

JOHN HUNTER HEALTH AND INNOVATION PRECINCT

Prepared for HEALTH INFRASTRUCTURE

Prepared by RCA Australia

RCA ref 14399-208/3

December 2019

RCA AUSTRALIA

ABN 53 063 515 711

92 Hill Street, CARRINGTON NSW 2294

Telephone: +61 2 4902 9200 Facsimile: +61 2 4902 9299 Email: administrator@rca.com.au Internet: www.rca.com.au

This document is and shall remain the property of RCA Australia. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission supplied at the time of proposal. Unauthorised use of this document in any form whatsoever is prohibited.

DOCUMENT STATUS										
Rev No	Comment	Author	Reviewer	Approved for Issue (Project Manager)						
	Comment	Adilloi	Reviewer	Name	Signature	Date				
/0	Draft	Z Laughlan	F Brooker	F Brooker		30.10.19				
/1	Final	Z Laughlan	F Brooker	F Brooker		01.11.19				
/2	Revised to Address Comments	Z Laughlan	F Brooker	F Brooker		21.11.19				
/3	Revised to Address Comments	Z Laughlan	F Brooker	F Brooker	For	03.12.19				

	DOCUMENT DISTRIBUTION									
Rev No	Copies	Format Issued to								
/0	1	Electronic (email)	Health Infrastructure C/- TSA Management, Luke Bidaud-Cole <u>Luke.Bidaud-Cole@tsamgt.com</u>	30.10.19						
/0	1	Electronic report	RCA – job archive	30.10.19						
/1	1	Electronic (email)	Health Infrastructure C/- TSA Management, Luke Bidaud-Cole <u>Luke.Bidaud-Cole@tsamgt.com</u>	01.11.19						
/1	1	Electronic report	RCA – job archive	01.11.19						
/2	1	Electronic (email)	Health Infrastructure C/- TSA Management, Luke Bidaud-Cole <u>Luke.Bidaud-Cole@tsamgt.com</u>	21.11.19						
/2	1	Electronic report	RCA – job archive	21.11.19						
/3	1	Electronic (email)	Health Infrastructure C/- TSA Management, Luke Bidaud-Cole <u>Luke.Bidaud-Cole@tsamgt.com</u>	3.12.19						
/3	1	Electronic report	RCA – job archive	3.12.19						

RCA ref 14399-208/3 Client ref HI19320

3 December 2019

Health Infrastructure C/- TSA Management Level 4, 25 Watt Street Newcastle NSW 2300

Attention: Mr Luke Bidaud-Cole

Geotechnical Engineering

Engineering Geology

Environmental Engineering

Hydrogeology

Construction Materials Testing

Environmental Monitoring

Sound & Vibration

Occupational Hygiene

CONTAMINATION AND WASTE CLASSIFICATION REPORT JOHN HUNTER HEALTH AND INNOVATION PRECINCT

EXECUTIVE SUMMARY

This report has presented the findings of an environmental site investigation undertaken at the John Hunter Health and Innovation Precinct.

The objective of the report is to provide an understanding of the potential for contamination to be present at the site and it is understood that the report will be used to support the development of a multi storey building on the preferred Development site and proposed internal road networks.

The scope of works undertaken for this assessment was based on the findings of a preliminary site (contamination) assessment (Ref [1]) which indicated a limited potential for contamination to be present at site from historical filling activities inappropriate waste disposal and use of asbestos containing materials. This assessment was undertaken in conjunction with a geotechnical assessment (Ref [2]) and included:

- Intrusive assessment (drilling, test pitting and hand augering) across the entirety of the site to the depth of the underlying bedrock material. The contamination investigation mainly focused on the subsurface soil conditions observed within 2mbgs.
- Collection and analysis of surface and subsurface soil samples from thirty four (34) locations within the site.
- Collection from two (2) locations and analysis of three (3) samples from material
 understood as having been sourced from a previous roadworks project (the
 re-surfacing of the internal road between Lookout Road and the bus turning bay) to
 be used within an area designated for the proposed internal road networks. Following
 the completion of the works RCA has been advised that the sampled material was not
 sourced as understood: the source of the material is unknown.

Personnel from the Local Health District have since identified the location of two
 (2) stockpiles (refer **Drawing 1**, **Appendix A**) of material generated from the
 previous roadworks project. These stockpiles require assessment to determine
 suitability for use on site: the assessment will be provided under a separate
 cover.

No indications of contamination or anthropogenic waste (including asbestos containing materials) were identified during the fieldworks. RCA analysed forty eight (48) samples for hydrocarbons and metals across the site to characterise the potential for contamination.

No contamination was identified in excess of human health or ecological criteria (Ref [9]) with the exception of benzo(a)pyrene concentrations in one (1) sample in excess of the ecological investigation level for commercial land use. In the absence of sensitive ecological receptors at the site, based on the proposed development comprising building or paving, RCA considers that it is unlikely to pose a risk to the environment for the proposed site use.

RCA considers that the site is suitable for the proposed use. Soil excavated as part of the construction process, subject to the absence of anthropogenic materials (which is considered to be potentially present within the fill embankments) as well as geotechnical and aesthetic requirements, is suitable for use as fill at the site.

All samples were classified as general solid waste in accordance with the relevant guidelines for disposal at a licenced waste facility. Natural materials encountered onsite are considered to be able to be classified as VENM based on the fieldwork observations and sample results.

RCA recommends industry best practice management measures be undertaken during construction with the implementation of best practice dust, soil and water management measures and an unexpected finds protocol which allows for separation and assessment of anthropogenic waste or odorous material in the event that is identified.

Contents

1	INTRODUCTION	
2	SITE IDENTIFICATION AND DESCRIPTION	1
3	SITE HISTORY AND BACKGROUND INFORMATION	2
4	SAMPLING AND ANALYTICAL QUALITY PLAN	5
5	FIELDWORK	7
6	QUALITY ASSURANCE/QUALITY CONTROL	9
7	RESULTS	9
8	SITE CONTAMINATION CHARACTERISATION	10
9	CONCLUSIONS	11
10	LIMITATIONS	12
REF	FERENCES	13
GLC	OSSARY	14

APPENDIX A

DRAWINGS

APPENDIX B

SCREENING LEVELS AND GUIDELINES

APPENDIX C

QUALITY ASSURANCE REVIEW AND LABORATORY REPORT SHEETS

APPENDIX D

BORE, HAND AUGER & TEST PIT LOGS

APPENDIX E

PHOTOGRAPHS

APPENDIX F

SUMMARY OF RESULTS

1 INTRODUCTION

This report details the findings of a site contamination assessment and waste classification undertaken at the John Hunter Health and Innovation Precinct project area.

It is understood the project comprises a multi storey building (with lift pits) and approximately 2km of access roads. The Development site is to the north of the existing John Hunter Hospital and will connect to the existing hospital via a concourse and link ways.

The purpose of the investigation is to provide an understanding of the potential contamination to be present within Development zone and within the new road networks (herein referred to as the 'site'). This is based on the preliminary site assessment completed by RCA (Ref [1]) and analysis of surface and subsurface soil samples taken from site.

RCA are also providing a Geotechnical Investigation Report (Ref [2]) as part of the investigation phase for the area preferred for construction of the multi-storey building and associated new road networks. This report contains detailed geotechnical descriptions of the surface and subsurface conditions at the site together with recommendations for site preparation, earthworks and foundation design.

RCA are also providing an update (Ref [3]) of the asbestos register for buildings within the John Hunter hospital site: the extent of works may not relate to the proposed development site depending on the final design of the project.

The investigation was undertaken at the request of Health Infrastructure under Contract HI19320.

2 SITE IDENTIFICATION AND DESCRIPTION

The site is located adjacent to the John Hunter hospital and described as part Lot 2 DP1228246. Additional site details are shown in **Table 1**.

Table 1 Site Details

Current zoning (Ref [4])	SP2 Infrastructure: Health Services Facility					
Current use	Vacant Bushland with access tracks.					
Proposed use	Multi storey clinical service building					
Size of site	~1ha					
Land use to the: North	Hunter Medical Research Institute (HMRI) building, carpark and bushland (proposed Development site (research and education precinct))					
South	John Hunter Hospital					
East	Bushland and medical buildings.					
West	John Hunter hospital buildings, carparking and bushland					
Nearest sensitive receptor (human health)	Residential dwellings approximately 500m to the east.					
Nearest sensitive receptor (environmental)	Unnamed tributary of Flats Creek approximately 180m to east and north. It is noted that stormwater from part of the hospital site appears to be directed to the tributary.					

Drawing 1, **Appendix A** shows the locality, location of the Development site and the layout of the proposed road network area.

3 SITE HISTORY AND BACKGROUND INFORMATION

A detailed site history review was conducted by RCA within the preliminary site (contamination) report provided to Health Infrastructure (Ref [1]). The assessment involved the review of multiple government registers, historical photographs, maps, previous investigations and general site conditions and observations. A summary of the assessment is detailed below:

- Search of the Office of Environment and Heritage (OEH) register http://www.environment.nsw.gov.au/heritageapp/heritagesearch.aspx) for the suburb of New Lambton.
 - This identified a total of seventeen (17) heritage items, four (4) of these related to the grounds of John Hunter hospital.
- Search of the Historical Land Records Viewer (https://hlrv.nswlrs.com.au/).
 - No records relevant to the suburb of New Lambton were found.
- Review of the Newcastle Library (http://www.newcastle.nsw.gov.au/Library/Heritage-History/Search-the-Collection/Hunter-PhotoBank) and Newcastle Herald archival records (http://www.theherald.com.au/story/1723759/archival-revival-newcastle-in-the-1800s-photos/#slide=1).
 - Photographs were discovered showing the construction of John Hunter hospital labelled as circa 1986, the construction of Rankin Park hospital in 1936 and 1950 and two (2) aerial images identified as being of New Lambton in 1965.
 - Records from the State Library of NSW (http://archival.sl.nsw.gov.au/home were also reviewed, however none were identified as having relevance to the site.

- Review of historical aerial photographs of the John Hunter site from 1954 till 2018.
 - This review identified that the site was bushland until the development of the John Hunter hospital in the late 1980s. It also identified that construction of the HMRI facility to the north of the site was completed by 2012.
- Search of the NSW EPA public register of environmental protection licences (http://www.epa.nsw.gov.au/publicregister/) for the suburb of New Lambton Heights.
 - This search identified a total of four (4) records relevant to the site. The review concluded that based on the absence of monitoring requirements the documents are not relevant to the potential for contamination at the site except to understand that wastes which required licensing were generated at the medical facilities situated on site.
- Search of the sites notified to the NSW EPA as potentially requiring regulation (http://www.epa.nsw.gov.au/clm/publiclist.htm as updated 1 August 2019).
 - This confirmed that the site is not notified, nor is any site within New Lambton Heights, Rankin Park or Elermore Vale. The search also reviewed the suburbs of North Lambton and New Lambton and identified four (4) sites, however concluded that the sites are all service stations and are a significant distance from the site and therefore are unlikely to impact the site.
- Search of the NSW EPA gasworks database (http://www.epa.nsw.gov.au/clm/gasworkslocation.htm).
 - This search confirmed that there are five (5) known gasworks within City of Newcastle council area. None of these locations are within close proximity to the site and therefore were deemed too distant to have a potential impact on the site.
- Search of the NSW Office of Fair Trading asbestos insulation register (http://www.fairtrading.nsw.gov.au/ftw/Tenants and home owners/Loose fill asbestos insulation/Public Search/LFA
 I Public Register.page).
 - This determined the absence of known loose-fill asbestos insulation at buildings registered at 2 Lookout Road.
- Review of previous investigations conducted at the site.
 - This review concluded that there had been no dedicated contamination assessment reports undertaken at the site prior to the current works being completed by RCA. The review also stated that six (6) geotechnical reports have been undertaken at the site previously and the majority of the reports had no consideration for potential sources of contamination.
 - An assessment on the grounds of John Hunter hospital (Ref [5]) and the
 proposed Newcastle Inner City Bypass alignment (Ref [6]) for potential sources
 of contamination was conducted in 2002 and 2016, respectively. No samples
 from either of these investigations were taken within the proposed Development
 site and as such were not considered directly relevant in the review.
- Review of published geological and hydrogeological maps.
 - The site was found to be within the Killingworth soil landscape which comprises brownish black pedal loam (topsoil) over bleached hardsetting loamy sand to sandy clay loam over pedal yellow brown clay.

- The acid sulfate soil risk map for Wallsend found the site is within an area of no known occurrence of acid sulfate soils.
- The review found no registered groundwater bores or known uses for groundwater at the site. The estimated flow direction was deemed unknown, however likely to be influenced by the presence of coal seams. The only background information within the area was derived from the Newcastle Inner City Bypass alignment report (Ref [6]) which found low concentrations of hydrocarbons and metals.
- Review of general site conditions and observations encountered during site inspection.
 - Variable slope generally to the north and west.
 - No visual signs of contamination, storage of chemicals or asbestos bearing materials.
 - Localised odours of sewage near sewer access points.
 - Concrete material discovered at surface of embankment, however considered to be indicative of construction works.
 - Minimal signs of localised rill erosion and plant stress (with the exception of purposely built clear sight lines).
 - Housing of exhaust pipes from nearby diesel generators.

The review assessed current information and historical documentation generally relating to the site, as far back as the 1950s. In relation to potential contamination, the review concluded that there are no details regarding specific use that may have been undertaken at the site and there is no contamination information specific to the Development site although there has been analysis of soil and groundwater samples in the nearby areas.

The preliminary report (Ref [1]) identified the potential for historical filling at the site, due to the construction of the main hospital building and the more recent HMRI building and carpark. The report also identified the site as being licensed by the NSW EPA to store of hazardous waste materials, and therefore considered there was a potential for inappropriate disposal of the materials at the site. Dumping of asbestos containing building materials was also identified as a potential source of contamination at the site due the information noting that some buildings nearby the site were identified to contain asbestos.

A 'stockpile' of material was also identified to the north of the HMRI carpark. The report summarised that the material was potentially contaminated with hydrocarbons and metals as it was understood at the time of fieldwork to have been excavated from the main access road into the John Hunter site. RCA have since been advised that this is not correct and the source of the material is unknown.

4 SAMPLING AND ANALYTICAL QUALITY PLAN

No formal sampling and analytical quality plan (SAQP) was developed for the project, however RCA prepared a Geotechnical and Contamination Investigation Plan (GCIP, Ref [7]). The GCIP (Ref [7]) outlined RCA's approach to the investigation through summary of the methodology and the generalised works sequence based on the Scope of Services outlined in the request for tender (RFT) document and as informed by the preliminary contamination report (Ref [1]) and preliminary geotechnical report (Ref [8]).

Table 2 provides detail and rationale regarding the scope of works for the contamination investigation undertaken at the site.

 Table 2
 Data Quality Objectives of the Site Investigation

Data Quality Objective	Description						
Step 1- State the Problem	Development for the John Hunter Health Innovation Precinct is proposed to the north of the existing John Hunter hospital building. An assessment of the potential for contamination (Ref [1]) indicates that there is limited potential for contamination at the site, restricted to historical filling activities, inappropriate waste disposal and use of asbestos containing materials, however characterisation of the site's contamination status is required prior to the commencement of development at the site to ensure it is suitable for the proposed development for commercial use.						
Step 2- Identify the Goal and Decisions	To adequately characterise the potential contamination at the site and identify whether there are any constraints to the proposed development.						
	Site history information and previous assessments.						
	Intrusive assessment via drill rig, hand auger and test pit to include visual assessment of the strata encountered and associated logging and observations.						
Step 3- Identify	Installation of groundwater monitoring bores, if groundwater is encountered.						
the Inputs to the decisions	Collection of soil samples and groundwater samples if encountered.						
decisions	Laboratory analysis of collected samples.						
	Guidelines for assessing risk to human health and the environment from contaminated soil and/or groundwater. Full details of the relevant guidelines are included in Appendix B .						
	The horizontal extent of the hand auger and borehole assessment has been defined by the Development boundary. The test pitting will be conducted along the proposed internal roadworks area. Samples will also be collected within the discussed 'stockpile' material						
	The extent of the Development site and the proposed road network is shown on Drawing 1 & 2 , Appendix A .						
Step 4- Define the Boundaries of the investigation	The vertical extent of contamination sampling was determined by consideration of the conceptual site model (Ref [1]) and was to be defined by the expected depth of the interface between fill and natural material for soil. It is noted that groundwater was to be assessed by the concurrent geotechnical investigation (Ref [2]) if encountered.						
	Practical constraints that could have interfered with sampling comprised underground services.						
	Working within the timeframe outlined in the RFT, with adjustment for the starting date.						
	No specific financial constrains were identified, noting that any variations to costs identified to client were to be confirmed with client prior to additional cost being incurred.						
Step 5- Develop	Data Quality Indicators of accuracy, precision, completeness, representativeness						

Data Quality Objective	Description
the Decision Rules	and comparability were to be used for the project. Specific criteria are detailed in the Quality Assurance and Control Assessment for the project, Appendix C .
Step 6- Acceptable Limits on Decision Rules	In the event that data was received which was not in accordance with the DQI, the useability of data was to be determined after consideration of: Closeness of the result to the guideline concentrations. Specific contaminant of concern (e.g., response to carcinogens may have been more conservative, ease through exposure pathway or potential to bio accumulate). The area of sample location(s) in question: including the potential lateral and vertical extent of questionable information. Whether the uncertainty can be effectively managed by site management controls.
	The significance of the non-conformance would have determined if rectification was required.
	Refer to the Quality Assurance and Control Assessment for the project, Appendix C .

The scope of work, Section 5, is considered to comprise Step 7 of the DQO.

5 FIELDWORK

The collection of samples for contamination purpose was undertaken by geotechnical engineers during the drilling and test pitting for geotechnical works (as reported in Ref [2]) between the 24 September and 15 October 2019.

The scope of work included:

- Location of services
- The collection of twenty three (23) soil samples from nine (9) borehole locations within the Development site:
 - Samples were collected from fill and natural materials from between depths of approximately 0.1 and 3 metres below the existing ground surface (mbgs).
 - Analysis of one (1) surface soil sample from each location plus an additional five
 (5) subsurface samples at BH102, BH103, BH105 and BH109.
- The collection of nine (9) soil samples from nine (9) test pit locations within the area of the proposed new road networks:
 - Test pits were excavated adjacent the existing road surfaces rather than through the road surface (where present) as intended due to logistical constraints (potential traffic and services).
 - Samples were collected from natural materials at approximately 0.1mbgs at all test pit locations.
 - Five (5) additional samples were collected from road pavement material at TP101, TP102, TP103, TP108 and TP109.
 - Analysis of one (1) surface soil sample from each test pit location, along with the five (5) additional road pavement samples.
- Logging of test pits and boreholes including description of samples for texture, colour, odour, moisture content. Logs are attached in Appendix D.
- All selected soil samples were laboratory analysed for total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH) and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury).
 - Additional leachability analysis for PAH was conducted on the surface sample collected from BH108 following the results of the additional analysis.
- Re-instatement of test pit and borehole excavations.

An environmental engineer experienced in the handling of potentially contaminated soil undertook fieldwork on 2 October 2019.

The scope of work included:

Location of services

- Services were previously located with RCA's geotechnical team. All environmental hand auger locations were assessed with the geotechnical engineer prior to making any insertions into the ground.
- Services (water and power utilities) were encountered onsite which impacted the
 preferred location of HA1, HA2 and HA3. The new locations are considered to
 allow for characterisation of the north eastern portion of the site.
- The collection of twenty two (22) soil samples from eleven (11) hand auger locations within the Development site:
 - Samples were collected from fill and natural materials from between depths of approximately 0.1 and 1.6mbgs.
 - Analysis of one (1) surface soil sample from each location and an additional five (5) subsurface samples from HA3, HA5, HA8, HA10 and HA11.
- Five (5) additional samples were collected from the 'stockpile' material discussed in the preliminary report (Ref [1]) noting that the understood source of the material has since been shown to be incorrect. The samples were collected from between depths of approximately 0.1 and 0.9 metres below the surface of the 'stockpile'.
 - Three (3) samples from the 'stockpile' material and one (1) from the underlying natural material were analysed.
- Logging of hand auger locations including description of samples for texture, colour, odour, moisture content. Logs are attached in Appendix D.
- Re-instatement of hand auger excavations.
- All selected soil samples were laboratory analysed for TRH, BTEXN, PAH and metals.

Sampling locations taken within Development site are shown on **Drawing 2**, **Appendix A** as are the location of photographs taken during the works. Test pit sampling locations are shown on **Drawing 1**, **Appendix A**. All photographs are attached in **Appendix E**.

No visual or olfactory contamination issues were observed during fieldwork.

No indications of anthropogenic waste, including asbestos containing materials, were observed during fieldwork.

Assessment of Development site was undertaken to a maximum depth of 3.2mbgs (BH109), however was generally around 1.0-2.0mbgs due to refusal against rock, as shown in the geotechnical bore logs (**Appendix D**). Surface and subsurface conditions during augering works indicated fill material was present in eleven (11) of the twenty (20) locations to a maximum depth of 2.4mbgs (BH109). Test pitting within the proposed internal road network area was undertaken to a maximum depth of 2.2mbgs (TP102), however was generally around 0.5-1.5mbgs due to refusal against rock (**Appendix D**). The environmental samples were generally collected from the surface material at each test pit location, with five (5) additional samples being collected from the road pavement material in these areas.

Groundwater was not encountered during the test pitting or augering works. Works undertaken for the geotechnical assessment (Ref [2]) have identified groundwater to be present at depths varying between 11.60 and 15.90mbgs. These depths are within the cored bedrock and are potentially considered to relate to water storage from drilling works and infiltration migrating vertically and becoming perched above the bedrock as opposed to a groundwater aguifer.

6 QUALITY ASSURANCE/QUALITY CONTROL

RCA has assessed the quality assurance and control in **Appendix C** and found it to be acceptable for the purpose of site assessment.

7 RESULTS

All soil results are compared to the relevant criteria (Ref [9]) in **Appendix F** as summarised below.

- BTEXN concentrations were not detected above the laboratory's detection limit in any
 of the samples analysed and are therefore considered to be below the relevant
 criteria (Ref [9]).
- TRH >C₁₆-C₃₄ and TRH >C₃₄-C₄₀ concentrations were not detected above the laboratory's detection limit in the majority of samples. Concentrations were measured in fourteen (14) of the forty eight (48) samples: these were below the relevant human health and ecological protection criteria (Ref [9]).
- Concentrations of PAH were not detected above the laboratory's detection limit or were detected at low concentrations below the relevant criteria (Ref [9]) with the exception of:
 - BH108A (0.1m) which reported concentrations of benzo(a) pyrene above the ecological criterion (Ref [9]). Refer to **Section 8** for discussion.
- Concentrations of metals were either not detected above the laboratory's detection limit or were detected at low concentrations below the relevant criteria (Ref [9]) for commercial site use.

The results were also compared to Tier 1 criteria of the relevant waste guidelines (Ref [10]) and are presented in **Appendix F**.

- All the samples were classified as general solid waste with the exception of:
 - BH108A (0.1m) which reported low concentrations of benzo(a) pyrene above the relevant criterion (Ref [10])

It is noted that a duplicate of RP103 (QA5) exhibited concentrations of benzo(a) pyrene above the relevant criterion (Ref [10]).

Refer to Section 8 for discussion.

Additional analysis was undertaken on BH108A to allow assessment against Tier 2 criteria (Ref [10]) and **Table 3** below summarises the reported results for benzo(a) pyrene.

Table 3 Total and leachable concentrations of benzo(a) pyrene – BH108A (0.1m)

	Tier 2 General Solid Waste Criteria (Ref [10])	Benzo(a) pyrene			
Leachable Concentrations	0.04	<0.001			
Total Concentration	10	2.9			

As such the sample from BH108A is classified as general solid waste in accordance with the guidelines (Ref [10]).

It is noted that further analysis of sample QA5 was not completed as the sample was taken in similar material composition to BH108A and the results of BH108A were considered to provide understanding of potential leaching properties. It is also noted that sample RP103 was below the relevant waste guidelines (Ref [10]).

8 SITE CONTAMINATION CHARACTERISATION

Sampling of soils from twenty (20) locations across the Development site and eighteen (18) locations along the proposed internal roads was undertaken to characterise and assess the extent of potential contamination impact, if any. The number of locations with the footprint of the Development site is just below the minimum twenty (21) locations recommended (Ref [11]) for a site of approximately 1ha in size as, at the time of sampling, BH110 had been withdrawn from the geotechnical sampling programme. While this bore was subsequently drilled RCA did not collect environmental samples based on the homogeneity of the works already completed, the proximity of BH102 and BH111b and the absence of indications of contamination at the site. It is not considered that the absence of an investigation location represents uncertainty in the characterisation of the site. It is noted that the sampling frequency meets the requested (in the tender documentation) density of 1/500m².

Nine (9) test pit locations and five (5) locations within road pavement material were taken along the proposed internal roadwork area. This represents a sample approximately every 250m and is considered to provide sufficient information to characterise the potential contamination in the fill and natural materials along the proposed road alignment.

Four (4) samples were collected from the 'stockpile' material located to the north of the HMRI carpark. This is considered to be in accordance with the recommended (Ref [9]) sampling density of 1/25m³ and is sufficient to characterise the material's potential contamination.

Identified contamination was limited to concentrations of benzo(a)pyrene in excess of the ecological criterion (Ref [9]) within the fill at BH108. This location was situated immediately adjacent a road (refer **Photograph 2**, **Appendix E**) and the inclusion of fragments of asphalt in the sample is considered to be the source of the PAH contamination. No other concentrations of PAH were detected at the site and as such RCA considers that the contamination is localised to this area and potentially the access road materials (including asphalt). The proposed development comprises a building over the majority of the site and as such the benzo(a)pyrene concentration at BH108 is not considered to pose a constraint to the development.

No contamination was identified within the material situated north of the HMRI carpark, noting that duplicate analysis has indicated some variability in the benzo(a)pyrene concentrations. It is considered that this material can be used, subject to geotechnical and aesthetic requirements, as fill at the site.

All samples analysed have been classified as general solid waste, noting that there was one concentration of benzo(a)pyrene which required testing in accordance with Tier 2 of the guidelines (Ref [10]) to achieve that classification. RCA notes that, based on the testing and the extent of investigation undertaken, the natural materials at site can be considered virgin excavated natural material (VENM). It is recommended that the earthworks balance be assessed prior to commencement of construction and if material requires removal from site, subject to geotechnical requirements, that VENM be preferentially removed from site to maximise resource recovery.

RCA does not consider that assessment of groundwater is required for the purpose of consideration of contamination however notes that assessment may be required if groundwater is to be extracted as part of construction or for use at the site.

RCA considers the site is suitable for construction and future commercial use and that any soil excavated as part of the construction, subject to the absence of anthropogenic materials (which is considered to be potentially present within the fill embankments) as well as geotechnical and aesthetic requirements, is suitable to be used at the site as fill. Based on the findings of this investigation, notification and subsequent regulation of the site under the Contaminated Land Management Act is not required.

RCA recommends construction be undertaken with the implementation of best practice dust, soil and water management measures and an unexpected finds protocol which allows for separation and assessment of anthropogenic waste or odorous material in the event that is identified. All material being removed from the site must be classified in accordance with NSW waste legislation: any stockpiles of VENM should be strictly managed to avoid contamination by building waste or other materials.

It is noted that two (2) stockpiles have been identified with the John Hunter site (refer **Drawing 1, Appendix A**) and require characterisation to assess suitability for use as part of the development, specifically as part of road construction. One stockpile, for which preliminary estimates are for greater than 2000m³ is that sourced from the re-surfacing of the internal road between Lookout Road and the bus turn around bay. The source of a second stockpile, estimated to be approximately 330m³, is unknown. This classification will be presented under a separate cover.

9 CONCLUSIONS

This report has presented the findings of a site contamination assessment and waste classification undertaken at the Development site for the John Hunter Health and Innovation Precinct and proposed internal road network.

The assessment followed on from a preliminary assessment (Ref [1]), which indicated a limited potential for contamination to be present at site from historical filling activities inappropriate waste disposal and use of asbestos containing materials. This assessment was undertaken in conjunction with a geotechnical assessment (Ref [2]) at the site.

The scope comprised intrusive assessment (drilling, test pitting and hand augering) across the entirety of the site to the depth of the underlying bedrock material. The contamination investigation mainly focused on the subsurface soil conditions observed within 2mbgs.

No indications of contamination or anthropogenic waste (including asbestos containing materials) were identified during the fieldworks. RCA analysed forty eight (48) samples for hydrocarbons and metals across the site to characterise the potential for contamination.

No contamination was identified in excess of human health or ecological criteria (Ref [9]) with the exception of benzo(a)pyrene concentrations in one (1) sample in excess of the ecological investigation level for commercial land use (Ref [9]). In the absence of sensitive ecological receptors at the site RCA considers that it is unlikely to pose a risk to the environment for the proposed use.

RCA considers that the site is suitable for the proposed use. Soil excavated as part of the construction process, subject to the absence of anthropogenic materials (which is considered to be potentially present within the fill embankments) as well as geotechnical and aesthetic requirements, is suitable for use as fill at the site.

All samples were classified as general solid waste in accordance with the guidelines (Ref [10]) for disposal at a licenced waste facility. Natural materials encountered onsite are considered to be able to be classified as VENM (Ref [10]) based on the fieldwork observations and sample results

RCA recommends industry best practice management measures be undertaken during construction with the implementation of best practice dust, soil and water management measures and an unexpected finds protocol which allows for separation and assessment of anthropogenic waste or odorous material in the event that is identified.

In addition to the findings of this report, two (2) stockpiles near the north western car park (refer **Drawing 1**, **Appendix A**) contain material from the previous road resurfacing project. These stockpiles will require additional assessment to determine suitability for reuse of the material on the site; this assessment will be provided under separate cover.

10 LIMITATIONS

This report has been prepared for Health Infrastructure in accordance with an agreement with RCA Australia (RCA). The services performed by RCA have been conducted in a manner consistent with that generally exercised by members of its profession and consulting practice.

This report has been prepared for the sole use of Health Infrastructure. The report may not contain sufficient information for purposes of other uses or for parties other than Health Infrastructure. This report shall only be presented in full and may not be used to support objectives other than those stated in the report without written permission from RCA Australia.

The information in this report is considered accurate at the date of issue with regard to the current conditions of the site. Conditions can vary across any site that cannot be explicitly defined by investigation.

Environmental conditions including contaminant concentrations can change in a limited period of time. This should be considered if the report is used following a significant period of time after the date of issue.

Yours faithfully

RCA AUSTRALIA

Zac Laughlan Environmental Engineer

Fiona Brooker Environmental Services Manger

REFERENCES

- [1] RCA Australia, *Preliminary Site (Contamination) Assessment, John Hunter Health And Innovation Precinct*, RCA ref:14399-203/1, November 2019.
- [2] RCA Australia, Geotechnical Investigation Report, John Hunter Health And Innovation Precinct, RCA ref:14399-207/1, December 2019.
- [3] RCA Australia, *Update of Asbestos Register, John Hunter Health And Innovation Precinct*, RCA ref:14399-209/0, November 2019
- [4] Newcastle Local Environment Plan 2012 under the Environmental Planning and Assessment Act 1979, current version 12 July 2019.
- [5] Coffey Geosciences Pty Ltd, Geotechnical Assessment, Newcastle Strategy John Hunter Hospital (Access) Redevelopment, 2002.
- [6] Aurecon, Newcastle Inner City Bypass Rankin Park to Jesmond Concept Design and Environmental Assessment, Geotechnical Interpretive Report, Ref 245321, revision 04, July 2016
- [7] RCA Australia, Geotechnical and Contamination Investigation Plan, John Hunter Health And Innovation Precinct, RCA ref:14399-204/0, September 2019.
- [8] RCA Australia, Desktop Geotechnical Geotechnical Assessment, John Hunter Health And Innovation Precinct, RCA ref:14399-201/0, September 2019.
- [9] NEPC, National Environment Protection (Assessment of Site Contamination) Measure, 1999 as amended 2013.
- [10] NSW EPA, Waste Classification Guidelines, Part 1; Classifying Waste, November 2014.
- [11] NSW EPA, Sampling Design Guidelines, September 1995.
- [12] CRC Care, Technical Report 10, Health screening levels for petroleum in soil and groundwater, September 2011.

[13] Standards Australia, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, AS 4482.1-2005.

GLOSSARY

95%UCL_{ave} A statistical calculation – 95% Upper Confidence Limit of the

arithmetic mean of the data set.

ASC NEPM National Environment Protection (Assessment of Site

Contamination) Measure.

EIL Ecological investigation level. Relates to soil concentrations which

may pose a risk to ecological health.

ESL Ecological screening level. Relates to vapour risk from petroleum

hydrocarbons which may pose a risk to ecological health.

HIL Health investigation level. Relates to soil concentrations which

HSL Health screening level. Relates to the vapour risk from petroleum

hydrocarbons which may pose a risk to human health in soil.

In-Situ In place, without excavation.

Interlaboratory A sample sent to two different laboratories for comparative

analysis.

Intralaboratory A sample split into two and sent blind to the sample laboratory for

comparative analysis.

ISL Investigation screening levels for soil. Comprised of HIL/EIL and

HSL/ESL

Leachate Fluid that has passed through a soil stratum, possibly collects

contaminants.

mg milligram, 1/1000 gram.

NEPC National Environment Protection Council.

NSW EPA NSW Environment Protection Authority – formerly a component of

DECC, DECCW, OEH but made a separate entity in 2011 to

regulates the contaminated land industry.

OEH NSW Office of Environment and Heritage.

QA Quality Assurance.

QC Quality Control.

RPD Relative Percentage Difference.

TCLP Toxicity characteristic leaching procedure. An analysis designed to

mimic the transfer of contaminants from soil into water.

Undertaken in acidic environment and used to determine impact in

landfill conditions.

VENM Virgin Excavated Natural Material

Weathering All physical and chemical changes produced by atmospheric

agents.

Chemical Compounds

BTEX Benzene, toluene, ethylbenzene, xylene.

PAH Polycyclic aromatic hydrocarbons. Multi-ring compounds found in

fuels, oils and creosote. These are also common combustion

products.

TPH Total petroleum hydrocarbons.

TRH Total recoverable hydrocarbons

Appendix A

Drawings

Appendix B

Screening Levels and Guidelines

NATIONAL ENVIRONMENT PROTECTION (ASSESSMENT OF SITE CONTAMINATION) MEASURE 1999 AS AMENDED 2013

Soil

The investigation and screening levels (ISL) utilised for the assessment of the soil on site were sourced from the National Environment Protection Measure for the Assessment of Site Contamination (ASC NEPM, Ref [9]). These ISL are not derived as acceptance criteria for contamination at a site, but as levels above which specific consideration of risk, based on the site use and potential exposure, is required. If a risk is determined as present, then remediation and/or management must be undertaken.

Assessment ISL are based on:

Human Health.

Intentionally conservative health investigation levels (HIL) have been derived for four (4) generic land use settings.

- HIL 'A' Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry). This category includes children's day care centres, preschools and primary schools.
- HIL 'B' Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high rise buildings and flats
- HIL 'C' Public open space such as parks, playgrounds, playing fields (e.g. ovals) secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves).
- HIL 'D' Commercial/industrial such as shops, offices, factories and industrial sites.

The exposure scenario for the derivation of the relevant land use setting is set out in the table below.

Health screening levels (HSL) have been determined for risks associated from vapour intrusion from petroleum¹ compound contamination for the same land use settings. These HSL are additionally based on the fraction of compound, the soil texture and the depth of the encountered soil.

Direct hydrocarbon contact criteria are not provided in the ASC NEPM (Ref [9]), however these are provided in CRC Care Technical Report 10 (Ref [12]) which is the source document for the HSL.

Ecological Health

These levels are considered to apply to soil within two (2) metres of the surface, the root zone and habitation zone of many species.

¹ Laboratory analysis of hydrocarbons is being reported as total recoverable hydrocarbons (TRH). This testing method includes all forms of hydrocarbons, not just petroleum hydrocarbons and therefore can be considered a conservative measure against the chosen TPH criteria. Further laboratory analysis using a silica gel clean up (TRH_{sg}) is considered to enable a better identification of the extent of petroleum based contamination.

Ecological investigation levels (EIL) have been determined for arsenic, copper, chromium III, DDT, naphthalene, nickel, lead and zinc in soil based on species sensitivity model and for three (3) generic land use settings:

- Areas of ecological significance for areas where the primary intention is for the conservation and protection of the natural environment. Protection level of 99%.
- Urban residential areas and public open space broadly equivalent to the HIL A, HIL B and HIL C land use settings. Protection level of 80%.
- Commercial and industrial land uses considered to be broadly equivalent to HIL D land use setting. Protection level of 60%.

Methodology for the derivation of EIL for other contaminants is available in the ASC NEPM (Ref [9]) and requires additional soil character data.

Ecological screening levels (ESL) have been determined for petroleum compound contamination. Due to limitations in the data only moderate reliability ESL have been determined for fractions <C₁₆, applied generically in fine and coarse grained soils. ESL for petroleum fractions > C₁₆, BTEX and naphthalene are consider low reliability.

Aesthetics

Aesthetic considerations operate separately to the HIL/HSL and EIL/ESL assessment. Issues to be considered include:

- Highly malodorous soils or extracted groundwater (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in soil or extracted groundwater, organosulfur compounds).
- Hydrocarbon sheen on surface water.
- Discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature.
- Large monolithic deposits of otherwise low-risk material, e.g. gypsum as powder or plasterboard, cement kiln dust.
- Presence of putrescible refuse including material that may generate hazardous levels of methane such as a deep-fill profile of green waste or large quantities of timber waste.
- Soils containing residue from animal burial (e.g. former abattoir sites).

Site assessment requires consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity. For example, higher expectations for soil quality would apply to residential properties with gardens compared with industrial settings.

Tier 1 assessment comprises the comparison of the soil data with the HIL/HSL and EIL/ESL. In the event that some concentrations are in excess of the relevant criteria, the summary statistics of the data set may be utilised for assessment purpose. Consideration of a range of statistics is recommended; at a minimum the 95%UCL_{ave} should be compared to the relevant criteria as long as:

No single value exceeds 250% of the relevant criterion.

• The standard deviation of the results for each analyte is less than 50% of the relevant criterion.

In addition to appropriate consideration and application of the HSL and ESL, there are a number of policy considerations which reflect the nature and properties of petroleum hydrocarbons:

- Formation of observable light non-aqueous phase liquids (LNAPL).
- Fire and explosive hazards.
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services by hydrocarbons.

The ASC NEPM (Ref [9]) has therefore provided management limits, the application of which will require consideration of site-specific factors such as the depth of building basements and services and depth to groundwater, to determine the maximum depth to which the limits should apply. The management limits may have less relevance at operating industrial sites (including mine sites) which have no or limited sensitive receptors in the area of potential impact. When the management limits are exceeded, further site-specific assessment and management may enable any identified risk to be addressed.

The presence of site hydrocarbon contamination at the levels of the management limits does not imply that there is no need for administrative notification or controls in accordance with jurisdiction requirements.

The following figure has been taken from the ASC NEPM (Ref [9]) to illustrate the assessment methodology in regards to petroleum contamination.

Figure 1 Flowchart for the Tier 1 human and ecological risk assessment of petroleum hydrocarbon contamination – application of HSL and ESL and consideration of management limits

Commercial/Industrial Premises

Summary of	Abbassista	1124	Parameters						
Exposure Pathways	Abbreviations	Units	Adult						
Body weight	BW _A or BW _C	kg	70						
Exposure duration	ED _A or ED _C	years	30						
Exposure frequency	EF	days	240						
Soil/dust ingestion rate ¹	IR _{SA} or IR _{SC}	mg/day	25 ⁵						
Soil/dust to skin adherence factor	AF	mg/cm²/day	0.5						
Skin surface area	SA _A or SA _C	cm ²	20 000						
Fraction of skin exposed	Fs	%	19						
Dermal absorption factor	DAF	%	Chemical specific values applied						
Time spent indoors on site each day	ETi	hours	8						
Time spent outdoors on site each day	ET _o	hours	1						
Home-grown fraction of vegetables consumed	F _{HG}	%	0						
Vegetable & fruit consumption rate	C _y (veg and fruit)	g/day	-						
Averaging time for carcinogens ('lifetime')	AT _{NT}	years	70						
Dust lung retention factor	RF	%	37.5						

Soil ingestion rates for the HIL D scenario are based on the default soil/dust ingestion rates, corrected for an 8 hr/day daily exposure duration (50% of total waking hours)

NSW EPA 2014, WASTE CLASSIFICATION GUIDELINES

The waste classification guidelines (Ref [10]) are designed to ensure waste streams are managed appropriately and in accordance with the Protection of the Environment Operations Act 1997 (the POEO Act) and its associated regulations. The guidelines classify waste into groups which pose similar risks to the environment and human health; and facilitate their management and appropriate disposal.

Six waste classes are used:

- Special waste:
 - Clinical or related waste, asbestos waste, waste tyres.
- Liquid waste:
 - As defined by angle of repose, temperature at which it is free flowing and physical composition.
- Hazardous waste.
- Restricted solid waste.
- General solid waste (putrescible).
- General solid waste (non-putrescible).

Classification begins with determination of whether the waste is 'special waste'. If not determination of whether material is classified as liquid waste is then required. Material which is not liquid waste, or is special waste due to asbestos content, must be compared to pre-classification definitions. Without pre-classification, the potential for hazardous characteristics (such as explosives, gases, flammable materials, oxidising, toxic and corrosive substances) must be established. If material cannot be classified as hazardous, assessment by chemical analysis must be undertaken. Without assessment, material must be managed as if hazardous waste.

Chemical classification is two tiered. The first set of criteria is based on total contaminant concentrations, whereas the second set of criteria is based on a leachable (TCLP) concentration and a total contaminant concentration. The total concentrations criteria are generally higher in conjunction with TCLP testing than if it was not undertaken.

Appendix C

Quality Assurance Review and Laboratory Report Sheets

A total of five (5) soil duplicate samples were submitted blind to the laboratory for analysis with the samples, comprising one (1) interlaboratory and four (4) intralaboratory duplicates.

- All five (5) duplicate samples were analysed for TRH, BTEX, PAH and metals. This
 represents a percentage slightly in excess of 10%, which is in accordance with the
 frequency recommended by the Australian Standard AS 4482.1 (Ref [13]) and RCA
 protocol although the split between inter- and intralaboratory duplicates was unequal.
 This is not considered to represent uncertainty in the results.
- It is noted that the labels QA1 and QA2 were used twice in error: as the samples were
 collected on different days, and the sample labels included the sample date, RCA
 was able to distinguish which sample was which and there is no uncertainty with
 regards to the results.

Two (2) trip blanks and two (2) trip spikes were submitted. This submission is in accordance with the frequency recommended by the Australian Standard AS 4482.1 (Ref [13]) and RCA protocol.

RCA omitted the field blank due to the low potential for cross contamination from field conditions and the equipment wash due to the low potential for cross contamination from the sampling equipment.

Results, as shown further in this **Appendix**, indicate a total of two (2) soil analyses which report RPD in excess of the acceptance criteria:

- HA5B/QA1² Reported an elevated RPD for arsenic. This sample is described as topsoil comprising silty sand and organic material and it is therefore considered that sample heterogeneity is the likely cause of the high RPD. There is some uncertainty associated with this sample, however the sample reported the highest concentration and therefore the uncertainty is considered to be conservative. It is also noted that both results were well below the relevant criteria and therefore the uncertainty is not considered to be significant.
- RP103/QA5 Reported elevated RPD for chrysene, indeno(1,2,3-c,d)pyrene and benzo(g,h,i)perylene. This sample is described as fill material (road pavement) with silt, sand and large portions of gravel, therefore it is considered that sample heterogeneity is the likely cause of the high RPD. There is some uncertainty associated with this sample and whilst the duplicate reported the highest concentration, all results were well below the relevant criteria and therefore the uncertainty is not considered to be significant.

Results show the trip blank samples with non-detectable concentrations of analytes and as such it is not considered that there was potential cross contamination during the transport of samples.

Results show the trip spike and trip spike control reported RPD acceptable for intralaboratory duplicates and therefore it is considered that there has been negligible loss of volatile compounds during the trip.

² QA1 sample taken while conducting environmental hand augers on 2 October 2019

ALS was chosen as the primary laboratory and EnviroLab was chosen as the secondary laboratory.

All laboratories used for analysis are NATA accredited and are experienced in the analytical requirements for potentially contaminated soil.

ALS undertook internal quality assurance testing. Results are contained within the laboratory report sheets, included in this **Appendix**. **Table 4** presents a summary of their review.

Table 4 Internal Quality Assurance Review

	Number Samples (including QA)	Laboratory Blanks			
Requiren	nent	10%	5%	One every batch	One every batch
Soil					
Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	52	5 (4)	3 (1)	4	4
Mercury	52	5 (2)	3 (1)	4	4
TRH C ₆ -C ₁₀	54	6 (1)	3 (1)	4	4
TRH >C ₁₀ -C ₄₀	52	5 (5)	2 (3)	5	5
BTEX	54	6 (1)	3 (1)	4	4
PAH	52	5 (4)	2 (3)	6	6

Numbers in brackets refer the tests undertaken on samples not from this project but within the same laboratory batch. The number of QA testing done is the sum of the numbers inside and outside of the brackets.

Examination of the above table reveals that ALS have undertaken laboratory quality assurance testing in accordance with the ASC NEPM (Ref [9]).

- Recoveries of Surrogates were within acceptance criteria of 70-130% with the exception of:
 - ES1932342
- 1.2 Dichloroethae-D4 (TPH (V)/BTEX Surrogate) in sample HA4 which reported a recovery of 134%. This is considered a minor, conservative non-compliance and therefore uncertainty in not considered significant.
- Holding Times were within laboratory specified time frames.
- Recoveries of laboratory control samples were within the acceptance criteria of 70-130%.
- Recoveries of Spikes were within acceptance criteria of 70-130%.
- No Laboratory Blank result was detected above the practical quantification limit (PQL).

It is therefore considered that the data obtained from this testing is generally accurate and reliable and is adequate to characterise the site.

Quality Assurance Type			Intralaborato	ry Duplicate		Intralaborate	ory Duplicate		Intralaborato	ry Duplicate		Intralaborat	tory Duplicate		Interlaboratory	/ Duplicate		Trip	Spike		Trip S	Spike		Trip Blank	Trip Blank
Sample Identification	Primary	Secondary	BH102A	QA1	†	BH104A	QA2	1	HA5B	QA1		HA10A	QA2		RP103	QA5	ŀ		TSC1		TS2	•		TB1	TB2
Sample Depth (m)	PQL	PQL	0.		†	0		1	0.		1).1		0.1		ŀ		IA		N.				
Date		. ~-	24/9		1		9/19	1	2/10		1		10/19		9/10/1		F		0/19		2/10			2/10/19	9/10/19
Date			2.70	.,	1			-	2,.0		1						H	.,	0, 10			,		2,10,10	0/10/10
Sample Profile			FILL, Silty S medium graine trace ro	ed, brown, with	RPD %	fine-medium of trace of fine-i	H, Silty SAND, grained, brown, medium grade avel	RPD %	CLAY, pale red/orange		RPD %	Sandy CLAY gravel a	, grey, trace of nd rootlets	RPD %	FILL, silty sandy fine to medium s grey, fine to med sand	subangular, dium grained	RPD %	Sa	and	RPD %	Sa	nd	RPD %	Sand	Sand
Sample Purpose			Investi	gation		Invest	igation		Investiç	gation		Inves	tigation		Investigation Pro Alignme	-		Quality A	Assurance		Quality As	ssurance		Quality Assurance	Quality Assurance
Sample collected by			RCA	-RC		RCA	- RC		RCA	- ZL		RC	A - ZL		RCA - I	BG		Labo	oratory		Labor	atory		Laboratory	Laboratory
Benzene, Toluene, Ethylbenzene,	Xylene (B																								
Benzene	0.5	0.2	<u>0.1</u>	<u>0.1</u>	0.0	<u>0.1</u>	<u>0.1</u>	0.0	<u>0.1</u>	<u>0.1</u>	0.0	<u>0.1</u>	<u>0.1</u>	0.0	<u>0.1</u>	<u>0.1</u>	0.0	<u>0.1</u>	<u>0.1</u>	0.0	<u>0.1</u>	<u>0.1</u>	0.0	<0.2	<0.2
Toluene	0.5	0.5	0.25	0.25	0.0	<u>0.25</u>	<u>0.25</u>	0.0	0.25	<u>0.25</u>	0.0	0.25	<u>0.25</u>	0.0	<u>0.25</u>	<u>0.25</u>	0.0	24.1	25.4	5.3	12.2	16.6	30.6	<0.5	<0.5
Ethylbenzene	0.5	1	0.5	<u>0.25</u>	66.7	<u>0.25</u>	<u>0.25</u>	0.0	<u>0.25</u>	<u>0.25</u>	0.0	<u>0.25</u>	<u>0.25</u>	0.0	<u>0.25</u>	<u>0.5</u>	66.7	4.4	4.5	2.2	2.4	3.2	28.6	<0.5	<0.5
meta- and para-Xylene	0.5	2	0.25	<u>0.25</u>	0.0	0.25	<u>0.25</u>	0.0	0.25	<u>0.25</u>	0.0	0.25	0.25	0.0	<u>0.25</u>	<u>1</u>	120.0	24.2	24.5	1.2	12.2	16.2	28.2	<0.5	<0.5
ortho-Xylene	0.5	1	0.25	<u>0.25</u>	0.0	0.25	<u>0.25</u>	0.0	0.25	<u>0.25</u>	0.0	<u>0.25</u>	<u>0.25</u>	0.0	<u>0.25</u>	<u>0.5</u>	66.7	9.5	9.8	3.1	5.2	6.9	28.1	<0.5	<0.5
Total Xylenes	1	3	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	0.5	1.5	100.0	33.7	34.3	1.8	17.4	23.1	28.1		
Polycyclic Aromatic Hydrocarbor	ns (PAH)										,					,				•					
Naphthalene	1	1	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0							<1	<1
Total Recoverable Hydrocarbons	(TRH)	1		•	1	1		1			1	,		1		1	_			1					
TRH C ₆ -C ₁₀	10	25	<u>5</u>	<u>5</u>	0.0	<u>5</u>	<u>5</u>	0.0	<u>5</u>	<u>5</u>	0.0	<u>5</u>	<u>5</u>	0.0	<u>5</u>	<u>12.5</u>	85.7	115	120	4.3	72	102	34.5	<10	<10
TRH >C ₁₀ -C ₁₆	50	50	<u>25</u>	<u>25</u>	0.0	<u>25</u>	<u>25</u>	0.0	<u>25</u>	<u>25</u>	0.0	<u>25</u>	<u>25</u>	0.0	<u>25</u>	<u>25</u>	0.0	-			-		-	-	
TRH >C ₁₆ -C ₃₄	100	100	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	140	<u>50</u>	94.7	<u>50</u>	<u>50</u>	0.0								
TRH >C ₃₄ -C ₄₀	100	100	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0								
F1	10	25	5	5	0.0	5	5	0.0	5	5	0.0	5	5	0.0	5	12.5	85.7								
F2	50	50	25	25	0.0	25	<u>25</u>	0.0	<u>25</u>	25	0.0	25	25	0.0	<u>25</u>	25	0.0								
Polycyclic Aromatic Hydrocarbon							_	1 1		_										l		<u> </u>			
Naphthalene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.5	66.7								
Acenaphthylene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.5	66.7								
Acenaphthene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.5	66.7								
Fluorene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.5	66.7								
Phenanthrene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.3	18.2								
Anthracene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.1	85.7								
Fluoranthene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	1.3	1.4	7.4								
Pyrene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	1.2	1.3	8.0								
Benz(a)anthracene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.5	0.9	57.1								
Chrysene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.6	82.4								
Benzo(b)&(j)fluoranthene	0.5	0.2	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.8	1	4.9	-			-		-	-	
Benzo(k)fluoranthene	0.5	0.2	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	<u>0.25</u>	I	4.9						-		
Benzo(a) pyrene	0.5	0.05	0.25	0.25	0.0	<u>0.25</u>	<u>0.25</u>	0.0	0.25	0.25	0.0	0.25	<u>0.25</u>	0.0	0.7	1	35.3	-				-			
Indeno(1,2,3-c,d)pyrene	0.5	0.1	0.25	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	<u>0.25</u>	0.0	0.25	0.6	82.4								
Dibenz(a,h)anthracene	0.5	0.1	0.25	0.25	0.0	<u>0.25</u>	0.25	0.0	0.25	0.25	0.0	0.25	0.25	0.0	0.25	<u>0.5</u>	66.7								
Benzo(g,h,i)perylene	0.5	0.1	0.25	0.25	0.0	<u>0.25</u>	0.25	0.0	<u>0.25</u>	0.25	0.0	0.25	0.25	0.0	0.25	0.7	94.7								
Carcinogenic PAH (B(a)P equivalent)	1.21	0.192	<u>0.605</u>	<u>0.605</u>	0.0	<u>0.605</u>	<u>0.605</u>	0.0	<u>0.605</u>	<u>0.605</u>	0.0	<u>0.605</u>	<u>0.605</u>	0.0	1.135	1.763	43.3								
Sum of reported PAH	8	1.55	<u>4</u>	<u>4</u>	0.0	<u>4</u>	<u>4</u>	0.0	<u>4</u>	<u>4</u>	0.0	<u>4</u>	<u>4</u>	0.0	7.25	10.4	35.7								
Metals						,																			
Arsenic	5	4	7	7	0.0	8	7	13.3	11	<u>2.5</u>	125.9	5	<u>2.5</u>	66.7	<u>2.5</u>	<u>2</u>	22.2								
Cadmium	1	0.4	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.5</u>	0.0	<u>0.5</u>	<u>0.2</u>	85.7								
Chromium	2	1	13	14	7.4	6	5	18.2	8	6	28.6	4	4	0.0	22	26	16.7								
Copper	5	1	20	18	10.5	11	11	0.0	<u>2.5</u>	<u>2.5</u>	0.0	10	8	22.2	9	10	10.5								
Mercury	0.1	0.1	0.05	<u>0.05</u>	0.0	<u>0.05</u>	<u>0.05</u>	0.0	<u>0.05</u>	<u>0.05</u>	0.0	<u>0.05</u>	0.05	0.0	0.05	<u>0.05</u>	0.0								
Lead	5	1	20	18	10.5	14	12	15.4	9	8	11.8	23	20	14.0	16	11	37.0						-		
Nickel	2	1	5	5	0.0	4	3	28.6	1	1	0.0	2	1	66.7	6	6	0.0								
Zinc	5	1	73	71	2.8	35	32	9.0	<u>2.5</u>	<u>2.5</u>	0.0	45	38	16.9	64	47	30.6								
All units in mg/kg			BOLD identifie	s where RPD	results																	E	BOLD iden	tified where b	olanks >PQL

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL intralaboratory interlaboratory of all components is summed and may be different from that presented by

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

>60 where sample results are >10 x PQL >75 >85 where sample results are > 5 to ≤10 x PQL where sample results are >2 to ≤5 x PQL where sample results are ≤2 x PQL AD>2.5 * PQL

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320

Prepared by: ZL Checked by: FB

RCA Australia. AWS-TEM-018/17

CERTIFICATE OF ANALYSIS

Work Order : ES1932342 Page : 1 of 28

Amendment : 1

Client ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER Contact

Address : P O BOX 175

CARRINGTON NSW. AUSTRALIA 2294

Telephone : +61 02 4902 9200

Project : 14399

Order number

C-O-C number

Sampler : ZAC LAUGHLAN

Site

Quote number : SYBQ/400/18

No. of samples received : 41 No. of samples analysed : 41

Laboratory : Environmental Division Sydney

: 05-Oct-2019

: Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 03-Oct-2019 13:16 Date Analysis Commenced

Issue Date · 28-Oct-2019 17:41

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Rassem Ayoubi	Senior Organic Chemist	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

Page : 2 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project · 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075(SIM): LOR has been raised due to high moisture content.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: The trip spike and its control have been analysed for volatile TPH and BTEX only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.

Page : 3 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 4 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

5 of 28 ES1932342 Amendment 1 Work Order

: ROBERT CARR & ASSOCIATES P/L Client

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID			BH102A	BH102C	BH103A	BH103C
	Cli	ent sampli	ng date / time	02-Oct-2019 00:00	24-Sep-2019 00:00	24-Sep-2019 00:00	25-Sep-2019 00:00	25-Sep-2019 00:00
Compound	CAS Number	Number LOR Unit		ES1932342-001	ES1932342-002	ES1932342-003	ES1932342-004	ES1932342-005
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates	- Continued							
4-Bromofluorobenzene	460-00-4	0.2	%	86.3	121	104	78.9	87.0

Page : 6 of 28

Work Order · ES1932342 Amendment 1

EP080/071: Total Petroleum Hydrocarbons

10

mg/kg

C6 - C9 Fraction

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

<10

<10

<10

<10

<10

Page : 7 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

: 8 of 28 : ES1932342 Amendment 1 Work Order

: ROBERT CARR & ASSOCIATES P/L Client

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			BH104A	BH105A	BH105C	BH106A	BH107A
	Client sampling date / time					26-Sep-2019 00:00	02-Oct-2019 00:00	02-Oct-2019 00:00
Compound	CAS Number LOR Unit		ES1932342-006	ES1932342-007	ES1932342-008	ES1932342-009	ES1932342-010	
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - Co	ntinued							
4-Bromofluorobenzene	460-00-4	0.2	%	108	93.5	91.2	107	82.4

Page : 9 of 28

Work Order · ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 10 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

: 11 of 28 : ES1932342 Amendment 1 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

: 14399 Project

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID			BH109A	BH109C	BH109D	QA1
	ent sampli	ng date / time	02-Oct-2019 00:00	01-Oct-2019 00:00	01-Oct-2019 00:00	01-Oct-2019 00:00	24-Sep-2019 00:00	
Compound	CAS Number LOR Unit		ES1932342-011	ES1932342-012	ES1932342-013	ES1932342-014	ES1932342-015	
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - C	ontinued							
4-Bromofluorobenzene	460-00-4	0.2	%	100	100	89.5	88.9	97.6

Page : 12 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 13 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

: 14 of 28 : ES1932342 Amendment 1 Work Order

: ROBERT CARR & ASSOCIATES P/L Client

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			QA2	HA1A	HA2A	НАЗА	НА3В
	Client sampling date / time					02-Oct-2019 00:00	02-Oct-2019 00:00	02-Oct-2019 00:00
Compound	CAS Number LOR Unit		ES1932342-016	ES1932342-017	ES1932342-018	ES1932342-019	ES1932342-020	
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - Co	ontinued							
4-Bromofluorobenzene	460-00-4	0.2	%	87.8	90.4	105	88.4	83.7

Page : 15 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 16 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 17 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 18 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 19 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

20 of 28 ES1932342 Amendment 1 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			HA8A	HA8B	НА9А	HA10A	HA10B
	ent samplii	ng date / time	02-Oct-2019 00:00					
Compound	CAS Number LOR Unit		ES1932342-026	ES1932342-027	ES1932342-028	ES1932342-029	ES1932342-030	
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - Co	ntinued							
4-Bromofluorobenzene	460-00-4	0.2	%	123	115	119	123	124

Page : 21 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 22 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

23 of 28 ES1932342 Amendment 1 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID			HA11B	QA1	QA2	SP1A
	ent sampli	ng date / time	02-Oct-2019 00:00					
Compound	CAS Number	CAS Number LOR Unit		ES1932342-031	ES1932342-032	ES1932342-033	ES1932342-034	ES1932342-035
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - 0	Continued							
4-Bromofluorobenzene	460-00-4	0.2	%	127	118	122	126	108

Page : 24 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 25 of 28

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

26 of 28 ES1932342 Amendment 1 Work Order

: ROBERT CARR & ASSOCIATES P/L Client

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	SP1B	SP2A	SP2B	TB1	TS1
	Cli	ent sampli	ing date / time	02-Oct-2019 00:00	02-Oct-2019 00:00	02-Oct-2019 00:00	02-Oct-2019 00:00	01-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	ES1932342-036	ES1932342-037	ES1932342-038	ES1932342-039	ES1932342-040
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - 0	ontinued							
4-Bromofluorobenzene	460-00-4	0.2	%	110	116	121	116	121

27 of 28 ES1932342 Amendment 1 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TSC1	 	
	Cli	ent sampli	ng date / time	01-Oct-2019 00:00	 	
Compound	CAS Number	LOR	Unit	ES1932342-041	 	
				Result	 	
EP080/071: Total Petroleum Hydro	carbons					
C6 - C9 Fraction		10	mg/kg	99	 	
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fraction	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	120	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	56	 	
(F1)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	25.4	 	
Ethylbenzene	100-41-4	0.5	mg/kg	4.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	24.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	9.8	 	
^ Sum of BTEX		0.2	mg/kg	64.2	 	
^ Total Xylenes		0.5	mg/kg	34.3	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	99.7	 	
Toluene-D8	2037-26-5	0.2	%	111	 	
4-Bromofluorobenzene	460-00-4	0.2	%	116	 	

28 of 28 ES1932342 Amendment 1 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

: 14399 Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order : **ES1932342** Page : 1 of 17

Amendment : 1

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Customer Services ES

Address : P O BOX 175 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 4902 9200 Telephone : +61-2-8784 8555

Project: 14399Date Samples Received: 03-Oct-2019Order number: ----Date Analysis Commenced: 05-Oct-2019C-O-C number----Issue Date: 28-Oct-2019

Sampler · ZAC LAUGHLAN

Site · ----

Quote number : SYBQ/400/18

No. of samples analysed : 41

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

• Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: 41

This Quality Control Report contains the following information:

Signatories

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Rassem Ayoubi	Senior Organic Chemist	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Page : 2 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2627463)							
ES1932342-001	BH101A	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	4	4	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	7	6	17.3	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	8	7	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	12	11	10.3	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	23	21	9.24	No Limit
ES1932342-011	BH108A	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	87	82	6.02	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	11	13	20.1	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	50	57	12.6	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	78	80	2.24	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	334	319	4.62	0% - 20%
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2627465)							
ES1932342-021	HA4A	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	4	3	26.9	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	13	13	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	21	18	11.8	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	32	30	7.32	No Limit
ES1932342-031	HA11A	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	8	8	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.00	No Limit

Page : 3 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	otal Metals by ICP-AES	(QC Lot: 2627465) - continued							
ES1932342-031	HA11A	EG005T: Arsenic	7440-38-2	5	mg/kg	8	8	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	35	38	8.37	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	25	28	11.8	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	70	76	6.96	0% - 50%
EA055: Moisture C	ontent (Dried @ 105-11	10°C) (QC Lot: 2627467)							
ES1932342-003	BH102C	EA055: Moisture Content		0.1	%	16.4	19.4	16.9	0% - 50%
ES1932342-014	BH109D	EA055: Moisture Content		0.1	%	23.7	23.8	0.00	0% - 20%
EA055: Moisture C	ontent (Dried @ 105-11	10°C) (QC Lot: 2627468)							
ES1932342-023	HA5B	EA055: Moisture Content		0.1	%	18.0	17.4	3.04	0% - 50%
ES1932342-034	QA2	EA055: Moisture Content		0.1	%	9.1	8.8	3.24	No Limit
	overable Mercury by F	FIMS (QC Lot: 2627464)							1
ES1932342-001	BH101A	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1932342-011	BH108A	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.00	No Limit
		FIMS (QC Lot: 2627466)			3 3				
ES1932342-021	HA4A	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1932342-031	HA11A	EG0351: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		rocarbons (QC Lot: 2624365)	1400 01 0	0.1	mg/kg	10.1	10.1	0.00	TVO EIITIIC
` ' '			04.00.0	0.5		-0.5	-0.5	0.00	NI- Liit
ES1931452-005	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5 <0.5	0.00	No Limit No Limit
		EP075(SIM): Acenaphthylene	208-96-8 83-32-9		mg/kg	<0.5			
		EP075(SIM): Acenaphthene	86-73-7	0.5	mg/kg	<0.5 <0.5	<0.5 <0.5	0.00	No Limit No Limit
		EP075(SIM): Fluorene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	\(\cdot\)	0.00	NO LITTIL
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		() () ()	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.0	1119/119	-0.0	-0.0	0.00	140 Lilling
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1932515-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	,		208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
l		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	NO LIM

Page : 4 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

P075(SIM)B: Polynu	Client sample ID clear Aromatic Hydrod Anonymous	Method: Compound carbons (QC Lot: 2624365) - continued	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
<u> </u>		carbons (QC Lot: 2624365) - continued				Original recount	Duplicate Result	IN D (70)	Recovery Linius (%
S1932515-001	Anonymous								
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons		0.0		0.0	0.0	0.00	
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P075(SIM)B: Polynu	clear Aromatic Hydro	carbons (QC Lot: 2624431)			0 0				
	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Diberiz(a:n)antinacene EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.n.i)peryiene EP075(SIM): Sum of polycyclic aromatic	131-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons		0.0	9/1.9	-0.0	.5.5	0.00	140 Ellillit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page : 5 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2625701) - continued							
ES1932342-001	BH101A	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1932342-016	QA2	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Biberiz(a.ri)aritiriacerie EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Berizotg:in:inperyierre EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
				0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.0	mg/kg	٧٠.٥	٧٠.٥	0.00	INO LIIIII

Page : 6 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP075(SIM)B: Polyn	uclear Aromatic Hydroc	arbons (QC Lot: 2625711)									
ES1932342-026	HA8A	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		, , , , ,	205-82-3								
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		hydrocarbons									
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
ES1932342-036	SP1B	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			205-82-3								
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
	1	Li 0/3(31111). Delizo(a)pyrelie 12Q (2010)		0.0	1119/119	٠٠.٥	-0.0	0.00	140 Entit		

Page : 7 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total P	etroleum Hydrocarbor	ns (QC Lot: 2624364)							
ES1931452-005	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1932515-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbor	ns (QC Lot: 2624430)							
ES1932111-003	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1932297-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbor	ns (QC Lot: 2624437)							
ES1932342-002	BH102A	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbor	ns (QC Lot: 2624688)							
ES1932342-001	BH101A	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1932342-013	BH109C	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
FP080/071: Total P	etroleum Hydrocarbor	111 11 11 111			0 0				
ES1932342-024	HA6A	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1932342-034	QA2	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
	etroleum Hydrocarbor				99			0.00	
ES1932342-001	BH101A			100	mg/kg	<100	<100	0.00	No Limit
L31932342-001	BITIOTA	EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1932342-016	QA2	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
201002012 010	Q/ L	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ED080/071: Total D	etroleum Hydrocarbor				99			0.00	
ES1932342-026	HA8A			100	mg/kg	<100	<100	0.00	No Limit
E31932342-020	ПАОА	EP071: C15 - C28 Fraction		100		<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg mg/kg	<50	<50	0.00	No Limit
ES1932342-036	SP1B	EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
LO 1902042-000	OF ID	EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction		100	mg/kg	110	120	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ED080/074: Total D	locovorablo Hydrogerb				9/1/9		.00	0.00	110 Lilling
ES1931452-005		ons - NEPM 2013 Fractions (QC Lot: 2624364)		100	ma/ka	~100	~100	0.00	No 1 imit
E3 193 1402-000	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100 <100	<100 <100	0.00	No Limit No Limit
		EP071: >C34 - C40 Fraction		50	mg/kg	<100 <50	<100 <50	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	\50	\00	0.00	INO LIITIIL

Page : 8 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2624364) - continued										
ES1932515-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2624430)										
ES1932111-003	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
ES1932297-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2624437)										
ES1932342-002	BH102A	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2624688)										
ES1932342-001	BH101A	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
ES1932342-013	BH109C	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2624689)										
ES1932342-024	HA6A	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
ES1932342-034	QA2	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2625702)										
ES1932342-001	BH101A	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
ES1932342-016	QA2	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2625710)										
ES1932342-026	HA8A	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
ES1932342-036	SP1B	EP071: >C16 - C34 Fraction		100	mg/kg	100	110	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	160	170	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
EP080: BTEXN (QC	Lot: 2624437)											
ES1932342-002	BH102A	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit			
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	0.5	0.6	0.00	No Limit			
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
			106-42-3									
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			

Page : 9 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL	OIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)				
EP080: BTEXN (QC	Lot: 2624437) - continued												
ES1932342-002	BH102A	EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				
EP080: BTEXN (QC	Lot: 2624688)												
ES1932342-001	BH101A	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit				
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
			106-42-3										
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				
ES1932342-013 BH1	BH109C	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit				
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
			106-42-3										
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				
EP080: BTEXN (QC	Lot: 2624689)												
ES1932342-024	HA6A	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit				
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
			106-42-3										
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				
ES1932342-034	QA2	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit				
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
			106-42-3										
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				

Page : 10 of 17

Work Order : ES1932342 Amendment 1

Client ROBERT CARR & ASSOCIATES P/L

Project : 14399

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 262746	63)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	101	86.0	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	98.6	83.0	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	91.7	76.0	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	98.7	86.0	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	100	80.0	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	102	87.0	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	103	80.0	122
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 262746	65)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	100	86.0	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	101	83.0	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	94.0	76.0	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	104	86.0	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	99.2	80.0	114
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	104	87.0	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	106	80.0	122
EG035T: Total Recoverable Mercury by FIMS (QCLot: 26:	27464)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	74.4	70.0	105
EG035T: Total Recoverable Mercury by FIMS (QCLot: 26								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	77.5	70.0	105
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(QCLo	ot: 2624365)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	92.6	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	92.5	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	94.2	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	92.8	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	95.3	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	91.3	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	92.1	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	91.3	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	91.7	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	91.9	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	88.5	68.0	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	93.1	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	93.0	70.0	126

Page : 11 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 2624365) -	continued						
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	6 mg/kg	88.6	61.0	121
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	6 mg/kg	83.9	62.0	118
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	6 mg/kg	88.2	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 2624431)							
EP075(SIM): Naphthalene 91-20-3	0.5	mg/kg	<0.5	6 mg/kg	90.2	77.0	125
EP075(SIM): Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	6 mg/kg	91.5	72.0	124
EP075(SIM): Acenaphthene 83-32-9	0.5	mg/kg	<0.5	6 mg/kg	89.2	73.0	127
EP075(SIM): Fluorene 86-73-7	0.5	mg/kg	<0.5	6 mg/kg	90.8	72.0	126
EP075(SIM): Phenanthrene 85-01-8	0.5	mg/kg	<0.5	6 mg/kg	96.6	75.0	127
EP075(SIM): Anthracene 120-12-7	0.5	mg/kg	<0.5	6 mg/kg	92.3	77.0	127
EP075(SIM): Fluoranthene 206-44-0	0.5	mg/kg	<0.5	6 mg/kg	89.5	73.0	127
EP075(SIM): Pyrene 129-00-0	0.5	mg/kg	<0.5	6 mg/kg	94.2	74.0	128
EP075(SIM): Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	6 mg/kg	93.8	69.0	123
EP075(SIM): Chrysene 218-01-9	0.5	mg/kg	<0.5	6 mg/kg	89.4	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2	0.5	mg/kg	<0.5	6 mg/kg	91.6	68.0	116
205-82-3							
EP075(SIM): Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	6 mg/kg	94.8	74.0	126
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	6 mg/kg	98.2	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	6 mg/kg	96.9	61.0	121
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	6 mg/kg	91.8	62.0	118
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	6 mg/kg	99.3	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 2625701)							
EP075(SIM): Naphthalene 91-20-3	0.5	mg/kg	<0.5	6 mg/kg	111	77.0	125
EP075(SIM): Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	6 mg/kg	90.9	72.0	124
EP075(SIM): Acenaphthene 83-32-9	0.5	mg/kg	<0.5	6 mg/kg	98.0	73.0	127
EP075(SIM): Fluorene 86-73-7	0.5	mg/kg	<0.5	6 mg/kg	98.6	72.0	126
EP075(SIM): Phenanthrene 85-01-8	0.5	mg/kg	<0.5	6 mg/kg	101	75.0	127
EP075(SIM): Anthracene 120-12-7	0.5	mg/kg	<0.5	6 mg/kg	104	77.0	127
EP075(SIM): Fluoranthene 206-44-0	0.5	mg/kg	<0.5	6 mg/kg	113	73.0	127
EP075(SIM): Pyrene 129-00-0	0.5	mg/kg	<0.5	6 mg/kg	111	74.0	128
EP075(SIM): Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	6 mg/kg	94.6	69.0	123
EP075(SIM): Chrysene 218-01-9	0.5	mg/kg	<0.5	6 mg/kg	104	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2	0.5	mg/kg	<0.5	6 mg/kg	77.8	68.0	116
205-82-3							
EP075(SIM): Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	6 mg/kg	91.0	74.0	126
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	6 mg/kg	102	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	6 mg/kg	107	61.0	121
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	6 mg/kg	99.4	62.0	118
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	6 mg/kg	118	63.0	121

Page : 12 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q0	CLot: 2625711)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	98.8	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	95.4	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	93.0	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	98.4	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	95.9	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	99.0	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	94.8	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	97.1	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	97.2	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	91.5	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	92.3	68.0	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	90.8	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	97.0	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	83.7	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	86.8	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	86.2	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262	24364)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	88.1	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	88.3	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	97.7	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262	24430)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	91.3	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	94.3	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	89.1	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262	24437)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	79.7	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262	24699)				. 5 5			
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	89.9	68.4	128
		10	mg/kg	110	20 mg/kg	00.0	00.4	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262		40		-40	20	00.0	00.4	400
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	88.2	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262	25702)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	93.8	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	90.0	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	86.1	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 262	25710)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	88.6	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	91.9	77.0	131

Page : 13 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Report R	Sub-Matrix: SOIL		Method Blank (MB)	Laboratory Control Spike (LCS) Report				
EP080071: Total Potroleum Hydrocarbons (QCLot: 2025/10) - continued EP071: C29 - C38 Fraction For Titors C38 Fractions For Titors C38 Fractions For Titors C38 Fractions C38 Fra				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
EPOTE 1-C24 - C38 Fraction	Method: Compound CAS N	umber LOR	Unit	Result	Concentration	LCS	Low	High
EP0800P1: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (Octot: 2624584) CP071: -1010 - C16 Fraction 50 mg/kg 450 375 mg/kg 88.1 77.0 125 CP071: -1010 - C16 Fraction 100 mg/kg 410 925 mg/kg 88.7 74.0 128 CP071: -1010 - C16 Fraction 100 mg/kg 410 925 mg/kg 88.7 74.0 128 CP071: -1010 - C16 Fraction 100 mg/kg 410 925 mg/kg 92.9 77.0 125 CP071: -1010 - C16 Fraction 100 mg/kg 410 525 mg/kg 92.9 77.0 125 CP071: -1010 - C16 Fraction 100 mg/kg 410 525 mg/kg 92.9 77.0 125 CP071: -1010 - C16 Fraction 100 mg/kg 410 525 mg/kg 93.7 74.0 138 CP071: -1010 - C16 Fraction 100 mg/kg 410 925 mg/kg 93.7 74.0 138 CP071: -1010 - C16 Fraction 100 mg/kg 410 925 mg/kg 78.8 63.0 131 CP071: -1010 - C16 Fraction 100 mg/kg 410 925 mg/kg 80.3 88.4 128 CP071: -1010 - C16 Fraction C6_C10 10 mg/kg 410 31 mg/kg 80.3 88.4 128 CP071: -1010 - C16 Fraction C6_C10 10 mg/kg 410 31 mg/kg 91.6 68.4 128 CP080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CGLott 2624889 CF0	EP080/071: Total Petroleum Hydrocarbons (QCLot: 2625710) - cor	tinued						
EPOT1: 5-10 - C16 Fraction	EP071: C29 - C36 Fraction	100	mg/kg	<100	300 mg/kg	94.4	71.0	129
EPOT1: 5-10 - C16 Fraction	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fraction	s (QCLot: 262436	4)					
EPOT1: -C134 - C40 Fraction	EP071: >C10 - C16 Fraction	50	mg/kg	<50	375 mg/kg	89.1	77.0	125
PR080071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (OCLot: 2624430) EP071: 5-C10 - C16 Fraction	EP071: >C16 - C34 Fraction	100	mg/kg	<100	525 mg/kg	89.7	74.0	138
EP071:>C10 - C16 Fraction	EP071: >C34 - C40 Fraction	100	mg/kg	<100	225 mg/kg	112	63.0	131
EP071:>C16 - C16 Fraction	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fraction	s (QCLot: 262443	0)					
EPO11-10-23040 Fraction	·		•	<50	375 mg/kg	92.9	77.0	125
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (CCL ot: 2624437)	EP071: >C16 - C34 Fraction	100	mg/kg	<100	525 mg/kg	93.7	74.0	138
EP080: C6 - C10 Fraction C6_C10 10 mg/kg <10 31 mg/kg 80.3 68.4 128	EP071: >C34 - C40 Fraction	100	mg/kg	<100	225 mg/kg	75.8	63.0	131
EP080: C8 - C10 Fraction C5_C10 10 mg/kg <10 31 mg/kg 80.3 68.4 128	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fraction	s (QCLot: 262443	7)					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions CC C10 10 mg/kg <10 31 mg/kg 91.6 68.4 128	·		•	<10	31 mg/kg	80.3	68.4	128
EP080: C6 - C10 Fraction	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fraction	s (OCL of: 262468	8)					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (CCLot: 2624689) GC C10 10 mg/kg <10 31 mg/kg 92.4 68.4 128 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (CCLot: 2625702) EP071:>C10 - C16 Fraction	· · · · · · · · · · · · · · · · · · ·		•	<10	31 mg/kg	91.6	68.4	128
EP080: C6 - C10 Fraction C8_C10 10 mg/kg <10 31 mg/kg 92.4 68.4 128					3 3			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2625702) EP071: >C10 - C16 Fraction				<10	31 ma/ka	92 4	68.4	128
EP071:>C10 - C16 Fraction				-10	o i nigritg	UZ. 1	00.1	120
EPO71: >C16 - C34 Fraction	· · · · · · · · · · · · · · · · · · ·		·	< 50	375 ma/ka	04.6	77.0	125
EP071: -C34 - C40 Fraction						1 1		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (OCLot: 2625710) EP071: >C10 - C16 Fraction								
EP071: >C10 - C16 Fraction				100	225 Hig/kg	00.4	03.0	101
EP071: >C16 - C34 Fraction	·		•	450	275 //	00.0	77.0	405
EP071: >C34 - C40 Fraction								
EP080: BTEXN (QCLot: 2624437) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 1 mg/kg 82.2 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 1 mg/kg 89.2 67.0 121 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 1 mg/kg 89.7 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 2 mg/kg 90.3 66.0 118 EP080: ortho-Xylene 95-4-6 0.5 mg/kg <0.5 1 mg/kg 91.7 68.0 120 EP080: Naphthalene 91-20-3 1 mg/kg <1 1 mg/kg 97.7 63.0 119 EP080: BTEXN (QCLot: 2624688) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 1 mg/kg 90.4 62.0 116 EP080: Ethylbenzene 108-88-3 0.5 mg/kg <0.5 1 mg/kg 94.8 67.0 121 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 1 mg/kg 95.8 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 1 mg/kg 95.8 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 1 mg/kg 95.8 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 2 mg/kg 94.7 66.0 118					0 0			
EP080: Benzene 71-43-2 0.2 mg/kg <0.2 1 mg/kg 82.2 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg <0.5		100	ilig/kg	<100	225 Hig/kg	100	03.0	131
EP080: Toluene 108-88-3 0.5 mg/kg <0.5 1 mg/kg 89.2 67.0 121 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 1 mg/kg 89.2 67.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 1 mg/kg 90.3 66.0 118 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 1 mg/kg 91.7 68.0 120 EP080: Naphthalene 91-20-3 1 mg/kg <1 1 mg/kg 97.7 63.0 119 EP080: BTEXN (QCLot: 2624688) EP080: Toluene 108-88-3 0.5 mg/kg <0.2 1 mg/kg 90.4 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 1 mg/kg 94.8 67.0 121 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 1 mg/kg 95.8 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 1 mg/kg 94.7 66.0 118		40.0		10.0	4	00.0	20.0	110
EP080: Ethylbenzene 100-41-4 0.5 mg/kg < 0.5 1 mg/kg 89.7 65.0 117 EP080: meta- & para-Xylene 108-38-3 106-42-3	El 666. Belleane							
EP080: meta- & para-Xylene 108-38-3 106-42-3 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 1 mg/kg 90.3 66.0 118 106-42-3 EP080: ortho-Xylene 91-7 68.0 120 EP080: Naphthalene 91-20-3 1 mg/kg 41 1 mg/kg 97.7 63.0 119 EP080: BTEXN (QCLot: 2624688) EP080: Benzene 71-43-2 0.2 mg/kg 40.2 1 mg/kg 90.4 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116 EP080: Ethylbenzene 100-41-4 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116 EP080: Ethylbenzene 100-41-4 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116 EP080: Ethylbenzene 100-41-4 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116 EP080: Ethylbenzene 100-41-4 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116 EP080: Ethylbenzene 100-41-4 0.5 mg/kg 40.5 1 mg/kg 90.4 62.0 116	El doc. l'oladile							
EP080: ortho-Xylene	El cool Eurylachie				0 0			
EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 1 mg/kg 91.7 68.0 120 EP080: Naphthalene 91-20-3 1 mg/kg <1	7		тід/кд	<0.5	Z mg/kg	90.5	00.0	110
EP080: Naphthalene 91-20-3 1 mg/kg <1 1 mg/kg 97.7 63.0 119 EP080: BTEXN (QCLot: 2624688) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 1 mg/kg 90.4 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 1 mg/kg 94.8 67.0 121 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 1 mg/kg 95.8 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 2 mg/kg 94.7 66.0 118			ma/ka	<0.5	1 ma/ka	91.7	68.0	120
EP080: BTEXN (QCLot: 2624688) EP080: Benzene 71-43-2 0.2 mg/kg <0.2	Zi doci diale rigione				0 0			
EP080: Benzene 71-43-2 0.2 mg/kg <0.2 1 mg/kg 90.4 62.0 116 EP080: Toluene 108-88-3 0.5 mg/kg <0.5			inging		199	· · · ·	55.0	
EP080: Tolluene 108-88-3 0.5 mg/kg <0.5 1 mg/kg 94.8 67.0 121 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5		43-2 0.2	ma/ka	<0.2	1 ma/ka	90.4	62.0	116
EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 1 mg/kg 95.8 65.0 117 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5	El coc. Bolizollo	1						
EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 2 mg/kg 94.7 66.0 118	El doc. l'oldone					1 1		
2. Soot made a part ryjeno	E. Goo. Extraorization							
	7		marna	0.0	99	V 1	55.0	

Page : 14 of 17

Work Order : ES1932342 Amendment 1

Client ROBERT CARR & ASSOCIATES P/L

Project : 14399

Sub-Matrix: SOIL	Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery I	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080: BTEXN (QCLot: 2624688) - continued										
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	95.5	68.0	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	95.2	63.0	119		
EP080: BTEXN (QCLot: 2624689)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	95.1	62.0	116		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	97.6	67.0	121		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	97.8	65.0	117		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	101	66.0	118		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	98.7	68.0	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	101	63.0	119		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2627463)						
ES1932342-001	BH101A	EG005T: Arsenic	7440-38-2	50 mg/kg	91.4	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.6	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	97.0	70.0	130
		EG005T: Copper	7440-50-8	250 mg/kg	97.9	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	96.7	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	99.5	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	100	70.0	130
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2627465)						
ES1932342-021	HA4A		7440-38-2	FO //	00 =		
E31932342-U21	I IA4A	EG005T: Arsenic	7440-38-2	50 mg/kg	90.5	70.0	130
E31932342-021	INTA	EG0051: Arsenic EG005T: Cadmium	7440-38-2	50 mg/kg 50 mg/kg	90.5	70.0	130 130
E3 1932342-02 I	Inth						
E3 1932342-UZ I	I I I I I I I I I I I I I I I I I I I	EG005T: Cadmium	7440-43-9	50 mg/kg	96.4	70.0	130
EO 1932342-UZ I	TIMEN.	EG005T: Cadmium EG005T: Chromium	7440-43-9 7440-47-3	50 mg/kg 50 mg/kg	96.4 95.2	70.0 70.0	130 130
EO 1932342-UZ I	TIPAN	EG005T: Cadmium EG005T: Chromium EG005T: Copper	7440-43-9 7440-47-3 7440-50-8	50 mg/kg 50 mg/kg 250 mg/kg	96.4 95.2 95.7	70.0 70.0 70.0	130 130 130
EO 1902042-UZ I	TIPAN	EG005T: Cadmium EG005T: Chromium EG005T: Copper EG005T: Lead	7440-43-9 7440-47-3 7440-50-8 7439-92-1	50 mg/kg 50 mg/kg 250 mg/kg 250 mg/kg	96.4 95.2 95.7 94.8	70.0 70.0 70.0 70.0	130 130 130 130
	coverable Mercury by FIMS (QCLot: 2627464)	EG005T: Cadmium EG005T: Chromium EG005T: Copper EG005T: Lead EG005T: Nickel	7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0	50 mg/kg 50 mg/kg 250 mg/kg 250 mg/kg 50 mg/kg	96.4 95.2 95.7 94.8 97.1	70.0 70.0 70.0 70.0 70.0	130 130 130 130 130
EG035T: Total Re		EG005T: Cadmium EG005T: Chromium EG005T: Copper EG005T: Lead EG005T: Nickel	7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0	50 mg/kg 50 mg/kg 250 mg/kg 250 mg/kg 50 mg/kg	96.4 95.2 95.7 94.8 97.1	70.0 70.0 70.0 70.0 70.0	130 130 130 130 130
E G035T: Total Re ES1932342-001	coverable Mercury by FIMS (QCLot: 2627464)	EG005T: Cadmium EG005T: Chromium EG005T: Copper EG005T: Lead EG005T: Nickel EG005T: Zinc	7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-66-6	50 mg/kg 50 mg/kg 250 mg/kg 250 mg/kg 50 mg/kg 250 mg/kg	96.4 95.2 95.7 94.8 97.1 96.0	70.0 70.0 70.0 70.0 70.0 70.0 70.0	130 130 130 130 130 130

Page : 15 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot: 2624365)						
ES1931452-005	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	93.1	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	96.4	70.0	130
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot: 2624431)						
ES1932297-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	93.2	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.4	70.0	130
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot: 2625701)						
ES1932342-001	BH101A	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	97.5	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	112	70.0	130
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot: 2625711)						
ES1932342-026	HA8A	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	96.8	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.6	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2624364)						
ES1931452-005	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	81.2	73.0	137
		EP071: C15 - C28 Fraction		2319 mg/kg	90.9	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	88.3	52.0	132
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2624430)						
ES1932297-001	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	87.6	73.0	137
		EP071: C15 - C28 Fraction		2319 mg/kg	102	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	105	52.0	132
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2624437)						
ES1932342-002	BH102A	EP080: C6 - C9 Fraction		32.5 mg/kg	71.8	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2624688)						
ES1932342-001	BH101A	EP080: C6 - C9 Fraction		32.5 mg/kg	82.6	70.0	130
FP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2624689)						
ES1932342-024	HA6A	EP080: C6 - C9 Fraction		32.5 mg/kg	98.8	70.0	130
	Petroleum Hydrocarbons (QCLot: 2625702)	El 600. Co - Co l'Idelion		02.0 mg/ng	55.5		100
ES1932342-001	BH101A	EP071: C10 - C14 Fraction		523 mg/kg	88.3	73.0	137
201002042 001	Billow	EP071: C15 - C28 Fraction		2319 mg/kg	95.0	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	94.5	52.0	132
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2625710)	El 071. 020 000 Hadion					
ES1932342-026	HA8A	EP071: C10 - C14 Fraction		523 mg/kg	87.7	73.0	137
201002042 020		EP071: C15 - C28 Fraction		2319 mg/kg	94.0	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	96.3	52.0	132
FP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(Q			3.9			
ES1931452-005	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	93.3	73.0	137
201001702-000	, monymous	LF U/ 1. /C IU - C IU FIACIIUII		OOO mg/kg	55.5	70.0	101

Page : 16 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 2624364) - continued					
ES1931452-005	Anonymous	EP071: >C16 - C34 Fraction		3223 mg/kg	88.5	53.0	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	77.6	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 2624430)					
ES1932297-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	91.8	73.0	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	99.8	53.0	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	108	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	tions (QCLot: 2624437)					
ES1932342-002	BH102A	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	71.4	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	tions (QCLot: 2624688)					
ES1932342-001	BH101A	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	81.2	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	tions (QCLot: 2624689)					
ES1932342-024	HA6A	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	96.5	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac		_				
ES1932342-001	BH101A	EP071: >C10 - C16 Fraction		860 mg/kg	99.1	73.0	137
L01932342-001	BITTOTA	EP071: >C10 - C16 Fraction		3223 mg/kg	95.1	53.0	131
		EP071: >C10 - C34 Fraction		1058 mg/kg	96.8	52.0	132
ED090/071: Total I	Pageverable Hydrogerhana NEDM 2012 Free			Tooo mg/kg	00.0	02.0	102
ES1932342-026	Recoverable Hydrocarbons - NEPM 2013 Frac			000	00.0	72.0	407
ES1932342-020	HA8A	EP071: >C10 - C16 Fraction		860 mg/kg	88.3	73.0	137 131
		EP071: >C16 - C34 Fraction		3223 mg/kg 1058 mg/kg	90.7	53.0 52.0	131
		EP071: >C34 - C40 Fraction		1036 Hig/kg	103	52.0	132
EP080: BTEXN (Q							
ES1932342-002	BH102A	EP080: Benzene	71-43-2	2.5 mg/kg	73.4	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	82.2	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	86.0	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	84.4	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	85.5	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	71.5	70.0	130
EP080: BTEXN (Q	QCLot: 2624688)						
ES1932342-001	BH101A	EP080: Benzene	71-43-2	2.5 mg/kg	71.8	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	72.2	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	74.5	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	73.6	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	74.6	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	74.2	70.0	130

Page : 17 of 17

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL			Ma				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q0	CLot: 2624689)						
ES1932342-024	HA6A	EP080: Benzene	71-43-2	2.5 mg/kg	88.6	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	97.4	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	100.0	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	102	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	101	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	82.4	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1932342** Page : 1 of 11

Amendment : 1

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

 Contact
 : MS FIONA BROOKER
 Telephone
 : +61-2-8784 8555

 Project
 : 14399
 Date Samples Received
 : 03-Oct-2019

 Project
 : 14399
 Date Samples Received
 : 03-Oct-2019

 Site
 : -- Issue Date
 : 28-Oct-2019

Sampler : ZAC LAUGHLAN No. of samples received : 41
Order number :---- No. of samples analysed : 41

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 11

Work Order : ES1932342 Amendment 1

Client · ROBERT CARR & ASSOCIATES P/L

Project · 14399

Regular Sample Surrogates

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP080S: TPH(V)/BTEX Surrogates	ES1932342-021	HA4A	1.2-Dichloroethane-D4	17060-07-0	134 %	72.8-133	Recovery greater than upper data
						%	quality objective

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
BH109A,	BH109C,	01-Oct-2019				08-Oct-2019	15-Oct-2019	✓
BH109D,	HA1A							
Soil Glass Jar - Unpreserved (EA055)								
BH101A,	BH106A,	02-Oct-2019				08-Oct-2019	16-Oct-2019	✓
BH107A,	BH108A,							
HA2A,	HA3A,							
HA3B,	HA4A,							
HA5A,	HA5B,							
HA6A,	HA7A,							
HA8A,	HA8B,							
HA9A,	HA10A,							
HA10B,	HA11A,							
HA11B,	QA1,							
QA2,	SP1A,							
SP1B,	SP2A,							
SP2B	-: -: ,							
Soil Glass Jar - Unpreserved (EA055)								
BH102A,	BH102C,	24-Sep-2019				08-Oct-2019	08-Oct-2019	✓
QA1								
Soil Glass Jar - Unpreserved (EA055)								
BH103A,	BH103C	25-Sep-2019				08-Oct-2019	09-Oct-2019	✓
Soil Glass Jar - Unpreserved (EA055)								
BH105A,	BH105C	26-Sep-2019				08-Oct-2019	10-Oct-2019	✓
Soil Glass Jar - Unpreserved (EA055)							<u>.</u>	
BH104A,	QA2	30-Sep-2019				08-Oct-2019	14-Oct-2019	✓

Page : 3 of 11

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
BH109A,	BH109C,	01-Oct-2019	08-Oct-2019	29-Mar-2020	✓	09-Oct-2019	29-Mar-2020	✓
BH109D,	HA1A							
Soil Glass Jar - Unpreserved (EG005T)								
BH101A,	BH106A,	02-Oct-2019	08-Oct-2019	30-Mar-2020	✓	09-Oct-2019	30-Mar-2020	✓
BH107A,	BH108A,							
HA2A,	HA3A,							
HA3B,	HA4A,							
HA5A,	HA5B,							
HA6A,	HA7A,							
HA8A,	HA8B,							
HA9A,	HA10A,							
HA10B,	HA11A,							
HA11B,	QA1,							
QA2,	SP1A,							
SP1B,	SP2A,							
SP2B	J ,							
Soil Glass Jar - Unpreserved (EG005T)								
BH102A,	BH102C,	24-Sep-2019	08-Oct-2019	22-Mar-2020	1	09-Oct-2019	22-Mar-2020	✓
QA1								
Soil Glass Jar - Unpreserved (EG005T)								
BH103A,	BH103C	25-Sep-2019	08-Oct-2019	23-Mar-2020	✓	09-Oct-2019	23-Mar-2020	✓
Soil Glass Jar - Unpreserved (EG005T)								
BH105A,	BH105C	26-Sep-2019	08-Oct-2019	24-Mar-2020	✓	09-Oct-2019	24-Mar-2020	✓
Soil Glass Jar - Unpreserved (EG005T)								
BH104A,	QA2	30-Sep-2019	08-Oct-2019	28-Mar-2020	✓	09-Oct-2019	28-Mar-2020	✓

Page : 4 of 11

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	in holding time
Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
BH109A,	BH109C,	01-Oct-2019	08-Oct-2019	29-Oct-2019	✓	09-Oct-2019	29-Oct-2019	✓
BH109D,	HA1A							
Soil Glass Jar - Unpreserved (EG035T)								
BH101A,	BH106A,	02-Oct-2019	08-Oct-2019	30-Oct-2019	✓	09-Oct-2019	30-Oct-2019	✓
BH107A,	BH108A,							
HA2A,	HA3A,							
HA3B,	HA4A,							
HA5A,	HA5B,							
HA6A,	HA7A,							
HA8A,	HA8B,							
HA9A,	HA10A,							
HA10B,	HA11A,							
HA11B,	QA1,							
QA2,	SP1A,							
SP1B,	SP2A,							
SP2B	- ,							
Soil Glass Jar - Unpreserved (EG035T)								
BH102A,	BH102C,	24-Sep-2019	08-Oct-2019	22-Oct-2019	✓	09-Oct-2019	22-Oct-2019	✓
QA1								
Soil Glass Jar - Unpreserved (EG035T)								
BH103A,	BH103C	25-Sep-2019	08-Oct-2019	23-Oct-2019	✓	09-Oct-2019	23-Oct-2019	✓
Soil Glass Jar - Unpreserved (EG035T)								
BH105A,	BH105C	26-Sep-2019	08-Oct-2019	24-Oct-2019	✓	09-Oct-2019	24-Oct-2019	✓
Soil Glass Jar - Unpreserved (EG035T)		1						
BH104A,	QA2	30-Sep-2019	08-Oct-2019	28-Oct-2019	✓	09-Oct-2019	28-Oct-2019	✓

Page : 5 of 11

Work Order : ES1932342 Amendment 1

Client · ROBERT CARR & ASSOCIATES P/L

QA2

Project : 14399

BH104A,

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	in holding tim
Method		Sample Date	E	xtraction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons							4
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH109A,	BH109C,	01-Oct-2019	08-Oct-2019	15-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓
BH109D,	HA1A							
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH101A,	BH106A,	02-Oct-2019	08-Oct-2019	16-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓
BH107A,	BH108A,							
HA2A,	HA3A,							
HA3B,	HA4A,							
HA5A,	HA5B,							
HA6A,	HA7A,							
HA8A,	HA8B,							
HA9A,	HA10A,							
HA10B,	HA11A,							
HA11B,	QA1,							
QA2,	SP1A,							
SP1B,	SP2A,							
SP2B	,							
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH102A,	BH102C,	24-Sep-2019	05-Oct-2019	08-Oct-2019	✓	05-Oct-2019	14-Nov-2019	✓
QA1								
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH103A,	BH103C	25-Sep-2019	05-Oct-2019	09-Oct-2019	✓	09-Oct-2019	14-Nov-2019	✓
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH105A,	BH105C	26-Sep-2019	08-Oct-2019	10-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓
Soil Glass Jar - Unpreserved (EP075(SIM))								
		00.00040	00 0 1 0010	44 0 - 1 0040		00 0 1 0040	47 N	

30-Sep-2019

08-Oct-2019

14-Oct-2019

09-Oct-2019

17-Nov-2019

Page : 6 of 11

Work Order : ES1932342 Amendment 1

Client · ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL Method		Comple Date	E	traction / Preparation	LvaluatiOi		breach ; ✓ = Withing	nording till
Container / Client Sample ID(s)		Sample Date			Evaluation	Data arrefrend	-	Evaluation
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons Soil Glass Jar - Unpreserved (EP080)						I		
BH109A,	BH109C,	01-Oct-2019	06-Oct-2019	15-Oct-2019	✓	10-Oct-2019	15-Oct-2019	✓
BH109D,	HA1A				_			•
Soil Glass Jar - Unpreserved (EP080)								
TS1,	TSC1	01-Oct-2019	06-Oct-2019	15-Oct-2019	✓	11-Oct-2019	15-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP071)								
BH109A,	BH109C,	01-Oct-2019	08-Oct-2019	15-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓
BH109D,	HA1A							
Soil Glass Jar - Unpreserved (EP080)								
BH101A,	BH106A,	02-Oct-2019	06-Oct-2019	16-Oct-2019	✓	10-Oct-2019	16-Oct-2019	✓
BH107A,	BH108A,							
HA2A,	HA3A,							
HA3B,	HA4A,							
HA5A,	HA5B							
Soil Glass Jar - Unpreserved (EP080)		00 0 1 0010		40.0-1.0040		44.0.4.0040	10.0-1.0010	
HA6A,	HA7A,	02-Oct-2019	06-Oct-2019	16-Oct-2019	✓	11-Oct-2019	16-Oct-2019	✓
HA8A,	HA8B,							
HA9A,	HA10A,							
HA10B,	HA11A,							
HA11B,	QA1,							
QA2,	SP1A,							
SP1B,	SP2A,							
SP2B,	TB1							
Soil Glass Jar - Unpreserved (EP071)				40.0.4.0040			47.11 0040	
BH101A,	BH106A,	02-Oct-2019	08-Oct-2019	16-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓
BH107A,	BH108A,							
HA2A,	HA3A,							
HA3B,	HA4A,							
HA5A,	HA5B,							
HA6A,	HA7A,							
HA8A,	HA8B,							
HA9A,	HA10A,							
HA10B,	HA11A,							
HA11B,	QA1,							
QA2,	SP1A,							
SP1B,	SP2A,							
SP2B								
Soil Glass Jar - Unpreserved (EP080)								
BH102A,	BH102C,	24-Sep-2019	05-Oct-2019	08-Oct-2019	✓	08-Oct-2019	08-Oct-2019	✓
QA1								
Soil Glass Jar - Unpreserved (EP071)				00 0 :	_		44.51	
BH103A,	BH103C	25-Sep-2019	05-Oct-2019	09-Oct-2019	✓	09-Oct-2019	14-Nov-2019	✓
Soil Glass Jar - Unpreserved (EP080)								1

Page : 7 of 11

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons	s - Continued							
BH103A,	BH103C	25-Sep-2019	06-Oct-2019	09-Oct-2019	✓	08-Oct-2019	09-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP080)								
BH105A,	BH105C	26-Sep-2019	06-Oct-2019	10-Oct-2019	✓	10-Oct-2019	10-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP071)								
BH105A,	BH105C	26-Sep-2019	08-Oct-2019	10-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓
Soil Glass Jar - Unpreserved (EP080)								
BH104A,	QA2	30-Sep-2019	06-Oct-2019	14-Oct-2019	✓	10-Oct-2019	14-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP071)								
BH104A,	QA2	30-Sep-2019	08-Oct-2019	14-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓

Page : 8 of 11

Work Order : ES1932342 Amendment 1

Client · ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		S	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions								
Soil Glass Jar - Unpreserved (EP080)					45.0 4.0040			45.0 4.0040	
BH109A,	BH109C,	0,	1-Oct-2019	06-Oct-2019	15-Oct-2019	✓	10-Oct-2019	15-Oct-2019	✓
BH109D,	HA1A								
Soil Glass Jar - Unpreserved (EP080)	T004		1-Oct-2019	06-Oct-2019	45 0-4 2040	,	11-Oct-2019	45.0-4.0040	
TS1,	TSC1	U	11-Oct-2019	06-OCT-2019	15-Oct-2019	√	11-001-2019	15-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP071)	BLI400C	0.	1-Oct-2019	08-Oct-2019	15-Oct-2019	1	09-Oct-2019	17-Nov-2019	
BH109A, BH109D,	BH109C, HA1A	"	71-001-2013	00-001-2013	15-061-2019	•	03-001-2013	17-1404-2019	✓
	пата								
Soil Glass Jar - Unpreserved (EP080) BH101A,	BH106A,	0:	2-Oct-2019	06-Oct-2019	16-Oct-2019	1	10-Oct-2019	16-Oct-2019	✓
BH107A,	BH108A,	·	2 001 20 10	00 000 20 10	10 001 2010	•	10 001 2010		Y
HA2A,	HA3A,								
HA3B,	HA4A,								
HA5A,	HA5B								
Soil Glass Jar - Unpreserved (EP080)	ПАЗВ								
HA6A,	HA7A,	0:	2-Oct-2019	06-Oct-2019	16-Oct-2019	1	11-Oct-2019	16-Oct-2019	1
HA8A,	HA8B,	·	2 001 20 10	00 000 20 10	10 001 2010	•	551.25.15		Y
HA9A,	HA10A,								
HA10B,	HA11A,								
HA11B,	QA1,								
QA2,	SP1A,								
SP1B,	SP2A,								
SP2B,	TB1								
Soil Glass Jar - Unpreserved (EP071)	101								
BH101A,	BH106A,	0:	2-Oct-2019	08-Oct-2019	16-Oct-2019	1	09-Oct-2019	17-Nov-2019	1
BH107A,	BH108A,	-				•			Y
HA2A,	HA3A,								
HA3B,	HA4A,								
HA5A,	HA5B,								
HA6A,	HA7A,								
HA8A,	HA8B,								
HA9A,	HA10A,								
HA10B,	HA11A,								
HA11B,	QA1,								
QA2,	QAT, SP1A,								
QA2, SP1B,	SP1A, SP2A,								
SP1B,	SFZA,								
Soil Glass Jar - Unpreserved (EP080)									
BH102A,	BH102C,	24	4-Sep-2019	05-Oct-2019	08-Oct-2019	1	08-Oct-2019	08-Oct-2019	✓
QA1	5.1.020,	-				-			*
Soil Glass Jar - Unpreserved (EP071)									
BH103A,	BH103C	25	5-Sep-2019	05-Oct-2019	09-Oct-2019	1	09-Oct-2019	14-Nov-2019	1
Soil Glass Jar - Unpreserved (EP080)			-						

Page : 9 of 11

Work Order : ES1932342 Amendment 1

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL			Evaluation: × = Holding time breach ; ✓ = Withi						
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocarbons - N	NEPM 2013 Fractions - Continued								
BH103A,	BH103C	25-Sep-2019	06-Oct-2019	09-Oct-2019	✓	08-Oct-2019	09-Oct-2019	✓	
Soil Glass Jar - Unpreserved (EP080) BH105A,	BH105C	26-Sep-2019	06-Oct-2019	10-Oct-2019	✓	10-Oct-2019	10-Oct-2019	✓	
Soil Glass Jar - Unpreserved (EP071) BH105A,	BH105C	26-Sep-2019	08-Oct-2019	10-Oct-2019	1	09-Oct-2019	17-Nov-2019	✓	
Soil Glass Jar - Unpreserved (EP080) BH104A,	QA2	30-Sep-2019	06-Oct-2019	14-Oct-2019	1	10-Oct-2019	14-Oct-2019	✓	
Soil Glass Jar - Unpreserved (EP071) BH104A,	QA2	30-Sep-2019	08-Oct-2019	14-Oct-2019	✓	09-Oct-2019	17-Nov-2019	✓	
EP080: BTEXN									
Soil Glass Jar - Unpreserved (EP080) BH109A,	BH109C,	01-Oct-2019	06-Oct-2019	15-Oct-2019	1	10-Oct-2019	15-Oct-2019	✓	
BH109D,	HA1A								
Soil Glass Jar - Unpreserved (EP080) TS1,	TSC1	01-Oct-2019	06-Oct-2019	15-Oct-2019	✓	11-Oct-2019	15-Oct-2019	✓	
Soil Glass Jar - Unpreserved (EP080)	1301	01-001-2013	00-001-2013	10 001 2013	V	11-001-2013	10 000 2010		
BH101A,	BH106A,	02-Oct-2019	06-Oct-2019	16-Oct-2019	1	10-Oct-2019	16-Oct-2019	✓	
BH107A,	BH108A,							_	
HA2A,	HA3A,								
HA3B,	HA4A,								
HA5A,	HA5B								
Soil Glass Jar - Unpreserved (EP080)									
HA6A,	HA7A,	02-Oct-2019	06-Oct-2019	16-Oct-2019	✓	11-Oct-2019	16-Oct-2019	✓	
HA8A,	HA8B,								
HA9A,	HA10A,								
HA10B,	HA11A,								
HA11B,	QA1,								
QA2,	SP1A,								
SP1B,	SP2A,								
SP2B,	TB1								
Soil Glass Jar - Unpreserved (EP080)									
BH102A,	BH102C,	24-Sep-2019	05-Oct-2019	08-Oct-2019	✓	08-Oct-2019	08-Oct-2019	✓	
QA1									
Soil Glass Jar - Unpreserved (EP080) BH103A,	BH103C	25-Sep-2019	06-Oct-2019	09-Oct-2019	1	08-Oct-2019	09-Oct-2019	✓	
Soil Glass Jar - Unpreserved (EP080)	DI 11000	20 00p-2010	00 000-2010	55 551 2010	₩	00 000-2010	55 55 25 15	V	
BH105A,	BH105C	26-Sep-2019	06-Oct-2019	10-Oct-2019	✓	10-Oct-2019	10-Oct-2019	✓	
Soil Glass Jar - Unpreserved (EP080) BH104A,	QA2	30-Sep-2019	06-Oct-2019	14-Oct-2019	1	10-Oct-2019	14-Oct-2019	✓	
	<u>~ -</u>								

Page : 10 of 11

Work Order ES1932342 Amendment 1

Client ROBERT CARR & ASSOCIATES P/L

: 14399 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				not within specification; ✓ = Quality Control frequency within specification.			
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	7	60	11.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	8	71	11.27	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	5	44	11.36	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	4	60	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	4	71	5.63	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	44	6.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	4	60	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	4	71	5.63	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	44	6.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	4	60	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	4	71	5.63	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	44	6.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 11 of 11

Work Order : ES1932342 Amendment 1

Client ROBERT CARR & ASSOCIATES P/L

Project : 14399

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

OLIENT.

CHAIN OF CUSTODY

ALS Laboratory: please tick →

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

UADELAIDE 21 Burma Road Pooraka SA 5095 Ph. 08 8359 0890 E: adela-de@elsglobal.com UBRISBANE 32 Shand Street Stafford OLD 4058 Ph: 07 3243 7222 E: samples.brisbane@alsglobal.com DGLADSTONE 46 Callemondali Drive Clinton QLO 4680 Ph. 67 7471 5800 E. gladstone@alsoichal.com QMACKAY 76 Harbour Road Mackay QLD 4740 Ph: 07 4944 0177 E. mackay@elsotobal.com

DMELSOURNE 2-4 Westall Road Springvale VIC 3171 Ph; 03 8549 9600 E: samples melbourne@alsglobal.com QMUDGEE 27 Sydney Road Mudgee NSW 2850 Ph: 02 6372 6735 E: mudgee.mail@alsolobel.com

DNEWCASTLE 5/585 Mailland Rd Mayfield West NSW 2304 Phr 02 4014 2500 E. aampleo.hevoestle@alsolobal.com

DNOWRA 4/13 Geary Place North Nove NSW 2541 Ph: 924423 2063 E: newra@alsglobal.com

OPERTH 10 Hod Way Malaga WA 6090 Ph: 93 9209 7655 E: samples.perth@alsolobal.com

USYDNEY 277-269 Woodpark Road Smithfield NSW 2164 Ph: 02 8784 8555 E: samples sydney@alsginbal.com DTOWNSVILLE 14-15 Deams Court Boble GLD 4818

Ph: 07 4796 0600 E: townsville environmental dialogicosi, com DWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph: D2 4225 \$125 E; portkembla@alsglobat.com

CLIENT:	RCA Australia			ND REQUIREMENTS :	Standard TAT	(List due o	late):				F	OR LABORATOR	RY USE ON	LY (Circle)
	92 Hill Street, Carrington		Trace Organics	·	Non Standard	or urgent T	AT (List due dat					u <u>ntouv</u> Swal intact? ree ico / frozen ico b	Wales manages	Yes No N/A
RCA Ref No: 14399			ALS QUOTE	NO.: SY	/BQ_400_18			_	_	NCE NUMBER	Circie)	scelpt?		THE NO NA
PROJECT MANAGER	R: Fiona Brooker	CONTACT PI	1: 0408 687 5	29				COC:	(1) 2 1 2	3 4 5		andom Sample Ten Ther comment	iperature on F	Receipt S
SAMPLER: Zac Laug		SAMPLER M		288 854	RELINQUISHED B	Y: ,			······································	·		QUISHED BY:		RECEIVED BY:
COC emailed to ALS	? (YES / NO)	EDD FORMA	T (or default)		Z. LUYG DATE/TIME: 1901	Mu			M		> \	////		147
Email Reports to: ad	ministrator@rca.com.au + fionab@rc	a.com.au +zacharyl@rca.	com.au		DATE/TIME:	16		DATE	TIME:		DATE/			DATE/TIME: 7 200
Email Invoice to: as	above				ן טון כ	//7		2	10119	13:11	31	lolia t	7,00	3.10.19 Tisopon
COMMENTS/SPECIA	L HANDLING/STORAGE OR DISPO	OSAL:			,									
ALS USE		DETAILS D (S) WATER (W)		CONTAINER INFO	ORMATION							isted to attract suite issolved (field filtere		Additional Information
LAB ID	Sample ID	Date / Time	Matrix	Type & Preservative (refer to codes below)		fotal tainers	S26 - TRH(C6- C36/40)/BTEXN/PAH plus 8 metals	Volatile TRH & BTEXN	-				l c	Comments on likely contaminant levels, illutions, or samples requiring specific QC nalysis etc.
	BH 101 A	2/10/19	Soil			1	X		1					
	BH102A	24/9/19	i			1	Х							
	BHIOZC	24/9/19				1	7							
	BHIOZA	25/9/19	1-	-		1	Х							ntal Division
	B H 103 C	25/9/19				1	×					_ Sydı <u>W</u>	ork Orde	r Reference
	BHIO4 A	30/9/19				1	አ					– E	S 19	932342
-	PHIOS A	26/9/19				1	Х						en e ner	
	DHIOSC	26/9/19				1 - 1	χ					_		
	BH (06 A	2/10/19	_			1 · ·	X					_	1	
	BH107 A	2/10/19				-	Х					— — — — — — — — — — — — — — — — — — —	 	0.0704.0666
	BHIOS A	2/10/19				<u>.</u> [·	*					1 e1 6 pn	IUI IB ; + 01*	2-8784 8555
	DHIO9 A	1/10/19				1	Х					_		
Water Container Codes: V = VOA Vial HCI Preser	P = Unpreserved Plastic; N = Nitric Pre	oserved Plastic; ORC = Nitrio	Preserved ORG	c; SH = Sodium Hydroxide/Cd Preserved; AV = Airfreight Unpreserved Vial SG = St	S = Sodium Hydroxide	2 Preserved	Plastic; AG = Aml	oer Glass t	Jnpreserved; /	AP - Airfreight Unived Speciation b	reserved Plastic	c Preserved Classic	10	aryon reserved Glass;

CHAIN OF CUSTODY

HA56 HA6a

CIADELAIDE 21 Burma Road Pooraka SA 5005 Ph: 08 8359 0390 E: adelaide@aisqlobal.com DBRISBANE 32 Shand Street Stafford QLD 4053 Ph: 07 3243 7222 E: samples brisbane@alsdobal.com BMACKAY 78 Harbour Road Mackay Cl. D 4749 Ph: 07 4944 0177 E: mackay@ateglobal.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171
Ph: 03 8549 9600 E: samples melbourne@elsolobal.com

CINEWCASTI E 5/585 Mailland Rd Mayfield West NSW 2306 Ph: 02 4014 2500 E: samples,newcaste@alsolobal.com

□NOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 024423 2063 E: nowra@aladiobal.com

DSYDNEY 277-289 Woodpark Road Smithfield NSW 2164. Ph; 02 9784 8555 E: samples, sighey@alsdiotal.com CITOWNSVILLE 14-15 Desma Court Bobile QLD 4818
Ph; Q7 4798 C600 E; townsville environmental/Galeokobal com-

Content to 1 way to begin to some balls og. Unit The Content to 1 way to begin for some balls og. Unit The Content to 1 way to begin for some balls og. Unit The Content to 1 way to 1 w	Environ	ALS Lal		E 46 Callemondah 300 E: gladstone@a	Drive Ofinton QLD 4680 QMU alsglobal.com Ph; 0	10GEE 27 Sydne 2 6372 6785 E: r	y Road Mudgee NSW 2 nudgee.mail@alsglobal.	nso com	<u> </u>	IPERTH 10 Hod W h; 08 9209 7655 E:	w spalada w heq.oolqmaa	A 6090 h@aisglobal.c	וחג	EBWOLLG Ph: 02 42	ONGONG 99 225 3126 E: p	Kenny Street Wolfongong NSW 2500 portkembla@elaglobat.com
Secretary Secr	LIENT:	RCA Australia		TURNAROU	ND REQUIREMENTS :	Standa	ard TAT (List due o	ate):		. 1			FOR	LABORATOR)	Y USE ON	LY (Circle)
ALS DUCIET MANAGER: Floras Brocker CONTACT HE MORE ST 529 CONTACT HE MORE ST	FFICE:	92 Hill Street, Carrington							fate):				Custo	ndy Seaf Intact?		Yes No
CONTECT MANAGER: Plone Breaker CONTACT PH: MOBILE: MAZ 288 864 RELINQUISHED DY: Consider to ASP1 YES 1 NO) EDD FORMAT (or Manager to cadministratorigines com.au - floratigines com.au - storatory) (Bracom.au) ANALYSIS ELCUROD IN BANKER POINT INC. SAMPLE: DETAILS USE SAMPLE: DETAILS CONTACT HE Matrix Contact HYPCHIATCH Type & Preservative (order to socioles biolin) Sample ID Date / Time Matrix Type & Preservative (order to socioles biolin) Sample ID Date / Time Matrix Type & Preservative (order to socioles biolin) ANALYSIS RECURRED Including SUITES (NB. 34th Color must be lived to adried cultin price) Containers SAMPLE: DETAILS CONTAINER ANALYSIS RECURRED Including SUITES (NB. Salte Codes must be lived to adried cultin price) Additional Information Containers SAMPLE: DETAILS CONTAINER SAMPLE: DATE: D	CA Ref No: 14399			ALS QUOTE	NO.: SY	/BQ_400_18	}			COC SEQUI	NCE NUM	BER (Circ	e) Free	ice / filyzen ice bri	icks present	upon Yes No
MPLER: Zac Laughlan SAMPLER MOBILE: 0422 285 854 RELINQUISHED BY: Committed to ALS7 (YES MO) EDD FORMAT (or default): DATETIME: 3/10/19 ANALYSIS REQUIRED Inciding SUITES (RE. Shills Code made a stilled to attitude and invited to the code state of the stilled and price) MINISTORAGE ON DISPOSAL: ASS SAMPLE DETAILS: BASEL DETAILS: BASEL DETAILS: BASEL DETAILS: BASEL DETAILS: BASEL DETAILS: CONTAINER INVORMATION Type & Preservative (rater to code basins) Containers For tall									co	C: 1 🛭	3 4	5 6	7 Rand	om Sample Temp	perature pri l	Receipt: 10
The smalled to ALS7 (YES / NO) EDD FORMAT (or defauld): Continue Contin	ROJECT MANAGE	R: Fiona Brooker	CONTACT P	H: 0408 687 5	29				OF	: 1 2	3) 5 (7 Other	comment:		1.4
ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) MARTINE SOLID (S) WATER (V) ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) When Martine ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) When Martine ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) When Martine Additional information Additional info	AMPLER: Zac Lau	ghlan	SAMPLER N	OBILE: 0428	288 854	RELINQUI	SHED BY:	, A	RE	CEIVED BY:	/		RELINQUI	SHED BY:		
ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) MARTINE SOLID (S) WATER (V) ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) When Martine ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) When Martine ANALYSE REQUIRED including SUITES (NS Suits Codes must be lead to attract sails price) When Martine Additional information Additional info	OC emailed to AL	S?(YES / NO)	EDD FORMA	T (or default)	<u>: </u>	6	layuu	•	_	fm		\supset	1	[F		1177
ILAS ID Sample ID Date / Time Matrix Type & Preservative (refer to codes bolon) BHIGG C I / IO/IQ BHIGG D I / IO/IQ BHIGG C I / IO/IQ BHIGG D BHIGG D I / IO/IQ BHIGG D BHIGG D BHIGG D I / IO/IQ BHIGG D BHIGG D I / IO/IQ BHIGG D BHIGG D BHIGG D I / IO/IQ BHIGG D BHIGG D BHIGG D I / IO/IQ BHIGG D BHIGG D I / IO/IQ BHIGG D	mall Reports to: a	dministrator@rca.com.au + fi	onab@rca.com.au +zacharyl@rca	.com.au		DATE/TIME	1 (. //		1		_					DATE/TIME:
AMALYSIS RECOURED including SUITES (NB. Suite Codes must be listed to etimest suite price) Where Metals are required, specify Total (infillment bottle required). Additional information Comments on likely containment invois, containment invois, and an information in information in information in information Additional information Additional information Comments on likely containment invois, and an information in information in information in information Additional information Comments on likely containment invois, and an information in information in information in information Additional information Additional information Additional information Comments on likely containment invois, and an information in information in information Additional information Additional information Additional information Additional information Comments on likely containment invois, and an information in information in information Additional information Additional information Comments on likely containment invois, and an information in i	malf Invoice to: as	s above				1 3/	110/17			3/10/19	13	<u> </u>	3/1	0/19 17	2:00	3.10.19 7.30
USE NATRIX SOLD (5) WATER (W) CONTAINER INFORMATION Where Metalia are required, specify Total (unifitace) bottle required). Commente on likely contaminant levels, distinction, or samples requiring specific OL analysis etc. Sample ID Date / Time Matrix Type & Preservative (rafer to codes below) BH109 C 1/10/19 1/ X BH109 D 1/ 10/19 1/ X BA1 24/9/19 1/ X AA2 30/9/19 1/ X HA1A 2/10/19 1/ X HA3A 1/ X HA3A 1/ X HA3A 1/ X HA4A	OMMENTS/SPECI	AL HANDLING/STORAGE O	OR DISPOSAL:			_	•									•
LAB ID Sample ID Date / Time Matrix Type & Preservative (refer to codes balow) Total Containers Fig. 9 of 1 of	A1 C		SAMPLE DETAILS													
BH109 0					CONTAINER INF	ORMATION		Where Met	tals are re	quired, specify 1			quired) or Disso	ived (field filtered	bottle	Additional Information
BH109 0								5				}				
BH109 0								N/PA	eğ.							Comments on Michigant
BH109 0	LAB ID	Sample ID	Date / Time	Matrix				H(C6 BTE)	TRH							dilutions, or samples requiring specific QC
BH109 0					·			7. TR (40)/	ag K							analysis etc.
BHIOQ D. 1/10/19 1 7 QAL 24/9/19 1 X QAZ 30/9/19 1 X HALA 7/10/19 1 X HASA 1 X HASA 1 X HASA 1 X HASA 1 X			- 1					S26 C36	≥ ₽							
BH109 D. 1/10/19 BA1 24/9/19 I X BA2 30/9/19 I X HA1A 2/10/19 I X HA3A I X HA3A I X HA4A		BH109 C	1/10/19				1	×								
BAL Z4/9/19			1 / / -				1	7								
AAZ 30/9/19 1 X							I	· .		-		†				
HA1A 2/10/19 HAZA HA3A HA4A I X I X I X I X I X I X		WAL		 - 			/	_ ^				ـــ	_	-		
HA1A		QAZ	30/9/19				1	Х								
HAZA HAZA HAZA HAZA I X HAZA I X HAZA I X I X I X I X I X I X I X I		HA1 A	7/10/19				ĺ	X								
HA3a			-///				1	Y			***	<u> </u>				
HR36							,									
HA4a I X		HA3a					1	Х	·							
HA4a I X		HA36					1	X								
177.00						**	1	X								
		HASa					-	X	· -			 	+			

TOTAL Water Container Codes: P = Unpreserved Plastic; N = Nitrio Preserved Plastic; ORC = Nitrio Pre V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CHAIN OF CUSTODY

ALS Laboratory: nlease fick

CIADELAIDE 21 Burms Road Pooraka SA 5095 Ph. 08 8359 0890 E: sdelaide@aisolobsl.com CIBRISBANE 32 Shand Street Stafford QLD 4053

Ph: 07 3243 7222 E: samples.brisbane@alsolobal.com DGLADSTONE 46 Callemondah Dove Clinton QLD 4680 Ph: 07 7471 5600 E: gladstone@alsclobal.com

OMACKAY 75 Harbour Road Mackay QLD 4740 Ph: 07 4944 0177 F: mackay@alestobal.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 6549 9600 E: samples,melbourne@alsglobal.com UMUDGEE 27 Sydney Road Madgee NSW 2859 Ph: 02 6372 6735 E: mudosa.maii@alsglobal.com

DNEWCASTLE 5/585 Maittand Rd Mayfield West NSW 2304 DSYDNEY 277-288 Woodpark Road Smithfield NSW 2164 Ptr. 02 4014 2500 E: samples.revoastie@alsglobal.com Ptr. 02 8794 8555 E: samples.revoastie@alsglobal.com

DNOVRA 4/13 Geary Place North Novra NSV/ 2541 Ph: 024423 2063 E: novra@alsceobal.com

DPERTH 10 Hod Way Malace WA 8090 Ph: 08 9209 7856 E: samples.perth@aisglobal.com

CITOVNSVILLE 14-15 Deame Court Boble CLD 4818 Ph: 97 4799 9600 E: fownsville.environmental@alsglobal.com DWOLLONGONG 99 Kenny Street Wolfongoing NSW 2509

Ph: 02 4225 \$125 E: portkembla@efaclobal.com

	product sole s					= '
CLIENT:	RCA Australia	TURNAROUND REQUIREMENTS:	Standard TAT (List due date):	10-10-10-10-10-10-10-10-10-10-10-10-10-1	FOR LABORATORY USE ONLY	(Circle)
OFFICE:	92 Hill Street, Carrington	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	Non Standard or urgent TAT (List due date	s):	Custody Seal Intent?	Yes No NA
RCA Ref No: 143	99	ALS QUOTE NO.:	YBQ_400_18	COC SEQUENCE NUMBER (Circle)	Free roe / Trozen roe bricks present upor	Yes No N/A
				coc: 1 2 🕙 4 5 6	7 Random Sample Temperature on Rece	ipt C
PROJECT MANA	GER: Flona Brooker CON	NTACT PH: 0408 687 529		OF: 1 2 3 🕢 5 6	7 Other comment:	1.4
SAMPLER: Zac L	aughlan SAN	MPLER MOBILE: 0428 288 854	RELINQUISHED BY:	RECEIVED BY	RELINQUISHED BY:	RECEIVED BY:
COC emailed to A	ALS? (YES / NO) EDD	FORMAT (or default):	2. Cayllan CO	+ lm	////	14-
mail Reports to	: administrator@rca.com.au + fionab@rca.com.au +zach	naryl@rca.com.au	DATE/TIME: J. J. G.	DATE/TIME: D	DATE/TIME:	DATE/TIME:
Email Invoice to:	as above		3/19/17	3/10/19 13:15	1/10/19 17:00	3.10.197:30pm
OMMENTS/SPE	CIAL HANDLING/STORAGE OR DISPOSAL:			·		

ALS USE	LS SAMPLE DETAILS SE MATRIX: SOLID (S) WATER (W)			CONTAINER INFORMATION			rsis REQUIRE etals are requi	suite price) filtered bottle	Additional Information		
LAB ID	Sample ID	Date / Time	Matrix	Type & Preservative (refer to codes below)	Total Containers	S26 - TRH(C6- C36/40/BTEXN/PAH pfus 8 metals	Volatile TRH & BTEXN				Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	H A7a		L		1	χ					
	HA8a				1	λ					
	HASB				ſ	Χ					
	HAGA				1	Х					
	HAIDa				1	7					
	HAIOb				ſ	Х					
	HAIIa)		1	*					
	HAIIb				1	Х					
	QA1				1	Х					
	BA2				1	Х					
	SPLa				1	У					<u> </u>
	SPIB				1	7				•	
3				TOTAL							

Water Container Codes: P = Unpreserved Plastic, N = Nitric Preserved Plastic, ORC = Nitric Preserved ORC; SH = Sodium Hydroxide Preserved Plastic, AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic V = VOA Viai HCI Preserved; VB = VOA Viai Sodium Bisulphate Preserved; VS = VOA Viai Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CHAIN OF CUSTODY

ALS Laboratory: please tick →

DADELAIDE 21 Burma Road Poorake SA 5055
Ph. 08 859 0590 E: stdiskde@sisplosation
DBRISBANE 32 Shand Streat Slafford 0,0 4053
Ph. 07 5243 7222 E: samples.brisbane@alsglobat.com
DCLADSTONE 46 Callemortain Drive Clinton QLD 4650
Ph. 07 7471 8600 E: sladstone@alsglobat.

QMACKAY 78 Harbour Road Mackay QLD 4749 Ph: 07 4944 0177 Et mackay@atspiobal.com

DMELROURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E: samples melbourne@ateglobal.com DMUDGE: 27 Sydney Road Mudgee NSW 2800 Ph: 02 9372 6736 E: muddee melt@ateglobal.com CINEWCASTLE 5/585 Maitland Rd Mayfield West NSW 2304 Ph: 02 4014 2500 E. samples newcaste@atsglobel.com

GINOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 024423 2063 E: nowra@alsglobsl.com

OPERTH 10 Hod Way Malaga, WA 6090

Ph: 02 2764 8555 E: samples, sydney @sitsglobal.com IITOWNSVILLE 14-15 Desma Court Bohle QLD 4818 Ph: 07 4799 0000 E: wwwselle, sortermental/gateglobal.com IIWOLLONGONG 98 Kenny Street Wollongong NSW 2500 Ph: 02 4225 3125 E: portkemble@alsqlobal.com

QSYDNEY 277-289 Woodpark Road Smithfield NSW 2164

Ph: 08 9209 7655 E: semples.perth@alsglobel.com CHENT RCA Australia TURNAROUND REQUIREMENTS: Standard TAT (List due date): FOR LABORATORY USE ONLY (Circle) (Standard TAT may be longer for some tests e.g., Ultra OFFICE: 92 Hill Street, Carrington ☐ Non Standard or urgent TAT (List due date): **Sustody Seat Intact?** Trace Organics) RCA Ref No: 14399 ALS QUOTE NO : SYBQ 400 18 COC SEQUENCE NUMBER (Circle) Random Sample Temperature on Receipt: PROJECT MANAGER: Fiona Brooker CONTACT PH: 0408 687 529 OF: 1 2 3 (4) 5 SAMPLER: Zac Laughlan SAMPI FR MOBIL F: 0428 288 854 RECEIVED BY: RELINQUISHED BY RECEIVED BY: COC emailed to ALS? (YES / NO) EDD FORMAT (or default): Email Reports to: administrator@rca.com.au + fionab@rca.com.au +zacharyl@rca.com.au DATE/TIME: DATE/TIME: DATE/TIME: Blislig 3.10.10 31:15 Email Invoice to: as above 17:00

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE		SAMPLE DETAILS UX: SOLID (S) WATER (W) CONTAINER INFORMATION				ANALY Where M	'SIS REQUIR etais are requ	uired, specify Total (unfi	NB. Suite Codes i Itered bottle requi equired).	must be listed to attract suit red) or Dissolved (field filte	e price) red bottle	Additional Information
LAB ID	Sample ID	Date / Time	Matrix	Type & Preservative (refer to codes below)	Total Containers	S26 - TRH(C6- C36/40)/BTEXN/PAH plus 8 metals	Volatile TRH & BTEXN					Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SPIA				1	Х						
	SPZ6	19	#		1	×						
	TB1	1/10/19		·	1		Χ					
	TSI	1/10/19	*		1		X					
	Control of the Contro	10 10 10 10 10 10 10 10 10 10 10 10 10 1	de la company	TOTAL	4							

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES1932342 Work Order

: ROBERT CARR & ASSOCIATES P/L Client Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Customer Services ES

Address : P O BOX 175 Address : 277-289 Woodpark Road Smithfield CARRINGTON NSW, AUSTRALIA 2294

NSW Australia 2164

E-mail F-mail : ALSEnviro.Sydney@ALSGlobal.com : fionab@rca.com.au

Telephone Telephone : +61-2-8784 8555 : +61 02 4902 9200 Facsimile **Facsimile** : +61 02 4902 9299 : +61-2-8784 8500

Project : 14399 Page · 1 of 3

Order number Quote number : ES2017ROBCAR0004 (SYBQ/400/18) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : ZAC LAUGHLAN

Dates

Date Samples Received Issue Date : 03-Oct-2019 13:16 : 03-Oct-2019 Scheduled Reporting Date Client Requested Due : 11-Oct-2019 11-Oct-2019

Date

Delivery Details

Mode of Delivery Undefined Security Seal : Not Available No of coolers/hoxes · 1 Temperature : 1.4'C - Ice present

No. of samples received / analysed Receipt Detail · 41 / 41

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 03-Oct-2019

Page

2 of 3 ES1932342 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

tasks, that are incl If no sampling default 00:00 on is provided, the laboratory and	uded in the package. time is provided, the date of samplin sampling date wi	g. If no sampling date		SOIL - S-18 (NO MOIST) FRH(C6-C9)/BTEXN with No Moisture for TE	XN/PAH
component Matrix: SOIL			055-103 Content	- S-18 (NO MOIST) C6-C9)/BTEXN with	26 IRH/BTE
Laboratory sample	and displayed in brackets without a time t a sample Client sampling date / time Client sample ID date / time Sign Condent sample ID date / time Sign Condent Sample Client sample ID date / time Sign Condent Sample ID sample ID date / time Sign Condent Sample ID sample ID date / time Sign Condent Sample ID sampl				
ES1932342-001	02-Oct-2019 00:00	BH101A	✓		✓
ES1932342-002	24-Sep-2019 00:00	BH102A	✓		✓
ES1932342-003	24-Sep-2019 00:00	BH102C	1		✓
ES1932342-004	25-Sep-2019 00:00	BH103A	✓		✓
ES1932342-005	25-Sep-2019 00:00	BH103C	✓		✓
ES1932342-006	30-Sep-2019 00:00	BH104A	✓		✓
ES1932342-007	26-Sep-2019 00:00	BH105A	✓		✓
ES1932342-008	26-Sep-2019 00:00	BH105C	✓		✓
ES1932342-009	02-Oct-2019 00:00	BH106A	✓		✓
ES1932342-010	02-Oct-2019 00:00	BH107A	✓		✓
ES1932342-011	02-Oct-2019 00:00	BH108A	✓		✓
ES1932342-012	01-Oct-2019 00:00	BH109A	✓		✓
ES1932342-013	01-Oct-2019 00:00	BH109C	✓		✓
ES1932342-014	01-Oct-2019 00:00	BH109D	✓		✓
ES1932342-015	24-Sep-2019 00:00	QA1	✓		✓
ES1932342-016	30-Sep-2019 00:00	QA2	✓		✓
ES1932342-017	01-Oct-2019 00:00	HA1A	✓		✓
ES1932342-018	02-Oct-2019 00:00	HA2A	✓		✓
ES1932342-019	02-Oct-2019 00:00	НАЗА	✓		✓
ES1932342-020	02-Oct-2019 00:00	НА3В	✓		✓
ES1932342-021	02-Oct-2019 00:00	HA4A	✓		✓
ES1932342-022	02-Oct-2019 00:00	HA5A	✓		✓
ES1932342-023	02-Oct-2019 00:00	HA5B	✓		✓
ES1932342-024	02-Oct-2019 00:00	HA6A	✓		✓
ES1932342-025	02-Oct-2019 00:00	HA7A	1		✓
ES1932342-026	02-Oct-2019 00:00	HA8A	✓		✓
ES1932342-027	02-Oct-2019 00:00	HA8B	✓		✓
ES1932342-028	02-Oct-2019 00:00	HA9A	✓		✓
ES1932342-029	02-Oct-2019 00:00	HA10A	✓		✓
ES1932342-030	02-Oct-2019 00:00	HA10B	✓		✓
ES1932342-031	02-Oct-2019 00:00	HA11A	✓		✓
ES1932342-032	02-Oct-2019 00:00	HA11B	✓		✓
ES1932342-033	02-Oct-2019 00:00	QA1	✓		✓
ES1932342-034	02-Oct-2019 00:00	QA2	✓		✓
ES1932342-035	02-Oct-2019 00:00	SP1A	✓		✓

TBs

Issue Date : 03-Oct-2019

Page

3 of 3 ES1932342 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

			SOIL - EA055-103 Moisture Content	SOIL - S-18 (NO MOIST) TRH(C6-C9)/BTEXN with No Moisture fo	SOIL - S-26 8 metals/TRH/BTEXN/PAH
ES1932342-036	02-Oct-2019 00:00	SP1B	✓		✓
ES1932342-037	02-Oct-2019 00:00	SP2A	✓		✓
ES1932342-038	02-Oct-2019 00:00	SP2B	✓		✓
ES1932342-039	02-Oct-2019 00:00	TB1		✓	
ES1932342-040	01-Oct-2019 00:00	TS1		✓	
ES1932342-041	01-Oct-2019 00:00	TSC1		✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES

ALL INVOICES		
- *AU Certificate of Analysis - NATA (COA)	Email	administrator@rca.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	administrator@rca.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	administrator@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	administrator@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
- Chain of Custody (CoC) (COC)	Email	administrator@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	administrator@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	administrator@rca.com.au
FIONA BROOKER		
 *AU Certificate of Analysis - NATA (COA) 	Email	fionab@rca.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	fionab@rca.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	fionab@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	fionab@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	fionab@rca.com.au
- Chain of Custody (CoC) (COC)	Email	fionab@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	fionab@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	fionab@rca.com.au
ZAC LAUGHLAN		
 *AU Certificate of Analysis - NATA (COA) 	Email	zacharyl@rca.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	zacharyl@rca.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	zacharyl@rca.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	zacharyl@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	zacharyl@rca.com.au
- Chain of Custody (CoC) (COC)	Email	zacharyl@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	zacharyl@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	zacharyl@rca.com.au

CERTIFICATE OF ANALYSIS

Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER

Address : P O BOX 175

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 4902 9200

Project : 14399
Order number · ----

C-O-C number :----

Sampler : BYRON GARNER

Site : ---

Quote number : SYBQ/400/18

No. of samples received : 17
No. of samples analysed : 17

Page : 1 of 13

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 11-Oct-2019 14:38

Date Analysis Commenced : 14-Oct-2019

Issue Date : 17-Oct-2019 16:29

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Rassem Ayoubi	Senior Organic Chemist	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

Page : 2 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: The trip spike and its control have been analysed for volatile TPH and BTEX only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.

Page : 3 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 4 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 5 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 1439

Page : 6 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 7 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 8 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 1439

Page : 9 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 10 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 11 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 12 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

0.2

0.2

0.2

17060-07-0

2037-26-5

460-00-4

%

%

91.7

103

102

Project : 14399

Analytical Results

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

91.5

100

100.0

Page : 13 of 13 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 1439

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order : **ES1933349**

Client : ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER

Address : P O BOX 175

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 4902 9200

Project : 14399
Order number : ----

C-O-C number : ---

Sampler : BYRON GARNER

Site · ---

Quote number : SYBQ/400/18

No. of samples received : 17
No. of samples analysed : 17

Page : 1 of 9

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 11-Oct-2019

Date Analysis Commenced : 14-Oct-2019

Issue Date : 17-Oct-2019

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Rassem Ayoubi	Senior Organic Chemist	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

Page : 2 of 9 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2638407)							
ES1933144-001	Anonymous	EG005T: Copper	7440-50-8	5	mg/kg	21	17	21.4	No Limit
ES1933144-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	12	9	29.6	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	13	10	24.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	78	54	37.0	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	53	38	32.8	0% - 50%
ES1933348-008	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	8	7	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	12	11	9.78	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	9	10	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	11	11	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	6	6	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	46	45	0.00	No Limit
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2638408)							
ES1933414-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	5	5	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	58	57	0.00	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	6	7	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	23	20	13.8	No Limit
ES1933349-006	TP106	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	3	3	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit

Page : 3 of 9
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	f	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES(QC Lot: 2638408) - continued							
ES1933349-006	TP106	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	15	14	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	28	32	11.9	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	25	25	0.00	No Limit
EA055: Moisture Co	ntent (Dried @ 105-110°	°C) (QC Lot: 2638410)							
ES1933250-005	Anonymous	EA055: Moisture Content		0.1	%	17.6	17.5	0.00	0% - 50%
ES1933348-010	Anonymous	EA055: Moisture Content		0.1	%	6.8	5.7	18.4	No Limit
EA055: Moisture Co	ntent (Dried @ 105-110°								
ES1933349-008	TP108	EA055: Moisture Content		0.1	%	15.5	15.7	1.08	0% - 50%
ES1933414-005	Anonymous	EA055: Moisture Content		0.1	%	9.1	9.6	4.96	No Limit
	overable Mercury by FIN			• • •	, ,				
ES1933144-001	Anonymous		7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1933348-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
	-	EG035T: Mercury	7439-97-0	0.1	Hig/kg	~0.1	~ 0.1	0.00	NO LITTIL
	overable Mercury by FIN								
ES1933349-006	TP106	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydroc	carbons (QC Lot: 2637856)							
ES1933348-008	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1933349-009	TP109	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page : 4 of 9
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	!	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyr	nuclear Aromatic Hydro	ocarbons (QC Lot: 2637856) - continued							
ES1933349-009	TP109	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Pe	etroleum Hydrocarbons								
ES1933324-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1933349-008	TP108	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
FP080/071: Total Pe	etroleum Hydrocarbons								
ES1933348-008	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
201000010 000	7 thonymous	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1933349-009	TP109	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
20.0000.0000		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ED080/071: Total Po	ocoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2637434)			99				
ES1933324-001	Anonymous		C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1933349-008	TP108	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
		EP080: C6 - C10 Fraction	C0_C10	10	ilig/kg	~10	~10	0.00	NO LITTIL
		ons - NEPM 2013 Fractions (QC Lot: 2637855)		100		400	100	0.00	N. 1
ES1933348-008	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
E04000040 000	TD400	EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1933349-009	TP109	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 2637434)								
ES1933324-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit

Page : 5 of 9
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 2637434) - continue	d							
ES1933324-001	Anonymous	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1933349-008	TP108	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page : 6 of 9
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 263840	07)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	99.6	86.0	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	103	83.0	113	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	97.9	76.0	128	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	106	86.0	120	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	104	80.0	114	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	107	87.0	123	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	109	80.0	122	
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 263840	08)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	91.9	86.0	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	95.4	83.0	113	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	93.4	76.0	128	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	94.1	86.0	120	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	101	80.0	114	
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	101	87.0	123	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	101	80.0	122	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 26	38406)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	80.1	70.0	105	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 26	38409)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	75.2	70.0	105	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(QCLo	ot: 2637856)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	117	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	110	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	101	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	104	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	117	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	102	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	122	73.0	127	
P075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	118	74.0	128	
P075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	97.0	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	102	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	95.2	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	97.8	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	105	70.0	126	

Page : 7 of 9
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Nu	nber	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 263785	s) - continu	ed						
EP075(SIM): Indeno(1.2.3.cd)pyrene	9-5	0.5	mg/kg	<0.5	6 mg/kg	85.7	61.0	121
EP075(SIM): Dibenz(a.h)anthracene 53-7	0-3	0.5	mg/kg	<0.5	6 mg/kg	73.3	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	4-2	0.5	mg/kg	<0.5	6 mg/kg	88.3	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2637434)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	74.4	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2637855)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	89.0	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	91.7	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	89.8	71.0	129
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 26	637434)						
EP080: C6 - C10 Fraction C6_	C10	10	mg/kg	<10	31 mg/kg	70.9	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 26	637855)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	90.4	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	90.1	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	93.0	63.0	131
EP080: BTEXN (QCLot: 2637434)								
EP080: Benzene 71-4	3-2	0.2	mg/kg	<0.2	1 mg/kg	86.5	62.0	116
EP080: Toluene 108-8	8-3	0.5	mg/kg	<0.5	1 mg/kg	86.6	67.0	121
EP080: Ethylbenzene 100-4	1-4	0.5	mg/kg	<0.5	1 mg/kg	66.6	65.0	117
EP080: meta- & para-Xylene 108-3	8-3	0.5	mg/kg	<0.5	2 mg/kg	76.4	66.0	118
106-4								
EP080: ortho-Xylene 95-4		0.5	mg/kg	<0.5	1 mg/kg	76.3	68.0	120
EP080: Naphthalene 91-2	0-3	1	mg/kg	<1	1 mg/kg	75.5	63.0	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2638407)							
ES1933144-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	93.5	70.0	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	99.7	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	107	70.0	130	
		EG005T: Copper	7440-50-8	250 mg/kg	101	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	99.1	70.0	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	102	70.0	130	

Page : 8 of 9
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: 1	otal Metals by ICP-AES (QCLot: 2638407) - continued						
ES1933144-001	Anonymous	EG005T: Zinc	7440-66-6	250 mg/kg	102	70.0	130
FG005(FD093)T: 1	Fotal Metals by ICP-AES (QCLot: 2638408)						
ES1933349-006	TP106	EG005T: Arsenic	7440-38-2	50 mg/kg	97.0	70.0	130
201000040 000	11 100	EG0051: Alsenic	7440-43-9	50 mg/kg	100	70.0	130
		EG005T: Caumium	7440-47-3	50 mg/kg	102	70.0	130
		EG005T: Copper	7440-50-8	250 mg/kg	99.3	70.0	130
			7439-92-1	250 mg/kg	99.1	70.0	130
		EG005T: Lead	7440-02-0		103	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg			130
		EG005T: Zinc	7440-00-0	250 mg/kg	103	70.0	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2638406)						
ES1933144-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	82.3	70.0	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2638409)						
ES1933349-006	TP106	EG035T: Mercury	7439-97-6	5 mg/kg	86.8	70.0	130
EP075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QCLot: 2637856)			3 0			
ES1933348-008	Anonymous	EDOZE/ONA). A secondal la con	83-32-9	10 mg/kg	100	70.0	130
ES 1933340-000	Anonymous	EP075(SIM): Acenaphthene	129-00-0	10 mg/kg 10 mg/kg	106	70.0	130
		EP075(SIM): Pyrene	129-00-0	TO Hig/kg	100	70.0	130
	Petroleum Hydrocarbons (QCLot: 2637434)						
ES1933324-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	78.5	70.0	130
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 2637855)						
ES1933348-008	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	112	73.0	137
		EP071: C15 - C28 Fraction		2319 mg/kg	121	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	121	52.0	132
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 2637434)					
ES1933324-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	73.5	70.0	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions(QC		_	0 0			
ES1933348-008	Anonymous			960 ma/ka	105	73.0	137
ES 1933340-000	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	124	53.0	131
		EP071: >C16 - C34 Fraction		3223 mg/kg			
		EP071: >C34 - C40 Fraction		1058 mg/kg	117	52.0	132
EP080: BTEXN (C	(CLot: 2637434)						
ES1933324-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	87.4	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	92.3	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.3	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	82.7	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	81.8	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	90.7	70.0	130

Page : 9 of 9 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1933349** Page : 1 of 6

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

 Contact
 : MS FIONA BROOKER
 Telephone
 : +61-2-8784 8555

 Project
 : 14399
 Date Samples Received
 : 11-Oct-2019

 Site
 : --- Issue Date
 : 17-Oct-2019

Sampler : BYRON GARNER No. of samples received : 17
Order number :---- No. of samples analysed : 17

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6 Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @	105-110°C)								
Soil Glass Jar - Unpreserved (EA055									
TP101,	TP102,	08-Oct-2019				14-Oct-2019	22-Oct-2019	✓	
TP103,	TP104,								
TP105,	TP106,								
TP107,	TP108,								
TP109									
Soil Glass Jar - Unpreserved (EA055	5)								
RP101,	RP102,	09-Oct-2019				14-Oct-2019	23-Oct-2019	✓	
RP103,	RP108,								
RP109									
EG005(ED093)T: Total Metals by IC	P-AES								
Soil Glass Jar - Unpreserved (EG005	ST)								
TP101,	TP102,	08-Oct-2019	14-Oct-2019	05-Apr-2020	✓	15-Oct-2019	05-Apr-2020	✓	
TP103,	TP104,								
TP105,	TP106,								
TP107,	TP108,								
TP109									
Soil Glass Jar - Unpreserved (EG005	5T)								
RP101,	RP102,	09-Oct-2019	14-Oct-2019	06-Apr-2020	✓	15-Oct-2019	06-Apr-2020	✓	
RP103,	RP108,								
RP109									
EG035T: Total Recoverable Mercui	ry by FIMS								
Soil Glass Jar - Unpreserved (EG035	5T)								
TP101,	TP102,	08-Oct-2019	14-Oct-2019	05-Nov-2019	✓	15-Oct-2019	05-Nov-2019	✓	
TP103,	TP104,								
TP105,	TP106,								
TP107,	TP108,								
TP109									
Soil Glass Jar - Unpreserved (EG035	ST)								
RP101,	RP102,	09-Oct-2019	14-Oct-2019	06-Nov-2019	✓	15-Oct-2019	06-Nov-2019	✓	
RP103,	RP108,								
RP109									

Page : 3 of 6
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = Withi	n holding tin
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrod	carbons							
Soil Glass Jar - Unpreserved (EP075(SIM))								
TP101,	TP102,	08-Oct-2019	14-Oct-2019	22-Oct-2019	✓	16-Oct-2019	23-Nov-2019	✓
TP103,	TP104,							
TP105,	TP106,							
TP107,	TP108,							
TP109								
Soil Glass Jar - Unpreserved (EP075(SIM))								
RP101,	RP102,	09-Oct-2019	14-Oct-2019	23-Oct-2019	✓	16-Oct-2019	23-Nov-2019	✓
RP103,	RP108,							
RP109								
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
TS2,	TSC2	02-Oct-2019	14-Oct-2019	16-Oct-2019	✓	16-Oct-2019	16-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP080)								
TP101,	TP102,	08-Oct-2019	14-Oct-2019	22-Oct-2019	✓	16-Oct-2019	22-Oct-2019	✓
TP103,	TP104,							
TP105,	TP106,							
TP107,	TP108,							
TP109								
Soil Glass Jar - Unpreserved (EP080)								
RP101,	RP102,	09-Oct-2019	14-Oct-2019	23-Oct-2019	✓	16-Oct-2019	23-Oct-2019	✓
RP103,	RP108,							
RP109,	TB2							
EP080/071: Total Recoverable Hydrocarbor	s - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)								
TS2,	TSC2	02-Oct-2019	14-Oct-2019	16-Oct-2019	✓	16-Oct-2019	16-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP080)				00.0.1.0010			00 0 1 00 10	
TP101,	TP102,	08-Oct-2019	14-Oct-2019	22-Oct-2019	✓	16-Oct-2019	22-Oct-2019	✓
TP103,	TP104,							
TP105,	TP106,							
TP107,	TP108,							
TP109								
Soil Glass Jar - Unpreserved (EP080)								
RP101,	RP102,	09-Oct-2019	14-Oct-2019	23-Oct-2019	✓	16-Oct-2019	23-Oct-2019	✓
RP103,	RP108,							
RP109,	TB2							

Page : 4 of 6
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: SOIL						Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E)	ktraction / Preparation		Analysis			
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN									
Soil Glass Jar - Unpreserved (EP080)									
TS2,	TSC2		02-Oct-2019	14-Oct-2019	16-Oct-2019	✓	16-Oct-2019	16-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP080)									
TP101,	TP102,		08-Oct-2019	14-Oct-2019	22-Oct-2019	✓	16-Oct-2019	22-Oct-2019	✓
TP103,	TP104,								
TP105,	TP106,								
TP107,	TP108,								
TP109									
Soil Glass Jar - Unpreserved (EP080)									
RP101,	RP102,		09-Oct-2019	14-Oct-2019	23-Oct-2019	✓	16-Oct-2019	23-Oct-2019	✓
RP103,	RP108,								
RP109,	TB2								

Page : 5 of 6
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	3	29	10.34	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	5	40	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nethod Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
AH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 6
Work Order : ES1933349

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

CHAIN OF CUSTODY ALS Laboratory:

EADELA'DE 21 Gurma Road Pooraka SA 5095 Ph. 08 6359 0809 E. adelaide@alaglobat.com EBRISBANE 25 Shard Streat Stafford CLD 4053 Ph. 07 3243 7222 E. samples brickenn@alegiobal.com EBLADSTONE: 46 Callamondah Drive Clinton CLD 4690 Ph. 07 747 1590 E. gladetone@alegiobal.com DMACKAY 78 Herbour Road Mackey QLD 4740 Ph; 07 4944 0177 E: mackay@alsglobal.com

EMELBOURNE 2-4 Westall Road Springvals VIC 3171
Ph. 33 5549 9600 Et serriples, melbourne@alsglobal.com
EMUDGEE 27 Sydnay Road Mudgee NSW 2650
Ph. 02 6372 6795 Et mudgee.mail@alsglobal.com

DNEWCASTLE 5/565 Mailtand Rd Mayfield West NSW 2304 Ph. 02 4014 2500 E: samples nevcaste@alsglobal.com

CINOWRA 4/13 Geary Place North Nowrs NSW 2541 Ph: 024423 2063 E: nowse@alsglobal.com

CIPERTH 10 Hed Way Malaga WA 8090 Ph: 08 9209 7655 E; samples.perth@alaglobal.com USYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Phr. 02 8784 8555 E. samples sydney@alsglobat.com UTOWNSVRLE 14-15 Deama Court Sohla QLD 4918 Phr. 07 4798 0600 E. bowseille environmental@alsglobal.com

□WOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph: 02 4225 3125 E: portkembla@alsolobal com

200-2 3 JAL 2 X JAK 2 S	* C * **** C * ********	please tick →	Ph: 07 7471 5690 Et gladstoner	@aisglobal.com	Ph: 02	02 6372 6735 E: mudgee.mail@aleglobal.com	Ph: 0	08 9209 7655 E	: eamples.perth@	aisglobal.com	Ph	n: 02 4225 3125 E: portkemb	bla@alaglobal.com	
CLIENT:	RCA Australia		TURNARO	UND REQUIREMENTS :							FOR LABORA	TORY USE ONLY (Circle)	-
OFFICE:	92 Hill Street, Can	rington	(Standard TA Trace Organi	T may be longer for some tests e.g cs)	. Ultra	☐ Non Standard or urgent TAT (List due o	ate):		•		Clusterly Seal Inte			No (N)
RCA Ref No: 143	99		ALS QUOT	TE NO.:	SY	YBQ_400_18		COC SEQU	ENCE NUMBI	R (Circle)	F/96 Ice /mozen i	ice bricke present upon	73) N	40 N/
							coc:	1 2	3 4	5 6	7 Random Sample	Temperature on Receip		,
PROJECT MANA	GER: Fiona Brooker		CONTACT PH: 0408 687	529			OF:	1 2	3 4	5 6	7 Other comment		0.9	
SAMPLER: Byror	n Garmer		SAMPLER MOBILE: 040	1 481 735		RELINQUISHED BY: M. BUK		EIVED BY:			RELINQUISHED BY:		RECEIVED BY:	
OC emailed to A	LS? (YES / NO)		EDD FORMAT (or defaul	t):		(Red)	K	741			I KIM		HT	
mail Reports to:	administrator@rca.cor	n.au + fionab@rca.com	.au + zacharyl@rca.com.au			DATE/TIME:	DATE	TIME)			DATE/TIME:		DATE/TIME: 7	45 pm
mali involce to:	as above					11/10/19, 2,33 p.n	1 - N	110110	1 14:	40	11/10/10	17:00	11.10.19	•
COMMENTS/SPE	CIAL HANDLING/STO	RAGE OR DISPOSAL	:			• 1					1,1			

ALS USE		IPLE DETAILS IOLID (S) WATER (W)		CONTAINER INFORMATION	erende Service Service	ANALY Where M	'SIS REQUIR etals are req	RED Including SUITE uired, specify Total (u	S (NB. Suite Codes infiltered bottle required).	must be listed t ired) or Dissolv	to attract suite price) red (field filtered bottle	Additional Information
LAB ID	Sample ID	Date / Time	Matrix	Type & Preservative (refer to codes below)	Total Containers	S26 - TRH(C6- C36/40)/BTEXN/PA H plus 8 metals	Voiatile TRH & BTEXN					Comments on likely contaminant level dilutions, or samples requiring specific analysis etc.
	TP101	8/10/19	Soil		1	х				107	1771	
2	TP102		Soll		1	х				11971	7771277 - 10 0V/1	
3	TP103		Soil		1	х			- 1/47	CEI ¢	1 0 a / 1 -	2 22
4	TP104		Soll		1	х						
5	TP105		Soil		1	х						
6	TP106		Soil		1	х						
7	TP107		Soll		1	х						
8	TP108		Soil		1	х					E I	nvironmental Divisio
q	TP109	4	Soil		1	х					S	/dney
10	RP101	9/10/19	Soil		1	. х						vor Order Reference Work Order Reference ES1933349
1)	RP102	ĺ	Soil		1	х						_0.0000+1
12	RP103		Soil		1	х						
13	RP108		Soil		1	х						
14	RP109	*	Soil		1	х						
15	TB2	9/10/19	Soil		1		x				fele	phone + 61-2-8784 8555
/b	T82	8/10/19	Soil	TOTAL	1 16		х					

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP = Airfreight Unpreserved Plastic; V = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = HCI preserved Plastic; HS = HCI preserved Plastic; HS = HCI preserved Plastic; HS = HCI preserved Plastic; F = Formaldehyde Preserved Glass; V = Z = Zino Acctate Preserved Bottle; E = EDTA Preserved Bottle; ASS = Plastic Bag for Acid Sulphate Solts; B = Unpreserved Basic; F = Formaldehyde Preserved Basic; F = Fo

SAMPLE RECEIPT NOTIFICATION (SRN)

ES1933349 Work Order

: ROBERT CARR & ASSOCIATES P/L Client Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Customer Services ES

Address : P O BOX 175 Address : 277-289 Woodpark Road Smithfield CARRINGTON NSW, AUSTRALIA 2294

NSW Australia 2164

E-mail E-mail : ALSEnviro.Sydney@ALSGlobal.com : fionab@rca.com.au

Telephone Telephone : +61-2-8784 8555 : +61 02 4902 9200 Facsimile **Facsimile** : +61 02 4902 9299 : +61-2-8784 8500

Project : 14399 Page · 1 of 3

Order number Quote number : ES2017ROBCAR0004 (SYBQ/400/18) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : BYRON GARNER

Dates

Date Samples Received Issue Date : 11-Oct-2019 14:38 : 11-Oct-2019 Scheduled Reporting Date Client Requested Due : 17-Oct-2019 17-Oct-2019

Date

Delivery Details

Mode of Delivery Undefined Security Seal : Not Available No of coolers/hoxes · 1 **Temperature** : 0.9'c - Ice present

No. of samples received / analysed Receipt Detail · 17 / 17

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 11-Oct-2019 Issue Date

Page

2 of 3 ES1933349 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

TBs

9)/BTEXN with No Moisture for

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

	sampling date wi	Il be assumed by the ckets without a time	103 nt	SOIL - S-18 (NO MOIST) TRH(C6-C9)/BTEXN with No N	OIL - S-26 metals/TRH/BTEXN/PAH
Matrix: SOIL			EA055-103 e Content	18 (N 29)/B	S-26 Is/TRH/E
Laboratory sample	Client sampling date / time	Client sample ID	SOIL - EA055-10: Moisture Content	SOIL - S- TRH(C6-0	SOIL - S-
ES1933349-001	08-Oct-2019 00:00	TP101	✓		✓
ES1933349-002	08-Oct-2019 00:00	TP102	✓		✓
ES1933349-003	08-Oct-2019 00:00	TP103	✓		✓
ES1933349-004	08-Oct-2019 00:00	TP104	✓		✓
ES1933349-005	08-Oct-2019 00:00	TP105	1		✓
ES1933349-006	08-Oct-2019 00:00	TP106	✓		✓
ES1933349-007	08-Oct-2019 00:00	TP107	✓		✓
ES1933349-008	08-Oct-2019 00:00	TP108	✓		✓
ES1933349-009	08-Oct-2019 00:00	TP109	✓		✓
ES1933349-010	09-Oct-2019 00:00	RP101	1		✓
ES1933349-011	09-Oct-2019 00:00	RP102	✓		✓
ES1933349-012	09-Oct-2019 00:00	RP103	✓		✓
ES1933349-013	09-Oct-2019 00:00	RP108	✓		✓
ES1933349-014	09-Oct-2019 00:00	RP109	✓		✓
ES1933349-015	09-Oct-2019 00:00	TB2		✓	
ES1933349-016	02-Oct-2019 00:00	TS2		✓	
ES1933349-017	02-Oct-2019 00:00	TSC2		✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 11-Oct-2019

 Page
 : 3 of 3

 Work Order
 : ES1933349 Amendment 0

 Client
 : ROBERT CARR & ASSOCIATES P/L

Requested Deliverables

		ICE	

 *AU Certificate of Analysis - NATA (COA) 	Email	administrator@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	administrator@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	administrator@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	administrator@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
- Chain of Custody (CoC) (COC)	Email	administrator@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	administrator@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	administrator@rca.com.au

FIONA BROOKER

- *AU Certificate of Analysis - NATA (COA)	Email	fionab@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	fionab@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	fionab@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	fionab@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	fionab@rca.com.au
- Chain of Custody (CoC) (COC)	Email	fionab@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	fionab@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	fionab@rca.com.au

ZAC LAUGHLAN

- *AU Certificate of Analysis - NATA (COA)	Email	zacharyl@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	zacharyl@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	zacharyl@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	zacharyl@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	zacharyl@rca.com.au
- Chain of Custody (CoC) (COC)	Email	zacharyl@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	zacharyl@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	zacharyl@rca.com.au

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 228288

Client Details	
Client	RCA Australia
Attention	Fiona Brooker, Zac Laughlan
Address	PO Box 175, Carrington, NSW, 2294

Sample Details	
Your Reference	<u>14399</u>
Number of Samples	1 Soil
Date samples received	14/10/2019
Date completed instructions received	14/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	21/10/2019						
Date of Issue	17/10/2019						
NATA Accreditation Number 2901. T	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/II	EC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date extracted	-	15/10/2019
Date analysed	-	15/10/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	76

svTRH (C10-C40) in Soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date extracted	-	15/10/2019
Date analysed	-	16/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	90

PAHs in Soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date extracted	-	15/10/2019
Date analysed	-	15/10/2019
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.3
Anthracene	mg/kg	0.1
Fluoranthene	mg/kg	1.4
Pyrene	mg/kg	1.3
Benzo(a)anthracene	mg/kg	0.9
Chrysene	mg/kg	0.6
Benzo(b,j+k)fluoranthene	mg/kg	1
Benzo(a)pyrene	mg/kg	1.0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7
Total +ve PAH's	mg/kg	8.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.3
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.4
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.4
Surrogate p-Terphenyl-d14	%	104

Envirolab Reference: 228288

Revision No: R00

Acid Extractable metals in soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date prepared	-	15/10/2019
Date analysed	-	15/10/2019
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	26
Copper	mg/kg	10
Lead	mg/kg	11
Mercury	mg/kg	<0.1
Nickel	mg/kg	6
Zinc	mg/kg	47

Moisture		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date prepared	-	15/10/2019
Date analysed	-	16/10/2019
Moisture	%	5.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 228288

Revision No: R00

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Envirolab Reference: 228288 Page | 8 of 14

Revision No: R00

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	83	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	83	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	91	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	87	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	80	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	79	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	80	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	87	[NT]		[NT]	[NT]	88	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	87	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	87	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	
Surrogate o-Terphenyl	%		Org-003	88	[NT]		[NT]	[NT]	97	

QUAI	in Soil			Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	103	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	121	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	110	[NT]		[NT]	[NT]	104	

QUALITY CONTROL: Acid Extractable metals in soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	113	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	116	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	96	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	99	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	

Result Definitions		
NT	Not tested	
NA	Test not required	
INS	Insufficient sample for this test	
PQL	Practical Quantitation Limit	
<	Less than	
>	Greater than	
RPD	Relative Percent Difference	
LCS	Laboratory Control Sample	
NS	Not specified	
NEPM	National Environmental Protection Measure	
NR	Not Reported	

Quality Control Definitions		
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.	
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.	
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.	
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 228288 Page | 14 of 14 Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 228288

Client Details	
Client	RCA Australia
Attention	Fiona Brooker, Zac Laughlan
Address	PO Box 175, Carrington, NSW, 2294

Sample Details	
Your Reference	<u>14399</u>
Number of Samples	1 Soil
Date samples received	14/10/2019
Date completed instructions received	14/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	21/10/2019		
Date of Issue	17/10/2019		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		228288-1		
Your Reference	UNITS	QA5		
Depth		0.1		
Date Sampled		09/10/2019		
Type of sample		Soil		
Date extracted	-	15/10/2019		
Date analysed	-	15/10/2019		
TRH C ₆ - C ₉	mg/kg	<25		
TRH C ₆ - C ₁₀	mg/kg	<25		
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		
Benzene	mg/kg	<0.2		
Toluene	mg/kg	<0.5		
Ethylbenzene	mg/kg	<1		
m+p-xylene	mg/kg	<2		
o-Xylene	mg/kg	<1		
naphthalene	mg/kg	<1		
Total +ve Xylenes	mg/kg	<3		
Surrogate aaa-Trifluorotoluene	%	76		

svTRH (C10-C40) in Soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date extracted	-	15/10/2019
Date analysed	-	16/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	90

PAHs in Soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date extracted	-	15/10/2019
Date analysed	-	15/10/2019
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.3
Anthracene	mg/kg	0.1
Fluoranthene	mg/kg	1.4
Pyrene	mg/kg	1.3
Benzo(a)anthracene	mg/kg	0.9
Chrysene	mg/kg	0.6
Benzo(b,j+k)fluoranthene	mg/kg	1
Benzo(a)pyrene	mg/kg	1.0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7
Total +ve PAH's	mg/kg	8.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.3
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.4
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.4
Surrogate p-Terphenyl-d14	%	104

Envirolab Reference: 228288

Revision No: R00

Acid Extractable metals in soil		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date prepared	-	15/10/2019
Date analysed	-	15/10/2019
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	26
Copper	mg/kg	10
Lead	mg/kg	11
Mercury	mg/kg	<0.1
Nickel	mg/kg	6
Zinc	mg/kg	47

Moisture		
Our Reference		228288-1
Your Reference	UNITS	QA5
Depth		0.1
Date Sampled		09/10/2019
Type of sample		Soil
Date prepared	-	15/10/2019
Date analysed	-	16/10/2019
Moisture	%	5.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 228288

Revision No: R00

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Envirolab Reference: 228288 Page | 8 of 14

Revision No: R00

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	83	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	83	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	91	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	87	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	80	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	79	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	80	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	87	[NT]		[NT]	[NT]	88	

QUALITY CONTROL: svTRH (C10-C40) in Soil							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019		
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	87		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	87		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106		
Surrogate o-Terphenyl	%		Org-003	88	[NT]		[NT]	[NT]	97		

QUA	LITY CONTRO	ITY CONTROL: PAHs in Soil				Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	103	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	121	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	110	[NT]		[NT]	[NT]	104	

QUALITY CONTROL: Acid Extractable metals in soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Date analysed	-			15/10/2019	[NT]		[NT]	[NT]	15/10/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	113	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	116	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	96	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	99	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	107	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 228288 Page | 14 of 14 Revision No: R00

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP

Client P	roject M	lame / I	Vumbe	- / Cit	t- /				I Envi	irolal	h Sai	nico	-	
	Client Project Name / Number / Site etc (ie report title): Envirolab Services													
	14399 PO No.:					12 Ashley St, Chatswood, NSW 2067 Phone: 02 9910 6200 Fax :02 9910 6201								
PO No.:														
Envirola	Envirolab Quote No. :						E-mail: ahie@envirolabservices.com.au							
Date re	Date results required: Contact: Aileen Hie Envirolab Services WA t/a MPL Or choose: 16-18 Hayden Crt, Myaree WA 618													
				t/a MPL										
				Myare	aree WA 6154									
Note: Inform lab in advance if urgent tumaround is required - surcharge			Fax :08 9317 4163											
	nments								4					, car i de seas i a co
L-man, rabempheomiaa														
	. 44 * 52	. met. 5-1	ita. su	a, -':			7	1.5		= :	. 2:00			
		1			<u>ः । </u>	sts Re	quirea		Se	a' (************************************	* ***			Comments
Combination 3 - TRH, BTEX, PAH, 8	689								_					Provide as much information about the sample as you can
Х									<u> </u>				I	
									Eniden	hh Soe	vices:	ļ	╁	
		1.0				er	VIROU	.		2 Ashl	ey St	 	_	
	_				<u> </u>		<u> </u>	C	atswoo	#3 NSW #1 99 16	2057 2057	 	 	
	_				<u> </u>	<u></u>	h.No	22	83	88		ļ		
					ļ				٠	<u> </u>	<u> </u>	—	_	
_	1				ļ	D	ate Re	deived:	14/1	27	1	_	_	
					ļ	''	ne re	bv: S	2°2	<u> </u>	↓			<u> </u>
	 	↓					mp Ø		pient	ļ		↓_		
		<u> </u>				c	poling.	golle	pack					
	1	<u> </u>			ļ	S	ecurity	Intact	Broker	vivone	<u>'</u>		Ь	
								igsplace			↓_			
		1		L						<u> </u>			<u> </u>	
Receive	d by (c	ompany	1:00	ععا	بلصة	•								
Print Na	ame: ද	3.5	1105	72Y	<u>~</u>				Samp	les Re	ceived	(Cool)	or Amb	ient (circle one)
Date &	Time:	14/1	011	P	16	05								
Date & Time: 14/10/19 Temperature Received at: 2, 4 (If application of the properties of the propertie					-									
	Envirola Date re Or choc Note: Initial applies Lab com I Volume: Initial applies Lab com I Receive Print Ni Date &	Envirolab Quot Date results re- Or choose: Note: Inform lab in applies Lab comments: Yes Hed Signature of the state of th	Envirolab Quote No.: Date results required: Or choose: Note: Intom lab in advance in applies Lab comments: U Envirolab Quote No.: Or choose: Note: Intom lab in advance in applies Lab comments: X X Received by (company Print Name: S Date & Time: 14 / 1	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inrom tap in advance if urgent applies Lab comments: X X Received by (company): Of Print Name: Signal	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inform lab in advance if urgent tumard applies Lab comments: X X Received by (company): Print Name: Print Name: 14/10/19	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inform fab in advance if urgent turnaround is reapplies Lab comments: X X Received by (company): OLS Solution of the print Name: S. 3011077	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inform lab in advance if urgent turnaround is required applies Lab comments: I Tests Ref. So YHAL Signal Information of the property of the propert	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inform tab in advance if urgent turnaround is required - surchan applies Lab comments: U Tests Required X X Cruficular A Lab comments: U Tests Required Date Required Date Received by (company): OSSOL- Print Name: S. Bolton Date & Time: 14 / 10 / 19 605	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inform lab in advance if urgent turnaround is required - surcharge applies Lab comments: I Tests Required E WHY SIPPE US SIPPE US SIPPE US SECURITY Mark Temp: Golding Security Mark Received by (company): GUS SIPPE US SIPPE US SECURITY Mark Print Name: S. BOLOW Date & Time: 14 / 10 / 18 605	Phon: Envirolab Quote No.: Date results required: Or choose: Note: Inform lab in advance if urgent turnaround is required - surcharge applies Lab comments: E-mai Cont Tests Required Tests Required X X Date Received: W/16 Time Recei	PO No.: Envirolab Quote No.: Date results required: Or choose: Note: Inform law in advance if urgent turnaround is required - surcharge applies Lab comments: Tests Required X X X Tests Required Tests Required Tests Required Think No. 20 2 2 8 8 12 8 12 8 12 8 12 8 12 8 12	Phone: 02 991 Envirolab Quote No.: Date results required: Or choose: Note: Intorn iab in advance if urgent tumaround is required - surcharge applies Lab comments: E-mail: lab@n Contact: Joshu Tests Required Tests Required X Ashly Stricts Chatswood Nathly Stricts Date Received: W/10 / 19 Temper (Mahbient Cooling Reguler) Received by (company): CSSA Received by (company): CSSA Received by (company): CSSA Lab use only: Samples Received Date & Time: 14 / 10 / 18 60 S	Phone: 02 9910 62 Envirolab Quote No.: Date results required: Or choose: Note: Inform lab in advance if urgent turnaround is required - surcharge applies Lab comments: Tests Required Tests Required X X Tests Required Tests Required Tests Required That wood Now 1007 Time Received: Now 1007 Time Received: Now 1007 Temp: (Sulphinbient, Cooling): Security Intatu Broken None Received by (company): OSSO - Lab use only: Print Name: S. Bollow Samples Received: Cool Temperature Received: Cool	Phone: 02 9910 6200 Envirolab Quote No.: Date results required: Or choose: Note: Inform lab in advance if urgent tumaround is required - surcharge applies Lab comments: Tests Required X Tests Required X Sinvirolab Services E-mail: lab@mpl.com.au Contact: Joshua Lim Tests Required X Sinvirolab Services E-mail: lab@mpl.com.au Contact: Joshua Lim Tests Required X Sinvirolab Services E-mail: lab@mpl.com.au Contact: Joshua Lim Tests Required X Sinvirolab Services E-mail: lab@mpl.com.au Contact: Joshua Lim Tests Required X Sinvirolab Services E-mail: lab@mpl.com.au Contact: Joshua Lim Tests Required A Sinvirolab Services E-mail: lab@mpl.com.au Contact: Joshua Lim Tests Required X Lab use only: Samples Received: Cool or Amb Temperature Received at: A Samples Received at: A

CERTIFICATE OF ANALYSIS

Work Order : ES1933987

: ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER

Address : P O BOX 175

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 4902 9200

Project : 14399
Order number · ----

Client

C-O-C number : ----

Sampler : Zac Laughlan

Site : ---

Quote number : SYBQ/400/18

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 03-Oct-2019 19:30

Date Analysis Commenced : 22-Oct-2019

Issue Date : 24-Oct-2019 13:02

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 5 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(q.h.i)pervlene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 5 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 1439

Analytical Results

Page : 4 of 5 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Analytical Results

Page : 5 of 5
Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Surrogate Control Limits

Sub-Matrix: TCLP LEACHATE		Recovery Limits (%)				
Compound	CAS Number	Low	High			
EP075(SIM)S: Phenolic Compound Surrogates						
Phenol-d6	13127-88-3	10	44			
2-Chlorophenol-D4	93951-73-6	14	94			
2.4.6-Tribromophenol	118-79-6	17	125			
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	20	104			
Anthracene-d10	1719-06-8	27	113			
4-Terphenyl-d14	1718-51-0	32	112			

QUALITY CONTROL REPORT

Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER

Address : P O BOX 175

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 4902 9200

Project : 14399
Order number : ----

C-O-C number : ----

Sampler : Zac Laughlan

Site : ---

Quote number : SYBQ/400/18

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 03-Oct-2019
Date Analysis Commenced : 22-Oct-2019

Issue Date 24-Oct-2019

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Sub-Matrix: SOIL

Laboratory Control Spike (LCS) Report

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Method Blank (MB)

Cub Matrix Cole							
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EN33: TCLP Leach (QCLot: 2655318)							
EN33a: Initial pH	0.1	pH Unit	1.0				
EN33a: After HCl pH	0.1	pH Unit	<0.1				
EN33a: Final pH	0.1	pH Unit	1.0				
Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 2658032)							
EP075(SIM): Naphthalene 91-20-3	1	μg/L	<1.0	5 μg/L	71.9	50.0	94.0
EP075(SIM): Acenaphthylene 208-96-8	1	μg/L	<1.0	5 μg/L	82.2	63.6	114
EP075(SIM): Acenaphthene 83-32-9	1	μg/L	<1.0	5 μg/L	71.6	62.2	113
EP075(SIM): Fluorene 86-73-7	1	μg/L	<1.0	5 μg/L	79.8	63.9	115
EP075(SIM): Phenanthrene 85-01-8	1	μg/L	<1.0	5 μg/L	82.9	62.6	116
EP075(SIM): Anthracene 120-12-7	1	μg/L	<1.0	5 μg/L	88.8	64.3	116
EP075(SIM): Fluoranthene 206-44-0	1	μg/L	<1.0	5 μg/L	93.2	63.6	118
EP075(SIM): Pyrene 129-00-0	1	μg/L	<1.0	5 μg/L	92.9	63.1	118
EP075(SIM): Benz(a)anthracene 56-55-3	1	μg/L	<1.0	5 μg/L	82.2	64.1	117
EP075(SIM): Chrysene 218-01-9	1	μg/L	<1.0	5 μg/L	78.3	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2	1	μg/L	<1.0	5 μg/L	70.6	61.7	119
205-82-3							
EP075(SIM): Benzo(k)fluoranthene 207-08-9	1	μg/L	<1.0	5 μg/L	93.2	63.0	115
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	μg/L	<0.5	5 μg/L	88.7	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	1	μg/L	<1.0	5 μg/L	89.4	59.9	118
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	1	μg/L	<1.0	5 μg/L	84.1	61.2	117
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	1	μg/L	<1.0	5 μg/L	86.4	59.1	118

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1933987** Page : 1 of 4

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

 Contact
 : MS FIONA BROOKER
 Telephone
 : +61-2-8784 8555

 Project
 : 14399
 Date Samples Received
 : 03-Oct-2019

 Site
 : --- Issue Date
 : 24-Oct-2019

Sampler : Zac Laughlan No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Outliers: Analysis Holding Time Compliance

Matrix: SOIL

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted			Date analysed	Due for analysis	Days
			overdue			overdue
EN33: TCLP Leach						
Non-Volatile Leach: 14 day HT(e.g. SV organics)						
BH108A	22-Oct-2019	16-Oct-2019	6			

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	2	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	2	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

						2.000.,	
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EN33: TCLP Leach							
Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN33a)							
BH108A	02-Oct-2019	22-Oct-2019	16-Oct-2019	<u>*</u>			
Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method	Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM))							
BH108A	22-Oct-2019	23-Oct-2019	29-Oct-2019	✓	23-Oct-2019	02-Dec-2019	✓

Page : 3 of 4
Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

and disposed rates in modify of disposed to provided in the duminary									
Matrix: SOIL				Evaluation	n: × = Quality Co	ontrol frequency r	not within specification; ✓ = Quality Control frequency within specification		
Quality Control Sample Type		Co	ount	Rate (%)		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation			
Method Blanks (MB)									
TCLP for Non & Semivolatile Analytes	EN33a	1	11	9.09	9.09	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix: WATER				Evaluation	n: × = Quality Co	ontrol frequency r	not within specification ; ✓ = Quality Control frequency within specification		
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	2	0.00	10.00	se.	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	2	0.00	5.00	s c	NEPM 2013 B3 & ALS QC Standard		

Page : 4 of 4 Work Order : ES1933987

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TCLP for Non & Semivolatile Analytes	EN33a	SOIL	In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.
Separatory Funnel Extraction of Liquids	ORG14	SOIL	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.

SHB-INA

Fadi Soro

From:

Fiona Brooker <fionab@rca.com.au>

Sent:

Thursday, 17 October 2019 9:10 AM

To: Cc:

Samples Sydney Loren Schiavon

Subject:

[EXTERNAL] - ES1932342 - additional testing

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Good morning

0

Can you please undertake TCLP and PAH testing of leachate on sample BH108A from ES192342?

Thanks and regards

Celebrating 25 Years in 2019!

Fiona Brooker
Environmental Services Manager

t: 02 4902 9225 | f: 02 4902 9299 | m: 0408 687 529

e: fionab@rca.com.au | w: www.rca.com.au

a: PO Box 175 / 92 Hill Street, Carrington NSW 2294

Environmental Division Sydney Work Order Reference ES1933987

Felephone: +61-2-8784 8555

A division of Robert Carr & Associates Ptv. Ltd.

Please consider the environment prior to printing this e-mail

Any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Robert Carr & Associates Pty. Ltd. If you have received this communication in error, please reply to this email to notify the sender of its incorrect delivery, and then delete both it and your reply.

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES1933987 Work Order

: ROBERT CARR & ASSOCIATES P/L Client Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Customer Services ES

Address : P O BOX 175 Address : 277-289 Woodpark Road Smithfield CARRINGTON NSW, AUSTRALIA 2294

NSW Australia 2164

E-mail E-mail : ALSEnviro.Sydney@ALSGlobal.com : fionab@rca.com.au

Telephone Telephone : +61-2-8784 8555 : +61 02 4902 9200 Facsimile Facsimile : +61 02 4902 9299 : +61-2-8784 8500

Project : 14399 Page · 1 of 3

Order number Quote number : ES2017ROBCAR0004 (SYBQ/400/18) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : Zac Laughlan

Dates

Date Samples Received : 03-Oct-2019 19:30 Issue Date : 18-Oct-2019 Scheduled Reporting Date : 24-Oct-2019 Client Requested Due 24-Oct-2019

Date

Delivery Details

Mode of Delivery Security Seal : Samples On Hand : Not Available

No of coolers/hoxes Temperature : 4.1 No. of samples received / analysed Receipt Detail : 1/1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- This is a rebatch of ES1932342.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 18-Oct-2019 Issue Date

Page

: 2 of 3 : ES1933987 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date **EP075 SIM PAH only** is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component CLP Leachate Matrix: SOIL OIL - EN33a Client sample ID Laboratory sample Client sampling ID date / time ES1933987-001 02-Oct-2019 00:00 BH108A

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples Received		e for Samples Rec		ed Instructions Received	
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation		
EN33a: TCLP for No	n & Semivolatile Analytes								
BH108A	Non-Volatile Leach: 14 day HT(€	16-Oct-2019		03-Oct-2019	✓	17-Oct-2019	×		

Issue Date : 18-Oct-2019

 Page
 : 3 of 3

 Work Order
 : ES1933987 Amendment 0

 Client
 : ROBERT CARR & ASSOCIATES P/L

Requested Deliverables

		ICE	

 *AU Certificate of Analysis - NATA (COA) 	Email	administrator@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	administrator@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	administrator@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	administrator@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
- Chain of Custody (CoC) (COC)	Email	administrator@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	administrator@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	administrator@rca.com.au

FIONA BROOKER

- *AU Certificate of Analysis - NATA (COA)	Email	fionab@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	fionab@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	fionab@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	fionab@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	fionab@rca.com.au
- Chain of Custody (CoC) (COC)	Email	fionab@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	fionab@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	fionab@rca.com.au

ZAC LAUGHLAN

- *AU Certificate of Analysis - NATA (COA)	Email	zacharyl@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	zacharyl@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	zacharyl@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	zacharyl@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	zacharyl@rca.com.au
- Chain of Custody (CoC) (COC)	Email	zacharyl@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	zacharyl@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	zacharyl@rca.com.au

Appendix D

Bore, Hand Auger & Test Pit Logs

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2012

SURFACE RL: 86.60 m AHD

COORDS: 378220.60 m E 6356718.60 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

		Test Pit Inf		spitai			Field Material Information						
		restritiii	Ormation		Ι.		Z			>			
WATER	DYNAMIC PENETROMETER	FIELD TEST	SAMPLE	RL (m AHD)	ОЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH			
	5		D-TP101 0.10m	86.5 -	0 10 -		SW	TOPSOIL, Silty SAND, fine to coarse grained, dark brown, with fine sub-rounded gravel	М		TOPSOIL		
	5		0.20m	-	0.70		CL	Sandy CLAY, low plasticity, grey mottled orange-brown, fine to medium grained sand, trace of fine angular gravel (relict sandstone)	w~PL	Н	RESIDUAL		
pə	4		В	_							_		
Not Encountered	4		0.40m	-				Condutors hand from 0 Ass to 0 Africa			-		
Not E	10			-	-0.5			Sandstone band from 0.4m to 0.45m			_		
	10			86.0 -							-		
	20			-	0.70 -			SANDSTONE, fine grained, grey	DW	L	BEDROCK		
				-	6.0-						-		
by Datgel				-	0.85 			TEST PIT TP101 TERMINATED AT 0.85 m Bucket refusal			-		
Dedolevel				-	-1.0						_		
rolessiona,				85.5 -							-		
d inig				-	_						-		
/ Produced				-	_						-		
77019 11.7				-	_						-		
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-	- 1.5						_		
SDrawingr				85.0 -							_		
25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6				-	_						_		
- C - C - C - C - C - C - C - C - C - C				_							-		
LOG 44				-	-2.0						_		
I EOI MI				84.5 -							-		
E LOGI				-	_						-		
DAKD.GE				-							-		
اران ادران ادران				-							-		
RAZLIDE, DOLL KAZ STANDARDISEL LOG RASSELESTETTES GENERAL VITIEZOUS TIZI PRODOBU DY GINT PROBESSIONAL DEVENORBUDO DE DAGGE	LOGGED: BG							IECKED: MA	DATE: 28/10/2019				

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 68.10 m AHD

COORDS: 378057.10 m E 6356573.70 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

<u> </u>									THOD:	3.5t Ex.	with 350mm Toothed Bucket											
		Test Pit Inf	formation	1			Field Material Information															
WATER	DYNAMIC PENETROMETER	FIELD TEST	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS											
	1		D-TP102				SM	TOPSOIL, Silty SAND, fine grained, brown	М		TOPSOIL											
	2		0.10m	68.0 -	- 0.10 -		SM	Silty SAND, fine to medium grained, pale brown, low plasticity silt, trace of fine to medium sub-rounded gravel		L	SLOPEWASH											
	1		0.30m				2 2 2 2	3			-											
	2		B 0.40m	_																		
	2				-0.5		0 2															
	3				0.3					MD												
	4			67.5							-											
	4			-							-											
<u> </u>	8			-			(1) (2)				-											
ed by Daig	11			-	_						-											
Not Encountered	12			-	- 1.0						_											
Not En	8			67.0 -			2 2				-											
nig ya	11			-	1.20 -	///	CL	Sandy CLAY, low plasticity, orange and grey, fine to medium grained sand, trace of fine sub-rounded gravel	w>LL	VSt	RESIDUAL											
Produced	12			-							-											
771 81177	11	-PP350kPa		-	_						-											
	11				66.5	66.5		- 1.5						_								
- Diawiigi	15																		66.5	1.70		
70.0-1 10.0-1	15	-PP350kPa		-	1.70 -		СН	CLAY, high plasticity, grey mottled orange-brown	w>PL													
		1 1 000KI U		_			$\mid \cdot \mid$															
50 1438					-2.0																	
				66.0 -							_											
- 52 80																						
				-				TEST PIT TP102 TERMINATED AT 2.20 m Limit of investigation			_											
AUNIC I				-	_																	
NOV_LIGUEST, INCA_STANDARD.SEE EST PRI EGG 1939_EST_FISSER VEDRINGFREZ OTT (2019 T.2.) Floddodd by ginn Froresonar, bereigned by Large																						
L	LOGGED: BG						CH	IECKED: MA	DA ⁻	DATE: 28/10/2019												

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 63.80 m AHD

COORDS: 377873.60 m E 6356697.00 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

LC	CATIC	N: John H	lunter Ho	spital				EXCAVATION ME	THOD: 3	3.5t Ex.	with 350mm Toothed Bucket
		Test Pit In	formatior	1				Field Material Infor	mation		
WATER	DYNAMIC PENETROMETER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	11		D-TP103 0.10m				SM	TOPSOIL, Silty SAND, fine to medium grained, brown, with fine to medium sub-angular gravel	D		TOPSOIL
	8		0.20m	_	0.10 -		СН	CLAY, high plasticity, pale grey	w>PL	VSt	RESIDUAL
	5		В	63.5 -	-						
ntered	3	PP340 - 390kPa	0.40m	-							
Not Encountered	4			-	-0.5						_
	4			-	_						
	7			-							
o	10			63.0 -	- 0.80 -			Carbonaceous SILTSTONE, brown, Interbedded with SILTSTONE, grey	DW	VL - L	BEDROCK
-	15			_	-1.00-						
	20			-	-			TEST PIT TP103 TERMINATED AT 1.00 m Bucket refusal			
L				- 62.5 <i>-</i> -							
				-	_						
				-	-1.5						-
'				-							
				62.0 -							
				-	-2.0						-
				-	_						
o				61.5 —							
1				-							
	LOGGED: BG						Cŀ	IECKED: MA	DAT	E: 28/1	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

DATE: 08/10/2019

SURFACE RL: 58.40 m AHD

COORDS: 377961.70 m E 6356866.80 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

LOCATION: John Hunter Hospital								EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket						
	Test Pit Information							Field Material Information						
WATER	DYNAMIC PENETROMETER	FIELD TEST	SAMPLE	RL (m AHD)	DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS			
ered	5		D-TP104 0.10m	-	-		SM	TOPSOIL, Silty SAND, fine grained, brown, low plasticity silt	D		TOPSOIL			
Not Encountered	8		<u>0.40m</u> B	58.0 —	- 0.30 - -		СН	CLAY, high plasticity, grey mottled orange-brown, with fine to medium grained sand	w~PL	Н	RESIDUAL			
	5		0.50m	-	0.5 0.60			OMPOTONS II	DW	M	BEDROCK			
	5				0.70			SANDSTONE, medium grained, grey stained orange) VV	IVI	BLUNOON			
	6			-	_			TEST PIT TP104 TERMINATED AT 0.70 m Bucket refusal						
				57.5 <i>-</i>	- - 1.0									
				-	-									
				57.0 — -	- 1.5									
				56.5 —	-									
					-2.0									
LCC				56.0	-									
L	LOGGED: BG						GED: BG CHECKED: MA							

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 69.15 m AHD

COORDS: 377824.00 m E 6356897.20 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

		N: John H				_	EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket					
		Test Pit In	formatio I	n T	1		Field Material Information					
WATER	DYNAMIC PENETROMETER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH		
			TP105 0.10m	-			SM	TOPSOIL, Silty SAND, fine grained, brown	М		TOPSOIL	
	3		0.10111	69.0 -	- 0.20 -							
	2			-	- 0.20		CH	CLAY, high plasticity, grey	w>PL	St - VSt	RESIDUAL	
	2			-	- 0.40 -		СН	CLAY, high plasticity, grey stained orange	MW	VH	Extremely Weathered Siltstone	
	3	-PP200kPa			-0.5						Structure -	
Not Encountered	3		0.60m	68.5 -	- 0.60 -		CL	Sandy CLAY, low plasticity, grey stained orange	XW	VL		
Not Er	9		В		-							
•	15		0.90m		- 0.90 -	<u> </u>			MW	L	BEDROCK	
-	12				- 1.0			SHALE, grey	IVIVV		BEDROCK -	
	20			-	-							
				68.0 -	-							
					-							
					-1.40			TEST PIT TP105 TERMINATED AT 1.40 m Bucket refusal				
					-1.5						-	
				67.5 -								
					<u> </u> -							
1												
					-2.0						-	
				67.0 -	-							
I												
	LOGGED: BG						CH	IECKED: MA	DAT	E: 28/1	10/2019	

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 68.85 m AHD

COORDS: 377684.10 m E 6356947.10 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

LC		N: John F								5.5t Ex. \	with 350mm Toothed Bucket
		Test Pit In	formation	1			IZ I	Field Material Infor	mation	L	
WATER	DYNAMIC PENETROMETER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
			D-TP106 0.10m	-	-		ML	TOPSOIL, Sandy SILT, low plasticity, brown	M		TOPSOIL .
	1		0.20m	-	- 0.20 -		СН	CLAY, high plasticity, pale brown mottled grey and orange, trace of fine to medium grained sand	w>PL	St	RESIDUAL
	2	DD440	В	68.5 –	-			orange, trace of line to medium grained sand			
	2	PP140 - 160kPa	0.50m	-	-0.5						_
	1			-	-						
Not Encountered	2			-]					VSt	
Not En	2	PP300 - 340kPa		68.0 -	-						
	3	0-10M u		-	-1.0			As above, grey			-
	3			-	4.00						
	8			-	- 1.20 -			SILTSTONE, grey	SW -	M - H VL - L	BEDROCK Dipping across hole
	20			67.5 -	-				HW		
				-	-1.5						-
				-	-			TEST PIT TP106 TERMINATED AT 1.60 m Bucket refusal			
				67.0 -	-						
				-	-2.0						-
				-	-						
				-	-						
				66.5 -							
L	.OGGE	D: BG					CH	ECKED: MA	DAT	E: 28/1	0/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 76.95 m AHD

COORDS: 377507.80 m E 6356999.90 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

)N: John H		•						3.5t Ex.	with 350mm Toothed Bucket
		Test Pit Information TEST TEST TEST AMPLE AMPLE (m AHD)					Z	Field Material Inform	mation	L	
WATER	DYNAMIC PENETROMETER	FIELD TEST	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
			D-TP107 0.10m	-			ML	TOPSOIL, Sandy SILT, medium plasticity, brown, fine grained sand	w>PL		TOPSOIL
	3			-	-						-
	2			-	-						-
	3		0.40m	-	- 0.40 -		СН	CLAY, high plasticity, grey mottled orange-brown, with	w>PL	St - VSt	RESIDUAL
	4	-PP200kPa	В	76.5 -	-0.5			fine to medium grained sand			_
	4		0.60m	-	-						-
Not Encountered	4			-	-						-
Not Er	8			-							_
6 5000	20	PP240 - 30kPa		76.0 -	- 1.0					VSt	_
				-	_						Extremely Weathered Siltstone structure from 1.1m
				- 75.5 –	-						
				-	1.50j -			SILTSTONE/SHALE, grey	SW	M - H	BEDROCK
,				-				TEST PIT TP107 TERMINATED AT 1.60 m Bucket refusal			
				-	-						
1				-	-						
				75.0 -	-2.0						-
				-	_						
o				-	-						-
1				-	<u>.</u> -						
	LOGGE	D: BG		74.5 -	<u> </u>		CH	IECKED: MA	DA ⁻	ΓE: 28/1	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 70.70 m AHD

COORDS: 377507.30 m E 6356859.70 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

LO		N: John H		_						3.5t Ex.	with 350mm Toothed Bucket
		Test Pit In	formatior	1			7 1	Field Material Infor		L	
WATER	DYNAMIC PENETROMETER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	8		D-TP108		0.05 -		ML	TOPSOIL, Sandy SILT, low plasticity, brown, fine grained sand	D		TOPSOIL
	11		0.10m	-			CH	CLAY, high plasticity, mottled grey and brown-orange	w>PL	VSt - H	RESIDUAL -
	6	PP400 -	0.30m	70.5 -	_						
	3	410kPa				V/A					
Not Encountered	3		В	-	-0.5						_
t Enco	3		0.00		0.5	V/A					
2	4	PP550 - 600kPa	0.60m	70.0 -						Н	
	5			70.0		Y//)					
<u>_</u>	4			-							-
ped by Datg	10			-	0.90 -			Sandy SILTSTONE, grey stained orange	HW	VL - L	BEDROCK
al, Develo	25			-	- 1.0						_
ofession					-1.10-			TEST PIT TP108 TERMINATED AT 1.10 m			
RCA_LIB_08.1_RCA_STANDARD.GLB Log RCA TEST PTLOG 14399_TEST_PITS.GPJ <-DrawingFile>> 01/11/2019 11:27 Produced by gINT Professional, Developed by Datgel				69.5				Bucket refusal			-
11:27 Produc				-							
01/11/2019				-	- 1.5						_
rawingFile>>				-							-
S.GPJ <<⊔				69.0 –	_						-
9_TEST_PII				-							
LOG 1439				-	-2.0						_
CA TEST PIT				-							_
SLB Log RC				68.5 -	_						-
STANDARD				-							-
08.1_RCA_											
RCA LIB	.OGGE	:D: BG					Cŀ	IECKED: MA	DA	ΓE: 28/	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE: 08/10/2019

SURFACE RL: 68.45 m AHD

COORDS: 377499.30 m E 6356687.80 m N MGA94 56 EXCAVATION METHOD: 3.5t Ex. with 350mm Toothed Bucket

)N: John H				1				0.0t <u>L</u> X.	with 350mm Toothed Bucket
	Test Pit Information FIELD TEST TEST (m AHD)						z	Field Material Infor	mation	<u> </u>	
WATER	DYNAMIC PENETROMETER	FIELD	SAMPLE	RL (m AHD)	DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	7		D-TP109 0.10m	-			ML	TOPSOIL, Sandy SILT, low plasticity, brown, fine grained sand	w <pl< td=""><td></td><td>TOPSOIL</td></pl<>		TOPSOIL
	14			-							
	14			-							
	5		0.40m	-	- 0.40 -		СН		w>PL	VQ+ / LI	COLLUVIUM
	3	PP400 - 600kPa		68.0 –	-0.5			CLAY, high plasticity, dark grey-brown, with fine to medium angular gravel (siltstone and charcoal), trace of fine to coarse grained sand	WZFL	V3t/11	-
	2		В	-	- 0.60 -		СН	COAL, high plasticity, pale grey, trace of fine to	w>PL	VSt / H	RESIDUAL
	4		0.70m	-	-			medium angular gravel 9relict siltstone)			
	10	PP480 - 550kPa		-	-						
Not Encountered	12			67.5 –							
Not Encountered	25			-	-1.0						-
Not				-	- 1.10 -	/ / /		SILTSTONE, dark grey	SW	M	BEDROCK Fossiferous
				-	- 1.20 -			Carbonaceous CLAYSTONE/COAL, dark brown/black	XW - HW	VL - L	, 1 3351131 345
				-							
				67.0 -	- 1.5						_
				-	-						
				-	-						
				-	-						
				- -	-						
				66.5 -	-2.00 -			Tuffaceous CLAYSTONE, grey	MW	L	-
				-				TEST PIT TP109 TERMINATED AT 2.10 m Limit of investigation			
				_	-			-			
				-	-						
				66.0 -							
LOGGED: BG							CH	IECKED: MA	DAT	ΓΕ: 28/ ⁻	10/2019

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 03/10/2019 DATE COMPLETED: 03/10/2019 SURFACE RL: 70.95 m AHD

COORDS: 377909.90 m E 6356635.80 m N MGA94 56

		Borehole In	formatio	n .				Field Material Inforr	mation		
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	A		BH101a 0.10m	-	- 0.10 -		CI	TOPSOIL, Silty CLAY, medium plasticity, brown			TOPSOIL
		0.50m PP330 - 390kPa	BH101b	70.5	-0.5		CI-	CLAY, medium to high plasticity, grey mottled orange, trace of fine ironstone gravel Becoming pale grey mottled orange at 0.5m	w>PL	VSt	RESIDUAL -
		3, 3, 4 N=7	0.70m D 0.95m		- - -						- - -
Datgei	ring)	0.5011	0.50111	-70.0 - - - -	- 1.0 - 1.30 -		СН	Tuffaceous CLAY, high plasticity, pale grey, with very	w <pl< td=""><td>VSt - H</td><td>_ - -</td></pl<>	VSt - H	_ - -
nal, Developed by AD/T	(Not Encountered during augering)	1.50m -PP>600kPa SPT	1.50m	69.5 – -	- -1.5			low strength siltstone layers			- - -
by gin Profession	(Not Encoun	8, 17, 23 N=40 1.95m	1.95m	- 69.0 –	- 1.80 - - - -2.0		СН	Tuffaceous CLAY, high plasticity, pale grey, with very low to low strength siltstone layers (Extremely Weathered Tuffaceous Siltstone)			EXTREMELY WEATHERED MATERIAL -
NAZ. LEGOS. TACAZ STANDAND. SELE LEGO TASSE DORES STANDAND. CONFESSOR STANDAND. SELECTION OF THE STANDAND SELECTION OF THE SELECTION OF THE STANDAND				68.5 –	-2.5						- - - -
		3.00m 	3.00m D 3.23m	68.0 -	- 3.0			Tuffaceous SANDSTONE, fine grained, pale grey REMAINDER OF BORE SEPARATELY	HW	VL	BEDROCK -
<u></u>	_ Y	3.23m	3.23111	-				CONTINUED AS CORED BOREHOLE			-
				67.5 - - -	-3.5						- - - -
				67.0 - - -	-4.0 4.0						- - - -
אייי פאי טיסיטיטיטאוא				66.5 - - -	-4.5						- - - -
NCA NCA NCA NCA NCA NCA NCA NCA NCA NCA				66 O -	<u> </u>						=
T LE W.							CHECKED: MA			ΓΕ: 28/ <i>′</i>	10/2019

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 23/09/2019 DATE COMPLETED: 24/09/2019 SURFACE RL: 73.85 m AHD

COORDS: 377892.80 m E 6356624.60 m N MGA94 56

LC	CAT	TION: John H						DRILL MODEL: Ha		B 8d	
		Borehole Ir	formatic	n			I - I	Field Material Inforr			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	A		D-BH102 QA1 0.10m	a .	-		SM	FILL, Silty SAND, fine to medium grained, brown, trace of rootlets	М		FILL -
	uring augering) ————	0.50m PP250 - 390kPa SPT	0.50m D-BH102 (0.7-0.75 0.75m	73.5 – 5 b m) -	- 0.20 -		SM	FILL, Silty SAND, fine to medium grained, brown, trace of clay			- - -
gel AD/T	(Not Encountered during augering)	2, 7, 9 N=16 -PP>600kPa 0.95m	D 0.95m	73.0 -	- - - - - - - - - - - - - - - - - - -		CI- CH	CLAY, high plasticity, brown mottled orange Becoming dark grey mottled orange, with sand at 0.8m	w~PL w <pl< td=""><td>Н</td><td>RESIDUAL -</td></pl<>	Н	RESIDUAL -
Dy Uau		1.45m	<u>1</u> .45m	72.5 –	1.40 -	///				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PEDDOOK
Blober	+	1.43m -1.53m SPT	D5111	<u> </u>	-1.5-	<u> </u>	\vdash	SILTSTONE, pale grey and orange REMAINDER OF BORE SEPARATELY		VL	BEDROCK
RCA_LID_O. T.CA_S INVIDENTIABLE LOG INVIDENTIAL STANDARD SEE TO STANDARD SEE T		22/80mm HB N=R		72.0 –	-2.0			CONTINUED AS CORED BOREHOLE			- - - -
ole III.zo Produced by				71.5	-						- - - -
awiigriie// Oi/ 11/2				71.0 -	-2.5 - -						- - -
1000 E 10				-	-3.0						- - - -
				70.5 -	-3.5						- - -
יייייייייייייייייייייייייייייייייייייי				70.0 -	-4.0						- - -
				69.5 – -	-4.5						- - - - -
				69.0 -	- - - - - -						- - -
5 I	LOGGED: RC						CH	IECKED: MA	DATE: 28/10/2019		

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 25/09/2019 DATE COMPLETED: 26/09/2019 SURFACE RL: 79.15 m AHD

COORDS: 377885.10 m E 6356597.70 m N MGA94 56

	Borehole Information GOLUMN GOILL HOSPITAL BOYLEY G							Field Material Inforr			
		DOI GITOIG III				Z			>		
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	ОЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	A		D-BH103 0.10m	а _	0.10			TOPSOIL, Silty SAND, fine to medium grained, brown	М		TOPSOIL
				79.0 –	- 0.10 -		SM	Silty SAND, fine to medium grained, orange-brown			SLOPEWASH
			D-BH103	b -	-]				_
	T				0.40 -						
		0.50m	0.40m D-BH103 0.50m	C _	-0.5	:::::		SANDSTONE, fine to medium grained, pale grey and	MW - HW	VL	BEDROCK
		SPT 10/110mm	D 0.61m	-	0.0			orange	1100		_
		HB N=R		78.5 –	-					L	_
	b	0.61m		-	-	:::::					_
	nger.			-	1	:::::					_
	ing a			-	-1.0						_
AD/T	1 0			78.0	}	:::::					-
	Here E	78.0 –									-
	-1.0 78.0 -										-
	N Took			-	-	:::::					-
				-	-1.5	:::::					_
				77.5 –	-	:::::					-
				-	-	:::::			MW	М	_
				-	[
				-	-2.0	:::::					_
				-							_
	Ų ∣			77.0 –	-			REMAINDER OF BORE SEPARATELY			_
					-			CONTINUED AS CORED BOREHOLE			-
					}						-
	- 88			-	-2.5						_
	SSOT %0			76.5 -	-						-
,	00			-	-						-
				-	-						_
				-	-3.0						_
				-	- 0.0						_
				76.0 –	-						_
				-	1						_
				-	-						-
					-3.5						_
				75.5	-						-
				- 5.5	-						-
				-	-						-
				-							_
				-	-4.0						
				75.0 -	-						_
				-	-						_
,				-	1						_
				-	-4.5						_
				74.5	}						-
											-
											-
1 1					+						-
Г											
L	.OGG	GED: RC					CH	IECKED: MA	DA	ΓE: 28/	10/2019
									I		

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 30/09/2019 DATE COMPLETED: 30/09/2019 SURFACE RL: 68.70 m AHD

COORDS: 377855.30 m E 6356674.30 m N MGA94 56

\vdash		Borehole In						Field Material Infor			
\vdash		DOI GITOIG III	lomatio				Z			>	
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	A		D-BH104 QA2 0.10m 0.30m	a - 68.5 –	-			Silty SAND, fine to medium grained, brown, trace of fine to medium gravel	М		SLOPEWASH -
			D-BH104 0.50m	b _	- 0.30 - - 0.5			CLAY, high plasticity, pale grey mottled orange	w>PL	St - VSt	RESIDUAL -
	ring augering) -	SPT 2, 3, 5 N=8		68.0 — -						VSt - H	- -
AD/T	(Not Encountered during augering)	0.95m	0.95m	-	-1.0						
ped by Datgel	Not E	1.50m	1.50m	67.5 - - -	- - 1.40 - 1.5	/// :		Tuffaceous SILTSTONE, pale grey with iron staining	HW	VL	BEDROCK
essional, Develo		SPT 10, 29, 30/110mm HB N=R	D	67.0 -	1.5						- - -
T Prof	₩	1.91m	1.91m	-				REMAINDER OF BORE SEPARATELY CONTINUED AS CORED BOREHOLE			
NOT_CORE.GPJ < <drawingfile>> 01/11/2019 11:26 Produced by gINT Professional, Developed by Datgel</drawingfile>				-66.5 	-2.5						- - - - - - -
				65.5 — - - - - 65.0 —	- - - 3.5 -						- - - - -
RCA NON CORED LOG 1439				- - - 64.5 —	-4.0 -						- - - - -
08.1_RCA_STANDARD.GLB Log RCA NON CORED LOG 14399_BORES - ENVIRO				- - 64.0 — - -	4.5 						- - - - -
RCA LIB 0	LOGGED: RC						CH	ECKED: MA	DA ⁻	ΓE: 28/	10/2019

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 26/09/2019 DATE COMPLETED: 26/09/2019 SURFACE RL: 72.75 m AHD

COORDS: 377835.70 m E 6356654.30 m N MGA94 56

		Borehole Ir		n				Field Material Infor	mation			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	A		D-BH105 0.10m	a . 72.5 –	-		ਹ SM	FILL, Gravelly Silty SAND, fine to medium grained, brown, fine to medium gravel, trace of organics	M	O	FILL - - -	
		0.50m PP150 - 250kPa SPT 2, 2, 4 N=6	0.50m D-BH105 0.70m D-BH105	-	- 0.5 - 0.70 -		CI-	Becoming with a trace of clay at 0.5m CLAY, medium to high plasticity, pale grey mottled	w>PL	VSt - H	- - - RESIDUAL	
		0.95m	0.90m D 0.95m	- - -	- 1.0 - 1.10 -		СН	orange Tuffaceous CLAY, high plasticity, grey and orange		VSt	- - - -	
eveloped by Datgel		1.50m PP290 - 320kPa	1.50m	71.5 - - - -	- - - -1.5						- - -	
gini Professional, De		SPT 3, 4, 8 N=12 1.95m	D 1.95m	71.0 – -	-2.0						- - -	
019 11:26 Produced by	uring augering) ——			70.5 -	-						- - - -	
AD/T	 (Not Encountered during augering) 			70.0 –	-2.5 - -						- - - -	
NOT_CORE.GPJ <<		3.00m PP550 - >600kPa SPT 4, 11, 13 N=24	3.00m D	69.5	-3.0			Becoming high plasticity, pale grey	w~PL	Н		
BOKES - ENVIKO		3.45m	3.45m	69.0 -	- 3.40 - - 3.5		CI- CH	CLAY, medium to high plasticity, brown, with carbonaceous lenses	w <pl< td=""><td></td><td>- - - -</td></pl<>		- - - -	
RCA_LIB_BR_TKA_STANDARD.GLB LOG RCA NON CORED LOG 14399_BORES - ENVIRO_NO LOCKE.GFD «CITAMINGHIR» VITTIZOUS TIZO Froduced by gint Professional, Developed by Ladige				-	-4.0							
RD.GLB LOG RCAN		4.50m	4.50m	68.5 - - - -	- 4.30 - - - 4.5	///	СН	Extremely Weathered Tuffaceous Siltstone, properties of Tuffaceous CLAY, high plasticity, pale grey, with low strength tuffaceous siltstone layers	-		EXTREMELY WEATHERED MATERIAL -	
08.1_KCA_STANDA		SPT 13, 19, 26 N=45 4.95m	D 4.95m	68.0	-						- - -	
e L	LOGGED: RC						CHECKED: MA			DATE: 28/10/2019		

SHEET 2 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 26/09/2019 DATE COMPLETED: 26/09/2019 SURFACE RL: 72.75 m AHD

COORDS: 377835.70 m E 6356654.30 m N MGA94 56

LOCATION: John Hunter Hospital	DRILL MODEL: Har	ıjın D&B 8d
Borehole Information	Field Material Inform	nation
WATER WATER FIELD TEST SAMPLE RL (m AHD) DEPTH (m)	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING CONSISTENCY CONSISTENCY CONSISTENCY RELATIVE DEFINATIVE OF THE PROPERTY STRENGTH STRENGTH STRENGTH STRENGTH OF THE PROPERTY STRENGTH OF THE PROPERTY OF T
	CH Extremely Weathered Tuffaceous Siltstone, properties of Tuffaceous CLAY, high plasticity, pale grey, with low strength tuffaceous siltstone layers	W <pl -<="" extremely="" h="" material="" td="" weathered=""></pl>
67.5	REMAINDER OF BORE SEPARATELY	- - - - - - -
HB N=R	CONTINUED AS CORED BOREHOLE	
0.15m 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66.5 - 66.0 - 66		
66.0		-
65.5		
95:1		-
-7.5 -7		
65.0 -		
-8.0		-
64.5 –		
64.0		- - -
-9.0 -9		
63.5 –		
63.0 –		
YV. - - -		-
LOGGED: RC	CHECKED: MA	DATE: 28/10/2019

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 04/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

LOCA	TION: John H	unter Ho	spital				DRILL MODEL: Ha	injin D8	B 8d	
	Borehole In	formatio	n				Field Material Infor			
METHOD	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
g augering) 🛨		BH106a 0.10m 0.30m	76.5 – - -	-		SM	FILL, Gravelly silty SAND, fine to medium grained, grey-brown, fine to medium gravel	D		FILL -
AD/T	0.50m -PP>600kPa SPT	BH106b 0.50m D	- - 76.0	0.5 0.60		CI	Sandy CLAY, medium plasticity, grey mottled orange,	w <pl< td=""><td>Н</td><td>- - RESIDUAL</td></pl<>	Н	- - RESIDUAL
Vot E	6, 7, 3/10mm N=R 0.81m	0.81m	-				with fine to medium sub-rounded gravel REMAINDER OF BORE SEPARATELY CONTINUED AS CORED BOREHOLE			- - -
agger			75.5 — -	1.0						- - -
ii, Developed by D			75.0 —	1.5						- - -
gini Professiona			-	-2.0						- - -
I.zo Produced by			74.5 - - -							- - -
			74.0	-2.5						- - - -
ro «Drawingrii			-	-3.0						- -
			73.5 — -	_						- - -
BOREO - ENVIR			73.0 -	-3.5						- - -
, SED LOG 14388			-	- - -4.0						- - -
E KCA NON CO			72.5	_						- - - -
NATION OF THE STANDARD COLD THE STANDARD OF TH			72.0 —	-4.5 -						_ - -
1.00 di			-							- -
LOG	LOGGED: RC/TH				CHECKED: MA				ΓE: 28/1	0/2019

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

F		Borehole In		-		Field Material Information					
		DOI GITOIG III	IOITIALIO				Z			>	
МЕТНОВ	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	
	1		0.10m BH107a	-	0.10 -			FILL, MULCH/WOODCHIPS, dark brown	M		FILL -
			0.15m 0.50m	- - 71.0 –	-		CI- CH	FILL, Sandy Silty CLAY, medium to high plasticity, grey and pale brown, trace of fine to medium rounded to sub-rounded gravel	w>PL		- - -
		0.50m PP250 - 280kPa	0.00111	-	0.50	777	CI-	Silty CLAY, medium to high plasticity, pale grey with	1	VSt	RESIDUAL
			D	-	-		CH	pale brown and red mottles, trace to with some fine to coarse grained sand			- - -
		0.95m	0.95m	70.5 -	- 1.0						- -
veloped by Datgel	(Not Encountered during augering) ———	1.50m -PP>450kPa	1.50m	- - 70.0 –	- - - -1.5					Н	- - -
AD/T	ncountered du	SPT 6, 11, 13 N=24	BH107b	-	-						- - -
ed by gin i Pr	(Not Ei	1.95m	1.95m	69.5 - -	-2.0			Becoming with relict rock sandstone at 1.9m			- - -
INU_CORE.GFU «CURWINGFIRE» UTITIZUIS TIZO Froduced by gin I Professional, Developed by Latige				- - 69.0	- 2.50 -						- - -
MingFile>> 01/11.				-	- 2.501 -			Extremely Weathered Silty Sandstone, fine to medium grained, pale grey with orange-brown mottles, weathered to low to medium plasticity Sandy Silty CLAY	w <pl EW</pl 	EL - H	EXTREMELY WEATHERED MATERIAL -
E.GPJ < <ur< td=""><td></td><td>3.00m SPT</td><td>3.00m</td><td>68.5 -</td><td>-3.0</td><td></td><td></td><td></td><td></td><td></td><td>- -</td></ur<>		3.00m SPT	3.00m	68.5 -	-3.0						- -
200			D	-	_			REMAINDER OF BORE SEPARATELY			_
	-▼-	N=R		-	-			CONTINUED AS CORED BOREHOLE			-
KCA_LIB_08: _KCA_STANDARD.GEB_LOG_RCA_NON-CORED.LOG_14399_BORES - ENVIRO.				68.0 - -	- -3.5						- - -
S S				-	-						-
1438				- 67 F	_						-
D LOC				67.5 –	-4.0						
200				-	-						-
NO.				-	-						-
Š R				- 67.0							-
9				- 07.0	-4.5						
S.C.S.				-							-
AND				-	-						-
0 - 0 -	66.5—										-
LIB vo. I	LOCCED: TH										
	.OGC	GED: TH					CH	ECKED: MA	DA	ΓE: 28/	10/2019

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) BH108a QA3 Q.10m T1.0 Q.50m Q.50	-				n				Field Material Inform						
FILL, Silty sandy GRAVEL, fine to medium, grey, sub-angular to angular, fine to coarse grained sand O.50m O.50m O.50m T1.0 O.50m FILL, Silty Clayey SAND, brown FILL, Clayey Silty SAND, fine to coarse grained, yellow-brown, with fine gravel FILL Silty Clayey SAND, brown FILL, Clayey Silty SAND, fine to coarse grained, yellow-brown, with fine gravel FILL Silty Clayey SAND, brown M FILL Silty Clayey SAND, brown M FILL Silty Clayey SAND, brown FILL Silty Clayey SAND, brown FILL Silty Clayey SAND, brown M FILL Silty Clayey SAND, brown FILL Silty Clayey SAND, brown M FILL Silty Clayey SAND, brown FILL Silty Clayey SAND, brown M FILL Silty Clayey SAND, brown FILL Silty Clayey SAND, brown M FILL Silty Clayey SAND, brown FI			DOI ELIOIE III	TOTTIALIO	111			Z	Fleiu Material IIIIOI		<u> </u>				
FILL, Silty sandy GRAVEL, fine to medium, grey, sub-angular to angular, fine to coarse grained sand O.50m FILL, Silty Clayey SAND, brown FILL, Clayey Silty SAND, fine to coarse grained, yellow-brown, with fine gravel FILL Silty Clayey Sand of the coarse grained, yellow-brown, with fine gravel FILL Silty Clayey Sand of the coarse grained, yellow-brown, with fine gravel FILL Silty Clayey Sand of the coarse grained and M	МЕТНОБ	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATIO SYMBOL	(SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS			
0.10m 0.50m 0.50m 71.0 71.0 71.0 71.0 0.50m 71.0 71.0 71.0 8PT 5, 7, 4 N=11 0.95m 0.95m 70.5 1.0 Becoming increased drilling resistance at 1.0m 1.20 RESIDUAL		A							FILL, Silty sandy GRAVEL, fine to medium, grey,	D - M					
FILL, Silty Clayey SAND, brown FILL, Clayey SAND, fine to coarse grained, yellow-brown, with fine gravel SPT 5, 7, 4 N=11 0.95m 0.95m 70.5 Becoming increased drilling resistance at 1.0m						0.20 -	\bowtie								
0.50m					-					М		-			
0.50m					71.0 -	-			FILL, Clayey Silty SAND, fine to coarse grained, yellow-brown, with fine gravel			-			
5, 7, 4 N=11 0.95m			0.50m	0.50m		-0.5						-			
5, 7, 4 N=11 0.95m					-	+		1				-			
0.95m 0.95m 70.5 — 1.0 Becoming increased drilling resistance at 1.0m				D	-	†						-			
Becoming increased drilling resistance at 1.0m					70.5	t						-			
Becoming increased drilling resistance at 1.0m			0.95m	0.95m	70.5	L ₁₀									
						1.0			Becoming increased drilling resistance at 1.0m						
1,50m					-	1.20 -				ua DI	Ct	DECIDIAL			
1,50m	Datge									W>PL	SI	RESIDUAL -			
PFT-30 1.50m	l by [7				-			
Some 1908	velope	1.50m 1.50m 1.50m 1.50m						,				-			
1,2 4 N=6	al, De	150kPa													
1.95m	ssion			DUILOD		Ī		7]			
100 100	Profe		1 95m	1 95m	69.5 -	1			Becoming with red mottles at ~1.8m			_			
Sample Section Secti	V gINT	ring).	1.9011	1.30111	-	2.0	///	3				_			
Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity, pale grey (Externely Weathered Material derived from claystone with relict rock structure) Sity CLAY, medium to high plasticity pale grey (Externely Weathered Material de	peol	g auge			-	+						-			
1 1 1 1 1 1 1 1 1 1	Produ	during			-	+	///	3				-			
100 100	11:26 AD/	ered			-	†		1				-			
Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high plasticity pale grey (Extremely Weathered Material derived from claystone with relict rock structure) Silty CLAY, medium to high planticity pale grey (Extremely Weathere	/2019	count			69.0 -	2.50		4				1			
Sample S	01/11/	Not En				-2.50 -	11/1/	7	Silty CLAY, medium to high plasticity, pale grey	w <pl< td=""><td>Н</td><td></td></pl<>	Н				
3.00m 3.00m 3.00m 58.5 3.0 5.5	<u>6</u>	ا				1	1/1/	1				-			
3.00m 3.00m 3.00m 7P>450kPa 3.45m 68.0 3.45m 3.45m 67.5 4.00 Cl SANDSTONE, fine to medium grained, orange HW VL BEDROCK SANDSTONE, fine to medium grained, orange HW VL SANDSTONE, fine to medium grained,	wingF				-	-	IXX.	1				-			
SOUTH SOUT	<>Dra		2 00	2.00***	68.5 -	+	Y/X					-			
SPT 6, 12, 13 N=25 3, 3.45m 3.45m 68.0 - 3.5	GPJ			3.00111	-	-3.0	YXX					-			
12, 13 13 14 15 15 15 15 15 15 15	ÖRE		SPT	6	-	t	YXX					-			
N-23 3.45m 3.45m 68.0 -3.5	0_ 		6, 12, 13	ט		Ī	YYY]			
3.5 3.5	S Z			3.45m	68.0 -	1	///]			
100 100	EN S		U.TUIII	U.TUIII	-		VV	1				_			
4.50m 4.50m 4.50m 4.57m SPT 15/65mm HB D 66.5 66.5 66.5 66.5 66.5 66.5 67.0 67.0 67.0 66.5 66.5 66.5 66.5 66.5 66.5 67.0 6	RES.				-	+	M	1				-			
A.50m	BC BC				-	+	VV	1				-			
	1436				-	†		∤							
4.50m 4.50m 4.50m 4.50m 4.50m 4.57m SPT 15/65mm HB N=R CONTINUED AS CORED BOREHOLE	PLOG				67.5 –	1,,,,	[XX]								
4.50m 4.50m 4.50m 4.50m 4.57m SPT 15/65mm HB N=R CONTINUED AS CORED BOREHOLE	OREL					T-4.001 -			SANDSTONE, fine to medium grained, orange	HW	VL	BEDROCK			
4.50m 4.50	ON ON				_	1]			
4.50m 4.50m 4.50m 4.50m 4.50m 4.50m 4.50m 4.50m 4.50m CONTINUED AS CORED BORE SEPARATELY SPT 15/65mm HB N=R D 66.5 — 66.	S S				-	1						_			
REMAINDER OF BORE SEPARATELY 4.57m SPT 15/65mm HB N=R 66.5 66.5					67.0 -	+						-			
SPT 15/65mm HB D 66.5 — CONTINUED AS CORED BOREHOLE	GLB	l ↓		4.50m	-	4.5			REMAINDER OF BORE SEPARATELY			-			
N=R	ARD.		SPT		-				CONTINUED AS CORED BOREHOLE			-			
66.5	TANE	N=R													
	\[\frac{\pi}{66.5} \]											1			
	8 100.5						<u> </u>								
<u>-</u>	100050 71														
LOGGED: TH CHECKED: MA DATE: 28/10/2019	Š L	LOGGED: TH							CHECKED: MA			DATE: 28/10/2019			

SHEET 1 OF 5

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

	Borehole Information Where the state of the							Field Material Inforr	nation		
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
	A		BH109a 0.10m	76.0			SM	FILL, Silty SAND, fine to medium grained, brown, with	M		FILL
		SPT	0.40m BH109b 0.50m	75.5 -	-0.5			organics			- - - - -
		3, 4, 3 N=7			-						-
		0.95m	0.95m	75.0 –	- 1.0 - 1.10 -		CI	FILL, Gravelly Sandy CLAY, medium plasticity, grey,	w>PL	_	- - -
RCA_LIB_08.1, RCA_STANDARD.GLB_LOG_RCA_NON_CORED_LOG_14399_BORESENVIRO_NOT_CORE.GPJ_<-DrawingFile>> 01/11/2019_11/28 Produced by gINT Professional, Developed by Datgel AD/T AD/T		1.50m PP100 - 190kPa SPT 2, 4, 2 N=6	1.50m BH109c 1.70m D 1.95m	74.5 - - - - - -	-1.5			fine to medium sub-rounded gravel, trace of coal fragments			- - - - - - -
2019 11:26 Produced by gir T	during augering) ———			74.0	- 2.0		СН	Tuffaceous CLAY, high plasticity, pale grey	w>PL	St - VSt	- - - - RESIDUAL
RE.GPJ < <drawingfile>> 01/11/20 AD/T</drawingfile>	(Not Encountered during augering)	3.00m PP210 - 240kPa	3.00m BH109d	73.5 -	-2.5						- - - - - -
DZ_TC		SPT 11, 13, 16	3.20m		- 3.20 -	///	СН	CLAY, high plasticity, grey, highly weathered, very low	w~PL	Н	-
1399_BORES - ENVIRO_N		N=29 3.45m	D 3.45m	72.5 – -	-3.5			to low siltstone layers			- - - - -
CA NON CONED LOG				72.0 -	-4.0						- - - -
CA_STANDAKD.GLD LOG NA		4.50m PP450 - 550kPa SPT 15, 17, 14 N=31	4.50m D	71.5 - - - - -	-4.5						- - - - -
E 00.	4.95m 4.95m - LOGGED: RC					<u>///</u>	CH	IECKED: MA	DA ⁻	TE: 28/	10/2019

SHEET 2 OF 5

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

F		Borehole In	formatio					Field Material Infor	mation			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				71.0 -	-		СН	CLAY, high plasticity, grey, highly weathered, very low to low siltstone layers	w~PL	Н	-	
				70.5 -	5.30 - 5.5 		МН	Clayey SILT, high plasticity, black (weathered coal)	w <pl< td=""><td>Н</td><td>- - - - - - -</td></pl<>	Н	- - - - - - -	
	luring augering	6.00m	6.00m	70.0	6.0						- - -	
by Datgel AD/T	(Not Encountered during augering)	SPT 5, 11, 17 N=28 6.45m	D 6.45m		- - - -						- - -	
onal, Developed	(Not	J. TOIII		69.5	-6.5						-	
ed by gIN Profession		J	7.00m D	69.0 -	-7.00 -			COAL, black	MW	L	- BEDROCK	
11:26 Produce		17, 40/150mm N=R 7.30m	7.15m D 7.30m		7.15 -			Laminated SILTSTONE, grey and dark grey REMAINDER OF BORE SEPARATELY CONTINUED AS CORED BOREHOLE				
6>> 01/11/2019				68.5 -	-7.5						- - -	
KCA_LIS_08.1, KCA_STANDARD.GLB_LOG_RCA NON CORED LOG_14399_BORES - ENVIRO_NOT_CORE_GFJ_ <				68.0 -	 8.0						- - - -	
- ENVIRO_NOI_CO				67.5	-8.5						- - - -	
OG 14399_BORES					- - - - -						- - - -	
CA NON CORED L				67.0 -	9.0						- - -	
ANDARD.GLB LOG K				66.5	- - 9.5 						- - - -	
B 08.1 RCA SIA					-						-	
ا ا ا ا	LOGGED: RC						CH	IECKED: MA	DATE: 28/10/2019			

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

LOCA	ATION: John H	unter Ho	ospital				DRILL MODEL: Ha	njin D8	B 8d	
	Borehole In	formatio	n			_	Field Material Infor	mation		
METHOD	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD/T		0.20m BH110a 0.30m	-	-			FILL/TOPSOIL, Gravelly Silty SAND, fine to medium grained, dark brown, fine to medium sub-rounded gravel, comprising red sandstone rock fragments	M		FILL / TOPSOIL -
np pa		0.00111		_	$\otimes\!\!\otimes\!\!\otimes$		REMAINDER OF BORE SEPARATELY			
AD/T (Not Encountered during augering)			77.5 -	-0.5 -			CONTINUED AS CORED BOREHOLE			_ - -
			- 77.0 – -	- - -1.0						- - -
is first for pade			76.5	- - - -1.5						- - -
			-	-						- - -
			76.0 - - -	-2.0 -						- - -
			75.5 - -	-2.5						- - -
D.			75.0 –	-3.0						- - -
			- - - 74.5	- - - - -						- - - -
			- - -	-3.5 - -						- - -
			74.0 - - -	-4.0 -4.0						<u>-</u> - -
			73.5 – -	- - -4.5						- - - -
			73.0 –	- - - - - -						- - -
LOGGED: TH			CHECKED: MA			DATE: 28/10/2019				

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 75.00 m AHD

COORDS: 377787.40 m E 6356655.70 m N MGA94 56

	Borehole	e Informa	ation			Field Material Informa	ation			
WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG		PID (ppmv)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
		HA1a 0.10m	- - - 74.5 –			FILL, Silty SAND, fine to medium grained, brown, with cotlets and timber		D		FILL No odour -
Not Encountered			- - - 74.0	- 0.60 - - - - 1.0		FILL, Gravelly Sandy CLAY, grey/dark brown, sub-rounded gravel, trace of rootlets Drange/red mottling at 1.0m		M		No odour -
Not Encountered			-	-						·
		1.50m HA1b	73.5 –	- 1.5						-
		1.60m	-	-		HAND AUGER HA1 TERMINATED AT 1.60 m Due to refusal				-
LOGGED: ZL						CHECKED: FB		DAT	TE: 28/1	0/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 71.75 m AHD

COORDS: 377787.90 m E 6356702.20 m N MGA94 56

				calliic		/ation Precinct EXCAVATION		IOD.		
	Borehol	e Informa	ation I	1		Field Material Inform	nation	(D	<u> </u>	
WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (ppmv)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
		0.05m				FILL/TOPSOIL, Silty SAND, black, with timber		D		FILL / TOPSOIL No odour
Not Encountered		HA2a 0.15m	_	- 0.05 -		FILL, Gravelly Sandy CLAY, grey, with organic material, timber and rootlets	-	М		FILL No odour
Not End		0.30m	71.5 -	- -						
		HA2b	-							
		0.40m	-	_		HAND AUGER HA2 TERMINATED AT 0.40 m Due to refusal				
			-	- 0.5						
			-	-						
			71.0 -	-						
			-	-						
			-	- 1.0						
			70.5 –	_						
			-	_ -						
			-	_ 1.5						
			-	-						
			70.0 -	_						
			-	- -						
1 /	OGGED: Z	71	-	-		CHECKED: FB		D^7	ΓE: 28/1	0/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 66.98 m AHD

COORDS: 377820.80 m E 6356686.00 m N MGA94 56

-	Borehole	e Informa	ation			Field Material Informa	ation			
WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG		PID (ppmv)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
Not Encountered		HA3a 0.10m	- - - 66.5 -	-0.5		Clayey SAND, fine to medium grained, dark grey, with organic material, rootlets Becoming pale grey at 0.5m		D		NATURAL No odour
,		HA3b	- 66.0 -	- 0.80 - - - - -1.0		Sandy CLAY, pale grey with orange mottling, trace of ootlets		M		NATURAL No odour
L				-1.5		HAND AUGER HA3 TERMINATED AT 1.10 m Due to refusal				
LOGGED: ZL						CHECKED: FB DATE: 28/10/2019				0/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 67.20 m AHD

COORDS: 377832.00 m E 6356686.50 m N MGA94 56

	Borehole					Field Material Info				
WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (ppmv)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
		HA4a 0.10m	67.0 —	-		Clayey SAND, fine to medium grained, pale grey, trace of rootlets	ш	D D	00	NATURAL No odour -
Not From the Property of August Not Encountered			66.5	- - 0.5 - - 0.70 -		Sandy CLAY, pale grey with red/orange mottling		M		No odour
18 to 1907 1 62 1 60 1 60 1 60 1 60 1 60 1 60 1 60		1.00m HA4b 1.10m	-	1.0 1.10		HAND AUGER HA4 TERMINATED AT 1.10 m Due to refusal				_
			66.0	-						- - -
TOTALE OF THE PROPERTY OF THE			65.5 —	- 1.5 - -						- - -
	OGGED: Z	L				CHECKED: FB		DA ⁻	TE: 28/1	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 69.80 m AHD

COORDS: 377823.70 m E 6356673.00 m N MGA94 56

	Borehole	e Informa				Field Material Inform	nation			
WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG		PID (ppmv)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
		HA5a 0.10m				OPSOIL, Silty SAND, black, with organic material		M		TOPSOIL No odour
ntered			-	- 0.10 -		sandy CLAY, grey with orange mottling, trace of ub-rounded gravel and rootlets		M		NATURAL No odour
ny Danger Not Encountered		0.60m HA5b QA1	69.5 -	- 0.30 - - - 0.5		CLAY, pale grey with red/orange mottling		M		No odour -
nodoli e		0.70m		-0.70-	///	IAND AUGER HA5 TERMINATED AT 0.70 m				_
ed by ginn Froressional, Dev			69.0 -	_		Due to refusal				-
			-	-1.0						-
			68.5 —	-						-
			-	_						-
			-	- 1.5						-
			68.0 -	-						_
LOGGED: ZL						CHECKED: FB		DAT	ΓE: 28/1	0/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 73.50 m AHD

COORDS: 377803.40 m E 6356655.20 m N MGA94 56

	Borehole	Informa				Field Material Information				
	Dorchold	, iiiiOiiiii		_				>		
WATER	FIELD TEST	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS	
Not Encountered		HA6a 0.10m	_	-		FILL, Gravelly Silty SAND, brown, with organic material	D		FILL No odour -	
Ž		0.30m	_	-					-	
		HA6b 0.40m								
			73.0 –	- 0.5		HAND AUGER HA6 TERMINATED AT 0.40 m Due to refusal			_	
			-	-			-			
			-	-			-			
			- 72.5 –	- 1.0					-	
			-	-					-	
			-	-					-	
			- 72.0 –	-			_			
			-	-						
			=	-					-	
			-	-						
72.5 — 1.0 72.0 — 1.5 LOGGED: ZL						CHECKED: FB	DAT	E: 28/1	10/2019	

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 75.25 m AHD

COORDS: 377823.50 m E 6356643.80 m N MGA94 56

Borehole Information Field Material Information DESCRIPTION E E E E E E E E E E E E E							on		
WATER	FIELD TEST	SAMPLE	RL (m AHD)	(ш) ИДБО	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE	WEATHERING CONSISTENCY/ RELATIVE DENSITY/ STRENCTU	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
Not Encountered		HA7a 0.10m	75.0 –	-		FILL, Gravelly Sandy CLAY, dark grey with orange mottling, with rootlets			FILL No odour
		0.40m							
		HA7b							
		0.50m		-0.5-					
			74.5 -	- 1.0		Due to refusal			_
			74.0 -	- - - -					_
			73.5 -	-					
LOGGED: ZL						CHECKED: FB	ı	DATE: 28	/10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 70.70 m AHD

COORDS: 377849.90 m E 6356663.30 m N MGA94 56

-	Borehole			Januare		Field Material Info				
WATER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (ppmv)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
untered		HA8a 0.10m	70.5 –	-		Silty SAND, pale brown, trace of sub-angular gravel, with rootlets		D		NATURAL No odour -
Not Encountered		0.70m		- 0.40 - - 0.5 - 0.60 -		Sandy CLAY, pale brown, trace of gravel CLAY, grey with red/orange mottling		M	_	No odour -
Ties Froduced by give Frodessional, Deve		HA8b 0.80m	-			HAND AUGER HA8 TERMINATED AT 0.80 m Due to refusal				
ACCETACION OF TRACES			69.5 -	-						- - -
TO LEG OF THE PROPERTY OF THE			- 69.0 –	1.5 						_ _ _
	OGGED: Z		-	-		CHECKED: FB		DA	TE: 28/1	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 72.10 m AHD

COORDS: 377860.10 m E 6356649.00 m N MGA94 56

	Borehole					Field Material Informat			
WATER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
		HA9a 0.10m	·72.0 –			Silty SAND, dark grey, with rootlets	D		NATURAL No odour
Not Encountered			-	- 0.30 -		Sandy CLAY, pale grey, trace of rootlets	M		No odour -
			71.5 –	0.50j 		CLAY, brown, red/orange mottling, trace of rootlets	М		No odour -
0		0.80m HA8b 0.90m	-	0.90		HAND AUGER HA9 TERMINATED AT 0.90 m			-
			71.0 —	-1.0		Due to refusal			-
, in			-	-					-
			-	- 1.5					-
			70.5 -	-					-
L			-	-					-
L	OGGED: Z	L				CHECKED: FB	DAT	E: 28/1	0/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019 SURFACE RL: 70.80 m AHD

COORDS: 377873.20 m E 6356654.00 m N MGA94 56

<u> </u>				ailii a	IIIU IIIIIU	vation Precinct EXCAVATIO				
	Borehole	Informa	ation			Field Material Info	rmatio	ח ריז	-	
WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (ppmv)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
Not Encountered		HA10a QA2 0.10m	70.5	- - 0.40 - - 0.5		Sandy CLAY, grey, trace of gravel and rootlets CLAY, pale brown, red/orange mottling		M		NATURAL No odour -
ed by Datgel		0.60m HA10b 0.70m	-							-
RAZIDE ORIZA STANDARD. SED LOG RA HAND AUGER LOG 14359-FAND_AUGERS. GF7 *CLIRAMIGNIS*2 UT 11.2019 13.22 FYDUDGU DY GIN I FORESSORIA. Developed DY DAIGH			69.5 —	-1.0 -1.5		HAND AUGER HA10 TERMINATED AT 0.70 m Due to refusal				
L L	.OGGED: Z	L				CHECKED: FB		DA ⁻	TE: 28/	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

PROJECT: Geotechnical and Contamination Investigation LOCATION: John Hunter Health and Innovation Precinct

DATE: 02/10/2019

SURFACE RL: 77.75 m AHD

COORDS: 377875.50 m E 6356610.30 m N MGA94 56

Borehole Inform				Field Material Informati			
Borellole Illioiti						<u>ی</u>	
WATER FIELD TEST SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/	WEATHERING CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
HA10a 0.10m 0.20m HA10b 0.30m	77.5 -	-		FILL, Gravelly Silty SAND, fine to medium grained, grey]		FILL No odour
LOGGED: ZL	77.0 -	- 0.5 1.0 1.5		HAND AUGER HA11 TERMINATED AT 0.30 m Due to refusal			
LOGGED: ZL	-			CHECKED: FB		DATE: 28/	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

SURFACE RL:

PROJECT: Geotechnical and Contamination Investigation

LOCATION: John Hunter Health and Innovation Precinct

EXCAVATION METHOD:

_	Borehole Ir								erial Informa				
WATER	FIELD	SAMPLE	DEPTH (m)	GRAPHIC LOG	(\$ sh (RO	SOIL NAME; pla ape, secondary DCK NAME; gra	DESCRIP asticity/grain size components, and size, colour,	TION ze, colour, par minor constitu	ticle ents)	PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
		0.10m SP1a 0.20m	- 0.20 -		rootlets	Sandy CLAY,					M		FILL No odour No odour
sional, Developed by Datgel Not Encountered			-0.5										-
U1/11/2019 13:22 Produced by gin i Professional,		0.90m SP1b 1.00m	1.00 -		CLAY, gre	ey with orange r	mottling				М		NATURAL No odour
C TO THE REST OF THE PERSON OF		1.20m SP1c 1.30m	1.30		HAND AU	GER SP1 TERI	MINATED AT 1	.30 m					
GER LUG 14389-TAIND_AUGERO.			- - 1.5 -										
STANDARD.GLB LOG KCA HAND AUGER LUG			_										
LIB US:1 RCA	.OGGED: 2	ZL	_			CHECKE	D: FB				DA [*]	TE: 28/1	10/2019

SHEET 1 OF 1

PROJECT No: 14399

CLIENT: Health Infrastructure

SURFACE RL:

PROJECT: Geotechnical and Contamination Investigation

LOCATION: John Hunter Health and Innovation Precinct

EXCAVATION METHOD:

	Borehole Ir			Januar da	Field Material Infor				
WATER	FIELD	SAMPLE	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (bpm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS
Not Encountered		0.30m SP2a 0.40m	-0.5		FILL, Sandy CLAY, dark grey, trace of gravel Becoming paler grey with orange mottling at 0.5m Sandy CLAY, yellow, red/orange mottling		M		FILL No odour NATURAL No odour
			-1.20-		HAND AUGER SP2 TERMINATED AT 1.20 m				
	OGGED: Z	<u> </u>			CHECKED: FB		DA	TE: 28/	10/2019

Appendix E

Photographs

PHOTOGRAPH 1 South eastern corner of Development site looking north east over the location of BH109 and HA1.

PHOTOGRAPH 2 Location of BH108, located to the eastern side entrance road to Development site.

Project: Contamination and Waste Classification Report

Location: John Hunter Heath and Innovation Precinct **RCA ref**: 14399-208/3

PHOTOGRAPH 3 Example fill material located along the southern boundary of the Development site and approximate location of HA11.

PHOTOGRAPH 4 Approximate location of TP104 located near 'stockpile' material.

Project: Contamination and Waste Classification Report

Location: John Hunter Heath and Innovation Precinct **RCA ref**: 14399-208/3

PHOTOGRAPH 5 Approximate location of TP103 and example road pavement material sampled location RP103.

PHOTOGRAPH 6 Material removed from TP103 and confirmation of encountered bedrock material depth.

Project: Contamination and Waste Classification Report

Location: John Hunter Heath and Innovation Precinct **RCA ref**: 14399-208/3

PHOTOGRAPH 7 View of example 'stockpile' material and location of sample SP2.

PHOTOGRAPH 8 Location of sample SP1.

Project: Contamination and Waste Classification Report

Location: John Hunter Heath and Innovation Precinct **RCA ref**: 14399-208/3

PHOTOGRAPH 9 Example material removed from sample location SP1 within 'stockpile'.

PHOTOGRAPH 10 Example material removed from sample location HA4 along northern boundary of Development site.

Project: Contamination and Waste Classification Report

Location: John Hunter Heath and Innovation Precinct RCA ref: 14399-208/3

Appendix F

Summary of Results

Sample Identification						Guid	eline ^A					BH101A	BH102A	BH102C	BH103A	BH103C	BH104A	BH105A	BH105C	BH106A	BH107A	BH108A	BH109A
Sample Depth (m) B	PQL			HSL 'D'			ESL	C&I	Non-sen	sitive ML		0.1	0.1	0.85	0.1	0.4	0.1	0.1	0.7	0.1	0.1	0.1	0.1
Date	FQL	SAND 0-<1m	SILT 0-<1m	CLAY 0-<1m	CLAY 1-<2m	CLAY 2-<4m	Coarse	Fine	Coarse	Fine	DC D	3/10/19	24/9/19	24/9/19	25/9/19	25/9/19	30/9/19	26/9/19	26/9/19	2/10/19	2/10/19	2/10/19	1/10/19
										nple Profi		TOPSOIL, Silty CLAY, medium plasticity, brown	FILL, Silty SAND, fine- medium grained, brown, with trace rootlets	CLAY, high plasticity, brown, with orange mottling	TOPSOIL, Silty SAND, fine-medium grained, brown	Silt SAND, fine- medium grained, orange-brown	grained, brown, trace of fine- medium grade gravel	FILL, Gravelly Silty SAND, fine- medium grained, brown, with fine- medium gravel, trace organics	plasticity, pale grey, with orange mottling	FILL, Gravelly Silty SAND, fing- medium grained, grey/brown, fine to medium grained gravel	FILL, sandy-silty CLAY, medium to high palsticity, grey & pale brown, trace of fine to medium gravel.	FILL, silty sandy GRAVEL, fine to medium subangular, grey, fine to medium grained sand	FILL, Silty SAND, fine to medium grained, brown, with organics
	Dominant Stratum ^C														SAND	SAND	SAND	SAND	CLAY	SAND	CLAY	SAND	SAND
	Sample Purpose Investor														Investigation	, and the second	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation
	ene, Toluene, Ethylbenzene, Xylene (BTEX)															RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC
Benzene, Toluene, Ethy	zene, Toluene, Ethylbenzene, Xylene (BTEX) zene 0.2 3 4 4 6 9 75 95 430 <0.2 ene 0.5 NL NL NL NL NL NL 135 135 99000 <0.5																						
	ene, Toluene, Ethylbenzene, Xylene (BTEX) ene 0.2 3 4 4 6 9 75 95 430 <0.2															<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
		NL	NL	NL	NL	NL						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	0.5	NL	NL	NL	NL	NL	165	185			27000	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	0.5											<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	0.5											<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	1	230	NL	NL	NL	NL	180	95			81000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Polycyclic Aromatic Hy	/droc		AH)				1					<1	<1	r	T	1		1		1	T	1	
	Naphthalene 1 NL NL NL NL NL 370 370 1100													<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total Recoverable Hydi		bons (TR	H)		_	1		1							1	T	ı	ı		ı	ī	1	
TRH C ₆ -C ₁₀	10								700	800	26000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH >C ₁₀ -C ₁₆	50						170	170	1000	1000	20000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄														<100	<100	<100	<100	<100	130	260	380	190	150
TRH >C ₃₄ -C ₄₀	100						3300	6600	10000	10000	38000	<100	<100	<100	<100	<100	<100	<100	<100	550	550	170	160
F1	10	260	250	310	480	NL	215	215		·		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2	50	NL	NL	NL	NL	NL						<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

F1 = TRH C₆-C₁₀ minus BTEX. F1 PQL deemed equal TRH C₆-C₁₀.

F2 = TRH> C_{10} - C_{16} minus naphthalene. F2 PQL deemed = TRH > C_{10} - C_{16} .

^A ASC NEPM 1999 (amended April 2013) Vapour Based Health Screening Levels (HSL) 'D' (Commercial/Industrial)

A SC NEPM 1999 (amended April 2013) Ecological Screening Levels (ESL) C&I (Commercial and Industrial)

^A ASC NEPM 1999 (amended April 2013) Management Limits (ML) Non-Sensitive Sites (Commercial and Industrial)

^A CRC Care Technical Report 10, September 2011 Direct Contact (DC) Health Screening Levels 'D' (Commercial/Industrial) ^B Start of sample, generally over a 0.1m interval

^C Note that this is a generalisation for the purpose of comparing to the HSL criteria. Where two strata equally represented, most conservative criterion used NL designates 'Not Limiting' indicating that the pore water concentration required to constitute a vapour risk is higher than the solubility capacity for that

compound based on a petroleum mixture. Vapour is therefore not a risk for this compound.

Results for TRH have been compared to TPH guidelines.

Presented ESL for naphthalene is an Ecological Investigation Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

ESL for TRH >C₁₆-C₃₄ and >C₃₄-C₄₀ are low reliability

Results shown in $\ensuremath{\mathbf{BOLD}}$ are in excess of the vapour based HSL

Results shown in shading are >250% of the vapour based HSL Results shown in <u>underline</u> are in excess of the ESL

Results shown in *italics* are in excess of the management limit

Results shown in patterned cells are in excess of the direct contact HSL

Where summation required (Xylene, F1, F2) calculation includes components reported as non detected as 1/2 PQL.

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320 Prepared by: ZL Checked by: FB

RCA Australia AWS-TEM-018/17

C-4 m O-4	Sample Identification						Guid	eline ^A					BH109C	BH109D	HA1A	HA2A	HA3A	HA3B	HA4A	HA5A	HA5B	HA6A	HA7A	HA8A
Date	Sample Depth (m) B	DOL			HSL 'D'			ESL	C&I	Non-sens	sitive ML		1.5	3	0.1	0.05	0.1	1	0.1	0.1	0.6	0.1	0.1	0.1
Sample Profile	' ' '	PQL						Coarse	Fine	Coarse	Fine	DC D	1/10/19	1/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19
Sample Purpose Investigation Investigati										Sar	mple Profi	le	Sandy CLAY, medium plasticity, grey, fine-medium sub-rounded gravel, trace coal	CLAY, high plasticity,	SAND, fine to medium grained, brown, with rootlets and	sandy CLAY, grey, with organic material, timber	fine to medium grained, dark grey, with organic	pale grey with orange mottling, trace	fine to medium grained, pale grey, trace	Silty SAND, black, with organic	grey with red/orange	Silty SAND, brown, with organic	Sandy CLAY, dark grey with orange mottling, with	Silt SAND, pale brown, trace of sub- angular gravel, with rootlets
Sample collected by RCA RC RCA RC RCA RC RCA ZL RCA ZL										Dominar	t Stratum	С	CLAY	CLAY	SAND	CLAY	SAND	CLAY	SAND	SAND	CLAY	SAND	CLAY	SAND
Benzene Color Co										Samp	ole Purpos	se	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation
Benzene 0.2 3										Sample of	collected I	ру	RCA - RC	RCA - RC	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL
Toluene 0.5 NL NL NL NL NL NL NL NL 135 135 99000 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	Benzene, Toluene, Eth	zene, Toluene, Ethylbenzene, Xylene (BTEX) zene 0.2 3 4 4 6 9 75 95 430 <0.2																						
Ethylbenzene 0.5 NL NL NL NL NL NL 165 185 27000 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	Benzene	ne, Toluene, Ethylbenzene, Xylene (BTEX) ne 0.2 3 4 4 6 9 75 95 430														<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
meta- and para-Xylene 0.5	Toluene	0.5	NL	NL	NL	NL	NL	135	135			99000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene 0.5 Image: Control of the	Ethylbenzene	0.5	NL	NL	NL	NL	NL	165	185			27000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes 1 230 NL NL NL NL NL NL NL N													<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ortho-Xylene	0.5											<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene 1 NL NL NL NL NL NL NL NL 370 370 11000 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Total Xylenes	1	230	NL	NL	NL	NL	180	95			81000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,	ydroc	arbons (F	PAH)																		_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			NL	NL	NL	370	370			11000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		l Recoverable Hydrocarbons (TRH)																						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TRH C ₆ -C ₁₀	10								700	800	26000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								170	170		1000	20000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
	TRH >C ₁₆ -C ₃₄														110	270	<100	<100	<100	<100	<100	200	<100	<100
F1 10 260 250 310 480 NI 215 215 S10	TRH >C ₃₄ -C ₄₀	100								10000	10000	38000	<100	<100	<100	240	<100	<100	<100	<100	<100	310	<100	<100
	F1	10	260	250	310	480	NL	215	215				<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2 50 NL NL NL NL NL NL NL NL NL S50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	F2	50	NL	NL	NL	NL	NL						<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laborator

F1 = TRH C₆-C₁₀ minus BTEX. F1 PQL deemed equal TRH C₆-C₁₀.

F2 = TRH> C_{10} - C_{16} minus naphthalene. F2 PQL deemed = TRH > C_{10} - C_{16} .

^A ASC NEPM 1999 (amended April 2013) Vapour Based Health Screening Levels (HSL) 'D' (Commercial/Industrial)

A SC NEPM 1999 (amended April 2013) Ecological Screening Levels (ESL) C&I (Commercial and Industrial)

^A ASC NEPM 1999 (amended April 2013) Management Limits (ML) Non-Sensitive Sites (Commercial and Industrial)

^A CRC Care Technical Report 10, September 2011 Direct Contact (DC) Health Screening Levels 'D' (Commercial/Industrial)

^B Start of sample, generally over a 0.1m interval

^C Note that this is a generalisation for the purpose of comparing to the HSL criteria. Where two strata equally represented, most conservative criterion used NL designates 'Not Limiting' indicating that the pore water concentration required to constitute a vapour risk is higher than the solubility capacity for that compound based on a petroleum mixture. Vapour is therefore not a risk for this compound.

Results for TRH have been compared to TPH guidelines.

Presented ESL for naphthalene is an Ecological Investigation Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

ESL for TRH >C₁₆-C₃₄ and >C₃₄-C₄₀ are low reliability

Results shown in $\ensuremath{\mathbf{BOLD}}$ are in excess of the vapour based HSL

Results shown in shading are >250% of the vapour based HSL Results shown in <u>underline</u> are in excess of the ESL

Results shown in *italics* are in excess of the management limit

Results shown in patterned cells are in excess of the direct contact HSL

Where summation required (Xylene, F1, F2) calculation includes components reported as non detected as 1/2 PQL.

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320 Prepared by: ZL Checked by: FB

Sample Depth (m) Out Date PQL Date	Sample Identification						Guid	eline ^A					HA8B	HA9A	HA10A	HA10B	HA11A	HA11B	SP1A	SP1B	SP2A	SP2B	TP101	TP102	TP103
Date Date Date Date Date Date	Sample Depth (m) B	DOI			HSL 'D'			ESL	C&I	Non-sens	sitive ML		0.7	0.1	0.1	0.6	0.1	0.3	0.1	0.9	0.3	0.9	0.1	0.1	0.1
CLAY_gold Sample Profile Sample Profile Sample Purpose Sample Purpose Sample Purpose Sample Purpose Sample Purpose Investigation Investiga	1 ' ' '	PQL						Coarse	Fine	Coarse	Fine	DC D		2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	8/10/19	8/10/19	8/10/19
Investigation Investigatio													with red/orange mottling	dark grey, with rootlets	grey, trace of gravel and rootlets	brown, re/prange mottling	Gravelly Silty SAND, fine to medium grained, grey	Silty SAND, fine to medium grained, grey	Sandy CLAY, black, with subangular gravel and rootlets	CLAY, dark grey with orange mottling, with rootlets	CLAY, dark grey, trace of gravel	CLAY, yellow, red/orange mottling	SAND, fine to coarse grained, dark brown, with fine subrounded gravel	silty SAND, fine to medium grained, brown	SAND, fine to medium grained, brown, with fine to medium subrounded gravel
Material M		Dominant Stratum ^C CLA															SAND	SAND	CLAY	CLAY	CLAY	CLAY	SAND	SAND	SAND
Senzene										Samp	ole Purpo	se	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Material adjacent HMRI	Material adjacent	Material adjacent	Material adjacent HMRI	Proposed Road	Proposed Road	Proposed Road
Benzene D.2 3																	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA-BG	RCA-BG	RCA-BG
Toluene	Benzene, Toluene, Eth	zene, Toluene, Ethylbenzene, Xylene (BTEX) zene 0.2 3 4 4 6 9 75 95 430 <0.2																							
Ethylbenzene 0.5 NL NL NL NL NL NL NL N	Benzene	zene 0.2 3 4 4 6 9 75 95 430 <0.2															<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
meta- and para-Xylene 0.5	Toluene		NL	NL	NL	NL	NL	135					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Octobe Control Con			NL	NL	NL	NL	NL	165	185			27000									<0.5	<0.5			
Total Xylenes 1 230 NL NL NL NL NL 180 95 81000 0.5													<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	
Naphthalene		0.5												<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	
Naphthalene 1 NL		1			NL	NL	NL	180	95			81000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ydroc	arbons (F									1		_	_								•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	NL		NL	NL	NL	370	370			11000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		drocai	rbons (TR	H)		•	,		1			1		7	7	1		1	T	1	1	1	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TRH C ₆ -C ₁₀	10								700	800	26000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								170			1000		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
F1 10 260 250 310 480 NL 215 215 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	TRH >C ₁₆ -C ₃₄															<100	<100	100	<100	100	<100	<100	<100	<100	<100
	TRH >C ₃₄ -C ₄₀	H > C ₃₄ -C ₄₀ 100 3300 6600 10000 10000 38000													<100	100	<100	140	<100		130	<100	<100	<100	
F2														<10	<10	<10	<10	_		<10	<10	<10	<10		
	F2													<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laborator

F1 = TRH C₆-C₁₀ minus BTEX. F1 PQL deemed equal TRH C₆-C₁₀.

F2 = TRH> C_{10} - C_{16} minus naphthalene. F2 PQL deemed = TRH > C_{10} - C_{16} .

^A ASC NEPM 1999 (amended April 2013) Vapour Based Health Screening Levels (HSL) 'D' (Commercial/Industrial)

^A ASC NEPM 1999 (amended April 2013) Ecological Screening Levels (ESL) C&I (Commercial and Industrial)

^A ASC NEPM 1999 (amended April 2013) Management Limits (ML) Non-Sensitive Sites (Commercial and Industrial) ^A CRC Care Technical Report 10, September 2011 Direct Contact (DC) Health Screening Levels 'D' (Commercial/Industrial)

^B Start of sample, generally over a 0.1m interval

^C Note that this is a generalisation for the purpose of comparing to the HSL criteria. Where two strata equally represented, most conservative criterion used NL designates 'Not Limiting' indicating that the pore water concentration required to constitute a vapour risk is higher than the solubility capacity for that

compound based on a petroleum mixture. Vapour is therefore not a risk for this compound.

Results for TRH have been compared to TPH guidelines.

Presented ESL for naphthalene is an Ecological Investigation Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

ESL for TRH >C₁₆-C₃₄ and >C₃₄-C₄₀ are low reliability

Results shown in **BOLD** are in excess of the vapour based HSL

Results shown in shading are >250% of the vapour based HSL Results shown in underline are in excess of the ESL

Results shown in *italics* are in excess of the management limit

Results shown in patterned cells are in excess of the direct contact HSL

Where summation required (Xylene, F1, F2) calculation includes components reported as non detected as 1/2 PQL.

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320

Prepared by: ZL Checked by: FB

RCA Australia AWS-TEM-018/17

Sample Identification						Guid	eline ^A					TP104	TP105	TP106	TP107	TP108	TP109	RP101	RP102	RP103	RP108	RP109
Sample Depth (m) B	PQL			HSL 'D'			ESL	C&I	Non-sen	sitive ML		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Date	FQL	SAND 0-<1m	SILT 0-<1m	CLAY 0-<1m	CLAY 1-<2m	CLAY 2-<4m	Coarse	Fine	Coarse	Fine	DC D	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	9/10/19	9/10/19	9/10/19	9/10/19	9/10/19
										mple Profi		TOPSOIL, silty SAND, fine grained, brown, low plasticity silt	TOPSOIL, silty SAND, fine grained, brown	TOPSOIL, sandy SILT, low plasticity, brown	TOPSOIL, sandy SILT, medium plasticity, brown, fine grained sand	TOPSOIL, sandy SILT, low plasticity, brown, fine grained sand	TOPSOIL, sandy SILT, low plasticity, brown, fine grained sand	FILL, silty sandy GRAVEL, grey, fine to medium grained sand				
	Dominant Stratum ^C SAI															SILT	SILT	SAND	SAND	SAND	SAND	SAND
									Sam	ole Purpos	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	
	Sample collected by RCA-BG															RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG
Benzene, Toluene, Etl	ene, Toluene, Ethylbenzene, Xylene (BTEX)																					
Benzene	zene, Toluene, Ethylbenzene, Xylene (BTEX)															<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5	NL	NL	NL	NL	NL	135	135			99000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5	NL	NL	NL	NL	NL	165	185			27000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
meta- and para-Xylene	0.5											<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	0.5											<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	1	230	NL	NL	NL	NL	180	95	<u> </u>		81000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Polycyclic Aromatic H	lydroc	arbons (T .	1	T	T .	T .	T .	T .	1	1	
Naphthalene	1 1	NL	NL	NL	NL	NL	370	370	<u> </u>		11000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total Recoverable Hy		bons (16	KH)			ı							1	1		1	1	1		1 .	1 .	
TRH C ₆ -C ₁₀	10								700	800	26000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH >C ₁₀ -C ₁₆	50						170	170	1000	1000	20000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	100						1700	2500	3500	5000	27000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀														<100	<100	<100	<100	<100	<100	<100	<100	<100
F1	10	260	250	310	480	NL	215	215				<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2													<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
All results are in units of mg/	ka		-																			

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laborator

F1 = TRH C₆-C₁₀ minus BTEX. F1 PQL deemed equal TRH C₆-C₁₀.

F2 = TRH> C_{10} - C_{16} minus naphthalene. F2 PQL deemed = TRH > C_{10} - C_{16} .

ASC NEPM 1999 (amended April 2013) Vapour Based Health Screening Levels (HSL) 'D' (Commercial/Industrial)

A SC NEPM 1999 (amended April 2013) Ecological Screening Levels (ESL) C&I (Commercial and Industrial)

^A ASC NEPM 1999 (amended April 2013) Management Limits (ML) Non-Sensitive Sites (Commercial and Industrial)

^A CRC Care Technical Report 10, September 2011 Direct Contact (DC) Health Screening Levels 'D' (Commercial/Industrial)

 $^{\rm B}$ Start of sample, generally over a 0.1m interval

^C Note that this is a generalisation for the purpose of comparing to the HSL criteria. Where two strata equally represented, most conservative criterion used NL designates 'Not Limiting' indicating that the pore water concentration required to constitute a vapour risk is higher than the solubility capacity for that compound based on a petroleum mixture. Vapour is therefore not a risk for this compound.

Results for TRH have been compared to TPH guidelines.

Presented ESL for naphthalene is an Ecological Investigation Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

ESL for TRH >C₁₆-C₃₄ and >C₃₄-C₄₀ are low reliability

Results shown in $\ensuremath{\mathbf{BOLD}}$ are in excess of the vapour based HSL

Results shown in shading are >250% of the vapour based HSL

Results shown in <u>underline</u> are in excess of the ESL Results shown in *italics* are in excess of the management limit

Results shown in patterned cells are in excess of the direct contact HSL

Where summation required (Xylene, F1, F2) calculation includes components reported as non detected as 1/2 PQL.

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320 Prepared by: ZL Checked by: FB

RCA Australia AWS-TEM-018/17

Sample Identification		Guide	eline ^A	BH101A	BH102A	BH102B	BH103A	BH103C	BH104A	BH105A	BH105C	BH106A	BH107A	BH108A	BH109A	BH109C	BH109D	HA1A	HA2A
Sample Depth (m) B	PQL		EII COI	0.1	0.1	0.85	0.1	0.4	0.1	0.1	0.7	0.1	0.1	0.1	0.1	1.5	3	0.1	0.05
Date	7	HIL 'D'	EIL C&I	3/10/19	24/9/19	24/9/19	25/9/19	25/9/19	30/9/19	26/9/19	26/9/19	2/10/19	2/10/19	2/10/19	1/10/19	1/10/19	1/10/19	2/10/19	2/10/19
		Sample l	Profile	TOPSOIL, Silty CLAY, medium plasticity, brown	FILL, Silty SAND, fine- medium grained, brown, with trace rootlets	CLAY, high plasticity, brown, with orange mottling	TOPSOIL, Silty SAND, fine-medium grained, brown	SLOPEWASH , Silt SAND, fine-medium grained, orange-brown	SLOPEWASH, Silty SAND, fine- medium grained, brown, trace of fine-medium grade gravel	FILL, Gravelly Silty SAND, fine- medium grained, brown, with fine- medium gravel, trace organics	hard plasticity,	FILL, Gravelly Silty SAND, fing- medium grained, grey/brown, fine to medium grained gravel	FILL, sandy-silty CLAY, medium to high palsticity, grey & pale brown, trace of fine to medium gravel.	FILL, silty sandy GRAVEL, fine to medium subangular, grey, fine to medium grained sand	FILL, Silty SAND, fine to medium grained, brown, with organics	FILL, Gravelly, Sandy CLAY, medium plasticity, grey, fine-medium sub-rounded gravel, trace coal fragments	Tuffaceous CLAY, high plasticity, pale grey	FILL, Silty SAND, fine to medium grained, brown, with rootlets and timber	FILL, gravelly sandy CLAY, grey, with organic material, timber and rootlets
		Sample Pu	ırpose	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation
		Sample collec	ted by	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - ZL	RCA - ZL
Polycyclic Aromatic Hydrocarbons	s (PAH)																		
Naphthalene	0.5		370	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	0.8	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2.2	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	6.9	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	6.6	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2.4	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)&(j)fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	3.4	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	1.2	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	0.5		1.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2.9	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2.8	<0.5	<0.5	<0.5	<0.5	<0.5
Carcinogenic PAH (B(a)P equivalent)	1.21	40		0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.968	4.112	0.605	0.605	0.605	0.605	0.605
Sum of reported PAH	8	4000		4	4	4	4	4	4	4	4	4	6.4	35.2	4	4	4	4	4
Metals																			
Arsenic	5	3000	160	7	7	6	<5	8	8	6	7	<5	<5	<5	5	9	<5	<5	<5
Cadmium	1	900		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	3600	310	4	13	8	4	6	6	6	6	7	60	87	5	6	3	3	47
Copper	5	240000	400	8	20	<5	29	12	11	12	<5	8	21	50	13	14	7	9	13
Mercury	0.1	730		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	5	1500	1800	12	20	12	19	<5	14	13	7	6	13	78	19	18	<5	15	13
Nickel	2	6000	55	<2	5	3	3	4	4	4	<2	6	4	11	2	3	<2	<2	5
Zinc	5	400000	360	23	73	8	41	34	35	41	7	42	96	334	44	38	7	26	100

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

The Carcinogenic PAH value is calculated by multiplying the concentration of each of the 8 carcinogenic PAH compounds by its B(a)P toxic equivalence factor and summing these products.

HIL for Chromium are for Chromium VI

Presented ecological value for benzo(a)pyrene is a low reliability Ecological Screening Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

- EIL for Naphthalene are for fresh (<2years) Naphthalene
- EIL for Arsenic are for aged (>2years) Arsenic
- EIL for Chromium are the added contaminant limit for aged (>2years) Chromium III in soils of 1% clay, the most conservative of the criteria.
- EIL for Copper are the added contaminant limit for aged (>2years) Copper in soils of pH 6.5.
- EIL for Lead are the added contaminant limit for aged (>2years) Lead.
- $EIL\ for\ Nickel\ are\ the\ added\ contaminant\ limit\ for\ aged\ (>2 years)\ Nickel\ in\ soils\ of\ 5\%\ CEC\ the\ most\ conservative\ of\ the\ criteria.$
- EIL for Zinc are the added contaminant limit for aged (>2years) Zinc in soils of 5% CEC and pH of 6.5, the most conservative of the criteria at pH 6.5.

Results shown in **BOLD** are in excess of the HIL

Results shown in shading are >250% of the HIL

Results shown in $\underline{\text{underline}}$ are in excess of EIL

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320 Prepared by: ZL Checked by: FB

RCA Australia. AWS-TEM-018/17

^A ASC NEPM 1999 (amended April 2013) Health Investigation Levels (HIL) 'D' (Commercial/Industrial).

^A ASC NEPM 1999 (amended April 2013) Ecological Investigation Levels (EIL) C&I (Commercial and Industrial).

 $^{^{\}rm B}$ Start of sample, generally over a 0.1m interval

Sample Identification		Guide	line ^A	HA3A	HA3B	HA4A	HA5A	HA5B	HA6A	HA7A	HA8A	HA8B	HA9A	HA10A	HA10B	HA11A	HA11B	SP1A	SP1B
Sample Depth (m) B	PQL		FII 001	0.1	1	0.1	0.1	0.6	0.1	0.1	0.1	0.7	0.1	0.1	0.6	0.1	0.3	0.1	0.9
Date		HIL 'D'	EIL C&I	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19	2/10/19
		Sample l	Profile	Clayey SAND, fine to medium grained, dark grey, with organic material, rootlets	Sandy CLAY, light grey, with orange mottling, trace rootlets	Clayey SAND,	TOPSOIL, Silty SAND, black, with organic material	CLAY, pale grey with red/orange mottling	FILL, Gravelly Sity SAND, brown, with organic material	FILL, Gravelly Sandy CLAY, dark grey with orange mottling, with rootlets	Silt SAND, pale brown, trace of sub-angular gravel, with rootlets	CLAY, grey with red/orange mottling		Sandy CLAY, grey, trace of gravel and rootlets	CLAY, pale brown, re/prange mottling	FILL, Gravelly Silty SAND, fine to medium grained, grey	FILL, Gravelly Silty SAND, fine to medium grained, grey	FILL, Silty Sandy CLAY, black, with subangular gravel and rootlets	FILL, Sandy CLAY, dark grey with orange mottling, with rootlets
		Sample Pu	<u>'</u>	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	ŭ	Investigation	ŭ	Investigation	Investigation	Investigation Material adjacent HMRI carpark	Investigation Material adjacent HMRI carpark
		Sample collec	ted by	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL
Polycyclic Aromatic Hydrocarbons	, ' 																		
Naphthalene	0.5		370	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)&(j)fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	0.5		1.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carcinogenic PAH (B(a)P equivalent)	1.21	40		0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605
Sum of reported PAH	8	4000		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Metals																			
Arsenic	5	3000	160	<5	<5	5	7	11	<5	8	6	6	5	5	7	8	9	<5	<5
Cadmium	1	900	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	3600	310	3	5	4	8	8	8	6	12	6	4	4	7	8	10	4	3
Copper	5	240000	400	12	<5	13	6	<5	7	14	13	<5	20	10	<5	35	33	18	18
Mercury	0.1	730		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	5	1500	1800	12	10	21	9	9	12	22	13	11	28	23	10	25	26	26	38
Nickel	2	6000	55	<2	<2	<2	<2	<2	3	4	4	<2	2	2	<2	4	4	<2	<2
Zinc	5	400000	360	23	<5	32	21	<5	38	66	46	8	44	45	8	70	68	34	43

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

The Carcinogenic PAH value is calculated by multiplying the concentration of each of the 8 carcinogenic PAH compounds by its B(a)P toxic equivalence factor and summing these products.

HIL for Chromium are for Chromium VI

Presented ecological value for benzo(a)pyrene is a low reliability Ecological Screening Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

- EIL for Naphthalene are for fresh (<2years) Naphthalene
- EIL for Arsenic are for aged (>2years) Arsenic
- EIL for Chromium are the added contaminant limit for aged (>2years) Chromium III in soils of 1% clay, the most conservative of the criteria.
- EIL for Copper are the added contaminant limit for aged (>2years) Copper in soils of pH 6.5.
- EIL for Lead are the added contaminant limit for aged (>2years) Lead.
- EIL for Nickel are the added contaminant limit for aged (>2years) Nickel in soils of 5% CEC the most conservative of the criteria.
- EIL for Zinc are the added contaminant limit for aged (>2years) Zinc in soils of 5% CEC and pH of 6.5, the most conservative of the criteria at pH 6.5.

Results shown in **BOLD** are in excess of the HIL

Results shown in shading are >250% of the HIL

Results shown in $\underline{\text{underline}}$ are in excess of EIL

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320 Prepared by: ZL Checked by: FB

^A ASC NEPM 1999 (amended April 2013) Health Investigation Levels (HIL) 'D' (Commercial/Industrial).

^A ASC NEPM 1999 (amended April 2013) Ecological Investigation Levels (EIL) C&I (Commercial and Industrial).

 $^{^{\}rm B}$ Start of sample, generally over a 0.1m interval

Sample Identification		Guide	eline ^A	SP2A	SP2B	TP101	TP102	TP103	TP104	TP105	TP106	TP107	TP108	TP109	RP101	RP102	RP103	RP108	RP109
Sample Depth (m) B	PQL	HIL 'D'	EIL C&I	0.3	0.9	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Date		HIL D	EIL C&I	2/10/19	2/10/19	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	8/10/19	9/10/19	9/10/19	9/10/19	9/10/19	9/10/19
		Sample	Profile	FILL, Sandy CLAY, dark grey, trace of gravel	Sandy, CLAY, yellow, red/orange mottling	TOPSOIL, silty SAND, fine to coarse grained, dark brown, with fine subrounded gravel	,	TOPSOIL, silty SAND, fine to medium grained, brown, with fine to medium subrounded gravel	TOPSOIL, silty SAND, fine grained, brown, low plasticity silt	TOPSOIL, silty SAND, fine grained, brown	TOPSOIL, sandy SILT, low plasticity, brown	TOPSOIL, sandy SILT, medium plasticity, brown, fine grained sand	TOPSOIL, sandy SILT, low plasticity, brown, fine grained sand	TOPSOIL, sandy SILT, low plasticity, brown, fine grained sand	FILL, silty sandy GRAVEL, grey, fine to medium grained sand		FILL, silty sandy GRAVEL, grey, fine to medium grained sand	FILL, silty sandy GRAVEL, grey, fine to medium grained sand	FILL, silty sandy GRAVEL, grey, fine to medium grained sand
		0 1 0		Investigation Material	Investigation Material	Investigation	Investigation Proposed	Investigation	Investigation	Investigation Proposed	Investigation Proposed	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation Proposed	Investigation	Investigation
		Sample Pu	ırpose	adjacent	adjacent	Proposed Road Alignment	Road	Proposed Road Alignment	Proposed Road Alignment	Road	Road	Proposed Road Alignment	Proposed Road Alignment	Proposed Road Alignment	Proposed Road Alignment	Proposed Road Alignment	Road	Proposed Road Alignment	Proposed Road Alignment
				HMRI carpark	HMRI	_	Alignment			Alignment	Alignment			•	ŭ	, ,	Alignment	-	ū
		Sample collec	ted by	RCA - ZL	RCA - ZL	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG
Polycyclic Aromatic Hydrocarbons	(PAH)													!	ł				
Naphthalene	0.5		370	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5
Pyrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5
Benz(a)anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
Chrysene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)&(j)fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5
Benzo(k)fluoranthene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	0.5		1.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carcinogenic PAH (B(a)P equivalent)	1.21	40		0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	1.135	0.605	0.605
Sum of reported PAH	8	4000		4	4	4	4	4	4	4	4	4	4	4	4	4	7.25	4	4
Metals																			
Arsenic	5	3000	160	<5	<5	<5	<5	5	<5	5	<5	<5	10	<5	6	10	<5	10	9
Cadmium	1	900		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	3600	310	6	3	4	3	5	4	2	3	3	8	4	17	12	22	14	15
Copper	5	240000	400	13	<5	13	9	10	14	19	15	12	<5	15	11	15	9	16	16
Mercury	0.1	730		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	5	1500	1800	23	30	30	16	17	19	54	28	16	8	23	9	9	16	9	8
Nickel	2	6000	55	3	<2	2	<2	2	<2	<2	<2	<2	<2	3	10	22	6	23	28
Zinc	5	400000	360	36	<5	157	30	28	24	36	25	20	8	46	54	52	64	67	103

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

The Carcinogenic PAH value is calculated by multiplying the concentration of each of the 8 carcinogenic PAH compounds by its B(a)P toxic equivalence factor and summing these products.

HIL for Chromium are for Chromium VI

Presented ecological value for benzo(a)pyrene is a low reliability Ecological Screening Level

ESL are applicable for material at less than 2m depths below finished surface/ground level

For the purpose of the Tier 1 ESL/EIL assessment, all background concentrations are assumed to be zero

- EIL for Naphthalene are for fresh (<2years) Naphthalene
- EIL for Arsenic are for aged (>2years) Arsenic
- EIL for Chromium are the added contaminant limit for aged (>2years) Chromium III in soils of 1% clay, the most conservative of the criteria.
- EIL for Copper are the added contaminant limit for aged (>2years) Copper in soils of pH 6.5.
- EIL for Lead are the added contaminant limit for aged (>2years) Lead.
- EIL for Nickel are the added contaminant limit for aged (>2years) Nickel in soils of 5% CEC the most conservative of the criteria.
- EIL for Zinc are the added contaminant limit for aged (>2years) Zinc in soils of 5% CEC and pH of 6.5, the most conservative of the criteria at pH 6.5.

Results shown in **BOLD** are in excess of the HIL

Results shown in shading are >250% of the HIL

Results shown in $\underline{\text{underline}}$ are in excess of EIL

Health Infrastructure Contamination and Waste Classification JHHIP RCA ref 14399-208/3 Dec 2019 Client ref HI19320 Prepared by: ZL Checked by: FB

RCA Australia. AWS-TEM-018/17

^A ASC NEPM 1999 (amended April 2013) Health Investigation Levels (HIL) 'D' (Commercial/Industrial).

^A ASC NEPM 1999 (amended April 2013) Ecological Investigation Levels (EIL) C&I (Commercial and Industrial).

 $^{^{\}rm B}$ Start of sample, generally over a 0.1m interval

TIER 1 - Total Concentra	audiis Wiin			BUILDA	DUIZOGA	DUIAGOD	DUIGOOA	DUITOR	DILLOTA	DUIGOTA	DUVOSO	DIMOCA	DILLOTA	DUIAGGA
Sample Identification		Total Co	ncentration ^A	BH101A	BH102A	BH102B	BH103A	BH103C	BH104A	BH105A	BH105C	BH106A	BH107A	BH108A
Depth	PQL	General Solid	Restricted Solid	0.1	0.1	0.85	0.1	0.4	0.1	0.1	0.7	0.1	0.1	0.1
Sample Date				3/10/2019	24/09/2019	24/09/2019	25/09/2019	25/09/2019	30/09/2019	26/09/2019	26/09/2019	2/10/2019	2/10/2019	2/10/2019
	TOPSOIL, Silty CLAY, medium plasticity, brown	FILL, Silty SAND, fine medium grained, brown, with trace rootlets	CLAY, high plasticity, brown, with orange mottling	TOPSOIL, Silty SAND, fine- medium grained, brown	SLOPEWASH, Silt SAND, fine-medium grained, orange- brown	SLOPEWASH, Silty SAND, fine-medium grained, brown, trace of fine-medium grade gravel	FILL, Gravelly Silty SAND, fine-medium grained, brown, with fine medium gravel, trace organics		FILL, Gravelly Silty SAND, fing-medium grained, grey/brown, fine to medium grained gravel	FILL, sandy-silty CLAY, medium to high palsticity grey & pale brown, trace of fine to medium gravel.				
		S	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	
			ple collected by	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC	RCA - RC
Benzene, Toluene, Ethylbenz			T	1	T	T			Г	T	T		T	
Benzene	0.2	10	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5	288	1152	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5	600	2400	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene	1 TDU	1000	4000	0.5	<u>0.5</u>	0.5	0.5	0.5	0.5	<u>0.5</u>	0.5	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>
Total Recoverable Hydrocark		0.50	0000	1	I	1			T	T			1	
TRH C ₆ -C ₉	10	650	2600	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH C ₁₀ -C ₃₆	250	10000	40000	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	195	435	605	325
Polycyclic Aromatic Hydroca	rbons (PAH)													
Benzo(a) pyrene	0.5	0.8	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	2.9
Sum of Reported PAH	8	200	800	<u>4</u>	<u>4</u>	4	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>6.4</u>	35.2
Metals														
Arsenic	5	100	400	7	7	6	<5	8	8	6	7	<5	<5	<5
Cadmium	1	20	80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	100	400	4	13	8	4	6	6	6	6	7	60	87
Mercury	0.1	4	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
Lead	5	100	400	12	20	12	19	<5	14	13	7	6	13	78
Nickel	2	40	160	<2	5	3	3	4	4	4	<2	6	4	11
Tier	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	Restricted Solid Waste			

Page 1 of 4

All results are in units of mg/kg.

PQL = Practical Quantitation Limit.

^A NSWEPA Waste Classification Guidelines, November 2014. Table 1, CT1 and CT2. Table 2, TCLP1 and TCI P2

Guidelines reported for Chromium are for Chromium VI

Results for TRH have been compared to TPH guidelines.

Results shown in **BOLD** are in excess of the General Solid Waste criteria

Results shown in **shading** are in excess of the Restricted Solid Waste criteria

Sample Identification	1		oncentration ^A	BH109A	BH109C	BH109D	HA1A	HA2A	HA3A	HA3B	HA4A	HA5A	HA5B	HA6A	HA7A	HA8A	HA8B
Depth	PQL	General Solid	Restricted Solid	0.1	1.5	3	0.1	0.05	0.1	1	0.1	0.1	0.6	0.1	0.1	0.1	0.7
Sample Date		General Solid	Restricted Solid	1/10/2019	1/10/2019	1/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019
			Sample Profile	FILL, Silty SAND, fine to medium grained, brown, with organics	FILL, Gravelly, Sandy CLAY, medium plasticity, grey, fine-medium sub-rounded gravel, trace coal fragments	Tuffaceous CLAY, high plasticity, pale grey	FILL, Silty SAND, fine to medium grained, brown, with rootlets and timber	FILL, gravelly sandy CLAY, grey, with organic material, timber and rootlets	Clayey SAND, fine to medium grained, dark grey, with organic material, rootlets	Sandy CLAY, pale grey with orange mottling, trace of rootlets	Clayey SAND, fine to medium grained, pale grey, trace rootlets	TOPSOIL, Silty SAND, black, with organic material	CLAY, pale grey with red/orange mottling	FILL, Gravelly Silty SAND, brown, with organic material	FILL, Gravelly Sandy CLAY, dark grey with orange mottling, with rootlets	Silt SAND, pale brown, trace of sub-angular gravel, with rootlets	CLAY, grey with red/orange mottling
			Sample Purpose	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation
			ple collected by	RCA - RC	RCA - RC	RCA - RC	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL
Benzene, Toluene, Ethylbenzen			1	,	_		1	1	1			_	1	1	1		
Benzene	0.2	10	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5	288	1152	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5	600	2400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene	1	1000	4000	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>
Total Recoverable Hydrocarbon	s (TRH)																
TRH C ₆ -C ₉	10	650	2600	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH C ₁₀ -C ₃₆	250	10000	40000	245	245	<u>125</u>	<u>125</u>	385	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	375	<u>125</u>	<u>125</u>	<u>125</u>
Polycyclic Aromatic Hydrocarbo	ons (PAH)			· ·	I		l .	l	l	I	1	I		I			
Benzo(a) pyrene	0.5	0.8	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of Reported PAH	8	200	800	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Metals	· ·		,	_	<u> </u>	_	<u> </u>	<u> </u>	_	_	_		-	<u> </u>	_	-	
Arsenic	5	100	400	5	9	<5	<5	<5	<5	<5	5	7	11	<5	8	6	6
Cadmium	1	20	80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	100	400	5	6	3	3	47	3	5	4	8	8	8	6	12	6
Mercury	0.1	4	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	5	100	400	19	18	<5	15	13	12	10	21	9	9	12	22	13	11
Nickel	2	40	160	2	3	<2	<2	5	<2	<2	<2	<2	<2	3	4	4	<2
Tier 1	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste			

Page 2 of 4

All results are in units of mg/kg.

PQL = Practical Quantitation Limit.

^A NSWEPA Waste Classification Guidelines, November 2014. Table 1, CT1 and CT2. Table 2, TCLP1 and

Guidelines reported for Chromium are for Chromium VI

Results for TRH have been compared to TPH guidelines.

Results shown in **BOLD** are in excess of the General Solid Waste criteria

Results shown in **shading** are in excess of the Restricted Solid Waste criteria

Sample Identification			Concentration A	HA9A	HA10A	HA10B	HA11A	HA11B	SP1A	SP1B	SP2A	SP2B	TP101	TP102	TP103	TP104
Depth	PQL	Caparal Salid	Doctricted Colid	0.1	0.1	0.6	0.1	0.3	0.1	0.9	0.3	0.9	0.1	0.1	0.1	0.1
Sample Date		General Solid	Restricted Solid	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	2/10/2019	8/10/2019	8/10/2019	8/10/2019	8/10/2019
			Sample Profile	Silty SAND, dark grey, with rootlets	Sandy CLAY, grey, trace of gravel and rootlets	CLAY, pale brown, re/prange mottling	FILL, Gravelly Silty SAND, fine to medium grained, grey	FILL, Gravelly Silty SAND, fine to medium grained, grey	FILL, Silty Sandy CLAY, black, with subangular gravel and rootlets	FILL, Sandy CLAY, dark grey with orange mottling, with rootlets	FILL, Sandy CLAY, dark grey, trace of gravel	Sandy, CLAY, yellow, red/orange mottling	TOPSOIL, silty SAND, fine to medium grained, brown	TOPSOIL, silty SAND, fine to medium grained, brown, with fine to medium subrounded gravel	TOPSOIL, silty SAND, fine grained, brown, low plasticity silt	TOPSOIL, silty SAND, fine grained, brown
			Sample Purpose	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation Material adjacent HMRI carpark	Investigation Material adjacent HMRI carpark	Investigation Material adjacent HMRI carpark	Investigation Material adjacent HMRI carpark	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment
	· · · ·		mple collected by	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA - ZL	RCA-BG	RCA-BG	RCA-BG	RCA-BG
Benzene, Toluene, Ethylbenzene			1	1		T	1	T	1	T	T	Γ		1		1
Benzene	0.2	10	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5	288	1152	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5	600	2400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene	(TDU)	1000	4000	0.5	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	0.5	0.5	0.5	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>
Total Recoverable Hydrocarbons	1	1	1	1		I	1	I	1	T	I	I		1		1
TRH C ₆ -C ₉	10	650	2600	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH C ₁₀ -C ₃₆	250	10000	40000	195	175	<u>125</u>	<u>125</u>	175	<u>125</u>	185	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>
Polycyclic Aromatic Hydrocarbo	ns (PAH)									•						
Benzo(a) pyrene	0.5	0.8	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of Reported PAH	8	200	800	4	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>
Metals																
Arsenic	5	100	400	5	5	7	8	9	<5	<5	<5	<5	<5	<5	5	<5
Cadmium	1	20	80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	100	400	4	4	7	8	10	4	3	6	3	4	3	5	4
Mercury	0.1	4	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	5	100	400	28	23	10	25	26	26	38	23	30	30	16	17	19
Nickel	2	40	160	2	2	<2	4	4	<2	<2	3	<2	2	<2	2	<2
Tier 1 \$	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste			

Page 3 of 4

All results are in units of mg/kg.

PQL = Practical Quantitation Limit.

^A NSWEPA Waste Classification Guidelines, November 2014. Table 1, CT1 and CT2. Table 2, TCLP1 and

Guidelines reported for Chromium are for Chromium VI

Results for TRH have been compared to TPH guidelines.

Results shown in **BOLD** are in excess of the General Solid Waste criteria

Results shown in **shading** are in excess of the Restricted Solid Waste criteria

Sample Identification			ncentration ^A	TP105	TP106	TP107	TP108	TP109	RP101	RP102	RP103	RP108	RP109
Depth	PQL			0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample Date	1	General Solid	Restricted Solid	8/10/2019	8/10/2019	8/10/2019	8/10/2019	8/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019
cample Bate				0,10,2010	0,10,2010	0,10,2010	07.0720.0	0,10,2010	071072010	071072010	071072010	0,10,2010	0,10,2010
			Sample Profile	TOPSOIL, sandy SILT, low plasticity, brown	TOPSOIL, sandy SILT, medium plasticity, brown, fine grained sand	SILT, low plasticity, brown,	SILT, low	brown, fine grained	FILL, silty sandy GRAVEL, grey, fine to medium grained sand	FILL, silty sandy GRAVEL, grey, fine to medium grained sand			
	Sample Purpose					Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment	Investigation Proposed Road Alignment
			ole collected by	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG	RCA-BG
Benzene, Toluene, Ethylbenzene,				•	1	1	T	1	T			1	T
Benzene	0.2	10	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5	288	1152	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5	600	2400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene	1 1	1000	4000	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>
Total Recoverable Hydrocarbons		1		1	T	1	T	T	T			T	T
TRH C ₆ -C ₉	10	650	2600	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH C ₁₀ -C ₃₆	250	10000	40000	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>
Polycyclic Aromatic Hydrocarboi	ns (PAH)			•									
Benzo(a) pyrene	0.5	0.8	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	<0.5
Sum of Reported PAH	8	200	800	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	4.45	<u>4</u>	<u>4</u>
Metals													
Arsenic	5	100	400	5	<5	<5	10	<5	6	10	<5	10	9
Cadmium	1	20	80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	2	100	400	2	3	3	8	4	17	12	22	14	15
Mercury	0.1	4	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	5	100	400	54	28	16	8	23	9	9	16	9	8
Nickel	2	40	160	<2	<2	<2	<2	3	10	22	6	23	28
Tier 1 S	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste	General Solid Waste			

All results are in units of mg/kg.

PQL = Practical Quantitation Limit.

^A NSWEPA Waste Classification Guidelines, November 2014. Table 1, CT1 and CT2. Table 2, TCLP1 and TCI P2

Guidelines reported for Chromium are for Chromium VI

Results for TRH have been compared to TPH guidelines.

Results shown in **BOLD** are in excess of the General Solid Waste criteria

Results shown in **shading** are in excess of the Restricted Solid Waste criteria