jan 25, 2019 | Approximate Sample 621g                                                             | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              | , , ,        | Sample consisted of: Brown coarse-grained soil and rocks                            | No respirable fibres detected.                                                       |
| BH15 0-0.15      | 19-Ja24083                   | Jan 21, 2019 | Approximate Sample 493g                                                             | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              | ,            | Sample consisted of: Dark brown coarse-grained soil and rocks                       | No respirable fibres detected.                                                       |
| BH16 0.4-0.5     | 19-Ja24084                   | Jan 22, 2019 | Approximate Sample 753g                                                             | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              | ,            | Sample consisted of: Brown coarse-grained soil and rocks                            | No respirable fibres detected.                                                       |
| BH17 0.4-0.5     | 19-Ja24085                   | Jan 22, 2019 | Approximate Sample 676g                                                             | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  |
|                  |                              | -,           | Sample consisted of: Brown coarse-grained soil and rocks                            | No respirable fibres detected.                                                       |
| BH18_0.7-0.8     | 19-Ja24086                   | Jan 22, 2019 | Approximate Sample 600g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected. |
|                  |                              |              | Cample consisted of brown coarse-grained soil and rocks                             | No respirable fibres detected.                                                       |







### NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled                                                                                                         | Sample Description                                                                                                   | Result                                                                                                                                               |
|------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH19_0.4-0.5     | 19-Ja24087                   | Jan 22, 2019                                                                                                         | Approximate Sample 742g Sample consisted of: Brown coarse-grained soil and rocks                                     | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.                                                                  |
|                  |                              |                                                                                                                      | -                                                                                                                    | No respirable fibres detected.                                                                                                                       |
| BH20_1-1.1       | 19-Ja24088                   | Jan 22, 2019                                                                                                         | Approximate Sample 609g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.                                  |
| BH21_0-0.15      | 19-Ja24089                   | Jan 22, 2019                                                                                                         | Approximate Sample 708g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No respirable fibres detected. |
| BH22_1-1.1       | 19-Ja24090                   | Jan 22, 2019                                                                                                         | Approximate Sample 489g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.                                  |
| BH23_0.4-0.5     | 19-Ja24091                   | Jan 22, 2019                                                                                                         | Approximate Sample 664g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.                                  |
| BH24_0-0.15      | 19-Ja24092                   | Jan 22, 2019                                                                                                         | Approximate Sample 798g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.                                  |
| BH25_0.5-0.6     | 19-Ja24093                   | Jan 22, 2019                                                                                                         | Approximate Sample 496g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.                                  |
| BH26_1-1.1       | 19-Ja24094                   | Jan 22, 2019                                                                                                         | Approximate Sample 552g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected.                                  |
| BH27_0.4-0.5     | 19-Ja24095                   | Jan 25, 2019                                                                                                         | Approximate Sample 790g<br>Sample consisted of: Brown coarse-grained soil and rocks                                  | No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected.  No respirable fibres detected.                                 |
| BH28_1-1.1       | 19-Ja24096                   | Jan 22, 2019 Approximate Sample 465g Sample consisted of: Brown coarse-grained soil and rocks                        | No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected.  No respirable fibres detected. |                                                                                                                                                      |
| BH29_0-0.15      | Approximate Sample 654g      | No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected.  No respirable fibres detected. |                                                                                                                      |                                                                                                                                                      |

Page 4 of 18







### NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                     | Result                                                                                                              |
|------------------|------------------------------|--------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BH30_0-0.15      | 19-Ja24098                   | Jan 24, 2019 | Approximate Sample 542g Sample consisted of: Brown coarse-grained soil and rocks       | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH13-FRAG        | 19-Ja24099                   | Jan 24, 2019 | Approximate Sample 17g / 114x40x3mm<br>Sample consisted of: Grey fibre cement material | Chrysotile and amosite asbestos detected.                                                                           |



### **Sample History**

Date Reported: Feb 04, 2019

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description             | Testing Site | Extracted    | Holding Time |
|-------------------------|--------------|--------------|--------------|
| Asbestos - LTM-ASB-8020 | Sydney       | Jan 29, 2019 | Indefinite   |
| Asbestos - LTM-ASB-8020 | Sydney       | Jan 29, 2019 | Indefinite   |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Brisbane

Sydney

Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

 Company Name:
 JBS & G Australia (NSW) P/L
 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 637804
 Due:
 Feb 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL
Project ID: 55579

|       |                  | Sa              | mple Detail      |        |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|-------|------------------|-----------------|------------------|--------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Melb  | ourne Laborato   | ory - NATA Site |                  |        |             | Х                        | Х                          | Х    | Х                                | Х                         | Χ                         | Х         | X    |              |                                |
| Sydr  | ney Laboratory   | - NATA Site # 1 | 8217             |        |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Brisl | bane Laborator   | y - NATA Site # | 20794            |        |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Perti | h Laboratory - N | IATA Site # 237 | 36               |        |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Exte  | rnal Laboratory  | ,<br>-          |                  |        |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| No    | Sample ID        | Sample Date     | Sampling<br>Time | Matrix | LAB ID      |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 1     | BH01_0-0.15      | Jan 21, 2019    |                  | Soil   | S19-Ja24069 | Х                        |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 2     | BH02A_0-0.15     | Jan 24, 2019    |                  | Soil   | S19-Ja24070 | Х                        |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |
| 3     | BH03_0.4-0.5     | Jan 21, 2019    |                  | Soil   | S19-Ja24071 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 4     | BH04_0.2-0.3     | Jan 21, 2019    |                  | Soil   | S19-Ja24072 | Х                        |                            |      | Х                                |                           |                           | Х         | Χ    | Х            | Х                              |
| 5     | BH05_1.0-1.1     | Jan 21, 2019    |                  | Soil   | S19-Ja24073 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 6     | BH06_0.4-0.5     | Jan 21, 2019    |                  | Soil   | S19-Ja24074 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 7     | BH07_0.5-0.6     | Jan 24, 2019    |                  | Soil   | S19-Ja24075 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 8     | BH08_0-0.15      | Jan 25, 2019    |                  | Soil   | S19-Ja24076 | Х                        |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 9     | BH09_0.4-0.5     | Jan 21, 2019    |                  | Soil   | S19-Ja24077 | Х                        |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |

Page 7 of 18



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637804

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

**Contact Name:** 

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Daniel Denaro** 

5 Day

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  | Sa              | mple Detail    |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|----------------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | bourne Laborate  | ory - NATA Site | # 1254 & 14271 |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217           |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator   | y - NATA Site # | 20794          |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | NATA Site # 237 | 36             |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 10   | BH10_1-1.1       | Jan 21, 2019    | Soil           | S19-Ja24078 | Х                        |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 11   | BH11_0-0.15      | Jan 21, 2019    | Soil           | S19-Ja24079 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 12   | BH12_0.4-0.5     | Jan 21, 2019    | Soil           | S19-Ja24080 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 13   | BH13_0.7-0.8     | Jan 25, 2019    | Soil           | S19-Ja24081 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 14   | BH14_0-0.15      | Jan 25, 2019    | Soil           | S19-Ja24082 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 15   | BH15_0-0.15      | Jan 21, 2019    | Soil           | S19-Ja24083 | Х                        |                            |      | Х                                |                           | Х                         | Х         |      | Х            |                                |
| 16   | BH16_0.4-0.5     | Jan 22, 2019    | Soil           | S19-Ja24084 | Х                        |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |
| 17   | BH17_0.4-0.5     | Jan 22, 2019    | Soil           | S19-Ja24085 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 18   | BH18_0.7-0.8     | Jan 22, 2019    | Soil           | S19-Ja24086 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 19   | BH19_0.4-0.5     | Jan 22, 2019    | Soil           | S19-Ja24087 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 20   | BH20_1-1.1       | Jan 22, 2019    | Soil           | S19-Ja24088 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 21   | BH21_0-0.15      | Jan 22, 2019    | Soil           | S19-Ja24089 | Х                        |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: L

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

55579

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637804
 Due:
 Feb 4, 2019

637804 **Due:** Feb 4, 2019 02 8245 0300 **Priority:** 5 Day

Contact Name: Daniel Denaro

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  | Sa              | mple Detail  |                       |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|-----------------------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | oourne Laborato  | ory - NATA Site | # 1254 & 142 | 271                   |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Χ    | Χ            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217         |                       |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator   | y - NATA Site # | 20794        |                       |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | ATA Site # 237  | 36           |                       |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 22   | BH22_1-1.1       | Jan 22, 2019    |              | Soil                  | S19-Ja24090 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Χ            |                                |
| 23   | BH23_0.4-0.5     | Jan 22, 2019    |              | Soil                  | S19-Ja24091 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Χ            |                                |
| 24   | BH24_0-0.15      | Jan 22, 2019    |              | Soil                  | S19-Ja24092 | Х                        |                            |      | Χ                                |                           |                           | Х         | Χ    | Χ            | Х                              |
| 25   | BH25_0.5-0.6     | Jan 22, 2019    |              | Soil                  | S19-Ja24093 | Х                        |                            |      | Х                                | Х                         |                           | Х         |      | Χ            |                                |
| 26   | BH26_1-1.1       | Jan 22, 2019    |              | Soil                  | S19-Ja24094 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Χ            |                                |
| 27   | BH27_0.4-0.5     | Jan 25, 2019    |              | Soil                  | S19-Ja24095 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Χ            |                                |
| 28   | BH28_1-1.1       | Jan 22, 2019    |              | Soil                  | S19-Ja24096 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Χ            |                                |
| 29   | BH29_0-0.15      | Jan 24, 2019    |              | Soil                  | S19-Ja24097 | Х                        |                            |      | Х                                |                           | Х                         | Х         |      | Χ            |                                |
| 30   | BH30_0-0.15      | Jan 24, 2019    |              | Soil                  | S19-Ja24098 | Х                        |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 31   | BH13-FRAG        | Jan 24, 2019    |              | Building<br>Materials | S19-Ja24099 |                          | Х                          |      |                                  |                           |                           |           |      |              |                                |
| 32   | BH01_0.4-0.5     | Jan 21, 2019    |              | Soil                  | S19-Ja24100 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |

Page 9 of 18



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

 Company Name:
 JBS & G Australia (NSW) P/L
 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Address:
 Level 1.50 Margaret St
 Report #:
 637804
 Due:
 Feb 4, 2019

 Level 1, 50 Margaret St
 Report #:
 637804
 Due:
 Feb 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                   |                 | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD        | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |   |  |  |
|------|-------------------|-----------------|--------------------------|----------------------------|-------------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|---|--|--|
| Mell | ourne Laborato    | ory - NATA Site |                          |                            |             | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              | Х |  |  |
| Syd  | ney Laboratory    | - NATA Site # 1 | 8217                     |                            |             | Х                                | Х                         |                           |           |      |              |                                |   |  |  |
| Bris | bane Laborator    | y - NATA Site # | 20794                    |                            |             |                                  |                           |                           |           |      |              |                                |   |  |  |
| Pert | h Laboratory - N  | NATA Site # 237 | 736                      |                            |             |                                  |                           |                           |           |      |              |                                |   |  |  |
| 33   | BH01_1.0-1.1      | Jan 21, 2019    |                          | Soil                       | S19-Ja24101 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 34   | BH01_1.4-1.5      | Jan 21, 2019    |                          | Soil                       | S19-Ja24102 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 35   | BH02_0-0.15       | Jan 24, 2019    |                          | Soil                       | S19-Ja24103 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 36   | BH02A_0.4-<br>0.5 | Jan 24, 2019    |                          | Soil                       | S19-Ja24104 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 37   | BH03_0-0.15       | Jan 21, 2019    |                          | Soil                       | S19-Ja24105 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 38   | BH03_1.0-1.1      | Jan 21, 2019    |                          | Soil                       | S19-Ja24106 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 39   | BH04_0.4-0.5      | Jan 21, 2019    |                          | Soil                       | S19-Ja24107 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 40   | BH04_1.0-1.1      | Jan 21, 2019    |                          | Soil                       | S19-Ja24108 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 41   | BH05_0-0.15       | Jan 21, 2019    |                          | Soil                       | S19-Ja24109 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 42   | BH05_0.4-0.5      | Jan 21, 2019    |                          | Soil                       | S19-Ja24110 |                                  |                           | Х                         |           |      |              |                                |   |  |  |
| 43   | BH05_1.4-1.5      | Jan 21, 2019    |                          | Soil                       | S19-Ja24111 |                                  |                           | Х                         |           |      |              |                                |   |  |  |

Page 10 of 18



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F

1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Address: Level 1, 50 Margaret St Report #: 637804 Due: Feb 4, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name: Daniel Denaro** 

**Project Name:** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                    | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|--------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | oourne Laborato    | ory - NATA Site | # 1254 & 142 | 71   |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory     | - NATA Site # 1 | 8217         |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator     | y - NATA Site#  | 20794        |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N   | NATA Site # 237 | <b>736</b>   |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 44   | BH06_0-0.15        | Jan 21, 2019    |              | Soil | S19-Ja24112 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 45   | BH06_1-1.1         | Jan 21, 2019    |              | Soil | S19-Ja24113 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 46   | BH07_0-0.15        | Jan 24, 2019    |              | Soil | S19-Ja24114 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 47   | BH08_0.4-0.5       | Jan 25, 2019    |              | Soil | S19-Ja24115 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 48   | BH08_0.8-0.9       | Jan 25, 2019    |              | Soil | S19-Ja24116 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 49   | BH08_1.2-1.3       | Jan 25, 2019    |              | Soil | S19-Ja24117 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 50   | BH08_1.5-1.6       | Jan 25, 2019    |              | Soil | S19-Ja24118 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 51   | BH09_0-0.15        | Jan 21, 2019    |              | Soil | S19-Ja24119 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 52   | BH09_1-1.1         | Jan 21, 2019    |              | Soil | S19-Ja24120 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 53   | BH10_0.05-<br>0.15 | Jan 21, 2019    |              | Soil | S19-Ja24121 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 54   | BH10_0.4-0.5       | Jan 21, 2019    |              | Soil | S19-Ja24122 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 637804
 Due:
 Feb 4, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | ourne Laborato   | ory - NATA Site | # 1254 & 142 | 71   |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217         |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laboratory  | y - NATA Site # | 20794        |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | ATA Site # 237  | 36           |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 55   | BH10_1.6-1.7     | Jan 21, 2019    |              | Soil | S19-Ja24123 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 56   | BH11_0.4-0.5     | Jan 21, 2019    |              | Soil | S19-Ja24124 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 57   | BH11_1.3-1.4     | Jan 21, 2019    |              | Soil | S19-Ja24125 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 58   | BH12_0-0.15      | Jan 21, 2019    |              | Soil | S19-Ja24126 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 59   | BH12_1-1.1       | Jan 21, 2019    |              | Soil | S19-Ja24127 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 60   | BH13_0-0.15      | Jan 25, 2019    |              | Soil | S19-Ja24128 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 61   | BH13_0.4-0.5     | Jan 25, 2019    |              | Soil | S19-Ja24129 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 62   | BH13_1.2-1.3     | Jan 25, 2019    |              | Soil | S19-Ja24130 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 63   | BH14_0.6-0.7     | Jan 25, 2019    |              | Soil | S19-Ja24131 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 64   | BH14_1-1.1       | Jan 25, 2019    |              | Soil | S19-Ja24132 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 65   | BH15_0.4-0.5     | Jan 21, 2019    |              | Soil | S19-Ja24133 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 66   | BH15_1-1.1       | Jan 21, 2019    |              | Soil | S19-Ja24134 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Address: Level 1, 50 Margaret St Report #: 637804 Due: Feb 4, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name: Daniel Denaro** 

**Project Name:** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | ourne Laborato   | ory - NATA Site | # 1254 & 142 | 71   |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217         |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laboratory  | y - NATA Site # | 20794        |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N |                 |              |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 67   | BH15_1.5-1.6     | Jan 21, 2019    |              | Soil | S19-Ja24135 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 68   | BH15_2.2-2.3     | Jan 21, 2019    |              | Soil | S19-Ja24136 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 69   | BH16_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24137 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 70   | BH16_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24138 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 71   | BH16_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24139 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 72   | BH16_2.0-2.1     | Jan 22, 2019    |              | Soil | S19-Ja24140 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 73   | BH17_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24141 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 74   | BH17_1.0-1.1     | Jan 22, 2019    |              | Soil | S19-Ja24142 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 75   | BH17_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24143 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 76   | BH18_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24144 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 77   | BH18_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24145 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 78   | BH18_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24146 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

 Company Name:
 JBS & G Australia (NSW) P/L
 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 637804
 Due:
 Feb 4, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  |                 | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD        | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |  |  |  |
|------|------------------|-----------------|--------------------------|----------------------------|-------------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|--|--|--|
| Melk | ourne Laborato   |                 |                          |                            | Х           | Х                                | Х                         | Х                         | Х         | Х    | Х            | Χ                              |  |  |  |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217                     |                            |             | Х                                | Х                         |                           |           |      |              |                                |  |  |  |
| Bris | bane Laborator   | y - NATA Site # | 20794                    |                            |             |                                  |                           |                           |           |      |              |                                |  |  |  |
| Pert | h Laboratory - N | NATA Site # 237 |                          |                            |             |                                  |                           |                           |           |      |              |                                |  |  |  |
| 79   | BH19_0-0.15      | Jan 22, 2019    |                          | Soil                       | S19-Ja24147 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 80   | BH19_0.7-0.8     | Jan 22, 2019    |                          | Soil                       | S19-Ja24148 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 81   | BH19_1-1.1       | Jan 22, 2019    |                          | Soil                       | S19-Ja24149 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 82   | BH20_0-0.15      | Jan 22, 2019    |                          | Soil                       | S19-Ja24150 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 83   | BH20_0.4-0.5     | Jan 22, 2019    |                          | Soil                       | S19-Ja24151 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 84   | BH20_1.5-1.6     | Jan 22, 2019    |                          | Soil                       | S19-Ja24152 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 85   | BH21_0.4-0.5     | Jan 22, 2019    |                          | Soil                       | S19-Ja24153 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 86   | BH21_1-1.1       | Jan 22, 2019    |                          | Soil                       | S19-Ja24154 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 87   | BH22_0-0.15      | Jan 22, 2019    |                          | Soil                       | S19-Ja24155 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 88   | BH22_0.4-0.5     | Jan 22, 2019    |                          | Soil                       | S19-Ja24156 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 89   | BH23_0-0.15      | Jan 22, 2019    |                          | Soil                       | S19-Ja24157 |                                  |                           | Х                         |           |      |              |                                |  |  |  |
| 90   | BH23_1-1.1       | Jan 22, 2019    |                          | Soil                       | S19-Ja24158 |                                  |                           | Х                         |           |      |              |                                |  |  |  |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F

Sydney

16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Address: Level 1, 50 Margaret St Report #: 637804 Due: Feb 4, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name: Daniel Denaro** 

**Project Name:** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Melk | ourne Laborato   | ory - NATA Site | # 1254 & 142 | 71   |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Sydi | ney Laboratory   | - NATA Site # 1 | 8217         |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laboratory  | y - NATA Site # | 20794        |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N |                 |              |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 91   | BH23_1.3-1.4     | Jan 22, 2019    |              | Soil | S19-Ja24159 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 92   | BH23_1.7-1.8     | Jan 22, 2019    |              | Soil | S19-Ja24160 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 93   | BH24_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24161 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 94   | BH24_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24162 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 95   | BH24_1.4-1.5     | Jan 22, 2019    |              | Soil | S19-Ja24163 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 96   | BH25_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24164 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 97   | BH25_1.1-1.2     | Jan 22, 2019    |              | Soil | S19-Ja24165 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 98   | BH26_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24166 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 99   | BH26_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24167 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 100  | BH26_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24168 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 101  | BH27_0-0.15      | Jan 25, 2019    |              | Soil | S19-Ja24169 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 102  | BH27_1-1.1       | Jan 25, 2019    |              | Soil | S19-Ja24170 |                          |                            | Х    |                                  |                           |                           |           |      |              | ,                              |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637804

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066

Received:

Priority:

**Contact Name:** 

Due:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Daniel Denaro** 

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

EEE70

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

| Sample Detail                                | l    |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|----------------------------------------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Melbourne Laboratory - NATA Site # 1254 & 14 | 4271 |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Sydney Laboratory - NATA Site # 18217        |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Brisbane Laboratory - NATA Site # 20794      |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Perth Laboratory - NATA Site # 23736         |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 103 BH27_1.3-1.4 Jan 25, 2019                | Soil | S19-Ja24171 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 104 BH28_0-0.15 Jan 22, 2019                 | Soil | S19-Ja24172 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 105 BH28_0.4-0.5 Jan 22, 2019                | Soil | S19-Ja24173 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 106 BH28_1.6-1.7 Jan 22, 2019                | Soil | S19-Ja24174 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 107 BH29_0.4-0.5 Jan 24, 2019                | Soil | S19-Ja24175 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 108 BH30_0.4-0.5 Jan 24, 2019                | Soil | S19-Ja24176 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 109 BH27_0.7-0.8 Jan 24, 2019                | Soil | S19-Ja24177 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| Test Counts                                  |      |             | 30                       | 1                          | 78   | 30                               | 5                         | 2                         | 30        | 5    | 30           | 5                              |



### **Internal Quality Control Review and Glossary**

### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

### l Inite

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

### **Terms**

**Dry** Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standard

Date Reported: Feb 04, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

AF equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Page 17 of 18

Report Number: 637804-AID



### Comments

Ja24072, Ja24083, Ja24090. Ja24093, Ja24096: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

### Sample Integrity

| Custody Seals Intact (if used)                                          | N/A |
|-------------------------------------------------------------------------|-----|
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

### **Qualifier Codes/Comments**

Code Description N/A Not applicable

### **Asbestos Counter/Identifier:**

Laxman Dias Senior Analyst-Asbestos (NSW)

### Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Date Reported: Feb 04, 2019

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here.}}$ 

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Page 18 of 18

Report Number: 637804-AID

<sup>-</sup> Indicates Not Requested

 $<sup>^{\</sup>star}$  Indicates NATA accreditation does not cover the performance of this service



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Daniel Denaro

Report 637804-S

Project name CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID 55579
Received Date Jan 25, 2019

| Client Sample ID                                  |           |       | BH01_0-0.15  | BH02A_0-0.15 | BH03_0.4-0.5 | <sup>G01</sup> BH04_0.2- |
|---------------------------------------------------|-----------|-------|--------------|--------------|--------------|--------------------------|
| Sample Matrix                                     |           |       | Soil         | Soil         | Soil         | Soil                     |
| Eurofins   mgt Sample No.                         |           |       | S19-Ja24069  | S19-Ja24070  | S19-Ja24071  | S19-Ja24072              |
| Date Sampled                                      |           |       | Jan 21, 2019 | Jan 24, 2019 | Jan 21, 2019 | Jan 21, 2019             |
| Test/Reference                                    | LOR       | Unit  |              |              |              |                          |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |              |              |              |                          |
| TRH C6-C9                                         | 20        | mg/kg | < 20         | -            | -            | < 40                     |
| TRH C10-C14                                       | 20        | mg/kg | < 20         | -            | -            | < 20                     |
| TRH C15-C28                                       | 50        | mg/kg | 150          | -            | -            | < 50                     |
| TRH C29-C36                                       | 50        | mg/kg | 110          | -            | -            | < 50                     |
| TRH C10-36 (Total)                                | 50        | mg/kg | 260          | -            | -            | < 50                     |
| ВТЕХ                                              | •         |       |              |              |              |                          |
| Benzene                                           | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                    |
| Toluene                                           | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                    |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                    |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2        | -            | -            | < 0.4                    |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                    |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3        | -            | -            | < 0.6                    |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 92           | -            | -            | 76                       |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |              |              |              |                          |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5        | -            | -            | < 1                      |
| TRH C6-C10                                        | 20        | mg/kg | < 20         | -            | -            | < 40                     |
| TRH C6-C10 less BTEX (F1)N04                      | 20        | mg/kg | < 20         | -            | -            | < 40                     |
| TRH >C10-C16                                      | 50        | mg/kg | < 50         | -            | -            | < 50                     |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50         | -            | -            | < 50                     |
| TRH >C16-C34                                      | 100       | mg/kg | 220          | -            | -            | < 100                    |
| TRH >C34-C40                                      | 100       | mg/kg | < 100        | -            | -            | < 100                    |
| TRH >C10-C40 (total)*                             | 100       | mg/kg | 220          | -            | -            | < 100                    |
| Polycyclic Aromatic Hydrocarbons                  |           |       |              |              |              |                          |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | 1.3          | < 0.5        | < 0.5        | < 0.5                    |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 1.6          | 0.6          | 0.6          | 0.6                      |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.8          | 1.2          | 1.2          | 1.2                      |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                    |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                    |
| Anthracene                                        | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                    |
| Benz(a)anthracene                                 | 0.5       | mg/kg | 1.3          | < 0.5        | < 0.5        | < 0.5                    |
| Benzo(a)pyrene                                    | 0.5       | mg/kg | 1.0          | < 0.5        | < 0.5        | < 0.5                    |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5       | mg/kg | 0.6          | < 0.5        | < 0.5        | < 0.5                    |
| Benzo(g.h.i)perylene                              | 0.5       | mg/kg | 0.5          | < 0.5        | < 0.5        | < 0.5                    |
| Benzo(k)fluoranthene                              | 0.5       | mg/kg | 0.8          | < 0.5        | < 0.5        | < 0.5                    |
| Chrysene                                          | 0.5       | mg/kg | 1.6          | < 0.5        | < 0.5        | < 0.5                    |



| Client Sample ID Sample Matrix      |        |       | BH01_0-0.15<br>Soil | BH02A_0-0.15<br>Soil | BH03_0.4-0.5<br>Soil | G01BH04_0.2-<br>0.3<br>Soil |
|-------------------------------------|--------|-------|---------------------|----------------------|----------------------|-----------------------------|
| •                                   |        |       |                     |                      |                      |                             |
| Eurofins   mgt Sample No.           |        |       | S19-Ja24069         | S19-Ja24070          | S19-Ja24071          | S19-Ja24072                 |
| Date Sampled                        |        |       | Jan 21, 2019        | Jan 24, 2019         | Jan 21, 2019         | Jan 21, 2019                |
| Test/Reference                      | LOR    | Unit  |                     |                      |                      |                             |
| Polycyclic Aromatic Hydrocarbons    |        |       |                     |                      |                      |                             |
| Dibenz(a.h)anthracene               | 0.5    | mg/kg | < 0.5               | < 0.5                | < 0.5                | < 0.5                       |
| Fluoranthene                        | 0.5    | mg/kg | 2.8                 | 0.8                  | < 0.5                | < 0.5                       |
| Fluorene                            | 0.5    | mg/kg | < 0.5               | < 0.5                | < 0.5                | < 0.5                       |
| Indeno(1.2.3-cd)pyrene              | 0.5    | mg/kg | < 0.5               | < 0.5                | < 0.5                | < 0.5                       |
| Naphthalene                         | 0.5    | mg/kg | < 0.5               | < 0.5                | < 0.5                | < 0.5                       |
| Phenanthrene                        | 0.5    | mg/kg | < 0.5               | < 0.5                | < 0.5                | < 0.5                       |
| Pyrene                              | 0.5    | mg/kg | 3.1                 | 0.8                  | < 0.5                | < 0.5                       |
| Total PAH*                          | 0.5    | mg/kg | 11.7                | 1.6                  | < 0.5                | < 0.5                       |
| 2-Fluorobiphenyl (surr.)            | 1      | %     | 53                  | 53                   | 53                   | 83                          |
| p-Terphenyl-d14 (surr.)             | 1      | %     | 65                  | 92                   | 71                   | 63                          |
| Organochlorine Pesticides           |        |       |                     |                      |                      |                             |
| Chlordanes - Total                  | 0.1    | mg/kg | -                   | < 0.1                | -                    | -                           |
| 4.4'-DDD                            | 0.05   | mg/kg | -                   | < 0.05               | -                    | -                           |
| 4.4'-DDE                            | 0.05   | mg/kg | -                   | < 0.05               | -                    | -                           |
| 4.4'-DDT                            | 0.05   | mg/kg | -                   | < 0.05               | -                    | =                           |
| a-BHC                               | 0.05   | mg/kg | -                   | < 0.05               | -                    | -                           |
| Aldrin                              | 0.05   | mg/kg | -                   | < 0.05               | -                    | _                           |
| b-BHC                               | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| d-BHC                               | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Dieldrin                            | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Endosulfan I                        | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Endosulfan II                       | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Endosulfan sulphate                 | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Endrin                              | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| Endrin aldehyde                     | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| Endrin ketone                       | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| g-BHC (Lindane)                     | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Heptachlor                          | 0.05   | mg/kg | -                   | < 0.05               | _                    | _                           |
| Heptachlor epoxide                  | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| Hexachlorobenzene                   | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| Methoxychlor                        | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| Toxaphene                           | 1      | mg/kg | _                   | < 1                  | _                    | _                           |
| Aldrin and Dieldrin (Total)*        | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| DDT + DDE + DDD (Total)*            | 0.05   | mg/kg | _                   | < 0.05               | _                    | _                           |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1    | mg/kg | _                   | < 0.1                | _                    | _                           |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1    | mg/kg | _                   | < 0.1                | _                    | _                           |
| Dibutylchlorendate (surr.)          | 1      | %     | _                   | 98                   | _                    | _                           |
| Tetrachloro-m-xylene (surr.)        | 1      | %     | -                   | 90                   | _                    | -                           |
| Heavy Metals                        | '      | 70    |                     | 30                   |                      |                             |
| Arsenic                             | 2      | mg/kg | 5.1                 | 5.3                  | 2.8                  | 3.9                         |
| Cadmium                             | 0.4    |       | < 0.4               | < 0.4                | < 0.4                | < 0.4                       |
| Chromium                            | 5      | mg/kg | 8.8                 | 14                   | < 0.4<br>87          | 8.7                         |
|                                     | 5      | mg/kg | 11                  | 36                   | 32                   | 22                          |
| Copper<br>Lead                      | 5      | mg/kg | 39                  | 37                   | 11                   | 47                          |
|                                     |        | mg/kg |                     |                      |                      | 1                           |
| Mercury<br>Nickel                   | 0.1    | mg/kg | < 0.1               | < 0.1                | < 0.1<br>97          | < 0.1                       |
| Nickel                              | 5<br>5 | mg/kg | < 5                 | 5.8                  |                      | 8.9                         |
| Zinc                                |        | mg/kg | 88                  | 71                   | 64                   | 44                          |
| % Moisture                          | 1      | %     | 17                  | 14                   | 16                   | 26                          |



|                                                   |       | 1          |              | 1            | 1            | 1                                                |
|---------------------------------------------------|-------|------------|--------------|--------------|--------------|--------------------------------------------------|
| Client Sample ID                                  |       |            | BH05_1.0-1.1 | BH06_0.4-0.5 | BH07_0.5-0.6 | BH08_0-0.15                                      |
| Sample Matrix                                     |       |            | Soil         | Soil         | Soil         | Soil                                             |
| Eurofins   mgt Sample No.                         |       |            | S19-Ja24073  | S19-Ja24074  | S19-Ja24075  | S19-Ja24076                                      |
| Date Sampled                                      |       |            | Jan 21, 2019 | Jan 21, 2019 | Jan 24, 2019 | Jan 25, 2019                                     |
| Test/Reference                                    | LOR   | Unit       |              |              |              |                                                  |
| Total Recoverable Hydrocarbons - 1999 NEPM Frac   | tions |            |              |              |              |                                                  |
| TRH C6-C9                                         | 20    | mg/kg      | _            | -            | _            | < 20                                             |
| TRH C10-C14                                       | 20    | mg/kg      | _            | _            | _            | < 20                                             |
| TRH C15-C28                                       | 50    | mg/kg      | _            | _            | _            | < 50                                             |
| TRH C29-C36                                       | 50    | mg/kg      | _            | _            | _            | < 50                                             |
| TRH C10-36 (Total)                                | 50    | mg/kg      | _            | _            | _            | < 50                                             |
| BTEX                                              | 1 00  | i iiig/itg |              |              |              | 100                                              |
| Benzene                                           | 0.1   | mg/kg      | _            | _            | _            | < 0.1                                            |
| Toluene                                           | 0.1   | mg/kg      | _            |              | _            | < 0.1                                            |
| Ethylbenzene                                      | 0.1   | mg/kg      | -            |              | -            | < 0.1                                            |
| m&p-Xylenes                                       | 0.1   | mg/kg      | -            |              | -            | < 0.1                                            |
| o-Xylene                                          | 0.2   | mg/kg      | -            | -            | -            | < 0.2                                            |
| Xylenes - Total                                   | 0.1   | mg/kg      | -            | -            | -            | < 0.1                                            |
| 4-Bromofluorobenzene (surr.)                      | 1     | mg/kg<br>% | -            | -            | -            | < 0.3<br>87                                      |
| Total Recoverable Hydrocarbons - 2013 NEPM Frac   |       | /0         | -            | -            | -            | 07                                               |
|                                                   |       |            |              |              |              | .0.5                                             |
| Naphthalene <sup>N02</sup>                        | 0.5   | mg/kg      | -            | -            | -            | < 0.5                                            |
| TRH C6-C10                                        | 20    | mg/kg      | -            | -            | -            | < 20                                             |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20    | mg/kg      | -            | -            | -            | < 20                                             |
| TRH >C10-C16                                      | 50    | mg/kg      | -            | -            | -            | < 50                                             |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50    | mg/kg      | -            | -            | -            | < 50                                             |
| TRH >C16-C34                                      | 100   | mg/kg      | -            | -            | -            | < 100                                            |
| TRH >C34-C40                                      | 100   | mg/kg      | -            | -            | -            | < 100                                            |
| TRH >C10-C40 (total)*                             | 100   | mg/kg      | -            | -            | -            | < 100                                            |
| Polycyclic Aromatic Hydrocarbons                  |       | T "        |              |              |              | <del>                                     </del> |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5   | mg/kg      | 0.6          | 0.6          | 0.6          | 0.6                                              |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5   | mg/kg      | 1.2          | 1.2          | 1.2          | 1.2                                              |
| Acenaphthene                                      | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Acenaphthylene                                    | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Anthracene                                        | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Benz(a)anthracene                                 | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Benzo(a)pyrene                                    | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Benzo(g.h.i)perylene                              | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Benzo(k)fluoranthene                              | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Chrysene                                          | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Dibenz(a.h)anthracene                             | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Fluoranthene                                      | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Fluorene                                          | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Indeno(1.2.3-cd)pyrene                            | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Naphthalene                                       | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Phenanthrene                                      | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Pyrene                                            | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| Total PAH*                                        | 0.5   | mg/kg      | < 0.5        | < 0.5        | < 0.5        | < 0.5                                            |
| 2-Fluorobiphenyl (surr.)                          | 1     | %          | 57           | 56           | 51           | 50                                               |
| p-Terphenyl-d14 (surr.)                           | 1     | %          | 59           | 85           | 77           | 54                                               |



Mercury

% Moisture

Nickel

Zinc

| Client Sample ID Sample Matrix Eurofins   mgt Sample No. |     |       | BH05_1.0-1.1<br>Soil<br>S19-Ja24073 | BH06_0.4-0.5<br>Soil<br>S19-Ja24074 | BH07_0.5-0.6<br>Soil<br>S19-Ja24075 | BH08_0-0.15<br>Soil<br>S19-Ja24076 |
|----------------------------------------------------------|-----|-------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
| Date Sampled Test/Reference                              | LOR | Unit  | Jan 21, 2019                        | Jan 21, 2019                        | Jan 24, 2019                        | Jan 25, 2019                       |
| Heavy Metals                                             | LOR | Offit |                                     |                                     |                                     |                                    |
| Arsenic                                                  | 2   | mg/kg | 6.7                                 | 17                                  | 11                                  | 6.3                                |
| Cadmium                                                  | 0.4 | mg/kg | < 0.4                               | < 0.4                               | < 0.4                               | < 0.4                              |
| Chromium                                                 | 5   | mg/kg | < 5                                 | 32                                  | 14                                  | 15                                 |
| Copper                                                   | 5   | mg/kg | 18                                  | 11                                  | 23                                  | 27                                 |
| Lead                                                     | 5   | mg/kg | 23                                  | 60                                  | 24                                  | 40                                 |
|                                                          |     |       |                                     |                                     |                                     |                                    |

mg/kg

mg/kg

mg/kg

%

< 0.1

< 5

< 5

11

< 0.1

6.6

33

19

< 0.1

5.6

27

13

0.5

< 5

100

13

0.1

5

5

1

| Client Semale ID                                  |           |       | DU00 0 4 0 5         | D1140 4 4 4        | DU144 0 0 45        | DU40 0 4 0 5         |
|---------------------------------------------------|-----------|-------|----------------------|--------------------|---------------------|----------------------|
| Client Sample ID Sample Matrix                    |           |       | BH09_0.4-0.5<br>Soil | BH10_1-1.1<br>Soil | BH11_0-0.15<br>Soil | BH12_0.4-0.5<br>Soil |
| •                                                 |           |       | S19-Ja24077          | S19-Ja24078        | S19-Ja24079         | S19-Ja24080          |
| Eurofins   mgt Sample No.                         |           |       |                      |                    |                     |                      |
| Date Sampled                                      |           |       | Jan 21, 2019         | Jan 21, 2019       | Jan 21, 2019        | Jan 21, 2019         |
| Test/Reference                                    | LOR       | Unit  |                      |                    |                     |                      |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |                      |                    |                     |                      |
| TRH C6-C9                                         | 20        | mg/kg | -                    | < 20               | -                   | -                    |
| TRH C10-C14                                       | 20        | mg/kg | -                    | < 20               | -                   | -                    |
| TRH C15-C28                                       | 50        | mg/kg | -                    | < 50               | -                   | -                    |
| TRH C29-C36                                       | 50        | mg/kg | -                    | < 50               | -                   | -                    |
| TRH C10-36 (Total)                                | 50        | mg/kg | -                    | < 50               | -                   | -                    |
| BTEX                                              |           |       |                      |                    |                     |                      |
| Benzene                                           | 0.1       | mg/kg | -                    | < 0.1              | -                   | -                    |
| Toluene                                           | 0.1       | mg/kg | -                    | < 0.1              | -                   | -                    |
| Ethylbenzene                                      | 0.1       | mg/kg | -                    | < 0.1              | -                   | -                    |
| m&p-Xylenes                                       | 0.2       | mg/kg | -                    | < 0.2              | -                   | -                    |
| o-Xylene                                          | 0.1       | mg/kg | -                    | < 0.1              | -                   | -                    |
| Xylenes - Total                                   | 0.3       | mg/kg | -                    | < 0.3              | -                   | -                    |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | -                    | 92                 | -                   | -                    |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |                      |                    |                     |                      |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | -                    | < 0.5              | -                   | -                    |
| TRH C6-C10                                        | 20        | mg/kg | -                    | < 20               | -                   | -                    |
| TRH C6-C10 less BTEX (F1)N04                      | 20        | mg/kg | -                    | < 20               | -                   | -                    |
| TRH >C10-C16                                      | 50        | mg/kg | -                    | < 50               | -                   | -                    |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | -                    | < 50               | -                   | -                    |
| TRH >C16-C34                                      | 100       | mg/kg | -                    | < 100              | -                   | -                    |
| TRH >C34-C40                                      | 100       | mg/kg | -                    | < 100              | -                   | -                    |
| TRH >C10-C40 (total)*                             | 100       | mg/kg | -                    | < 100              | -                   | -                    |
| Polycyclic Aromatic Hydrocarbons                  |           |       |                      |                    |                     |                      |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 0.6                  | 0.6                | 0.6                 | 0.6                  |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.2                  | 1.2                | 1.2                 | 1.2                  |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Anthracene                                        | 0.5       | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benz(a)anthracene                                 | 0.5       | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benzo(a)pyrene                                    | 0.5       | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |



| Client Sample ID                      |      |       | BU00 0 4 0 5         | BU40 4 4 4         | BU44 0 0 45         | BU42 0 4 0 5         |
|---------------------------------------|------|-------|----------------------|--------------------|---------------------|----------------------|
| Sample Matrix                         |      |       | BH09_0.4-0.5<br>Soil | BH10_1-1.1<br>Soil | BH11_0-0.15<br>Soil | BH12_0.4-0.5<br>Soil |
| · ·                                   |      |       |                      |                    |                     |                      |
| Eurofins   mgt Sample No.             |      |       | S19-Ja24077          | S19-Ja24078        | S19-Ja24079         | S19-Ja24080          |
| Date Sampled                          |      |       | Jan 21, 2019         | Jan 21, 2019       | Jan 21, 2019        | Jan 21, 2019         |
| Test/Reference                        | LOR  | Unit  |                      |                    |                     |                      |
| Polycyclic Aromatic Hydrocarbons      |      | _     |                      |                    |                     |                      |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Chrysene                              | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Dibenz(a.h)anthracene                 | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Fluoranthene                          | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Fluorene                              | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Naphthalene                           | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Phenanthrene                          | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Pyrene                                | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Total PAH*                            | 0.5  | mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| 2-Fluorobiphenyl (surr.)              | 1    | %     | 84                   | 53                 | 72                  | 95                   |
| p-Terphenyl-d14 (surr.)               | 1    | %     | 72                   | 95                 | 66                  | 110                  |
| Organochlorine Pesticides             |      | 1     |                      |                    |                     |                      |
| Chlordanes - Total                    | 0.1  | mg/kg | < 0.1                | -                  | -                   | -                    |
| 4.4'-DDD                              | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| 4.4'-DDE                              | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| 4.4'-DDT                              | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| а-ВНС                                 | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Aldrin                                | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| b-BHC                                 | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| d-BHC                                 | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Dieldrin                              | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Endosulfan I                          | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Endosulfan II                         | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Endosulfan sulphate                   | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Endrin                                | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Endrin aldehyde                       | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Endrin ketone                         | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| g-BHC (Lindane)                       | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Heptachlor                            | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Heptachlor epoxide                    | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Hexachlorobenzene                     | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Methoxychlor                          | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Toxaphene                             | 1    | mg/kg | < 1                  | -                  | -                   | -                    |
| Aldrin and Dieldrin (Total)*          | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| DDT + DDE + DDD (Total)*              | 0.05 | mg/kg | < 0.05               | -                  | -                   | -                    |
| Vic EPA IWRG 621 OCP (Total)*         | 0.1  | mg/kg | < 0.1                | -                  | -                   | -                    |
| Vic EPA IWRG 621 Other OCP (Total)*   | 0.1  | mg/kg | < 0.1                | -                  | -                   | -                    |
| Dibutylchlorendate (surr.)            | 1    | %     | 119                  | -                  | -                   | -                    |
| Tetrachloro-m-xylene (surr.)          | 1    | %     | 109                  | -                  | -                   | -                    |
| Heavy Metals                          |      | n     | 7.0                  | 40                 | F .                 | 0.0                  |
| Arsenic                               | 2    | mg/kg | 7.0                  | 13                 | 5.0                 | 9.2                  |
| Cadmium                               | 0.4  | mg/kg | < 0.4                | 1.0                | < 0.4               | < 0.4                |
| Chromium                              | 5    | mg/kg | 12                   | 16                 | 12                  | 15                   |
| Copper                                | 5    | mg/kg | 14                   | 26                 | 18                  | 22                   |
| Lead                                  | 5    | mg/kg | 27                   | 110                | 49                  | 24                   |
| Mercury                               | 0.1  | mg/kg | < 0.1                | < 0.1              | < 0.1               | < 0.1                |



| Client Sample ID<br>Sample Matrix |     |       | BH09_0.4-0.5<br>Soil | BH10_1-1.1<br>Soil | BH11_0-0.15<br>Soil | BH12_0.4-0.5<br>Soil |
|-----------------------------------|-----|-------|----------------------|--------------------|---------------------|----------------------|
| Eurofins   mgt Sample No.         |     |       | S19-Ja24077          | S19-Ja24078        | S19-Ja24079         | S19-Ja24080          |
| Date Sampled                      |     |       | Jan 21, 2019         | Jan 21, 2019       | Jan 21, 2019        | Jan 21, 2019         |
| Test/Reference                    | LOR | Unit  |                      |                    |                     |                      |
| Heavy Metals                      |     |       |                      |                    |                     |                      |
| Nickel                            | 5   | mg/kg | 6.8                  | 7.9                | 12                  | 10                   |
| Zinc                              | 5   | mg/kg | 38                   | 690                | 150                 | 77                   |
|                                   |     | ·     |                      |                    |                     |                      |
| % Moisture                        | 1   | %     | 14                   | 13                 | 18                  | 14                   |

| Client Sample ID                      |          |                | BH13_0.7-0.8   | BH14_0-0.15  | BH15_0-0.15  | BH16_0.4-0.5 |
|---------------------------------------|----------|----------------|----------------|--------------|--------------|--------------|
| Sample Matrix                         |          |                | Soil           | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.             |          |                | S19-Ja24081    | S19-Ja24082  | S19-Ja24083  | S19-Ja24084  |
| Date Sampled                          |          |                | Jan 25, 2019   | Jan 25, 2019 | Jan 21, 2019 | Jan 22, 2019 |
| Test/Reference                        | LOR      | Unit           | Journ 20, 2010 |              | Jun 21, 2010 |              |
| Polycyclic Aromatic Hydrocarbons      | LON      | Offic          |                |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (nedium bound) *   | 0.5      | mg/kg          | 0.6            | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (inediam bound) *  | 0.5      |                | 1.2            | 1.2          | 1.2          | 1.2          |
| Acenaphthene                          | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                        | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                            | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                     | 0.5      | mg/kg<br>mg/kg | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                        | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                  | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                  | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                              | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                 | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                          | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                              | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                           | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                          | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Pyrene                                | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| Total PAH*                            | 0.5      | mg/kg          | < 0.5          | < 0.5        | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)              | 1        | %              | 61             | 64           | 107          | 78           |
| p-Terphenyl-d14 (surr.)               | 1        | %              | 60             | 91           | 90           | 54           |
| Organochlorine Pesticides             | <u>'</u> | /0             | 00             | 31           | 30           | 34           |
| Chlordanes - Total                    | 0.1      | mg/kg          |                |              | _            | < 0.1        |
| 4.4'-DDD                              | 0.05     | mg/kg          |                | -            |              | < 0.1        |
| 4.4'-DDE                              | 0.05     | mg/kg          | -              | -            |              | < 0.05       |
| 4.4'-DDT                              | 0.05     | mg/kg          | -              | -            |              | < 0.05       |
| a-BHC                                 | 0.05     | mg/kg          |                | -            |              | < 0.05       |
| Aldrin                                | 0.05     | mg/kg          | -              | -            |              | < 0.05       |
| b-BHC                                 | 0.05     | mg/kg          | -              | -            | -            | < 0.05       |
| d-BHC                                 | 0.05     |                |                | -            | _            | < 0.05       |
| Dieldrin                              | 0.05     | mg/kg<br>mg/kg | -              | -            | -            | < 0.05       |
| Endosulfan I                          | 0.05     | mg/kg          | -              | -            | -            | < 0.05       |
| Endosulfan II                         | 0.05     | mg/kg          | -              | -            | -            | < 0.05       |
| Endosulfan sulphate                   | 0.05     |                | -              | -            | -            | < 0.05       |
| Endosulian sulphate<br>Endrin         | 0.05     | mg/kg          | -              | -            | -            | < 0.05       |
| Endrin aldehyde                       | 0.05     | mg/kg          | -              |              | -            | < 0.05       |
| Lituriii alueriyue                    | 0.03     | mg/kg          |                | =            | <u> </u>     | < 0.00       |



| Client Sample ID                    |      |       | BH13_0.7-0.8 | BH14_0-0.15  | BH15_0-0.15  | BH16_0.4-0.5 |
|-------------------------------------|------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                       |      |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24081  | S19-Ja24082  | S19-Ja24083  | S19-Ja24084  |
| Date Sampled                        |      |       | Jan 25, 2019 | Jan 25, 2019 | Jan 21, 2019 | Jan 22, 2019 |
| Test/Reference                      | LOR  | Unit  |              |              |              |              |
| Organochlorine Pesticides           | -    |       |              |              |              |              |
| Endrin ketone                       | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| g-BHC (Lindane)                     | 0.05 | mg/kg | _            | -            | -            | < 0.05       |
| Heptachlor                          | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Heptachlor epoxide                  | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Hexachlorobenzene                   | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Methoxychlor                        | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Toxaphene                           | 1    | mg/kg | -            | -            | -            | < 1          |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | -            | -            | -            | < 0.1        |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | -            | -            | -            | < 0.1        |
| Dibutylchlorendate (surr.)          | 1    | %     | -            | -            | -            | 96           |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | -            | -            | -            | 110          |
| Polychlorinated Biphenyls           |      |       |              |              |              |              |
| Aroclor-1016                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1221                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1232                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1242                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1248                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1254                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1260                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Total PCB*                          | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Dibutylchlorendate (surr.)          | 1    | %     | -            | -            | 81           | -            |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | -            | -            | 90           | -            |
| Heavy Metals                        |      |       |              |              |              |              |
| Arsenic                             | 2    | mg/kg | 5.7          | 6.9          | 2.9          | 6.6          |
| Cadmium                             | 0.4  | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |
| Chromium                            | 5    | mg/kg | 14           | 17           | 10           | 11           |
| Copper                              | 5    | mg/kg | 17           | 21           | 18           | 26           |
| Lead                                | 5    | mg/kg | 17           | 43           | 22           | 37           |
| Mercury                             | 0.1  | mg/kg | < 0.1        | 0.1          | < 0.1        | < 0.1        |
| Nickel                              | 5    | mg/kg | 6.7          | 9.7          | 6.1          | 5.8          |
| Zinc                                | 5    | mg/kg | 22           | 70           | 61           | 43           |
| % Moisture                          | 1    | %     | 17           | 16           | 32           | 10           |
| 70 IVIUISIUIE                       | I    | 70    | 17           | 10           | 32           | 10           |

| Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled |     |       | BH17_0.4-0.5<br>Soil<br>S19-Ja24085<br>Jan 22, 2019 | BH18_0.7-0.8<br>Soil<br>S19-Ja24086<br>Jan 22, 2019 | BH19_0.4-0.5<br>Soil<br>S19-Ja24087<br>Jan 22, 2019 | BH20_1-1.1<br>Soil<br>S19-Ja24088<br>Jan 22, 2019 |
|-----------------------------------------------------------------------|-----|-------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|
| Test/Reference                                                        | LOR | Unit  |                                                     |                                                     |                                                     |                                                   |
| Polycyclic Aromatic Hydrocarbons                                      |     |       |                                                     |                                                     |                                                     |                                                   |
| Benzo(a)pyrene TEQ (lower bound) *                                    | 0.5 | mg/kg | < 0.5                                               | < 0.5                                               | < 0.5                                               | < 0.5                                             |
| Benzo(a)pyrene TEQ (medium bound) *                                   | 0.5 | mg/kg | 0.6                                                 | 0.6                                                 | 0.6                                                 | 0.6                                               |
| Benzo(a)pyrene TEQ (upper bound) *                                    | 0.5 | mg/kg | 1.2                                                 | 1.2                                                 | 1.2                                                 | 1.2                                               |
| Acenaphthene                                                          | 0.5 | mg/kg | < 0.5                                               | < 0.5                                               | < 0.5                                               | < 0.5                                             |
| Acenaphthylene                                                        | 0.5 | mg/kg | < 0.5                                               | < 0.5                                               | < 0.5                                               | < 0.5                                             |
| Anthracene                                                            | 0.5 | mg/kg | < 0.5                                               | < 0.5                                               | < 0.5                                               | < 0.5                                             |



| Client Sample ID                      |          |       | BH17_0.4-0.5 | BH18_0.7-0.8 | BH19_0.4-0.5 | BH20_1-1.1   |
|---------------------------------------|----------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                         |          |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.             |          |       | S19-Ja24085  | S19-Ja24086  | S19-Ja24087  | S19-Ja24088  |
| Date Sampled                          |          |       | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 |
| Test/Reference                        | LOR      | Unit  |              |              |              |              |
| Polycyclic Aromatic Hydrocarbons      | <u> </u> | •     |              |              |              |              |
| Benz(a)anthracene                     | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                        | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                  | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                  | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                              | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                 | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                          | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                              | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                           | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                          | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Pyrene                                | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Total PAH*                            | 0.5      | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)              | 1        | %     | 118          | 101          | 111          | 140          |
| p-Terphenyl-d14 (surr.)               | 1        | %     | 137          | 93           | 117          | 109          |
| Heavy Metals                          |          |       |              |              |              |              |
| Arsenic                               | 2        | mg/kg | 4.6          | 4.8          | 2.1          | 15           |
| Cadmium                               | 0.4      | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |
| Chromium                              | 5        | mg/kg | 42           | 47           | 12           | 20           |
| Copper                                | 5        | mg/kg | 12           | 17           | 10           | 14           |
| Lead                                  | 5        | mg/kg | 60           | 29           | 14           | 30           |
| Mercury                               | 0.1      | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| Nickel                                | 5        | mg/kg | < 5          | 41           | 11           | < 5          |
| Zinc                                  | 5        | mg/kg | 28           | 52           | 49           | 13           |
| % Moisture                            | 1        | %     | 23           | 17           | 17           | 31           |

| Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled |      |       | BH21_0-0.15<br>Soil<br>S19-Ja24089<br>Jan 22, 2019 | BH22_1-1.1<br>Soil<br>S19-Ja24090<br>Jan 22, 2019 | BH23_0.4-0.5<br>Soil<br>S19-Ja24091<br>Jan 22, 2019 | BH24_0-0.15<br>Soil<br>S19-Ja24092<br>Jan 22, 2019 |
|-----------------------------------------------------------------------|------|-------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Test/Reference                                                        | LOR  | Unit  |                                                    |                                                   |                                                     |                                                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fract                      | ions |       |                                                    |                                                   |                                                     |                                                    |
| TRH C6-C9                                                             | 20   | mg/kg | -                                                  | -                                                 | -                                                   | < 20                                               |
| TRH C10-C14                                                           | 20   | mg/kg | -                                                  | -                                                 | -                                                   | < 20                                               |
| TRH C15-C28                                                           | 50   | mg/kg | -                                                  | -                                                 | -                                                   | < 50                                               |
| TRH C29-C36                                                           | 50   | mg/kg | -                                                  | -                                                 | -                                                   | 130                                                |
| TRH C10-36 (Total)                                                    | 50   | mg/kg | -                                                  | -                                                 | -                                                   | 130                                                |
| BTEX                                                                  |      |       |                                                    |                                                   |                                                     |                                                    |
| Benzene                                                               | 0.1  | mg/kg | -                                                  | -                                                 | -                                                   | < 0.1                                              |
| Toluene                                                               | 0.1  | mg/kg | -                                                  | -                                                 | -                                                   | < 0.1                                              |
| Ethylbenzene                                                          | 0.1  | mg/kg | -                                                  | -                                                 | -                                                   | < 0.1                                              |
| m&p-Xylenes                                                           | 0.2  | mg/kg | -                                                  | -                                                 | -                                                   | < 0.2                                              |
| o-Xylene                                                              | 0.1  | mg/kg | -                                                  | -                                                 | -                                                   | < 0.1                                              |
| Xylenes - Total                                                       | 0.3  | mg/kg | -                                                  | -                                                 | -                                                   | < 0.3                                              |
| 4-Bromofluorobenzene (surr.)                                          | 1    | %     | -                                                  | -                                                 | -                                                   | 75                                                 |



| Client Commis ID                                  |              |                | DU04 0 0 45      | DU00 444     | Duna 0 4 0 5 | DU04 0 0 45  |
|---------------------------------------------------|--------------|----------------|------------------|--------------|--------------|--------------|
| Client Sample ID                                  |              |                | BH21_0-0.15      | BH22_1-1.1   | BH23_0.4-0.5 | BH24_0-0.15  |
| Sample Matrix                                     |              |                | Soil             | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                         |              |                | S19-Ja24089      | S19-Ja24090  | S19-Ja24091  | S19-Ja24092  |
| Date Sampled                                      |              |                | Jan 22, 2019     | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 |
| Test/Reference                                    | LOR          | Unit           |                  |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions    |                |                  |              |              |              |
| Naphthalene <sup>N02</sup>                        | 0.5          | mg/kg          | -                | -            | -            | < 0.5        |
| TRH C6-C10                                        | 20           | mg/kg          | -                | -            | -            | < 20         |
| TRH C6-C10 less BTEX (F1)N04                      | 20           | mg/kg          | -                | -            | -            | < 20         |
| TRH >C10-C16                                      | 50           | mg/kg          | -                | -            | -            | < 50         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50           | mg/kg          | -                | -            | -            | < 50         |
| TRH >C16-C34                                      | 100          | mg/kg          | -                | -            | -            | 120          |
| TRH >C34-C40                                      | 100          | mg/kg          | -                | -            | -            | 130          |
| TRH >C10-C40 (total)*                             | 100          | mg/kg          | -                | -            | -            | 250          |
| Polycyclic Aromatic Hydrocarbons                  |              |                |                  |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5          | mg/kg          | 0.6              | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5          | mg/kg          | 1.2              | 1.2          | 1.2          | 1.2          |
| Acenaphthene                                      | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                                    | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                                        | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                                 | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                                    | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                              | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                              | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                                          | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                             | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                                      | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                                          | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                            | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                                       | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                                      | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Pyrene                                            | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Total PAH*                                        | 0.5          | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)                          | 1            | %              | 73               | 53           | 68           | 76           |
| p-Terphenyl-d14 (surr.)                           | 1            | %              | 63               | 93           | 77           | 88           |
| Organochlorine Pesticides                         |              | 1              |                  |              |              |              |
| Chlordanes - Total                                | 0.1          | mg/kg          | < 0.1            | -            | -            | -            |
| 4.4'-DDD                                          | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| 4.4'-DDE                                          | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| 4.4'-DDT                                          | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| a-BHC                                             | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Aldrin                                            | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| b-BHC                                             | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| d-BHC                                             | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Dieldrin Endosylfon I                             | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Endosulfan I                                      | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Endosulfan aulahata                               | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Endosulfan sulphate                               | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Endrin                                            | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Endrin ladehyde                                   | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| Endrin ketone                                     | 0.05         | mg/kg          | < 0.05           | -            | -            | -            |
| g-BHC (Lindane) Heptachlor                        | 0.05<br>0.05 | mg/kg<br>mg/kg | < 0.05<br>< 0.05 | -            | -            | -            |



| Client Sample ID                    |      |       | BH21_0-0.15<br>Soil | BH22_1-1.1<br>Soil | BH23_0.4-0.5<br>Soil | BH24_0-0.15<br>Soil |
|-------------------------------------|------|-------|---------------------|--------------------|----------------------|---------------------|
| Sample Matrix                       |      |       |                     |                    |                      | 1                   |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24089         | S19-Ja24090        | S19-Ja24091          | S19-Ja24092         |
| Date Sampled                        |      |       | Jan 22, 2019        | Jan 22, 2019       | Jan 22, 2019         | Jan 22, 2019        |
| Test/Reference                      | LOR  | Unit  |                     |                    |                      |                     |
| Organochlorine Pesticides           |      |       |                     |                    |                      |                     |
| Heptachlor epoxide                  | 0.05 | mg/kg | < 0.05              | -                  | -                    | -                   |
| Hexachlorobenzene                   | 0.05 | mg/kg | < 0.05              | -                  | -                    | -                   |
| Methoxychlor                        | 0.05 | mg/kg | < 0.05              | -                  | -                    | -                   |
| Toxaphene                           | 1    | mg/kg | < 1                 | -                  | -                    | -                   |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | < 0.05              | -                  | -                    | -                   |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05              | -                  | -                    | -                   |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1               | -                  | -                    | -                   |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1               | -                  | -                    | -                   |
| Dibutylchlorendate (surr.)          | 1    | %     | 83                  | -                  | -                    | -                   |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 88                  | -                  | -                    | -                   |
| Heavy Metals                        |      |       |                     |                    |                      |                     |
| Arsenic                             | 2    | mg/kg | 6.2                 | 15                 | 12                   | 2.6                 |
| Cadmium                             | 0.4  | mg/kg | < 0.4               | < 0.4              | < 0.4                | < 0.4               |
| Chromium                            | 5    | mg/kg | 17                  | 24                 | 16                   | 12                  |
| Copper                              | 5    | mg/kg | 33                  | 16                 | 10                   | 16                  |
| Lead                                | 5    | mg/kg | 63                  | 24                 | 28                   | 25                  |
| Mercury                             | 0.1  | mg/kg | < 0.1               | < 0.1              | < 0.1                | < 0.1               |
| Nickel                              | 5    | mg/kg | 9.6                 | < 5                | < 5                  | 7.5                 |
| Zinc                                | 5    | mg/kg | 160                 | 23                 | < 5                  | 55                  |
|                                     |      |       |                     |                    |                      |                     |
| % Moisture                          | 1    | %     | 10                  | 20                 | 16                   | 16                  |

| Client Sample ID                    |     |       | BH25_0.5-0.6 | BH26_1-1.1   | BH27_0.4-0.5 | BH28_1-1.1   |
|-------------------------------------|-----|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                       |     |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.           |     |       | S19-Ja24093  | S19-Ja24094  | S19-Ja24095  | S19-Ja24096  |
| Date Sampled                        |     |       | Jan 22, 2019 | Jan 22, 2019 | Jan 25, 2019 | Jan 22, 2019 |
| Test/Reference                      | LOR | Unit  |              |              |              |              |
| Polycyclic Aromatic Hydrocarbons    |     |       |              |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *  | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6          | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *  | 0.5 | mg/kg | 1.2          | 1.2          | 1.2          | 1.2          |
| Acenaphthene                        | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                      | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                   | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                      | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluorantheneN07           | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                            | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene               | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                        | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                            | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene              | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                         | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                        | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Pyrene                              | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Total PAH*                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |



| Client Sample ID                    |      |       | BH25_0.5-0.6 | BH26_1-1.1   | BH27_0.4-0.5 | BH28_1-1.1   |
|-------------------------------------|------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                       |      |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24093  | S19-Ja24094  | S19-Ja24095  | S19-Ja24096  |
| Date Sampled                        |      |       | Jan 22, 2019 | Jan 22, 2019 | Jan 25, 2019 | Jan 22, 2019 |
| Test/Reference                      | LOR  | Unit  |              |              |              |              |
| Polycyclic Aromatic Hydrocarbons    |      | ļ.    |              |              |              |              |
| 2-Fluorobiphenyl (surr.)            | 1    | %     | 74           | 71           | 51           | 51           |
| p-Terphenyl-d14 (surr.)             | 1    | %     | 69           | 87           | 54           | 76           |
| Organochlorine Pesticides           |      | •     |              |              |              |              |
| Chlordanes - Total                  | 0.1  | mg/kg | < 0.1        | -            | -            | -            |
| 4.4'-DDD                            | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| 4.4'-DDE                            | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| 4.4'-DDT                            | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| a-BHC                               | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Aldrin                              | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| o-BHC                               | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| d-BHC                               | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Dieldrin                            | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Endosulfan I                        | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Endosulfan II                       | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Endosulfan sulphate                 | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Endrin                              | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Endrin aldehyde                     | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Endrin ketone                       | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| g-BHC (Lindane)                     | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Heptachlor                          | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Heptachlor epoxide                  | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Hexachlorobenzene                   | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Methoxychlor                        | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Toxaphene                           | 1    | mg/kg | < 1          | -            | -            | -            |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05       | -            | -            | -            |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1        | -            | -            | -            |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1        | -            | -            | -            |
| Dibutylchlorendate (surr.)          | 1    | %     | 100          | -            | -            | -            |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 91           | -            | -            | -            |
| Heavy Metals                        |      |       |              |              |              |              |
| Arsenic                             | 2    | mg/kg | 14           | 10           | 7.1          | 7.5          |
| Cadmium                             | 0.4  | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |
| Chromium                            | 5    | mg/kg | 27           | 17           | 16           | 14           |
| Copper                              | 5    | mg/kg | 14           | 18           | 20           | 10           |
| Lead                                | 5    | mg/kg | 26           | 44           | 47           | 22           |
| Mercury                             | 0.1  | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| Nickel                              | 5    | mg/kg | 7.1          | < 5          | 5.2          | < 5          |
| Zinc                                | 5    | mg/kg | 15           | 21           | 60           | 5.2          |
|                                     |      | %     | 20           |              | 12           | 18           |



| Client Sample ID                      |     |       | BH29_0-0.15  | BH30_0-0.15  |
|---------------------------------------|-----|-------|--------------|--------------|
| Sample Matrix                         |     |       | Soil         | Soil         |
| Eurofins   mgt Sample No.             |     |       | S19-Ja24097  | S19-Ja24098  |
| Date Sampled                          |     |       | Jan 24, 2019 | Jan 24, 2019 |
| Test/Reference                        | LOR | Unit  |              |              |
| Polycyclic Aromatic Hydrocarbons      |     |       |              |              |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5 | mg/kg | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5 | mg/kg | 1.2          | 1.2          |
| Acenaphthene                          | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Acenaphthylene                        | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Anthracene                            | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Benz(a)anthracene                     | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Benzo(a)pyrene                        | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                  | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                  | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Chrysene                              | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                 | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Fluoranthene                          | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Fluorene                              | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Naphthalene                           | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Phenanthrene                          | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Pyrene                                | 0.5 | mg/kg | < 0.5        | < 0.5        |
| Total PAH*                            | 0.5 | mg/kg | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)              | 1   | %     | 107          | 63           |
| p-Terphenyl-d14 (surr.)               | 1   | %     | 98           | 87           |
| Polychlorinated Biphenyls             |     |       |              |              |
| Aroclor-1016                          | 0.1 | mg/kg | < 0.1        | -            |
| Aroclor-1221                          | 0.1 | mg/kg | < 0.1        | -            |
| Aroclor-1232                          | 0.1 | mg/kg | < 0.1        | -            |
| Aroclor-1242                          | 0.1 | mg/kg | < 0.1        | -            |
| Aroclor-1248                          | 0.1 | mg/kg | < 0.1        | -            |
| Aroclor-1254                          | 0.1 | mg/kg | < 0.1        | -            |
| Aroclor-1260                          | 0.1 | mg/kg | < 0.1        | -            |
| Total PCB*                            | 0.1 | mg/kg | < 0.1        | -            |
| Dibutylchlorendate (surr.)            | 1   | %     | 129          | -            |
| Tetrachloro-m-xylene (surr.)          | 1   | %     | 77           | -            |
| Heavy Metals                          |     |       |              |              |
| Arsenic                               | 2   | mg/kg | 4.5          | 8.4          |
| Cadmium                               | 0.4 | mg/kg | < 0.4        | < 0.4        |
| Chromium                              | 5   | mg/kg | 42           | 12           |
| Copper                                | 5   | mg/kg | 23           | 19           |
| Lead                                  | 5   | mg/kg | 26           | 69           |
| Mercury                               | 0.1 | mg/kg | < 0.1        | < 0.1        |
| Nickel                                | 5   | mg/kg | 44           | < 5          |
| Zinc                                  | 5   | mg/kg | 41           | 51           |
|                                       |     |       |              | 7.           |
| % Moisture                            | 1   | %     | 9.7          | 16           |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40 | <b>Testing Site</b> Melbourne | Extracted<br>Jan 31, 2019 | Holding Time<br>14 Day |
|----------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|------------------------|
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40             | Melbourne                     | Jan 31, 2019              | 14 Day                 |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40             | Melbourne                     | Jan 31, 2019              | 14 Day                 |
| BTEX - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices                        | Melbourne                     | Jan 31, 2019              | 14 Day                 |
| Polycyclic Aromatic Hydrocarbons  - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water         | Melbourne                     | Jan 31, 2019              | 14 Day                 |
| Organochlorine Pesticides                                                                          | Melbourne                     | Jan 31, 2019              | 14 Day                 |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water Polychlorinated Biphenyls                       | Melbourne                     | Jan 31, 2019              | 28 Days                |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water  Metals M8                                      | Melbourne                     | Jan 31, 2019              | 28 Days                |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Moisture                    | Melbourne                     | Jan 29, 2019              | 14 Day                 |



Order No.:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL **Project Name:** 

Project ID: 55579 Report #: 637804 Feb 4, 2019 Phone: 02 8245 0300 Priority: 5 Day Fax:

**Contact Name: Daniel Denaro** 

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271  Sydney Laboratory - NATA Site # 18217  Brisbane Laboratory - NATA Site # 20794 |              |                  |        |             |   | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------|-------------|---|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Melk |                                                                                                                                                |              |                  |        |             |   |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Sydi | •                                                                                                                                              |              |                  |        |             |   | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris |                                                                                                                                                |              |                  |        |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | erth Laboratory - NATA Site # 23736                                                                                                            |              |                  |        |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| Exte | erth Laboratory - NATA Site # 23736<br>xternal Laboratory                                                                                      |              |                  |        |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| No   | Sample ID                                                                                                                                      | Sample Date  | Sampling<br>Time | Matrix | LAB ID      |   |                            |      |                                  |                           |                           |           |      |              |                                |
| 1    | BH01_0-0.15                                                                                                                                    | Jan 21, 2019 |                  | Soil   | S19-Ja24069 | Х |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 2    | BH02A_0-0.15                                                                                                                                   | Jan 24, 2019 |                  | Soil   | S19-Ja24070 | Х |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |
| 3    | BH03_0.4-0.5                                                                                                                                   | Jan 21, 2019 |                  | Soil   | S19-Ja24071 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 4    | BH04_0.2-0.3                                                                                                                                   | Jan 21, 2019 |                  | Soil   | S19-Ja24072 | Х |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 5    | BH05_1.0-1.1                                                                                                                                   | Jan 21, 2019 |                  | Soil   | S19-Ja24073 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 6    | BH06_0.4-0.5                                                                                                                                   | Jan 21, 2019 |                  | Soil   | S19-Ja24074 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 7    | BH07_0.5-0.6                                                                                                                                   | Jan 24, 2019 |                  | Soil   | S19-Ja24075 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 8    | BH08_0-0.15                                                                                                                                    | Jan 25, 2019 |                  | Soil   | S19-Ja24076 | Х |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 9    | BH09_0.4-0.5                                                                                                                                   | Jan 21, 2019 |                  | Soil   | S19-Ja24077 | Х |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 14 of 34



Order No.:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Report #: 637804 Feb 4, 2019 Phone: 02 8245 0300 Priority: 5 Day Fax:

**Contact Name: Daniel Denaro** 

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271 |                                                                             |       |      |             |   | Asbestos Absence / Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|----------------------------------------------------------------|-----------------------------------------------------------------------------|-------|------|-------------|---|-----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | oourne Laborato                                                | urne Laboratory - NATA Site # 1254 & 14271 y Laboratory - NATA Site # 18217 |       |      |             |   |                             | Х    | Х                                | Χ                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory                                                 | - NATA Site # 1                                                             | 8217  |      |             | Х | Х                           |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator                                                 | y - NATA Site #                                                             | 20794 |      |             |   |                             |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N                                               | ATA Site # 237                                                              | 36    |      |             |   |                             |      |                                  |                           |                           |           |      |              |                                |
| 10   | BH10_1-1.1                                                     | Jan 21, 2019                                                                |       | Soil | S19-Ja24078 | Х |                             |      | Χ                                |                           |                           | Х         | Х    | Χ            | Х                              |
| 11   | BH11_0-0.15                                                    | Jan 21, 2019                                                                |       | Soil | S19-Ja24079 | Х |                             |      | Χ                                |                           |                           | Х         |      | Χ            |                                |
| 12   | BH12_0.4-0.5                                                   | Jan 21, 2019                                                                |       | Soil | S19-Ja24080 | Х |                             |      | Χ                                |                           |                           | Х         |      | Χ            |                                |
| 13   | BH13_0.7-0.8                                                   | Jan 25, 2019                                                                |       | Soil | S19-Ja24081 | Χ |                             |      | Χ                                |                           |                           | Х         |      | Χ            |                                |
| 14   | BH14_0-0.15                                                    | Jan 25, 2019                                                                |       | Soil | S19-Ja24082 | Χ |                             |      | Χ                                |                           |                           | Х         |      | Χ            |                                |
| 15   | BH15_0-0.15                                                    | Jan 21, 2019                                                                |       | Soil | S19-Ja24083 | Х |                             |      | Χ                                |                           | Х                         | Х         |      | Χ            |                                |
| 16   | BH16_0.4-0.5                                                   | Jan 22, 2019                                                                |       | Soil | S19-Ja24084 | Х |                             |      | Χ                                | Χ                         |                           | Х         |      | Х            |                                |
| 17   | BH17_0.4-0.5                                                   | Jan 22, 2019                                                                |       | Soil | S19-Ja24085 | Х |                             |      | Χ                                |                           |                           | Х         |      | Х            |                                |
| 18   | BH18_0.7-0.8                                                   | Jan 22, 2019                                                                |       | Soil | S19-Ja24086 | Х |                             |      | Χ                                |                           |                           | Х         |      | Х            |                                |
| 19   | BH19_0.4-0.5                                                   | Jan 22, 2019                                                                |       | Soil | S19-Ja24087 | Х |                             |      | Χ                                |                           |                           | Х         |      | Х            |                                |
| 20   | BH20_1-1.1                                                     | Jan 22, 2019                                                                |       | Soil | S19-Ja24088 | Х |                             |      | Χ                                |                           |                           | Х         |      | Х            |                                |
| 21   | BH21_0-0.15 Jan 22, 2019 Soil S19-Ja24089                      |                                                                             |       |      |             | Χ |                             |      | Χ                                | Χ                         |                           | Х         |      | Χ            |                                |



Order No.:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL **Project Name:** 

Project ID: 55579 Report #: 637804 Feb 4, 2019 Phone: 02 8245 0300 Priority: 5 Day Fax:

**Contact Name: Daniel Denaro** 

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271  Sydney Laboratory - NATA Site # 18217 |                 |              |                       |             |   | Asbestos Absence /Presence | НОГД | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|-------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------------------|-------------|---|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | ourne Laborato                                                                                        | ory - NATA Site | # 1254 & 142 | 271                   |             |   |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Χ            | Х                              |
| Syd  | ney Laboratory                                                                                        | - NATA Site # 1 | 8217         |                       |             | Х | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator                                                                                        | y - NATA Site # | 20794        |                       |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N                                                                                      | NATA Site # 237 | 36           |                       |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| 22   | BH22_1-1.1                                                                                            | Jan 22, 2019    |              | Soil                  | S19-Ja24090 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 23   | BH23_0.4-0.5                                                                                          | Jan 22, 2019    |              | Soil                  | S19-Ja24091 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 24   | BH24_0-0.15                                                                                           | Jan 22, 2019    |              | Soil                  | S19-Ja24092 | Х |                            |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              |
| 25   | BH25_0.5-0.6                                                                                          | Jan 22, 2019    |              | Soil                  | S19-Ja24093 | Х |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                |
| 26   | BH26_1-1.1                                                                                            | Jan 22, 2019    |              | Soil                  | S19-Ja24094 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 27   | BH27_0.4-0.5                                                                                          | Jan 25, 2019    |              | Soil                  | S19-Ja24095 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 28   | BH28_1-1.1                                                                                            | Jan 22, 2019    |              | Soil                  | S19-Ja24096 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 29   | BH29_0-0.15                                                                                           | Jan 24, 2019    |              | Soil                  | S19-Ja24097 | Х |                            |      | Х                                |                           | Х                         | Х         |      | Х            |                                |
| 30   | BH30_0-0.15                                                                                           | Jan 24, 2019    |              | Soil                  | S19-Ja24098 | Х |                            |      | Х                                |                           |                           | Х         |      | Х            |                                |
| 31   | BH13-FRAG                                                                                             | Jan 24, 2019    |              | Building<br>Materials | S19-Ja24099 |   | Х                          |      |                                  |                           |                           |           |      |              |                                |
| 32   | BH01_0.4-0.5                                                                                          | Jan 21, 2019    |              | Soil                  | S19-Ja24100 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637804
 Due:
 Feb 4, 2019

Priority: 5 Day

Contact Name: Daniel Denaro

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271  Sydney Laboratory - NATA Site # 18217 |                 |                |     |             |   | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|-------------------------------------------------------------------------------------------------------|-----------------|----------------|-----|-------------|---|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | oourne Laborato                                                                                       | ory - NATA Site | # 1254 & 14271 |     |             |   |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory                                                                                        | - NATA Site # 1 | 8217           |     |             | Х | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator                                                                                        | y - NATA Site # | 20794          |     |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N                                                                                      | NATA Site # 237 | 36             |     |             |   |                            |      |                                  |                           |                           |           |      |              |                                |
| 33   | BH01_1.0-1.1                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24101 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 34   | BH01_1.4-1.5                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24102 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 35   | BH02_0-0.15                                                                                           | Jan 24, 2019    | So             | oil | S19-Ja24103 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 36   | BH02A_0.4-<br>0.5                                                                                     | Jan 24, 2019    | So             | oil | S19-Ja24104 |   |                            | х    |                                  |                           |                           |           |      |              |                                |
| 37   | BH03_0-0.15                                                                                           | Jan 21, 2019    | So             | oil | S19-Ja24105 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 38   | BH03_1.0-1.1                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24106 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 39   | BH04_0.4-0.5                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24107 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 40   | BH04_1.0-1.1                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24108 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 41   | BH05_0-0.15                                                                                           | Jan 21, 2019    | So             | oil | S19-Ja24109 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 42   | BH05_0.4-0.5                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24110 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 43   | BH05_1.4-1.5                                                                                          | Jan 21, 2019    | So             | oil | S19-Ja24111 |   |                            | Х    |                                  |                           |                           |           |      |              |                                |



Order No.:

Report #:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637804

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Phone: 02 8245 0300 Priority: 5 Day Fax:

**Contact Name: Daniel Denaro** 

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271  Sydney Laboratory - NATA Site # 18217 |                 |                |     |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|-------------------------------------------------------------------------------------------------------|-----------------|----------------|-----|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | oourne Laborato                                                                                       | ory - NATA Site | # 1254 & 14271 |     |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory                                                                                        | - NATA Site # 1 | 8217           |     |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator                                                                                        | y - NATA Site # | 20794          |     |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N                                                                                      | ATA Site # 237  | 36             |     |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 44   | BH06_0-0.15                                                                                           | Jan 21, 2019    | Soil           | 1 5 | S19-Ja24112 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 45   | BH06_1-1.1                                                                                            | Jan 21, 2019    | Soil           | 1 5 | S19-Ja24113 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 46   | BH07_0-0.15                                                                                           | Jan 24, 2019    | Soil           | 1 5 | S19-Ja24114 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 47   | BH08_0.4-0.5                                                                                          | Jan 25, 2019    | Soil           | 1 5 | S19-Ja24115 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 48   | BH08_0.8-0.9                                                                                          | Jan 25, 2019    | Soil           | 1 5 | S19-Ja24116 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 49   | BH08_1.2-1.3                                                                                          | Jan 25, 2019    | Soil           | 1 5 | S19-Ja24117 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 50   | BH08_1.5-1.6                                                                                          | Jan 25, 2019    | Soil           | 1 5 | S19-Ja24118 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 51   | BH09_0-0.15                                                                                           | Jan 21, 2019    | Soil           | 1 5 | S19-Ja24119 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 52   | BH09_1-1.1                                                                                            | Jan 21, 2019    | Soil           | 1 5 | S19-Ja24120 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 53   | BH10_0.05-<br>0.15                                                                                    | Jan 21, 2019    | Soil           | ı   | S19-Ja24121 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 54   | BH10_0.4-0.5                                                                                          | Jan 21, 2019    | Soil           | 1 5 | S19-Ja24122 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637804

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

**Received:** Jan 25, 2019 5:50 PM

Due: Feb 4, 2019
Priority: 5 Day

Contact Name: Daniel Denaro

| Sample Detail  Melbourne Laboratory - NATA Site # 1254 & 14271  Sydney Laboratory - NATA Site # 18217 |                  |                 |              |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|-------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Melk                                                                                                  | ourne Laborato   | ory - NATA Site | # 1254 & 142 | 271  |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
|                                                                                                       |                  |                 |              |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
|                                                                                                       | bane Laborator   |                 |              |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert                                                                                                  | h Laboratory - N | NATA Site # 237 | 36           |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 55                                                                                                    | BH10_1.6-1.7     | Jan 21, 2019    |              | Soil | S19-Ja24123 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 56                                                                                                    | BH11_0.4-0.5     | Jan 21, 2019    |              | Soil | S19-Ja24124 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 57                                                                                                    | BH11_1.3-1.4     | Jan 21, 2019    |              | Soil | S19-Ja24125 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 58                                                                                                    | BH12_0-0.15      | Jan 21, 2019    |              | Soil | S19-Ja24126 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 59                                                                                                    | BH12_1-1.1       | Jan 21, 2019    |              | Soil | S19-Ja24127 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 60                                                                                                    | BH13_0-0.15      | Jan 25, 2019    |              | Soil | S19-Ja24128 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 61                                                                                                    | BH13_0.4-0.5     | Jan 25, 2019    |              | Soil | S19-Ja24129 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 62                                                                                                    | BH13_1.2-1.3     | Jan 25, 2019    |              | Soil | S19-Ja24130 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 63                                                                                                    | BH14_0.6-0.7     | Jan 25, 2019    |              | Soil | S19-Ja24131 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 64                                                                                                    | BH14_1-1.1       | Jan 25, 2019    |              | Soil | S19-Ja24132 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 65                                                                                                    | BH15_0.4-0.5     | Jan 21, 2019    |              | Soil | S19-Ja24133 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 66                                                                                                    | BH15_1-1.1       | Jan 21, 2019    |              | Soil | S19-Ja24134 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |



Order No.:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Jan 25, 2019 5:50 PM

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

 Report #:
 637804
 Due:
 Feb 4, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Daniel Denaro

|      |                  | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence / Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|------|-------------|--------------------------|-----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | oourne Laborato  | ory - NATA Site | # 1254 & 142 | 71   |             |                          |                             | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217         |      |             | Х                        | Х                           |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator   | y - NATA Site # | 20794        |      |             |                          |                             |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | ATA Site # 237  | 36           |      |             |                          |                             |      |                                  |                           |                           |           |      |              |                                |
| 67   | BH15_1.5-1.6     | Jan 21, 2019    |              | Soil | S19-Ja24135 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 68   | BH15_2.2-2.3     | Jan 21, 2019    |              | Soil | S19-Ja24136 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 69   | BH16_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24137 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 70   | BH16_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24138 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 71   | BH16_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24139 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 72   | BH16_2.0-2.1     | Jan 22, 2019    |              | Soil | S19-Ja24140 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 73   | BH17_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24141 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 74   | BH17_1.0-1.1     | Jan 22, 2019    |              | Soil | S19-Ja24142 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 75   | BH17_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24143 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 76   | BH18_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24144 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 77   | BH18_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24145 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |
| 78   | BH18_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24146 |                          |                             | Х    |                                  |                           |                           |           |      |              |                                |



Order No.:

Report #:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637804

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Phone: 02 8245 0300 Priority: 5 Day **Contact Name:** Fax: **Daniel Denaro** 

|      |                  | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | ourne Laborato   | ory - NATA Site | # 1254 & 142 | 271  |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Χ    | Χ            | Χ                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217         |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator   | y - NATA Site # | 20794        |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | NATA Site # 237 | 36           |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 79   | BH19_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24147 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 80   | BH19_0.7-0.8     | Jan 22, 2019    |              | Soil | S19-Ja24148 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 81   | BH19_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24149 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 82   | BH20_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24150 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 83   | BH20_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24151 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 84   | BH20_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24152 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 85   | BH21_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24153 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 86   | BH21_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24154 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 87   | BH22_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24155 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 88   | BH22_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24156 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 89   | BH23_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24157 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 90   | BH23_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24158 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637804
 Due:
 Feb 4, 2019

 Due:
 Feb 4, 2019

 Priority:
 5 Day

Contact Name: Daniel Denaro

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                  | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|--------------|------|-------------|--------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Melk | ourne Laborato   | ory - NATA Site | # 1254 & 142 | 271  |             |                          |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217         |      |             | Х                        | Х                          |      |                                  |                           |                           |           |      |              |                                |
|      | bane Laborator   |                 |              |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | NATA Site # 237 | 36           |      |             |                          |                            |      |                                  |                           |                           |           |      |              |                                |
| 91   | BH23_1.3-1.4     | Jan 22, 2019    |              | Soil | S19-Ja24159 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 92   | BH23_1.7-1.8     | Jan 22, 2019    |              | Soil | S19-Ja24160 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 93   | BH24_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24161 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 94   | BH24_1-1.1       | Jan 22, 2019    |              | Soil | S19-Ja24162 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 95   | BH24_1.4-1.5     | Jan 22, 2019    |              | Soil | S19-Ja24163 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 96   | BH25_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24164 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 97   | BH25_1.1-1.2     | Jan 22, 2019    |              | Soil | S19-Ja24165 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 98   | BH26_0-0.15      | Jan 22, 2019    |              | Soil | S19-Ja24166 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 99   | BH26_0.4-0.5     | Jan 22, 2019    |              | Soil | S19-Ja24167 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 100  | BH26_1.5-1.6     | Jan 22, 2019    |              | Soil | S19-Ja24168 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 101  | BH27_0-0.15      | Jan 25, 2019    |              | Soil | S19-Ja24169 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 102  | BH27_1-1.1       | Jan 25, 2019    |              | Soil | S19-Ja24170 |                          |                            | Х    |                                  |                           |                           |           |      |              |                                |

Page 22 of 34

Report Number: 637804-S



Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579

 Order No.:
 Received:
 Jan 25, 2019 5:50 PM

 Report #:
 637804
 Due:
 Feb 4, 2019

Phone: 02 8245 0300 Priority: 5 Day

Contact Name: Daniel Denaro

|      |                  |                 |               |            |             |    | Asbestos Absence /Presence | ногр | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | втех | Moisture Set | Total Recoverable Hydrocarbons |
|------|------------------|-----------------|---------------|------------|-------------|----|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|
| Mell | ourne Laborato   | ory - NATA Site | # 1254 & 1427 | <b>'</b> 1 |             |    |                            | Х    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |
| Syd  | ney Laboratory   | - NATA Site # 1 | 8217          |            |             | Х  | Х                          |      |                                  |                           |                           |           |      |              |                                |
| Bris | bane Laborator   | y - NATA Site # | 20794         |            |             |    |                            |      |                                  |                           |                           |           |      |              |                                |
| Pert | h Laboratory - N | ATA Site # 237  | 36            |            |             |    |                            |      |                                  |                           |                           |           |      |              |                                |
| 103  | BH27_1.3-1.4     | Jan 25, 2019    |               | Soil       | S19-Ja24171 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 104  | BH28_0-0.15      | Jan 22, 2019    |               | Soil       | S19-Ja24172 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 105  | BH28_0.4-0.5     | Jan 22, 2019    |               | Soil       | S19-Ja24173 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 106  | BH28_1.6-1.7     | Jan 22, 2019    |               | Soil       | S19-Ja24174 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 107  | BH29_0.4-0.5     | Jan 24, 2019    |               | Soil       | S19-Ja24175 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 108  | BH30_0.4-0.5     | Jan 24, 2019    |               | Soil       | S19-Ja24176 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| 109  | BH27_0.7-0.8     | Jan 24, 2019    |               | Soil       | S19-Ja24177 |    |                            | Х    |                                  |                           |                           |           |      |              |                                |
| Test | Counts           |                 |               |            |             | 30 | 1                          | 78   | 30                               | 5                         | 2                         | 30        | 5    | 30           | 5                              |



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 637804-S



### **Quality Control Results**

| Test                                                 | Units    | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|----------|----------|----------------------|----------------|--------------------|
| Method Blank                                         | <u> </u> | •        | '                    |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |          |          |                      |                |                    |
| TRH C6-C9                                            | mg/kg    | < 20     | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg    | < 20     | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg    | < 50     | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg    | < 50     | 50                   | Pass           |                    |
| Method Blank                                         |          |          |                      |                |                    |
| BTEX                                                 |          |          |                      |                |                    |
| Benzene                                              | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg    | < 0.2    | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| Xvlenes - Total                                      | mg/kg    | < 0.3    | 0.3                  | Pass           |                    |
| Method Blank                                         | 1        |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |          |          |                      |                |                    |
| Naphthalene                                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| TRH C6-C10                                           | mg/kg    | < 20     | 20                   | Pass           |                    |
| TRH >C10-C16                                         | mg/kg    | < 50     | 50                   | Pass           |                    |
| TRH >C16-C34                                         | mg/kg    | < 100    | 100                  | Pass           |                    |
| TRH >C34-C40                                         | mg/kg    | < 100    | 100                  | Pass           |                    |
| Method Blank                                         | IIIg/Rg  | 100      | 100                  | 1 455          |                    |
| Polycyclic Aromatic Hydrocarbons                     |          |          |                      |                |                    |
| Acenaphthene                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                                       | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                                           | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                                    | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                       | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&i)fluoranthene                               | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                                 | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                                 |          | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                                             | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                                | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
|                                                      | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene Fluorene                                    | mg/kg    | 1        |                      |                |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/kg    | < 0.5    | 0.5<br>0.5           | Pass<br>Pass   |                    |
| \                                                    | mg/kg    | < 0.5    |                      |                |                    |
| Naphthalene                                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene  Math ad Blank                                | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                         |          |          |                      |                |                    |
| Organochlorine Pesticides                            |          | .04      | 0.4                  | Dana           |                    |
| Chlordanes - Total<br>4.4'-DDD                       | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
|                                                      | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDE                                             | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDT                                             | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| a-BHC                                                | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Aldrin                                               | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| b-BHC                                                | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| d-BHC                                                | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Dieldrin                                             | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan I                                         | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan II                                        | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |



| Test                                                 | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|---------|----------|----------------------|----------------|--------------------|
| Endosulfan sulphate                                  | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endrin                                               | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endrin aldehyde                                      | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endrin ketone                                        | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| g-BHC (Lindane)                                      | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor                                           | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor epoxide                                   | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Hexachlorobenzene                                    | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
|                                                      |         |          | 0.05                 |                |                    |
| Methoxychlor                                         | mg/kg   | < 0.05   |                      | Pass           |                    |
| Toxaphene Marke of Blank                             | mg/kg   | < 1      | 1                    | Pass           |                    |
| Method Blank                                         |         |          |                      | I              |                    |
| Polychlorinated Biphenyls                            |         |          |                      | _              |                    |
| Aroclor-1016                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1221                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1232                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1242                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1248                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1254                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1260                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Total PCB*                                           | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                         |         |          |                      |                |                    |
| Heavy Metals                                         |         |          |                      |                |                    |
| Arsenic                                              | mg/kg   | < 2      | 2                    | Pass           |                    |
| Cadmium                                              | mg/kg   | < 0.4    | 0.4                  | Pass           |                    |
| Chromium                                             | mg/kg   | < 5      | 5                    | Pass           |                    |
| Copper                                               | mg/kg   | < 5      | 5                    | Pass           |                    |
| Lead                                                 | mg/kg   | < 5      | 5                    | Pass           |                    |
| Mercury                                              | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Nickel                                               | mg/kg   | < 5      | 5                    | Pass           |                    |
| Zinc                                                 | mg/kg   | < 5      | 5                    | Pass           |                    |
| LCS - % Recovery                                     | IIIg/kg |          |                      | 1 033          |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |         |          | T I                  |                |                    |
| <u>-</u>                                             | 0/      | 445      | 70.400               | Dana           |                    |
| TRH C6-C9                                            | %       | 115      | 70-130               | Pass           |                    |
| TRH C10-C14                                          | %       | 116      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |         |          |                      | I              |                    |
| BTEX                                                 |         |          |                      | <u> </u>       |                    |
| Benzene                                              | %       | 89       | 70-130               | Pass           |                    |
| Toluene                                              | %       | 91       | 70-130               | Pass           |                    |
| Ethylbenzene                                         | %       | 111      | 70-130               | Pass           |                    |
| m&p-Xylenes                                          | %       | 114      | 70-130               | Pass           |                    |
| Xylenes - Total                                      | %       | 114      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |         |          |                      | 1              |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |         |          |                      |                |                    |
| Naphthalene                                          | %       | 117      | 70-130               | Pass           |                    |
| TRH C6-C10                                           | %       | 112      | 70-130               | Pass           |                    |
| TRH >C10-C16                                         | %       | 108      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |         |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |         |          |                      |                |                    |
| Acenaphthene                                         | %       | 108      | 70-130               | Pass           |                    |
| Acenaphthylene                                       | %       | 101      | 70-130               | Pass           |                    |
| Anthracene                                           | %       | 107      | 70-130               | Pass           |                    |
|                                                      |         |          | 70-130               | Pass           |                    |
| l Benz(a)anthracene                                  | 9/2     | 1 99 1   | / ()= 1.5()          |                |                    |
| Benz(a)anthracene Benzo(a)pyrene                     | %<br>%  | 99       | 70-130               | Pass           |                    |



| Test                             |                 |              | Units  | Result 1 |             | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|--------|----------|-------------|----------------------|----------------|--------------------|
| Benzo(g.h.i)perylene             |                 |              | %      | 105      |             | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             |                 |              | %      | 100      |             | 70-130               | Pass           |                    |
| Chrysene                         |                 |              | %      | 122      |             | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            |                 |              | %      | 104      |             | 70-130               | Pass           |                    |
| Fluoranthene                     |                 |              | %      | 125      |             | 70-130               | Pass           |                    |
| Fluorene                         |                 |              | %      | 100      |             | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           |                 |              | %      | 84       |             | 70-130               | Pass           |                    |
| Naphthalene                      |                 |              | %      | 123      |             | 70-130               | Pass           |                    |
| Phenanthrene                     |                 |              | %      | 90       |             | 70-130               | Pass           |                    |
| Pyrene                           |                 |              | %      | 107      |             | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              | ,,,    |          |             | 70 .00               |                |                    |
| Organochlorine Pesticides        |                 |              |        |          |             |                      |                |                    |
| Chlordanes - Total               |                 |              | %      | 117      |             | 70-130               | Pass           |                    |
| 4.4'-DDD                         |                 |              | %      | 95       |             | 70-130               | Pass           |                    |
| 4.4'-DDE                         |                 |              | %      | 125      |             | 70-130               | Pass           |                    |
| 4.4'-DDE                         |                 |              | %      | 91       |             | 70-130               | Pass           |                    |
| a-BHC                            |                 |              |        | 107      |             | 70-130               | Pass           |                    |
| Aldrin                           |                 |              | %<br>% |          |             | 70-130               | Pass           |                    |
|                                  |                 |              |        | 106      |             |                      |                |                    |
| b-BHC                            |                 |              | %      | 77       |             | 70-130               | Pass           |                    |
| d-BHC                            |                 |              | %      | 92       |             | 70-130               | Pass           |                    |
| Dieldrin                         |                 |              | %      | 122      |             | 70-130               | Pass           |                    |
| Endosulfan I                     |                 |              | %      | 126      |             | 70-130               | Pass           |                    |
| Endosulfan II                    |                 |              | %      | 94       |             | 70-130               | Pass           |                    |
| Endosulfan sulphate              |                 |              | %      | 98       |             | 70-130               | Pass           |                    |
| Endrin                           |                 |              | %      | 78       |             | 70-130               | Pass           |                    |
| Endrin aldehyde                  |                 |              | %      | 114      |             | 70-130               | Pass           |                    |
| Endrin ketone                    |                 |              | %      | 106      |             | 70-130               | Pass           |                    |
| g-BHC (Lindane)                  |                 |              | %      | 122      |             | 70-130               | Pass           |                    |
| Heptachlor                       |                 |              | %      | 78       |             | 70-130               | Pass           |                    |
| Heptachlor epoxide               |                 |              | %      | 91       |             | 70-130               | Pass           |                    |
| Hexachlorobenzene                |                 |              | %      | 109      |             | 70-130               | Pass           |                    |
| Methoxychlor                     |                 |              | %      | 74       |             | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |        |          |             |                      |                |                    |
| Polychlorinated Biphenyls        |                 |              |        |          |             |                      |                |                    |
| Aroclor-1260                     |                 |              | %      | 124      |             | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |        | •        |             | •                    |                |                    |
| Heavy Metals                     |                 |              |        |          |             |                      |                |                    |
| Arsenic                          |                 |              | %      | 111      |             | 80-120               | Pass           |                    |
| Cadmium                          |                 |              | %      | 107      |             | 80-120               | Pass           |                    |
| Chromium                         |                 |              | %      | 112      |             | 80-120               | Pass           |                    |
| Copper                           |                 |              | %      | 114      |             | 80-120               | Pass           |                    |
| Lead                             |                 |              | %      | 119      |             | 80-120               | Pass           |                    |
|                                  |                 |              |        |          |             |                      |                |                    |
| Mercury                          |                 |              | %      | 110      |             | 75-125               | Pass           |                    |
| Nickel                           |                 |              | %      | 112      |             | 80-120               | Pass           |                    |
| Zinc                             |                 | 0.1          | %      | 110      |             | 80-120               | Pass           | 0                  |
| Test                             | Lab Sample ID   | QA<br>Source | Units  | Result 1 |             | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery               |                 |              |        |          |             |                      |                |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |        | Result 1 |             |                      |                |                    |
| TRH C6-C9                        | S19-Ja24069     | CP           | %      | 103      |             | 70-130               | Pass           |                    |
| TRH C10-C14                      | M19-Ja23097     | NCP          | %      | 107      |             | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |        |          |             |                      |                |                    |
| BTEX                             |                 |              |        | Result 1 |             |                      |                |                    |
| Benzene                          | S19-Ja24069     | CP           | %      | 76       |             | 70-130               | Pass           |                    |
|                                  |                 |              |        |          | <del></del> | +                    |                | t                  |



| Test                            | Lab Sample ID     | QA<br>Source | Units        | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------|-------------------|--------------|--------------|----------|---|----------------------|----------------|--------------------|
| Ethylbenzene                    | S19-Ja24069       | CP           | %            | 97       |   | 70-130               | Pass           |                    |
| m&p-Xylenes                     | S19-Ja24069       | CP           | %            | 99       |   | 70-130               | Pass           |                    |
| o-Xylene                        | S19-Ja24069       | CP           | %            | 100      |   | 70-130               | Pass           |                    |
| Xylenes - Total                 | S19-Ja24069       | CP           | %            | 99       |   | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |              |          |   |                      |                |                    |
| Total Recoverable Hydrocarbons  | - 2013 NEPM Fract | ions         |              | Result 1 |   |                      |                |                    |
| Naphthalene                     | S19-Ja24069       | CP           | %            | 87       |   | 70-130               | Pass           |                    |
| TRH C6-C10                      | S19-Ja24069       | CP           | %            | 114      |   | 70-130               | Pass           |                    |
| TRH >C10-C16                    | M19-Ja23097       | NCP          | %            | 111      |   | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |              |          |   |                      |                |                    |
| Organochlorine Pesticides       |                   |              |              | Result 1 |   |                      |                |                    |
| Chlordanes - Total              | M19-Ja23929       | NCP          | %            | 115      |   | 70-130               | Pass           |                    |
| 4.4'-DDD                        | M19-Ja23929       | NCP          | %            | 102      |   | 70-130               | Pass           |                    |
| 4.4'-DDE                        | M19-Ja23929       | NCP          | %            | 123      |   | 70-130               | Pass           |                    |
| 4.4'-DDT                        | M19-Ja23929       | NCP          | %            | 80       |   | 70-130               | Pass           |                    |
| a-BHC                           | M19-Ja23929       | NCP          | %            | 100      |   | 70-130               | Pass           |                    |
| Aldrin                          | M19-Ja23929       | NCP          | %            | 127      |   | 70-130               | Pass           |                    |
| b-BHC                           | M19-Ja23929       | NCP          | %            | 103      |   | 70-130               | Pass           |                    |
| d-BHC                           | M19-Ja23929       | NCP          | %            | 113      |   | 70-130               | Pass           |                    |
| Dieldrin                        | M19-Ja23929       | NCP          | %            | 103      |   | 70-130               | Pass           |                    |
| Endosulfan I                    | M19-Ja23929       | NCP          | %            | 87       |   | 70-130               | Pass           |                    |
| Endosulfan II                   | M19-Ja23929       | NCP          | %            | 97       |   | 70-130               | Pass           |                    |
| Endosulfan sulphate             | M19-Ja23929       | NCP          | %            | 89       |   | 70-130               | Pass           |                    |
| Endrin                          | M19-Ja24635       | NCP          | %            | 103      |   | 70-130               | Pass           |                    |
| Endrin aldehyde                 | M19-Ja23929       | NCP          | %            | 82       |   | 70-130               | Pass           |                    |
| Endrin ketone                   | M19-Ja23929       | NCP          | %            | 101      |   | 70-130               | Pass           |                    |
| g-BHC (Lindane)                 | M19-Ja23929       | NCP          | %            | 130      |   | 70-130               | Pass           |                    |
| Heptachlor                      | M19-Ja23929       | NCP          | %            | 86       |   | 70-130               | Pass           |                    |
| Heptachlor epoxide              | M19-Ja23929       | NCP          | %            | 94       |   | 70-130               | Pass           |                    |
| Hexachlorobenzene               | M19-Ja23929       | NCP          | %            | 118      |   | 70-130               | Pass           |                    |
| Methoxychlor                    | M19-Ja24635       | NCP          | %            | 75       |   | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   | 1131         |              |          |   |                      | 1 3.00         |                    |
| Polychlorinated Biphenyls       |                   |              |              | Result 1 |   |                      |                |                    |
| Aroclor-1016                    | M19-Ja24633       | NCP          | %            | 85       |   | 70-130               | Pass           |                    |
| Aroclor-1260                    | M19-Ja24633       | NCP          | %            | 104      |   | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |              | -        |   |                      |                |                    |
| Polycyclic Aromatic Hydrocarbon | s                 |              |              | Result 1 |   |                      |                |                    |
| Acenaphthene                    | S19-Ja24084       | CP           | %            | 103      |   | 70-130               | Pass           |                    |
| Acenaphthylene                  | S19-Ja24084       | СР           | %            | 94       |   | 70-130               | Pass           |                    |
| Anthracene                      | S19-Ja24084       | CP           | %            | 94       |   | 70-130               | Pass           |                    |
| Benz(a)anthracene               | S19-Ja24084       | СР           | %            | 76       |   | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  | S19-Ja24084       | СР           | %            | 104      |   | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          | S19-Ja24084       | СР           | %            | 83       |   | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            | S19-Ja24084       | CP           | %            | 81       |   | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            | S19-Ja24084       | CP           | %            | 107      |   | 70-130               | Pass           |                    |
| Chrysene                        | S19-Ja24084       | CP           | %            | 130      |   | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene           | S19-Ja24084       | CP           | %            | 81       |   | 70-130               | Pass           |                    |
| Fluoranthene                    | S19-Ja24084       | CP           | %            | 74       |   | 70-130               | Pass           |                    |
| Fluorene                        | S19-Ja24084       | CP           | %            | 97       |   | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene          | S19-Ja24084       | CP           | <del>%</del> | 114      |   | 70-130               | Pass           |                    |
| Naphthalene                     | S19-Ja24084       | CP           | <del>%</del> | 107      |   | 70-130               | Pass           |                    |
| Phenanthrene                    | S19-Ja24084       | CP           | %            | 89       |   | 70-130               | Pass           |                    |
| Pyrene                          | S19-Ja24084       | CP           | %            | 80       |   | 70-130               | Pass           |                    |
| Spike - % Recovery              | 1 010 002 700 4   |              | /0           | 1 30     | L | 70 100               | 1 433          |                    |



| Test                          | Lab Sample ID              | QA<br>Source | Units           | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|----------------------------|--------------|-----------------|----------|----------------------|----------------|--------------------|
| Heavy Metals                  |                            |              |                 | Result 1 |                      |                |                    |
| Arsenic                       | S19-Ja24087                | CP           | %               | 106      | 75-125               | Pass           |                    |
| Cadmium                       | S19-Ja24087                | CP           | %               | 105      | 75-125               | Pass           |                    |
| Chromium                      | S19-Ja24087                | СР           | %               | 107      | 75-125               | Pass           |                    |
| Copper                        | S19-Ja24087                | СР           | %               | 110      | 75-125               | Pass           |                    |
| Lead                          | S19-Ja24087                | СР           | %               | 108      | 75-125               | Pass           |                    |
| Mercury                       | S19-Ja24087                | СР           | %               | 104      | 70-130               | Pass           |                    |
| Nickel                        | S19-Ja24087                | СР           | %               | 106      | 75-125               | Pass           |                    |
| Zinc                          | S19-Ja24087                | СР           | %               | 81       | 75-125               | Pass           |                    |
| Spike - % Recovery            |                            |              |                 |          |                      |                |                    |
| Total Recoverable Hydrocarboi | ns - 1999 NEPM Fract       | tions        |                 | Result 1 |                      |                |                    |
| TRH C6-C9                     | S19-Ja24092                | СР           | %               | 72       | 70-130               | Pass           |                    |
| Spike - % Recovery            | 0.0002.002                 | <u> </u>     | ,,,             | ·        | 10.00                |                |                    |
| ВТЕХ                          |                            |              |                 | Result 1 |                      |                |                    |
| Benzene                       | S19-Ja24092                | СР           | %               | 49       | 70-130               | Fail           | Q08                |
| Toluene                       | S19-Ja24092                | CP           | <del>//</del>   | 60       | 70-130               | Fail           | Q08                |
| Ethylbenzene                  | S19-Ja24092                | CP           | <u> </u>        | 79       | 70-130               | Pass           | Q00                |
| m&p-Xylenes                   | S19-Ja24092                | CP           | %<br>%          | 80       | 70-130               | Pass           |                    |
| o-Xylene                      | S19-Ja24092<br>S19-Ja24092 | CP           | <del>%</del>    | 84       | 70-130               | Pass           |                    |
|                               |                            | CP           |                 |          |                      |                |                    |
| Xylenes - Total               | S19-Ja24092                | L CP         | %               | 81       | 70-130               | Pass           |                    |
| Spike - % Recovery            | 0040 NEDM F                |              |                 | D It 4   |                      |                |                    |
| Total Recoverable Hydrocarbon |                            |              | 0/              | Result 1 | 70.400               | _              |                    |
| Naphthalene                   | S19-Ja24092                | CP           | %               | 86       | 70-130               | Pass           |                    |
| TRH C6-C10                    | S19-Ja24092                | СР           | %               | 79       | 70-130               | Pass           | -                  |
| Spike - % Recovery            |                            |              |                 | Ι Ι      | T                    |                |                    |
| Polycyclic Aromatic Hydrocarb |                            |              |                 | Result 1 |                      | _              |                    |
| Acenaphthene                  | S19-Ja24094                | CP           | %               | 93       | 70-130               | Pass           |                    |
| Acenaphthylene                | S19-Ja24094                | CP           | %               | 92       | 70-130               | Pass           |                    |
| Anthracene                    | S19-Ja24094                | CP           | %               | 82       | 70-130               | Pass           |                    |
| Benz(a)anthracene             | S19-Ja24094                | CP           | %               | 80       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                | S19-Ja24094                | CP           | %               | 120      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene        | S19-Ja24094                | CP           | %               | 88       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene          | S19-Ja24094                | CP           | %               | 89       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          | S19-Ja24094                | CP           | %               | 101      | 70-130               | Pass           |                    |
| Chrysene                      | S19-Ja24094                | CP           | %               | 89       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene         | S19-Ja24094                | CP           | %               | 71       | 70-130               | Pass           |                    |
| Fluoranthene                  | S19-Ja24094                | CP           | %               | 104      | 70-130               | Pass           |                    |
| Fluorene                      | S19-Ja24094                | CP           | %               | 88       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        | S19-Ja24094                | CP           | %               | 81       | 70-130               | Pass           |                    |
| Naphthalene                   | S19-Ja24094                | CP           | %               | 90       | 70-130               | Pass           |                    |
| Phenanthrene                  | S19-Ja24094                | CP           | %               | 77       | 70-130               | Pass           |                    |
| Pyrene                        | S19-Ja24094                | СР           | %               | 107      | 70-130               | Pass           |                    |
| Spike - % Recovery            |                            |              |                 |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarb | ons                        |              |                 | Result 1 |                      |                |                    |
| Acenaphthene                  | S19-Ja24095                | СР           | %               | 88       | 70-130               | Pass           |                    |
| Acenaphthylene                | S19-Ja24095                | СР           | %               | 87       | 70-130               | Pass           |                    |
| Anthracene                    | S19-Ja24095                | CP           | %               | 79       | 70-130               | Pass           |                    |
| Benz(a)anthracene             | S19-Ja24095                | СР           | %               | 84       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                | S19-Ja24095                | CP           | %               | 75       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene        | S19-Ja24095                | CP           | %               | 101      | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene          | S19-Ja24095                | CP           | %               | 78       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          | S19-Ja24095                | CP           | <del>//</del>   | 91       | 70-130               | Pass           |                    |
| Chrysene                      | S19-Ja24095                | CP           | <del>%</del>    | 90       | 70-130               | Pass           |                    |
| Omysono                       | S19-Ja24095                | <u> </u>     | <del>//</del> % | 92       | 70-130               | Pass           | -                  |



| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|----------|----------|----------------------|----------------|--------------------|
| Fluoranthene                     | S19-Ja24095     | CP           | %     | 101      |          |          | 70-130               | Pass           | 0000               |
| Fluorene                         | S19-Ja24095     | CP           | %     | 79       |          |          | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S19-Ja24095     | CP           | %     | 97       |          |          | 70-130               | Pass           |                    |
| Naphthalene                      | S19-Ja24095     | CP           | %     | 82       |          |          | 70-130               | Pass           |                    |
| Phenanthrene                     | S19-Ja24095     | CP           | %     | 76       |          |          | 70-130               | Pass           |                    |
| Pyrene                           | S19-Ja24095     | CP           | %     | 108      |          |          | 70-130               | Pass           |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                        |                 | ocu.cc       |       |          |          |          | 2                    | 2              |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD      | T                    |                |                    |
| TRH C6-C9                        | S19-Ja24069     | СР           | mg/kg | < 20     | < 20     | <1       | 30%                  | Pass           |                    |
| TRH C10-C14                      | S19-Ja24069     | СР           | mg/kg | < 20     | < 20     | <1       | 30%                  | Pass           |                    |
| TRH C15-C28                      | S19-Ja24069     | CP           | mg/kg | 150      | 130      | 18       | 30%                  | Pass           |                    |
| TRH C29-C36                      | S19-Ja24069     | CP           | mg/kg | 110      | 94       | 14       | 30%                  | Pass           |                    |
| Duplicate                        | 010 0024000     | UI UI        | mg/kg | 110      | <u> </u> | 17       | 3070                 | 1 455          |                    |
| BTEX                             |                 |              |       | Result 1 | Result 2 | RPD      |                      |                |                    |
| Benzene                          | S19-Ja24069     | СР           | mg/kg | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| Toluene                          | S19-Ja24069     | CP           | mg/kg | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
|                                  | S19-Ja24069     | CP           |       | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| Ethylbenzene<br>m&p-Xylenes      | S19-Ja24069     | CP           | mg/kg | < 0.1    | < 0.1    | <1<br><1 | 30%                  | Pass           |                    |
|                                  |                 | CP           | mg/kg | 1        |          |          |                      |                |                    |
| o-Xylene                         | S19-Ja24069     |              | mg/kg | < 0.1    | < 0.1    | <1       | 30%                  | Pass           |                    |
| Xylenes - Total                  | S19-Ja24069     | CP           | mg/kg | < 0.3    | < 0.3    | <1       | 30%                  | Pass           |                    |
| Duplicate                        | 2010 NEDM E     |              |       | D 1/4    | D # 0    | DDD      | T                    |                |                    |
| Total Recoverable Hydrocarbons - |                 |              | ,,    | Result 1 | Result 2 | RPD      | 2001                 | _              |                    |
| Naphthalene                      | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| TRH C6-C10                       | S19-Ja24069     | CP           | mg/kg | < 20     | < 20     | <1       | 30%                  | Pass           |                    |
| TRH >C10-C16                     | S19-Ja24069     | CP           | mg/kg | < 50     | < 50     | <1       | 30%                  | Pass           |                    |
| TRH >C16-C34                     | S19-Ja24069     | CP           | mg/kg | 220      | 180      | 16       | 30%                  | Pass           |                    |
| TRH >C34-C40                     | S19-Ja24069     | CP           | mg/kg | < 100    | < 100    | <1       | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       | ı        | 1        |          | T                    |                |                    |
| Polycyclic Aromatic Hydrocarbons | S               | 1            |       | Result 1 | Result 2 | RPD      |                      |                |                    |
| Acenaphthene                     | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Acenaphthylene                   | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Anthracene                       | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benz(a)anthracene                | S19-Ja24069     | CP           | mg/kg | 1.3      | < 0.5    | 110      | 30%                  | Fail           | Q15                |
| Benzo(a)pyrene                   | S19-Ja24069     | CP           | mg/kg | 1.0      | < 0.5    | 100      | 30%                  | Fail           | Q15                |
| Benzo(b&j)fluoranthene           | S19-Ja24069     | CP           | mg/kg | 0.6      | < 0.5    | 96       | 30%                  | Fail           | Q15                |
| Benzo(g.h.i)perylene             | S19-Ja24069     | СР           | mg/kg | 0.5      | < 0.5    | 95       | 30%                  | Fail           | Q15                |
| Benzo(k)fluoranthene             | S19-Ja24069     | СР           | mg/kg | 0.8      | < 0.5    | 91       | 30%                  | Fail           | Q15                |
| Chrysene                         | S19-Ja24069     | СР           | mg/kg | 1.6      | 0.6      | 95       | 30%                  | Fail           | Q15                |
| Dibenz(a.h)anthracene            | S19-Ja24069     | СР           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Fluoranthene                     | S19-Ja24069     | СР           | mg/kg | 2.8      | 0.9      | 100      | 30%                  | Fail           | Q15                |
| Fluorene                         | S19-Ja24069     | СР           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S19-Ja24069     | СР           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Naphthalene                      | S19-Ja24069     | СР           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Phenanthrene                     | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Pyrene                           | S19-Ja24069     | CP           | mg/kg | 3.1      | 1.0      | 110      | 30%                  | Fail           | Q15                |
| Duplicate                        | 1 010 002 7000  | <u> </u>     | g, Ng | 0.1      | 1.0      | 110      | 3070                 | , ull          | Q 10               |
| Polycyclic Aromatic Hydrocarbons | <u> </u>        |              |       | Result 1 | Result 2 | RPD      | T                    |                |                    |
| Acenaphthene                     | S19-Ja24073     | СР           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| •                                |                 | CP           |       |          |          |          |                      |                |                    |
| Acenaphthylene                   | S19-Ja24073     |              | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Anthracene Renz/(a)anthracene    | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benz(a)anthracene                | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benzo(a)pyrene                   | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene           | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1       | 30%                  | Pass           |                    |



| Duplicate                                         |                                                              |                |                                  |                                  |                                  |                      |                          |                     |     |
|---------------------------------------------------|--------------------------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|----------------------|--------------------------|---------------------|-----|
| Polycyclic Aromatic Hydrocark                     | none.                                                        |                |                                  | Result 1                         | Result 2                         | RPD                  | I                        |                     |     |
|                                                   |                                                              | СР             | ma/ka                            | 1                                |                                  |                      | 200/                     | Pass                |     |
| Benzo(g.h.i)perylene Benzo(k)fluoranthene         | S19-Ja24073<br>S19-Ja24073                                   | CP<br>CP       | mg/kg<br>mg/kg                   | < 0.5<br>< 0.5                   | < 0.5<br>< 0.5                   | <1<br><1             | 30%                      | Pass                |     |
| Chrysene                                          | S19-Ja24073                                                  | CP<br>CP       | mg/kg                            | < 0.5                            | < 0.5                            | <u>&lt;1</u>         | 30%                      | Pass                |     |
| •                                                 |                                                              | CP<br>CP       |                                  | 1                                | 1                                | <u>&lt;1</u><br><1   | 30%                      | Pass                |     |
| Dibenz(a.h)anthracene                             | S19-Ja24073                                                  |                | mg/kg                            | < 0.5                            | < 0.5                            |                      |                          | + +                 |     |
| Fluoranthene                                      | S19-Ja24073                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Fluorene                                          | S19-Ja24073                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Indeno(1.2.3-cd)pyrene                            | S19-Ja24073                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Naphthalene                                       | S19-Ja24073                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Phenanthrene                                      | S19-Ja24073                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Pyrene                                            | S19-Ja24073                                                  | СР             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Duplicate                                         |                                                              |                |                                  | l                                |                                  |                      |                          |                     |     |
| Polycyclic Aromatic Hydrocark                     |                                                              |                |                                  | Result 1                         | Result 2                         | RPD                  |                          | _                   |     |
| Acenaphthene                                      | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Acenaphthylene                                    | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Anthracene                                        | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Benz(a)anthracene                                 | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Benzo(a)pyrene                                    | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Benzo(b&j)fluoranthene                            | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Benzo(g.h.i)perylene                              | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Benzo(k)fluoranthene                              | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Chrysene                                          | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Dibenz(a.h)anthracene                             | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Fluoranthene                                      | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Fluorene                                          | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Indeno(1.2.3-cd)pyrene                            | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Naphthalene                                       | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Phenanthrene                                      | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Pyrene                                            | S19-Ja24074                                                  | CP             | mg/kg                            | < 0.5                            | < 0.5                            | <1                   | 30%                      | Pass                |     |
| Duplicate                                         |                                                              |                |                                  |                                  |                                  |                      |                          |                     |     |
|                                                   |                                                              |                |                                  | Result 1                         | Result 2                         | RPD                  |                          |                     |     |
| % Moisture                                        | S19-Ja24074                                                  | CP             | %                                | 19                               | 18                               | 4.0                  | 30%                      | Pass                |     |
| Duplicate                                         |                                                              |                |                                  |                                  |                                  |                      |                          |                     |     |
| Heavy Metals                                      |                                                              |                |                                  | Result 1                         | Result 2                         | RPD                  |                          |                     |     |
| Arsenic                                           | S19-Ja24076                                                  | СР             | mg/kg                            | 6.3                              | 6.8                              | 8.0                  | 30%                      | Pass                |     |
| Cadmium                                           | S19-Ja24076                                                  | СР             | mg/kg                            | < 0.4                            | < 0.4                            | <1                   | 30%                      | Pass                |     |
| Chromium                                          | S19-Ja24076                                                  | CP             | mg/kg                            | 15                               | 24                               | 47                   | 30%                      | Fail                | Q15 |
| Copper                                            | S19-Ja24076                                                  | CP             | mg/kg                            | 27                               | 24                               | 10                   | 30%                      | Pass                |     |
| Lead                                              | S19-Ja24076                                                  | CP             | mg/kg                            | 40                               | 40                               | 1.0                  | 30%                      | Pass                |     |
| Mercury                                           | S19-Ja24076                                                  | CP             | mg/kg                            | 0.5                              | 0.4                              | 22                   | 30%                      | Pass                |     |
| Nickel                                            | S19-Ja24076                                                  | CP             | mg/kg                            | < 5                              | 5.1                              | 23                   | 30%                      | Pass                |     |
| Zinc                                              | S19-Ja24076                                                  | CP             | mg/kg                            | 100                              | 85                               | 16                   | 30%                      | Pass                |     |
| Duplicate                                         | 2.0 002.070                                                  | <u> </u>       | 9/119                            |                                  |                                  |                      |                          | . 400               |     |
| Total Recoverable Hydrocarbo                      | ns - 1999 NFPM Fract                                         | ions           |                                  | Result 1                         | Result 2                         | RPD                  |                          |                     |     |
| TRH C6-C9                                         | S19-Ja24078                                                  | CP             | mg/kg                            | < 20                             | < 20                             | <1                   | 30%                      | Pass                |     |
| Duplicate                                         | 1 010 0027070                                                | <u> </u>       | i iiig/kg                        |                                  | \ ZU                             |                      | 0070                     | 1 433               |     |
| BTEX                                              |                                                              |                |                                  | Result 1                         | Result 2                         | RPD                  |                          |                     |     |
| Benzene                                           | S19-Ja24078                                                  | СР             | mg/kg                            | < 0.1                            | < 0.1                            | <1                   | 30%                      | Pass                |     |
| Toluene                                           | S19-Ja24078                                                  | CP             | mg/kg                            | < 0.1                            | < 0.1                            | <u>&lt;1</u>         | 30%                      | Pass                |     |
|                                                   |                                                              |                |                                  |                                  |                                  |                      | 1                        | 1 1                 |     |
| •                                                 |                                                              |                |                                  |                                  |                                  |                      | 1                        | 1 1                 |     |
| • •                                               |                                                              |                |                                  |                                  |                                  |                      | 1                        | 1 1                 |     |
|                                                   |                                                              |                |                                  |                                  |                                  |                      | 1                        | 1 1                 |     |
| Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total | \$19-Ja24078<br>\$19-Ja24078<br>\$19-Ja24078<br>\$19-Ja24078 | CP<br>CP<br>CP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | < 0.1<br>< 0.2<br>< 0.1<br>< 0.3 | < 0.1<br>< 0.2<br>< 0.1<br>< 0.3 | <1<br><1<br><1<br><1 | 30%<br>30%<br>30%<br>30% | Pass Pass Pass Pass |     |



| Duplicate                       |                            |          |                |                  |                  |          |            |              |  |
|---------------------------------|----------------------------|----------|----------------|------------------|------------------|----------|------------|--------------|--|
| Total Recoverable Hydrocarbons  | · 2013 NEPM Fract          | ions     |                | Result 1         | Result 2         | RPD      |            |              |  |
| Naphthalene                     | S19-Ja24078                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| TRH C6-C10                      | S19-Ja24078                | CP       | mg/kg          | < 20             | < 20             | <1       | 30%        | Pass         |  |
| Duplicate                       |                            |          | <u> </u>       |                  |                  |          |            |              |  |
| Polycyclic Aromatic Hydrocarbon | S                          |          |                | Result 1         | Result 2         | RPD      |            |              |  |
| Acenaphthene                    | S19-Ja24084                | СР       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Acenaphthylene                  | S19-Ja24084                | СР       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Anthracene                      | S19-Ja24084                | СР       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Benz(a)anthracene               | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Benzo(a)pyrene                  | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Benzo(b&j)fluoranthene          | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Benzo(g.h.i)perylene            | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Benzo(k)fluoranthene            | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Chrysene                        | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Dibenz(a.h)anthracene           | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Fluoranthene                    | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Fluorene                        | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Indeno(1.2.3-cd)pyrene          | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Naphthalene                     | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Phenanthrene                    | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Pyrene                          | S19-Ja24084                | CP       | mg/kg          | < 0.5            | < 0.5            | <1       | 30%        | Pass         |  |
| Duplicate                       |                            |          |                | T                | I                |          |            |              |  |
| Organochlorine Pesticides       | 040 1 04004                | 00       |                | Result 1         | Result 2         | RPD      | 200/       | +            |  |
| Chlordanes - Total              | S19-Ja24084                | CP       | mg/kg          | < 0.1            | < 0.1            | <1       | 30%        | Pass         |  |
| 4.4'-DDD                        | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| 4.4'-DDE<br>4.4'-DDT            | S19-Ja24084<br>S19-Ja24084 | CP<br>CP | mg/kg          | < 0.05<br>< 0.05 | < 0.05<br>< 0.05 | <1<br><1 | 30%<br>30% | Pass<br>Pass |  |
| a-BHC                           | S19-Ja24084                | CP       | mg/kg<br>mg/kg | < 0.05           | < 0.05           | <u> </u> | 30%        | Pass         |  |
| Aldrin                          | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| b-BHC                           | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| d-BHC                           | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Dieldrin                        | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Endosulfan I                    | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Endosulfan II                   | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Endosulfan sulphate             | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Endrin                          | S19-Ja24084                | СР       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Endrin aldehyde                 | S19-Ja24084                | СР       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Endrin ketone                   | S19-Ja24084                | СР       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| g-BHC (Lindane)                 | S19-Ja24084                | СР       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Heptachlor                      | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Heptachlor epoxide              | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Hexachlorobenzene               | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Methoxychlor                    | S19-Ja24084                | CP       | mg/kg          | < 0.05           | < 0.05           | <1       | 30%        | Pass         |  |
| Duplicate                       |                            |          |                |                  |                  |          |            |              |  |
|                                 | 1                          | T        | T              | Result 1         | Result 2         | RPD      |            |              |  |
| % Moisture                      | S19-Ja24084                | CP       | %              | 10               | 11               | 9.0      | 30%        | Pass         |  |
| Duplicate                       |                            |          |                | ı                |                  |          |            |              |  |
| Heavy Metals                    | 1                          | 1        |                | Result 1         | Result 2         | RPD      |            | 1            |  |
| Arsenic                         | S19-Ja24086                | CP       | mg/kg          | 4.8              | 4.8              | <1       | 30%        | Pass         |  |
| Cadmium                         | S19-Ja24086                | CP       | mg/kg          | < 0.4            | < 0.4            | <1       | 30%        | Pass         |  |
| Chromium                        | S19-Ja24086                | CP       | mg/kg          | 47               | 42               | 12       | 30%        | Pass         |  |
| Copper                          | S19-Ja24086                | CP       | mg/kg          | 17               | 15               | 7.0      | 30%        | Pass         |  |
| Lead                            | S19-Ja24086                | CP       | mg/kg          | 29               | 27               | 10       | 30%        | Pass         |  |
| Mercury                         | S19-Ja24086                | CP       | mg/kg          | < 0.1            | < 0.1            | <1       | 30%        | Pass         |  |
| Nickel                          | S19-Ja24086                | CP       | mg/kg          | 41               | 34               | 17       | 30%        | Pass         |  |
| Zinc                            | S19-Ja24086                | CP       | mg/kg          | 52               | 57               | 9.0      | 30%        | Pass         |  |



| Duplicate                       |                            |      |                |          |              |                    |            |              |  |
|---------------------------------|----------------------------|------|----------------|----------|--------------|--------------------|------------|--------------|--|
| •                               |                            |      |                | Result 1 | Result 2     | RPD                | I          |              |  |
| Heavy Metals                    | C40 I=04007                | СР   |                | t        | 1            |                    | 200/       | Dana         |  |
| Arsenic Cadmium                 | S19-Ja24087<br>S19-Ja24087 | CP   | mg/kg          | 2.1      | 2.1<br>< 0.4 | 1.0<br><1          | 30%<br>30% | Pass<br>Pass |  |
| Chromium                        | S19-Ja24087<br>S19-Ja24087 | CP   | mg/kg<br>mg/kg | < 0.4    | 12           | 2.0                | 30%        | Pass         |  |
|                                 | S19-Ja24087                | CP   | mg/kg          | 10       | 11           | 2.0                | 30%        | Pass         |  |
| Copper                          |                            | CP   |                | t        | 14           | 1.0                | <b>†</b>   | Pass         |  |
| Lead                            | S19-Ja24087                | CP   | mg/kg          | 14       | 1            | <1.0<br><1         | 30%        | Pass         |  |
| Mercury                         | S19-Ja24087<br>S19-Ja24087 | CP   | mg/kg          | < 0.1    | < 0.1        | 2.0                | 30%        | Pass         |  |
| Nickel<br>Zinc                  |                            | CP   | mg/kg          | 11<br>49 | 11<br>49     | 1.0                | 30%<br>30% | Pass         |  |
|                                 | S19-Ja24087                | CP   | mg/kg          | 49       | 49           | 1.0                | 30%        | Pass         |  |
| Duplicate                       |                            |      |                | Result 1 | Result 2     | RPD                | I          | Т            |  |
| % Moisture                      | S19-Ja24094                | СР   | %              | 27       | 27           | <1                 | 30%        | Pass         |  |
| Duplicate                       | 319-3824094                | CF   | /0             |          | 21           |                    | 30 /8      | Fass         |  |
| Polycyclic Aromatic Hydrocarbor | ne .                       |      |                | Result 1 | Result 2     | RPD                |            |              |  |
| Acenaphthene                    | S19-Ja24097                | СР   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Acenaphthylene                  | S19-Ja24097<br>S19-Ja24097 | CP   | mg/kg          | < 0.5    | < 0.5        | <u>&lt;1</u>       | 30%        | Pass         |  |
| Anthracene                      | S19-Ja24097<br>S19-Ja24097 | CP   | mg/kg          | < 0.5    | < 0.5        | <u>&lt;1</u>       | 30%        | Pass         |  |
| Benz(a)anthracene               | S19-Ja24097<br>S19-Ja24097 | CP   | mg/kg          | < 0.5    | < 0.5        | <u>&lt;1</u><br><1 | 30%        | Pass         |  |
| Benzo(a)pyrene                  | S19-Ja24097<br>S19-Ja24097 | CP   | mg/kg          | < 0.5    | < 0.5        | <u>&lt;1</u><br><1 | 30%        | Pass         |  |
| Benzo(b&j)fluoranthene          | S19-Ja24097<br>S19-Ja24097 | CP   | mg/kg          | < 0.5    | < 0.5        | <u>&lt;1</u>       | 30%        | Pass         |  |
| Benzo(g.h.i)perylene            | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Benzo(k)fluoranthene            | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Chrysene                        | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Dibenz(a.h)anthracene           | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Fluoranthene                    | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Fluorene                        | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Indeno(1.2.3-cd)pyrene          | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Naphthalene                     | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Phenanthrene                    | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Pyrene                          | S19-Ja24097                | CP   | mg/kg          | < 0.5    | < 0.5        | <1                 | 30%        | Pass         |  |
| Duplicate                       | 010 0024007                | OI . | i ilig/kg      | \ \ 0.0  | V 0.0        |                    | 0070       | 1 400        |  |
| Organochlorine Pesticides       |                            |      |                | Result 1 | Result 2     | RPD                |            | Τ            |  |
| Chlordanes - Total              | S19-Ja24097                | CP   | mg/kg          | < 0.1    | < 0.1        | <1                 | 30%        | Pass         |  |
| 4.4'-DDD                        | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| 4.4'-DDE                        | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| 4.4'-DDT                        | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| a-BHC                           | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Aldrin                          | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| b-BHC                           | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| d-BHC                           | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Dieldrin                        | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Endosulfan I                    | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Endosulfan II                   | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Endosulfan sulphate             | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Endrin                          | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Endrin aldehyde                 | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Endrin ketone                   | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| g-BHC (Lindane)                 | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Heptachlor                      | S19-Ja24097                | CP   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Heptachlor epoxide              | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Hexachlorobenzene               | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |
| Methoxychlor                    | S19-Ja24097                | СР   | mg/kg          | < 0.05   | < 0.05       | <1                 | 30%        | Pass         |  |



#### Comments

#### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

### **Qualifier Codes/Comments**

| Code | Description |
|------|-------------|
|      |             |

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix Q08

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

#### **Authorised By**

N02

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Nibha Vaidva Senior Analyst-Asbestos (NSW) Emily Rosenberg Senior Analyst-Metal (VIC)



### Glenn Jackson

### **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Ingit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallate to meet deadlines and lots production arising from this report. This document shall be reported everyein full and are fetted send yet of the liable to meet when the sindle and otherwise, the tests were performed on the samples as received.

### **Enviro Sample Vic**

From:

Alena Bounkeua

Sent:

Wednesday, 6 February 2019 4:34 PM

To:

**Enviro Sample Vic** 

Cc:

Enviro Sample NSW; Nibha Vaidya

Subject:

\*1 DAY TAT ADDITIONAL\* Report 637804 : Site CHATSWOOD EDUCATION

PRECINCT HIGH SCHOOL (55579)

**Attachments:** 

image001.png; image002.jpg

Hi Melbourne,

6/2/14 4:34pm

Additional analysis please - 1 day TAT.

Please let Sydney know once logged so we can label up the asbestos sample.

Thanks!

Kind Regards,

Alena Bounkeua Eurofins | mgt

Phone: (02) 9900 8414

Email: AlenaBounkeua@eurofins.com

From: Rachel Gray

Sent: Wednesday, 6 February 2019 4:15:29 PM (UTC+10:00) Canberra, Melbourne, Sydney

To: Nibha Vaidya

Cc: Daniel Denaro; Milad Noujaim; Ruby Chapman

Subject: RE: Eurofins | mgt Test Results - Report 637804 : Site CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

(55579)

**EXTERNAL EMAIL\*** 

Hi Nibha,

Can you please arrange analysis for sample BH10 0-0.15 to be analysed for the following on 24 hr turn-around

time?

Asbestos (WA Guidelines)

- Aspestos (WA Guidelliles

D. 3 21/01

PAHsMetals

Ja 24121 - HOLD 1285

Thanks heaps,



Rachel

Rachel Gray | Environmental Consultant | JBS&G

Sydney | Melbourne | Adelaide | Perth | Brisbane | Canberra | Darwin | Wollongong

Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0435 442 131 | E: rgray@jbsg.com.au | W: www.jbsg.com.au

Contaminated Land | Groundwater Remediation | Environmental Approvals | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability | Stakeholder and Risk Management

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email



# Certificate of Analysis





NATA Accredited
Accreditation Number 1261
Site Number 1254

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Daniel Denaro Report 639203-AID

Project Name CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID 55579

**Received Date** Feb 06, 2019 **Date Reported** Feb 07, 2019

### Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.









Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Project Name** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

**Project ID** 55579

**Date Sampled** Jan 21, 2019 Report 639203-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                |
|------------------|------------------------------|--------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH10_0.05-0.15   | 19-Fe06584                   | Jan 21, 2019 | Approximate Sample 894g<br>Sample consisted of: Brown coarse-grained soil, rocks and fragments<br>of bitumin | FA: Chrysotile and amosite asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = 0.0046g Estimated asbestos content in FA = 0.0025g* Total estimated asbestos concentration in FA = 0.00028% w/w* No asbestos detected at the reporting limit of 0.001% w/w.*  Organic fibre detected. No respirable fibres detected. |

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 2 of 6



### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyFeb 06, 2019Indefinite

Report Number: 639203-AID



**Company Name:** 

**Project Name:** 

Address:

mgt

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Report #:

Metals IWRG

621 : Metals

M12

Χ

Χ

Χ

Χ

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Unit F3. Building F

16 Mars Road

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Feb 6, 2019 4:34 PM

Feb 7, 2019

JBS & G Australia (NSW) P/L Order No.:

Level 1, 50 Margaret St

CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Sydney NSW 2000

Melbourne Laboratory - NATA Site # 1254 & 14271

Sydney Laboratory - NATA Site # 18217

Brisbane Laboratory - NATA Site # 20794

Phone: Fax: 639203 02 8245 0300

Moisture Set

Priority: 1 Day

Contact Name: Daniel Denaro

Received:

Due:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

| Project ID: | 55579         |                          |                                  |
|-------------|---------------|--------------------------|----------------------------------|
|             | Sample Detail | Asbestos - WA guidelines | Polycyclic Aromatic Hydrocarbons |

| Perth | Perth Laboratory - NATA Site # 23736                 |              |  |      |             |   |   |   |   |
|-------|------------------------------------------------------|--------------|--|------|-------------|---|---|---|---|
| Exte  | External Laboratory                                  |              |  |      |             |   |   |   |   |
| No    | No Sample ID Sample Date Sampling Matrix LAB ID Time |              |  |      |             |   |   |   |   |
|       | BH10_0.05-<br>0.15                                   | Jan 21, 2019 |  | Soil | M19-Fe06584 | Χ | Х | Х | Х |
| Test  | Test Counts                                          |              |  |      |             | 1 | 1 | 1 | 1 |

Page 4 of 6



#### **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight basis grams per kilogram Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL L/min Flowrate:

#### **Terms**

Dry Sample is dried by heating prior to analysis

Limit of Reporting LOR coc Chain of Custody SRA Sample Receipt Advice

International Standards Organisation ISO

AS

Date Reported: Feb 07, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NFPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as ΑF equivalent to "non-bonded / friable".

> Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 5 of 6

Report Number: 639203-AID



#### Comments

### Sample Integrity

| Custody Seals Intact (if used)                                          | N/A |
|-------------------------------------------------------------------------|-----|
| Attempt to Chill was evident                                            | N/A |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

Code Description N/A Not applicable

### **Asbestos Counter/Identifier:**

Laxman Dias Senior Analyst-Asbestos (NSW)

### Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Feb 07, 2019

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 639203-AID



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Daniel Denaro

Report 639203-S

Project name CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID 55579
Received Date Feb 06, 2019

| Client Sample ID                    |     |       | BH10_0.05-<br>0.15 |
|-------------------------------------|-----|-------|--------------------|
| Sample Matrix                       |     |       | Soil               |
| Eurofins   mgt Sample No.           |     |       | M19-Fe06584        |
| Date Sampled                        |     |       | Jan 21, 2019       |
| Test/Reference                      | LOR | Unit  |                    |
| Polycyclic Aromatic Hydrocarbons    |     |       |                    |
| Benzo(a)pyrene TEQ (lower bound) *  | 0.5 | mg/kg | < 0.5              |
| Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6                |
| Benzo(a)pyrene TEQ (upper bound) *  | 0.5 | mg/kg | 1.2                |
| Acenaphthene                        | 0.5 | mg/kg | < 0.5              |
| Acenaphthylene                      | 0.5 | mg/kg | < 0.5              |
| Anthracene                          | 0.5 | mg/kg | < 0.5              |
| Benz(a)anthracene                   | 0.5 | mg/kg | < 0.5              |
| Benzo(a)pyrene                      | 0.5 | mg/kg | < 0.5              |
| Benzo(b&j)fluorantheneN07           | 0.5 | mg/kg | < 0.5              |
| Benzo(g.h.i)perylene                | 0.5 | mg/kg | < 0.5              |
| Benzo(k)fluoranthene                | 0.5 | mg/kg | < 0.5              |
| Chrysene                            | 0.5 | mg/kg | < 0.5              |
| Dibenz(a.h)anthracene               | 0.5 | mg/kg | < 0.5              |
| Fluoranthene                        | 0.5 | mg/kg | < 0.5              |
| Fluorene                            | 0.5 | mg/kg | < 0.5              |
| Indeno(1.2.3-cd)pyrene              | 0.5 | mg/kg | < 0.5              |
| Naphthalene                         | 0.5 | mg/kg | < 0.5              |
| Phenanthrene                        | 0.5 | mg/kg | < 0.5              |
| Pyrene                              | 0.5 | mg/kg | < 0.5              |
| Total PAH*                          | 0.5 | mg/kg | < 0.5              |
| 2-Fluorobiphenyl (surr.)            | 1   | %     | 101                |
| p-Terphenyl-d14 (surr.)             | 1   | %     | 120                |
| Heavy Metals                        |     |       |                    |
| Arsenic                             | 2   | mg/kg | 7.3                |
| Cadmium                             | 0.4 | mg/kg | < 0.4              |
| Chromium                            | 5   | mg/kg | 10                 |
| Copper                              | 5   | mg/kg | 19                 |
| Lead                                | 5   | mg/kg | 23                 |
| Mercury                             | 0.1 | mg/kg | < 0.1              |
| Molybdenum                          | 5   | mg/kg | < 5                |
| Nickel                              | 5   | mg/kg | 12                 |
| Selenium                            | 2   | mg/kg | < 2                |
| Silver                              | 0.2 | mg/kg | < 0.2              |
| Tin                                 | 10  | mg/kg | < 10               |
| Zinc                                | 5   | mg/kg | 200                |



| Client Sample ID          |     |      | BH10_0.05-<br>0.15 |
|---------------------------|-----|------|--------------------|
| Sample Matrix             |     |      | Soil               |
| Eurofins   mgt Sample No. |     |      | M19-Fe06584        |
| Date Sampled              |     |      | Jan 21, 2019       |
| Test/Reference            | LOR | Unit |                    |
|                           |     |      |                    |
| % Moisture                | 1   | %    | 15                 |

Report Number: 639203-S



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | <b>Holding Time</b> |
|----------------------------------------------------------------------|--------------|--------------|---------------------|
| Polycyclic Aromatic Hydrocarbons                                     | Melbourne    | Feb 06, 2019 | 14 Day              |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water             |              |              |                     |
| Metals IWRG 621 : Metals M12                                         | Melbourne    | Feb 06, 2019 | 28 Day              |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |                     |
| % Moisture                                                           | Melbourne    | Feb 06, 2019 | 14 Day              |

- Method: LTM-GEN-7080 Moisture

Report Number: 639203-S



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

639203

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Feb 6, 2019 4:34 PM

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL

Project ID: 55579 Report #: Feb 7, 2019 Phone: 02 8245 0300 Priority: 1 Day Fax:

**Contact Name: Daniel Denaro** 

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|       | Sample Detail                                   |                 |                  |        |        |   |   | Metals IWRG 621 : Metals M12 | Moisture Set |
|-------|-------------------------------------------------|-----------------|------------------|--------|--------|---|---|------------------------------|--------------|
| Melb  | ourne Laborato                                  | ory - NATA Site | # 1254 & 142     | 71     |        |   | Х | Χ                            | Х            |
| Sydr  | ney Laboratory                                  | - NATA Site # 1 | 8217             |        |        | Х |   |                              |              |
| Brisl | bane Laborator                                  | y - NATA Site # | 20794            |        |        |   |   |                              |              |
| Perti | h Laboratory - N                                | NATA Site # 237 | 36               |        |        |   |   |                              |              |
| Exte  | rnal Laboratory                                 |                 |                  |        |        |   |   |                              |              |
| No    | Sample ID                                       | Sample Date     | Sampling<br>Time | Matrix | LAB ID |   |   |                              |              |
| 1     | 1 BH10_0.05- Jan 21, 2019 Soil M19-Fe06584 0.15 |                 |                  |        |        |   | Х | Х                            | Х            |
| Test  | Test Counts                                     |                 |                  |        |        |   |   | 1                            | 1            |

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 639203-S



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

**Terms** 

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 639203-S



# **Quality Control Results**

| Test                               | Units         | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code                               |
|------------------------------------|---------------|----------|----------------------|----------------|--------------------------------------------------|
| Method Blank                       |               |          |                      |                |                                                  |
| Polycyclic Aromatic Hydrocarbons   |               |          |                      |                |                                                  |
| Acenaphthene                       | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Acenaphthylene                     | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Anthracene                         | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Benz(a)anthracene                  | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Benzo(a)pyrene                     | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Benzo(b&j)fluoranthene             | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Benzo(g.h.i)perylene               | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Benzo(k)fluoranthene               | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Chrysene                           | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Dibenz(a.h)anthracene              | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Fluoranthene                       | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Fluorene                           | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Indeno(1.2.3-cd)pyrene             | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Naphthalene                        | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Phenanthrene                       | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Pyrene                             | mg/kg         | < 0.5    | 0.5                  | Pass           |                                                  |
| Method Blank                       | 1 3 3         | ,        |                      |                |                                                  |
| Heavy Metals                       |               |          |                      |                |                                                  |
| Arsenic                            | mg/kg         | < 2      | 2                    | Pass           |                                                  |
| Cadmium                            | mg/kg         | < 0.4    | 0.4                  | Pass           |                                                  |
| Chromium                           | mg/kg         | < 5      | 5                    | Pass           |                                                  |
| Copper                             | mg/kg         | < 5      | 5                    | Pass           |                                                  |
| Lead                               | mg/kg         | < 5      | 5                    | Pass           |                                                  |
| Mercury                            | mg/kg         | < 0.1    | 0.1                  | Pass           |                                                  |
| Molybdenum                         | mg/kg         | < 5      | 5                    | Pass           |                                                  |
| Nickel                             | mg/kg         | < 5      | 5                    | Pass           |                                                  |
| Selenium                           | mg/kg         | < 2      | 2                    | Pass           |                                                  |
| Silver                             | mg/kg         | < 0.2    | 0.2                  | Pass           |                                                  |
| Tin                                | mg/kg         | < 10     | 10                   | Pass           |                                                  |
| Zinc                               | mg/kg         | < 5      | 5                    | Pass           |                                                  |
| LCS - % Recovery                   | Ilig/kg       |          | J                    | 1 433          |                                                  |
| Polycyclic Aromatic Hydrocarbons   |               |          |                      | П              |                                                  |
| Acenaphthene                       | %             | 77       | 70-130               | Pass           |                                                  |
| Acenaphthylene                     | %             | 82       | 70-130               | Pass           |                                                  |
| Anthracene                         | %             | 80       | 70-130               | Pass           |                                                  |
| Benz(a)anthracene                  | %             | 72       | 70-130               | Pass           |                                                  |
| Benzo(a)pyrene                     | %             | 94       | 70-130               | Pass           |                                                  |
| Benzo(b&j)fluoranthene             | %             | 80       | 70-130               | Pass           |                                                  |
| Benzo(g.h.i)perylene               | %             | 86       | 70-130               | Pass           |                                                  |
| Benzo(k)fluoranthene               | %             | 100      | 70-130               | Pass           |                                                  |
| Chrysene                           | %             | 71       | 70-130               | Pass           |                                                  |
| -                                  | %             |          |                      |                |                                                  |
| Dibenz(a.h)anthracene Fluoranthene | %<br>%        | 77       | 70-130               | Pass           |                                                  |
|                                    | <u>%</u><br>% | 81       | 70-130               | Pass           | <del>                                     </del> |
| Fluorene                           |               | 83       | 70-130               | Pass           | <del>                                     </del> |
| Indeno(1.2.3-cd)pyrene             | %             | 80       | 70-130               | Pass           |                                                  |
| Naphthalene                        | %             | 77       | 70-130               | Pass           |                                                  |
| Phenanthrene                       | %             | 70       | 70-130               | Pass           | <del>                                     </del> |
| Pyrene                             | %             | 75       | 70-130               | Pass           |                                                  |
| LCS - % Recovery                   |               |          |                      |                |                                                  |



# mgt

| Test                            |               |              | Units | Result 1 |          |     | Acceptance<br>Limits | Pass           | Qualifying         |
|---------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Arsenic                         |               |              | %     | 87       |          |     | 80-120               | Limits<br>Pass | Code               |
| Cadmium                         |               |              | %     | 109      |          |     | 80-120               | Pass           |                    |
| Chromium                        |               |              | %     | 94       |          |     | 80-120               | Pass           |                    |
| Copper                          |               |              | %     | 89       |          |     | 80-120               | Pass           |                    |
| Lead                            |               |              | %     | 90       |          |     | 80-120               | Pass           |                    |
| Mercury                         |               |              | %     | 105      |          |     | 75-125               | Pass           |                    |
| Molybdenum                      |               |              | %     | 95       |          |     | 80-120               | Pass           |                    |
| Nickel                          |               |              | %     | 87       |          |     | 80-120               | Pass           |                    |
| Selenium                        |               |              | %     | 85       |          |     | 80-120               | Pass           |                    |
| Silver                          |               |              | %     | 114      |          |     | 80-120               | Pass           |                    |
| Tin                             |               |              | %     | 96       |          |     | 80-120               | Pass           |                    |
| Zinc                            |               |              | %     | 87       |          |     | 80-120               | Pass           |                    |
| Test                            | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery              |               | 100000       |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocarbon | s             |              |       | Result 1 |          |     |                      |                |                    |
| Acenaphthene                    | M19-Fe04977   | NCP          | %     | 90       |          |     | 70-130               | Pass           |                    |
| Acenaphthylene                  | M19-Fe04977   | NCP          | %     | 94       |          |     | 70-130               | Pass           |                    |
| Anthracene                      | M19-Fe04977   | NCP          | %     | 90       |          |     | 70-130               | Pass           |                    |
| Benz(a)anthracene               | M19-Fe04977   | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  | M19-Fe04977   | NCP          | %     | 117      |          |     | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          | M19-Fe04977   | NCP          | %     | 118      |          |     | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            | M19-Fe04977   | NCP          | %     | 97       |          |     | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            | M19-Fe04977   | NCP          | %     | 103      |          |     | 70-130               | Pass           |                    |
| Chrysene                        | M19-Fe04977   | NCP          | %     | 76       |          |     | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene           | M19-Fe04977   | NCP          | %     | 98       |          |     | 70-130               | Pass           |                    |
| Fluoranthene                    | M19-Fe04977   | NCP          | %     | 92       |          |     | 70-130               | Pass           |                    |
| Fluorene                        | M19-Fe04977   | NCP          | %     | 88       |          |     | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene          | M19-Fe04977   | NCP          | %     | 88       |          |     | 70-130               | Pass           |                    |
| Naphthalene                     | M19-Fe04977   | NCP          | %     | 76       |          |     | 70-130               | Pass           |                    |
| Phenanthrene                    | M19-Fe04977   | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Pyrene                          | M19-Fe04977   | NCP          | %     | 91       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery              |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                    |               |              |       | Result 1 |          |     |                      |                |                    |
| Arsenic                         | M19-Fe05022   | NCP          | %     | 64       |          |     | 75-125               | Fail           | Q08                |
| Cadmium                         | M19-Fe05022   | NCP          | %     | 85       |          |     | 75-125               | Pass           |                    |
| Chromium                        | M19-Fe05022   | NCP          | %     | 103      |          |     | 75-125               | Pass           |                    |
| Copper                          | M19-Fe05022   | NCP          | %     | 87       |          |     | 75-125               | Pass           |                    |
| Lead                            | M19-Fe05022   | NCP          | %     | 80       |          |     | 75-125               | Pass           |                    |
| Mercury                         | M19-Fe05022   | NCP          | %     | 81       |          |     | 70-130               | Pass           |                    |
| Molybdenum                      | M19-Fe05022   | NCP          | %     | 86       |          |     | 75-125               | Pass           |                    |
| Nickel                          | M19-Fe05022   | NCP          | %     | 96       |          |     | 75-125               | Pass           |                    |
| Selenium                        | M19-Fe05022   | NCP          | %     | 65       |          |     | 75-125               | Fail           | Q08                |
| Silver                          | M19-Fe05022   | NCP          | %     | 91       |          |     | 75-125               | Pass           |                    |
| Tin                             | M19-Fe05022   | NCP          | %     | 88       |          |     | 75-125               | Pass           |                    |
| Zinc                            | M19-Fe05022   | NCP          | %     | 90       |          |     | 75-125               | Pass           |                    |
| Test                            | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                       |               |              |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocarbon | s             |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                    | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene                  | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                      | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene               | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene                  | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |



# mgt

| Test                        | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Duplicate                   |               |              |       |          |          |     | •                    |                |                    |
| Polycyclic Aromatic Hydroca | rbons         |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzo(b&j)fluoranthene      | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene        | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene        | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Chrysene                    | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene       | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene                    | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene      | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                 | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                      | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                   |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic                     | M19-Fe05022   | NCP          | mg/kg | < 2      | < 2      | <1  | 30%                  | Pass           |                    |
| Cadmium                     | M19-Fe05022   | NCP          | mg/kg | < 0.4    | < 0.4    | <1  | 30%                  | Pass           |                    |
| Chromium                    | M19-Fe05022   | NCP          | mg/kg | 45       | 44       | 1.0 | 30%                  | Pass           |                    |
| Copper                      | M19-Fe05022   | NCP          | mg/kg | 13       | 12       | 1.0 | 30%                  | Pass           |                    |
| Lead                        | M19-Fe05022   | NCP          | mg/kg | 9.0      | 9.0      | <1  | 30%                  | Pass           |                    |
| Mercury                     | M19-Fe05022   | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Molybdenum                  | M19-Fe05022   | NCP          | mg/kg | < 5      | < 5      | <1  | 30%                  | Pass           |                    |
| Nickel                      | M19-Fe05022   | NCP          | mg/kg | 38       | 37       | 2.0 | 30%                  | Pass           |                    |
| Selenium                    | M19-Fe05022   | NCP          | mg/kg | < 2      | < 2      | <1  | 30%                  | Pass           |                    |
| Silver                      | M19-Fe05022   | NCP          | mg/kg | < 0.2    | < 0.2    | <1  | 30%                  | Pass           |                    |
| Tin                         | M19-Fe05022   | NCP          | mg/kg | < 10     | < 10     | <1  | 30%                  | Pass           |                    |
| Zinc                        | M19-Fe05022   | NCP          | mg/kg | 26       | 26       | 1.0 | 30%                  | Pass           |                    |

Report Number: 639203-S



#### Comments

# Sample Integrity

| Custody Seals Intact (if used)                                          | N/A |
|-------------------------------------------------------------------------|-----|
| Attempt to Chill was evident                                            | N/A |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

#### **Qualifier Codes/Comments**

Code Description

Please note: These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q08

#### **Authorised By**

Nibha Vaidya Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

#### Glenn Jackson

#### **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used except in full and refletates only to the tiens tested. Unless indicated otherwise, the tests were, the tests were, the tests were performed on the samples as received.

Report Number: 639203-S



## © JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

# **Document Distribution**

| Rev No. | Copies         | Recipient     | Date       |
|---------|----------------|---------------|------------|
| Α       | 1 x electronic | Yun Bai (PSM) | 01/03/2019 |

# **Document Status**

| Rev No. | Author                        | Reviewer      | Approved for Issue |                         |            |  |  |
|---------|-------------------------------|---------------|--------------------|-------------------------|------------|--|--|
|         |                               | Name          | Name               | Signature               | Date       |  |  |
| А       | Rachel Gray/<br>Daniel Denaro | Daniel Denaro | Matthew Bennett    | DRAFT for client review | 01/03/2019 |  |  |



# **Appendix F2 Chatswood Public School**





Chatswood Public School
Chatswood Education Precinct

Detailed Site Investigation

5 Centennial Avenue, Chatswood NSW

28 October 2019

55579-125420 (Rev B)

JBS&G Australia Pty Ltd

Chatswood Public School Chatswood Education Precinct

**Detailed Site Investigation** 

5 Centennial Avenue, Chatswood NSW

28 October 2019 55579- 125420 (Rev B) JBS&G Australia Pty Ltd



# **Table of Contents**

| Abb  | reviation    | ons                                                       |                                                          | Vİ  |  |  |  |
|------|--------------|-----------------------------------------------------------|----------------------------------------------------------|-----|--|--|--|
| Exec | cutive S     | Summary                                                   |                                                          | vii |  |  |  |
| 1.   | Intro        | duction.                                                  |                                                          | 1   |  |  |  |
|      | 1.1          | Backgr                                                    | ound                                                     | 1   |  |  |  |
|      | 1.2          | Objecti                                                   | ives                                                     | 1   |  |  |  |
|      | 1.3          | Scope                                                     | of Works                                                 | 1   |  |  |  |
| 2.   | Site         | Conditio                                                  | ns and Surrounding Environment                           | 3   |  |  |  |
|      | 2.1          | Site Ide                                                  | entification                                             | 3   |  |  |  |
|      | 2.2          | Site De                                                   | scription                                                | 3   |  |  |  |
|      | 2.3          | Surrou                                                    | nding Land Use                                           | 3   |  |  |  |
|      | 2.4          | Enviror                                                   | nmental Setting                                          | 4   |  |  |  |
|      |              | 2.4.1                                                     | Topography                                               | 4   |  |  |  |
|      |              | 2.4.2                                                     | Geology & Soil                                           | 4   |  |  |  |
|      |              | 2.4.3                                                     | Acid Sulfate Soils                                       | 4   |  |  |  |
|      |              | 2.4.4                                                     | Hydrology                                                | 5   |  |  |  |
|      |              | 2.4.5                                                     | Hydrogeology                                             | 5   |  |  |  |
| 3.   | Site History |                                                           |                                                          |     |  |  |  |
|      | 3.1          | EPA Per- and Poly- Fluoroalkyl Substances (PFAS) Register |                                                          |     |  |  |  |
|      | 3.2          | NSW Fair Trading Loose Fill Asbestos Insulation Register  |                                                          |     |  |  |  |
|      | 3.3          | Summa                                                     | ary of Site History and Integrity Assessment             | 6   |  |  |  |
| 4.   | Prev         | ious Inve                                                 | stigations                                               | 7   |  |  |  |
|      |              | 4.1.1                                                     | Preliminary Site (Contamination) Investigation (DP 2018) | 7   |  |  |  |
| 5.   | Cond         | ceptual S                                                 | ite Model                                                | 8   |  |  |  |
|      | 5.1          | Potent                                                    | ial Areas of Environmental Concern                       | 8   |  |  |  |
|      | 5.2          | Potent                                                    | ially Contaminated Media                                 | 8   |  |  |  |
|      | 5.3          | Potent                                                    | ial for Migration                                        | 9   |  |  |  |
|      | 5.4          | Potent                                                    | ial Exposure Pathways                                    | 9   |  |  |  |
|      | 5.5          | Recept                                                    | ors                                                      | 10  |  |  |  |
|      | 5.6          | Prefere                                                   | ential Pathways                                          | 10  |  |  |  |
| 6.   | Sam          | pling and                                                 | Analytical Plan                                          | 11  |  |  |  |
|      | 6.1          | Data Q                                                    | uality Objectives                                        | 11  |  |  |  |
|      |              | 6.1.1                                                     | State the Problem                                        | 11  |  |  |  |
|      |              | 6.1.2                                                     | Identify the Decision                                    | 11  |  |  |  |
|      |              | 6.1.3                                                     | Identify Inputs to the Decision                          | 11  |  |  |  |
|      |              | 6.1.4                                                     | Define the Study Boundaries                              | 11  |  |  |  |



|     |        | 6.1.5      | Develop a Decision Rule          | 12 |
|-----|--------|------------|----------------------------------|----|
|     | 6.2    | Optimise   | the Design of Obtaining Data     | 14 |
|     | 6.3    | Soil Inve  | stigation                        | 14 |
|     |        | 6.3.1      | Sampling Methodology             | 15 |
|     |        | 6.3.2      | Laboratory Analysis              | 16 |
| 7.  | Asses  | sment Cri  | teria                            | 17 |
|     | 7.1    | Regulato   | ry and Technical Guidelines      | 17 |
|     | 7.2    | Assessm    | ent Criteria                     | 17 |
|     |        | 7.2.1      | Soil Assessment Criteria         | 17 |
| 8.  | Quali  | ty Assurai | nce and Quality Control          | 18 |
|     | 8.1    | QA/QC C    | Conclusion                       | 18 |
| 9.  | Resul  | ts         |                                  | 19 |
|     | 9.1    | Soil Obse  | ervations                        | 19 |
|     | 9.2    | Analytica  | al Results – Soil                | 19 |
|     |        | 9.2.1      | Heavy Metals                     | 19 |
|     |        | 9.2.2      | PAHs                             | 20 |
|     |        | 9.2.3      | TRH/BTEXN                        | 21 |
|     |        | 9.2.4      | VOCs                             | 21 |
|     |        | 9.2.5      | OCPs and PCBs                    | 21 |
|     |        | 9.2.6      | Asbestos                         | 22 |
| 10. | Site C | haracteri  | sation                           | 23 |
|     | 10.1   | Potentia   | Risks to Future Onsite Receptors | 23 |
|     | 10.2   | Backgrou   | und Soil Concentrations          | 24 |
|     | 10.3   | Chemica    | l Mixtures                       | 24 |
|     | 10.4   | Aestheti   | c Issues                         | 24 |
|     | 10.5   | Potentia   | l Migration of Contaminants      | 24 |
|     | 10.6   | Site Man   | agement Strategy                 | 24 |
| 11. | Concl  | usions an  | d Recommendations                | 26 |
| 12. | Limita | ations     |                                  | 27 |



# **List of Tables**

Table A – Soil Analytical Results

# **List of Figures**

Figure 1 Site Location Figure 2 Site Layout

Figure 3 Soil Sampling Locations

Figure 4 Soil Exceedances

# **Appendices**

Appendix A Photographic Log Appendix B PFAS Register

Appendix C Loose-Fill Asbestos Insulation Register

Appendix D Borelogs

Appendix E PID Calibration and Decontamination Field Forms

Appendix F QAQC Assessment

Appendix G Laboratory Documentation



# **Abbreviations**

| Term     | Definition                                              |  |  |  |  |  |
|----------|---------------------------------------------------------|--|--|--|--|--|
| ACM      | Asbestos Containing Materials                           |  |  |  |  |  |
| AEC      | Areas of Environmental Concern                          |  |  |  |  |  |
| AHD      | Australian Height Datum                                 |  |  |  |  |  |
| ASRIS    | Australian Soil Resource Information System             |  |  |  |  |  |
| ASS      | Acid Sulfate Soils                                      |  |  |  |  |  |
| BTEXN    | Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene |  |  |  |  |  |
| CLM      | Contaminated Land Management                            |  |  |  |  |  |
| COC      | Chain of Custody                                        |  |  |  |  |  |
| COPC     | Contaminants of Potential Concern                       |  |  |  |  |  |
| CSM      | Conceptual Site Model                                   |  |  |  |  |  |
| DBYD     | Dial Before You Dig                                     |  |  |  |  |  |
| DO       | Dissolved Oxygen                                        |  |  |  |  |  |
| DP       | Development Plan                                        |  |  |  |  |  |
| DQI      | Data Quality Indicators                                 |  |  |  |  |  |
| DQO      | Data Quality Objectives                                 |  |  |  |  |  |
| DSI      | Detailed Site Investigation                             |  |  |  |  |  |
| EIL      | Ecological Investigation Levels                         |  |  |  |  |  |
| EPA      | NSW Environmental Protection Authority                  |  |  |  |  |  |
| ESA      | Environmental Site Assessment                           |  |  |  |  |  |
| ESLs     | Ecological Screening Levels                             |  |  |  |  |  |
| На       | Hectare                                                 |  |  |  |  |  |
| HILs     | Health Investigation Levels                             |  |  |  |  |  |
| HSLs     | Health Screening Levels                                 |  |  |  |  |  |
| JBS&G    | JBS&G Australia Pty Ltd                                 |  |  |  |  |  |
| JRA      | Job Risk Assessment                                     |  |  |  |  |  |
| LEP      | Local Environment Plan                                  |  |  |  |  |  |
| LOR      | Limit of Reporting                                      |  |  |  |  |  |
| NATA     | National Accreditation Testing Authority                |  |  |  |  |  |
| ОСР      | Organochlorine Pesticides                               |  |  |  |  |  |
| OPP      | Organophosphate Pesticides                              |  |  |  |  |  |
| PAH      | Polycyclic Aromatic Hydrocarbons                        |  |  |  |  |  |
| PCB      | Polychlorinated Biphenyls                               |  |  |  |  |  |
| PID      | Photoionisation Detector                                |  |  |  |  |  |
| POEO Act | Protection of Environment Operations Act                |  |  |  |  |  |
| PSI      | Preliminary Site Investigation                          |  |  |  |  |  |
| QA/QC    | Quality Assurance/Quality Control                       |  |  |  |  |  |
| RPD      | Relative Percentage Difference                          |  |  |  |  |  |
| SAQP     | Sampling Analytical and Quality Plan                    |  |  |  |  |  |
| SWMS     | Safe Work Method Statement                              |  |  |  |  |  |
| TRH      | Total Recoverable Hydrocarbons                          |  |  |  |  |  |
| UCL      | Upper Confidence Limit                                  |  |  |  |  |  |
| VOC      | Volatile Organic Compounds                              |  |  |  |  |  |



# **Executive Summary**

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of Johnstaff, to complete a Detailed Site Investigation (DSI) for the Chatswood Public School site, located at 5 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 812207 and Lot C in DP 346499. The site covers an area of approximately 1.4 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood High School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (current Chatswood Public School) will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The report documented herein relates to the current Chatswood Public School site and will assess site suitability, as required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483, specifically relating to SEARs Key Issue 13 Contamination, being, to:

• Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the site for the proposed land use, or, to make recommendations to enable such conclusions.

The review of the site's history indicated that the site was historically utilised as an orchard prior to the primary school's construction in 1895. The school has been subject to progressive renovations and additions of new structures since the 1890s.

Data utilised for the assessment of site suitability as documented herein were collected on the 23, 24 January, and 10, 11 October 2019. For a site of approximately 1.4 ha, Table A of NSW EPA (1995) recommend a minimum of 21 to 25 soil sampling locations. Previous investigations included sampling at 13 locations. As such, JBS&G undertook a comprehensive soil investigation at the site which involved the advancement of 16 boreholes utilising a combination of judgemental and systematic sampling regimes. The sample locations advanced by JBS&G were in addition to the 13 previously advanced during DP (2018).

All locations identified fill materials between the ground surface (or below hardstand) to a maximum depth of 1.2 m bgs. Fill materials generally comprised of brown silty sands and silty clays with gravels. Fill materials were noted to contain anthropogenic inclusions including asphalt, brick, shales and plastic. Inspection of fill materials did not identify fragments of suspected asbestos containing materials. Natural material underlying the site comprised of brown/grey clay and silty clay overlying shale bedrock.

The results of the analytical data indicate that there are potentially unacceptable risks to human and ecological health at several locations resulting from PAHs, heavy metals and TRH. However, JBS&G note that the likely source of these materials is attributed to bitumen and blue metal gravels identified in the fill profile. JBS&G did not identify any risks relating to the migration of contamination from the site.

In relation to the current use of the site as a primary school, noting that the school is currently covered by hardstand and is expected to operate in a condition similar to those observed during the



investigation at the site, JBS&G do not consider there to be a complete contamination source-receptor pathway that would present a potentially unacceptable risk to current users of the site. As such, JBS&G consider the site is suitable for the current use. In the event that excavation works are required prior to redevelopment of the school, JBS&G recommend the development of a Construction Environmental Management Plan (CEMP), or similar, to ensure that the current site configuration that enables the site to be considered suitable under the current site uses, are maintained.

Based on the identified contamination, JBS&G recommend the development of a RAP to guide the required management of identified soil contamination during and following redevelopment such that the site can be considered suitable for the proposed educational land use.



# 1. Introduction

## 1.1 Background

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of Johnstaff, to complete a Detailed Site Investigation (DSI) for the Chatswood Public School site, located at 5 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 812207 and Lot C in DP 346499. The site covers an area of approximately 1.4 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood High School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (current Chatswood Public School) will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The report documented herein relates to the current Chatswood Public School site and will assess site suitability, as required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483, specifically relating to SEARs Key Issue 13 Contamination, being, to:

• Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.

A Preliminary Site Investigation with limited soil sampling was undertaken at the site by Douglas Partners in 2018 (DP 2018¹), the findings of which recommend a detailed investigation to assess the suitability of the site for the proposed land uses. The DSI presented herein has been developed in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA), including the National Environmental Protection Council (NEPC) (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), and relevant Australian Standards.

#### 1.2 Objectives

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the site for the proposed land use, or, to make recommendations to enable such conclusions.

#### 1.3 Scope of Works

The scope of works for the assessment included:

- A desktop review of available site history information, including:
  - Review of previously completed environmental assessment and geotechnical reports relating to the site and surrounding area, as provided by the client;
- A detailed site inspection to identify potential AECs;
- Development and documentation of a conceptual site model (CSM) based on the available information;

Report on Preliminary Site (Contamination) Investigation with Limited Sampling: Proposed Redevelopment Chatswood Public School, High School and Public School "Bush Campus", Chatswood, Douglas Partners 2018 (DP 2018)



- Development and documentation of the SAQP, with data quality objectives (DQOs) for the DSI in accordance with relevant EPA guidelines;
- Implementation of an intrusive investigation program based on the SAQP presented in this report;
- Analysis of collected soil samples at two NATA accredited laboratories: Eurofins MGT and Envirolab;
- Comparison of collected data against NSW EPA published / endorsed investigation criteria to facilitate an assessment of land use suitability; and
- Preparation of a DSI report in general accordance with relevant EPA guidelines.



# 2. Site Conditions and Surrounding Environment

#### 2.1 Site Identification

The location of the site is shown in **Figure 1**, and the current layout is shown in **Figure 2**. The site details are summarised in **Table 2.1**.

Table 2.1: Site Details

| Lot / DP Number                           | Lot 1, DP 812207 and Lot C, DP 346499 |
|-------------------------------------------|---------------------------------------|
| Street Address                            | 5 Centennial Avenue, Chatswood        |
| Local Government Authority                | Willoughby City Council               |
| Site Area                                 | Approximate centre of site:           |
|                                           | 331312.749 E                          |
|                                           | 6258715.294 N (GDA94-MGA56)           |
| Current Zoning                            | R2 Low Density Residential            |
| Geographic Coordinates                    | Approximately 1.4 ha                  |
| Previous Land Use                         | Primary School                        |
| Current Land Use                          | Primary School                        |
| Potential Future Use and Permissible Uses | High (Secondary) School               |

#### 2.2 Site Description

A detailed site inspection was undertaken on 9 January 2019, and field works were completed on 23, 24 January, and 10, 11 October 2019, by two of JBS&G's trained and experienced field scientists. Site observations are discussed below, and a photographic log is included as **Appendix A**.

The site comprises an irregular shaped parcel of land, measuring approximately 1.4 ha. The site is secured with perimeter fencing, with three access points via locked gates located at the north-east (Pacific Highway, **Photo 1**), south-east (Centennial Avenue), and west boundaries of the site (Jenkins Street, **Photo 2**).

The site generally slopes in a westerly direction. Considering the substantially sloped topography, a degree of cut and fill is likely to have occurred at the site.

Five large buildings were present across the southern portion of the site, utilised as classrooms, offices, a library, and a canteen (**Photo 3** and **Photo 4**). Asphalt sealed playgrounds and an asphalt sealed carpark were located at the centre and north east corner of the site. Additional playgrounds were located at the north and north west portion of the site, which featured an open space sports field covered with synthetic grass (**Photo 5**), a basketball court and a tennis court.

Additionally, a complex of buildings was located in the southeast corner of the site (Lot C, DP 346499).

The site contained some vegetation in between hardstand areas including large gum and eucalyptus trees, some minor grass cover and perennial herbs. Vegetation was found sporadically throughout the site and its borders., All vegetation appeared unstressed and in good health.

No visible evidence of widespread contamination or significant areas of environmental concern were identified on readily visible/accessible ground surfaces during the site inspection.

# 2.3 Surrounding Land Use

Surrounding land-uses at the time of site inspection are described following:

- North The northern boundary is formed by low to medium density residential land and commercial properties fronting the Highway. North along the Highway is a small public reserve (Kenneth Slessor Park) succeeded by Chatswood Toyota and Fullers Road;
- South The southern boundary is formed by Centennial Avenue. This is succeeded by medium to high density residential apartments and Chatswood BMW;



- East The eastern boundary is formed by the Pacific Highway. This is immediately succeeded by high density commercial buildings and residential apartments. This is followed by landmarks including Chatswood railway station, Dougherty Community Centre and Westfield Chatswood Shopping centre;
- West The western boundary of the site was formed by Jenkins street and low density residential properties. Immediately adjacent and continuing westwards are low/medium residential properties and Chatswood High School along Centennial Avenue.

## 2.4 Environmental Setting

# 2.4.1 Topography

A review of topographical information available on Nearmap indicated the elevation of the site centre is approximately 109 m Australian Height Datum (AHD). The site slopes generally towards the west and south west, towards Ferndale Park and Swaines Creek at the western extent of Centennial Avenue.

The site appears to have undergone cut and fill activities based on observations made during the site inspection.

#### 2.4.2 Geology & Soil

A review of the Soil Landscapes of the Sydney 1:100,000 Geological Series Sheet 9130 Sheet (1983²) indicates the site and surrounds are underlain by the Triassic Ashfield Shale of the Wianamatta Group, comprising dark grey to black which weathers to a residual clay profile of medium to high plasticity.

Reference to the online ESPADE tool hosted by the NSW Office of Environment and Heritage (OEH 2018³) indicated the site is underlain by the Blacktown Soil Landscape Group. These soils comprise shallow to moderately deep (<100 cm) red and brown podzolic soils in well-drained areas, and deep (150-300 cm) yellow podzolic soils and soloths on lower slopes and poorly drained areas. Limitations of this group include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.

During the site investigation, 16 boreholes were advanced across the site, in which fill overlying natural materials was encountered from the ground surface to 1.2 m below ground surface (bgs). Natural materials encountered were observed to comprise a weathered shale profile consisting of clay grading to competent shale at varying depths.

#### 2.4.3 Acid Sulfate Soils

A review of the *Acid Sulfate Soil Risk Map for Botany Bay*<sup>4</sup> indicates that the site is located in an area of no-known occurrences of ASS.

Based on observations made during the intrusive investigation across the site, sediments typical of potential and actual ASS were not observed (i.e. absence of grey, organic rich, hydrogen sulphide odour etc) in the lithological profile.

The Section 10.7 Planning Certificate (presented in DP, 2018) indicates that the site does not have the likelihood of occurrence of acid sulfate soils. This is consistent with the site's topographical and geological setting.

Soil Landscapes of the Sydney 1:100,000 Sheet (9130) Edition 2 (DECCW 2009)

<sup>&</sup>lt;sup>3</sup> ESAPDE, NSW Office of Environment and Heritage, http://www.environment.nsw.gov.au/eSpade2Webapp, accessed 25 October 2019 (OEH 2018)

Acid Sulfate Soil Risk Map – Botany Bay, Edition 2, 1997. 1:25 000 Ref: 91 30S3. NSW DLWC



#### 2.4.4 Hydrology

Precipitation to fall onto buildings and paved areas will flow into engineered drainage lines and the local stormwater system. Rainfall will potentially penetrate the soft ground (e.g. garden beds, unpaved areas across the school grounds) and migrate as shallow/perched groundwater towards Swaines Creek, and/or to stormwater infrastructure. It is anticipated that surface run-off will flow to engineered stormwater infrastructure and towards the nearby Swaines Creek, located approximately 700 m west of the site.

#### 2.4.5 Hydrogeology

A search for registered groundwater borehole information was undertaken on Water NSW<sup>5</sup> website indicated two groundwater bores within 500 m of the site (**Table 2.2**). Summary pages of groundwater bore information provided by Water NSW is presented in **Appendix B**.

Based on the reported geology and surrounding topography it is anticipated the direction of groundwater flow will be to the west towards the Lane Cove River. Groundwater at the site is not expected to occur within shale bedrock, however may be present within more permeable strata such as sandstone or highly fractured bedrock. Perched groundwater is expected to occur at existing at interfaces of soils and underlying bedrock.

**Table 2.2: Groundwater Bore Search Summary** 

| Bore ID  | Depth (mbgs) | SWL (mbgs) | Distance from site (m) | Date Installed | Use                         | Lithology                                                                                                                                   |
|----------|--------------|------------|------------------------|----------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| GW029731 | 21.6         | Unknown    | 480 E                  | 01/04/1967     | Recreation<br>(Groundwater) | Clay to 6.7 m,<br>shale to 17.98,<br>sandstone to<br>21.6 m.                                                                                |
| GW107757 | 162.6        | 25.6       | 490 E                  | 29/07/2005     | Recreation<br>(Groundwater) | Fill to 1.4 m, clay to 5.1 m, shale to 5.1 m, clay to 16.7 m, sandstone to 65.7 m, shale to 66.7 m, sandstone with shale lenses to 162.6 m. |

©JBS&G Australia Pty Ltd | 55579- 125420 (Rev B)

-

<sup>&</sup>lt;sup>5</sup> Water NSW website accessed 16/01/2019, https://realtimedata.waternsw.com.au/



# 3. Site History

The site history has been documented in DP (2018). JBS&G's review of the site history have identified additional searches that are relevant and applicable to understanding the historical and environmental setting.

#### 3.1 EPA Per- and Poly- Fluoroalkyl Substances (PFAS) Register

A search of the EPA's PFAS register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix D**.

#### 3.2 NSW Fair Trading Loose Fill Asbestos Insulation Register

A search of the NSW Fair Trading loose fill asbestos insulation register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix E**.

# 3.3 Summary of Site History and Integrity Assessment

The review of the site's history indicated that the site was historically utilised as an orchard prior to the primary school's construction in 1895. The school has been subject to progressive renovations and additions of new structures since the 1890s.

Based on the range of sources and the general consistency of the historical information, it is considered that the historical assessment has an acceptable level of accuracy with respect to the potentially contaminating activities historically occurring at the site.



# 4. Previous Investigations

## 4.1.1 Preliminary Site (Contamination) Investigation (DP 2018)

Douglas Partners (DP) completed a preliminary environmental site assessment (ESA; referred to as Preliminary Site Investigation (PSI) in this report) of Chatswood Public School and the Chatswood High School site and. The investigation entailed a desktop review of publicly available documents pertaining to the site history, and preliminary intrusive sampling associated with the geotechnical investigation.

The review of the site's history indicated that the site was historically utilised as an orchard prior to the primary school's construction in 1895. The school has been subject to progressive renovations and additions of new structures since the 1890s. Further review of the site's history indicated that a development application (DA) lodged by the school relating to works in a section of the playground known as the 'lowers' included information pertaining to an 'Incinerator Compound'. This is considered to represent a potential source of contamination at the site.

DP (2018) identified the following AECs at the site:

- Filling potential for filling (likely from cut and fill of onsite soils) activities for the purpose of levelling the site for development. Associated contaminants of potential concern (COPC) identified were TRH, BTEX, PAHs, PCBs, OCPs, OPPs, phenols and asbestos;
- Previous land use: Public School site was an Orchard during the 1800s. COPCs include heavy metals, PCBs, OCPs/OPPs;
- Incinerator: COPCs include PAHs, BTEX, PCBs; and
- Soils and contaminants associated with surrounding land uses such as Chatswood Toyota.
   Associated COPCs identified were metals, TRH, BTEX, PAHs, PCBs, OCPs, OPPs, VOCs, phenols and asbestos.

DP (2018) undertook a limited intrusive assessment that was completed via solid flight auger and hand auger at 13 locations across the site. Fill materials were encountered from 0.15 m bgs to 2.0 m bgs (BH18) and was variably compacted predominantly silty clay material with various inclusions, which was observed to have "similar classification to the natural clay present at the site and in some instances was hard to distinguish from natural clays" (DP 2018). Inclusions within fill materials were observed to include gravels, ash, shale and some brick. Inclusions of asphalt were also observed within fill materials at the site. No asbestos was reported in soils by DP (2018).

DP (2018) adopted the most conservative human and ecological health assessment criteria, including; health investigation level (HIL) A for non-petroleum chemical contaminants, health screening levels (HSLs) A and B for vapour intrusion, HSL A for direct contact, and management limits for TRH.

The analytical data reported concentrations of COPCs in excess of the adopted site criteria at several locations. Exceedances of the adopted site criteria were reported for PAHs (HILs and ESLs), TRH (management limits for coarse grained soils, and ESLs) at the following locations; BH16, BH18, BH21, BH23, BH24 and BH27.

No groundwater was encountered at any location during the sampling event.

The report concluded that exceedances of adopted site criteria were observed and as such, remediation may be required pending results from subsequent detailed site investigations (DSIs).



# 5. Conceptual Site Model

Based on the desktop review and observations from the site inspection, the following conceptual site model (CSM) has been developed for the site.

#### 5.1 Potential Areas of Environmental Concern

Based on the objectives of the assessment, desktop review and observations made during the site inspection, AECs and associated COPCs were identified at the site, as noted in **Table 5.1**.

Table 5.1: Areas of Environmental Concern and Associated Contaminants of Potential Concern

| Area of Environmental Concern (AEC)                                                                                                         | Potentially<br>Affected Media | Contaminant of Potential Concern (COPC)                                                                                                                                                     | Risk Profile |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Fill Materials  Imported and/or reworked fill materials used to create site levels (comprising material of unknown character and/or origin) | Soil                          | Heavy metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylenes (BTEX), PAHs, polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), and asbestos | Moderate     |
| Former Orchards  Areas formerly used as market gardens/orchards                                                                             | Soil                          | Heavy metals, pesticides/herbicides (OCPs/OPP), asbestos                                                                                                                                    | Low          |
| Incinerator  Areas in proximity to the former Incinerator                                                                                   | Soil                          | Heavy metals, PAHs, PCBs, asbestos                                                                                                                                                          | Low          |

#### 5.2 Potentially Contaminated Media

Potentially contaminated media comprise:

- Fill Materials;
- Underlying Natural Soils; and
- Groundwater

Review of site historical information, DP (2018) indicates that the site was historically utilised for market garden/orchards. The historical use of pesticides/herbicides at the site may present a potential risk for human and ecological health. However, JBS&G note that the land ceased to be an orchard in circa 1895 – noting the elapsed time since this use however, JBS&G do not consider this to be a significant risk for contamination at the site.

The review also identified the potential for cut and fill activities to have occurred at the site. Fill materials may contain COPCs at concentrations that exceed the applicable human and ecological assessment criteria and therefore may present an unacceptable risk to human and ecological receptors for the future use of the site.

Furthermore, DP (2018) note that a small incinerator was present at the site. JBS&G note that the incinerator was likely to incinerate waste generated by the school, and the development of large portions of the school (playground etc) pre-date the incinerator, and as such, any impacts from the incinerator are likely to be highly localised and not widespread.



A review of the site history did not identify point sources and/or liquid contaminants at the site that are likely to pose a significant risk for the migration of contamination to underlying natural materials and groundwater.

JBS&G consider the potential for contamination to the underlying natural lithologies/geology to be a function of the primary contamination in soil. Noting the historical and current site uses, JBS&G do not consider primary contamination in soils are likely to be in concentrations that would result in significant contamination to underlying strata.

Noting contaminants likely to exist at the site are in solid form and unlikely to be significantly leachable, contaminants within fill material and other surface soils, and the historical uses of the site, vertical migration through the fill profile into the underlying natural soils and groundwater is unlikely to have occurred.

## 5.3 Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The propensity for contaminants to migrate is dependent on:

- The nature of the contaminants (solid/liquid/gas and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site area history review and previous investigation are generally in a solid form (e.g. heavy metals, asbestos, etc.).

As the site is primarily covered by structures and/or hardstand (concrete/asphalt), the potential for windblown dust migration of contamination from the site is generally very low. Further, the potential for contamination migration via surface water movement and infiltration of water and subsequent migration through the soil profile is considered generally to be low given the extent of impermeable pavements at the site. However, it is noted there is a potential for vertical migration of surface waters where hardstand pavements exhibit extensive cracking and / or along joints.

#### 5.4 Potential Exposure Pathways

Potential human receptors of environmental impact include future site users (school students, users of open spaces), visitors and construction/maintenance contractors engaged to work at the site who may potentially be exposed to COPCs through inhalation, direct contact and/or ingestion (children) of impacted soils.

Exposure to windblown dusts may pose a potential risk to sensitive human receptors however these are also considered unlikely given the predominantly sealed site surfaces.

During redevelopment of the site, potential human receptors will include:

- Inhalation of potential COPC dust and migrating upwards from fill material of unknown origins; and/ or
- Potential dermal and oral contact to impacted soils as present at shallow depths and/ or accessible by future service excavations across the extent of the site; and/ or
- Surface water runoff.

The site contains limited areas covered by vegetation, presenting ongoing potential ecological receptors. Flora on site are potential receptors of shallow soil contamination if present. No vegetation stress relating to potential contamination from known AECs was observed during site



inspection. Possible off-site ecological receptors include potential surface water receptors (i.e. Swains Creek to the southwest of the site).

#### 5.5 Receptors

Potential human populations who may be exposed to site impacts in the future (if they are not remediated or appropriate management is not implemented prior to or during development) include:

- Potential future construction workers associated with the redevelopment of the site;
- Students and employees of the proposed secondary school;
- Future construction and site maintenance workers; and
- Future and current sub-surface excavation and intrusive workers.

Given the majority of the site is currently sealed with hardstand pavement (concrete / asphalt) and proposed redevelopment will consist of sealed on-grade infrastructure, on site ecological flora/fauna are not considered likely receptors.

#### 5.6 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPC as either liquids or gasses.

Man-made preferential pathways may be present at the site, associated with areas of disturbed natural/fill material, service easements and stormwater/retention basins on site.

Natural preferential pathways are likely limited to natural lithological boundaries, such as between porous soils and weathered/residual bedrock, where infiltrating groundwater is vertically confined and begins to migrate laterally, and surface water drainage features.



# 6. Sampling and Analytical Plan

#### 6.1 Data Quality Objectives

Data quality objectives (DQOs) are statements that define the confidence required in conclusions drawn for data produced for a project, and which must be set to realistically define and measure the quality of data needed.

DQOs have been developed for this DSI, as discussed in the following sections.

#### 6.1.1 State the Problem

The site is proposed to be redeveloped for a high school campus providing facilities for students between the years of Year 11 and 12. As such, an assessment is required to characterise potential contamination at the site, and to assess whether potential contamination from historical activities at the site may pose an unacceptable risk to future receptors for the proposed high school campus, or, to make recommendations to enable such conclusions to be made.

#### 6.1.2 Identify the Decision

The decisions below generally follow the EPA (2017<sup>6</sup>) decision making process for assessing urban redevelopment sites:

- 1. Are there any unacceptable risks to likely future on-site receptors?
- 2. Are there any issues relating to background soil concentrations that exceed appropriate site soil criteria?
- 3. Are there any impacts of chemical mixtures?
- 4. Are there any aesthetic issues at the site?
- 5. Is there any evidence of, or potential for, migration of contaminants from the site?
- 6. Is a site management strategy required?

#### 6.1.3 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- Historical site information and inspection of the site to identify and/or confirm potential AECs and COPCs at the site;
- The collection and interpretation of environmental data through collection and analysis of soil:
- Laboratory analysis of samples of potentially contaminated media for COPC; and
- Confirmation that data generated by sample analyses were of sufficient quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control (QA/QC).

Specifically, sufficient data needs to be collected from each of the identified potentially impacted media (e.g. fill material and natural soils) at the site relating to the in the identified AECs and associated COPC.

#### 6.1.4 Define the Study Boundaries

The study boundaries are limited to site boundaries as described in **Section 2.1** and shown on **Figure 2**.

<sup>&</sup>lt;sup>6</sup> Guidelines for the NSW Site Auditor Scheme (3<sup>rd</sup> Edition). NSW Environment Protection Authority, October 2017, EPA 2017;



The vertical extent of the soil investigation was to 8.0 m bgs (BH\_P\_12) – the maximum depth to which investigations were undertaken.

Due to the project objectives, seasonality was not assessed as part of this investigation. Data are therefore representative of the timing and duration of the current investigation.

#### 6.1.5 Develop a Decision Rule

Analytical data was assessed against NSW EPA endorsed criteria, presented in Section 7.

Statistical analyses of the data were undertaken, where required, in accordance with relevant guidance documents. The following statistical criteria was adopted:

- The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section 6.1.2** are summarised in **Table 6.1**.

**Table 6.1 Summary of Decision Rules** 

| Decisions Required to be Made                                                                                                                              | Decision Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Are there any unacceptable risks to onsite future receptors?                                                                                            | Analytical data will be compared against EPA endorsed criteria.  Statistical analysis of the data will be completed, where necessary, in accordance with relevant guidance documents, as appropriate, to facilitate the decisions. The criteria in <b>Section 7</b> were adopted with respect to soil. If the statistical criteria stated above were satisfied, the answer to the decision was <b>No</b> .  If the statistical criteria were not satisfied, the answer to the decision was <b>Yes</b> . |
| Are there any issues relating to the local area background soil concentrations that exceed appropriate soil criteria?     Are there any chemical mixtures? | If COPC concentrations in soils exceeded published background concentrations (NEPC 2013), the answer to the decision is <b>Yes</b> .  Otherwise the answer to the decision is <b>No</b> .  Were there more than one group of contaminants present which increase the risk of harm?                                                                                                                                                                                                                      |
| 4. Are there any aesthetic issues?                                                                                                                         | If there is, the answer to the decision is <b>Yes</b> .  Otherwise, the answer to the decision is <b>No</b> .  If there were any asbestos containing material (ACM) fragments on the                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                            | ground surface, any unacceptable odours or soil discolouration, or excessive extraneous/foreign/waste materials, the answer to the decision is <b>Yes</b> .  Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                       |
| 5. Is there any evidence of, or potential for, migration of contaminants from the site?                                                                    | Based on assessment results, is there any evidence of, or the potential for, migration of unacceptable contaminant concentrations to migrate from the site?  If yes, the answer to the decisions is <b>Yes</b> .  Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                  |
| 6. Is a site management strategy required?                                                                                                                 | Is the answer to any of the above decisions Yes? If yes, a site management strategy is required. If no, a site management strategy is not required.                                                                                                                                                                                                                                                                                                                                                     |

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate indicators of data quality (DQIs used to assess QA/QC) and standard JBS&G procedures for field sampling and handling.



To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for completeness, comparability, representativeness, precision and accuracy.

The pre-determined Data Quality Indicators (DQIs) established for the project are discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters), and are shown in **Table 6.2**.

- Precision measures the reproducibility of measurements under a given set of conditions.
   The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory
  data that are generated during this study is a measure of the closeness of the analytical
  results obtained by a method to the 'true' value. Accuracy is assessed by reference to the
  analytical results of laboratory control samples, laboratory spikes and analyses against
  reference standards.
- Representativeness expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition.
   Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted criteria.

If any of the DQIs are not met, further assessment of the data set is required to determine whether the non-conformance has significant effects on the usefulness of the data. Corrective action to correct an adverse impact on the reliability of the dataset may include, but is not limited to, the request of further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data.



**Table 6.2: Summary of Data Quality Indicators** 

| Data Quality Indicators                                                                              | Frequency           | Data Quality Criteria                     |
|------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| Precision                                                                                            |                     |                                           |
| Duplicates (intra-laboratory)                                                                        | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Triplicates (inter-laboratory)                                                                       | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Laboratory Duplicates                                                                                | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Accuracy                                                                                             |                     |                                           |
| Surrogate spikes                                                                                     | All organic samples | 70-130% recovery                          |
|                                                                                                      | Phenols             | 30-130% recovery                          |
| Laboratory control samples                                                                           | 1 per lab batch     | 70-130% recovery                          |
| Matrix spikes                                                                                        | 1 per lab batch     | 70-130% recovery (phenols 30-130%)        |
| Representativeness                                                                                   |                     |                                           |
| Sampling appropriate for media and analytes                                                          | All samples         | _2                                        |
| Samples extracted and analysed within holding times.                                                 | -                   | Organics (14 days), inorganics (6 months) |
| Laboratory Blanks                                                                                    | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip blanks                                                                                          | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip spike                                                                                           | 1 per lab batch     | 70-130% recovery                          |
| Storage blank                                                                                        | 1 per lab batch     | <lor< td=""></lor<>                       |
| Rinsate sample                                                                                       | 1 per sampling      | <lor< td=""></lor<>                       |
|                                                                                                      | event/media         |                                           |
| Comparability                                                                                        |                     |                                           |
| Standard operating procedures for sample collection & handling                                       | All Samples         | All Samples                               |
| Standard analytical methods used for all analyses                                                    | All Samples         | NATA accreditation                        |
| Consistent field conditions, sampling staff and laboratory analysis                                  | All Samples         | All samples <sup>2</sup>                  |
| Limits of reporting appropriate and consistent                                                       | All Samples         | All samples <sup>2</sup>                  |
| Completeness                                                                                         |                     |                                           |
| Sample description and Chain of Custody (COCs)                                                       | All Samples         | All samples <sup>2</sup>                  |
| completed and appropriate                                                                            |                     |                                           |
| Appropriate documentation                                                                            | All Samples         | All samples <sup>2</sup>                  |
| Satisfactory frequency and result for QC samples                                                     |                     | 95% compliance                            |
| Data from critical samples is considered valid                                                       | -                   | Critical samples valid                    |
| Sensitivity                                                                                          |                     |                                           |
| Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria | All samples         | LOR<= site assessment criteria            |

<sup>&</sup>lt;sup>1</sup> If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment was made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

# 6.2 Optimise the Design of Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995<sup>7</sup>), including judgemental, random, systematic and stratified sampling patterns.

# 6.3 Soil Investigation

For a site of approximately 1.4 ha, Table A of NSW EPA (1995) recommend a minimum of 21 to 25 soil sampling locations. Previous investigations included sampling at 13 locations. As such, JBS&G undertook a comprehensive soil investigation at the site which involved the advancement of 16 boreholes utilising a combination of judgemental and systematic sampling regimes. The sample locations advanced by JBS&G were in addition to the 13 previously advanced during DP (2018).

<sup>&</sup>lt;sup>2</sup> A qualitative assessment of compliance with standard procedures and appropriate sample collection methods was completed during the DQI compliance assessment.

<sup>&</sup>lt;sup>7</sup> Contaminated Sites: Sampling Design Guidelines. NSW EPA 1995 (EPA 1995)



Systematic sampling locations were generally advanced across the accessible site area to assess more widespread soil contamination. Soil sampling locations, including those from DP (2018), are shown in **Figure 3**.

#### 6.3.1 Sampling Methodology

#### 6.3.1.1 Soil Sampling Methodology

Soil sampling was completed utilising an excavator equipped with an auger or via manual excavation utilising a hand auger.

Soil samples were generally collected at surface (0-0.15 m) or directly underneath hardstand pavement, 0.5 m and then at 0.5 m intervals to a maximum depth of 2.0 m bgs (BH\_P\_16), or a minimum of 0.5 m into natural material (or prior refusal), whichever was the shallower Where physical evidence of potential contamination was identified during the works, sampling locations were extended to vertically delineate contamination, where practicable. Following shallow refusal at 0.8 m bgs, BH\_P\_09 was attempted again within proximity (BH\_P\_09a). During the collection of soil samples at all locations, features such as seepage, discolouration, staining, odours and other indicators of contamination, if present, were noted on borelogs, provided in **Appendix D**.

Collected samples were immediately transferred to laboratory supplied sample jars and bags. The sample jars were then transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Based upon field observations, selected samples were analysed in accordance with the laboratory schedule (**Table 6.2**).

JBS&G note that not all soil samples collected were analysed. All samples will remain at the primary laboratory for a period of two months from the date of sampling. This will allow future analysis to be completed in the event that further information is required to characterise site conditions, provided that proposed analytes remain within technical holding times.

### 6.3.1.2 Field PID Screening

During site works, sufficient sample material was collected to allow for field testing using a photo-ionisation detector (PID) and laboratory analyses to assess the potential presence of VOCs including petroleum hydrocarbons. Samples obtained for PID screening were placed in a sealed plastic bag for approximately 2 minutes to equilibrate, prior to a PID being attached to the bag. Readings were then monitored for a period of approximately 30 seconds or until values stabilised and the stabilise/highest reading recorded on field logs. The PID was calibrated prior to the commencement of field works and then check readings were completed on a daily basis during the field program using suitable calibration gas (isobutylene – 100 ppm). Field calibration forms are provided in **Appendix E**. PID results are provided in the logs in **Appendix D**.

#### 6.3.1.3 Duplicate and Triplicate Sample Preparation

At selected sample points, sufficient soil was collected to provide primary, blind (duplicate intralaboratory), and split (triplicate inter-laboratory) replicate samples. In order to minimise the loss of potential volatiles, soil samples were not homogenised. Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

#### **6.3.1.4 Equipment Decontamination**

Where sampling equipment was required to be reused, i.e. augers, appropriate decontamination procedures, including brushing and rinsing augers, if required, in accordance with standard JBS&G operating procedures were adhered to. Decontamination forms are provided in **Appendix E**.

New nitrile gloves were utilised for the collection of each soil sample to avoid cross contamination between samples and locations.



# **6.3.2** Laboratory Analysis

JBS&G contracted Eurofins | MGT Australia (Eurofins) at Lane Cove, NSW, as the primary laboratory for the required analyses. Envirolab Services Pty Ltd (Envirolab) in Chatswood, NSW, were contracted for analysis of triplicate samples. Eurofins and Envirolab are NATA registered for the required analyses. In addition, the laboratory was required to meet JBS&G internal QA/QC requirements. Laboratory analysis of samples was conducted as summarised in **Table 6.2**.

**Table 6.1: Sampling and Analytical Program** 

| Sample Type | No. Sample Locations  | Analyses (exc. QA/QC)                                      |
|-------------|-----------------------|------------------------------------------------------------|
| Soil        | 16 x boreholes        | VOCs – 10 samples                                          |
|             |                       | Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 15 samples |
|             |                       | PAH – 15 samples                                           |
|             |                       | TRH/BTEX – 10 samples                                      |
|             |                       | OCPs – 5 samples                                           |
|             |                       | PCBs – 2 samples                                           |
|             | Asbestos – 15 samples |                                                            |

In addition to the above primary analyses, to address the DQIs, field duplicate and triplicate soil samples were analysed at a rate of at least 1/20 primary samples. A rinsate sample was collected from non-disposable soil sampling equipment, and trip blank and trip spike samples will be submitted with each batch of samples.



#### 7. Assessment Criteria

## 7.1 Regulatory and Technical Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Measure 2013 (as amended 2013), National Environment Protection Council (NEPC 2013);
- Guidelines for Consultants Reporting on Contaminated Sites, NSW OEH (OEH 2011);
- Guidelines for the NSW Site Auditor Scheme, 3<sup>rd</sup> Edition, NSW EPA, 2017 (EPA 2017);
- Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW EPA 2015 (EPA 2015);
- Guidelines for Assessing Former Orchards and Market Gardens, NSW DEC, June 2005 (NSW DEC 2005);
- Sampling Design Guidelines, NSW EPA, September 1995 (NSW EPA 1995); and
- Acid Sulfate Soil Manual, NSW Acid Sulfate Soil Management Advisory Committee. August 1998 (ASSMAC 1998).

#### 7.2 Assessment Criteria

#### 7.2.1 Soil Assessment Criteria

The NEPC (2013) NEPM provides risk-based investigation and screening levels for selected organic and inorganic chemicals in soils. Different levels are provided for a variety of exposure settings including residential, open-space / parks / recreational and commercial / industrial land uses.

It is understood that the site is proposed to be redeveloped to incorporate educational facilities for high (secondary) school aged students, i.e. Year 10 to 12. In accordance with the applicable land use scenarios outlined in NEPC (2013) and the respective risk assessment assumptions utilised in their formulation, analytical data from previous (DP 2018) investigations and the current investigation will be compared against the following human health and ecological investigation and screening levels (HILs/HSLs and EILs/ESLs):

- HIL-C: Public Open Spaces (includes Secondary Schools);
- HSL-A: Residential with Accessible Soils for TRH compounds, as per NEPC (2013) guidance which requires secondary school buildings to be assessed using HSL A;
- HSL-C: Public Open Spaces (includes Secondary Schools) for asbestos (ACM and AF/FA)
- EIL & ESL urban residential and public open space (coarse soil); and
- In addition to the above, aesthetic considerations as per NEPC (2013) will be considered during the current investigation.



# 8. Quality Assurance and Quality Control

Detailed discussion of the QAQC assessment of the dataset is included in Appendix F.

#### 8.1 QA/QC Conclusion

The field sampling and handling procedures across the site produced QA/QC results which indicate that data collected is of an acceptable quality for the DSI objectives.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data are of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



#### 9. Results

Soil sampling locations are shown on **Figure 3** and a summary of soil analytical data with comparison to the adopted site criteria is presented in **Table A**. Detailed laboratory reports and chain of custody documentation is provided in **Appendix H**. Borehole logs are presented in **Appendix D**.

#### 9.1 Soil Observations

A photographic log documenting key observation made during the current investigation is provided in **Appendix A** 

A total of 16 soil sampling locations were advanced across the site. All locations (BH\_P\_01 to BH\_P\_14, and BH\_P\_16) identified fill materials between the ground surface (or below hardstand) to a maximum depth of 1.2 m bgs (BH\_P\_03, BH\_P\_06 and BH\_P\_07). Fill materials generally comprised of brown silty sands and silty clays with trace gravels. These materials were generally consistent with the underlying geology, with the exception of anthropogenic inclusions in some boreholes that included ash, asphalt, brick, and some plastic (**Photos 6** and **7**). JBS&G identified minor hydrocarbon odours from materials at BH\_P\_07, in proximity to BH18 (DP 2018) whom also reported hydrocarbon odours from materials in this area of the site (see **Figure 3**). PID readings were recorded between 0 and 8.3 ppm (BH\_P\_07). No staining was noted at any of the borehole locations. No suspected ACM was observed within boreholes advanced as part of this investigation.

Natural material underlying the site generally comprised a brown/grey clay and silty clay overlying shale bedrock. No groundwater seepage was identified at any of the borehole locations.

It is further noted that no indicators of potential acid sulphate soils were observed during intrusive works at the site.

#### 9.2 Analytical Results – Soil

Full copies of the laboratory documentation are provided in **Attachment L**. Summarised laboratory results from JBS&G 2019 are presented in **Table A**. Analytical data from DP (2018) are presented in the **Table** section of this report and have been included in the sections below for completeness.

#### 9.2.1 Heavy Metals

All individual heavy metals concentrations were reported at levels less than the adopted site assessment criteria for human health.

In relation to ecological criteria, the following exceedances are reported:

- EIL Urban Residential: Copper limit of 60 mg/kg
  - BH\_P\_04\_0-0.15 75 mg/kg;
  - BH\_P\_12\_0.1-0.2 69 mg/kg;
- EIL Urban Residential: Nickel limit of 30 mg/kg
  - o BH P 02 0-0.15 32 mg/kg;
  - BH\_P\_07\_0-0.15 70 mg/kg;
  - BH21-0.0-0.1 38 mg/kg (DP 2018);
- EIL Urban Residential: Zinc limit of 70 mg/kg
  - BH\_P\_01\_0.4-0.5 320 mg/kg;
  - BH\_P\_02\_0-0.15 110 mg/kg;
  - BH\_P\_04\_0-0.15 78 mg/kg;



```
BH_P_06_0.8-0.9 – 310 mg/kg;
```

- BH\_P\_10\_0.6-0.7 160 mg/kg;
- o BH27-0-0.3 1,000 mg/kg (DP 2018).

#### 9.2.2 PAHs

Total PAH and Benzo(a)pyrene (B(a)P) TEQ values for analysed samples were reported at concentrations less than the adopted assessment criteria, with the following exceptions:

- HIL C (Secondary Schools): B(a)P TEQ limit of 3 mg/kg
  - BH\_P\_02\_0-0.15 116 mg/kg;
  - BH\_P\_04\_0-0.15 3.4 mg/kg;
  - BH13-0-0.1 3.2 mg/kg (DP 2018);
  - BH16-0-0.1 16 mg/kg (DP 2018);
  - BH18-0.5 44 mg/kg (DP 2018);
  - BH18-1.0-1.1 56 mg/kg (DP 2018);
  - BH18-1.5 17 mg/kg (DP 2018);
  - BH21-0-0.1 57 mg/kg (DP 2018);
  - BH23-0-0.1 3.4 mg/kg (DP 2018);
  - BH24-0.3-0.4 3.5 mg/kg (DP 2018);
- HIL C (Secondary Schools): PAHs (total) limit of 300 mg/kg
  - BH\_P\_02\_0-0.15 650.6 mg/kg;
  - BH18-0.5 470 mg/kg (DP 2018);
  - o BH18-1.0-1.1 620 mg/kg (DP 2018);
- ESL Urban Residential and Public Open Space, Coarse Soil: B(a)P limit of 0.7 mg/kg
  - BH\_P\_02 0-0.15 82 mg/kg;
  - o BH\_P\_02 0.4-0.5 1.6 mg/kg;
  - BH\_P\_04 0-0.15 2.5 mg/kg;
  - BH\_P\_05 0.4-0.5 0.9 mg/kg;
  - BH\_P\_06 0.8-0.9 1 mg/kg;
  - BH\_P\_08 0.4-0.5 1.7 mg/kg;
  - BH\_P\_13 0.5-0.6 0.7 mg/kg;
  - o BH13-0-0.1 2.2 mg/kg (DP 2018);
  - o BH16-0-0.1 16 mg/kg (DP 2018);
  - BH18-0.5 30 mg/kg (DP 2018);
  - BH18-1.0-1.1 38 mg/kg (DP 2018);
  - BH18-1.5 12 mg/kg (DP 2018);



```
    BH19-0-0.1 – 1.4 mg/kg (DP 2018);
    BH21-0-0.1 – 57 mg/kg (DP 2018);
```

BH21-1.0-1.1 – 1.2 mg/kg (DP 2018);

BH22-0.3-0.4 – 1.8 mg/kg (DP 2018);

BH23-0-0.1 – 2.3 mg/kg (DP 2018);

BH24-0.3-0.4 – 2.3 mg/kg (DP 2018);

BH28-0.4-0.45 – 1.7 mg/kg (DP 2018);

#### 9.2.3 TRH/BTEXN

Concentrations of TRH and BTEXN were reported below the adopted site assessment criteria for all samples, with the exception of:

- HSL A for Vapour Intrusion for Sand (0 to 1m): F2 limit of 110 mg/kg
  - BH\_P\_02 0-0.15 118.5 mg/kg;
  - BH18-1.0-1.1 130 mg/kg (DP 2018);
- HSL A for Direct Contact: F3 limit of 4,500 mg/kg
  - o BH21-1.0-1.1 3,500 mg/kg (DP 2018);
  - BH27-0-0.3 2,800 mg/kg (DP 2018);
- HSL A for Vapour Intrusion for Sand (0 to 1m): Naphthalene limit of 3 mg/kg
  - BH18-0.5 8 mg/kg (DP 2018);
  - BH18-1.0-1.1 9.2 mg/kg (DP 2018);
- ESL Urban Residential and Public Open Space, Coarse Soil: TRH C10-C16 limit of 120 mg/kg
  - BH18-1.0-1.1 140 mg/kg (DP 2018);
- ESL Urban Residential and Public Open Space, Coarse Soil: F3 limit of 300 mg/kg
  - BH16-0-0.1 16 mg/kg (DP 2018);
  - BH18-0.5 1,300 mg/kg (DP 2018);
  - BH18-1.0-1.1 1,600 mg/kg (DP 2018);
  - BH20-0-0.1 1,100 mg/kg (DP 2018);
  - BH21-1.0-1.1 3,500 mg/kg (DP 2018);
  - BH24-0.3-0.4 350 mg/kg (DP 2018);
  - BH26-0.2-0.3 300 mg/kg (DP 2018);
  - BH27-0-0.3 2,800 mg/kg (DP 2018);
  - o BH28-0.4-0.45 580 mg/kg (DP 2018).

#### 9.2.4 VOCs

Concentrations of VOCs were reported below the adopted health and ecological assessment criteria for all soil samples selected for analysis.

#### 9.2.5 OCPs and PCBs

Concentrations of OCP and PCB compounds were reported below the adopted health and ecological assessment criteria for all soil samples selected for analysis.



#### 9.2.6 Asbestos

No Asbestos Fines, Fibrous Asbestos (AF/FA) or ACM were reported above the health-based assessment criterial or laboratory limit of detection for all samples submitted for analysis.



#### 10. Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017) and discussed in **Section 6.1.2**, the decisions required to be made are discussed below.

#### 10.1 Potential Risks to Future Onsite Receptors

The following discussion relates to the site's data set, and includes analytical data collected from DP (2018), in addition to analytical data collected by JBS&G, as documented herein.

The assessment of site suitability is generally undertaken with consideration to the risks various compounds in the environment potentially pose to human and ecological health under one or more land use scenarios. A Tier 1 assessment of potential risk is undertaken by comparison with generic land use criteria such as published by NEPC (2013).

In consideration of the site's data set, potentially unacceptable risks to the health of human receptors at the site under the adopted land use, pursuant to NEPC (2013), were constrained to PAHs, specifically; carcinogenic PAHS as B(a)P TEQ, PAH totals and TRH.

A review of the borelogs for the site, including those completed by DP (2018), indicate that fill materials encountered at a majority of the sampling locations were observed to contain ash, which is a likely source of elevated PAHs in soil. Furthermore, a majority of sampling locations were advanced utilising solid flight augers, through asphalt that was located at the ground surface. The sampling method is likely to have resulted in the entrainment of PAH rich asphalt through the soil profile as the boreholes were advanced. The binding agent utilised in asphalt is bitumen - a hydrocarbon product comprised of long-chain hydrocarbons and rich in PAHs. JBS&G anticipate that the reported concentrations of PAHs are further enriched by the presence of asphalt within surficial soil samples.

Potentially unacceptable health risks from the potential intrusion of vapours to future site structures was noted from TRH concentrations at two locations, BH\_P\_02 0-0.15 and BH18-1.0-1.1 (DP 2018). The former location was advanced in proximity to the school car park, and the latter was located at the westernmost driveway off Jenkins Street. Fill materials from BH18 (off Jenkins Street) were noted to exhibit hydrocarbon odours and ash within fill materials, which were observed between 0.8 m bgs and 1.8 m bgs. The source of these impacts are unknown. JBS&G consider that there are currently no risks posed by the reported hydrocarbon impacts as there are currently no structures overlying the sampling locations and therefore no risk for the accumulation of vapours. Furthermore, the reported concentrations only marginally exceed the adopted Tier 1 criteria and are likely to attenuate over time due to the volatile nature of the compounds.

Risks to ecological health are often considered in respect to the risks various compounds within the environment pose to ecological health under a given land use scenario and exist for the protection of soil processes, plant species and organisms that inhabit or contact soils.

In relation to the site's data set, concentrations of COPCs were generally reported below the adopted ecological criteria (ESLs/EILs), with the exception of the heavy metals of copper, nickel and zinc, petroleum hydrocarbons, and B(a)P, as presented in **Section 9**.

A review of the borelogs indicate that basalt/dolerite (basic intrusive rock, i.e. blue metal) gravels were present in most locations beneath hardstand and within fill materials. These types of rock are naturally enriched in the heavy metals of nickel and zinc and are the likely source of these compounds in soil.

In relation to the reported concentrations of B(a)P and TRH reported in excess of the adopted ecological screening levels, observations made during the completion of field works indicated that vegetation in proximity to sampling locations that reported elevated levels of these compounds, and across the site in general, appeared to be healthy with no visual indicators of vegetative stress, indicating that soil processes responsible for ecological health did not appear to be inhibited.



Furthermore, NEPC (2013) notes that high molecular weight PAHs such as B(a)P are not readily taken up by plants, and as such are unlikely to pose an unacceptable risk to plant growth. This would particularly be the case of PAH sources such as ash where the PAHs are bound into the matrix.

In relation to the current use of the site as a primary school, noting that the school is currently covered by hardstand and is expected to operate in a condition similar to those observed during the investigation at the site, JBS&G do not consider there to be a complete contamination source-receptor pathway that would present a potentially unacceptable risk to current users of the site.

Considering the proposed future use as a secondary school, it is considered contamination in fill will require to be managed during and following redevelopment activities to ensure there are no complete source-receptor pathways to contaminants.

#### 10.2 Background Soil Concentrations

Soil samples collected from material indicated metal concentrations were below the background metal concentrations provided in Olszowy et. al. (1995) and were below the adopted site criteria (Section 7) (for natural materials only).

#### 10.3 Chemical Mixtures

There were no potential chemical mixtures identified during the investigation that may pose an unacceptable contamination risk at the site with respect to future site users.

#### 10.4 Aesthetic Issues

JBS&G noted potential aesthetic issues during the intrusive investigations at the site, relating primarily to anthropogenic inclusions of asphalt, ash, plastics and paper within fill materials. Hydrocarbon odours were noted by DP (2018) at BH18 (Jenkins Street) and at BH\_P\_07 from 0.2 to 1.2 m bgs (PID reported at 3.9 to 8.2 ppm over this interval). However, as per NEPC (2013) guidance, the presence of small quantities of non-hazardous inert materials and low odour residue (for example, weak petroleum hydrocarbon odours) that are expected to decrease over time should not be a cause of concern or limit the use of a site. Furthermore, sites with well-covered known inert materials that present no health hazard such as brick fragments are of low concern for both non-sensitive and sensitive land uses. As such, JBS&G do not consider there to be any significant aesthetic impacts at the site based on the collected data.

No other odours, staining or ACM was not detected during intrusive investigations at any other location.

#### 10.5 Potential Migration of Contaminants

The potential for migration of contaminants offsite is considered low given the nature, distribution and depth of identified contamination. JBS&G note that concrete/asphalt hardstand exists across the surface of the site and as such, JBS&G do not consider there to be significant pathways for percolating surface waters to interact with the identified impacts in soils. Furthermore, natural clays beneath fill at the site are likely to retard vertical migration of percolating water, mitigating potential risks to groundwater and / or onsite receptors at the site.

#### 10.6 Site Management Strategy

Based on the scope of investigation undertaken, and in accordance with the limitations in **Section 12**, JBS&G consider the site is suitable for the current land use subject to the current configuration of the site being maintained (e.g. hardstand to remain overlying fill materials to remove access to underlying soils from the surface). Should excavation works be required prior to the commencement of redevelopment activities at the site, JBS&G recommend the completion of a Construction Environmental Management Plan (CEMP) or similar to ensure that the current site configuration that enables the site to be considered suitable under the current site uses, are maintained.



JBS&G recommend the development of a Remedial Action Plan (RAP) to manage the potentially unacceptable risks to future site users (and construction workers) based on the identified soil contamination at the site, such that the site can be considered suitable for the proposed education land use.



#### 11. Conclusions and Recommendations

Based on the scope of investigation undertaken, and in accordance with the limitations in **Section 12**, the following conclusions are made:

- Potentially unacceptable concentrations of COPCs were identified within soils at the site, primarily associated with petroleum hydrocarbons and PAHs;
- Based on the current configuration and uses of the site, JBS&G do not consider there to be complete source-receptor pathways that would result in potentially unacceptable risk to current site users (i.e. concrete hardstand separates impacted soils from the ground surface);
- Should excavation works be required prior to the commencement of redevelopment
  activities at the site, JBS&G recommend the development of a CEMP, or similar, to ensure
  that the current site configuration that enables the site to be considered suitable under the
  current site uses, are maintained; and
- JBS&G recommend the development of a RAP to guide the required management of identified soil contamination during and after development such that the site can be considered suitable for the proposed educational land use.



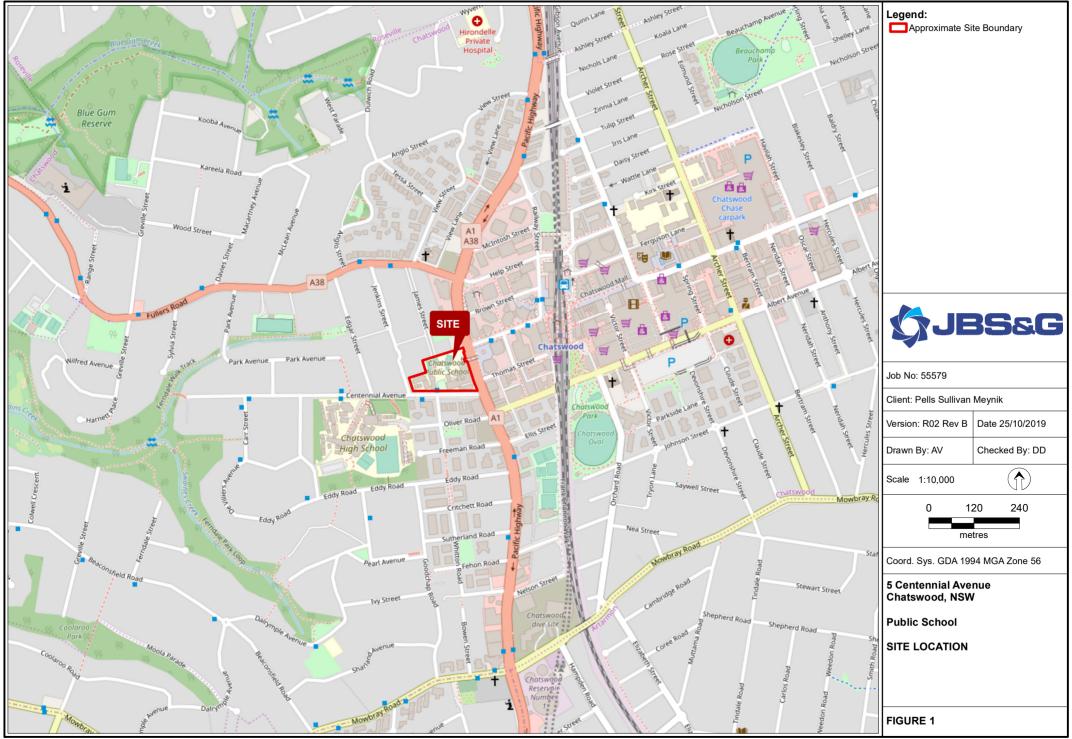
#### 12. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquiries.

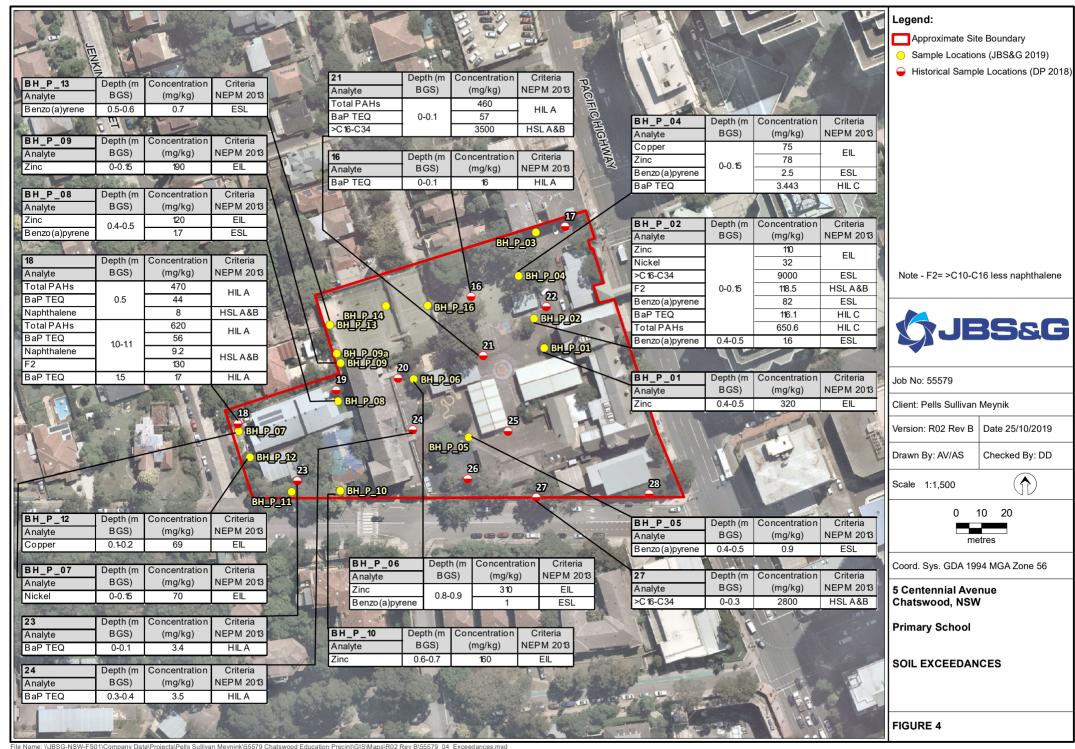
Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.





# **Figures**



File Name: \\UBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R02 Rev B\55579\_01\_SiteLoc.mxd Reference: @ OpenStreetMap (and) contributors, CC-BY-SA









## **Tables**

Project Number: 55579

Project Name: Chatswood Education Precinct



|                                                                    |                   |         | N                 | /letals &        | Metalloi | ds                  |                  |                  |                | TPH              | s (NEPC :        | 1999)            |                          |                   |                   | TRH               | s (NEPC 2                 | 013)                           |                 |                       |
|--------------------------------------------------------------------|-------------------|---------|-------------------|------------------|----------|---------------------|------------------|------------------|----------------|------------------|------------------|------------------|--------------------------|-------------------|-------------------|-------------------|---------------------------|--------------------------------|-----------------|-----------------------|
| JBS&G                                                              | Arsenic (Total)   | Cadmium | Chromium (Total)  | Copper           | Lead     | Mercury (Inorganic) | Nickel           | Zinc             | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction | C10-C36 Fraction (Total) | >C10-C16 Fraction | >C16-C34 Fraction | >C34-C40 Fraction | >C10-C40 Fraction (Total) | >C10-C16 less Naphthalene (F2) | C6-C10 Fraction | C6-C10 less BTEX (F1) |
|                                                                    | mg/kg             | mg/kg   | mg/kg             | mg/kg            | mg/kg    | mg/kg               | mg/kg            | mg/kg            | mg/kg          | mg/kg            | mg/kg            | mg/kg            | mg/kg                    | mg/kg             | mg/kg             | mg/kg             | mg/kg                     | mg/kg                          | mg/kg           | mg/kg                 |
| EQL                                                                | 2                 | 0.4     | 5                 | 5                | 5        | 0.1                 | 5                | 5                | 20             | 20               | 50               | 50               | 50                       | 50                | 100               | 100               | 100                       | 50                             | 20              | 20                    |
| NEPM 2013 EIL - Urban Residential (generic)                        | 100               |         | 190 <sup>#1</sup> | 60 <sup>#2</sup> | 1100     |                     | 30 <sup>#3</sup> | 70 <sup>#4</sup> |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil |                   |         |                   |                  |          |                     |                  |                  |                |                  |                  |                  |                          |                   | 300#5             | 2800#5            |                           | 120#6                          |                 | 180#6                 |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |                   |         |                   |                  |          |                     |                  |                  |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |                   |         |                   |                  |          |                     |                  |                  |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 Soil HIL C                                               | 300 <sup>#9</sup> | 90      | 300#10            | 17000            | 600#11   | 80#12               | 1200             | 30000            |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  |                   |         |                   |                  |          |                     |                  |                  |                |                  |                  |                  |                          |                   |                   |                   |                           | 110#16                         |                 | 45 <sup>#17</sup>     |

| Sample ID                      | Sample Date | Report Number |     |      |     |     |     |      |     |     |     |     |      |      |        |     |      |      |        |       |     |     |
|--------------------------------|-------------|---------------|-----|------|-----|-----|-----|------|-----|-----|-----|-----|------|------|--------|-----|------|------|--------|-------|-----|-----|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | 8.2 | <0.4 | 15  | <5  | 16  | <0.1 | <5  | 320 | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | 2.1 | 0.7  | 29  | 44  | 100 | <0.1 | 32  | 110 | <40 | <20 | 6400 | 3900 | 10,300 | 120 | 9000 | 2200 | 11,320 | 118.5 | <40 | <40 |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -   | -    | -   | -   | -   | -    | -   | -   | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | 4.1 | <0.4 | 14  | <5  | 23  | <0.1 | <5  | 6.3 | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | 3.8 | <0.4 | 12  | 75  | 58  | <0.1 | 8.3 | 78  | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | 4.4 | <0.4 | 14  | 8.8 | 19  | <0.1 | 8.5 | 14  | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | 4.5 | 0.4  | 11  | 34  | 98  | 0.1  | 6.7 | 310 | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | <2  | <0.4 | 42  | 55  | <5  | <0.1 | 70  | 55  | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | 4   | <0.4 | 9.1 | 18  | 180 | <0.1 | 6   | 120 | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | 2.7 | <0.4 | 5.1 | 15  | 14  | <0.1 | <5  | 190 | <20 | <20 | 54   | 120  | 174    | <50 | 130  | <100 | 130    | <50   | <20 | <20 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | 4.9 | <0.4 | 13  | 20  | 32  | <0.1 | <5  | 160 | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | 5.3 | <0.4 | 15  | 69  | 24  | <0.1 | 6   | 26  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | 13  | <0.4 | 12  | 35  | 53  | <0.1 | <5  | 36  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | 19  | <0.4 | 9   | 31  | 37  | <0.1 | 5   | 30  | <25 | <50 | <100 | <100 | -      | <50 | <100 | <100 | <50    | <50   | <25 | <25 |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | 12  | <0.4 | 14  | 39  | 48  | <0.1 | <5  | 40  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | 16  | <0.4 | 10  | 50  | 37  | <0.1 | 8.6 | 49  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | 5.9 | <0.4 | 15  | 18  | 21  | <0.1 | 7   | 38  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | 5   | <0.4 | 21  | 37  | 38  | <0.1 | 5.4 | 24  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |

#### **Env Stds Comments**

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.

#8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures (refer Section 4.10). This screening level is not applicable to free fibres. #9:Key limitations of HSL should be referred to prior to application in Friebel and Nadebaum (2011b and 2011d).

#10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b).

#12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific assessment should be untertaken

#16:To obtain F2 subtract naohthalene from >C10-C16.

Project Number: 55579

Project Name: Chatswood Education Precinct



|                                                                    |                  |                  |                  | BTEXN      |                |                |             |              |                |            |                   |                |                        | Pol                  | cyclic A             | romatic I | -<br>Hydrocai         | rbons                          |              |          |                         |              |              |        |
|--------------------------------------------------------------------|------------------|------------------|------------------|------------|----------------|----------------|-------------|--------------|----------------|------------|-------------------|----------------|------------------------|----------------------|----------------------|-----------|-----------------------|--------------------------------|--------------|----------|-------------------------|--------------|--------------|--------|
| \$JBS&G                                                            | Benzene          | Ethylbenzene     | Toluene          | Xylene (o) | Xylene (m & p) | Xylene (Total) | Naphthalene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a)pyrene | Benzo(b,j)fluoranthene | Benzo(g,h,i)perylene | Benzo(k)fluoranthene | Chrysene  | Dibenz(a,h)anthracene | Carcinogenic PAHs as B(a)P TEQ | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Phenanthrene | PAHs (Total) | Pyrene |
|                                                                    | mg/kg            | mg/kg            | mg/kg            | mg/kg      | mg/kg          | mg/kg          | mg/kg       | mg/kg        | mg/kg          |            | mg/kg             | mg/kg          | mg/kg                  | mg/kg                |                      | mg/kg     | mg/kg                 | mg/kg                          | mg/kg        | mg/kg    |                         |              | mg/kg        | mg/kg  |
| EQL                                                                | 0.1              | 0.1              | 0.1              | 0.1        | 0.2            | 0.3            | 0.5         | 0.5          | 0.5            | 0.5        | 0.5               | 0.5            | 0.5                    | 0.5                  | 0.5                  | 0.5       | 0.5                   |                                | 0.5          | 0.5      | 0.5                     | 0.5          | 0.5          | 0.5    |
| NEPM 2013 EIL - Urban Residential (generic)                        |                  |                  |                  |            |                |                | 170         |              |                |            |                   |                |                        |                      |                      |           |                       |                                |              |          |                         |              |              |        |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil | 50 <sup>#5</sup> | 70 <sup>#5</sup> | 85 <sup>#5</sup> |            |                | 105#5          |             |              |                |            |                   | 0.7#5          |                        |                      |                      |           |                       |                                |              |          |                         |              |              |        |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |                  |                  |                  |            |                |                |             |              |                |            |                   |                |                        |                      |                      |           |                       |                                |              |          |                         |              |              |        |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |                  |                  |                  |            |                |                |             |              |                |            |                   |                |                        |                      |                      |           |                       |                                |              |          |                         |              |              |        |
| NEPM 2013 Soil HIL C                                               |                  |                  |                  |            |                |                |             |              |                |            |                   |                |                        |                      |                      |           |                       | 3 <sup>#13</sup>               |              |          |                         |              | 300#14       |        |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  | 0.5              | 55               | 160              |            |                | 40             | 3           |              |                |            |                   |                |                        |                      |                      |           |                       |                                |              |          |                         |              |              |        |

| Sample ID                      | Sample Date | Report Number |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                     |      |      |      |      |       |      |
|--------------------------------|-------------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------------------|------|------|------|------|-------|------|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | <0.2 | <0.2 | <0.2 | <0.2 | <0.4 | <0.6 | 0.7  | 1    | 1.7  | 7.2  | 47   | 82   | 55   | 41   | 59   | 48   | 11   | 116.1#2             | 96   | 1    | 61   | 29   | 650.6 | 110  |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 1.4  | 1.6  | 1.1  | 1    | 1.4  | 1.6  | <0.5 | 2.336#2             | 3.5  | <0.5 | 0.7  | 1.2  | 17.1  | 3.6  |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 1.5  | 2.5  | 1.9  | 0.8  | 1.9  | 1.5  | <0.5 | 3.443#2             | 2.6  | <0.5 | 1.4  | 1    | 18    | 2.9  |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 0.6  | 0.9  | 0.5  | <0.5 | 0.7  | 0.5  | <0.5 | 1.408#2             | 1.3  | <0.5 | 0.7  | 0.9  | 7.5   | 1.4  |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | 0.6  | 1    | 0.9  | <0.5 | 1    | 0.7  | <0.5 | 1.56#2              | 1.1  | <0.5 | 0.5  | <0.5 | 7     | 1.2  |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 1.3  | 1.7  | 1.2  | 0.6  | 1.5  | 1.1  | <0.5 | 2.457#2             | 2.5  | <0.5 | 0.9  | 1.5  | 14.8  | 2.5  |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21 <sup>#6</sup> | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | <0.2 | <1   | <0.5 | <1   | <2   | <3   | <0.1 | <0.1 | <0.1 | <0.1 | 0.3  | 0.4  | -    | 0.3  | -    | 0.3  | <0.1 | 0.506#2             | 0.5  | <0.1 | 0.2  | 0.1  | -     | 0.5  |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | 0.6  | 0.7  | 0.8  | <0.5 | 0.7  | 0.7  | <0.5 | 1.195#3             | 0.8  | <0.5 | <0.5 | <0.5 | 5.2   | 0.9  |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21 <sup>#6</sup> | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |

#### Env Stds Comments

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fiel #8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bondec #9:Key limitations of HSL should be referred to prior to application in Friebel and Nac #10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b)

#12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific

#16:To obtain F2 subtract naohthalene from >C10-C16.

Project Number: 55579

Project Name: Chatswood Education Precinct



|                                                                    |         |                 |                                  |           |          |           |              |           |       | Orga                       | anochlori        | ne Pestic        | ides                   |                           |        |                   |               |            |                    |         |              |           |
|--------------------------------------------------------------------|---------|-----------------|----------------------------------|-----------|----------|-----------|--------------|-----------|-------|----------------------------|------------------|------------------|------------------------|---------------------------|--------|-------------------|---------------|------------|--------------------|---------|--------------|-----------|
| <b>JBS&amp;G</b>                                                   | 2,4-DDE | Ma/ka<br>Aldrin | Aldrin + Dieldrin (Sum of Total) | alpha-BHC | אפרa-BHC | Chlordane | aga<br>mg/kg | TOO mg/kg | We/ke | DDT+DDE+DDD (Sum of Total) | Mg//gm delta-BHC | Endosulfan alpha | ក្ក<br>Endosulfan beta | Endosulfan sulphate<br>RA | Endrin | ଳ Endrin aldehyde | Endrin ketone | Heptachlor | Heptachlor Epoxide | Findane | Methoxychlor | Toxaphene |
| EQL                                                                | 0.05    | 0.05            | 0.05                             | 0.05      | 0.05     | 0.1       | 0.05         | 0.05      | 0.05  | 0.05                       | 0.05             | 0.05             | 0.05                   | 0.05                      | 0.05   | 0.05              | 0.05          | 0.05       | 0.05               | 0.05    | 0.05         | 1         |
| NEPM 2013 EIL - Urban Residential (generic)                        | 0.05    | 0.05            | 0.05                             | 0.03      | 0.05     | 0.1       | 0.00         | 180       | 0.00  | 0.05                       | 0.05             | 0.05             | 0.05                   | 0.00                      | 0.05   | 0.05              | 0.05          | 0.05       | 0.03               | 0.03    | 0.05         |           |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil |         |                 |                                  |           |          |           |              | 230       |       |                            |                  |                  |                        |                           |        |                   |               |            |                    |         |              |           |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |         |                 |                                  |           |          |           |              |           |       |                            |                  |                  |                        |                           |        |                   |               |            |                    |         |              |           |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |         |                 |                                  |           |          |           |              |           |       |                            |                  |                  |                        |                           |        |                   |               |            |                    |         |              |           |
| NEPM 2013 Soil HIL C                                               |         |                 | 10                               |           |          | 70        |              |           |       | 400                        |                  |                  |                        |                           | 20     |                   |               | 10         |                    |         | 400          | 30        |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  |         |                 |                                  |           |          |           |              |           |       |                            |                  |                  |                        |                           |        |                   |               |            |                    |         |              |           |

| Sample ID                      | Sample Date | Report Number |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |    |
|--------------------------------|-------------|---------------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <1 |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <1 |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <1 |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <1 |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <1 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     |       | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -  |

#### Env Stds Comments

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fiel #8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bondec #9:Key limitations of HSL should be referred to prior to application in Friebel and Nac #10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b)

#12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific

#16:To obtain F2 subtract naohthalene from >C10-C16.

Project Number: 55579

Project Name: Chatswood Education Precinct



|                                                                    |              |              | Polyc        | hlorinat          | ed Biphe      | nyls              |                   |                  | Chlorinated Benzenes |                       |                             |                                 | Asbe       | estos                  |           |                       |           |                     |                          | Other            |
|--------------------------------------------------------------------|--------------|--------------|--------------|-------------------|---------------|-------------------|-------------------|------------------|----------------------|-----------------------|-----------------------------|---------------------------------|------------|------------------------|-----------|-----------------------|-----------|---------------------|--------------------------|------------------|
| \$JBS&G                                                            | Aroclor 1016 | Aroclor 1221 | Aroclor 1232 | a<br>Aroclor 1242 | Maroclor 1248 | a<br>Aroclor 1254 | a<br>Aroclor 1260 | M PCBs (Total)   | Hexachlorobenzene    | տ Approx. Sample Mass | S Asbestos from ACM in Soil | 8 Asbestos from FA & AF in Soil | m Mass ACM | ™ Mass Asbestos in ACM | m Mass FA | տ Mass Asbestos in FA | m Mass AF | Mass Asbestos in AF | Mass Asbestos in FA & AF | % Moisture 103oC |
| EQL                                                                | 0.1          | 0.1          | 0.1          | 0.1               | 0.1           | 0.1               | 0.1               | 0.1              | 0.05                 |                       |                             | · ·                             | Ŭ          | J                      | J         | J                     | Ť         |                     |                          | 1                |
| NEPM 2013 EIL - Urban Residential (generic)                        |              |              |              |                   |               |                   |                   |                  |                      |                       |                             |                                 |            |                        |           |                       |           |                     |                          |                  |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil |              |              |              |                   |               |                   |                   |                  |                      |                       |                             |                                 |            |                        |           |                       |           |                     |                          |                  |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |              |              |              |                   |               |                   |                   |                  |                      |                       | 0.02 <sup>#7</sup>          |                                 |            |                        |           |                       |           |                     |                          |                  |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |              |              |              |                   |               |                   |                   |                  |                      |                       |                             | 0.001#8                         |            |                        |           |                       |           |                     |                          |                  |
| NEPM 2013 Soil HIL C                                               |              |              |              |                   |               |                   |                   | 1 <sup>#15</sup> | 10                   |                       |                             |                                 |            |                        |           |                       |           |                     |                          |                  |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  |              |              |              |                   |               |                   |                   |                  |                      |                       |                             |                                 |            |                        |           |                       |           |                     |                          |                  |

| Sample ID                      | Sample Date | Report Number |      |      |      |      |      |      |      |      |       |     |   |   |   |   |   |   |   |   |   |     |
|--------------------------------|-------------|---------------|------|------|------|------|------|------|------|------|-------|-----|---|---|---|---|---|---|---|---|---|-----|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | 488 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20  |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | <0.05 | 697 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.9 |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -    | -    | -    | -    | -    | -    | -    | -    | -     | -   | - | - | - | - | - | - | - | - | - | 8.6 |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | <0.05 | 685 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14  |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 818 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.4 |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 643 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.8 |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | 544 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16  |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 789 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.4 |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 618 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17  |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | <0.05 | 608 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.7 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 706 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15  |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 422 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19  |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20  |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 657 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21  |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 430 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22  |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 474 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23  |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 629 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14  |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 375 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21  |

#### **Env Stds Comments**

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fiel #8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bondec #9:Key limitations of HSL should be referred to prior to application in Friebel and Nac #10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b)

#12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific

#16:To obtain F2 subtract naohthalene from >C10-C16.

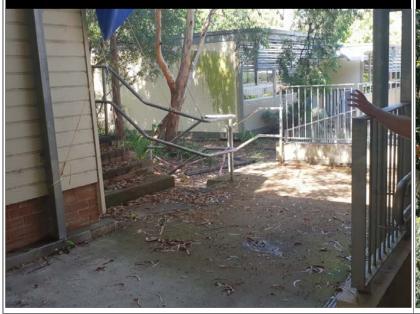


|                                                 |              |                            |                      |              |                  |             | Н          | eavy Metals    | 3       |              |           |            |                    |              | P.                | AH                |          |              | TRH                 | /TPH <sup>†</sup>                   |
|-------------------------------------------------|--------------|----------------------------|----------------------|--------------|------------------|-------------|------------|----------------|---------|--------------|-----------|------------|--------------------|--------------|-------------------|-------------------|----------|--------------|---------------------|-------------------------------------|
| Sample                                          | (C=          | il Type<br>coarse<br>fine) | Date<br>Sampled      | As           | Cd               | Cr °        | Cu         | Pb             | TCLP Pb | Hg           | Ni        | Zn         | total <sup>d</sup> | TCLP total   | BaP TEQ           | ВаР               | TCLP BaP | Naphthalene  | ီ၁ - <sup>9</sup> ၁ | C <sub>10</sub> - C <sub>36</sub> ° |
|                                                 |              |                            |                      | mg/kg        | mg/kg            | mg/kg       | mg/kg      | mg/kg          | mg/L    | mg/kg        | mg/kg     | mg/kg      | mg/kg              | mg/L         | mg/kg             | mg/kg             | mg/L     | mg/kg        | mg/kg               | mg/kg                               |
| Soil Assessment Criter                          |              | NEPM (a                    | s amended            | d 2013) (ref | er to report     | body for de | etails)    |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| Residential with Access                         | sible Soil   |                            |                      |              |                  |             | 1          |                |         |              |           |            |                    |              |                   |                   |          | 1            |                     |                                     |
| HIL A                                           |              |                            |                      | 100          | 20               | 100 °       | 6,000      | 300            |         | 40           | 400       | 7,400      | 300                |              | 3                 | 0.7               |          | 470          |                     |                                     |
| EIL/ ESL<br>EIL/ ESL                            |              | oarse<br>fine              |                      | 100<br>100   |                  | 250<br>640  | 110<br>110 | 1,100<br>1,100 |         |              | 35<br>270 | 250<br>290 |                    |              |                   | 0.7               |          | 170<br>170   |                     |                                     |
| Management Limit                                |              | oarse                      |                      | 100          |                  | 040         | 110        | 1,100          |         |              | 210       | 290        |                    |              |                   | 0.7               |          | 170          |                     |                                     |
| Management Limit                                | 1            | fine                       |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| HSL A&B, vapour intrusion                       |              |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          | 3            |                     |                                     |
| HSL A&B, vapour intrusion HSL A, direct contact | on, 0-<1m, c | clay                       |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          | 5            |                     |                                     |
| Waste Classification Th                         | rocholde     |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          | 1,400        |                     |                                     |
| Waste Glassification 11                         | ii esiioius  | СТ                         | 1                    | 100          | 20               | 100         |            | 100            |         | 4            | 40        |            | 200                |              |                   | 0.8               |          | 1            | 650                 | 10,00                               |
| General Solid                                   |              | SCC1/T                     |                      | 500          | 100              | 1,900       |            | 1,500          | 5       | 50           | 1,050     |            | 200                |              |                   | 10                | 0.04     |              | 650                 | 10,00                               |
|                                                 |              | CT                         |                      | 400          | 80               | 400         |            | 400            | 3       | 16           | 160       |            | 800                |              |                   | 3.2               | 0.04     |              | 2,600               | 40,000                              |
| Restricted Solid                                |              | SCC2/T                     |                      | 2,000        | 400              | 7,600       |            | 6,000          | 20      | 200          | 4,200     |            | 800                |              |                   | 23                | 0.16     |              | 2,600               | 40,000                              |
| Published Background                            |              |                            |                      |              |                  | 1,000       | <u> </u>   | 0,000          | 20      | 200          | 1,200     | <u> </u>   | 1 000              | <u> </u>     | <u> </u>          | 1 20              | 1 0.10   | <u> </u>     | 2,000               | +0,000                              |
| NEPC (1999)                                     |              | 1.0000                     |                      | 1-50         | 1                | 5-1000      | 2-100      | 2-200          |         | 0.03         | 5-500     | 10-300     | <u> </u>           |              |                   |                   |          | 1            |                     | П                                   |
| ANZECC (1992)                                   |              |                            |                      | 0.2-30       | 0.04-2           | 0.5-110     | 1-190      | <2-200         |         | 0.001-0.1    | 2-400     | 2-180      | 0.95-5             |              |                   |                   |          |              |                     | 1                                   |
| ANZECC (2000)                                   |              |                            |                      | 1-53         | 0.016-0.78       | 2.5-673     | 0.4-412    | 2-81           |         |              | 1-517     | 1-263      |                    |              |                   |                   |          |              |                     |                                     |
| <b>Laboratory Results</b>                       |              |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| High School                                     |              |                            |                      |              |                  |             |            |                |         |              |           |            |                    |              |                   |                   |          |              |                     |                                     |
| 1 / 0.5-0                                       | 0.6 fill     | lling-F                    | 22/01/18             | 6            | <0.4             | 12          | 20         | 52             |         | <0.1         | 8         | 280        | < 0.05             |              | <0.5              | < 0.05            |          | <0.1         | <25                 | <250                                |
| REPLICATE1-2201                                 | 18 fill      | lling-F                    | 22/01/18             | 13           | <0.4             | 16          | 27         | 58             |         | <0.1         | 13        | 490        | <0.5               |              | <0.5              | <0.5              |          | <0.5         |                     |                                     |
| 2 / 0.1                                         | 1 silty      | y clay?                    | 23/01/18             | 4            | <0.4             | 14          | 13         | 70             |         | <0.1         | 3         | 86         | 0.2                |              | <0.5              | <0.05             |          | <0.1         | <25                 | 195                                 |
| 3 / 0-0.                                        | .1 silty     |                            | 23/01/18             | 5            | <0.4             | 12          | 14         | 18             |         | <0.1         | 3         | 15         | 0.51               |              | <0.5              | 0.09              |          | <0.1         | <25                 | <250                                |
| Replicate 6                                     | silty        | y clay?                    | 23/01/18             | 5            | <0.4             | 12          | 15         | 33             |         | <0.1         | 4         | 28         | 2.6                |              | <0.5              | 0.2               |          | <0.1         |                     |                                     |
| 4 / 0-0.                                        | .1 fill      | lling-C                    | 22/01/18             | 9            | <0.4             | 11          | 25         | 62             |         | 0.1          | 7         | 120        | 8                  |              | 1                 | 0.73              |          | <0.1         | <25                 | <250                                |
| 5 / 1-1.                                        | .1 fill      | lling-F                    | 22/01/18             | 7            | <0.4             | 14          | 18         | 26             |         | <0.1         | 7         | 34         | <0.05              |              | <0.5              | < 0.05            |          | <0.1         | <25                 | <250                                |
| 6 / 0.2-0                                       | 0.3 silt     | ty clay                    | 22/01/18             | <4           | <0.4             | 5           | 8          | 16             |         | <0.1         | 1         | 3          | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 7 / 0-0.                                        |              | lling-C                    | 23/01/18             | 7            | <0.4             | 28          | 36         | 38             |         | <0.1         | 25        | 83         | 0.1                |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 7 / 0.5-0                                       | 0.6 fill     | lling-F                    | 23/01/18             | 7            | <0.4             | 12          | 30         | 130            | 0.07    | <0.1         | 8         | 82         | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 8 / 0-0.                                        |              | lling-C                    | 23/01/18             | <4           | <0.4             | 41          | 51         | 15             |         | <0.1         | 46        | 59         | 0.2                |              | <0.5              | <0.05             |          | <0.1         | <25                 | 770                                 |
| 8 / 0.7-0                                       |              | Ŭ                          | 23/01/18             | 8            | <0.4             | 10          | 19         | 16             |         | <0.1         | 7         | 31         | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 9 / 0.2-0                                       |              |                            | 22/01/18             | 12           | <0.4             | 8           | 56         | 8              |         | <0.1         | 33        | 35         | <0.05              |              | <0.5              | <0.05             |          | <0.1         | <25                 | 775                                 |
| 10 / 2-2                                        |              |                            | 22/01/18             | 8            | <0.4             | 13          | 21         | 24             |         | <0.1         | 9         | 53         | 0.3                |              | <0.5              | 0.06              |          | <0.1         | <25                 | <250                                |
| 11 / 0-0.                                       |              |                            | 23/01/18             | 6            | <0.4             | 11          | 21         | 27             |         | <0.1         | 5         | 40         | 46                 | 0.004        | 5.6               | 3.9               | <0.001   | <1 - 0.6     | <25                 | 225                                 |
| 12 / 0-0.                                       |              | -                          | 23/01/18             | <4           | <0.4             | 21          | 35         | 11             |         | <0.1         | 25        | 34         | 4.1                |              | <0.5              | 0.3               |          | <0.1         | <25                 | 835                                 |
| Public School and E                             |              |                            | 23/01/18             | 1            | -0.4             | 9           | 15         | 95             |         | 04           | 7         | 97         | 23                 | NIL (+)VE    | 2.2               | 2.2               | <0.001   | -0.4         | <25                 | 120                                 |
| Replicate 4                                     |              |                            | 23/01/18             | 4            | <0.4<br><0.4     | 16          | 45<br>34   | 95<br>88       |         | 0.4          | 7<br>11   | 83         | 27                 | INIL (+)VE   | 3.2<br>3.4        | 2.2               | <0.001   | <0.1<br>0.2  | <20                 | 120                                 |
| 13 / 0.4-0                                      |              |                            | 23/01/18             | 5            | <0.4             | 18          | 35         | 52             |         | 0.4          | 9         | 82         | 6.1                |              | 1                 | 0.64              |          | <0.1         | <25                 | <250                                |
| 14 / 0.0-0                                      | 0.1 fill     | lling-F                    | 23/01/18             | 5            | <0.4             | 10          | 23         | 29             |         | <0.1         | 4         | 64         | < 0.05             |              | <0.5              | <0.05             |          | <0.1         | <25                 | <250                                |
| 15 / 0-0.                                       |              |                            | 19/01/18             | 5            | <0.4             | 9           | 31         | 18             | 0.00    | <0.1         | 10        | 62         | <0.05              | NIII / 33.45 | <0.5              | <0.05             | 0.001    | <0.1         | <25                 | 120                                 |
| 16 / 0.0-0<br>17 / 0.3-0                        |              |                            | 24/01/18<br>24/01/18 | 6<br><4      | <0.4<br><0.4     | 8<br>20     | 89<br>2    | 130<br>22      | 0.08    | <0.1<br><0.1 | 3         | 58<br>5    | 86<br>3.4          | NIL (+)VE    | <b>16</b> 0.5     | 0.4               | <0.001   | 0.3<br><0.1  | <25<br><25          | 570<br><250                         |
| 18 / 0.5                                        |              |                            | 23/01/18             | <4           | <0.4             | 30          | 39         | 31             |         | <0.1         | 34        | 44         | 470                |              | 44                | 30                |          | 8            | <25                 | 1,440                               |
| 18 / 1.0-1                                      |              | lling-F                    | 23/01/18             | <4           | <0.4             | 13          | 16         | 25             |         | <0.1         | 5         | 14         | 620                | 0.08         | 56                | 38                | <0.001   | 9.2          | <25                 | 1,800                               |
| 18 / 1.5                                        |              |                            | 23/01/18             |              |                  |             |            |                |         |              |           |            | 190                |              | 17                | 12                |          | 3            | <25                 | 620                                 |
| 19 / 0-0.                                       |              |                            | 19/01/18             | <4           | <0.4             | 9           | 20         | 62             |         | <0.1         | 5         | 80         | 22                 | -            | 2.1               | 1.4               |          | <0.1         | <25                 | <250                                |
| 20 / 0.0-0<br>21 / 0.0-0                        |              |                            | 24/01/18<br>24/01/18 | <4<br><4     | <0.4<br><0.4     | 16<br>35    | 28<br>22   | 24<br>61       |         | 0.1<br><0.1  | 19<br>38  | 48<br>48   | 0.94<br>460        | 0.004        | <0.5<br><b>57</b> | 0.08<br><b>39</b> | <0.001   | <0.1<br>0.7  | <25<br><25          | 1,470<br>4,100                      |
| 21 / 0.0-0                                      |              |                            | 24/01/18             | ` ` `        | \U. <del>4</del> | - 55        |            | 01             |         | \U.1         | 30        | 70         | 14                 | 0.004        | 1.7               | 1.2               | \0.001   | <0.1         | <25                 | <250                                |
| 22 / 0.3-0                                      |              |                            | 24/01/18             | <4           | <0.4             | 19          | 12         | 66             |         | <0.1         | 6         | 30         | 15                 |              | 2.8               | 1.8               |          | <0.1         | <25                 | <250                                |
| 23 / 0-0.                                       |              | lling-F                    | 19/01/18             | 5            | <0.4             | 10          | 19         | 81             |         | <0.1         | 5         | 69         | 31                 |              | 3.4               | 2.3               |          | 0.1          | <25                 | 110                                 |
| 24 / 0.3-0                                      |              |                            | 24/01/18             | 4            | <0.4             | 13          | 21         | 150            | 0.06    | 0.2          | 7         | 100        | 23                 | NIL (+)VE    | 3.5               | 2.3               | <0.001   | <0.1         | <25                 | 440                                 |
| 25 / 0.2-0<br>26 / 0.2-0                        |              |                            | 24/01/18<br>24/01/18 | <4<br>7      | <0.4<br><0.4     | 4<br>12     | 2<br>16    | 3<br>26        |         | <0.1<br><0.1 | 6         | 3<br>48    | <0.05<br>4.6       |              | <0.5<br>0.6       | <0.05<br>0.4      |          | <0.1<br><0.1 | <25<br><25          | <250<br>280                         |
| 27 / 0-0.2-0                                    |              |                            | 19/01/18             | 5            | 0.5              | 16          | 170        | 120            |         | 0.1          | 7         | 1,000      | 0.3                | +            | <0.5              | 0.4               | +        | <0.1         | <25<br><25          | 4,395                               |
| 28 / 0.4-0                                      |              |                            | 19/01/18             | <4           | <0.4             | 29          | 26         | 91             |         | <0.1         | 19        | 150        | 21                 | NIL (+)VE    |                   | 1.9               | <0.001   | 0.1          | <25                 | 760                                 |
| REPLICATE1-1901                                 |              |                            | 19/01/18             | 3.6          | < 0.4            | 13          | 23         | 85             |         | < 0.1        | 9.8       | 170        | 15.7               | ` '          | 2.2               | 1.7               |          | < 0.5        |                     |                                     |



| Table K1: Summary of Labo                                |                                   |                      |            | T          | TRH (NE                    | PM 2013) i                           |               |               |                                                  | I (NEPM 2                                        |              |                                        | ВТ                                      | EX           |          |            |                 |                  |                  |               |
|----------------------------------------------------------|-----------------------------------|----------------------|------------|------------|----------------------------|--------------------------------------|---------------|---------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------------------------------|-----------------------------------------|--------------|----------|------------|-----------------|------------------|------------------|---------------|
| Sample                                                   | Soil Type<br>(C=coarse<br>F=fine) | Date<br>Sampled      | C6-C10     | >C10-C16   | C6 – C10 less<br>BTEX (F1) | >C10-C16 less<br>naphthalene<br>(F2) | >C16-C34 (F3) | >C34-C40 (F4) | >C10-C16 <sup>j (F2)</sup> ,                     | >C16-C34 (F3 age representation)                 | >C34-C40 (F4 | Benzene                                | Toluene                                 | Ethylbenzene | xylene   | phenol     | PC B            | p d O O C D      | ОРР              | asbestos      |
| Soil Assessment Criteria (S.                             | AC\ NEDM (                        | o omende             | mg/kg      | mg/kg      | mg/kg                      | mg/kg                                | mg/kg         | mg/kg         | mg/kg                                            | mg/kg                                            | mg/kg        | mg/kg                                  | mg/kg                                   | mg/kg        | mg/kg    | mg/kg      | mg/kg           | mg/kg            | mg/kg            | 0.1g/l        |
| Residential with Accessible                              | -,                                | is amended           |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  |                  |               |
| HIL A                                                    | 3011                              |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          | 3,000      | 1               | 6                | 340              | $\overline{}$ |
| EIL/ ESL                                                 | coarse                            |                      |            | 120        | 180                        |                                      | 300           | 2,800         | 120                                              | 300                                              | 2,800        | 50                                     | 85                                      | 70           | 105      | 0,000      |                 | 180 (DDT)        | 0.0              |               |
| EIL/ ESL                                                 | fine                              |                      |            | 120        | 180                        |                                      | 1,300         | 5,600         | 120                                              | 1,300                                            | 5,600        | 65                                     | 105                                     | 125          | 45       |            |                 | 180 (DDT)        |                  |               |
| Management Limit                                         | coarse                            |                      | 700        | 1,000      |                            |                                      | 2,500         | 10,000        | 1,000                                            | 2,500                                            | 10,000       |                                        |                                         |              |          |            |                 |                  |                  |               |
| <b>Management Limit</b><br>HSL A&B, vapour intrusion, 0- | fine                              |                      | 800        | 1,000      | 45                         | 110                                  | 3,500         | 10,000        | 1,000                                            | 3,500                                            | 10,000       | 0.5                                    | 160                                     | 55           | 40       |            |                 |                  |                  |               |
| HSL A&B, vapour intrusion, 0-                            |                                   |                      |            |            | 50                         | 280                                  |               |               | 280                                              |                                                  |              | 0.5                                    | 480                                     | NL           | 110      |            |                 |                  |                  | _             |
| HSL A, direct contact                                    | ,,                                |                      |            |            | 4,400                      | 3,300                                | 4,500         | 6,300         | 3,300                                            | 4,500                                            | 6,300        | 100                                    | 14,000                                  | 4,500        | 12,000   |            |                 |                  |                  |               |
| Waste Classification Thresh                              | olds                              |                      |            | •          |                            |                                      |               | •             |                                                  |                                                  |              |                                        |                                         |              |          | •          | •               |                  |                  |               |
| General Solid                                            | C                                 | Γ1                   |            |            |                            |                                      |               |               |                                                  |                                                  |              | 10                                     | 288                                     | 600          | 1,000    | 288        | <50             | <50 <sup>f</sup> | 4 <sup>9</sup>   | nil           |
| General Sullu                                            | SCC1/                             | TCLP1                |            |            |                            |                                      |               |               |                                                  |                                                  |              | 18                                     | 518                                     | 1,080        | 1,800    | 518        | <50             | <50 <sup>f</sup> | 7.5 <sup>g</sup> | nil           |
| Restricted Solid                                         | C <sup>-</sup>                    |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 40                                     | 1,152                                   | 2,400        | 4,000    | 1,152      | <50             | <50 <sup>f</sup> | 16 <sup>g</sup>  | nil           |
|                                                          | SCC2/                             |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 72                                     | 2,073                                   | 4,320        | 7,200    | 2,070      | <50             | <50 <sup>f</sup> | 30 <sup>g</sup>  | nil           |
| Published Background Ran                                 | ges for Asses                     | sment of N           |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  |                  |               |
| NEPC (1999)                                              |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 0.0=                                   | 0.1.                                    |              |          | 0.00       | 0.00            | 0.001            |                  |               |
| ANZECC (1992)<br>ANZECC (2000)                           |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              | 0.05 - 1                               | 0.1 - 1                                 |              |          | 0.03 - 0.5 | 0.02 - 0.1      | <0.001 - <0.97   | <del> </del>     | +             |
| ,                                                        |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  |                  | <u> </u>      |
| Laboratory Results                                       |                                   |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  |                  |               |
| High School                                              | _                                 |                      |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  |                  |               |
| 1 / 0.5-0.6                                              | filling-F                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| REPLICATE1-220118                                        | filling-F                         | 22/01/18             |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  | <u> </u>         |               |
| 2 / 0.1                                                  | silty clay?                       | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | 120           |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 3 / 0-0.1                                                | silty clay?                       | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| Replicate 6                                              | silty clay?                       | 23/01/18             |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 |                  | <u> </u>         | <u> </u>      |
| 4 / 0-0.1                                                | filling-C                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 5 / 1-1.1                                                | filling-F                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 6 / 0.2-0.3                                              | silty clay                        | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | <u> </u>      |
| 7 / 0-0.1                                                | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 7 / 0.5-0.6                                              | filling-F                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | <u> </u>      |
| 8 / 0-0.1<br>8 / 0.7-0.8                                 | filling-C<br>filling-F            | 23/01/18<br>23/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 600<br><100   | 570<br><100   | -                                                |                                                  |              | <0.2<br><0.2                           | <0.5<br><0.5                            | <1<br><1     | <1<br><1 | <5<br><5   | <0.1<br><0.1    | <0.1<br><0.1     | <0.1<br><0.1     | NAD<br>NAD    |
| 9 / 0.2-0.3                                              | filling-F                         | 22/01/18             | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 550           | 700           | -                                                | -                                                |              | <0.2                                   | <0.5                                    | <1           | <1       | <5<br><5   | <0.1            | <0.1             | <0.1             | NAD           |
| 10 / 2-2.1                                               | filling-F                         | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 11 / 0-0.1                                               | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 210           | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| 12 / 0-0.1                                               | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 530           | 800           |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| Public School and Busl                                   |                                   | 20/01/10             | \20        | 100        | \20                        | 100                                  | 000           | 000           |                                                  |                                                  | <u> </u>     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |              | _ ``     | 1 10       | νο.1            | νο.1             |                  | 11010         |
| 13 / 0.0-0.1                                             | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 160           | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| Replicate 4                                              | filling-C                         | 23/01/18             |            |            |                            |                                      |               |               |                                                  |                                                  |              |                                        |                                         |              |          |            |                 | -                |                  |               |
| 13 / 0.4-0.5                                             | filling-C                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       |            |                 |                  |                  | NAD           |
| 14 / 0.0-0.1                                             | filling-F                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5<br>.F   | <0.1            | <0.1             | <0.1             | NAD           |
| 15 / 0-0.1<br>16 / 0.0-0.1                               | filling-F<br>filling-C            | 19/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 100<br>500    | <100<br>140   |                                                  |                                                  |              | <0.2<br><0.2                           | <0.5<br><0.5                            | <1<br><1     | <1<br><1 | <5<br><5   | <0.1<br><0.5    | <0.1<br><0.1     | <0.1             | NAD<br>NAD    |
| 17 / 0.3-0.4                                             | silty clay?                       | 24/01/18             | <25        | <50<br><50 | <25                        | <50<br><50                           | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5<br><5   | <0.5            | <0.1             | <0.1             | INAL          |
| 18 / 0.5                                                 | filling-F                         | 23/01/18             | <25        | 87         | <25                        | 79                                   | 1,300         | 210           |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       |            |                 |                  |                  | NAD           |
| 18 / 1.0-1.1                                             | filling-F                         | 23/01/18             | <25        | 140        | <25                        | 130                                  | 1,600         | 220           | 89                                               | 940                                              | <100         | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <1              | <0.1             | <0.1             | NAD           |
| 18 / 1.5                                                 | filling-F                         | 23/01/18             | <25        | <50        | <25                        | <50                                  | 570           | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       |            |                 | 2.4              | <u> </u>         | 1115          |
| 19 / 0-0.1<br>20 / 0.0-0.1                               | filling-C<br>filling-C            | 19/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br>1,100 | <100<br>1,100 |                                                  |                                                  |              | <0.2<br><0.2                           | <0.5<br><0.5                            | <1<br><1     | <1<br><1 | <5<br><5   | <0.1<br><0.1    | <0.1<br><0.1     | <0.1<br><0.1     | NAD<br>NAD    |
| 21 / 0.0-0.1                                             | filling-C                         | 24/01/18             | <25<br><25 | <50<br>80  | <25<br><25                 | <50<br>80                            | 3,500         | 1,100         | <50                                              | 1,400                                            | 790          | <0.2                                   | <0.5                                    | <1           | <1       | <5<br><5   | <0.1            | <0.1<br><1       | <0.1             | NAD           |
| 21 / 1-1.1                                               | silty clay?                       | 24/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          | 100                                              | .,                                               |              | <0.2                                   | <0.5                                    | <1           | <1       | "          | <del>  ''</del> |                  | <del></del>      | 1.57,2        |
| 22 / 0.3-0.4                                             | filling-F                         | 24/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             |               |
| 23 / 0-0.1                                               | filling-F                         | 19/01/18             | <25        | <50        | <25                        | <50                                  | 160           | <100          |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAE           |
| 24 / 0.3-0.4                                             | filling-F                         | 24/01/18             | <25        | <50<br><50 | <25<br><25                 | <50<br><50                           | 350<br><100   | 280<br><100   | -                                                | -                                                |              | <0.2                                   | <0.5<br><0.5                            | <1           | <1       | <5         | <0.1<br><0.1    | <0.1<br><0.1     | <0.1             | NAC           |
| 25 / 0.2-0.3<br>26 / 0.2-0.3                             | filling-C<br>filling-C            | 24/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | 300           | 240           | <del>                                     </del> | <del>                                     </del> | -            | <0.2<br><0.2                           | <0.5                                    | <1<br><1     | <1<br><1 | <5<br><5   | <0.1            | <0.1<br><0.1     | <0.1             | NAL           |
| 27 / 0-0.3                                               | filling-C                         | 19/01/18             | <25        | 100        | <25                        | 100                                  | 2,800         | 2,000         | <50                                              | 230                                              | <100         | <0.2                                   | <0.5                                    | <1           | <1       | 98         | <0.1            | <0.1             | <0.1             | NAD           |
| 28 / 0.4-0.45                                            | filling-C                         | 19/01/18             | <25        | <50        | <25                        | <50                                  | 580           | 570           |                                                  |                                                  |              | <0.2                                   | <0.5                                    | <1           | <1       | <5         | <0.1            | <0.1             | <0.1             | NAD           |
| REPLICATE1-190118                                        | filling-C                         | 19/01/18             |            | I          |                            | I                                    |               |               |                                                  |                                                  |              |                                        |                                         |              | I        | I          |                 |                  | T                | T             |




# Appendix A Photographic Log







#### 3. INSIDE PRIMARY SCHOOL PREMISES - 09/01/2019







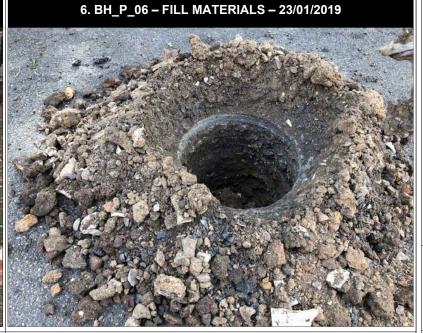
Job No: 55579

Client: Pells Sullivan Meynink

 Version: Rev 0
 Date: 05.02.2019

 Drawn By: MN
 Checked By: DD

Not to Scale


Coord. Sys n/a

Chatswood PublicSchool

Centennial Avenue, Chatswood, NSW

APPENDIX A: PHOTOGRAPHIC LOG

# 5. BH\_P\_04 BOREHOLE – NORTHERN SYNTHETIC FIELD-23/01/2019





7. BH\_P\_06 - FILL MATERIALS - 23/01/2019

Job No: 55579

Client: Pells Sullivan Meynink

 Version: Rev 0
 Date: 05.02.2019

 Drawn By: MN
 Checked By: DD

Not to Scale

Coord. Sys n/a

Chatswood PublicSchool

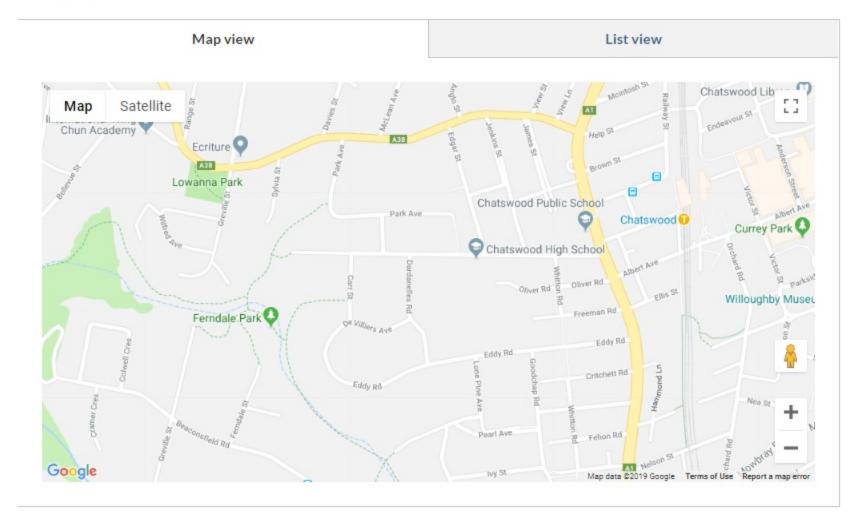
Centennial Avenue, Chatswood, NSW

APPENDIX A: PHOTOGRAPHIC LOG



# Appendix B PFAS Register

JBS&G Company Sha MPW UF Map PSI Search


| Contaminated land                    |
|--------------------------------------|
| Managing contaminated land           |
| Notification policy 🔻                |
| NSW site auditor scheme              |
| Preventing contaminated land         |
| Assessment and Remediation           |
| PFAS investigation program           |
| PFAS investigation process           |
| PFAS investigation program FAQs      |
| Other contamination issues           |
| Contaminated land management program |

# The NSW Government PFAS Investigation Program

NSW has a nation leading, state-wide PFAS investigation program underway to identify the use and impacts of legacy PFAS.

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Taskforce, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.

Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:





# Appendix C Loose-Fill Asbestos Insulation Register

### Look up the premises address

Please enter exact address information (including street type) of the address you wish to search (Note, the search fields are not case sensitive).

If a match is found, the premises has been identified as containing loose-fill asbestos insulation.

Results will only appear if an exact match of an address is found.

(The fields marked with \* are required.)

**No Match Found** - A search match was not found in the Loose-fill Asbestos Insulation Register

Address searched: 5 Centennial avenue Avenue Chatswood

This information is correct at the time of the search

| Unit           |       |            |
|----------------|-------|------------|
| Street number* |       |            |
| Street name*   |       |            |
| Street type*   | Alley | * <b>*</b> |
| Suburb*        |       |            |
| Postcode       |       |            |

Submit



# Appendix D Borelogs



Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:23-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

|        | Bore Diameter (mm): 200 |                |             |                       | Elevation (m):                                                                             |                                  |                                           |  |  |
|--------|-------------------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|--|--|
| Method | Depth (mbgs)            | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                   | Samples<br>Tests<br>Remarks      | Additional Observations                   |  |  |
| SFA    | _                       |                |             | Fill                  | Gravelly silty sand. Grey / brown, moist, heterogeneous, dense. Inclusions of asphalt.     | BH_P_01 0.0-0.15<br>PID = 2 ppm  | No asbestos, odours or staining observed. |  |  |
|        | _                       | 0.20           |             | Fill                  | Silty clay. Brown / light grey, damp, homogeneous.                                         |                                  |                                           |  |  |
|        | 0.5                     |                |             |                       |                                                                                            | BH_P_01 0.4-0.5<br>PID = 2.6 ppm | No asbestos, odours or staining observed. |  |  |
|        | -                       |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        | -                       |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        | 1.0                     |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        | -                       | 1.00           |             | CL-ML                 | Silty clay. Light grey/red, homogeneous, hard, high plasticity, damp. Inclusions of shale. | BH_P_01 1.0-1.1<br>PID = 0.2 ppm | No asbestos, odours or staining observed. |  |  |
|        | _                       |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        |                         | 1.40           |             |                       | Borehole BH_P_01 terminated at 1.4m                                                        |                                  |                                           |  |  |
|        | 1.5                     |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        | -                       |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        | -                       |                |             |                       |                                                                                            |                                  |                                           |  |  |
|        | 2.0                     |                |             |                       |                                                                                            |                                  |                                           |  |  |



BH\_P\_02 Project Number: 55579 Client: Pells Sullivan Meynink

Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Eastings (GDA 94): Logged By: M.N/R.C Northings (GDA 94): Contractor: Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

| Bore Diameter (mm): 200 Elevation (m): |              |                |             |                       |                                                                                                      |                                   |                                           |  |  |
|----------------------------------------|--------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--|--|
| Method                                 | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                             | Samples<br>Tests<br>Remarks       | Additional Observations                   |  |  |
| SFA                                    | _            |                |             | Fill                  | Gravelly silty sand. Dark brown, dry, heterogeneous and medium dense. Inclusions of asphalt.         | BH_P_02 0.0-0.15<br>PID = 0.4 ppm | No asbestos, odours or staining observed. |  |  |
|                                        | _            | 0.20           |             | Fill                  | Silty clayey sand. Brown, damp, heterogeneous and loose. Inclusions of trace gravel, shale and brick |                                   |                                           |  |  |
|                                        | 0 <u>.5</u>  |                |             |                       |                                                                                                      | BH_P_02 0.4-0.5<br>PID = 1.4 ppm  | No asbestos, odours or staining observed. |  |  |
|                                        | -            |                |             |                       |                                                                                                      |                                   |                                           |  |  |
|                                        | _            |                |             |                       |                                                                                                      |                                   |                                           |  |  |
|                                        | 1.0          | 0.90           |             | SHALE                 | Shale. Very hard.                                                                                    | BH P 0210.11                      | No sebada adam a deisira                  |  |  |
|                                        | -            |                |             |                       |                                                                                                      | BH_P_02 1.0-1.1<br>PID = 0.3 ppm  | No asbestos, odours or staining observed. |  |  |
|                                        | _            | 1.30           |             |                       | Borehole BH_P_02 terminated at 1.3m                                                                  |                                   | Refusal on hard shale                     |  |  |
|                                        | 1.5          |                |             |                       |                                                                                                      |                                   |                                           |  |  |
|                                        | -            |                |             |                       |                                                                                                      |                                   |                                           |  |  |
|                                        | -            |                |             |                       |                                                                                                      |                                   |                                           |  |  |
|                                        | -            |                |             |                       |                                                                                                      |                                   |                                           |  |  |



Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:23-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

| Melliod  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                              | Samples<br>Tests<br>Remarks       | Additional Observations                   |
|----------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| OTA<br>A | _            |                |             | Fill                  | Silty gravelly sand. Light grey, heterogeneous, dry and dense. Inclusions of asphalt. | BH_P_03 0.0-0.15<br>PID = 2.1 ppm | No asbestos, odours or staining observed. |
|          | _            | 0.20           |             | Fill                  | Silty clayey sand. Light brown, heterogenous and loose. Inclusions of trace gravels.  |                                   |                                           |
|          | 0.5          |                |             |                       |                                                                                       | BH_P_03 0.4-0.5<br>PID = 1.4 ppm  | No asbestos, odours or staining observed. |
|          | -            | 0.60           |             | Fill                  | Silty clay. Brown / light grey, dry, homogeneous, hard and medium plasticity.         |                                   |                                           |
|          | 1.0          |                |             |                       |                                                                                       | BH_P_03 1.0-1.1<br>PID = 2.5 ppm  | No asbestos, odours or staining observed. |
|          | _            | 1.20           |             | CL                    | Clay. Light grey, dy, homogeneous, hard and high plasticity. Inlusions of shale.      |                                   |                                           |
|          | 1.5          |                |             |                       |                                                                                       | BH_P_03 1.4-1.5<br>PID = 1.5 ppm  | No asbestos, odours or staining observed. |
|          | -            | 1.60           |             |                       | Borehole BH_P_03 terminated at 1.6m                                                   |                                   |                                           |
|          |              |                |             |                       |                                                                                       |                                   |                                           |



Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:23-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: Ground Surface

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                               | Samples<br>Tests<br>Remarks       | Additional Observations                   |
|--------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| SFA    | _            |                |             | Fill                  | Gravelly silty clay. Brown, heterogeneous, clay and medium dense. Inclusions of rootlets.              | BH_P_04 0.0-0.15<br>PID = 3.7 ppm | No asbestos, odours or staining observed. |
|        | _            | 0.20           |             | Fill                  | Silty clay. Brown, damp, heterogeneous, stiff and medium plasticity. Inclusions of rootlets and shale. |                                   |                                           |
|        | 0.5          |                |             |                       |                                                                                                        | BH_P_04 0.4-0.5<br>PID = 4.6 ppm  | No asbestos, odours or staining observed. |
|        | _            |                |             |                       |                                                                                                        |                                   |                                           |
|        | -            | 0.80           |             | CL-ML                 | Silty clay. Brown/grey, damp, heterogeneous, medium plasticity and hard. Inclusions of                 |                                   |                                           |
|        | _            |                |             |                       | shale.                                                                                                 |                                   |                                           |
|        | 1.0          |                |             |                       |                                                                                                        | BH_P_04 1.0-1.1<br>PID = 1.7 ppm  | No asbestos, odours or staining           |
|        | _            |                |             |                       |                                                                                                        | PID = 1.7 ppm                     | observed.                                 |
|        | _            |                |             |                       |                                                                                                        |                                   |                                           |
|        |              |                |             |                       |                                                                                                        |                                   |                                           |
|        | 1.5          |                |             |                       |                                                                                                        |                                   |                                           |
|        |              | 1.50           |             |                       | Borehole BH_P_04 terminated at 1.5m                                                                    |                                   |                                           |
|        |              |                |             |                       |                                                                                                        |                                   |                                           |
|        | _            |                |             |                       |                                                                                                        |                                   |                                           |
|        | _            |                |             |                       |                                                                                                        |                                   |                                           |
|        | 2.0          |                |             |                       |                                                                                                        |                                   |                                           |



Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:23-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

| 501    | e Di         | amete          | ; (11111    | 1): 200               | Elevation (m):                                                                                   |                                   |                                                                             |  |  |
|--------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|--|--|
| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                         | Samples<br>Tests<br>Remarks       | Additional Observations                                                     |  |  |
| SFA    | _            |                |             | Fill                  | Gravelly silty sand. Heterogeneous, dark brown, medium dense, medium gravels and damp.           | BH_P_05 0.0-0.15<br>PID = 1.3 ppm | No asbestos, odours or staining observed.                                   |  |  |
|        | _            | 0.20           |             | Fill                  | Sandy clay. Brown / yellow, heterogeneous, damp, firm and medium plasticity. Inclusions of shale |                                   |                                                                             |  |  |
|        | 0.5          |                |             |                       |                                                                                                  | BH_P_05 0.4-0.5<br>PID = 2.7 ppm  | No asbestos, odours or staining observed. QA20190123RC_01 / QC20190123RC_01 |  |  |
|        | _            |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |
|        | _            | 0.80           |             | SHALE                 | Crushed shale, red / brown / light grey, dry, homogeneous and firm.                              |                                   |                                                                             |  |  |
|        | _            | 0.00           |             | 01,11,12              | orania di ana, rear di anni, rigir groj, di ji nonegore da di anni.                              |                                   |                                                                             |  |  |
|        | 1.0          |                |             |                       |                                                                                                  | BH_P_05 1.0-1.1<br>PID = 5.5 ppm  | No asbestos, odours or staining observed.                                   |  |  |
|        |              | 1.20           |             |                       | Borehole BH_P_05 terminated at 1.2m                                                              |                                   | Refusal on hard shale                                                       |  |  |
|        | -            |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |
|        | 1 <u>.5</u>  |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |
|        | -            |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |
|        | -            |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |
|        |              |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |
|        | 2.0          |                |             |                       |                                                                                                  |                                   |                                                                             |  |  |



BH\_P\_06 Project Number: 55579 Client: Pells Sullivan Meynink

Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Eastings (GDA 94): Logged By: M.N/R.C Northings (GDA 94): Zone/Area/Permit#: Contractor:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

|        | Bore Diameter (mm): 200 |                |             | 1). 200               | Elevation (m):                                                                                                                   |                                   |                                           |  |  |  |
|--------|-------------------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--|--|--|
| Method | Depth (mbgs)            | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                         | Samples<br>Tests<br>Remarks       | Additional Observations                   |  |  |  |
| SFA    | _                       |                |             | Fill                  | Silty gravel. Black, homogeneous, damp, dense and coarse grained.                                                                | BH_P_06 0.0-0.15<br>PID = 3.5 ppm | No asbestos, odours or staining observed. |  |  |  |
|        | _                       | 0.20           |             | Fill                  | Silty clay. Grey/brown, damp, heterogeneous, firm and medium plasticity. Inclusions of gravel, shale and anthropogenic material. |                                   |                                           |  |  |  |
|        | 0 <u>.5</u>             |                |             |                       |                                                                                                                                  | BH_P_06 0.4-0.5<br>PID = 4.8 ppm  | No asbestos, odours or staining observed. |  |  |  |
|        | _                       | 0.70           |             | Fill                  | Silty sand. Dark brown, heterogeneous and damp. Inclusions of gravels.                                                           |                                   |                                           |  |  |  |
|        | _                       |                |             |                       |                                                                                                                                  | BH_P_06 0.8-0.9<br>PID = 3.8 ppm  | No asbestos, odours or staining observed. |  |  |  |
|        | 1 <u>.0</u>             |                |             |                       |                                                                                                                                  |                                   |                                           |  |  |  |
|        | _                       | 1.20           |             | CL                    | Clay. Light brown/yellow with light grey and mottling. Homogeneous, damp, hard and high plasticity.                              |                                   |                                           |  |  |  |
|        | 1 <u>.5</u>             |                |             |                       |                                                                                                                                  | BH_P_06 1.5-1.6<br>PID = 3.7 ppm  | No asbestos, odours or staining observed. |  |  |  |
|        | _                       |                |             |                       |                                                                                                                                  |                                   |                                           |  |  |  |
|        | _                       | 1.80           |             |                       | Borehole BH_P_06 terminated at 1.8m                                                                                              |                                   |                                           |  |  |  |
|        | 2.0                     |                |             |                       |                                                                                                                                  |                                   |                                           |  |  |  |



Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:22-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

| Bore Diameter (mm): 100 |              |                | r (mm       | i): 100               | Elevation (m):                                                                                                            |                                   |                                                     |  |  |
|-------------------------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|--|--|
| Method                  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                  | Samples<br>Tests<br>Remarks       | Additional Observations                             |  |  |
| SFA                     | _            |                |             | Fill                  | Silty sand. Dark brown, heterogeneous, damp and medium dense. Inclusions of trace plastics, zip ties, gravel and asphalt. | BH_P_07 0.0-0.15<br>PID = 4.2 ppm | No asbestos, odours or staining observed.           |  |  |
|                         |              | 0.20           |             | Fill                  | Silty clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.                              |                                   |                                                     |  |  |
|                         | 0.5          |                |             |                       |                                                                                                                           | BH_P_07 0.4-0.5<br>PID = 5.3 ppm  | No asbestos or staining observed.                   |  |  |
|                         | _            |                |             |                       |                                                                                                                           |                                   | Slight HC odours.                                   |  |  |
|                         | _            | 0.80           |             | Fill                  | Silty clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.                              |                                   |                                                     |  |  |
|                         | 1.0          |                |             |                       |                                                                                                                           | BH_P_07 1.0-1.1<br>PID = 3.9 ppm  | No asbestos or staining observed. Slight HC odours. |  |  |
|                         | _            | 1.20           |             | CL-ML                 | Silty clay. Grey with light grey/light brown mottling. Homogeneous, damp, hard and high plasticity.                       |                                   |                                                     |  |  |
|                         | 1.5          |                |             |                       |                                                                                                                           |                                   |                                                     |  |  |
|                         |              |                |             |                       |                                                                                                                           | BH_P_07 1.7-1.8<br>PID = 8.2 ppm  | No asbestos, odours or staining observed.           |  |  |
| 1                       | _            | 1.80           |             |                       | Borehole BH_P_07 terminated at 1.8m                                                                                       |                                   |                                                     |  |  |
|                         | 2.0          |                |             |                       |                                                                                                                           |                                   |                                                     |  |  |



Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

| Memod | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                      | Samples<br>Tests<br>Remarks       | Additional Observations                   |
|-------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| K     | _            |                |             | Fill                  | Silty clay. Dark brown, heterogeneous, loose and damp. Inclusions of rootlets.                | BH_P_08 0.0-0.15<br>PID = 2.2 ppm | No asbestos, odours or staining observed. |
|       | _            | 0.20           |             | Fill                  | Silty clay. Brown/grey, heterogeneous, damp, hard and medium plasticity. Inclusions of brick. |                                   |                                           |
|       | 0.5          |                |             |                       |                                                                                               | BH_P_08 0.4-0.5<br>PID = 3.5 ppm  | No asbestos, odours or staining observed. |
|       | 2.0          | 0.50           | ***         |                       | Borehole BH_P_08 terminated at 0.5m                                                           |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       |              |                |             |                       |                                                                                               |                                   |                                           |
|       | 1.0          |                |             |                       |                                                                                               |                                   |                                           |
|       |              |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | 1.5          |                |             |                       |                                                                                               |                                   |                                           |
|       | _            |                |             |                       |                                                                                               |                                   |                                           |
|       |              |                |             |                       |                                                                                               |                                   |                                           |
|       |              |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |
|       | -            |                |             |                       |                                                                                               |                                   |                                           |



# BH\_P\_09

Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.6 Reference Level: Ground Surface

Bore Diameter (mm): 100 Elevation (m):

| 0.         | .5   | 0 | Fill | Sand. Light grey/brown, heterogeneous, damp and medium grained. Inclusions of shale, twigs, plastic and paper.  Silty sand, light brown / yellow, heterogeneous, damp, medium sand, loose, sub-rounded, poorly graded, with inclusions of cobbles of rock | BH_P_09 0.0-0.15<br>PĪD = 2.6 ppm |                                           |
|------------|------|---|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| 0_         |      |   | Fill | Silty sand, light brown / yellow, heterogeneous, damp, medium sand, loose, sub-rounded, poorly graded, with inclusions of cobbles of rock                                                                                                                 |                                   |                                           |
| 0_         |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | 0.60 |   |      |                                                                                                                                                                                                                                                           | BH_P_09 0.4-0.5<br>PID = 1.6 ppm  | No asbestos, odours or staining observed. |
|            |      |   |      | Borehole BH_P_09 terminated at 0.6m                                                                                                                                                                                                                       | _                                 | Refusal on rock                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | -    |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | -    |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
| 1 <u>.</u> | .0   |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | -    |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | _    |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
| 1.         | .5   |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | +    |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            |      |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |
|            | -    |   |      |                                                                                                                                                                                                                                                           |                                   |                                           |



# BH\_P\_09a

Project Number: 55579
Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date:24-Jan-19Eastings (GDA 94):Logged By:M.N/R.CNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.6 Reference Level: Ground Surface

Bore Diameter (mm): 100 Elevation (m):

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                    | Samples<br>Tests<br>Remarks        | Additional Observations                   |
|--------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|
| H      | _            |                |             | Fill                  | Sand. Light grey/brown, heterogeneous, damp and medium grained. Inclusions of shale, twigs, plastic and paper.              | BH_P_09a 0.0-0.15<br>PID = 1.6 ppm | No asbestos, odours or staining observed. |
|        | -            | 0.20           |             | Fill                  | Silty sand. Light brown/yellow, heterogeneous, damp, medium grained. Inclusions of sub-rounded, poorly graded rock cobbles. |                                    |                                           |
|        | 0.5          |                |             |                       |                                                                                                                             | BH_P_09a 0.4-0.5<br>PID = 0.9 ppm  | No asbestos, odours or staining observed. |
|        |              | 0.60           |             |                       | Borehole BH_P_09a terminated at 0.6m                                                                                        |                                    | Refusal on rock                           |
|        | _            |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        | -            |                |             |                       |                                                                                                                             |                                    |                                           |
|        | 1.0          |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        | -            |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        | 1 <u>.5</u>  |                |             |                       |                                                                                                                             |                                    |                                           |
|        | -            |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        |              |                |             |                       |                                                                                                                             |                                    |                                           |
|        | +            |                |             |                       |                                                                                                                             |                                    |                                           |
|        | -            |                |             |                       |                                                                                                                             |                                    |                                           |
|        | 2.0          |                |             |                       |                                                                                                                             |                                    |                                           |



BH\_P\_10 Project Number: 55579 Client: Pells Sullivan Meynink

Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Eastings (GDA 94): Logged By: M.N/R.C Northings (GDA 94): Zone/Area/Permit#: Contractor:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Bore Diameter (mm): 100 Elevation (m):

| Method   | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                         | Samples<br>Tests<br>Remarks       | Additional Observations                   |
|----------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| AH<br>AH | 0.5          |                |             | Fill                  | Silty sand. Brown, heterogeneous, damp and loose. Inclusions of mulch, trace of gravel and bark. | BH_P_10 0.0-0.15<br>PID = 3.7 ppm | No asbestos, odours or staining observed. |
|          | _            | 0.60           |             | Fill                  | Silty clayey sand. Brown, damp, heterogeneous and low plasticity. Inclusions of bark             |                                   |                                           |
|          | -            |                |             |                       | and shale.                                                                                       | BH_P_10 0.6-0.7<br>PID = 1.7 ppm  | No asbestos, odours or staining observed. |
|          |              | 0.80           |             | SHALE                 | Crushed shale. Light grey, damp, homogeneous, dense and hard.                                    |                                   |                                           |
|          | 1.0          |                |             |                       |                                                                                                  | RH P 10.1.0.1.1                   | N                                         |
|          | _            |                |             |                       |                                                                                                  | BH_P_10 1.0-1.1<br>PID = 2.3 ppm  | No asbestos, odours or staining observed. |
|          |              | 1.20           |             |                       | Borehole BH_P_10 terminated at 1.2m                                                              |                                   |                                           |
|          |              |                |             |                       |                                                                                                  |                                   |                                           |
|          | 1.5          |                |             |                       |                                                                                                  |                                   |                                           |
|          |              |                |             |                       |                                                                                                  |                                   |                                           |
|          | _            |                |             |                       |                                                                                                  |                                   |                                           |
|          |              |                |             |                       |                                                                                                  |                                   |                                           |
|          |              |                |             |                       |                                                                                                  |                                   |                                           |
|          | -            |                |             |                       |                                                                                                  |                                   |                                           |



BH\_P\_11 Project Number: 55579 Client: Pells Sullivan Meynink

Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Eastings (GDA 94): Logged By: M.N/R.C Northings (GDA 94): Zone/Area/Permit#: Contractor:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

Bore Diameter (mm): 100 Elevation (m):

| Bo     | Bore Diameter (mm): 100 |                | n <b>)</b> : 100 | Elevation (m):        |                                                                                                   |                                   |                                                     |
|--------|-------------------------|----------------|------------------|-----------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Method | Depth (mbgs)            | Contact (mbgs) | Graphic Log      | Lithological<br>Class | Lithological Description                                                                          | Samples<br>Tests<br>Remarks       | Additional Observations                             |
| НА     | _                       |                |                  | Fill                  | Silty sand. Brown, damp and heterogeneous. Trace inculsions of shale gravels.                     | BH_P_11 0.0-0.15<br>PID = 0.3 ppm | No asbestos, odours or staining observed.           |
|        | 0.5                     | 0.30           |                  | Fill                  | Silty clayey sand. Brown, damp, heterogeneous and loose. Inclusions of trace shales and rootlets. | BH_P_11 0.4-0.5<br>PID = 2.7 ppm  | No asbestos or staining observed. Slight HC odours. |
|        | _                       | 0.60           |                  | Fill                  | Silty clay. Brown/light grey, damp, homogeneous, stiff and medium plasticity.                     | BH_P_11 0.8-0.9<br>PID = 2.1 ppm  | No asbestos or staining observed. Slight HC odours. |
|        | 1 <u>.0</u>             | 1.00           |                  | SHALE                 | Crushed shale. Light grey, damp, homogeneous and medium dense.                                    | BH_P_11 1.1-1.2<br>PID = 3.8 ppm  | No asbestos or staining observed. Slight HC odours. |
|        | 1.5                     | 1.20           |                  |                       | Borehole BH_P_11 terminated at 1.2m                                                               |                                   |                                                     |
|        | 2.0                     |                |                  |                       |                                                                                                   |                                   |                                                     |



BH\_P\_12 Project Number: 55579 Client: Pells Sullivan Meynink

Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 11/10/2019 Eastings (GDA 94): Logged By: MN Northings (GDA 94): Contractor: BG Drilling Zone/Area/Permit#: Total Hole Depth (mbgs): 8 Reference Level: Bore Diameter (mm): 150 Elevation (m):

| Method                                                                  | Depth (mbgs)                              | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                           | Samples<br>Tests<br>Remarks       | Additional Observations              |
|-------------------------------------------------------------------------|-------------------------------------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| Auger                                                                   |                                           | 0.02           |             | Fill /                | Asphalt Gravelly clay, brown, homogeneous, damp, firm, medium/high plasticity                      | BH_P_12 0.1-0.20<br>PID = 2 ppm   | No ACM, odours or staining observed. |
| Solid Flight Auger                                                      | _                                         |                |             |                       |                                                                                                    | BH_P_12 0.4-0.50<br>PID = 1.8 ppm | No ACM, odours or staining observed. |
| Solid                                                                   | -                                         | 0.60           |             | CH                    | Clay, grey/light brown, heterogeneous, medium plasticity, stiff, with inclusion of weathered shale | PID = 1.8 ppm                     | A                                    |
|                                                                         | 1                                         |                |             |                       |                                                                                                    | BH_P_12 0.9-1.00<br>PID = 1.9 ppm | No ACM, odours or staining observed. |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 | 2<br>2<br>3<br>3<br>4<br>-<br>5<br>-<br>6 | 8.00           |             | SHALE                 | Borehole BH_P_12 terminated at 8m                                                                  | FID = 1.9 ppm                     | No ACM, odours or staining observed. |



# BH\_P\_13

Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date: 10/10/2019 Eastings (GDA 94):
Logged By: MN Northings (GDA 94):
Contractor: BG Drilling Zone/Area/Permit#:
Total Hole Depth (mbgs): 4 Reference Level:
Bore Diameter (mm): 150 Elevation (m):

| Method                                                                  | Depth (mbgs)          | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                            | Samples<br>Tests<br>Remarks       | Additional Observations              |
|-------------------------------------------------------------------------|-----------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| iger                                                                    |                       | 0.05           |             | Fill /                | Asphalt Clay, brown, heterogeneous, damp, firm, medium/high plasticity, with inclusion of                           | BH P 13 0 1-0 20                  | No ACM, odours or staining observed. |
| ht Au                                                                   | -                     |                | $\bowtie$   | FIII                  | gravel                                                                                                              | BH_P_13 0.1-0.20<br>PID = 0.4 ppm |                                      |
| Solid Flight Auger                                                      | _<br>_                |                |             |                       |                                                                                                                     | BH_P_13 0.5-0.60<br>PID = 0.3 ppm | No ACM, odours or staining observed. |
|                                                                         | 1                     | 0.80           |             | СН                    | Clay, light brown/grey, heterogeneous, damp, stiff, high plasticity, with inclusion of rootlets and weathered shale |                                   |                                      |
|                                                                         | _                     |                |             |                       |                                                                                                                     | BH_P_13 1.0-1.10<br>PID = 0.5 ppm |                                      |
|                                                                         | 2<br>2<br>-<br>-<br>3 |                |             |                       |                                                                                                                     |                                   | No ACM, odours or staining observed. |
|                                                                         | _                     | 3.00           |             | SHALE                 | Weathered shale, grey, homogeneous, dry, loose                                                                      |                                   |                                      |
|                                                                         | _                     |                |             |                       |                                                                                                                     |                                   |                                      |
|                                                                         | _                     |                |             |                       |                                                                                                                     |                                   | No ACM, odours or staining observed. |
|                                                                         | _                     |                |             |                       |                                                                                                                     |                                   |                                      |
| $\vdash$                                                                | 4                     | 4.00           |             |                       | Rerobolo RH P. 13 terminated at 4m                                                                                  | _                                 |                                      |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 | 5 6 7                 | 4.00           |             |                       | Borehole BH_P_13 terminated at 4m                                                                                   |                                   |                                      |



# BH\_P\_14

Project Number: 55579 Client: Pells Sullivan Meynink

**Project Name:** Chatswood Education Precinct **Site Address:** Centennial Avenue, Chatswood

Date: 10/10/2019 Eastings (GDA 94):
Logged By: MN Northings (GDA 94):
Contractor: BG Drilling Zone/Area/Permit#:
Total Hole Depth (mbgs): 4 Reference Level:
Bore Diameter (mm): 150 Elevation (m):

| Method                                                                  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                     | Samples<br>Tests<br>Remarks                                            | Additional Observations              |
|-------------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|
| Solid Flight Auger                                                      | -            |                |             | Fill                  | Sandy clay, brown/grey, heterogeneous, damp, firm, medium plasticity, with inclusion of gravel and sandstone | BH_P_14 0.0-0.10<br>PID = 0.3 ppm<br>BH_P_14 0.4-0.50<br>PID = 0.2 ppm | No ACM, odours or staining observed. |
|                                                                         |              | 0.70           |             | СН                    | Clay, grey, heterogeneous, damp, stiff, high plasticity, with inclusion of brown weathered shale             | BH_P_14 0.9-1.00<br>PID = 0.2 ppm                                      | No ACM, odours or staining observed. |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 | 2            | 4.00           |             | SHALE                 | Weathered shale, grey/brown, homogeneous, damp, hard  Borehole BH_P_14 terminated at 4m                      |                                                                        | No ACM, odours or staining observed. |



BH\_P\_16
Project Number: 55579 Client: Pells Sullivan Meynink

Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 11/10/2019 Eastings (GDA 94): Logged By: MN Northings (GDA 94): Zone/Area/Permit#: Contractor: BG Drilling Total Hole Depth (mbgs): 4 Reference Level: Bore Diameter (mm): 150 Elevation (m):

| L                                                                       |           |                |             |                       |                                                                                            |                                   |                                      |
|-------------------------------------------------------------------------|-----------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| 7                                                                       | Metriod   | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                   | Samples<br>Tests<br>Remarks       | Additional Observations              |
|                                                                         | III Augel | -              |             | Fill                  | Sandy clay, brown, heterogeneous, damp, firm, high plasticity, with inclusion of gravel    | BH_P_16 0.0-0.10<br>PID = 0.9 ppm | No ACM, odours or staining observed. |
| 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 | DIIO      | 0.50           | · 💥         | СН                    | Clay, light brown with grey mottling, damp, hard, high plasticity, with inclusion of shale | BH_P_16 0.4-0.50<br>PID = 1.3 ppm |                                      |
|                                                                         |           | 1              |             |                       |                                                                                            | BH_P_16 0.9-1.00<br>PID = 1.1 ppm |                                      |
|                                                                         |           | -              |             |                       |                                                                                            |                                   | No ACM, odours or staining observed. |
|                                                                         |           |                |             | OLIALE                |                                                                                            | BH_P_16 1.4-1.50<br>PID = 1.3 ppm |                                      |
|                                                                         |           | 2 1.70         |             | SHALE                 | Weathered shale, grey/light brown, homogeneous, hard                                       | BH_P_16 1.9-2.00<br>PID = 1.4 ppm |                                      |
|                                                                         |           |                |             |                       |                                                                                            |                                   |                                      |
|                                                                         |           |                |             |                       |                                                                                            |                                   |                                      |
|                                                                         |           | 3              |             |                       |                                                                                            |                                   | No ACM, odours or staining observed. |
|                                                                         |           | -              |             |                       |                                                                                            |                                   |                                      |
|                                                                         |           | _              |             |                       |                                                                                            |                                   |                                      |
| $\perp$                                                                 |           | 4.00           | )           |                       | Borehole BH_P_16 terminated at 4m                                                          |                                   |                                      |
|                                                                         |           | -              |             |                       |                                                                                            |                                   |                                      |
| 7/10/19                                                                 |           |                |             |                       |                                                                                            |                                   |                                      |
| A.GDT 1                                                                 |           | 5              |             |                       |                                                                                            |                                   |                                      |
| USTRALI                                                                 |           |                |             |                       |                                                                                            |                                   |                                      |
| NT STD A                                                                |           | 6              |             |                       |                                                                                            |                                   |                                      |
| .GPJ GIN                                                                |           | -              |             |                       |                                                                                            |                                   |                                      |
| 118 - SQL                                                               |           |                |             |                       |                                                                                            |                                   |                                      |
| 10LE - 20                                                               |           | 7              |             |                       |                                                                                            |                                   |                                      |
| G BORE                                                                  |           |                |             |                       |                                                                                            |                                   |                                      |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 |           | -              |             |                       |                                                                                            |                                   |                                      |
| BOREH                                                                   |           | 8              |             |                       |                                                                                            |                                   |                                      |



# **Appendix E PID Calibration and Decontamination Field Forms**

# Field Equipment Calibration and Decontamination



PROJECT NAME: Chartswood Education Precinctproject No: 55579
FIELD DATES: 21/1/19 - 25/1/19
FIELD STAFF: MN, RC

calibration summary

EQUIPMENT: PID

Calibration standard: 100ppm isobutylene.

| DATE     | TIME   | READING (ppm <sub>v</sub> ) | COMMENTS    |
|----------|--------|-----------------------------|-------------|
| 21/1/19  | 7:00am | 0                           | Ambient     |
| 21/1/19  | 7:03am | 100                         | isobutylene |
| 21/1/19  | 7:05an | 100.2                       | Bump.       |
| 22/1/19  | 7.00am | 0                           | Ambient     |
| 22/1/19  |        | 001                         | isobutylene |
| 22/1/19  |        | 100.5                       | bump.       |
| 23/1/19  | 7:00am | 0                           | Ambient     |
| 23/1/19  | 7:03am | 100                         | isobutylene |
| 23/1/19  | 7:06am | 99.8                        | bump        |
| 24/1/19- |        | 0                           | Anbient.    |
| 24/1/197 |        |                             |             |
| 24/1/197 | 1:05am | 1601                        | Bump        |

| DECONTAMINATION SUMMARY                                                                                                                                        |                |       |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|------|
| EQUIPMENT: Auger.                                                                                                                                              |                |       |      |
| washed with decontamination water befor                                                                                                                        | P (0)          | lect  | win  |
| each sample collection.                                                                                                                                        | a fo           | r     |      |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?                                                                          | <b>O</b>       | N     | NA   |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                             | <u> </u>       | N     | NA   |
| 3. Was the equipment contaminated with grease, tar or similar material? If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone: hexane? | Y              | (N)   | (NA) |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                    | (r)            | N     | NA   |
| 5. Was the equipment rinsed with clean water?                                                                                                                  | <del>-</del> Ø | N     | NA   |
| 6. Was the equipment then rinsed with deionised water?                                                                                                         | <u> </u>       | N     | NA.  |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                   | Υ Υ            | <br>N | (NA) |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                        |                | 1 4   | · va |
|                                                                                                                                                                |                |       |      |

# Field Equipment Calibration and Decontamination



| PROJECT NA       | ME: Cha                               | usually Ed                            | PROJE                                  | ECT NO: 5                              | <u></u> 557 | -9          |               |
|------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|-------------|-------------|---------------|
| FIELD DATES      | 21/1                                  | STAFF: >                              | NN                                     | , K                                    | <u>2 C</u>  |             |               |
| CALIBRATION      | SUMMARY                               |                                       |                                        | <del></del>                            |             | <del></del> |               |
| EQUIPMENT:       |                                       | ) .                                   |                                        |                                        | <del></del> |             |               |
| CALIBRATION      |                                       |                                       | 1101-11 101-1                          |                                        |             |             |               |
|                  |                                       | 1111                                  | sobutylene                             |                                        |             |             |               |
| DATE             | TIME                                  | READING (ppm <sub>v</sub> )           | COMMENTS                               | <u></u>                                |             |             |               |
| 25/1/19          | 7:00cm                                | ~ 0                                   | Andrient                               | ·····                                  |             |             |               |
|                  |                                       | m 100                                 | Anbient<br>isobutylene                 | ,                                      |             |             |               |
| 25/1/19          | 7:07a                                 | m 100.2                               | bump.                                  |                                        | ~           |             |               |
|                  |                                       |                                       |                                        |                                        |             |             |               |
|                  |                                       |                                       |                                        |                                        |             |             | ****          |
|                  |                                       |                                       |                                        |                                        |             |             |               |
|                  |                                       |                                       |                                        |                                        |             |             |               |
|                  |                                       |                                       |                                        |                                        |             |             | <del></del> - |
|                  |                                       |                                       |                                        | ###################################### |             |             |               |
|                  |                                       |                                       |                                        |                                        |             |             | <del></del>   |
|                  |                                       |                                       |                                        |                                        |             |             |               |
|                  |                                       |                                       |                                        |                                        |             |             | <del></del>   |
| DECONTAMINA      | TION SUMMAR                           | Y                                     |                                        | <del></del>                            |             |             | <del>-</del>  |
| EQUIPMENT:       |                                       | AL                                    | iger                                   |                                        |             |             | <del></del>   |
| wast             | red i                                 | with decon                            | tamination wa                          | ater                                   | bef         | Sav         | ~e            |
| <u>CO11864</u>   | 160 0                                 | of new san                            | uples. Nitrile gr                      | ves                                    | w           | ere         | 2             |
|                  |                                       | for each s                            | ample collect                          | 1017.                                  | _           |             |               |
|                  |                                       | inated appropriately prior to samp.   |                                        |                                        |             | N           | NA            |
|                  |                                       | ited with grease, tar or similar mate |                                        | <del></del>                            | 0           | <u>N</u>    | NA            |
| so, was the equ  | Ipment steam c                        | leaned or rinsed with pesticide-grad  | de acetone:hexane?                     |                                        | Y<br>Y      | N<br>N      | (NA)          |
| . Was phosphate  | -free detergent                       | used to wash the equipment?           |                                        |                                        | 0           | N           | NA            |
| . Was the equipn | nent rinsed with                      | o clean water?                        |                                        |                                        | Ø           | N           | NA            |
|                  |                                       | with deionised water?                 |                                        |                                        | 0           | N           | NA            |
|                  | · · · · · · · · · · · · · · · · · · · | ned and acid or solvent washed pr     | ······································ |                                        | Υ           | N           | (NA)          |
| ERE ANY ADDITI   | ONAL DECONT                           | AMINATION MEASURES REQUIRED           | 7 PROVIDE DETAILS.                     |                                        |             |             |               |
| ***              |                                       |                                       |                                        |                                        |             |             |               |



# Appendix F QAQC Assessment

Table 1 - QA/QC Results Summary

| Data Quality Indicator                                       | Results                                                                         | DQI met?             |
|--------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|
| Precision                                                    |                                                                                 |                      |
| Soil Blind duplicates (intra laboratory)                     | 0-175% RPD                                                                      | Partial <sup>1</sup> |
| , , , , , , , , , , , , , , , , , , , ,                      | Intra laboratory samples were analysed at a rate                                |                      |
|                                                              | greater than 1 in 20 samples.                                                   |                      |
| Soil Blind triplicates (inter laboratory)                    | 0-160% RPD                                                                      | Partial <sup>1</sup> |
|                                                              | Inter laboratory samples were analysed at a rate                                |                      |
|                                                              | greater than 1 in 20 samples.                                                   |                      |
|                                                              | 0-6% RPD                                                                        | Yes                  |
| Laboratory duplicates                                        | Intra laboratory samples were analysed at a rate of 1 in                        |                      |
|                                                              | 20 samples.                                                                     |                      |
| Accuracy                                                     |                                                                                 |                      |
| Surrogate spikes                                             | 54-124% Recovery                                                                | Partial <sup>1</sup> |
|                                                              | Surrogate spikes were completed for all organic                                 |                      |
|                                                              | samples                                                                         |                      |
| Laboratory Control Samples                                   | 71-126% Recovery                                                                | Yes                  |
|                                                              | Laboratory control samples were completed for all                               |                      |
|                                                              | organic and metals samples                                                      |                      |
| Matrix spikes                                                | 70- 123% Recovery                                                               | Yes                  |
|                                                              | Matrix spikes were completed for all organic and                                |                      |
|                                                              | metals samples                                                                  |                      |
| Representativeness                                           |                                                                                 |                      |
| Sampling appropriate for media and                           | All sampling conducted in accordance with JBS&G                                 | Yes                  |
| analytes                                                     | procedures                                                                      |                      |
| Laboratory blanks                                            | <lor< td=""><td>Yes</td></lor<>                                                 | Yes                  |
| Samples extracted and analysed within                        | All samples were extracted and analysed within holding                          | Yes                  |
| holding times.                                               | times less than 14 days.                                                        |                      |
| Trip spikes                                                  | NA                                                                              | Yes                  |
| Trip blanks                                                  | NA                                                                              | No                   |
| Rinsate blank                                                | <lor< td=""><td>Partial</td></lor<>                                             | Partial              |
| Comparability                                                |                                                                                 | 1                    |
| Standard operating procedures used for                       | Field staff used same standard operating procedures                             | Yes                  |
| sample collection & handling                                 | throughout works                                                                |                      |
| Standard analytical methods used                             | Standard analytical methods used as listed in <b>Table 5.2</b> .                | Yes                  |
| Consistent field conditions, sampling staff                  | Sampling was conducted by a field scientist using                               | Yes                  |
| and laboratory analysis                                      | standard operating procedures in the same conditions                            |                      |
|                                                              | throughout the works. The laboratories remained                                 |                      |
|                                                              | consistent throughout the investigation.                                        |                      |
| Limits of reporting appropriate and                          | Limits of reporting were consistent and appropriate.                            | Yes                  |
| consistent                                                   |                                                                                 |                      |
| Completeness                                                 | All have logs and COCs were completed an are winted.                            | Voc                  |
| Soil description & COCs completed  Appropriate documentation | All appropriate field decumentation is included in the                          | Yes                  |
| Appropriate documentation                                    | All appropriate field documentation is included in the Appendices.              | 162                  |
| Satisfactory frequency/result for QC                         | The QC results are considered adequate for the                                  | Yes                  |
| samples                                                      | · ·                                                                             | 162                  |
| Data from critical samples is considered                     | purposes of the investigation.  Data from critical samples is considered valid. | Yes                  |
| valid                                                        | Data moin critical samples is considered valid.                                 | 162                  |
| 1 See discussion of DOI exceedances below                    | 1                                                                               | 1                    |

<sup>1.</sup> See discussion of DQI exceedances below.

# **QA/QC** Discussion

# **Precision**

# Blind / Split Duplicates

The rate of duplicate sampling and analysis for soils was 2 duplicates per 5 primary samples for heavy metals, and PAHs, and 2 duplicates per 10 primary samples for asbestos. As such, the



frequency of duplicate sample analysis for all key contaminants of concern met/exceeded the nominated 1/20 frequency.

High RPDs in the duplicate samples can be expected when materials are heterogeneous and/or when analyte concentrations are close to LOR. The elevated RPDs presented for both intralaboratory and inter-laboratory duplicates are considered to be acceptable on the basis that the reported concentrations are typically within 10 times the LOR. As a conservative measure the highest values have been considered in the interpretation of data.

The elevated RPDs presented for laboratory duplicates are considered acceptable as reported concentrations are <10 times the LOR and therefore the RPD limit is generally not applicable (as stated by the laboratory QC acceptance criteria).

## **Laboratory Duplicates**

The laboratory completed a total of 3 laboratory duplicate soil samples within the JBS&G acceptance criteria of 1 in 20 samples. Laboratory duplicates analysed had RPDs within the JBS&G DQI of 0%-50%.

### **Accuracy**

### **Laboratory Control Samples**

A total of 18 soil and 6 water laboratory control samples (LCS) we tested, meeting the DQIs. All LCS were reported as having recoveries within the JBS&G acceptable range of 70-130%.

### **Surrogate Spikes**

Surrogate spike exceedances are considered acceptable as they are within the laboratory acceptance criteria of 50-150% recovery for surrogate spikes.

### Matrix Spikes

Matrix spike recoveries were within the acceptable range of 70-130% with the exception of sample NCP\_Ja24618\_637848-SPK (copper recovery 170%), NCP\_Ja24618\_637848-SPK (lead recovery 219%) and sample NCP\_Ja24618\_637848-SPK (zinc recovery 150%). These recoveries are not considered to be reflective of an unacceptable level of accuracy in the dataset as an acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

### Representativeness

The extraction and analysis of selected samples was completed within the recommended holding times for all analytes.

JBS&G note that no trip spikes or trip blanks (TS/TB) were analysed as part of the assessment herein. It is noted that all sample handling procedures, including the transfer and storage of samples into chilled eskis were adhered to prior to, and during shipment to the laboratory. As such, JBS&G do not consider the omission of TB/TS samples adversely affect the representativeness of the data set.

All laboratory blanks analysed reported no concentrations above the laboratory LOR.

All field equipment was decontaminated and calibrated appropriately.

A rinsate sample was collected following decontamination of all non-disposable sampling equipment for the intrusive investigation. All analyte concentrations in rinsate samples were below the laboratory limit of reporting (LOR) with the exception of DDT (0.0001 for DDT+DDE+DDD (Total) and 4.4'-DDT), detected within the rinsate sample S19-Ja24422 collected on the 23<sup>rd</sup> January 2019. JBS&G note that no pesticides were reported within soils at any of the sample locations and therefore the Type 2 error is not considered to significantly impact upon the data set.



## Comparability

Eurofins | mgt, the primary laboratory, and Envirolab Services, the secondary laboratory, are NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the analytical data were comparable between laboratories as indicated by the results of duplicate analysis. Where different LORs were adopted by the laboratories, consideration of the data set was not impacted.

The samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

### **Completeness**

All laboratory and field documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix M**.

The frequency of analysis of all QC samples was considered appropriate and valid.

### Sensitivity

The adopted analytical methods provided suitable LORs with respect to the adopted site assessment criteria for all mediums.

### **QA/QC** Conclusions

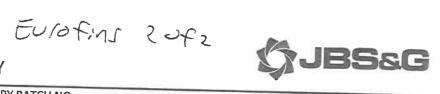
The field sampling and handling procedures across the site produced QA/QC results which indicate that soil and groundwater data collected is of an acceptable quality.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil, soil vapour and groundwater data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



# **Appendix G Laboratory Documentation**


07561

# CHAIN OF CUSTODY



| PROJECT NO.: 55579                            | 1                  |                  |                  |                                               |           | Tia      | NP.O    | DATO           | DV 0 4    | T                   |                                                                         |                        |                           |
|-----------------------------------------------|--------------------|------------------|------------------|-----------------------------------------------|-----------|----------|---------|----------------|-----------|---------------------|-------------------------------------------------------------------------|------------------------|---------------------------|
| PROJECT NAME: Chats                           | DOOR G             | od ucatio        | na Pro           | icint Primary school                          |           |          |         |                |           | TCH NO.:            |                                                                         |                        |                           |
| DAIL MELDED DI. 37                            |                    |                  |                  |                                               |           | _        |         |                |           | 4                   |                                                                         |                        |                           |
| PHONE: Sydney: 02 8245 030                    | 0   Perth:         | 08 9488 03       | 100   Brisi      | bane: 07 3112 2688                            |           | -        | _       |                |           | (2013)              |                                                                         |                        |                           |
| SEND REPORT & INVOICE TO:                     | (1) admin          | nsw@ibsg         | .com.au: (       | (2) Doen a (0                                 | 56 00 00  |          | (2)     | 2000           | 1.1.1     | 31                  |                                                                         |                        |                           |
| COMMENTS / SPECIAL HANDLING / STORA           | AGE OR DISPOS      | SAL:             |                  | (w) D                                         | sg.com    | .au;     | (3).    | 11.13          | 1         |                     | .@jbsg.com.au 12 Chapman                                                | 6:220                  | , com.au                  |
|                                               |                    |                  |                  |                                               |           | Metals   | PA      | 73             | BB        | 22                  |                                                                         | W100000                |                           |
|                                               |                    |                  |                  |                                               |           | 3        | 主       | E              | 16        | B 2d                |                                                                         | ANALYSIS               | ING ADD OUTDER!           |
|                                               | -                  |                  |                  |                                               |           | =        | ·~      | W,             | V         | letu                |                                                                         | ATIO                   | The workpets              |
| SAMPLE ID                                     | MATRIX             | DATE             | TIME             | TYPE & PRESERVATIVE                           | рН        | 1        |         | R              | 000       | DCB PCLUMPING DAIL  |                                                                         | IDENTIFICATION NEPM/WA | 121 21110101              |
| BH-P-010,4-05                                 | 1:02               | 23/119           |                  | Soumbboy, Justice                             |           | X        |         | X              |           | X                   |                                                                         |                        | NOTES:                    |
| BH-P-02 0-0.15                                | d                  |                  |                  | , , , , , , , , , , , , , , , , , , , ,       |           | 1        |         | X              | ×         | $\sim$              |                                                                         | X                      |                           |
| BH-P-03 1-1.1                                 |                    |                  |                  |                                               |           |          |         | Ŷ              |           |                     |                                                                         | X                      |                           |
| 1314-12-04 0-015                              | 1                  |                  |                  |                                               | +         | +        | +       | 1              | X         |                     |                                                                         | X                      |                           |
| BH-P-05 0-4-0,5                               |                    |                  |                  |                                               |           | 1        | +       |                | +         |                     |                                                                         | X                      |                           |
| BH-P-06 0.8-24                                | 1                  |                  |                  |                                               |           | +++      | -       | 1/             |           |                     |                                                                         | X                      |                           |
| BH-P-070-415                                  | -                  | 22/1/14          |                  |                                               | +         | -        | +       | X              | X         | X                   |                                                                         | X                      |                           |
| BH-P-080-4-25                                 |                    | 24/114           |                  |                                               |           | 1        | $\perp$ |                | -         |                     |                                                                         | X                      |                           |
| BH-P-040-015                                  |                    | 24/114           |                  |                                               |           | 1        | +       |                |           |                     |                                                                         | X                      |                           |
| BH-P-1006-07                                  |                    | 24/14            |                  |                                               |           | 1        | 1       | X              | X         |                     |                                                                         | X                      |                           |
| Bdp.01 0-015                                  |                    | 23/1/9           |                  |                                               | -         | W        | -       | _              |           |                     |                                                                         | X                      |                           |
| BU-1-10-1-11                                  |                    |                  |                  | Justice                                       |           |          | -       | -              |           |                     |                                                                         |                        |                           |
| BH-P-02 0.4-0.5                               |                    |                  |                  |                                               | -         | $\vdash$ | -       | -              |           |                     |                                                                         |                        |                           |
| BH-P-02 1-1.1                                 |                    |                  |                  | boy, jactice                                  | -         |          | -       |                |           |                     |                                                                         |                        |                           |
| BH-P-03 0-0-15                                | 1                  |                  |                  | Jultice                                       | -         | $\vdash$ | -       |                |           |                     |                                                                         |                        |                           |
| BH-D-03 04-05                                 |                    | 1-1-             |                  | bag jaltice                                   |           |          | _       |                |           |                     |                                                                         |                        |                           |
| BH-P-03 1.4-15                                |                    |                  |                  | buy jac-ice                                   |           |          |         |                |           |                     |                                                                         |                        |                           |
| BH-P-04 0-4-05                                |                    |                  |                  | 301+10                                        |           |          | _       |                |           |                     |                                                                         |                        |                           |
| BH-P-04 1-1.                                  | ٧/                 | 8                |                  | المام إعراباته                                |           |          |         |                |           |                     |                                                                         |                        |                           |
| RELINOUISHED BY:                              |                    |                  |                  | bal faltice                                   |           | Ш        |         |                |           |                     |                                                                         |                        |                           |
| NAME: DATE: 25                                | 1119               | CONSI            | IGNMENT NO       | METHOD OF SHIPMENT:                           | _         |          | 40      |                | RECEIV    | ED BY:              | FOR RECEIVI                                                             | NG LAB US              | E ONLY-                   |
| OF: JBS&G                                     | 12.42              |                  |                  |                                               |           | DAT      | VIE:    | 25/11<br>25/11 | SY        |                     | COOLER SEAL - Voc. No.                                                  | intact                 | Broken                    |
| NAME: DATE:                                   |                    |                  | SPORT CO.        | OTE NO                                        |           | OF:      | Ka      | · Oti          | 35        |                     | COOLER TEMP deg C                                                       |                        |                           |
|                                               |                    | CONSI            | GMINISM I M      | JIE NO.                                       |           | NAM      | VIE:    |                |           | DATE:               | COOLER SEAL - Yes No                                                    | Intact                 | Broken                    |
| OF: Container & Preservative Coders G - Block | fact contra        | TRANS            | SPORT CO         |                                               |           | OF:      |         |                |           |                     |                                                                         |                        |                           |
| MSO FormsO13 – Chain of Custody - Gen-        | eric = Soil Jar; l | B = Glass Bottle | ; N = Nitric Aci | id Prsvd.; C = Sodium Hydroxide Prsvd; VC = H | ydrochior | ic Acid  | Prsvo   | Vial; V        | S = Sulfu | ric Acid Prsvd Vial | COOLER TEMP deg C<br>: S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDT | 4 D.:. 1 C=            |                           |
|                                               |                    |                  |                  |                                               |           |          |         |                |           |                     |                                                                         | 4 LLZAG; 21 =          | Sterile Bottle: 0 = Other |

07562



# CHAIN OF CUSTODY

| PROJECT NO.: 51,779                                                                |                     |                 |                 |                                           |               | ΤιΔ      | BOR.        | ATORY      | BATCH         | NO.         |                |           |            |            |           |                                 |                              |
|------------------------------------------------------------------------------------|---------------------|-----------------|-----------------|-------------------------------------------|---------------|----------|-------------|------------|---------------|-------------|----------------|-----------|------------|------------|-----------|---------------------------------|------------------------------|
| PROJECT NAME: Cha-                                                                 | s boows             | this of         | en bisc         | int Plimary School                        | i             |          |             |            | RC/           |             |                |           |            |            |           |                                 |                              |
| D                                                                                  |                     |                 |                 |                                           | 7.1           |          |             |            | PM (20:       |             |                |           |            |            |           |                                 |                              |
| PHONE: Sydney: 02 8245 030                                                         | 00   Perth:         | 08 9488 01      | .00   Brist     | ane: 07 3112 2688                         |               |          |             |            |               |             |                |           |            |            |           |                                 |                              |
| SEND REPORT & INVOICE TO COMMENTS / SPECIAL HANDLING / STOR                        | : (1) admin         | nsw@jbsg.       | com.au; (       | 2)D Denalo                                | ibsg.com      | .aur (   | 3)          | mn,        | المدلا        | ~           | O:L.           |           |            | -          | ,         |                                 |                              |
| COMMENTS / SPECIAL HANDLING / STOR                                                 | AGE OR DISPOS       | AL:             |                 |                                           | 1-06100111    | 15       | J,          | 4 0        |               |             | .@Jbsg.co      | m.au      | 12         | وبد ۲ م.   | man       | D, ri pz                        | 0, com 120                   |
|                                                                                    |                     |                 |                 |                                           |               | Medal    | 124         | CC CPS     | DCB WERTH     |             |                |           |            |            |           | TYPE OF<br>ASBESTOS<br>ANALYSIS | The unspecified<br>Putonholo |
| SAMPLE ID                                                                          | MATRIX              | DATE            | TIME            | TYPE & PRESERVATIVE                       | pH            |          | Š           | <u> </u>   | RA            |             |                |           |            |            |           | IDENTIFICATION NEPM/WA          | 1, 104/42/04                 |
| BH-P-05 0-0.15                                                                     | 1:02                | 73/1/60         |                 | فالمراهد مرم                              |               | $\top$   | +           |            | T.            |             |                | -         |            | +          |           | NEP NEP                         | NOTES:                       |
| BH-P-05 1-1.1                                                                      |                     |                 |                 | JU/+100                                   |               |          |             |            |               |             |                | -         | -          | +          | -         | _                               |                              |
| BH-P-06 0-0.15                                                                     |                     |                 |                 | pod ja1 -16                               |               |          |             |            |               |             | ++-            |           | ++         |            |           |                                 |                              |
| BH-P-06 ON-05                                                                      |                     |                 |                 | box jartice                               |               |          |             |            |               |             |                | -         | ++-        |            |           |                                 |                              |
| BH-0-06 1.5-1.6                                                                    |                     | V               |                 | Jultice                                   |               |          |             | 1          | $\rightarrow$ | -           | ++-            |           | -          |            | -         |                                 |                              |
| BH-P-07 04-0.5                                                                     |                     | 35/16           |                 | by ja1416                                 |               |          |             | 1          |               | -           | +++            | -         | +          | -          |           |                                 |                              |
| BH-P-071-11                                                                        |                     |                 |                 | pro joy tice                              |               |          |             | 11         |               | -           |                |           | ++         | +          | 44        |                                 |                              |
| BH-6-03 1-118                                                                      |                     | V               |                 | Jul +160                                  |               |          |             | -          |               |             |                | -         | -          |            |           |                                 |                              |
| BH-P-08 0-0.15                                                                     |                     | 24/10           |                 | bug ; 21+:ce                              |               |          | +           | +++        |               |             | -              | -         |            |            |           |                                 |                              |
| BH-P-09 014-015                                                                    |                     |                 |                 | han intice                                |               |          | +           | +          |               |             |                |           |            | ++         |           |                                 |                              |
| BH-P-09a 0-015                                                                     |                     |                 |                 | A P                                       |               |          |             | +++        |               |             |                | -         |            |            |           |                                 |                              |
| B14-P-00/a a4-a5                                                                   |                     |                 |                 |                                           |               |          | -           | ++         | -             | ++          |                | -         |            |            |           |                                 |                              |
| BH-P-10 0-0115                                                                     |                     |                 |                 |                                           |               |          | -           | ++         |               | -           | -              |           |            |            |           |                                 |                              |
| BH-P-10 1-11                                                                       |                     |                 |                 | Ja1716                                    |               |          | +           | ++         |               |             |                |           |            |            |           |                                 |                              |
| BH-P-11 0-015                                                                      |                     |                 |                 | hay jaitice                               |               |          | -           | +++        |               | -           | +              |           |            |            |           |                                 |                              |
| BH-P-11 0-4-05                                                                     |                     |                 |                 | 1 Just 100                                |               |          | +           |            |               |             | +              |           |            | 1          |           |                                 |                              |
| 80-80 11-9-HB                                                                      |                     |                 |                 |                                           |               |          | +           | ++         |               | ++          | 1 1            |           |            | $\perp$    |           |                                 |                              |
| BA D-11 111-15                                                                     | <b>1</b>            |                 |                 | Jan +100                                  |               | -        |             |            |               |             |                |           |            |            |           |                                 |                              |
|                                                                                    |                     |                 |                 |                                           |               | +        | +           | +          | +             | -           | + + +          | - 1       |            | $\perp$    |           |                                 |                              |
| RELINQUISHED BY:                                                                   | - 1                 |                 |                 | METHOD OF SHIPMENT:                       |               |          |             | PEC        | EIVED BY:     |             | $\perp$        |           |            |            |           |                                 |                              |
|                                                                                    | 5/1/10              | CONSIC          | NMENT NO        | TE NO.                                    |               | NAM      | 1E:         | NEC        | EIVED BY      |             | COC            | N ED CC   | N          | FOR RE     | CEIVING   | LAB US                          | E ONLY:                      |
| OF: JBS&G NAME: DATE:                                                              |                     |                 | PORT CO.        |                                           |               | DATE     | Ē:          |            |               |             |                |           |            |            | ln        | tact                            | Broken                       |
| NAME: DATE:                                                                        |                     |                 | NMENT NO        | TE NO.                                    |               | OF:      | IE:         |            |               | DATE:       | COC            | DLER TE   | MP         | deg C      |           |                                 |                              |
| OF:                                                                                |                     | TRANSF          | PORT CO         |                                           |               | OF:      |             |            |               |             | coc            | DLER SEA  | ¥L − Yes.  | No .       | (r        | itact                           | Broken                       |
| Container & Preservative Codes: P = Plast<br>MSO FormsO13 - Chain of Custody - Gen | ic; J = Soil Jar; B | = Glass Bottle; | N = Nitric Acid | f Prsvd.; C = Sodium Hydroxide Prsvd: VC: | = Hydrochlori | c Acid o | leaved 3.65 | -1.10      | 10 1          | <u> </u>    | coc            | LER TEN   | ΛP         | deg C      |           |                                 |                              |
| Chair of Custody - Gen                                                             | eric                |                 |                 |                                           | - yarounon    | C ACIO P | ISVO VI     | at; VS = 5 | ulfuric Acid  | Prsvd Vial; | S = Sulfuric A | cid Prsvd | ; Z = Zinc | : Prsvd; E | = EDTA Pr | svd; ST =                       | Sterile Battle: O = Other    |



# Certificate of Analysis





**NATA Accredited Accreditation Number 1261** Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney **NSW 2000** 

Attention: **Daniel Denaro** Report 637818-AID

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL **Project Name** 

**Project ID** 55579

**Received Date** Jan 25, 2019 Feb 04, 2019 **Date Reported** 

### Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres** 

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.



# mgt





Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 12

Report Number: 637818-AID

Project Name CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID 55579

Date Reported: Feb 04, 2019

**Date Sampled** Jan 22, 2019 to Jan 24, 2019

Report 637818-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                                                | Result                                                                                                              |
|------------------|------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BH_P_01 0.4-0.5  | 19-Ja24219                   | Jan 23, 2019 | Approximate Sample 488g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_02 0-0.15   | 19-Ja24220                   | Jan 23, 2019 | Approximate Sample 697g<br>Sample consisted of: Dark brown coarse-grained soil, rocks and<br>fragments of bitumen | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_03 1-1.1    | 19-Ja24221                   | Jan 23, 2019 | Approximate Sample 685g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_04 0-0.15   | 19-Ja24222                   | Jan 23, 2019 | Approximate Sample 818g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_05 0.4-0.5  | 19-Ja24223                   | Jan 23, 2019 | Approximate Sample 643g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_06 0.8-0.9  | 19-Ja24224                   | Jan 23, 2019 | Approximate Sample 544g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_07 0-0.15   | 19-Ja24225                   | Jan 22, 2019 | Approximate Sample 789g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |
| BH_P_08 0.4-0.5  | 19-Ja24226                   | Jan 24, 2019 | Approximate Sample 618g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.  No respirable fibres detected. |

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

ABN: 50 005 085 521 Telephone: +61 2 9900 8400



# mgt





NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                       | Result                                                                                                             |
|------------------|------------------------------|--------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| BH_P_09 0-0.15   | 19-Ja24227                   | Jan 24, 2019 | Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. |
| BH_P_10 0.6-0.7  | 19-Ja24228                   | Jan 24, 2019 | Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. |



### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJan 29, 2019Indefinite

Report Number: 637818-AID



mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F Brisbane 16 Mars Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Address: Level 1, 50 Margaret St Report #: 637818 Due: Feb 4, 2019 Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name: Daniel Denaro** 

**Project Name:** CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                     | Sa              | mple Detail      |        |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|---------------------|-----------------|------------------|--------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
| Melk | ourne Laborato      | ory - NATA Site | # 1254 & 142     | 271    |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
| Sydi | ney Laboratory      | - NATA Site # 1 | 8217             |        |             | Х                        |      |                                  |                           |           |              |                         |               |
|      | bane Laborator      |                 |                  |        |             |                          |      |                                  |                           |           |              |                         |               |
|      | h Laboratory - N    |                 | 36               |        |             |                          |      |                                  |                           |           |              |                         |               |
|      | rnal Laboratory     |                 |                  | 1      | T           |                          |      |                                  |                           |           |              |                         |               |
| No   | Sample ID           | Sample Date     | Sampling<br>Time | Matrix | LAB ID      |                          |      |                                  |                           |           |              |                         |               |
| 1    | BH_P_01 0.4-<br>0.5 | Jan 23, 2019    |                  | Soil   | S19-Ja24219 | х                        |      |                                  |                           |           | х            |                         | x             |
| 2    | BH_P_02 0-<br>0.15  | Jan 23, 2019    |                  | Soil   | S19-Ja24220 | х                        |      |                                  | х                         |           | Х            | х                       |               |
| 3    | BH_P_03 1-<br>1.1   | Jan 23, 2019    |                  | Soil   | S19-Ja24221 | х                        |      |                                  | Х                         |           | Х            | Х                       |               |
| 4    | BH_P_04 0-<br>0.15  | Jan 23, 2019    |                  | Soil   | S19-Ja24222 | х                        |      | Х                                |                           | Х         | Х            |                         |               |
| 5    | BH_P_05 0.4-<br>0.5 | Jan 23, 2019    |                  | Soil   | S19-Ja24223 | х                        |      | Х                                |                           | Х         | Х            |                         |               |
| 6    | BH_P_06 0.8-        | Jan 23, 2019    |                  | Soil   | S19-Ja24224 | Х                        |      |                                  |                           |           | Х            |                         | х             |

Page 5 of 12



mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F

Sydney

16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Address: Level 1, 50 Margaret St Report #: 637818 Due: Feb 4, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name: Daniel Denaro** 

**Project Name:** CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                         | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|-------------------------|-----------------|--------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
| Mell | oourne Laborato         | ory - NATA Site | # 1254 & 142 | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
| _    | ney Laboratory          |                 |              |      |             | Х                        |      |                                  |                           |           |              |                         |               |
|      | bane Laborator          |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               |
| Pert | h Laboratory - N<br>0.9 | NATA Site # 231 | 36           |      |             |                          |      |                                  |                           |           |              |                         | $\vdash$      |
| 7    | BH_P_07 0-<br>0.15      | Jan 22, 2019    |              | Soil | S19-Ja24225 | Х                        |      | х                                |                           | Х         | х            |                         |               |
| 8    | BH_P_08 0.4-<br>0.5     | Jan 24, 2019    |              | Soil | S19-Ja24226 | Х                        |      | Х                                |                           | Х         | Х            |                         |               |
| 9    | BH_P_09 0-<br>0.15      | Jan 24, 2019    |              | Soil | S19-Ja24227 | Х                        |      |                                  | Х                         |           | Х            | Х                       |               |
| 10   | BH_P_10 0.6-<br>0.7     | Jan 24, 2019    |              | Soil | S19-Ja24228 | Х                        |      | Х                                |                           | Х         | Х            |                         |               |
| 11   | BH_P_01 0-<br>0.15      | Jan 23, 2019    |              | Soil | S19-Ja24229 |                          | Х    |                                  |                           |           |              |                         |               |
| 12   | BH_P_01 1-<br>1.1       | Jan 23, 2019    |              | Soil | S19-Ja24230 |                          | Х    |                                  |                           |           |              |                         |               |
| 13   | BH_P_02 0.4-            | Jan 23, 2019    |              | Soil | S19-Ja24231 |                          | х    |                                  |                           |           |              |                         |               |

Page 6 of 12



Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066

Phone: +61 2 9900 8400

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Level 1, 50 Margaret St Report #: 637818 Due: Feb 4, 2019 Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name: Daniel Denaro** 

**Project Name:** CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                     | Sa              | mple Detail |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|---------------------|-----------------|-------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
|      | bourne Laborate     | -               |             | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
|      | ney Laboratory      |                 |             |      |             | Х                        |      |                                  |                           |           |              |                         |               |
|      | bane Laborator      |                 |             |      |             |                          |      |                                  |                           |           |              |                         |               |
| Pert | h Laboratory - N    | NATA Site # 237 | <b>736</b>  | I    |             |                          |      |                                  |                           |           |              |                         |               |
|      | 0.5                 |                 |             |      |             |                          |      |                                  |                           |           |              |                         |               |
| 14   | BH_P_02 1-<br>1.1   | Jan 23, 2019    |             | Soil | S19-Ja24232 |                          | Х    |                                  |                           |           |              |                         |               |
| 15   | BH_P_03 0-<br>0.15  | Jan 23, 2019    |             | Soil | S19-Ja24233 |                          | х    |                                  |                           |           |              |                         |               |
| 16   | BH_P_03 0.4-<br>0.5 | Jan 23, 2019    |             | Soil | S19-Ja24234 |                          | Х    |                                  |                           |           |              |                         |               |
| 17   | BH_P_03 1.4-<br>1.5 | Jan 23, 2019    |             | Soil | S19-Ja24235 |                          | Х    |                                  |                           |           |              |                         |               |
| 18   | BH_P_04 0.4-<br>0.5 | Jan 23, 2019    |             | Soil | S19-Ja24236 |                          | Х    |                                  |                           |           |              |                         |               |
| 19   | BH_P_04 1-<br>1.1   | Jan 23, 2019    |             | Soil | S19-Ja24237 |                          | Х    |                                  |                           |           |              |                         |               |
| 20   | BH_P_05 0-          | Jan 23, 2019    |             | Soil | S19-Ja24238 |                          | Х    |                                  |                           |           |              |                         |               |

Page 7 of 12



Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Brisbane

Sydney

Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth
2/91 Leach Highway
Kewdale WA 6105
600 Phone: +61 8 9251 9600
0794 NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

 Level 1, 50 Margaret St
 Report #:
 637818
 Due:
 Feb 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                          | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|--------------------------|-----------------|--------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
| Mell | oourne Laborato          | ory - NATA Site | # 1254 & 142 | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
|      | ney Laboratory           |                 |              |      |             | Х                        |      |                                  |                           |           |              |                         |               |
|      | bane Laborator           |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               |
| Pert | h Laboratory - N<br>0.15 | NATA Site # 237 | 36           |      |             |                          |      |                                  |                           |           |              |                         |               |
| 21   | BH_P_05 1-<br>1.1        | Jan 23, 2019    |              | Soil | S19-Ja24239 |                          | Х    |                                  |                           |           |              |                         |               |
| 22   | BH_P_06 0-<br>0.15       | Jan 23, 2019    |              | Soil | S19-Ja24240 |                          | Х    |                                  |                           |           |              |                         |               |
| 23   | BH_P_06 0.4-<br>0.5      | Jan 23, 2019    |              | Soil | S19-Ja24241 |                          | Х    |                                  |                           |           |              |                         |               |
| 24   | BH_P_06 1.5-<br>1.6      | Jan 23, 2019    |              | Soil | S19-Ja24242 |                          | Х    |                                  |                           |           |              |                         |               |
| 25   | BH_P_07 0.4-<br>0.5      | Jan 22, 2019    |              | Soil | S19-Ja24243 |                          | Х    |                                  |                           |           |              |                         |               |
| 26   | BH_P_07 1-<br>1.1        | Jan 22, 2019    |              | Soil | S19-Ja24244 |                          | Х    |                                  |                           |           |              |                         |               |
| 27   | BH_P_07 1.7-             | Jan 22, 2019    |              | Soil | S19-Ja24245 |                          | Х    |                                  |                           |           |              |                         |               |

Page 8 of 12



mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 637818
 Due:
 Feb 4, 2019

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                           | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|---------------------------|-----------------|--------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
| Mell | oourne Laborato           | ory - NATA Site | # 1254 & 142 | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
|      | ney Laboratory            |                 |              |      |             | Х                        |      |                                  |                           |           |              |                         | $\vdash$      |
|      | bane Laborator            |                 |              |      |             |                          |      |                                  |                           |           |              |                         | $\vdash$      |
| Pert | h Laboratory - N          | NATA Site # 237 | 36           | 1    |             |                          |      |                                  |                           |           |              |                         |               |
| 28   | 1.8<br>BH_P_08 0-<br>0.15 | Jan 24, 2019    |              | Soil | S19-Ja24246 |                          | х    |                                  |                           |           |              |                         |               |
| 29   | BH_P_09 0.4-<br>0.5       | Jan 24, 2019    |              | Soil | S19-Ja24247 |                          | Х    |                                  |                           |           |              |                         |               |
| 30   | BH_P_09A 0-<br>0.15       | Jan 24, 2019    |              | Soil | S19-Ja24248 |                          | Х    |                                  |                           |           |              |                         |               |
| 31   | BH_P_09A<br>0.4-0.5       | Jan 24, 2019    |              | Soil | S19-Ja24249 |                          | Х    |                                  |                           |           |              |                         |               |
| 32   | BH_P_10 0-<br>0.15        | Jan 24, 2019    |              | Soil | S19-Ja24250 |                          | Х    |                                  |                           |           |              |                         |               |
| 33   | BH_P_10 1-<br>1.1         | Jan 24, 2019    |              | Soil | S19-Ja24251 |                          | Х    |                                  |                           |           |              |                         |               |
| 34   | BH_P_11 0-                | Jan 24, 2019    |              | Soil | S19-Ja24252 |                          | Х    |                                  |                           |           |              |                         |               |

Page 9 of 12



Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Sydney

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Jan 25, 2019 5:50 PM

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Daniel Denaro

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|      |                               | Sa              | mple Detail |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|-------------------------------|-----------------|-------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
|      | ourne Laborato                |                 |             | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
|      | ney Laboratory                |                 |             |      |             | Х                        |      |                                  |                           |           |              |                         |               |
|      | bane Laborator                |                 |             |      |             |                          |      |                                  |                           |           |              |                         |               |
| Pert | <mark>h Laboratory - N</mark> | NATA Site # 237 | 736         | T    |             |                          |      |                                  |                           |           |              |                         |               |
|      | 0.15                          |                 |             |      |             |                          |      |                                  |                           |           |              |                         |               |
| 35   | BH_P_11 0.4-<br>0.5           | Jan 24, 2019    |             | Soil | S19-Ja24253 |                          | Х    |                                  |                           |           |              |                         |               |
| 36   | BH_P_11 0.8-<br>0.9           | Jan 24, 2019    |             | Soil | S19-Ja24254 |                          | Х    |                                  |                           |           |              |                         |               |
| 37   | BH_P_11 1.1-<br>1.2           | Jan 24, 2019    |             | Soil | S19-Ja24255 |                          | Х    |                                  |                           |           |              |                         |               |
| Test | Counts                        |                 |             |      |             | 10                       | 27   | 5                                | 3                         | 5         | 10           | 3                       | 2             |

Page 10 of 12



### **Internal Quality Control Review and Glossary**

### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

### Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

### **Terms**

**Dry** Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standard

Date Reported: Feb 04, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

AF equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Report Number: 637818-AID



### Comments

Ja24219: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

### Sample Integrity

| Custody Seals Intact (if used)                                          | N/A |
|-------------------------------------------------------------------------|-----|
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

Code Description N/A Not applicable

### **Asbestos Counter/Identifier:**

Laxman Dias Senior Analyst-Asbestos (NSW)

### Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Date Reported: Feb 04, 2019

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here.}}$ 

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 637818-AID

<sup>-</sup> Indicates Not Requested

<sup>\*</sup> Indicates NATA accreditation does not cover the performance of this service



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Daniel Denaro

Report 637818-S

Project name CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID 55579
Received Date Jan 25, 2019

| Client Sample ID                           |           |       | BH_P_01 0.4-<br>0.5 | R16BH_P_02 0-<br>0.15 | BH_P_03 1-1.1 | BH_P_04 0-<br>0.15 |
|--------------------------------------------|-----------|-------|---------------------|-----------------------|---------------|--------------------|
| Sample Matrix                              |           |       | Soil                | Soil                  | Soil          | Soil               |
| Eurofins   mgt Sample No.                  |           |       | S19-Ja24219         | S19-Ja24220           | S19-Ja24221   | S19-Ja24222        |
| Date Sampled                               |           |       | Jan 23, 2019        | Jan 23, 2019          | Jan 23, 2019  | Jan 23, 2019       |
| Test/Reference                             | LOR       | Unit  |                     |                       |               |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM |           |       |                     |                       |               |                    |
| TRH C6-C9                                  | 20        | mg/kg | < 20                | < 40                  | < 20          | -                  |
| TRH C10-C14                                | 20        | mg/kg | < 20                | < 20                  | < 20          | -                  |
| TRH C15-C28                                | 50        | mg/kg | < 50                | 6400                  | < 50          | =                  |
| TRH C29-C36                                | 50        | mg/kg | < 50                | 3900                  | < 50          | =                  |
| TRH C10-36 (Total)                         | 50        | mg/kg | < 50                | 10300                 | < 50          | -                  |
| втех                                       |           |       |                     |                       |               |                    |
| Benzene                                    | 0.1       | mg/kg | < 0.1               | < 0.2                 | < 0.1         | -                  |
| Toluene                                    | 0.1       | mg/kg | < 0.1               | < 0.2                 | < 0.1         | -                  |
| Ethylbenzene                               | 0.1       | mg/kg | < 0.1               | < 0.2                 | < 0.1         | -                  |
| m&p-Xylenes                                | 0.2       | mg/kg | < 0.2               | < 0.4                 | < 0.2         | -                  |
| o-Xylene                                   | 0.1       | mg/kg | < 0.1               | < 0.2                 | < 0.1         | -                  |
| Xylenes - Total                            | 0.3       | mg/kg | < 0.3               | < 0.6                 | < 0.3         | -                  |
| 4-Bromofluorobenzene (surr.)               | 1         | %     | 75                  | 88                    | 68            | -                  |
| Total Recoverable Hydrocarbons - 2013 NEPM | Fractions |       |                     |                       |               |                    |
| Naphthalene <sup>N02</sup>                 | 0.5       | mg/kg | < 0.5               | 1.5                   | < 0.5         | -                  |
| TRH C6-C10                                 | 20        | mg/kg | < 20                | < 40                  | < 20          | -                  |
| TRH C6-C10 less BTEX (F1)N04               | 20        | mg/kg | < 20                | < 40                  | < 20          | -                  |
| TRH >C10-C16                               | 50        | mg/kg | < 50                | 120                   | < 50          | -                  |
| TRH >C10-C16 less Naphthalene (F2)N01      | 50        | mg/kg | < 50                | 118.5                 | < 50          | -                  |
| TRH >C16-C34                               | 100       | mg/kg | < 100               | 9000                  | < 100         | -                  |
| TRH >C34-C40                               | 100       | mg/kg | < 100               | 2200                  | < 100         | =                  |
| TRH >C10-C40 (total)*                      | 100       | mg/kg | < 100               | 11320                 | < 100         | -                  |
| Polycyclic Aromatic Hydrocarbons           |           |       |                     |                       |               |                    |
| Benzo(a)pyrene TEQ (lower bound) *         | 0.5       | mg/kg | < 0.5               | 120                   | < 0.5         | 3.2                |
| Benzo(a)pyrene TEQ (medium bound) *        | 0.5       | mg/kg | 0.6                 | 120                   | 0.6           | 3.4                |
| Benzo(a)pyrene TEQ (upper bound) *         | 0.5       | mg/kg | 1.2                 | 120                   | 1.2           | 3.7                |
| Acenaphthene                               | 0.5       | mg/kg | < 0.5               | 1.0                   | < 0.5         | < 0.5              |
| Acenaphthylene                             | 0.5       | mg/kg | < 0.5               | 1.7                   | < 0.5         | < 0.5              |
| Anthracene                                 | 0.5       | mg/kg | < 0.5               | 7.2                   | < 0.5         | < 0.5              |
| Benz(a)anthracene                          | 0.5       | mg/kg | < 0.5               | 47                    | < 0.5         | 1.5                |
| Benzo(a)pyrene                             | 0.5       | mg/kg | < 0.5               | 82                    | < 0.5         | 2.5                |
| Benzo(b&j)fluoranthene <sup>N07</sup>      | 0.5       | mg/kg | < 0.5               | 55                    | < 0.5         | 1.9                |
| Benzo(g.h.i)perylene                       | 0.5       | mg/kg | < 0.5               | 41                    | < 0.5         | 0.8                |
| Benzo(k)fluoranthene                       | 0.5       | mg/kg | < 0.5               | 59                    | < 0.5         | 1.9                |
| Chrysene                                   | 0.5       | mg/kg | < 0.5               | 48                    | < 0.5         | 1.5                |

Report Number: 637818-S



| Client Sample ID                                        |              |                | BH_P_01 0.4-<br>0.5 | R16BH_P_02 0-<br>0.15 | BH_P_03 1-1.1    | BH_P_04 0-<br>0.15 |
|---------------------------------------------------------|--------------|----------------|---------------------|-----------------------|------------------|--------------------|
| Sample Matrix                                           |              |                | Soil                | Soil                  | Soil             | Soil               |
| Eurofins   mgt Sample No.                               |              |                | S19-Ja24219         | S19-Ja24220           | S19-Ja24221      | S19-Ja24222        |
| Date Sampled                                            |              |                | Jan 23, 2019        | Jan 23, 2019          | Jan 23, 2019     | Jan 23, 2019       |
| Test/Reference                                          | LOR          | Linit          | Jan 23, 2013        | Jan 23, 2013          | Jan 23, 2013     | Jan 23, 2013       |
|                                                         | LOR          | Unit           |                     |                       |                  |                    |
| Polycyclic Aromatic Hydrocarbons                        | 0.5          |                | .0.5                | 11                    | .0.5             | .0.5               |
| Dibenz(a.h)anthracene                                   | 0.5          | mg/kg          | < 0.5               | 11                    | < 0.5            | < 0.5              |
| Fluoranthene                                            | 0.5          | mg/kg          | < 0.5               | 96                    | < 0.5            | 2.6                |
| Fluorene                                                | 0.5          | mg/kg          | < 0.5               | 1.0                   | < 0.5            | < 0.5              |
| Indeno(1.2.3-cd)pyrene Naphthalene                      | 0.5          | mg/kg          | < 0.5               | 61                    | < 0.5            |                    |
| Naprimaierie<br>Phenanthrene                            | 0.5<br>0.5   | mg/kg          | < 0.5<br>< 0.5      | 0.7<br>29             | < 0.5<br>< 0.5   | < 0.5              |
|                                                         |              | mg/kg          |                     |                       |                  |                    |
| Pyrene<br>Total PAH*                                    | 0.5          | mg/kg          | < 0.5               | 110<br>650.6          | < 0.5            | 2.9                |
|                                                         | 0.5          | mg/kg<br>%     | < 0.5<br>82         |                       | < 0.5<br>75      |                    |
| 2-Fluorobiphenyl (surr.)                                | 1            |                |                     | 73                    |                  | 81                 |
| p-Terphenyl-d14 (surr.) Organochlorine Pesticides       | 1            | %              | 97                  | 73                    | 88               | 84                 |
| Chlordanes - Total                                      | 0.1          | m = //         | < 0.1               | -04                   | -0.4             |                    |
|                                                         |              | mg/kg          |                     | < 0.1                 | < 0.1            | -                  |
| 4.4'-DDD<br>4.4'-DDE                                    | 0.05         | mg/kg          | < 0.05<br>< 0.05    | < 0.05                | < 0.05<br>< 0.05 | -                  |
| 4.4'-DDE<br>4.4'-DDT                                    | 0.05         | mg/kg          | < 0.05              | < 0.05<br>< 0.05      | < 0.05           | -                  |
| 4.4 -DD1<br>a-BHC                                       | 0.05         | mg/kg          | < 0.05              |                       |                  | -                  |
|                                                         |              | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Aldrin<br>b-BHC                                         | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| d-BHC                                                   | 0.05<br>0.05 | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
|                                                         | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Dieldrin                                                | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Endosulfan I                                            | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Endosulfan II                                           | 0.05         | mg/kg          | < 0.05              | < 0.05<br>< 0.05      | < 0.05<br>< 0.05 | -                  |
| Endosulfan sulphate<br>Endrin                           | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Endrin aldehyde                                         | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Endrin laderiyde<br>Endrin ketone                       | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| g-BHC (Lindane)                                         | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| , ,                                                     | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Heptachlor<br>Heptachlor epoxide                        | 0.05         | mg/kg<br>mg/kg | < 0.05              | < 0.05                | < 0.05           | -                  |
|                                                         | 0.05         |                | < 0.05              | < 0.05                | < 0.05           | -                  |
| Hexachlorobenzene<br>Methowychlor                       | 0.05         | mg/kg          | < 0.05              |                       | < 0.05           | -                  |
| Methoxychlor                                            | 1            | mg/kg          |                     | < 0.05                |                  | -                  |
| Toxaphene<br>Aldrin and Dieldrin (Total)*               | 0.05         | mg/kg<br>mg/kg | < 1<br>< 0.05       | < 1<br>< 0.05         | < 1<br>< 0.05    | -                  |
| DDT + DDE + DDD (Total)*                                | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Vic EPA IWRG 621 OCP (Total)*                           | 0.05         | mg/kg          | < 0.05              | < 0.05                | < 0.05           | -                  |
| Vic EPA IWRG 621 Other OCP (Total)*                     | 0.1          | mg/kg          | < 0.1               | < 0.1                 | < 0.1            | _                  |
| Dibutylchlorendate (surr.)                              | 1            | %              | 121                 | 97                    | 94               |                    |
| Tetrachloro-m-xylene (surr.)                            | 1            | %              | 55                  | 100                   | 100              | <u> </u>           |
| Polychlorinated Biphenyls                               | 1            | /0             | 33                  | 100                   | 100              | †                  |
| Aroclor-1016                                            | 0.1          | ma/ka          | < 0.1               |                       |                  |                    |
|                                                         | 0.1          | mg/kg          | < 0.1               | -                     | -                | -                  |
| Aroclor-1221                                            | 0.1          | mg/kg          | < 0.1               | -                     | -                | -                  |
| Aroclor-1232                                            |              | mg/kg          | < 0.1               |                       | -                | -                  |
| Aroclor 1242                                            | 0.1          | mg/kg          |                     | -                     | -                | -                  |
| Aroclor 1254                                            | 0.1          | mg/kg          | < 0.1               | -                     | -                | -                  |
| Aroclor 1254                                            | 0.1          | mg/kg          | < 0.1               | -                     | -                | -                  |
| Aroclor-1260                                            | 0.1          | mg/kg          | < 0.1               | -                     | -                | -                  |
| Total PCB*                                              | 0.1          | mg/kg          | < 0.1               | -                     | -                | -                  |
| Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.) | 1            | %              | 121<br>55           | -                     | -                | -                  |



| Client Sample ID Sample Matrix |     |       | BH_P_01 0.4-<br>0.5<br>Soil | R16BH_P_02 0-<br>0.15<br>Soil | BH_P_03 1-1.1<br>Soil | BH_P_04 0-<br>0.15<br>Soil |
|--------------------------------|-----|-------|-----------------------------|-------------------------------|-----------------------|----------------------------|
| Eurofins   mgt Sample No.      |     |       | S19-Ja24219                 | S19-Ja24220                   | S19-Ja24221           | S19-Ja24222                |
| Date Sampled                   |     |       | Jan 23, 2019                | Jan 23, 2019                  | Jan 23, 2019          | Jan 23, 2019               |
| Test/Reference                 | LOR | Unit  |                             |                               |                       |                            |
| Heavy Metals                   |     |       |                             |                               |                       |                            |
| Arsenic                        | 2   | mg/kg | 8.2                         | 2.1                           | 4.1                   | 3.8                        |
| Cadmium                        | 0.4 | mg/kg | < 0.4                       | 0.7                           | < 0.4                 | < 0.4                      |
| Chromium                       | 5   | mg/kg | 15                          | 29                            | 14                    | 12                         |
| Copper                         | 5   | mg/kg | < 5                         | 44                            | < 5                   | 75                         |
| Lead                           | 5   | mg/kg | 16                          | 100                           | 23                    | 58                         |
| Mercury                        | 0.1 | mg/kg | < 0.1                       | < 0.1                         | < 0.1                 | < 0.1                      |
| Nickel                         | 5   | mg/kg | < 5                         | 32                            | < 5                   | 8.3                        |
| Zinc                           | 5   | mg/kg | 320                         | 110                           | 6.3                   | 78                         |
| % Moisture                     | 1   | %     | 20                          | 2.9                           | 14                    | 8.4                        |

| Client Sample ID                           |           |       | BH_P_05 0.4-<br>0.5 | BH_P_06 0.8-<br>0.9 | BH_P_07 0-<br>0.15 | BH_P_08 0.4-<br>0.5 |
|--------------------------------------------|-----------|-------|---------------------|---------------------|--------------------|---------------------|
| Sample Matrix                              |           |       | Soil                | Soil                | Soil               | Soil                |
| Eurofins   mgt Sample No.                  |           |       | S19-Ja24223         | S19-Ja24224         | S19-Ja24225        | S19-Ja24226         |
| Date Sampled                               |           |       | Jan 23, 2019        | Jan 23, 2019        | Jan 22, 2019       | Jan 24, 2019        |
| Test/Reference                             | LOR       | Unit  |                     |                     |                    |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM | Fractions |       |                     |                     |                    |                     |
| TRH C6-C9                                  | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH C10-C14                                | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH C15-C28                                | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH C29-C36                                | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH C10-36 (Total)                         | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| ВТЕХ                                       | •         |       |                     |                     |                    |                     |
| Benzene                                    | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| Toluene                                    | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| Ethylbenzene                               | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| m&p-Xylenes                                | 0.2       | mg/kg | -                   | < 0.2               | -                  | -                   |
| o-Xylene                                   | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| Xylenes - Total                            | 0.3       | mg/kg | -                   | < 0.3               | -                  | -                   |
| 4-Bromofluorobenzene (surr.)               | 1         | %     | -                   | 70                  | -                  | -                   |
| Total Recoverable Hydrocarbons - 2013 NEPM | Fractions |       |                     |                     |                    |                     |
| Naphthalene <sup>N02</sup>                 | 0.5       | mg/kg | -                   | < 0.5               | -                  | -                   |
| TRH C6-C10                                 | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH C6-C10 less BTEX (F1)N04               | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH >C10-C16                               | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH >C10-C16 less Naphthalene (F2)N01      | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH >C16-C34                               | 100       | mg/kg | -                   | < 100               | -                  | -                   |
| TRH >C34-C40                               | 100       | mg/kg | -                   | < 100               | -                  | -                   |
| TRH >C10-C40 (total)*                      | 100       | mg/kg | -                   | < 100               | -                  | -                   |
| Polycyclic Aromatic Hydrocarbons           |           |       |                     |                     |                    |                     |
| Benzo(a)pyrene TEQ (lower bound) *         | 0.5       | mg/kg | 1.2                 | 1.3                 | < 0.5              | 2.2                 |
| Benzo(a)pyrene TEQ (medium bound) *        | 0.5       | mg/kg | 1.4                 | 1.6                 | 0.6                | 2.5                 |
| Benzo(a)pyrene TEQ (upper bound) *         | 0.5       | mg/kg | 1.7                 | 1.8                 | 1.2                | 2.7                 |
| Acenaphthene                               | 0.5       | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Acenaphthylene                             | 0.5       | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Anthracene                                 | 0.5       | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Benz(a)anthracene                          | 0.5       | mg/kg | 0.6                 | 0.6                 | < 0.5              | 1.3                 |



| Client Sample ID                      |      |                | BH_P_05 0.4-<br>0.5 | BH_P_06 0.8-<br>0.9 | BH_P_07 0-<br>0.15 | BH_P_08 0.4-<br>0.5 |
|---------------------------------------|------|----------------|---------------------|---------------------|--------------------|---------------------|
| Sample Matrix                         |      |                | Soil                | Soil                | Soil               | Soil                |
| Eurofins   mgt Sample No.             |      |                | S19-Ja24223         | S19-Ja24224         | S19-Ja24225        | S19-Ja24226         |
| Date Sampled                          |      |                | Jan 23, 2019        | Jan 23, 2019        | Jan 22, 2019       | Jan 24, 2019        |
| Test/Reference                        | LOR  | Unit           | July 20, 2015       | Juli 20, 2010       | July 22, 2015      | Juli 24, 2013       |
| Polycyclic Aromatic Hydrocarbons      | LOK  | Offic          |                     |                     |                    |                     |
| Benzo(a)pyrene                        | 0.5  | ma/ka          | 0.9                 | 1.0                 | < 0.5              | 1.7                 |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg<br>mg/kg | 0.9                 | 0.9                 | < 0.5              | 1.2                 |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg          | < 0.5               | < 0.5               | < 0.5              | 0.6                 |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg          | 0.7                 | 1.0                 | < 0.5              | 1.5                 |
| Chrysene                              | 0.5  | mg/kg          | 0.7                 | 0.7                 | < 0.5              | 1.1                 |
| Dibenz(a.h)anthracene                 | 0.5  | mg/kg          | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Fluoranthene                          | 0.5  | mg/kg          | 1.3                 | 1.1                 | < 0.5              | 2.5                 |
| Fluorene                              | 0.5  | mg/kg          | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg          | 0.7                 | 0.5                 | < 0.5              | 0.9                 |
| Naphthalene                           | 0.5  | mg/kg          | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Phenanthrene                          | 0.5  | mg/kg          | 0.9                 | < 0.5               | < 0.5              | 1.5                 |
| Pyrene                                | 0.5  | mg/kg          | 1.4                 | 1.2                 | < 0.5              | 2.5                 |
| Total PAH*                            | 0.5  | mg/kg          | 7.5                 | 7                   | < 0.5              | 14.8                |
| 2-Fluorobiphenyl (surr.)              | 1    | %              | 72                  | 75                  | 74                 | 89                  |
| p-Terphenyl-d14 (surr.)               | 1    | %              | 72                  | 71                  | 75                 | 90                  |
| Organochlorine Pesticides             |      | ,,,            |                     |                     |                    |                     |
| Chlordanes - Total                    | 0.1  | mg/kg          | _                   | < 0.1               | _                  | _                   |
| 4.4'-DDD                              | 0.05 | mg/kg          | _                   | < 0.05              | _                  | _                   |
| 4.4'-DDE                              | 0.05 | mg/kg          | _                   | < 0.05              | _                  | _                   |
| 4.4'-DDT                              | 0.05 | mg/kg          | _                   | < 0.05              | _                  | _                   |
| a-BHC                                 | 0.05 | mg/kg          | _                   | < 0.05              | _                  | _                   |
| Aldrin                                | 0.05 | mg/kg          | _                   | < 0.05              | _                  | _                   |
| b-BHC                                 | 0.05 | mg/kg          | _                   | < 0.05              | _                  | _                   |
| d-BHC                                 | 0.05 | mg/kg          | -                   | < 0.05              | _                  | -                   |
| Dieldrin                              | 0.05 | mg/kg          | -                   | < 0.05              | _                  | -                   |
| Endosulfan I                          | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Endosulfan II                         | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Endosulfan sulphate                   | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Endrin                                | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Endrin aldehyde                       | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Endrin ketone                         | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| g-BHC (Lindane)                       | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Heptachlor                            | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Heptachlor epoxide                    | 0.05 | mg/kg          | -                   | < 0.05              | _                  | -                   |
| Hexachlorobenzene                     | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Methoxychlor                          | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Toxaphene                             | 1    | mg/kg          | -                   | < 1                 | -                  | -                   |
| Aldrin and Dieldrin (Total)*          | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| DDT + DDE + DDD (Total)*              | 0.05 | mg/kg          | -                   | < 0.05              | -                  | -                   |
| Vic EPA IWRG 621 OCP (Total)*         | 0.1  | mg/kg          | -                   | < 0.1               | -                  | -                   |
| Vic EPA IWRG 621 Other OCP (Total)*   | 0.1  | mg/kg          | -                   | < 0.1               | -                  | -                   |
| Dibutylchlorendate (surr.)            | 1    | %              | -                   | 91                  | -                  | -                   |
| Tetrachloro-m-xylene (surr.)          | 1    | %              | -                   | 97                  | -                  | -                   |
| Polychlorinated Biphenyls             |      |                |                     |                     |                    |                     |
| Aroclor-1016                          | 0.1  | mg/kg          | -                   | < 0.1               | -                  | _                   |
| Aroclor-1221                          | 0.1  | mg/kg          | -                   | < 0.1               | -                  | -                   |
| Aroclor-1232                          | 0.1  | mg/kg          | -                   | < 0.1               | -                  | -                   |
| Aroclor-1242                          | 0.1  | mg/kg          | -                   | < 0.1               | -                  | -                   |
| Aroclor-1248                          | 0.1  | mg/kg          | -                   | < 0.1               | -                  | -                   |



| Client Sample ID             |     |       | BH_P_05 0.4-<br>0.5 | BH_P_06 0.8-<br>0.9 | BH_P_07 0-<br>0.15 | BH_P_08 0.4-<br>0.5 |
|------------------------------|-----|-------|---------------------|---------------------|--------------------|---------------------|
| Sample Matrix                |     |       | Soil                | Soil                | Soil               | Soil                |
| Eurofins   mgt Sample No.    |     |       | S19-Ja24223         | S19-Ja24224         | S19-Ja24225        | S19-Ja24226         |
| Date Sampled                 |     |       | Jan 23, 2019        | Jan 23, 2019        | Jan 22, 2019       | Jan 24, 2019        |
| Test/Reference               | LOR | Unit  |                     |                     |                    |                     |
| Polychlorinated Biphenyls    |     |       |                     |                     |                    |                     |
| Aroclor-1254                 | 0.1 | mg/kg | -                   | < 0.1               | -                  | -                   |
| Aroclor-1260                 | 0.1 | mg/kg | -                   | < 0.1               | -                  | -                   |
| Total PCB*                   | 0.1 | mg/kg | -                   | < 0.1               | =                  | -                   |
| Dibutylchlorendate (surr.)   | 1   | %     | -                   | 91                  | -                  | -                   |
| Tetrachloro-m-xylene (surr.) | 1   | %     | -                   | 97                  | -                  | -                   |
| Heavy Metals                 |     |       |                     |                     |                    |                     |
| Arsenic                      | 2   | mg/kg | 4.4                 | 4.5                 | < 2                | 4.0                 |
| Cadmium                      | 0.4 | mg/kg | < 0.4               | 0.4                 | < 0.4              | < 0.4               |
| Chromium                     | 5   | mg/kg | 14                  | 11                  | 42                 | 9.1                 |
| Copper                       | 5   | mg/kg | 8.8                 | 34                  | 55                 | 18                  |
| Lead                         | 5   | mg/kg | 19                  | 98                  | < 5                | 180                 |
| Mercury                      | 0.1 | mg/kg | < 0.1               | 0.1                 | < 0.1              | < 0.1               |
| Nickel                       | 5   | mg/kg | 8.5                 | 6.7                 | 70                 | 6.0                 |
| Zinc                         | 5   | mg/kg | 14                  | 310                 | 55                 | 120                 |
| % Moisture                   | 1   | %     | 8.8                 | 16                  | 6.4                | 17                  |

| Client Sample ID                           |           |       | BH_P_09 0-<br>0.15 | BH_P_10 0.6-<br>0.7 |
|--------------------------------------------|-----------|-------|--------------------|---------------------|
| Sample Matrix                              |           |       | Soil               | Soil                |
| Eurofins   mgt Sample No.                  |           |       | S19-Ja24227        | S19-Ja24228         |
| Date Sampled                               |           |       | Jan 24, 2019       | Jan 24, 2019        |
| Test/Reference                             | LOR       | Unit  |                    |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM | Fractions |       |                    |                     |
| TRH C6-C9                                  | 20        | mg/kg | < 20               | -                   |
| TRH C10-C14                                | 20        | mg/kg | < 20               | -                   |
| TRH C15-C28                                | 50        | mg/kg | 54                 | -                   |
| TRH C29-C36                                | 50        | mg/kg | 120                | -                   |
| TRH C10-36 (Total)                         | 50        | mg/kg | 174                | -                   |
| BTEX                                       |           |       |                    |                     |
| Benzene                                    | 0.1       | mg/kg | < 0.1              | -                   |
| Toluene                                    | 0.1       | mg/kg | < 0.1              | -                   |
| Ethylbenzene                               | 0.1       | mg/kg | < 0.1              | -                   |
| m&p-Xylenes                                | 0.2       | mg/kg | < 0.2              | -                   |
| o-Xylene                                   | 0.1       | mg/kg | < 0.1              | -                   |
| Xylenes - Total                            | 0.3       | mg/kg | < 0.3              | -                   |
| 4-Bromofluorobenzene (surr.)               | 1         | %     | 79                 | -                   |
| Total Recoverable Hydrocarbons - 2013 NEPM | Fractions |       |                    |                     |
| Naphthalene <sup>N02</sup>                 | 0.5       | mg/kg | < 0.5              | -                   |
| TRH C6-C10                                 | 20        | mg/kg | < 20               | -                   |
| TRH C6-C10 less BTEX (F1)N04               | 20        | mg/kg | < 20               | -                   |
| TRH >C10-C16                               | 50        | mg/kg | < 50               | -                   |
| TRH >C10-C16 less Naphthalene (F2)N01      | 50        | mg/kg | < 50               | -                   |
| TRH >C16-C34                               | 100       | mg/kg | 130                | -                   |
| TRH >C34-C40                               | 100       | mg/kg | < 100              | -                   |
| TRH >C10-C40 (total)*                      | 100       | mg/kg | 130                | -                   |



| Client Sample ID                      |      |              | BH_P_09 0-<br>0.15 | BH_P_10 0.6<br>0.7                               |
|---------------------------------------|------|--------------|--------------------|--------------------------------------------------|
| Sample Matrix                         |      |              | Soil               | Soil                                             |
| Eurofins   mgt Sample No.             |      |              | S19-Ja24227        | S19-Ja24228                                      |
| Date Sampled                          |      |              | Jan 24, 2019       | Jan 24, 2019                                     |
| Test/Reference                        | LOR  | Unit         | ,                  | , , ,                                            |
| Polycyclic Aromatic Hydrocarbons      | LOIK | OTIIC        |                    |                                                  |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5  | mg/kg        | 0.6                | 0.6                                              |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5  | mg/kg        | 1.2                | 1.2                                              |
| Acenaphthene                          | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Acenaphthylene                        | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Anthracene                            | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Benz(a)anthracene                     | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Benzo(a)pyrene                        | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Chrysene                              | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Dibenz(a.h)anthracene                 | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Fluoranthene                          | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Fluorene                              | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Naphthalene                           | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Phenanthrene                          | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Pyrene                                | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| Total PAH*                            | 0.5  | mg/kg        | < 0.5              | < 0.5                                            |
| 2-Fluorobiphenyl (surr.)              | 1    | %            | 82                 | 89                                               |
| p-Terphenyl-d14 (surr.)               | 1    | %            | 82                 | 95                                               |
| Organochlorine Pesticides             |      | ,,,          | 1 02               |                                                  |
| Chlordanes - Total                    | 0.1  | mg/kg        | < 0.1              | _                                                |
| 4.4'-DDD                              | 0.05 | mg/kg        | < 0.05             | _                                                |
| 4.4'-DDE                              | 0.05 | mg/kg        | < 0.05             | _                                                |
| 4.4'-DDT                              | 0.05 | mg/kg        | < 0.05             | -                                                |
| a-BHC                                 | 0.05 | mg/kg        | < 0.05             | _                                                |
| Aldrin                                | 0.05 | mg/kg        | < 0.05             | _                                                |
| b-BHC                                 | 0.05 | mg/kg        | < 0.05             | _                                                |
| d-BHC                                 | 0.05 | mg/kg        | < 0.05             | _                                                |
| Dieldrin                              | 0.05 | mg/kg        | < 0.05             | _                                                |
| Endosulfan I                          | 0.05 | mg/kg        | < 0.05             | -                                                |
| Endosulfan II                         | 0.05 | mg/kg        | < 0.05             | _                                                |
| Endosulfan sulphate                   | 0.05 | mg/kg        | < 0.05             | _                                                |
| Endrin                                | 0.05 | mg/kg        | < 0.05             | _                                                |
| Endrin aldehyde                       | 0.05 | mg/kg        | < 0.05             | _                                                |
| Endrin ketone                         | 0.05 | mg/kg        | < 0.05             | -                                                |
| g-BHC (Lindane)                       | 0.05 | mg/kg        | < 0.05             | _                                                |
| Heptachlor                            | 0.05 | mg/kg        | < 0.05             | _                                                |
| Heptachlor epoxide                    | 0.05 | mg/kg        | < 0.05             | _                                                |
| Hexachlorobenzene                     | 0.05 | mg/kg        | < 0.05             | _                                                |
| Methoxychlor                          | 0.05 | mg/kg        | < 0.05             | _                                                |
| Toxaphene                             | 1    | mg/kg        | < 1                | -                                                |
| Aldrin and Dieldrin (Total)*          | 0.05 | mg/kg        | < 0.05             | _                                                |
| DDT + DDE + DDD (Total)*              | 0.05 | mg/kg        | < 0.05             |                                                  |
| Vic EPA IWRG 621 OCP (Total)*         | 0.03 | mg/kg        | < 0.03             | -                                                |
| Vic EPA IWRG 621 OCP (Total)*         | 0.1  | mg/kg        | < 0.1              | -                                                |
| Dibutylchlorendate (surr.)            | 1    | 111g/kg<br>% | 117                |                                                  |
| Tetrachloro-m-xylene (surr.)          | 1    | %            | 101                | <del>                                     </del> |

Report Number: 637818-S



| Client Sample ID          |     |       | BH_P_09 0-<br>0.15 | BH_P_10 0.6-<br>0.7 |
|---------------------------|-----|-------|--------------------|---------------------|
| Sample Matrix             |     |       | Soil               | Soil                |
| Eurofins   mgt Sample No. |     |       | S19-Ja24227        | S19-Ja24228         |
| Date Sampled              |     |       | Jan 24, 2019       | Jan 24, 2019        |
| Test/Reference            | LOR | Unit  |                    |                     |
| Heavy Metals              |     |       |                    |                     |
| Arsenic                   | 2   | mg/kg | 2.7                | 4.9                 |
| Cadmium                   | 0.4 | mg/kg | < 0.4              | < 0.4               |
| Chromium                  | 5   | mg/kg | 5.1                | 13                  |
| Copper                    | 5   | mg/kg | 15                 | 20                  |
| Lead                      | 5   | mg/kg | 14                 | 32                  |
| Mercury                   | 0.1 | mg/kg | < 0.1              | < 0.1               |
| Nickel                    | 5   | mg/kg | < 5                | < 5                 |
| Zinc                      | 5   | mg/kg | 190                | 160                 |
| % Moisture                | 1   | %     | 5.7                | 15                  |

Report Number: 637818-S



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                            | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------|--------------|--------------|--------------|
| JBS&G Suite 2                                                          |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| BTEX                                                                   | Melbourne    | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                       | Melbourne    | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water               |              |              |              |
| Organochlorine Pesticides                                              | Melbourne    | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Polychlorinated Biphenyls                                              | Melbourne    | Feb 01, 2019 | 28 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Metals M8                                                              | Melbourne    | Feb 01, 2019 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS   |              |              |              |
| % Moisture                                                             | Melbourne    | Jan 29, 2019 | 14 Day       |

<sup>-</sup> Method: LTM-GEN-7080 Moisture



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637818

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

**Contact Name:** 

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Daniel Denaro** 

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

**Project Name:** 

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

|    |                           | Sa           | mple Detail |          |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|----|---------------------------|--------------|-------------|----------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
|    | oourne Laborato           |              |             | 271      |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
|    | ney Laboratory            |              |             |          |             | Х                        |      |                                  |                           |           |              |                         |               |
|    | bane Laborator            |              |             |          |             |                          |      |                                  |                           |           |              |                         |               |
|    | h Laboratory - N          |              | 36          |          |             |                          |      |                                  |                           |           |              |                         |               |
| No | rnal Laboratory Sample ID | Sample Date  | Sampling    | Matrix   | LAB ID      |                          |      |                                  |                           |           |              |                         |               |
| NO | Sample ID                 | Sample Date  | Time        | IVIALITA | LABID       |                          |      |                                  |                           |           |              |                         |               |
| 1  | BH_P_01 0.4-<br>0.5       | Jan 23, 2019 |             | Soil     | S19-Ja24219 | Х                        |      |                                  |                           |           | Х            |                         | Х             |
| 2  | BH_P_02 0-<br>0.15        | Jan 23, 2019 |             | Soil     | S19-Ja24220 | х                        |      |                                  | х                         |           | Х            | х                       |               |
| 3  | BH_P_03 1-<br>1.1         | Jan 23, 2019 |             | Soil     | S19-Ja24221 | х                        |      |                                  | х                         |           | Х            | х                       |               |
| 4  | BH_P_04 0-<br>0.15        | Jan 23, 2019 |             | Soil     | S19-Ja24222 | Х                        |      | Х                                |                           | Х         | Х            |                         |               |
| 5  | BH_P_05 0.4-<br>0.5       | Jan 23, 2019 |             | Soil     | S19-Ja24223 | х                        |      | Х                                |                           | Х         | Х            |                         |               |
| 6  | BH_P_06 0.8-              | Jan 23, 2019 |             | Soil     | S19-Ja24224 | Х                        |      |                                  |                           |           | Х            |                         | Х             |

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 9 of 22

Date Reported:Feb 04, 2019



Order No.:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579 Report #: 637818 Feb 4, 2019 Phone: 02 8245 0300 Priority: 5 Day Fax:

**Contact Name: Daniel Denaro** 

Eurofins | mgt Analytical Services Manager : Nibha Vaidya Polyc Orga Meta Moist Asbe JBS8 HOL

|      |                     | Sa              | mple Detail  |      |             | estos - WA guidelines | .D | cyclic Aromatic Hydrocarbons | anochlorine Pesticides | als M8 | sture Set | ofins   mgt Suite B7 | &G Suite 2 |  |
|------|---------------------|-----------------|--------------|------|-------------|-----------------------|----|------------------------------|------------------------|--------|-----------|----------------------|------------|--|
| Melk | ourne Laborate      | ory - NATA Site | # 1254 & 142 | 271  |             |                       | Х  | Х                            | Х                      | Х      | Х         | Х                    | Х          |  |
| Syd  | ney Laboratory      | - NATA Site # 1 | 8217         |      |             | Х                     |    |                              |                        |        |           |                      |            |  |
| Bris | bane Laborator      | y - NATA Site # | 20794        |      |             |                       |    |                              |                        |        |           |                      |            |  |
| Pert | h Laboratory - N    | NATA Site # 237 | 736          |      |             |                       |    |                              |                        |        |           |                      |            |  |
|      | 0.9                 |                 |              |      |             |                       |    |                              |                        |        |           |                      |            |  |
| 7    | BH_P_07 0-<br>0.15  | Jan 22, 2019    |              | Soil | S19-Ja24225 | х                     |    | X                            |                        | х      | х         |                      |            |  |
| 8    | BH_P_08 0.4-<br>0.5 | Jan 24, 2019    |              | Soil | S19-Ja24226 | х                     |    | х                            |                        | х      | х         |                      |            |  |
| 9    | BH_P_09 0-<br>0.15  | Jan 24, 2019    |              | Soil | S19-Ja24227 | х                     |    |                              | х                      |        | х         | х                    |            |  |
| 10   | BH_P_10 0.6-<br>0.7 | Jan 24, 2019    |              | Soil | S19-Ja24228 | х                     |    | х                            |                        | х      | х         |                      |            |  |
| 11   | BH_P_01 0-<br>0.15  | Jan 23, 2019    |              | Soil | S19-Ja24229 |                       | Х  |                              |                        |        |           |                      |            |  |
| 12   | BH_P_01 1-<br>1.1   | Jan 23, 2019    |              | Soil | S19-Ja24230 |                       | Х  |                              |                        |        |           |                      |            |  |
| 13   | BH_P_02 0.4-        | Jan 23, 2019    |              | Soil | S19-Ja24231 |                       | Х  |                              |                        |        |           |                      |            |  |



Order No.:

Report #:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Project Name:

Phone: 02 8245 0300 Priority: Fax:

637818

5 Day **Contact Name: Daniel Denaro** 

|      |                     | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|---------------------|-----------------|--------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
| Mell | oourne Laborato     | ory - NATA Site | # 1254 & 142 | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
| Syd  | ney Laboratory      | - NATA Site # 1 | 8217         |      |             | Х                        |      |                                  |                           |           |              |                         |               |
|      | bane Laboratory     |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               |
| Pert | h Laboratory - N    | IATA Site # 237 | 36           |      | <u> </u>    |                          |      |                                  |                           |           |              |                         |               |
|      | 0.5                 |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               |
| 14   | BH_P_02 1-<br>1.1   | Jan 23, 2019    |              | Soil | S19-Ja24232 |                          | Х    |                                  |                           |           |              |                         |               |
| 15   | BH_P_03 0-<br>0.15  | Jan 23, 2019    |              | Soil | S19-Ja24233 |                          | Х    |                                  |                           |           |              |                         |               |
| 16   | BH_P_03 0.4-<br>0.5 | Jan 23, 2019    |              | Soil | S19-Ja24234 |                          | Х    |                                  |                           |           |              |                         |               |
| 17   | BH_P_03 1.4-<br>1.5 | Jan 23, 2019    |              | Soil | S19-Ja24235 |                          | Х    |                                  |                           |           |              |                         |               |
| 18   | BH_P_04 0.4-<br>0.5 | Jan 23, 2019    |              | Soil | S19-Ja24236 |                          | Х    |                                  |                           |           |              |                         |               |
| 19   | BH_P_04 1-<br>1.1   | Jan 23, 2019    |              | Soil | S19-Ja24237 |                          | Х    |                                  |                           |           |              |                         |               |
| 20   | BH_P_05 0-          | Jan 23, 2019    |              | Soil | S19-Ja24238 |                          | Х    |                                  |                           |           |              |                         |               |



Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637818

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

**Contact Name:** 

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Daniel Denaro** 

5 Day

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Project Name:

|      |                     | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |   |
|------|---------------------|-----------------|--------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|---|
| Mell | bourne Laborate     | ory - NATA Site | # 1254 & 142 | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |   |
| Syd  | ney Laboratory      | - NATA Site # 1 | 8217         |      |             | Х                        |      |                                  |                           |           |              |                         |               | 1 |
|      | bane Laborator      |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               |   |
| Pert | h Laboratory - N    | NATA Site # 237 | 736          |      |             |                          |      |                                  |                           |           |              |                         |               | ĺ |
|      | 0.15                |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               | 1 |
| 21   | BH_P_05 1-<br>1.1   | Jan 23, 2019    |              | Soil | S19-Ja24239 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 22   | BH_P_06 0-<br>0.15  | Jan 23, 2019    |              | Soil | S19-Ja24240 |                          | х    |                                  |                           |           |              |                         |               |   |
| 23   | BH_P_06 0.4-<br>0.5 | Jan 23, 2019    |              | Soil | S19-Ja24241 |                          | х    |                                  |                           |           |              |                         |               |   |
| 24   | BH_P_06 1.5-<br>1.6 | Jan 23, 2019    |              | Soil | S19-Ja24242 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 25   | BH_P_07 0.4-<br>0.5 | Jan 22, 2019    |              | Soil | S19-Ja24243 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 26   | BH_P_07 1-<br>1.1   | Jan 22, 2019    |              | Soil | S19-Ja24244 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 27   | BH_P_07 1.7-        | Jan 22, 2019    |              | Soil | S19-Ja24245 |                          | Х    |                                  |                           |           |              |                         |               |   |



Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579 Order No.: Received: Jan 25, 2019 5:50 PM Report #: 637818 Due: Feb 4, 2019

02 8245 0300 Priority: 5 Day

**Contact Name: Daniel Denaro** 

|      |                     | Sa              | mple Detail |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |   |
|------|---------------------|-----------------|-------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|---|
|      | oourne Laborato     |                 |             | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             | l |
| Syd  | ney Laboratory      | - NATA Site # 1 | 8217        |      |             | Х                        |      |                                  |                           |           |              |                         |               | 1 |
|      | bane Laborator      |                 |             |      |             |                          |      |                                  |                           |           |              |                         |               | 1 |
| Pert | h Laboratory - N    | NATA Site # 237 | 736         |      |             |                          |      |                                  |                           |           |              |                         |               | 1 |
|      | 1.8                 |                 |             |      |             |                          |      |                                  |                           |           |              |                         |               |   |
| 28   | BH_P_08 0-<br>0.15  | Jan 24, 2019    |             | Soil | S19-Ja24246 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 29   | BH_P_09 0.4-<br>0.5 | Jan 24, 2019    |             | Soil | S19-Ja24247 |                          | х    |                                  |                           |           |              |                         |               |   |
| 30   | BH_P_09A 0-<br>0.15 | Jan 24, 2019    |             | Soil | S19-Ja24248 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 31   | BH_P_09A<br>0.4-0.5 | Jan 24, 2019    |             | Soil | S19-Ja24249 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 32   | BH_P_10 0-<br>0.15  | Jan 24, 2019    |             | Soil | S19-Ja24250 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 33   | BH_P_10 1-<br>1.1   | Jan 24, 2019    |             | Soil | S19-Ja24251 |                          | Х    |                                  |                           |           |              |                         |               |   |
| 34   | BH_P_11 0-          | Jan 24, 2019    |             | Soil | S19-Ja24252 |                          | Х    |                                  |                           |           |              |                         |               |   |



Order No.:

Report #:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

637818

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 25, 2019 5:50 PM

Feb 4, 2019

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579 Phone: 02 8245 0300 Priority: 5 Day **Contact Name:** Fax: **Daniel Denaro** 

|      |                     | Sa              | mple Detail  |      |             | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set | Eurofins   mgt Suite B7 | JBS&G Suite 2 |
|------|---------------------|-----------------|--------------|------|-------------|--------------------------|------|----------------------------------|---------------------------|-----------|--------------|-------------------------|---------------|
| Melk | ourne Laborato      | ory - NATA Site | # 1254 & 142 | 271  |             |                          | Х    | Х                                | Х                         | Х         | Х            | Х                       | Х             |
| Sydi | ney Laboratory      | - NATA Site # 1 | 8217         |      |             | Х                        |      |                                  |                           |           |              |                         |               |
| Bris | bane Laborator      | y - NATA Site # | 20794        |      |             |                          |      |                                  |                           |           |              |                         |               |
| Pert | h Laboratory - N    | NATA Site # 237 | 736          | 1    | T           |                          |      |                                  |                           |           |              |                         |               |
|      | 0.15                |                 |              |      |             |                          |      |                                  |                           |           |              |                         |               |
| 35   | BH_P_11 0.4-<br>0.5 | Jan 24, 2019    |              | Soil | S19-Ja24253 |                          | Х    |                                  |                           |           |              |                         |               |
| 36   | BH_P_11 0.8-<br>0.9 | Jan 24, 2019    |              | Soil | S19-Ja24254 |                          | Х    |                                  |                           |           |              |                         |               |
| 37   | BH_P_11 1.1-<br>1.2 | Jan 24, 2019    |              | Soil | S19-Ja24255 |                          | Χ    |                                  |                           |           |              |                         |               |
| Test | Counts              |                 |              |      |             | 10                       | 27   | 5                                | 3                         | 5         | 10           | 3                       | 2             |



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

**Terms** 

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
  in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                 | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|---------|----------|----------------------|----------------|--------------------|
| Method Blank                                         |         |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |         |          |                      |                |                    |
| TRH C6-C9                                            | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg   | < 50     | 50                   | Pass           |                    |
| Method Blank                                         |         |          |                      |                |                    |
| BTEX                                                 |         |          |                      |                |                    |
| Benzene                                              | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg   | < 0.2    | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Xylenes - Total                                      | mg/kg   | < 0.3    | 0.3                  | Pass           |                    |
| Method Blank                                         | 1 3 3   |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |         |          |                      |                |                    |
| Naphthalene                                          | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| TRH C6-C10                                           | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH >C10-C16                                         | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH >C16-C34                                         | mg/kg   | < 100    | 100                  | Pass           |                    |
| TRH >C34-C40                                         | mg/kg   | < 100    | 100                  | Pass           |                    |
| Method Blank                                         | 19/1.9  | 1 100    | 100                  | 1 400          |                    |
| Polycyclic Aromatic Hydrocarbons                     |         | T        | T                    |                |                    |
| Acenaphthene                                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                                       | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                                           | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                                    | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                       | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                               | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                                 | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                                 | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                                             | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                                | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                                             | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                                          | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                                               | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                         | IIIg/kg | < 0.5    | 0.5                  | rass_          |                    |
| Organochlorine Pesticides                            |         | Т        | T                    |                |                    |
| Chlordanes - Total                                   | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| 4.4'-DDD                                             |         | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDE                                             | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDT                                             | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| a-BHC                                                | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
|                                                      | mg/kg   | 1        |                      |                |                    |
| Aldrin                                               | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| b-BHC                                                | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| d-BHC                                                | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Dieldrin                                             | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan I                                         | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan II                                        | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |



| Test                                                                  | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------------------------|-------|----------|----------------------|----------------|--------------------|
| Endosulfan sulphate                                                   | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin                                                                | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin aldehyde                                                       | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin ketone                                                         | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| g-BHC (Lindane)                                                       | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor                                                            | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor epoxide                                                    | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Hexachlorobenzene                                                     | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Methoxychlor                                                          | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Toxaphene                                                             | mg/kg | < 1      | 1                    | Pass           |                    |
| Method Blank                                                          | mg/kg | <u> </u> | <u> </u>             | 1 455          |                    |
| Polychlorinated Biphenyls                                             |       |          |                      |                |                    |
| Aroclor-1016                                                          | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1016 Aroclor-1221                                             |       |          |                      |                |                    |
|                                                                       | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1232                                                          | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1242                                                          | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1248                                                          | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1254                                                          | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1260                                                          | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Total PCB*                                                            | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                                          |       |          |                      |                |                    |
| Heavy Metals                                                          |       |          |                      |                |                    |
| Arsenic                                                               | mg/kg | < 2      | 2                    | Pass           |                    |
| Cadmium                                                               | mg/kg | < 0.4    | 0.4                  | Pass           |                    |
| Chromium                                                              | mg/kg | < 5      | 5                    | Pass           |                    |
| Copper                                                                | mg/kg | < 5      | 5                    | Pass           |                    |
| Lead                                                                  | mg/kg | < 5      | 5                    | Pass           |                    |
| Mercury                                                               | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Nickel                                                                | mg/kg | < 5      | 5                    | Pass           |                    |
| Zinc                                                                  | mg/kg | < 5      | 5                    | Pass           |                    |
| LCS - % Recovery                                                      |       |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fraction                   | ns    |          |                      |                |                    |
| TRH C6-C9                                                             | %     | 82       | 70-130               | Pass           |                    |
| TRH C10-C14                                                           | %     | 79       | 70-130               | Pass           |                    |
| LCS - % Recovery                                                      | 70    | 10       | 70 100               | 1 455          |                    |
| BTEX                                                                  |       |          |                      |                |                    |
|                                                                       | 0/    | 01       | 70 120               | Door           |                    |
| Benzene                                                               | %     | 91       | 70-130               | Pass           |                    |
| Toluene                                                               | %     | 97       | 70-130               | Pass           |                    |
| Ethylbenzene                                                          | %     | 99       | 70-130               | Pass           |                    |
| m&p-Xylenes                                                           | %     | 100      | 70-130               | Pass           |                    |
| Xylenes - Total                                                       | %     | 101      | 70-130               | Pass           |                    |
| LCS - % Recovery  Total Recoverable Hydrocarbons - 2013 NEPM Fraction | ıs    |          |                      |                |                    |
| Naphthalene                                                           | %     | 87       | 70-130               | Pass           |                    |
| TRH C6-C10                                                            | %     | 79       | 70-130               | Pass           |                    |
|                                                                       |       |          |                      |                |                    |
| TRH >C10-C16                                                          | %     | 74       | 70-130               | Pass           |                    |
| LCS - % Recovery                                                      |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                                      | 24    | -        | 70.400               | D -            |                    |
| Acenaphthene                                                          | %     | 80       | 70-130               | Pass           |                    |
| Acenaphthylene                                                        | %     | 76       | 70-130               | Pass           |                    |
| Anthracene                                                            | %     | 75       | 70-130               | Pass           |                    |
| Benz(a)anthracene                                                     | %     | 80       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                                        | %     | 99       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                                                | %     | 91       | 70-130               | Pass           |                    |



| Test                      | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------|-------|----------|----------------------|----------------|--------------------|
| Benzo(g.h.i)perylene      | %     | 128      | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene      | %     | 87       | 70-130               | Pass           |                    |
| Chrysene                  | %     | 81       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene     | %     | 110      | 70-130               | Pass           |                    |
| Fluoranthene              | %     | 76       | 70-130               | Pass           |                    |
| Fluorene                  | %     | 78       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene    | %     | 126      | 70-130               | Pass           |                    |
| Naphthalene               | %     | 78       | 70-130               | Pass           |                    |
| Phenanthrene              | %     | 74       | 70-130               | Pass           |                    |
| Pyrene                    | %     | 78       | 70-130               | Pass           |                    |
| LCS - % Recovery          |       |          |                      |                |                    |
| Organochlorine Pesticides |       |          |                      |                |                    |
| Chlordanes - Total        | %     | 117      | 70-130               | Pass           |                    |
| 4.4'-DDD                  | %     | 95       | 70-130               | Pass           |                    |
| 4.4'-DDE                  | %     | 125      | 70-130               | Pass           |                    |
| 4.4'-DDT                  | %     | 90       | 70-130               | Pass           |                    |
| a-BHC                     | %     | 107      | 70-130               | Pass           |                    |
| Aldrin                    | %     | 106      | 70-130               | Pass           |                    |
| b-BHC                     | %     | 77       | 70-130               | Pass           |                    |
| d-BHC                     | %     | 92       | 70-130               | Pass           |                    |
| Dieldrin                  | %     | 122      | 70-130               | Pass           |                    |
| Endosulfan I              | %     | 126      | 70-130               | Pass           |                    |
| Endosulfan II             | %     | 94       | 70-130               | Pass           |                    |
| Endosulfan sulphate       | %     | 98       | 70-130               | Pass           |                    |
| Endrin                    | %     | 78       | 70-130               | Pass           |                    |
| Endrin aldehyde           | %     | 114      | 70-130               | Pass           |                    |
| Endrin ketone             | %     | 106      | 70-130               | Pass           |                    |
| g-BHC (Lindane)           | %     | 122      | 70-130               | Pass           |                    |
| Heptachlor                | %     | 78       | 70-130               | Pass           |                    |
| Heptachlor epoxide        | %     | 91       | 70-130               | Pass           |                    |
| Hexachlorobenzene         | %     | 109      | 70-130               | Pass           |                    |
| Methoxychlor              | %     | 88       | 70-130               | Pass           |                    |
| LCS - % Recovery          |       |          |                      |                |                    |
| Polychlorinated Biphenyls |       |          |                      |                |                    |
| Aroclor-1260              | %     | 124      | 70-130               | Pass           |                    |
| LCS - % Recovery          |       |          |                      |                |                    |
| Heavy Metals              |       |          |                      |                |                    |
| Arsenic                   | %     | 109      | 80-120               | Pass           |                    |
| Cadmium                   | %     | 102      | 80-120               | Pass           |                    |
| Chromium                  | %     | 120      | 80-120               | Pass           |                    |
| Copper                    | %     | 110      | 80-120               | Pass           |                    |

| Bibonz(a.rr)arranacorro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        | ,,,    | 1              |                                                  | 70 100     | . 400  | <del></del> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------|----------------|--------------------------------------------------|------------|--------|-------------|
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        | %      | 76             |                                                  | 70-130     | Pass   |             |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | %      | 78             |                                                  | 70-130     | Pass   |             |
| Indeno(1.2.3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | %      | 126            |                                                  | 70-130     | Pass   |             |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |        | %      | 78             |                                                  | 70-130     | Pass   |             |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        | %      | 74             |                                                  | 70-130     | Pass   |             |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | %      | 78             |                                                  | 70-130     | Pass   |             |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |                |                                                  |            |        |             |
| Organochlorine Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |        |        |                |                                                  |            |        |             |
| Chlordanes - Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        | %      | 117            |                                                  | 70-130     | Pass   |             |
| 4.4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | %      | 95             |                                                  | 70-130     | Pass   |             |
| 4.4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | %      | 125            |                                                  | 70-130     | Pass   |             |
| 4.4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | %      | 90             |                                                  | 70-130     | Pass   |             |
| a-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        | %      | 107            |                                                  | 70-130     | Pass   |             |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | %      | 106            |                                                  | 70-130     | Pass   |             |
| b-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        | %      | 77             |                                                  | 70-130     | Pass   |             |
| d-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        | %      | 92             | <del>                                     </del> | 70-130     | Pass   |             |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | %      | 122            | + + +                                            | 70-130     | Pass   |             |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        | %      | 126            |                                                  | 70-130     | Pass   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |        | i              |                                                  |            |        |             |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |        | %      | 94             | <del>                                     </del> | 70-130     | Pass   |             |
| Endosulfan sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |        |        | 98             | <del>                                     </del> | 70-130     | Pass   |             |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | %      | 78             | <del>                                     </del> | 70-130     | Pass   |             |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | %      | 114            |                                                  | 70-130     | Pass   |             |
| Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |        | %      | 106            | <del>                                     </del> | 70-130     | Pass   |             |
| g-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | %      | 122            |                                                  | 70-130     | Pass   |             |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |        | %      | 78             |                                                  | 70-130     | Pass   |             |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        | %      | 91             | <del>                                     </del> | 70-130     | Pass   |             |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |        | %      | 109            | <del>                                     </del> | 70-130     | Pass   |             |
| Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        | %      | 88             |                                                  | 70-130     | Pass   |             |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        | T              |                                                  |            |        |             |
| Polychlorinated Biphenyls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |        |        |                |                                                  |            |        |             |
| Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        | %      | 124            |                                                  | 70-130     | Pass   |             |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        | 1              |                                                  |            |        |             |
| Heavy Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        |        |                |                                                  |            |        |             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        | %      | 109            |                                                  | 80-120     | Pass   |             |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        | %      | 102            |                                                  | 80-120     | Pass   |             |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | %      | 120            |                                                  | 80-120     | Pass   |             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | %      | 110            |                                                  | 80-120     | Pass   |             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |        | %      | 112            |                                                  | 80-120     | Pass   |             |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        | %      | 88             |                                                  | 75-125     | Pass   |             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | %      | 109            |                                                  | 80-120     | Pass   |             |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |        | %      | 105            |                                                  | 80-120     | Pass   |             |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Sample ID | QA     | Units  | Result 1       |                                                  | Acceptance | Pass   | Qualifying  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Sample ID | Source | Uillis | IVESUIT I      |                                                  | Limits     | Limits | Code        |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        |        |                |                                                  |            |        |             |
| Total Recoverable Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |        |        | Result 1       |                                                  |            |        |             |
| TRH C6-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S19-Ja24219   | CP     | %      | 85             | <del>                                     </del> | 70-130     | Pass   |             |
| TRH C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S19-Ja24219   | CP     | %      | 77             |                                                  | 70-130     | Pass   |             |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        |        |                |                                                  |            |        |             |
| t and the second |               |        |        |                |                                                  |            |        |             |
| BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |        |        | Result 1       |                                                  |            |        |             |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S19-Ja24219   | СР     | %      | Result 1<br>85 |                                                  | 70-130     | Pass   |             |



| Test                             | Lab Sample ID              | QA<br>Source | Units  | Result 1  | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code                               |
|----------------------------------|----------------------------|--------------|--------|-----------|----------------------|----------------|--------------------------------------------------|
| Ethylbenzene                     | S19-Ja24219                | CP           | %      | 103       | 70-130               | Pass           |                                                  |
| m&p-Xylenes                      | S19-Ja24219                | CP           | %      | 102       | 70-130               | Pass           |                                                  |
| o-Xylene                         | S19-Ja24219                | CP           | %      | 103       | 70-130               | Pass           |                                                  |
| Xylenes - Total                  | S19-Ja24219                | CP           | %      | 103       | 70-130               | Pass           |                                                  |
| Spike - % Recovery               |                            |              |        |           |                      |                |                                                  |
| Total Recoverable Hydrocarboi    | ns - 2013 NEPM Fract       | ions         |        | Result 1  |                      |                |                                                  |
| Naphthalene                      | S19-Ja24219                | СР           | %      | 85        | 70-130               | Pass           |                                                  |
| TRH C6-C10                       | S19-Ja24219                | СР           | %      | 83        | 70-130               | Pass           |                                                  |
| TRH >C10-C16                     | S19-Ja24219                | СР           | %      | 71        | 70-130               | Pass           |                                                  |
| Spike - % Recovery               |                            |              |        |           |                      |                |                                                  |
| Organochlorine Pesticides        |                            |              |        | Result 1  |                      |                |                                                  |
| Chlordanes - Total               | M19-Ja23929                | NCP          | %      | 115       | 70-130               | Pass           |                                                  |
| 4.4'-DDD                         | M19-Ja23929                | NCP          | %      | 102       | 70-130               | Pass           |                                                  |
| 4.4'-DDE                         | M19-Ja23929                | NCP          | %      | 123       | 70-130               | Pass           |                                                  |
| 4.4'-DDT                         | M19-Ja23929                | NCP          | %      | 80        | 70-130               | Pass           |                                                  |
| a-BHC                            | M19-Ja23929                | NCP          | %      | 100       | 70-130               | Pass           |                                                  |
| Aldrin                           | M19-Ja23929                | NCP          | %      | 127       | 70-130               | Pass           |                                                  |
| b-BHC                            | M19-Ja23929                | NCP          | %      | 103       | 70-130               | Pass           | <u> </u>                                         |
| d-BHC                            | M19-Ja23929                | NCP          | %      | 113       | 70-130               | Pass           |                                                  |
| Dieldrin                         | M19-Ja23929                | NCP          | %      | 103       | 70-130               | Pass           |                                                  |
| Endosulfan I                     | M19-Ja23929                | NCP          | %      | 87        | 70-130               | Pass           |                                                  |
| Endosulfan II                    | M19-Ja23929                | NCP          | %      | 97        | 70-130               | Pass           |                                                  |
| Endosulfan sulphate              | M19-Ja23929                | NCP          | %      | 89        | 70-130               | Pass           |                                                  |
| Endrin                           | M19-Ja23929<br>M19-Ja24635 | NCP          | %      | 103       | 70-130               | Pass           |                                                  |
| Endrin aldehyde                  | M19-Ja23929                | NCP          | %      | 82        | 70-130               | Pass           |                                                  |
| Endrin aldenyde<br>Endrin ketone | M19-Ja23929                | NCP          | %      | 101       | 70-130               | Pass           |                                                  |
|                                  |                            | NCP          |        |           | 70-130               |                |                                                  |
| g-BHC (Lindane)                  | M19-Ja23929                | NCP          | %      | 130<br>86 | 70-130               | Pass           |                                                  |
| Heptachlor                       | M19-Ja23929                |              | %<br>% | 94        | 70-130               | Pass           |                                                  |
| Heptachlor epoxide               | M19-Ja23929                | NCP          |        |           |                      | Pass           |                                                  |
| Hexachlorobenzene                | M19-Ja23929                | NCP          | %      | 118       | 70-130               | Pass           |                                                  |
| Methoxychlor                     | M19-Ja24635                | NCP          | %      | 75        | 70-130               | Pass           |                                                  |
| Spike - % Recovery               |                            |              |        | Doorli 4  |                      | 1              | <del></del>                                      |
| Polychlorinated Biphenyls        | M40 1-05047                | NOD          | 0/     | Result 1  | 70.400               | D              | <del>                                     </del> |
| Aroclor-1016                     | M19-Ja25847                | NCP          | %      | 126       | 70-130               | Pass           | _                                                |
| Aroclor-1260                     | M19-Ja25847                | NCP          | %      | 122       | 70-130               | Pass           |                                                  |
| Spike - % Recovery               |                            |              |        |           |                      | T              |                                                  |
| Heavy Metals                     |                            | l von        |        | Result 1  |                      | <u> </u>       |                                                  |
| Arsenic                          | M19-Fe01747                | NCP          | %      | 102       | 75-125               | Pass           |                                                  |
| Cadmium                          | M19-Fe01747                | NCP          | %      | 107       | 75-125               | Pass           |                                                  |
| Chromium                         | M19-Fe01747                | NCP          | %      | 107       | 75-125               | Pass           |                                                  |
| Copper                           | M19-Fe01747                | NCP          | %      | 98        | 75-125               | Pass           |                                                  |
| Lead                             | M19-Fe01747                | NCP          | %      | 99        | 75-125               | Pass           |                                                  |
| Mercury                          | M19-Fe01747                | NCP          | %      | 89        | 70-130               | Pass           |                                                  |
| Nickel                           | M19-Fe01747                | NCP          | %      | 95        | 75-125               | Pass           | <del>                                     </del> |
| Zinc                             | M19-Fe01747                | NCP          | %      | 78        | 75-125               | Pass           | <del></del>                                      |
| Spike - % Recovery               |                            |              |        | _         |                      |                |                                                  |
| Polycyclic Aromatic Hydrocarb    |                            |              |        | Result 1  |                      | <u> </u>       |                                                  |
| Acenaphthene                     | S19-Ja24223                | CP           | %      | 91        | 70-130               | Pass           |                                                  |
| Acenaphthylene                   | S19-Ja24223                | CP           | %      | 87        | 70-130               | Pass           |                                                  |
| Anthracene                       | S19-Ja24223                | CP           | %      | 87        | 70-130               | Pass           |                                                  |
| Benz(a)anthracene                | S19-Ja24223                | CP           | %      | 92        | 70-130               | Pass           |                                                  |
| Benzo(a)pyrene                   | S19-Ja24223                | CP           | %      | 128       | 70-130               | Pass           |                                                  |
| Benzo(b&j)fluoranthene           | S19-Ja24223                | CP           | %      | 117       | 70-130               | Pass           |                                                  |
| Benzo(g.h.i)perylene             | S19-Ja24223                | CP           | %      | 83        | 70-130               | Pass           |                                                  |



| Test                                                                                                                                                                                                                                                                          | Lab Sample ID                                                                                                                                                                               | QA<br>Source                            | Units                                                                         | Result 1                                                                                                          |                                                                                                                         |                                            | Acceptance<br>Limits                                               | Pass<br>Limits                               | Qualifying<br>Code |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|--------------------|
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                          | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 113                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Chrysene                                                                                                                                                                                                                                                                      | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 91                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Dibenz(a.h)anthracene                                                                                                                                                                                                                                                         | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 76                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Fluoranthene                                                                                                                                                                                                                                                                  | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 85                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Fluorene                                                                                                                                                                                                                                                                      | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 91                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Indeno(1.2.3-cd)pyrene                                                                                                                                                                                                                                                        | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 98                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Naphthalene                                                                                                                                                                                                                                                                   | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 88                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Phenanthrene                                                                                                                                                                                                                                                                  | S19-Ja24223                                                                                                                                                                                 | CP                                      | %                                                                             | 77                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Pyrene                                                                                                                                                                                                                                                                        | S19-Ja24223                                                                                                                                                                                 | СР                                      | %                                                                             | 102                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Spike - % Recovery                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                         |                                                                               |                                                                                                                   |                                                                                                                         |                                            |                                                                    |                                              |                    |
| Total Recoverable Hydrocarbons                                                                                                                                                                                                                                                | - 1999 NEPM Fract                                                                                                                                                                           | ions                                    |                                                                               | Result 1                                                                                                          |                                                                                                                         |                                            |                                                                    |                                              |                    |
| TRH C6-C9                                                                                                                                                                                                                                                                     | S19-Ja24224                                                                                                                                                                                 | СР                                      | %                                                                             | 84                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Spike - % Recovery                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                         |                                                                               |                                                                                                                   |                                                                                                                         |                                            |                                                                    |                                              |                    |
| BTEX                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |                                         |                                                                               | Result 1                                                                                                          |                                                                                                                         |                                            |                                                                    |                                              |                    |
| Benzene                                                                                                                                                                                                                                                                       | S19-Ja24224                                                                                                                                                                                 | СР                                      | %                                                                             | 85                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Toluene                                                                                                                                                                                                                                                                       | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 98                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Ethylbenzene                                                                                                                                                                                                                                                                  | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 103                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| m&p-Xylenes                                                                                                                                                                                                                                                                   | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 105                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| o-Xylene                                                                                                                                                                                                                                                                      | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 106                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| Xylenes - Total                                                                                                                                                                                                                                                               | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 105                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
|                                                                                                                                                                                                                                                                               | 319-34224                                                                                                                                                                                   | CF                                      | /0                                                                            | 103                                                                                                               |                                                                                                                         |                                            | 70-130                                                             | газз                                         |                    |
| Spike - % Recovery  Total Recoverable Hydrocarbons -                                                                                                                                                                                                                          | 2012 NEDM Front                                                                                                                                                                             | iene                                    |                                                                               | Dogult 1                                                                                                          |                                                                                                                         |                                            |                                                                    |                                              |                    |
| •                                                                                                                                                                                                                                                                             |                                                                                                                                                                                             |                                         | 0/                                                                            | Result 1                                                                                                          |                                                                                                                         |                                            | 70.400                                                             | Dana                                         |                    |
| Naphthalene                                                                                                                                                                                                                                                                   | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 77                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         |                    |
| TRH C6-C10                                                                                                                                                                                                                                                                    | S19-Ja24224                                                                                                                                                                                 | CP                                      | %                                                                             | 83                                                                                                                |                                                                                                                         |                                            | 70-130                                                             | Pass                                         | 0                  |
| Test                                                                                                                                                                                                                                                                          | Lab Sample ID                                                                                                                                                                               | QA<br>Source                            | Units                                                                         | Result 1                                                                                                          |                                                                                                                         |                                            | Acceptance<br>Limits                                               | Pass<br>Limits                               | Qualifying<br>Code |
| Duplicate                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |                                         |                                                                               |                                                                                                                   |                                                                                                                         |                                            |                                                                    |                                              |                    |
| Total Recoverable Hydrocarbons                                                                                                                                                                                                                                                | - 1999 NEPM Fract                                                                                                                                                                           | ions                                    |                                                                               | Result 1                                                                                                          | Result 2                                                                                                                | RPD                                        |                                                                    |                                              |                    |
| TRH C6-C9                                                                                                                                                                                                                                                                     | M19-Ja26504                                                                                                                                                                                 | NCP                                     | mg/kg                                                                         | < 20                                                                                                              | < 20                                                                                                                    | <1                                         | 30%                                                                | Pass                                         |                    |
| TRH C10-C14                                                                                                                                                                                                                                                                   | M19-Ja26902                                                                                                                                                                                 | NCP                                     | mg/kg                                                                         | 63                                                                                                                | 64                                                                                                                      | 2.0                                        | 30%                                                                | Pass                                         |                    |
| TRH C15-C28                                                                                                                                                                                                                                                                   | M19-Ja26902                                                                                                                                                                                 | NCP                                     | mg/kg                                                                         | 210                                                                                                               | 210                                                                                                                     | 2.0                                        | 30%                                                                | Pass                                         |                    |
| TRH C29-C36                                                                                                                                                                                                                                                                   | M19-Ja26902                                                                                                                                                                                 | NCP                                     | mg/kg                                                                         | < 50                                                                                                              | < 50                                                                                                                    | <1                                         | 30%                                                                | Pass                                         |                    |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                             |                                         |                                                                               | \ 00                                                                                                              | ٦ ٥٥                                                                                                                    |                                            |                                                                    | 1 455                                        |                    |
| Duplicate                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |                                         |                                                                               | _                                                                                                                 | 100                                                                                                                     |                                            | ,                                                                  | 1 400                                        |                    |
| Duplicate<br>BTEX                                                                                                                                                                                                                                                             |                                                                                                                                                                                             |                                         |                                                                               | Result 1                                                                                                          | Result 2                                                                                                                | RPD                                        |                                                                    | 1 400                                        |                    |
|                                                                                                                                                                                                                                                                               | M19-Ja26504                                                                                                                                                                                 | NCP                                     | mg/kg                                                                         |                                                                                                                   |                                                                                                                         |                                            | 30%                                                                | Pass                                         |                    |
| ВТЕХ                                                                                                                                                                                                                                                                          | M19-Ja26504                                                                                                                                                                                 | NCP<br>NCP                              | mg/kg<br>mg/kg                                                                | Result 1 < 0.1                                                                                                    | Result 2 < 0.1                                                                                                          | RPD                                        | 30%                                                                |                                              |                    |
| BTEX Benzene Toluene                                                                                                                                                                                                                                                          | M19-Ja26504<br>M19-Ja26504                                                                                                                                                                  | NCP                                     | mg/kg                                                                         | Result 1 < 0.1 < 0.1                                                                                              | Result 2 < 0.1 < 0.1                                                                                                    | RPD <1 <1                                  | 30%                                                                | Pass<br>Pass                                 |                    |
| BTEX Benzene Toluene Ethylbenzene                                                                                                                                                                                                                                             | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                   | NCP<br>NCP                              | mg/kg<br>mg/kg                                                                | Result 1 < 0.1 < 0.1 < 0.1                                                                                        | Result 2 < 0.1 < 0.1 < 0.1                                                                                              | RPD <1 <1 <1 <1                            | 30%<br>30%                                                         | Pass<br>Pass<br>Pass                         |                    |
| BTEX  Benzene  Toluene  Ethylbenzene  m&p-Xylenes                                                                                                                                                                                                                             | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                    | NCP<br>NCP<br>NCP                       | mg/kg<br>mg/kg<br>mg/kg                                                       | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2                                                                            | Result 2 < 0.1 < 0.1 < 0.1 < 0.2                                                                                        | RPD <1 <1 <1 <1 <1 <1                      | 30%<br>30%<br>30%                                                  | Pass Pass Pass Pass                          |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene                                                                                                                                                                                                                        | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                     | NCP<br>NCP<br>NCP                       | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                              | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1                                                                      | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1                                                                                  | RPD <1 <1 <1 <1 <1 <1 <1 <1                | 30%<br>30%<br>30%<br>30%                                           | Pass Pass Pass Pass Pass                     |                    |
| BTEX  Benzene  Toluene  Ethylbenzene  m&p-Xylenes  o-Xylene  Xylenes - Total                                                                                                                                                                                                  | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                    | NCP<br>NCP<br>NCP                       | mg/kg<br>mg/kg<br>mg/kg                                                       | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2                                                                            | Result 2 < 0.1 < 0.1 < 0.1 < 0.2                                                                                        | RPD <1 <1 <1 <1 <1 <1                      | 30%<br>30%<br>30%                                                  | Pass Pass Pass Pass                          |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate                                                                                                                                                                                              | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                      | NCP<br>NCP<br>NCP<br>NCP                | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                              | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3                                                                            | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3                                                                            | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1       | 30%<br>30%<br>30%<br>30%                                           | Pass Pass Pass Pass Pass                     |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons                                                                                                                                                               | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                      | NCP<br>NCP<br>NCP<br>NCP<br>NCP         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                     | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1                                                            | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2                                                                  | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| BTEX  Benzene  Toluene  Ethylbenzene m&p-Xylenes o-Xylene  Xylenes - Total  Duplicate  Total Recoverable Hydrocarbons - Naphthalene                                                                                                                                           | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                      | NCP<br>NCP<br>NCP<br>NCP<br>NCP         | mg/kg mg/kg mg/kg mg/kg mg/kg                                                 | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5                                                | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5                                                            | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX  Benzene  Toluene  Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total  Duplicate  Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10                                                                                                                                 | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>- 2013 NEPM Fract<br>M19-Ja26504<br>M19-Ja26504                                                   | NCP<br>NCP<br>NCP<br>NCP<br>NCP         | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                           | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20                                           | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20                                                       | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16                                                                                                                         | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>- 2013 NEPM Fract<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                    | NCP NCP NCP NCP NCP NCP NCP             | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                           | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120                                       | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120                                                   | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34                                                                                                            | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>- 2013 NEPM Fract<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902                                    | NCP | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                         | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140                                         | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 140                                                   | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%               | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40                                                                                               | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>- 2013 NEPM Fract<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                    | NCP NCP NCP NCP NCP NCP NCP             | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                           | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120                                       | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120                                                   | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate                                                                                     | M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>- 2013 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902                     | NCP | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                         | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100                                   | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100                                         | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%               | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons                                                    | M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 - 2013 NEPM Fract M19-Ja26504 M19-Ja26504 M19-Ja26902 M19-Ja26902 M19-Ja26902                                       | NCP | mg/kg                   | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100  Result 1                         | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100  Result 2                               | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX  Benzene  Toluene  Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total  Duplicate  Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40  Duplicate  Polycyclic Aromatic Hydrocarbons Acenaphthene                                | M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504  - 2013 NEPM Fract M19-Ja26504 M19-Ja26504 M19-Ja26902 M19-Ja26902 M19-Ja26902 S S19-Ja24219                        | NCP | mg/kg                   | Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100  Result 1 < 0.5             | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100  Result 2 < 0.5                         | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene                        | M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504  - 2013 NEPM Fract M19-Ja26504 M19-Ja26504 M19-Ja26902 M19-Ja26902 M19-Ja26902 S S19-Ja24219 S19-Ja24219            | NCP | mg/kg             | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100  Result 1 < 0.5 < 0.5             | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100  Result 2 < 0.5 < 0.5 < 0.5             | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX  Benzene  Toluene  Ethylbenzene m&p-Xylenes o-Xylene  Xylenes - Total  Duplicate  Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40  Duplicate  Polycyclic Aromatic Hydrocarbons Acenaphthylene Anthracene                  | M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 - 2013 NEPM Fract M19-Ja26504 M19-Ja26504 M19-Ja26902 M19-Ja26902 M19-Ja26902 S S19-Ja24219 S19-Ja24219 S19-Ja24219 | NCP | mg/kg       | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100  Result 1 < 0.5 < 0.5 < 0.5       | Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100  Result 2 < 0.5 < 0.5 < 0.5 < 0.5             | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX  Benzene  Toluene  Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total  Duplicate  Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40  Duplicate  Polycyclic Aromatic Hydrocarbons Acenaphthylene Anthracene Benz(a)anthracene | M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 - 2013 NEPM Fract M19-Ja26504 M19-Ja26902 M19-Ja26902 M19-Ja26902 S S19-Ja24219 S19-Ja24219 S19-Ja24219 S19-Ja24219 | NCP | mg/kg | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100  Result 1 < 0.5 < 0.5 < 0.5 < 0.5 | Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100  Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |
| BTEX  Benzene  Toluene  Ethylbenzene m&p-Xylenes o-Xylene  Xylenes - Total  Duplicate  Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40  Duplicate  Polycyclic Aromatic Hydrocarbons Acenaphthylene Anthracene                  | M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 M19-Ja26504 - 2013 NEPM Fract M19-Ja26504 M19-Ja26504 M19-Ja26902 M19-Ja26902 M19-Ja26902 S S19-Ja24219 S19-Ja24219 S19-Ja24219 | NCP | mg/kg       | Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 20 120 140 < 100  Result 1 < 0.5 < 0.5 < 0.5       | Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 20 120 140 < 100  Result 2 < 0.5 < 0.5 < 0.5 < 0.5             | RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass Pass Pass Pass Pass Pass Pass Pass      |                    |



| Duplicate                                    |                            |            |         |                  |                |          |              |              |  |
|----------------------------------------------|----------------------------|------------|---------|------------------|----------------|----------|--------------|--------------|--|
| Duplicate Polycyclic Aromatic Hydrocarbons   |                            |            |         | Result 1         | Result 2       | RPD      |              |              |  |
| ,,                                           | S19-Ja24219                | СР         | m a/l.a | < 0.5            |                |          | 200/         | Door         |  |
| Benzo(g.h.i)perylene Benzo(k)fluoranthene    | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5<br>< 0.5 | <1<br><1 | 30%<br>30%   | Pass<br>Pass |  |
| Chrysene                                     | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
| Dibenz(a.h)anthracene                        | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
| Fluoranthene                                 | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
| Fluorene                                     | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
|                                              | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
| Indeno(1.2.3-cd)pyrene  Naphthalene          | S19-Ja24219<br>S19-Ja24219 | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
| •                                            |                            | CP         | mg/kg   |                  |                |          | 30%          | Pass         |  |
| Phenanthrene                                 | S19-Ja24219                | _          | mg/kg   | < 0.5            | < 0.5          | <1       | <del> </del> |              |  |
| Pyrene                                       | S19-Ja24219                | CP         | mg/kg   | < 0.5            | < 0.5          | <1       | 30%          | Pass         |  |
| Duplicate Organishlaring Postigides          |                            |            |         | Dogult 1         | Result 2       | RPD      |              |              |  |
| Organochlorine Pesticides Chlordanes - Total | S19-Ja24219                | СР         | mg/kg   | Result 1   < 0.1 | < 0.1          | <1       | 30%          | Pass         |  |
| 4.4'-DDD                                     |                            | CP         |         | <del> </del>     | t              |          | 30%          |              |  |
|                                              | S19-Ja24219                |            | mg/kg   | < 0.05           | < 0.05         | <1       | <del> </del> | Pass         |  |
| 4.4'-DDE                                     | S19-Ja24219                | CP<br>CP   | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| 4.4'-DDT<br>a-BHC                            | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%<br>30%   | Pass         |  |
| Aldrin                                       | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
|                                              | S19-Ja24219                |            | mg/kg   | < 0.05           | < 0.05         | <1       | <del> </del> | Pass         |  |
| b-BHC                                        | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| d-BHC                                        | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Dieldrin                                     | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Endosulfan I                                 | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Endosulfan II                                | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Endosulfan sulphate                          | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Endrin                                       | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Endrin aldehyde                              | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Endrin ketone                                | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| g-BHC (Lindane)                              | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Heptachlor                                   | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Heptachlor epoxide                           | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Hexachlorobenzene                            | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Methoxychlor                                 | S19-Ja24219                | CP         | mg/kg   | < 0.05           | < 0.05         | <1       | 30%          | Pass         |  |
| Duplicate                                    |                            |            |         | Desilia          | D It O         | DDD      | I            | I            |  |
| Heavy Metals                                 | M40 F-04747                | NOD        |         | Result 1         | Result 2       | RPD      | 000/         | D            |  |
| Arsenic                                      | M19-Fe01747                |            | mg/kg   | 12               | 12             | 1.0      | 30%          | Pass         |  |
| Cadmium                                      | M19-Fe01747                | NCP        | mg/kg   | < 0.4            | < 0.4          | <1       | 30%          | Pass         |  |
| Chromium                                     | M19-Fe01747                | NCP        | mg/kg   | 51               | 51             | <1       | 30%          | Pass         |  |
| Copper                                       | M19-Fe01747                | NCP        | mg/kg   | 41               | 41             | <1       | 30%          | Pass         |  |
| Lead                                         | M19-Fe01747                | NCP        | mg/kg   | 31               | 31             | <1       | 30%          | Pass         |  |
| Mercury                                      | M19-Fe01747<br>M19-Fe01747 | NCP<br>NCP | mg/kg   | 0.1              | 0.1            | 3.0      | 30%          | Pass         |  |
| Nickel                                       |                            |            | mg/kg   | 140              | 35             | 1.0      | 30%          | Pass         |  |
| Zinc                                         | M19-Fe01747                | NCP        | mg/kg   | 140              | 140            | <1       | 30%          | Pass         |  |
| Duplicate  Polyablarinated Riphanyla         |                            |            |         | Dogult 1         | Post-lt 0      | DDD      |              |              |  |
| Polychlorinated Biphenyls                    | M40 1-24022                | NCD        | m = /I  | Result 1         | Result 2       | RPD      | 2007         | Dos-         |  |
| Aroclor 1331                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Aroclor-1221                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Aroclor-1232                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Aroclor-1242                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Aroclor-1248                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Aroclor-1254                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Aroclor-1260                                 | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Total PCB*                                   | M19-Ja21623                | NCP        | mg/kg   | < 0.1            | < 0.1          | <1       | 30%          | Pass         |  |
| Duplicate                                    |                            |            |         | Desuit 4         | Desit 0        | DDD      |              |              |  |
| 0/ Majoturo                                  | C10 1-04005                | 00         | 0/      | Result 1         | Result 2       | RPD      | 2001         | Dar-         |  |
| % Moisture                                   | S19-Ja24225                | CP         | %       | 6.4              | 6.0            | 7.0      | 30%          | Pass         |  |



#### Comments

### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R16 The LORs have been raised due to the high concentration of one or more analytes

#### **Authorised By**

N02

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW) Emily Rosenberg Senior Analyst-Metal (VIC)



### Glenn Jackson

#### **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential changes including, but not limited to, lost profits, damages for reliable to meet decidablines and lost production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

### **Enviro Sample Vic**

From:

Nibha Vaidya

Sent:

Thursday, 7 February 2019 4:34 PM

To:

Enviro Sample Vic

Subject:

Alena Bounkeua

Subject:

1 DAY TAT - FW: Report 637818; Additional Analysis

Attachments: image

image001.png; image002.jpg

7/2/19 4:34

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email : NibhaVaidya@eurofins.com

From: Joshua Cranson [mailto:jcranson@jbsg.com.au]

Sent: Thursday, 7 February 2019 4:17 PM

To: Nibha Vaidya Cc: Daniel Denaro

Subject: Report 637818; Additional Analysis

**EXTERNAL EMAIL\*** 

D.S 23 01

Good afternoon Nibha.

Ja24231-91246 HOLD 1268.

Could I please schedule sample **BH\_P\_02\_0.4-0.5** from batch **637818** (received 25/1/19) to be analysed for PAHs 24-hour TAT?

Thankyou, Josh



Joshua Cranson | Environmental Consultant | JBS&G

Sydney | Melbourne | Adelaide | Perth | Brisbane | Canberra | Darwin | Wollongong

Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0424 712 705 | E: <u>icranson@jbsg.com.au</u> | W: <u>www.jbsg.com.au</u>

Contaminated Land | Groundwater Remediation | Environmental Approvals | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability | Stakeholder and Risk Management

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended

immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that

are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subject to limitations.

Click here to report this email as spam.

ScannedByWebsenseForEurofins



Order No.:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

JBS & G Australia (NSW) P/L **Company Name:** 

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Project Name:

Feb 7, 2019 4:34 PM Report #: 639419 Due: Feb 8, 2019 02 8245 0300

Priority: 1 Day **Contact Name:** Daniel Denaro

Received:

| Sample Detail |                     |                 |                  |        |             |   | Moisture Set |
|---------------|---------------------|-----------------|------------------|--------|-------------|---|--------------|
| Melb          | ourne Laborato      | ory - NATA Site | # 1254 & 142     | 71     |             | Х | Χ            |
| Sydr          | ney Laboratory      | - NATA Site # 1 | 8217             |        |             |   |              |
| Brisl         | bane Laboratory     | y - NATA Site # | 20794            |        |             |   |              |
| Perti         | h Laboratory - N    | IATA Site # 237 | 36               |        |             |   |              |
| Exte          | rnal Laboratory     |                 |                  |        |             |   |              |
| No            | Sample ID           | Sample Date     | Sampling<br>Time | Matrix | LAB ID      |   |              |
| 1             | BH_P_02 0.4-<br>0.5 | Jan 23, 2019    |                  | Soil   | M19-Fe08490 | Х | Х            |
| Test Counts   |                     |                 |                  |        |             |   | 1            |



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Daniel Denaro

Report 639419-S

Project name CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID 55579
Received Date Feb 07, 2019

| Client Sample ID                    |     |       | BH_P_02 0.4-<br>0.5 |
|-------------------------------------|-----|-------|---------------------|
| Sample Matrix                       |     |       | Soil                |
| Eurofins   mgt Sample No.           |     |       | M19-Fe08490         |
| Date Sampled                        |     |       | Jan 23, 2019        |
| Test/Reference                      | LOR | Unit  |                     |
| Polycyclic Aromatic Hydrocarbons    |     |       |                     |
| Benzo(a)pyrene TEQ (lower bound) *  | 0.5 | mg/kg | 2.1                 |
| Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 2.3                 |
| Benzo(a)pyrene TEQ (upper bound) *  | 0.5 | mg/kg | 2.6                 |
| Acenaphthene                        | 0.5 | mg/kg | < 0.5               |
| Acenaphthylene                      | 0.5 | mg/kg | < 0.5               |
| Anthracene                          | 0.5 | mg/kg | < 0.5               |
| Benz(a)anthracene                   | 0.5 | mg/kg | 1.4                 |
| Benzo(a)pyrene                      | 0.5 | mg/kg | 1.6                 |
| Benzo(b&j)fluorantheneN07           | 0.5 | mg/kg | 1.1                 |
| Benzo(g.h.i)perylene                | 0.5 | mg/kg | 1.0                 |
| Benzo(k)fluoranthene                | 0.5 | mg/kg | 1.4                 |
| Chrysene                            | 0.5 | mg/kg | 1.6                 |
| Dibenz(a.h)anthracene               | 0.5 | mg/kg | < 0.5               |
| Fluoranthene                        | 0.5 | mg/kg | 3.5                 |
| Fluorene                            | 0.5 | mg/kg | < 0.5               |
| Indeno(1.2.3-cd)pyrene              | 0.5 | mg/kg | 0.7                 |
| Naphthalene                         | 0.5 | mg/kg | < 0.5               |
| Phenanthrene                        | 0.5 | mg/kg | 1.2                 |
| Pyrene                              | 0.5 | mg/kg | 3.6                 |
| Total PAH*                          | 0.5 | mg/kg | 17.1                |
| 2-Fluorobiphenyl (surr.)            | 1   | %     | 64                  |
| p-Terphenyl-d14 (surr.)             | 1   | %     | 72                  |
| % Moisture                          | 1   | %     | 8.6                 |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                              | Testing Site | Extracted    | <b>Holding Time</b> |
|----------------------------------------------------------|--------------|--------------|---------------------|
| Polycyclic Aromatic Hydrocarbons                         | Melbourne    | Feb 07, 2019 | 14 Day              |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water |              |              |                     |
| % Moisture                                               | Melbourne    | Feb 07, 2019 | 14 Day              |

- Method: LTM-GEN-7080 Moisture

Report Number: 639419-S



Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

**Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Z/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Feb 7, 2019 4:34 PM

**Company Name:** JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

**Project Name:** CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL

Project ID: 55579

Date Reported:Feb 08, 2019

Report #: 639419 Phone: 02 8245 0300 Fax:

Order No.:

Due: Feb 8, 2019 **Priority:** 1 Day

**Contact Name: Daniel Denaro** 

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Moisture Set Polycyclic Aromatic Hydrocarbons Sample Detail Χ Χ Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 **External Laboratory** No Sample ID Sample Date Sampling **Matrix** LAB ID Time BH\_P\_02 0.4-Jan 23, 2019 Soil M19-Fe08490 Χ Χ 0.5 **Test Counts** 

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 639419-S



#### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

**ppm:** Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

**Terms** 

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**USEPA** United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 639419-S



### **Quality Control Results**

| Test                            |               |        | Units      | Result 1        |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------|---------------|--------|------------|-----------------|---|----------------------|----------------|--------------------|
| Method Blank                    |               |        |            |                 |   |                      |                |                    |
| Polycyclic Aromatic Hydrocarbo  | ns            |        |            |                 |   |                      |                |                    |
| Acenaphthene                    |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Acenaphthylene                  |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Anthracene                      |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Benz(a)anthracene               |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                  |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene          |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene            |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene            |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Chrysene                        |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene           |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Fluoranthene                    |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Fluorene                        |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene          |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Naphthalene                     |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Phenanthrene                    |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| Pyrene                          |               |        | mg/kg      | < 0.5           |   | 0.5                  | Pass           |                    |
| LCS - % Recovery                |               |        | <u> </u>   |                 | • |                      |                |                    |
| Polycyclic Aromatic Hydrocarbon | ns            |        |            |                 |   |                      |                |                    |
| Acenaphthene                    |               |        | %          | 106             |   | 70-130               | Pass           |                    |
| Acenaphthylene                  |               |        | %          | 99              |   | 70-130               | Pass           |                    |
| Anthracene                      |               |        | %          | 97              |   | 70-130               | Pass           |                    |
| Benz(a)anthracene               |               |        | %          | 91              |   | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  |               |        | %          | 78              |   | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          |               |        | %          | 109             |   | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            |               |        | %          | 77              |   | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            |               |        | %          | 105             |   | 70-130               | Pass           |                    |
| Chrysene                        |               |        | %          | 104             |   | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene           |               |        | %          | 82              |   | 70-130               | Pass           |                    |
| Fluoranthene                    |               |        | %          | 100             |   | 70-130               | Pass           |                    |
| Fluorene                        |               |        | %          | 104             |   | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene          |               |        | %          | 81              |   | 70-130               | Pass           |                    |
| Naphthalene                     |               |        | %          | 108             |   | 70-130               | Pass           |                    |
|                                 |               |        | %          | 98              |   | 70-130               | Pass           |                    |
| Phenanthrene                    |               |        |            |                 |   |                      |                |                    |
| Pyrene Test                     | Lab Sample ID | QA     | %<br>Units | 103<br>Result 1 |   | 70-130<br>Acceptance | Pass<br>Pass   | Qualifying         |
|                                 |               | Source |            |                 |   | Limits               | Limits         | Code               |
| Spike - % Recovery              |               |        |            | Decide 4        |   |                      |                |                    |
| Polycyclic Aromatic Hydrocarbo  |               | NOD    | 0/         | Result 1        |   | 70.400               | Dar -          |                    |
| Acenaphthene                    | M19-Fe03460   | NCP    | %          | 87              |   | 70-130               | Pass           |                    |
| Acenaphthylene                  | M19-Fe03460   | NCP    | %          | 81              |   | 70-130               | Pass           |                    |
| Anthracene                      | M19-Fe03460   | NCP    | %          | 88              |   | 70-130               | Pass           |                    |
| Benz(a)anthracene               | M19-Fe03460   | NCP    | %          | 78              |   | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  | M19-Fe03460   | NCP    | %          | 106             |   | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          | M19-Fe03460   | NCP    | %          | 98              |   | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            | M19-Fe03460   | NCP    | %          | 89              |   | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            | M19-Fe03460   | NCP    | %          | 125             |   | 70-130               | Pass           |                    |
| Chrysene                        | M19-Fe03460   | NCP    | %          | 91              |   | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene           | M19-Fe03460   | NCP    | %          | 82              |   | 70-130               | Pass           |                    |
| Fluoranthene                    | M19-Fe03460   | NCP    | %          | 100             |   | 70-130               | Pass           |                    |
| Fluorene                        | M19-Fe03460   | NCP    | %          | 87              |   | 70-130               | Pass           |                    |



| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Indeno(1.2.3-cd)pyrene       | M19-Fe03460   | NCP          | %     | 87       |          |     | 70-130               | Pass           |                    |
| Naphthalene                  | M19-Fe03460   | NCP          | %     | 95       |          |     | 70-130               | Pass           |                    |
| Phenanthrene                 | M19-Fe03460   | NCP          | %     | 95       |          |     | 70-130               | Pass           |                    |
| Pyrene                       | M19-Fe03460   | NCP          | %     | 100      |          |     | 70-130               | Pass           |                    |
| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocai | rbons         |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                 | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene               | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                   | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene            | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene               | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene       | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene         | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene         | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Chrysene                     | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene        | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                 | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene                     | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene       | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                  | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                 | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                       | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
|                              |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| % Moisture                   | M19-Fe08369   | NCP          | %     | 20       | 20       | <1  | 30%                  | Pass           |                    |

Report Number: 639419-S



#### Comments

### Sample Integrity

| 1 0 /                                                                   |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

#### **Qualifier Codes/Comments**

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

#### **Authorised By**

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC)

### Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mg/be liable for consequential damages including, but not limited to, lost profits, damages for refaultive to meet decidines and ols the production arising from this report. This document shall not be reproduced or expect in full and refates only to the times tested. Unlies indicated otherwise, the tests were performed on the samples as received.

Report Number: 639419-S



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 228207**

| Client Details |                                            |
|----------------|--------------------------------------------|
| Client         | JBS & G (NSW & WA) Pty Ltd                 |
| Attention      | Daniel Denaro                              |
| Address        | Level 1, 50 Margaret St, Sydney, NSW, 2000 |

| Sample Details                       |                             |
|--------------------------------------|-----------------------------|
| Your Reference                       | 55579, Chatswood Highschool |
| Number of Samples                    | 1 Soil                      |
| Date samples received                | 11/10/2019                  |
| Date completed instructions received | 11/10/2019                  |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                     |                                                                                       |  |  |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| Date results requested by          | 18/10/2019                                                                            |  |  |  |  |  |
| Date of Issue                      | 17/10/2019                                                                            |  |  |  |  |  |
| NATA Accreditation Number 2901     | NATA Accreditation Number 2901. This document shall not be reproduced except in full. |  |  |  |  |  |
| Accredited for compliance with ISO | D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *                   |  |  |  |  |  |

### **Asbestos Approved By**

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

### **Results Approved By**

Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Chemist Lucy Zhu, Senior Asbestos Analyst Steven Luong, Organics Supervisor **Authorised By** 

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Soil                           |       |            |
|------------------------------------------------------|-------|------------|
| Our Reference                                        |       | 228207-1   |
| Your Reference                                       | UNITS | QA01       |
| Date Sampled                                         |       | 10/10/2019 |
| Type of sample                                       |       | Soil       |
| Date extracted                                       | -     | 14/10/2019 |
| Date analysed                                        | -     | 16/10/2019 |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        |
| Benzene                                              | mg/kg | <0.2       |
| Toluene                                              | mg/kg | <0.5       |
| Ethylbenzene                                         | mg/kg | <1         |
| m+p-xylene                                           | mg/kg | <2         |
| o-Xylene                                             | mg/kg | <1         |
| naphthalene                                          | mg/kg | <1         |
| Total +ve Xylenes                                    | mg/kg | <3         |
| Surrogate aaa-Trifluorotoluene                       | %     | 83         |

Envirolab Reference: 228207

Revision No: R00

| svTRH (C10-C40) in Soil                                      |       |            |
|--------------------------------------------------------------|-------|------------|
| Our Reference                                                |       | 228207-1   |
| Your Reference                                               | UNITS | QA01       |
| Date Sampled                                                 |       | 10/10/2019 |
| Type of sample                                               |       | Soil       |
| Date extracted                                               | -     | 14/10/2019 |
| Date analysed                                                | -     | 14/10/2019 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100       |
| TRH >C <sub>10</sub> -C <sub>16</sub>                        | mg/kg | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | <100       |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50        |
| Surrogate o-Terphenyl                                        | %     | 78         |

Envirolab Reference: 228207

Revision No: R00

| PAHs in Soil                   |       |            |  |  |
|--------------------------------|-------|------------|--|--|
| Our Reference                  |       | 228207-1   |  |  |
| Your Reference                 | UNITS | QA01       |  |  |
| Date Sampled                   |       | 10/10/2019 |  |  |
| Type of sample                 |       | Soil       |  |  |
| Date extracted                 | -     | 14/10/2019 |  |  |
| Date analysed                  | -     | 15/10/2019 |  |  |
| Naphthalene                    | mg/kg | <0.1       |  |  |
| Acenaphthylene                 | mg/kg | <0.1       |  |  |
| Acenaphthene                   | mg/kg | <0.1       |  |  |
| Fluorene                       | mg/kg | <0.1       |  |  |
| Phenanthrene                   | mg/kg | 0.1        |  |  |
| Anthracene                     | mg/kg | <0.1       |  |  |
| Fluoranthene                   | mg/kg | 0.5        |  |  |
| Pyrene                         | mg/kg | 0.5        |  |  |
| Benzo(a)anthracene             | mg/kg | 0.3        |  |  |
| Chrysene                       | mg/kg | 0.3        |  |  |
| Benzo(b,j+k)fluoranthene       | mg/kg | 0.3        |  |  |
| Benzo(a)pyrene                 | mg/kg | 0.4        |  |  |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | 0.2        |  |  |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       |  |  |
| Benzo(g,h,i)perylene           | mg/kg | 0.3        |  |  |
| Total +ve PAH's                | mg/kg | 2.9        |  |  |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       |  |  |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | 0.5        |  |  |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | 0.6        |  |  |
| Surrogate p-Terphenyl-d14      | %     | 96         |  |  |

| Acid Extractable metals in soil |       |            |
|---------------------------------|-------|------------|
| Our Reference                   |       | 228207-1   |
| Your Reference                  | UNITS | QA01       |
| Date Sampled                    |       | 10/10/2019 |
| Type of sample                  |       | Soil       |
| Date prepared                   | -     | 14/10/2019 |
| Date analysed                   | -     | 14/10/2019 |
| Arsenic                         | mg/kg | 19         |
| Cadmium                         | mg/kg | <0.4       |
| Chromium                        | mg/kg | 9          |
| Copper                          | mg/kg | 31         |
| Lead                            | mg/kg | 37         |
| Mercury                         | mg/kg | <0.1       |
| Nickel                          | mg/kg | 5          |
| Zinc                            | mg/kg | 30         |

| Moisture       |       |            |
|----------------|-------|------------|
| Our Reference  |       | 228207-1   |
| Your Reference | UNITS | QA01       |
| Date Sampled   |       | 10/10/2019 |
| Type of sample |       | Soil       |
| Date prepared  | -     | 14/10/2019 |
| Date analysed  | -     | 15/10/2019 |
| Moisture       | %     | 21         |

| Asbestos ID - soils NEPM - ASB-001    |        |                                                                                           |
|---------------------------------------|--------|-------------------------------------------------------------------------------------------|
| Our Reference                         |        | 228207-1                                                                                  |
| Your Reference                        | UNITS  | QA01                                                                                      |
| Date Sampled                          |        | 10/10/2019                                                                                |
| Type of sample                        |        | Soil                                                                                      |
| Date analysed                         | -      | 14/10/2019                                                                                |
| Sample mass tested                    | g      | 657.61                                                                                    |
| Sample Description                    | -      | Brown coarse-<br>grained soil &<br>rocks                                                  |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres<br>detected |
| Trace Analysis                        | -      | No asbestos<br>detected                                                                   |
| Total Asbestos#1                      | g/kg   | <0.1                                                                                      |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible asbestos detected                                                              |
| ACM >7mm Estimation*                  | g      | _                                                                                         |
| FA and AF Estimation*                 | g      | _                                                                                         |
| ACM >7mm Estimation*                  | %(w/w) | <0.01                                                                                     |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                                                    |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASB-001    | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                                                                                                                                                                                                                                                                                                      |
| ASB-001    | Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004.  Results reported denoted with * are outside our scope of NATA accreditation. |
|            | <b>NOTE</b> *1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | <b>NOTE</b> #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.                                                                                                                                                                                                                                                                                                                                                            |
|            | Estimation = Estimated asbestos weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-003    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                    |
| Org-003    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                            |

Envirolab Reference: 228207

Revision No: R00

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-012/017 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/o GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-  1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" 2.="" 3.="" <pql="" a="" actually="" all="" and="" approach="" are="" as="" assuming="" at="" be="" below="" but="" calculation="" can="" conservative="" conserve="" contribute="" contributing="" false="" give="" given="" half="" hence="" is="" least="" may="" mid-point="" more="" most="" negative="" not="" of="" pahs="" positive="" pql'values="" pql.="" pql.<="" present="" present.="" reported="" stipulated="" strength="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero'values="" zero.=""></pql> |
|             | between the most and least conservative approaches above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum the positive individual PAHs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Org-014     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-016     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water sample are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Org-016     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.  Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |       |     |         |            |   | Du         |            | Spike Recovery % |            |      |
|---------------------------------------------|-------|-----|---------|------------|---|------------|------------|------------------|------------|------|
| Test Description                            | Units | PQL | Method  | Blank      | # | Base       | Dup.       | RPD              | LCS-16     | [NT] |
| Date extracted                              | -     |     |         | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |                  | 14/10/2019 |      |
| Date analysed                               | -     |     |         | 16/10/2019 | 1 | 16/10/2019 | 16/10/2019 |                  | 16/10/2019 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>         | mg/kg | 25  | Org-016 | <25        | 1 | <25        | <25        | 0                | 95         |      |
| TRH C <sub>6</sub> - C <sub>10</sub>        | mg/kg | 25  | Org-016 | <25        | 1 | <25        | <25        | 0                | 95         |      |
| Benzene                                     | mg/kg | 0.2 | Org-016 | <0.2       | 1 | <0.2       | <0.2       | 0                | 105        |      |
| Toluene                                     | mg/kg | 0.5 | Org-016 | <0.5       | 1 | <0.5       | <0.5       | 0                | 99         |      |
| Ethylbenzene                                | mg/kg | 1   | Org-016 | <1         | 1 | <1         | <1         | 0                | 91         |      |
| m+p-xylene                                  | mg/kg | 2   | Org-016 | <2         | 1 | <2         | <2         | 0                | 89         |      |
| o-Xylene                                    | mg/kg | 1   | Org-016 | <1         | 1 | <1         | <1         | 0                | 91         |      |
| naphthalene                                 | mg/kg | 1   | Org-014 | <1         | 1 | <1         | <1         | 0                | [NT]       |      |
| Surrogate aaa-Trifluorotoluene              | %     |     | Org-016 | 90         | 1 | 83         | 82         | 1                | 89         |      |

| QUALITY CONTROL: svTRH (C10-C40) in Soil |       |     |         |            |   | Du         |            | Spike Recovery % |            |      |
|------------------------------------------|-------|-----|---------|------------|---|------------|------------|------------------|------------|------|
| Test Description                         | Units | PQL | Method  | Blank      | # | Base       | Dup.       | RPD              | LCS-16     | [NT] |
| Date extracted                           | -     |     |         | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |                  | 14/10/2019 |      |
| Date analysed                            | -     |     |         | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |                  | 14/10/2019 |      |
| TRH C <sub>10</sub> - C <sub>14</sub>    | mg/kg | 50  | Org-003 | <50        | 1 | <50        | <50        | 0                | 118        |      |
| TRH C <sub>15</sub> - C <sub>28</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 84         |      |
| TRH C <sub>29</sub> - C <sub>36</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 92         |      |
| TRH >C <sub>10</sub> -C <sub>16</sub>    | mg/kg | 50  | Org-003 | <50        | 1 | <50        | <50        | 0                | 118        |      |
| TRH >C <sub>16</sub> -C <sub>34</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 84         |      |
| TRH >C <sub>34</sub> -C <sub>40</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 92         |      |
| Surrogate o-Terphenyl                    | %     |     | Org-003 | 81         | 1 | 78         | 79         | 1                | 101        |      |

| QUA                       | LITY CONTRO | ITY CONTROL: PAHs in Soil |             |            |   | Du         | Duplicate  |     | Spike Recovery % |      |
|---------------------------|-------------|---------------------------|-------------|------------|---|------------|------------|-----|------------------|------|
| Test Description          | Units       | PQL                       | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-16           | [NT] |
| Date extracted            | -           |                           |             | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |     | 14/10/2019       |      |
| Date analysed             | -           |                           |             | 15/10/2019 | 1 | 15/10/2019 | 15/10/2019 |     | 15/10/2019       |      |
| Naphthalene               | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | 116              |      |
| Acenaphthylene            | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |
| Acenaphthene              | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |
| Fluorene                  | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | 100              |      |
| Phenanthrene              | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.1        | 0.2        | 67  | 106              |      |
| Anthracene                | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |
| Fluoranthene              | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.5        | 0.6        | 18  | 110              |      |
| Pyrene                    | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.5        | 0.5        | 0   | 112              |      |
| Benzo(a)anthracene        | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.3        | 0.3        | 0   | [NT]             |      |
| Chrysene                  | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.3        | 0.2        | 40  | 100              |      |
| Benzo(b,j+k)fluoranthene  | mg/kg       | 0.2                       | Org-012/017 | <0.2       | 1 | 0.3        | 0.3        | 0   | [NT]             |      |
| Benzo(a)pyrene            | mg/kg       | 0.05                      | Org-012/017 | <0.05      | 1 | 0.4        | 0.3        | 29  | 108              |      |
| Indeno(1,2,3-c,d)pyrene   | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.2        | 0.2        | 0   | [NT]             |      |
| Dibenzo(a,h)anthracene    | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |
| Benzo(g,h,i)perylene      | mg/kg       | 0.1                       | Org-012/017 | <0.1       | 1 | 0.3        | 0.2        | 40  | [NT]             |      |
| Surrogate p-Terphenyl-d14 | %           |                           | Org-012/017 | 95         | 1 | 96         | 95         | 1   | 110              |      |

| QUALITY CONT     | ROL: Acid E | xtractable | e metals in soil |            |   | Du         | plicate    |     | Spike Re   | covery % |
|------------------|-------------|------------|------------------|------------|---|------------|------------|-----|------------|----------|
| Test Description | Units       | PQL        | Method           | Blank      | # | Base       | Dup.       | RPD | LCS-16     | [NT]     |
| Date prepared    | -           |            |                  | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |     | 14/10/2019 |          |
| Date analysed    | -           |            |                  | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |     | 14/10/2019 |          |
| Arsenic          | mg/kg       | 4          | Metals-020       | <4         | 1 | 19         | 10         | 62  | 106        |          |
| Cadmium          | mg/kg       | 0.4        | Metals-020       | <0.4       | 1 | <0.4       | <0.4       | 0   | 105        |          |
| Chromium         | mg/kg       | 1          | Metals-020       | <1         | 1 | 9          | 10         | 11  | 117        |          |
| Copper           | mg/kg       | 1          | Metals-020       | <1         | 1 | 31         | 32         | 3   | 110        |          |
| Lead             | mg/kg       | 1          | Metals-020       | <1         | 1 | 37         | 37         | 0   | 115        |          |
| Mercury          | mg/kg       | 0.1        | Metals-021       | <0.1       | 1 | <0.1       | <0.1       | 0   | 81         |          |
| Nickel           | mg/kg       | 1          | Metals-020       | <1         | 1 | 5          | 4          | 22  | 106        |          |
| Zinc             | mg/kg       | 1          | Metals-020       | <1         | 1 | 30         | 31         | 3   | 109        | [NT]     |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| ol Definitions                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |
|                                                                                                                                                                                                                                  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 228207
Revision No: R00
Page | 15 of 16

## **Report Comments**

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 228207 Page | 16 of 16 R00

Revision No: