

Supplementary Site Investigation

Ivanhoe Estate Corner Herring Road and Epping Road Macquarie Road NSW 2113

Frasers Property Australia

DL3953_S008115

February 2018

PROJECT NAME	Ivanhoe Estate, cnr Herring and Epping Roads, Macquarie Park
PROJECT ID	DL3953
DOCUMENT CONTROL NUMBER	S008115
PREPARED FOR	Frasers Property Australia
APPROVED FOR RELEASE BY	Simon Spyrdz
DISCLAIMER AND COPYRIGHT	This report is subject to the copyright statement located at www.pacific-environment.com © Pacific Environment ABN 86 127 101 642

DOCUMENT CONTROL				
DOC. CONTROL NO.	DATE	COMMENT	PREPARED BY	REVIEWED BY
S006887		Version 1.0	Sally King	Jack Dobson
S008115	15/2/2018	Version 1.1 – Updated Site Boundary in Figure 2	Sally King	Jack Dobson

DLA Environmental Services Pty Ltd: ABN 80 601 661 634

PACIFIC ENVIRONMENT

ADELAIDE

35 Edward Street, Norwood, SA 5067 PO Box 3187, Norwood, SA 5067 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

BRISBANE

Level 19, 240 Queen Street Brisbane, Qld 4000 Ph: +61 7 3004 6400

MELBOURNE

Level 10, 224 Queen Street Melbourne, Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

PERTH

Level 1, Suite 3 34 Queen Street, Perth, WA 6000 Ph: +61 8 9481 4961 Fax: +61 2 9870 0999

SYDNEY

Suite 1, Level 1, 146 Arthur Street North Sydney, NSW 2060 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

DLA ENVIRONMENTAL SERVICES

BRISBANE

Level 19, 240 Queen Street Brisbane, Qld 4000 Ph: +61 7 3004 6400

MAITLAND

42B Church St Maitland NSW 2320 Ph: +61 2 4933 0001

MELBOURNE

Level 10, 224 Queen Street Melbourne, Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

SYDNEY

Unit 3, 38 Leighton Place Hornsby, NSW 2077 Ph: +61 2 9476 1765 Fax: +61 2 9476 1557

DISCLAIMER

DLA Environmental Services (DLA) acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services. Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and DLA. DLA is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports. Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of DLA.

The conclusions presented in this report are relevant to the present condition of the Site and the state of legislation currently enacted as at the date of this report. DLA do not make any representation or warranty that the conclusions in this report will be applicable in the future as there may be changes in the condition of the Site, applicable legislation or other factors that would affect the conclusions contained in this report.

This report is limited to the scope defined herein. Sampling and chemical analysis of environmental media are based on representative samples, the intensity of those samples being in accordance with the usual levels of testing carried out for this type of investigation and appropriate for the objectives of this report. Due to the inherent variability in environmental media, DLA cannot warrant that the whole overall condition of the Site is identical or substantially similar to the representative samples.

ABBREVIATIONS

A list of the common abbreviations used throughout environmental reports is provided below:

ABC	Ambient Background Concentration
ACL	Added Contaminant Limit
AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
AS	Australian Standard
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethyl Benzene, Xylene
CEC	Cation Exchange Capacity
CRC CARE	Cooperative Research Centre for Contamination Assessment and
	Remediation of the Environment
DLA	DLA Environmental Services
DQI	Data Quality Indicator
DQO	Data Quality Objective
DSI	Detailed Site Investigation
EIL	Ecological Investigation Level
EPA	Environment Protection Authority (NSW)
ESL	Ecological Screening Level
HIL	Health-Based Investigation Level
HSL	Health Screening Level
LOR	Limit of Reporting
ML	Management Limit
NA	Not Applicable
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NL	Not Limiting
NSW	New South Wales
OC/OP	Organochlorine / Organophosphorus Pesticides
OEH	Office of Environmental and Heritage
PAH	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyls
QA/QC	Quality Assurance and Quality Control
RPD	Relative Percentage Difference
SEPP	State Environmental Planning Policy
TEQ	Toxicity Equivalence Quotient
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit

EXECUTIVE SUMMARY

DLA Environmental Services was engaged by Frasers Property Australia to undertake a Supplementary Investigation of the area identified as 'Ivanhoe Estate', located on the corner of Herring Road and Epping Road, Macquarie Park NSW 2113 ('the Site').

A Detailed Site Investigation was previously carried out to assess the contamination status of the Site (JBS&G, 2016), however data gaps were identified in some areas of the Site. Consequently, this Supplementary Investigation report provides environmental characterisation of soil across the remaining areas of the Site that were identified as data gaps and assesses the suitability of these areas for proposed future residential land use.

The investigation included the collection of soil samples collected from nine targeted boreholes. The samples were submitted for laboratory analysis for a suite of typical contaminants of potential concern. soil samples collected from borehole BH8 reported petroleum hydrocarbons at concentrations exceeding the health and ecological screening levels. All other soil samples reported contaminant concentrations below the adopted investigation and screening levels. In addition, asbestos was not detected in any of the samples submitted for analysis.

Based on the results of the current investigation data, DLA concludes that the area of the Site in the vicinity of borehole BH8 is not currently considered suitable for the proposed redevelopment from a contamination perspective due to the presence of hydrocarbons in soil.

Although the Site is not considered suitable for the proposed land use in its current condition, DLA considers that the Site can be made suitable with further assessment and the implementation of an appropriate remediation strategy.

Further investigation and remediation of the Site would include:

- 1. Delineation soil sampling and laboratory analysis;
- 2. Preparation of a Remediation Action Plan for the Site;
- 3. Remediation of the Site which would include the excavation and appropriate off-site disposal of TRH contaminated soils;
- 4. Validation sampling of the Site; and
- 5. Preparation of a Site Validation Report.

TABLE OF CONTENTS

1.0	IN		1
1.1	-	General	1
1.2	2	Objectives	1
1.3	;	Scope of Works	2
2.0	SI	TE DESCRIPTION	3
2.1		Site Identification	3
2.2	2	Proposed Development	3
2.3	•	Boundaries and Surrounding Land Use	3
2.4	Ļ	Environmental Setting	4
3.0	SL	JMMARY OF PREVIOUS INVESTIGATIONS	5
3.1		Detailed Site Investigation	5
3.2		Summary of In-Ground Contamination	5
4.0	SA	AMPLING, ANALYSIS AND QUALITY PLAN	6
4.1		Data Quality Objectives	6
4.2	2	Field Investigation Procedure	8
4.2	2 4.2.1	Field Investigation Procedure	8 9
4.2 4.3	2 4.2.1	Field Investigation Procedure Image: Sample Collection 1 Sample Collection Analytical Strategy Image: Sample Collection	8 9 9
4.2 4.3 4.4	2 4.2.1 }	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1	8 9 9
4.2 4.3 4.4	2 4.2 .1 6 6 4.4.1	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 1 Investigation Criteria 1 1 Health Investigation Levels 1	8 9 9 0
4.2 4.3 4.4	2 4.2. 1 6 4.4.1 4.4.2	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 1 Health Investigation Levels 1 2 Health Screening Levels 1	8 9 0 0
4.2 4.3 4.4	4.2. 1 4 4.4.1 4.4.2 4.4.3	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 1 Health Investigation Levels 1 2 Health Screening Levels 1 3 Management Limits 1	8 9 0 2 3
4.2 4.3 4.4	2 4.2. 4 4 .4.1 4 .4.2 4 .4.2 4 .4.2	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 1 Health Investigation Levels 1 2 Health Screening Levels 1 3 Management Limits 1 4 Ecological Investigation Levels 1	8 9 0 2 3 4
4.2 4.3 4.4	2 4.2.1 4.4.1 4.4.2 4.4.3 4.4.4 4.4.4	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 Investigation Criteria 1 Health Investigation Levels 1 Health Screening Levels 1 Management Limits 1 Ecological Investigation Levels 1 Ecological Screening Levels 1	8 9 0 2 3 4 6
4.2 4.3 4.4	2 4.2.1 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 QI	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 Investigation Criteria 1 Health Investigation Levels 1 Health Screening Levels 1 Management Limits 1 Ecological Investigation Levels 1 Ecological Screening Levels 1 UALITY ASSURANCE AND QUALITY CONTROL 1	8 9 0 2 3 4 6 7
4.2 4.3 4.4 5.0 5.1	2 4.2.1 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 Q(Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 1 Health Investigation Levels 1 1 Health Screening Levels 1 2 Health Screening Levels 1 3 Management Limits 1 4 Ecological Investigation Levels 1 5 Ecological Screening Levels 1 UALITY ASSURANCE AND QUALITY CONTROL 1 Field Quality Assurance / Quality Control 1	8 9 0 2 3 4 6 7
4.2 4.3 4.4 5.0 5.1	2 4.2.1 4.4.2 4.4.2 4.4.2 4.4.2 4.4.2 4.4.2 4.4.2 5.1.1	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 Investigation Criteria 1 1 Health Investigation Levels 1 2 Health Screening Levels 1 3 Management Limits 1 4 Ecological Investigation Levels 1 5 Ecological Screening Levels 1 6 Health Y ASSURANCE AND QUALITY CONTROL 1 7 Field Quality Assurance / Quality Control 1 1 Sampling Team 1	8 9 9 0 0 2 3 3 4 6 7 7 7 7
4.2 4.3 4.4 5.0 5.1	2 4.2.1 4.4.2 4.4.2 4.4.2 4.4.2 4.4.4 5.1.1 5.1.2	Field Investigation Procedure 1 Sample Collection 1 Analytical Strategy 1 Investigation Criteria 1 Investigation Criteria 1 Health Investigation Levels 1 Yealth Screening Levels 1 Analytical Investigation Levels 1 Management Limits 1 Ecological Investigation Levels 1 Ecological Screening Levels 1 UALITY ASSURANCE AND QUALITY CONTROL 1 Field Quality Assurance / Quality Control 1 Sampling Team 1 Yeild Procedures 1	8 9 9 0 0 2 3 4 6 7 7 7 7 7

5.2	Labo	pratory QA/QC19
5	.2.1	Selected Laboratory
5	.2.2	Laboratory Control Measures
5	.2.3	Laboratory QA/QC Results
5.3	QA/	QC Assessment
6.0	RESUL	TS
6.1	Field	lwork Observations
6.2	Anal	ytical Results
6	.2.1	Total Recoverable Hydrocarbons and Monocyclic Aromatic Hydrocarbons21
6	.2.2	Polycyclic Aromatic Hydrocarbons
6	.2.3	Pesticides and Polychlorinated Biphenyls
6	.2.4	Heavy Metals
6	.2.5	Asbestos
7.0	DISCUS	SSION
7.1	Soil	Contamination23
7.2	Preli	minary Waste Classification23
8.0	CONCL	USIONS AND RECOMMENDIATIONS25
9.0	REFERE	ENCES

FIGURES

Figure 1	Site Location
Figure 2	Site Layout and Supplementary Sample Locations

APPENDICES

Appendix A	Data Summary Table
Appendix B	NATA Certified Analytical Results
Appendix C	Borehole Logs

1.0 INTRODUCTION

1.1 General

DLA Environmental Services (DLA) was engaged by Frasers Property Australia (the Client) to undertake a Supplementary Investigation of the following area:

'Ivanhoe Estate' Corner Herring Road and Epping Road, Macquarie Park NSW 2113 ('the Site')

A Detailed Site Investigation (DSI) was previously carried out to assess the contamination status of the Site (JBS&G, 2016), however data gaps were identified in areas of the Site previously subject to earthworks (cut and fill activities). The results of the investigation were presented in the following report:

- Detailed Site Investigation – Ivanhoe Estate, Herring Road, Macquarie Park NSW (JBS&G, dated 30 September 2016, reference: 52047/104956 (Rev A)).

This Supplementary Investigation report provides environmental characterisation of soil via intrusive investigation across the remaining areas of the Site that were identified as data gaps within the DSI. In addition, this report considers the suitability of these areas of the Site for proposed future residential land use.

This report has been prepared utilising information from current investigation works, previous investigation reports, and from experience, knowledge, and current industry practice in the investigation of similar sites.

This Supplementary Investigation report should be read in conjunction with the DSI report (JBS&G, 2016).

1.2 Objectives

The objectives of this Supplementary Investigation are to supplement the results presented in the DSI report (JBS&G, 2016) and satisfy the general requirements of State Environmental Planning Policy No.55 (SEPP 55) in accordance with *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (NSW OEH, 2011).

Specifically, this Supplementary Investigation will consider the potential for suspected historical activities to have caused contamination in areas of the Site not previously assessed, and provide conclusions regarding the suitability of the Site for future use consistent with 'Residential A' as described by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1) ('NEPM', NEPC, 2013).

1.3 Scope of Works

To achieve these objectives, DLA carried out the following works:

- Targeted intrusive investigations comprising the collection of soil samples from nine boreholes;
- Data assessment and reporting, including comparison with relevant New South Wales (NSW)
 Environment Protection Authority (EPA) made or endorsed investigation and screening levels;
- Assessment of whether the area of the Site subject to the current investigation is suitable for the proposed land use from a contamination perspective;
- Consideration of potential Site contamination management requirements, if any; and
- Preparation of this Supplementary Investigation report.

2.0 SITE DESCRIPTION

2.1 Site Identification

Based on the Site inspection carried out by DLA on the XXX 2017, and a review of published records, the Site identification details are summarised in Table 1.

ITEMS	DETAILS
Site Name	'Ivanhoe Estate'
Address	Corner Herring Road and Epping Road, Macquarie Park, NSW 2113
Lot and Deposited Plan	Lots 6 to 17 and 18 to 20 in Deposited Plan 861433 Lot 1 in DP 859537 Lot 100 in Deposited Plan 1223787 Part Lot 5 in Deposited Plan 740753
Local Government Authority	City of Ryde
Site Zoning	B4 – Mixed Use under the Ryde Local Environmental Plan 2014
Current Use	Residential (Department of Housing)
Total Site Area (approx.)	8.2 hectares
Locality Map	Refer to Figure 1 – Site Location
Site Survey	Refer to Figure 2 – Site Layout and Supplementary Sample Locations

Table 1: Site Identification Summary

2.2 Proposed Development

The proposed development scenario is expected to include a combination of low and high-density residential land use. For the purposes of this investigation, the most conservative land use scenario has been adopted, which is consistent with the definition of 'Residential with gardens and accessible soil' provided in Schedule B7 of the NEPM (NEPC, 2013).

2.3 Boundaries and Surrounding Land Use

The boundary and surrounding landscape features of the Site are summarised in Table 2.

Table 2: Boundaries and Surrounding Land Use

DIRECTION	DETAILS
North-west	Herring Road with high-density residential premises and Macquarie University beyond
North-east	Medium to high-density residential premises
South-west	Epping Road with low-density residential premises beyond
South-east	Commercial (offices) premises

2.4 Environmental Setting

The landscape and environmental setting of the Site is summarised in Table 3.

Table 3: Environmental Setting

DIRECTION	DETAILS
Topography	The Site lies at gradients between approximately 47m Australian Height Datum (AHD) in the southern-most corner and 75m AHD along the north-western boundary. The Site exhibits an overall gradient from the north-western boundary down towards the south / south-east.
Geology	The 1:100,000 Sydney Geological Series Sheet (9130) indicates that the Site lies on the boundary of Triassic-aged Ashfield Shale of the Wianamatta Group and Hawkesbury Sandstone. Ashfield Shale comprises black and dark grey shale and laminite derived from lacustrine environments. Hawkesbury Sandstone comprises medium to coarse grained quartz sandstone with very minor shale and laminite lenses derived from braided alluvial channel fill.
Acid Sulfate Soils	The 1:25,000 Prospect / Parramatta River Acid Sulfate Soil Risk Map indicates that there are no known occurrences of acid sulfate soil in the vicinity of the Site.
Hydrology	Shrimpton Creek runs along the south-eastern boundary of the Site. Shrimpton Creek flows in a broadly northerly direction, ultimately discharging to the Lane Cove River which is located approximately 1.35 km to the north-east of the Site. The surface of the Site comprises both sealed and unsealed surfaces. In areas of the Site where unsealed surfaces are present (i.e. lawns and garden beds), it is expected that surface water (rainfall) would infiltrate into the subsurface. In areas of the Site where impervious pavements are present (i.e. roadways), or where the subsurface becomes waterlogged following periods of prolonged or heavy rainfall, runoff water would form overland flow and follow the gradient of the land.
Hydrogeology	Review of the NSE Office of Water groundwater data indicates that there are no registered bores within a 500m radius of the Site. The closest registered bore to the Site is located approximately 650m to the north / north-east and is registered for use for monitoring purposes. No details regarding the depth to groundwater are available for the nearby registered bores, however it is expected that regional groundwater would be present at depth within the underlying bedrock. Based on the hydrology of the local area, it is expected that groundwater underlying the Site would flow in a north-easterly direction towards the Lane Cove River.

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS

3.1 Detailed Site Investigation

Detailed Site Investigation – Ivanhoe Estate, Herring Road, Macquarie Park NSW (JBS&G, dated 30 September 2016, reference: 52047/104956 (Rev A)).

The DSI comprised a review of previous investigations, historical information and intrusive sampling which included 26 grid-based and targeted borehole locations.

The results of the soil sampling and laboratory analysis reported contaminants of potential concern at concentrations less than the investigation criteria, with the exception of benzo(a)pyrene which exceeded the adopted ecological criteria at one sample location. This ecological exceedance was not considered to present an unacceptable ecological risk due to its limited effects on plant uptake.

The report concluded that the soils underlying the Site do not present an unacceptable risk to human health or the environment and do not preclude redevelopment of the Site for its intended land use.

3.2 Summary of In-Ground Contamination

Summary of In-Ground Contamination – Ivanhoe Estate, Cnr Herring and Epping Roads, Macquarie Park NSW 2113 (DLA, dated 11 October 2016, reference: DL3951_S005491).

The document was prepared in response to a review of the DSI report (JBS&G, 2016) which indicated that historical cut and fill activities were undertaken on-site to facilitate the construction of larger developments in the estate.

Based on a review of the available historical and investigation data, DLA concluded that there was a low likelihood of unacceptable contamination to be present on the Site as a result of past and present land use activities, however data gaps existed for the cut and fill areas.

DLA recommended that additional visual inspections and limited sampling be performed across the cut and fill areas with the aim of addressing the identified data gaps with regards to the presence of subsurface contamination associated with fill material.

4.0 SAMPLING, ANALYSIS AND QUALITY PLAN

4.1 Data Quality Objectives

The NEPM (NEPC, 2013) and Australian Standard (AS) 4482.1-2005 recommend that data quality objectives (DQOs) be implemented during the investigation of potentially contaminated sites. The DQO process described in AS 4482.1-2005 *Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part 1: Non-Volatile and Semi-Volatile Compounds* outlines seven distinct steps to outline the project goals, decisions, constraints and an assessment of the project uncertainties and how to address these when they arise. The DQOs have been summarised in Table 4.

Table 4: Summary of DQOs

1	State the Problem	This Supplementary Investigations aims to address the question of whether previous land uses have affected the suitability of the Site for future land use consistent with 'Residential A' as defined by the NEPM (NEPC, 2013).
2	ldentify the Decisions	 Decisions include: Do contaminant concentrations in soil comply with the investigation criteria? Have the previous land uses affected the environmental quality of the land? Do residual soils pose an unacceptable risk to human health or the environment?
m	ldentify Inputs to Decisions	 Inputs to the decision include: Previous environmental data. Relevant NSW EPA produced or endorsed criteria. Field observations. The results of judgemental soil sampling and laboratory analysis.
4	Define Study Boundaries	 Spatial Boundaries – the physical study will focus on soil within the confines of the lot boundaries as defined in Table 1. Temporal Boundaries – as the data from the previous investigations will be relied upon for the purposes of the investigation then the temporal boundary of the Supplementary Investigation will be from 2016 to the date of the current investigation.

ſ	Develop Decision Rule	 The Site will be considered suitable for its intended land use if concentrations of soils comply with the investigation criteria, as determined by the following decision rules being applied to the data: The 95% Upper Confidence Limit (UCL) of the arithmetic mean for each contaminant of concern must comply with the respective investigation criteria; The individual contaminant concentration should not exceed the investigation criteria by more than 250%, and; The standard deviation of individual contaminants should not exceed 50% of the investigation criteria.
		The Site will be deemed to contain contamination "hotspots" if any of the above criteria are unfulfilled.
		Field and laboratory quality controls are implemented to avoid error and to ensure the action levels exceed the measurement detection limits. The performance of decision making inputs will be enhanced through the application of Data Quality Indicators (DQI), defined in Table 5.
v	ecify Limits on Decision Errors	 A Site under investigation is assumed to be contaminated until statistically proven otherwise (eg: H₀= Analyte 95% UCL exceeds the Assessment Criteria), therefore two types of error are possible: Type 1 error (α or false negative), where the Site is assessed to be uncontaminated when it is actually is; and Type 2 error (β or false positive), when the Site is assessed to be contaminated though is actually not
	S	The more severe consequence is with Type 1 errors (α) since the risk of jeopardising human or environmental health outweighs the consequences of additional remediation costs. Therefore, to achieve appropriate confidence in the data, probabilities are set at 5% for Type 1 error, whilst Type 2 errors are set at a 20% probability limit.
7	Optimise Design for Obtaining Data	 Ensure access to all relevant and previous environmental data. Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs.

L

Table 5: Summary of DQIs

DATA PRECISION AND ACCURACY			
	>10 x Limit of Reporting (LOR): 30% inorganics; 50% organics (field)		
Acceptable Relative	<10 x LOR: Assessed on individual basis (field)		
Percentage Difference (RPD)	>5 x LOR: 50% (laboratory)		
	<5 x LOR: No Limit (laboratory)		
	Based on acceptance criteria of laboratory as specified on certificate of		
	analysis, includes: blank samples, control samples, and surrogate spike		
Adequate Laboratory	samples.		
Performance	Use of analytical laboratories with adequately trained and experienced		
	testing staff experienced in the analyses undertaken, with appropriate		
	NATA certification.		
DATA REPRESENTATIVENESS			
Sample and Analysis Selection	Representativeness of all contaminants of concern.		
	Adequate laboratory internal quality control and quality assurance		
Laboratory Selection	methods, complying with the NEPM (NEPC, 2013).		
DOCUMENTATION COMPLETENESS			
	Laboratory sample receipt information received confirming receipt of		
Chain of Custody Records	samples intact and appropriate chain of custody.		
chain of custody records	NATA registered laboratory results certificates provided.		
DATA COMPLETENESS			
	Analysis for all contaminants of concern.		
	Field duplicate sample numbers complying with NEPM (NEPC, 2013)		
COMPARABILITY			
	Use of NATA registered laboratories.		
	Detailed logs of all sample locations recorded.		
	Test methods comparable between primary and secondary laboratory		
	Acceptable RPD's between original samples and field duplicates and		
1			

4.2 Field Investigation Procedure

Field investigation carried out as part of the Supplementary Investigation comprised the collection of 14 primary soil samples from nine hand auger boreholes (BH1 to BH4, BH5/1, BH5/2, BH6 to BH8). Sampling was performed on a targeted basis in areas of the Site that were not previously subject to intrusive investigation.

For a site covering an area of approximately 8 hectares, the NSW EPA (1995) *Sampling Design Guidelines* recommend a minimum of 95 test locations be targeted for assessment. Given the fact that the comprises an existing residential subdivision and is occupied by multiple dwellings, it was not possible to achieve the recommended sampling density. However, based on the known current and historical use of the Site, and the results from the DSI (JBS&G, 2016), it is considered that widespread contamination of the subsurface is unlikely, therefore the reduced sampling density is considered adequate for the purposes of the combined investigations.

The justification of the sampling point regime for the investigation was based on the investigator's knowledge, operational requirements and experience.

Refer to **Figure 2** – Site Layout and Supplementary Sample Locations.

4.2.1 Sample Collection

Boreholes were drilled using a hand auger to depths between 0.4m and 0.8m below ground level (bgl). Soil samples were obtained directly off the auger and immediately transferred to sample containers of appropriate composition (glass jars for chemical analysis, zip-lock plastic bags for asbestos). Job number; sample identification number; sampler's initials and date of sampling were recorded on sample labels affixed to the sample containers.

Chemical samples were immediately placed into a chilled cooler to minimise the potential for loss of volatile components during storage and transport. Chemical samples were stored and transported at temperatures below 4°C. Samples were transported under standard DLA chain-of-custody protocols to Envirolab Services Pty Ltd, a NATA accredited laboratory.

Soil samples were not screened in the field for the presence of volatile organic compounds using a Photoionization Detection as all samples collected were submitted for analysis for volatile contaminants of concern.

Samples were collected by DLA staff who are specifically trained in hazardous waste field investigation techniques and health and safety procedures. Field sampling techniques used are specified in DLA Field Manual for Contaminated Sites, which are based on methods specified in the NEPM (NEPC, 2013).

4.3 Analytical Strategy

Soil samples were analysed for the contaminants of potential concern COPC presented in Table 6.

Table 6: Analytical Schedule

SOIL SAMPLES	NO. OF PRIMARY SAMPLES
Total Recoverable Hydrocarbons (TRH)	14
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	14
Polycyclic Aromatic Hydrocarbons (PAH)	14
Heavy Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)	14
Organochlorine / Organophosphorus Pesticides (OC/OP)	8
Polychlorinated Biphenyls (PCBs)	8
Asbestos (presence / absence)	8

4.4 Investigation Criteria

The investigation criteria have been derived from NEPM (NEPC, 2013) and are specific to the proposed development scenario for the Site.

The investigation criteria are not clean up criteria, but are indicative of a level of contamination above which there is a potentially unacceptable risk which may require further assessment, management or remediation.

4.4.1 Health Investigation Levels

The Health Investigation Levels (HILs) are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst case scenario for four generic land use scenarios. Considering the proposed land use, the following HIL has been adopted:

- HIL A – Residential with gardens and accessible soil.

The adopted HILs from Table 1A(1) and Table 7, Schedule B1 of NEPM (NEPC, 2013) are shown in Table 7.

ANALYTES	HIL-A
Heavy Metals	
Arsenic	100
Cadmium	20
Chromium	100
Copper	6,000
Lead	300
Mercury	40
Nickel	400
Zinc	7,400
РАН	
BaP TEQ	3
Total PAHs	300
РСВ	
РСВ	1
Pesticides	
DDT+DDE+DDD	240
Aldrin and Dieldrin	6
Chlordane	50
Endosulfan	270
Endrin	10
Heptachlor	6
НСВ	10
Methoxychlor	300
Mirex	10
Toxaphene	20
Asbestos	
Asbestos	Not Detected

Table 7: Health Investigation Levels for Soils

Health Investigation Levels soured from NEPM (NEPC, 2013) Table 1A(1)

BaP (TEQ): Benzo(a)pyrene Toxic Equivalence Quotient. Toxic Equivalence Quotient (TEQ) expresses an aggregate measure of toxicity based on a number of contributing PAH compounds.

4.4.2 Health Screening Levels

Health Screening Levels (HSLs) are used to assess selected petroleum compounds and fractions to assess the risk to human health via inhalation and direct contact with affected soils. The HSLs were developed by the Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) and were derived through the consideration of health effects only, with particular emphasis on the vapour exposure pathway. Other considerations such as ecological risk, aesthetics, the presence of free phase product and explosive / fire risk are not addressed by the HSLs.

In order to determine whether the HSLs tabulated in Schedule B1 of NEPC (2013) are applicable or whether a site-specific determination is required, CRC CARE provide an application checklist which should be completed prior to using the HSLs. The following parameters were considered in completing the checklist:

- Potential Contaminants Petroleum Hydrocarbons;
- Land use HSL A;
- Potential Pathways soil vapour intrusion, direct contact;
- Media soil;
- Soil Types clay is the dominant sub-surface profile; and
- **Depth to Contamination** all data will be compared with the HSLs.

On the basis of these considerations, the following HSL has been adopted:

- HIL A & HSL B – Low – high density residential for 'clay' (or 'fine').

The adopted soil HSLs for vapour intrusion from Table 1A(3), Schedule B1 of NEPM (NEPC, 2013) are shown in Table 8.

ANALYTES	HSL-A (Clay) 0 to 1.0m	Direct Contact HSL-A
Benzene	0.7	100
Toluene	480	14,000
Ethylbenzene	NL	4,500
Xylenes	110	12,000
Naphthalene	5	1,400
F1: C6-C10	50	4,400
F2: C ₁₀ -C ₁₆	280	3,300
F3: C ₁₆ -C ₃₄	NA	4,500
F4: C34-C40	NA	6,300

Table 8: Health Screening Levels for Soils (Clay)

NL = Not Limiting (i.e. the soil vapour concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario).

NA = Not Applicable (i.e. NEPM (NEPC, 2013) does not provide HSLs for the F3 and F4 hydrocarbon fractions). Vapour Intrusion Criteria sourced from NEPM (NEPC, 2013) *Table 1A(3)*.

Direct Contact Criteria sourced from Friebel and Nadebaum 2011, Health Screening Levels for petroleum Hydrocarbons in Soil and Groundwater, Part 1: Technical Development Document, *Table A4 – Soil Health Screening Levels for Direct Contact.*

4.4.3 Management Limits

In addition to appropriate consideration and application of the HSLs, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids;
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

Management Limits (ML) to avoid or minimise these potential effects have been adopted in NEPM (NEPC, 2013) as interim Tier 1 guidance.

The adopted management limits from Table 1B(7), Schedule B1 of NEPM (NEPC, 2013) are shown in Table 9.

ANALYTES	ML (Fine) Urban Residential and Public Open Space
F1: C ₆ -C ₁₀	800
F2: C ₁₀ -C ₁₆	1,000
F3: C ₁₆ -C ₃₄	3,500
F4: C ₃₄ -C ₄₀	10,000

Table 9: Management Limits for Soils (Fine)

Management Limits sourced from NEPM (NEPC, 2013) Table 1 B(7).

4.4.4 Ecological Investigation Levels

According to NEPM (NEPC, 2013), Schedule B (5a) – *Guideline on Ecological Risk Assessment*, factors that may influence a Risk Management Decision (and therefore determine Ecological Risk Assessment outcomes) are generally based on economic, ecological or societal considerations.

Examples include:

- The size of the site, land value, cost of remediation (economic);
- The type of contaminants present, current and potential site land use, surrounding land use (societal); and
- The ecological significance (e.g. a rare and endangered species or a species that supports a valued ecological process or a sensitive introduced species of low ecological significance) of the values identified in the Receptor Identification component of Ecological Risk Assessment to be protected.

EILs have been implemented to environmentally manage the effect of contaminants on terrestrial ecosystems and species sensitivity. The EILs referenced in this report have been developed for the generic land use setting of urban residential areas and public open space. It is important to note that the contamination is assumed to be aged (>2 years), as fresh contamination associated with current industrial / agricultural activity and chemical spills are not likely present on-site. EILs have been derived for: Arsenic (As), Copper (Cu), Chromium (CrIII), DDT, naphthalene, Nickel (Ni), Lead (Pb) and Zinc (Zn).

Ambient Background Concentration (ABC)

For Ni, CrIII, Zn and Pb (aged contamination), the EILs are the sum of Added Contaminant Limits (ACLs) and Ambient Background Concentrations (ABCs). To establish the ABC of a contaminant, the recommended method is to measure the ABC at an appropriate unpolluted reference site. Sample

BH5/2 was determined to be the most appropriate unpolluted reference location for the purposes of ABCs. The sample was collected from reworked natural sandy clay at a depth of 0.5-0.8m bgl and the soils at this location are therefore considered characteristic of natural clays in the region.

For As, DDT and Naphthalene (aged contamination), the EILs are generically obtained (i.e. not dependent on soil type).

Added Contaminant Limit (ACL)

The Added Contaminant Limit (ACL) is the added contamination (in excess of the ABC). ACLs are applicable to Cr III, Cu, Ni and Zn and are based on soils properties of pH, Cation Exchange Capacity (CEC) and the clay content.

The soil type at BH5/2 was identified to be reworked natural sandy clay, allowing for a clay content percentage in excess of 90%. The pH for the soils was analysed by the laboratory to be 6.1 (rounded down to 6.0 for the purposes of deriving the ACLs). A conservative CEC of 25cmol_c/kg has been adopted in the determination of the ACLs below.

The respective soil EILs are provided in Table 10.

ANALYTES	ABC	ACL	EIL
Arsenic			100 ¹
Chromium (III)	10	400 ²	410
Copper	2	215 ³	217
Lead	9	1,100 4	1,109
Nickel	2	310 ⁵	312
Zinc	7	400 ⁶	407
DDT			180 ⁷
Naphthalene			170 ⁸

Table 10: Ecological Investigation Levels

1. NEPM (NEPC, 2013) Schedule B1 Table 1B(5).

2. NEPM (NEPC, 2013) Schedule B1 Table 1B(3).

3. NEPM (NEPC, 2013) Schedule B1 Table 1B(2). CEC has been used for this calculation.

4. NEPM (NEPC, 2013) Schedule B1 Table 1B(4).

5. NEPM (NEPC, 2013) Schedule B1 Table 1B(3).

6. NEPM (NEPC, 2013) Schedule B1 Table 1B(1). 7. NEPM (NEPC, 2013) Schedule B1 Table 1B(5).

8. NEPM (NEPC, 2013) Schedule B1 Table 1B(5).

4.4.5 Ecological Screening Levels

Ecological screening levels (ESLs) have been developed for selected petroleum hydrocarbon compounds and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse and fine-grained soils and various land uses. They are generally applicable to the top 2 m of soil.

The adopted ESLs from Table 1B(6), Schedule B1 of NEPM (NEPC, 2013) are shown in Table 11.

ANALYTES	ESL (Fine) Urban Residential and Public Open Space
Benzene	65
Toluene	105
Ethylbenzene	125
Xylenes	45
Benzo(a)Pyrene	0.7
F1: C6-C10	180
F2: C ₁₀ -C ₁₆	120
F3: C ₁₆ -C ₃₄	1,300
F4: C ₃₄ -C ₄₀	5,600

Table 11: Ecological Screening Levels (Fine)

Ecological Screening Levels sourced from NEPM (NEPC, 2013) Table 1 B(6).

5.0 QUALITY ASSURANCE AND QUALITY CONTROL

5.1 Field Quality Assurance / Quality Control

5.1.1 Sampling Team

Soil sampling was undertaken by Matthew Junghans, an experienced environmental consultant from DLA.

5.1.2 Field Procedures

The following field procedures were implemented as part of field quality assurance / quality control (QA/QC):

- **Sample Containers:** soil samples collected during the investigation were placed immediately into laboratory prepared glass jars with Teflon lid inserts, and zip-lock plastic bags. Standard identification labels were adhered to each individual container and labelled according to depth, date, sampling team and media collected;
- Decontamination: all equipment used in the sampling program was decontaminated prior to use and between samples to minimise the potential for cross contamination.
 Decontamination of equipment involved:
 - Cleaning equipment in potable water to remove gross contamination;
 - Cleaning in a solution of Decon 90; and
 - Rinsing in clean demineralised water.
- Chain of Custody: samples were recorded on a chain of custody form. The chain of custody form accompanied samples upon dispatch to the NATA registered laboratories for analysis. Copies of the chain of custody forms, signed by laboratory, that acknowledged sample receipt date and time, samples received in good condition and properly chilled and documentation received in proper order, are provided in Appendix B;
- Photoionisation Detector: given that volatile contaminants were not considered a primary contaminant of concern as part of either the DSI or supplementary investigation, screening of the samples using a photoionisation detector was not considered necessary. Regardless, all soil samples collected as part of the supplementary investigations were submitted for laboratory analysis for TRH and BTEX.
- **Trip Spike / Trip Blank:** Trip spikes are used to assess whether volatile contaminants in samples may have been lost during transport. Trip blanks are used to assess whether volatile contamination may have been introduced to a sample during shipping and handling. Given the absence of potential sources of hydrocarbon-based contamination identified on-site at

the time of fieldwork, hydrocarbons were not considered a primary contaminant of concern. Consequently, the collection of trip spikes and trip blanks was not considered necessary. The absence of detectable volatile hydrocarbon concentrations in soil samples suggests that the loss or transfer of volatile contamination from and between soil samples is unlikely. The absence of trip spike and trip blank sample data is not considered to affect the precision or accuracy of the laboratory data, or the conclusions of the overall assessment.

- **Rinsate Blanks**: Rinsate blanks are used to assess the effectiveness of field decontamination techniques in minimising cross-contamination of samples. Rinsate blanks were not collected during fieldwork. All care was taken to remove soil adhered to the hand auger between each sampling interval, and sampling equipment was decontaminated between each borehole location. As such, the potential for cross contamination was considered minimal. The absence of rinsate blank sample data is not considered to affect the precision or accuracy of the laboratory data, or the conclusions of the overall assessment.

5.1.3 Field QA/QC Duplicate Analysis

Field duplicate samples for soil were prepared in the field through the following process:

- A larger than normal quantity of soil is recovered from the sample location selected for duplication;
- The sample is placed in a decontaminated stainless bowl and mixed as thoroughly as practicable before being divided into equal parts;
- Two portions of the sub-sample are immediately transferred, one for an intra-laboratory duplicate and another as a sample; and
- Samples are placed into a labelled, laboratory supplied 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jars are labelled as the sample and duplicate and immediately placed in a chilled cooler.

Duplicate samples were prepared on the basis of sample numbers recovered during the field work. The duplicate sample frequency was computed using the total number of samples analysed as part of this assessment. The duplicate sample frequencies are shown below:

SOIL SAMPLES	14 Samples	2 intra-laboratory duplicate	14%
--------------	------------	------------------------------	-----

An intra-laboratory duplicate rate of 14% was achieved which is greater than that recommended by the Field Quality Plan. No inter-laboratory duplicate samples were collected for analysis. Given the limited number of primary samples collected overall, the field duplicate sampling ratio is considered sufficient for the purposes of this investigation to assess the precision of the project laboratory.

Comparisons were made of the laboratory test results for the duplicate samples with the original samples and the Relative Percentage Difference (RPD) calculated as difference/average in order to assess the accuracy of the sampling and laboratory test procedures. The comparisons between the duplicates and original samples indicate acceptable RPDs when they comply with criteria which are commonly set at:

- Less than 30% for inorganics and 50% for organics;
- Less than five times the laboratory LOR; and
- The difference between concentrations is less than 5% of the relevant HIL concentration.

Field duplicates provide an indication of the whole validation process, including the sampling process, sample preparation and analysis.

Two intra-laboratory duplicate exceeded the DQO of 30% for two heavy metal concentrations. The differences in concentrations of the following intra-laboratory duplicate pair reported concentrations of less than five times the LOR:

• BH7_0.2-0.7 / BH7_0.2-0.7A for nickel (100%).

The differences in concentrations of the following intra-laboratory duplicate pairs were for reported concentrations of less than 5% of the relevant HIL concentration:

- BH7_0.2-0.7 / BH7_0.2-0.7A for nickel (100%); and
- BH7_0.2-0.7 / BH7_0.2-0.7A for zinc (44%).

It is to be noted that for samples with concentrations of less than the LOR, the concentration has been modified to half the LOR value to assist in statistical RPD calculations and data quality assessment.

RPD results are tabulated in **Appendix A** – Data Summary Tables.

5.2 Laboratory QA/QC

5.2.1 Selected Laboratory

The laboratory for used for the analysis of primary soil samples and intra-laboratory duplicate samples was Envirolab Services Pty Ltd located at Chatswood in Sydney. The analytical methods and procedures used by the laboratory are NATA certified and meet requirements of NEPM (NEPC, 2013).

5.2.2 Laboratory Control Measures

The project laboratory adopted a quality program that comprises of reagent/method blanks, matrix spikes, surrogate spikes, laboratory duplicates and laboratory control samples at or in excess of current NEPM and Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines.

5.2.3 Laboratory QA/QC Results

Soil samples were received at the laboratory in good order, with the correct documentation and were adequately chilled. All samples were analysed within the recommended holding times. The signed sample receipt advice is included on the chain of custody forms.

A laboratory quality control summary and full laboratory QA/QC checklist is included on the laboratory reports presented in **Appendix B**. Laboratory QA/QC procedures to determine the accuracy and precision of the analyses comprised the following:

- No target analytes were detected in any of the method blanks, indicating that the analytical method was satisfactory and no contamination occurred;
- Matrix spike samples were within the accepted range indicating low matrix interference;
- Surrogate spikes were within the accepted range indicating no gross errors have occurred in the analysis procedure leading to significant analyte loss;
- Laboratory control samples were within the accepted range confirming primary calibration; and
- RPDs for the duplicate control samples were found to be within the acceptable limit.

5.3 QA/QC Assessment

Based on the QA/QC results, DLA considers the field measurement data and laboratory analytical results obtained are valid and meet the data quality objectives set for this Supplementary Investigation. DLA concludes that the field and laboratory data presented herein is representative of the overall Site condition at the time of fieldwork.

6.0 **RESULTS**

6.1 Fieldwork Observations

Subsurface conditions are presented in detail in the borehole logs presented in **Appendix C**. The subsurface typically consisted of sandy loam topsoil to depths between 0.1m and 0.5m bgl, overlying reworked excavated siltstone / claystone bedrock.

No visual or olfactory evidence of contamination (i.e. staining or odours) was recorded during fieldwork. No anthropogenic material, including fragments of fibre cement sheeting, was observed.

6.2 Analytical Results

The results of the soil sampling are summarised below.

Refer to **Appendix A** – Data Summary Table and **Appendix B** – NATA Certified Analytical Results.

6.2.1 Total Recoverable Hydrocarbons and Monocyclic Aromatic Hydrocarbons

The results of the laboratory analysis reported TRH and BTEX in soil at concentrations less than the adopted investigation criteria with the exception of the following:

- Sample BH8_0.0-0.4 reported TRH F2 (> C_{10} - C_{16}) at a concentration of 250mg/kg which exceeds the adopted HSL and the ESL; and
- Sample BH8_0.1-0.4 reported TRH F2 (>C₁₀-C₁₆) at a concentration of 120mg/kg which exceeds the adopted ESL.

6.2.2 Polycyclic Aromatic Hydrocarbons

The results of the laboratory analysis reported PAHs in soil at concentrations less than the laboratory LOR and the adopted investigation criteria.

6.2.3 Pesticides and Polychlorinated Biphenyls

The results of the laboratory analysis reported pesticides and PCBs in soil at concentrations less than the laboratory LOR and the adopted investigation criteria.

6.2.4 Heavy Metals

The results of the laboratory analysis reported heavy metals in soil at concentrations less than the adopted investigation criteria.

6.2.5 Asbestos

Asbestos was not detected in any of the soil samples submitted for laboratory analysis.

7.0 DISCUSSION

7.1 Soil Contamination

The objective of this Supplementary Investigation was to assess the suitability of the areas of the Site no previously subject to investigation for future residential land use from a contamination perspective.

Intrusive investigations indicated that the subsurface of the Site comprises sandy loam topsoil overlying reworked excavated siltstone / claystone bedrock.

Soil samples were collected from nine boreholes and comprised both topsoil material and reworked natural soils and bedrock. The samples were submitted for laboratory analysis for a suite of typical contaminants of potential concern.

Soil samples from borehole BH8 reported TRH F2 (>C₁₀-C₁₆) at concentrations exceeding the HSL and ESL. Hydrocarbon concentrations exceeding the HSL have the potential to pose a risk to human health through ingestion of soil, dermal contact with soil, and inhalation of vapours due to the volatile nature of the identified contamination. Vegetation in the vicinity of the impacted soil may also be affected. The vertical extent of the TRH impact was not delineated as part of the current investigation. No visual source of petroleum hydrocarbon contamination was observed during fieldwork, therefore it is considered likely that this impact is a result of a localised spillage or leakage of fuel.

Given that borehole BH8 was drilled in an area of the Site separate from the other boreholes, application of statistical analysis to further assess the risk to human health was not considered appropriate.

All other soil samples reported contaminant concentrations below the adopted investigation and screening levels. In addition, asbestos was not detected in any of the samples submitted for analysis.

7.2 Preliminary Waste Classification

A preliminary waste classification has been carried out using existing analytical data to provide an indicative classification to facilitate off-site disposal of excavated soil, if required. Analytical results were compared against the contaminant thresholds presented in Table 1 of the NSW EPA (2014) *Waste Classification Guidelines, Part 1: Classifying Waste*. The data indicates that both the topsoil and underlying reworked natural material are classified as General Solid Waste, non-putrescible.

A more detailed assessment of the fill material underlying the Site would be required to more thoroughly classify this material to facilitate appropriate off-site disposal.

8.0 CONCLUSIONS AND RECOMMENDIATIONS

The sampling regime and subsequent assessment undertaken as part of this Supplementary Investigation are considered to be adequate for providing supplementary data pertaining to the Site, which is to be considered in conjunction with the previously prepared DSI report (JBS&G, 2016).

The combined data presented in the DSI and this Supplementary Investigation report is considered sufficient to allow assessment of the suitability of the Site for future land use in accordance with the general requirements of SEPP 55. Reporting has been undertaken in accordance with the *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (NSW OEH, 2011) and the *Guidelines for the NSW Site Auditor Scheme* (NSW EPA, 2nd ed., 2006).

Based on the results of the current investigation data, DLA concludes that the area of the Site in the vicinity of borehole BH8 is not currently considered suitable for the proposed redevelopment from a contamination perspective due to the presence of TRH in soil.

Although the Site is not considered suitable for the proposed land use in its current condition, DLA considers that the Site can be made suitable with further assessment and the implementation of an appropriate remediation strategy.

Further investigation and remediation of the Site would include:

- 1. Delineation soil sampling and laboratory analysis;
- 2. Preparation of a Remediation Action Plan for the Site;
- 3. Remediation of the Site which would include the excavation and appropriate off-site disposal of TRH contaminated soils;
- 4. Validation sampling of the Site; and
- 5. Preparation of a Site Validation Report.

9.0 **REFERENCES**

AS 4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part 1: Non-Volatile and Semi-Volatile Compounds.

DLA (2016). Summary of In-Ground Contamination – Ivanhoe Estate, Cnr Herring and Epping Roads, Macquarie Park NSW 2113. DLA Environmental Services.

Friebel, E and Nadebaum, P (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater, Part 2: Application document, CRC CARE Technical Report no. 10.* CRC for Contamination Assessment and Remediation of the Environment.

JBS&G (2016). *Detailed Site Investigation – Ivanhoe Estate, Herring Road, Macquarie Park NSW*. JBS&G Pty Ltd.

NEPC (1999). National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1). National Environment Protection Council.

NSW DEC (2006). *Contaminated Sites: Guidelines for the NSW Site Auditor Scheme 2nd edition.* New South Wales Department of Environment and Conservation.

NSW EPA (1995). *Contaminated Sites: Sampling Design Guidelines.* New South Wales Environment Protection Authority.

NSW EPA (2014). *Waste Classification Guidelines, Part 1: Classifying Waste*. New South Wales Environment Protection Authority.

NSW OEH (2011). *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites*. New South Wales Office of Environment and Heritage.

FIGURE 1

SITE LOCATION

FIGURE 2

SITE LAYOUT AND SUPPLEMENTARY SAMPLE LOCATIONS

Legend		A		Figure Title Additional Ir	vestigation Loca	ations		
Site Boundary		N		Project Title		Client	t	
Sample Locactions (approximate)	Ар	proximate Scal	e	Ivanhoe Esta	ite, Macquarie P	ark Fra	asers Proper	ty Australia
Altered Topography Areas				Project No.	Date	Scale	Figure No.	Revision
	0m	75m	130m	DL 3953	15/02/2018	As Shown	1	Version 1.1

APPENDIX A

DATA SUMMARY TABLES

Table 1 - Soil Analytical Results Supplementary Investigation 'Ivanhoe Estate' Macquarie Park NSW

	DLA Envi																									
						BT	ΈX				TR	RH		P.	AH	Pesti	cides					Heavy	Metals			
Sample ID	Depth (m)	Date	Chemical Report	Asbestos	Benzene	Toluene	Ethylbenzene	Xylene	Naphthalene	臣	Z	£	F4	BaP TEQ	Total PAH	ось	ОРР	PCB	As	cq	Cr VI	5	Рр	ВН	ïŻ	z
SITE ASSESSMENT				ND										2	200				100	20	400	6000	200	40	100	7400
	NEPC, 2013)	M 2012)		ND	-	- 160	-	- 40	-	-	- 110	-	-	3	300	-	-	-	100	20	100	6000	300	40	400	7400
HSL A Direct Cont	act (Friehel et al 2	(011)		-	400	14000	35 //500	40	5 1/100	45	3300	-	- 6300	-	-	-	-	-	-	-	-	-	-	-	-	-
Management Limits	. Urban Residential. f	ine (NEPC. 2013)			-	-	-	-	-	700	1000	2500	10000		_				_			_				-
EIL Urban Residen	itial / Public Open S	Space (NEPC, 2013	3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	-	410	217	1109	-	312	407
ESL Urban Resider	ntial / Public Open	Space, coarse (NE	EPM. 2013)	-	50	85	70	45	-	180	120	300	2800	0.7	-	-	-	-	-	-	-	-	-	-	-	
PRIMARY SAMPL	ES		, ,													1										
BH1	0.1-0.2	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	<0.1	<0.1	<0.1	7	<0.4	20	21	25	<0.1	8	31
BH1	0.2-0.5	24-May-17	167858	-	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	-	-	-	7	<0.4	17	18	32	<0.1	7	29
BH2	0.1-0.4	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	<0.1	<0.1	<0.1	5	<0.4	45	17	11	<0.1	36	25
BH2	0.5-0.6	24-May-17	167858	-	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	-	-	-	7	<0.4	14	12	16	<0.1	3	7
BH3	0.0-0.1	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	140	<100	<0.5	<0.05	<0.1	<0.1	<0.1	8	<0.4	23	8	22	<0.1	4	16
BH3	0.1-0.8	24-May-17	167858	-	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	-	-	-	7	<0.4	14	17	22	<0.1	2	16
BH4	0.1-0.2	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	<0.1	<0.1	<0.1	8	<0.4	9	5	6	<0.1	7	17
BH4	0.2-0.4	24-May-17	167858	-	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	-	-	-	5	<0.4	18	18	14	<0.1	14	33
BH5/1	0.1-0.5	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	<0.1	<0.1	<0.1	<4	<0.4	6	8	8	<0.1	5	32
BH5/2	0.5-0.8	24-May-17	167858	-	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	-	-	-	<4	<0.4	10	2	9	<0.1	2	7
BH6	0.1-0.5	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	<0.1	<0.1	<0.1	<4	<0.4	8	2	8	<0.1	1	4
BH7	0.2-0.7	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	<100	<100	<0.5	<0.05	<0.1	<0.1	<0.1	<4	<0.4	10	3	8	<0.1	1	7
BH8	0.0-0.1	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	250	650	170	<0.5	<0.05	<0.1	<0.1	<0.1	<4	<0.4	14	8	14	<0.1	3	22
BH8	0.1-0.4	24-May-17	167858	-	<0.2	<0.5	<1	<1	<1	<25	120	180	<100	<0.5	<0.05	-	-	-	<4	<0.4	12	5	12	<0.1	2	13
INTRA-LABORATO	DRY DUPLICATE				1										1											
BH2	0.1-0.4A	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	140	<100	<0.5	<0.05	<0.1	<0.1	<0.1	4	<0.4	44	20	11	<0.1	42	29
BH7	0.2-0.7A	24-May-17	167858	ND	<0.2	<0.5	<1	<1	<1	<25	<50	140	<100	<0.5	<0.05	<0.1	<0.1	<0.1	<4	<0.4	10	4	8	<0.1	3	11
STATISTICAL ANA	LYSIS				0	0	0	0	0	0	120	1.40	470	0	0	0	0	0	- F	0	C C	2	C C	0	1	
IVIIN Max	NaMay				0	0	0	0	0	0	250	140 650	170	0	0	0	0	0	5 8	0	ь 15	2	5 22	0	36	4
	ΔνΔνσ						-	-	-		185	323	170	-	-				0		45 16	10	15		- 30	35 19
Stdev	y				-	-		-	-		92	284			-		-		, 1	-	10	7	8	-	, 9	10
					-	-	-	-	-	-	32	204	-	-	-	-	-	-	-	-	10	'	U	-	3	10

Reported in mg/kg unless stated otherwise

* Depth relates to Depth Below Surface Level

nd = not detected above laboratory LOR

NL = Not Limiting

RED = Exceeds HIL Criteria

YELLOW = Exceeds EIL Criteria

Table 2 - RPD Results Supplementary Investigation 'Ivanhoe Estate' Macquarie Park NSW

Sample ID	Data	Poport		B1	ΈX				T	RH
Sample ID	Date	кероп	Benzene	Toluene	EthylBenzene	Xylene	Naphthalene	F1	F2	F3
INTRA-LABORATORY	1									
BH2_0.1-0.4	24-May-17	167858	<0.2	<0.5	<1	<1	<1	<25	<50	<100
BH2_0.1-0.4A	24-May-17	167858	<0.2	<0.5	<1	<1	<1	<25	<50	140
RPD			NA	NA	NA	NA	NA	NA	NA	NA
BH7_0.2-0.7	24-May-17	167858	<0.2	<0.5	<1	<1	<1	<25	<50	<100
BH7_0.2-0.7A	24-May-17	167858.0	<0.2	<0.5	<1	<1	<1	<25	<50	140
RPD			NA	NA	NA	NA	NA	NA	NA	NA

Sample ID	Date	Report		Heavy Metals									
Sample ib	Date	Report	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn			
INTRA-LABORATORY	1												
BH2_0.1-0.4	24-May-17	167858	5	<0.4	45	17	11	<0.1	36	25			
BH2_0.1-0.4A	24-May-17	167858	4	<0.4	44	20	11	<0.1	42	29			
RPD			22%	NA	2%	16%	0%	NA	15%	15%			
BH7_0.2-0.7	24-May-17	167858	<4	<0.4	10	3	8	<0.1	1	7			
BH7_0.2-0.7A	24-May-17	167858	<4	<0.4	10	4	8	<0.1	3	11			
RPD			NA	NA	0%	29%	0%	NA	100%	44%			

	D	
 	P7	AH
F4	B(a)P TEQ	Total
<100	<0.5	<0.05
<100	<0.5	<0.05
NA	NA	NA
<100	<0.5	<0.05
<100	<0.5	<0.05
NA	NA	NA

APPENDIX B

NATA CERTIFIED ANALYTICAL DATA

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALYS	SIS	167858
Client:			
DLA Environmental Services	Pty Ltd		
Unit 3, 38 Leighton Pl	-		
Hornsby			
NSW 2077			
Attention: Matthew Junghans	3		
Sample log in details:			
Your Reference:		DL3953 - Maq F	Parts
No. of samples:		16 soils	
Date samples received / complete	eted instructions received	25/05/17	/ 25/05/17
Analysis Details:			
Please refer to the following pa	ges for results, methodology	summary and qua	ality control data.
Samples were analysed as rec	eived from the client. Results	relate specifically	to the samples as received.
Results are reported on a dry w	eight basis for solids and on	an as received ba	asis for other matrices.
Please refer to the last page	of this report for any comm	ents relating to t	the results.
Report Details:			
Data results requested by: / les	uo Dato:	1/06/17	/ 30/05/17

 Date results requested by: / Issue Date:
 1/06/17
 / 30/05/17

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	167858-1	167858-2	167858-3	167858-4	167858-5
Your Reference		BH1	BH1	BH2	BH2	BH2
Dopth	-	0102	0205	0101	01.040	0.6
Depin Date Sampled		24/05/2017	24/05/2017	24/05/2017	0.1-0.4A 24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	90	101	106	94	93
		I	1	[1	
vTRH(C6-C10)/BTEXN in Soil		407050.0		407050.0	407050.0	107050 10
Our Reference:	UNITS	167858-6 BLI2	167858-7	167858-8	167858-9	167858-10 DUE/4
Your Reference		впз	впз	BH4	BH4	
Depth		0.1-0.1	0.1-0.8	0.1-0.2	0.2-0.4	0.1-0.5
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

(F1)	iiig/kg	~25	~25	~23	~23	~23
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	105	94	89	106	93

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	167858-11	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/2	BH6	BH7	BH7	BH8
	-					
Depth		0.5-0.8	0.1-0.5	0.2-0.7	0.2-0.7A	0.1-0.1
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	27/05/2017	27/05/2017	27/05/2017	27/05/2017	27/05/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	97	103	98	94

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	167858-16
Your Reference		BH8
	-	
Depth		0.1-0.4
Date Sampled		24/05/2017
l ype of sample		Soil
Date extracted	-	26/05/2017
Date analysed	-	27/05/2017
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	88

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	167858-1	167858-2	167858-3	167858-4	167858-5
Your Reference		BH1	BH1	BH2	BH2	BH2
	-					
Depth		0.1-0.2	0.2-0.5	0.1-0.4	0.1-0.4A	0.6
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
		501	501	501	501	501
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	89	87	89	89	87
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	167858-6	167858-7	167858-8	167858-9	167858-10
Your Reference		BH3	BH3	BH4	BH4	BH5/1
Depth	-	0 1-0 1	0.1-0.8	0.1-0.2	0.2-0.4	0.1-0.5
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	_	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
	_	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
	ma/ka	~50	~50	~50	~50	~50
	ma/ka	<100	<100	<100	<100	<100
	ma/ka	110	<100	<100	<100	<100
	mg/kg	~50	<50	<50	<50	<50
	mg/kg	<50	<50	<50	<50	<50
Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	140	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	140	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	90	88	89	87

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	167858-11	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/2	BH6	BH7	BH7	BH8
	-					
Depth		0.5-0.8	0.1-0.5	0.2-0.7	0.2-0.7A	0.1-0.1
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	470
TRHC 29 - C 36	mg/kg	<100	<100	<100	<100	440
TRH>C10-C16	mg/kg	<50	<50	<50	<50	250
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	250
TRH>C16-C34	mg/kg	<100	<100	<100	<100	650
TRH>C34-C40	mg/kg	<100	<100	<100	<100	170
Total+veTRH (>C10-C40)	mg/kg	<50	<50	<50	<50	1,100
Surrogate o-Terphenyl	%	88	90	88	89	105

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	167858-16
Your Reference		BH8
	-	
Depth		0.1-0.4
Date Sampled		24/05/2017
Type of sample		Soil
Date extracted	-	26/05/2017
Date analysed	-	26/05/2017
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	170
TRHC 29 - C 36	mg/kg	140
TRH>C10-C16	mg/kg	120
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	120
TRH>C16-C34	mg/kg	180
TRH>C34-C40	mg/kg	<100
Total+veTRH (>C10-C40)	mg/kg	300
Surrogate o-Terphenyl	%	103

Client Reference: DL3953 -

DL3953 -	Maq Parts
----------	-----------

PAHs in Soil						
Our Reference:	UNITS	167858-1	167858-2	167858-3	167858-4	167858-5
Your Reference		BH1	BH1	BH2	BH2	BH2
Depth Date Sampled Type of sample		0.1-0.2 24/05/2017 Soil	0.2-0.5 24/05/2017 Soil	0.1-0.4 24/05/2017 Soil	0.1-0.4A 24/05/2017 Soil	0.6 24/05/2017 Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	29/05/2017	29/05/2017	29/05/2017	29/05/2017	29/05/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	117	118	113	115	114

Client Reference: DL3953 -

PAHs in Soil Our Reference: Your Reference	UNITS 	167858-6 BH3	167858-7 BH3	167858-8 BH4	167858-9 BH4	167858-10 BH5/1
Depth Date Sampled Type of sample		0.1-0.1 24/05/2017 Soil	0.1-0.8 24/05/2017 Soil	0.1-0.2 24/05/2017 Soil	0.2-0.4 24/05/2017 Soil	0.1-0.5 24/05/2017 Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	29/05/2017	29/05/2017	29/05/2017	29/05/2017	29/05/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	122	117	115	117	115

PAHs in Soil Our Reference:	UNITS	167858-11	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/2	BH6	BH7	BH7	BH8
Depth Date Sampled Type of sample		0.5-0.8 24/05/2017 Soil	0.1-0.5 24/05/2017 Soil	0.2-0.7 24/05/2017 Soil	0.2-0.7A 24/05/2017 Soil	0.1-0.1 24/05/2017 Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	29/05/2017	29/05/2017	29/05/2017	29/05/2017	29/05/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	114	115	118	115	122

PAHs in Soil		
Our Reference:	UNITS	167858-16
Your Reference		BH8
Denth	-	0101
Deptn Data Sampled		0.1-0.4
Type of sample		24/05/2017 Soil
		00/05/0047
Date extracted	-	26/05/2017
Date analysed	-	29/05/2017
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total +ve PAH's	mg/kg	<0.05
Surrogate p-Terphenyl-d14	%	128

Organochlorine Pesticides in soil						
Our Reference:	UNITS	167858-1	167858-3	167858-4	167858-6	167858-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth	-	0.1-0.2	0.1-0.4	0.1-0.4A	0.1-0.1	0.1-0.2
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	97	91	88	90

Organochlorine Pesticides in soil						
Our Reference:	UNITS	167858-10	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/1	BH6	BH7	BH7	BH8
Denth	-	0405	0405	0007	0.0.0.74	0101
Depth Data Sampled		0.1-0.5	0.1-0.5	0.2-0.7	0.2-0.7A	0.1-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	_	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	_	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
	malka	-0.1	-0.1	-0.1	-0.1	-0.1
	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpna-BHC	mg/кg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	89	90	90	88

Organophosphorus Pesticides						
Our Reference:	UNITS	167858-1	167858-3	167858-4	167858-6	167858-8
Your Reference		BH1	BH2	BH2	BH3	BH4
	-					
Depth		0.1-0.2	0.1-0.4	0.1-0.4A	0.1-0.1	0.1-0.2
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
l ype of sample		501	501	501	501	Soli
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	97	91	88	90
Organophosphorus Pesticides						
Our Reference:	UNITS	167858-10	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/1	BH6	BH7	BH7	BH8
Depth		0.1-0.5	0.1-0.5	0.2-0.7	0.2-0.7A	0.1-0.1
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	malka	<0.1	<0.1	<0.1	<0.1	<0.1
LUIUII	mg/kg		1	1		
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion Malathion	mg/kg mg/kg	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Fenitrothion Malathion Parathion	mg/kg mg/kg mg/kg	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Fenitrothion Malathion Parathion Ronnel	mg/kg mg/kg mg/kg mg/kg	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1

UNITS	167858-1	167858-3	167858-4	167858-6	167858-8
	BH1	BH2	BH2	BH3	BH4
-					
	0.1-0.2	0.1-0.4	0.1-0.4A	0.1-0.1	0.1-0.2
	24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
	Soll	Soli	SOII	Soli	Soll
-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
%	89	97	91	88	90
UNITS	167858-10	167858-12	167858-13	167858-14	167858-15
	BH5/1	BH6	BH7	BH7	BH8
-	0105	0105	0.2-0.7	0.2-0.74	01.01
	24/05/2017	24/05/2017	24/05/2017	0.2-0.7A	24/05/2017
	Soil	Soil	Soil	Soil	Soil
	UNITS 	UNITS 167858-1 BH1 - 0.1-0.2 24/05/2017 Soil - 26/05/2017 Soil 26/05/2017 - 26/05/2017 mg/kg <0.1	UNITS 167858-1 BH1 167858-3 BH2 - 0.1-0.2 0.1-0.4 - 0.1-0.2 0.1-0.4 24/05/2017 24/05/2017 Soil 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - 26/05/2017 - - - - - - - - - - - - - - - - - - - - - - - - - - -<	UNITS 167858-1 BH1 167858-3 BH2 167858-3 BH2 - 0.1-0.2 0.1-0.4 0.1-0.4A 24/05/2017 24/05/2017 24/05/2017 Soil 26/05/2017 26/05/2017 26/05/2017 - 26/05/2017 26/05/2017 26/05/2017 - 26/05/2017 26/05/2017 26/05/2017 - 26/05/2017 26/05/2017 26/05/2017 - 26/05/2017 26/05/2017 26/05/2017 mg/kg <0.1	UNITS 167858-1 BH1 167858-3 BH2 167858-3 BH2 167858-4 BH2 167858-6 BH3

26/05/2017

26/05/2017

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

89

26/05/2017

26/05/2017

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

90

26/05/2017

26/05/2017

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

90

26/05/2017

26/05/2017

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

88

26/05/2017

26/05/2017

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

91

-

-

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

Date extracted

Date analysed

Aroclor 1016

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

Total +ve PCBs (1016-1260)

Surrogate TCLMX

Acid Extractable metals in soil						
Our Reference:	UNITS	167858-1	167858-2	167858-3	167858-4	167858-5
Your Reference		BH1	BH1	BH2	BH2	BH2
	-					
Depth		0.1-0.2	0.2-0.5	0.1-0.4	0.1-0.4A	0.6
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Arsenic	mg/kg	7	7	5	4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	17	45	44	14
Copper	mg/kg	21	18	17	20	12
Lead	mg/kg	25	32	11	11	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	7	36	42	3
Zinc	mg/kg	31	29	25	29	7

Acid Extractable metals in soil						
Our Reference:	UNITS	167858-6	167858-7	167858-8	167858-9	167858-10
Your Reference		BH3	BH3	BH4	BH4	BH5/1
	-					
Depth		0.1-0.1	0.1-0.8	0.1-0.2	0.2-0.4	0.1-0.5
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Arsenic	mg/kg	8	7	8	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	23	14	9	18	6
Copper	mg/kg	8	17	5	18	8
Lead	mg/kg	22	22	6	14	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	2	7	14	5
Zinc	mg/kg	16	16	17	33	32

Acid Extractable metals in soil Our Reference:	UNITS	167858-11	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/2	BH6	BH7	BH7	BH8
Depth Date Sampled Type of sample		0.5-0.8 24/05/2017 Soil	0.1-0.5 24/05/2017 Soil	0.2-0.7 24/05/2017 Soil	0.2-0.7A 24/05/2017 Soil	0.1-0.1 24/05/2017 Soil
Date prepared	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	10	8	10	10	14
Copper	mg/kg	2	2	3	4	8
Lead	mg/kg	9	8	8	8	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	1	1	3	3
Zinc	mg/kg	7	4	7	11	22

Acid Extractable metals in soil		
Our Reference:	UNITS	167858-16
Your Reference		BH8
	-	
Depth		0.1-0.4
Date Sampled		24/05/2017
Type of sample		Soil
Date prepared	-	26/05/2017
Date analysed	-	26/05/2017
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	12
Copper	mg/kg	5
Lead	mg/kg	12
Mercury	mg/kg	<0.1
Nickel	mg/kg	2
Zinc	mg/kg	13

Misc Inorg - Soil		
Our Reference:	UNITS	167858-12
Your Reference		BH6
	-	
Depth		0.1-0.5
Date Sampled		24/05/2017
Type of sample		Soil
Date prepared	-	29/05/2017
Date analysed	-	29/05/2017
pH 1:5 soil:water	pH Units	6.1
Electrical Conductivity 1:5	µS/cm	48
soil:water		

Client Reference: DL3953 - I

Our Reference: UN Your Reference	167858-4 BH2	167858-5 BH2
Your Reference	BH2	BH2
Depth	0.1-0.4A	0.6
Date Sampled	24/05/2017	24/05/2017
Type of sample	Soil	Soil
Date prepared	26/05/2017	26/05/2017
Date analysed	29/05/2017	29/05/2017
Moisture	9.9	11
Type of sample Date prepared Date analysed Moisture		Soil 26/05/2017 29/05/2017 9.9

Moisture Our Reference: Your Reference	UNITS	167858-6 BH3	167858-7 BH3	167858-8 BH4	167858-9 BH4	167858-10 BH5/1
Depth Date Sampled Type of sample		0.1-0.1 24/05/2017 Soil	0.1-0.8 24/05/2017 Soil	0.1-0.2 24/05/2017 Soil	0.2-0.4 24/05/2017 Soil	0.1-0.5 24/05/2017 Soil
Date prepared	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	29/05/2017	29/05/2017	29/05/2017	29/05/2017	29/05/2017
Moisture	%	14	9.7	7.9	9.0	8.6

Moisture						
Our Reference:	UNITS	167858-11	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/2	BH6	BH7	BH7	BH8
	-					
Depth		0.5-0.8	0.1-0.5	0.2-0.7	0.2-0.7A	0.1-0.1
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/05/2017	26/05/2017	26/05/2017	26/05/2017	26/05/2017
Date analysed	-	29/05/2017	29/05/2017	29/05/2017	29/05/2017	29/05/2017
Moisture	%	9.5	6.3	8.9	8.6	15

Moisture Our Reference: Your Reference	UNITS	167858-16 BH8
Depth Date Sampled Type of sample		0.1-0.4 24/05/2017 Soil
Date prepared	-	26/05/2017
Moisture	%	7.0

Asbestos ID - soils						
Our Reference:	UNITS	167858-1	167858-3	167858-4	167858-6	167858-8
Your Reference		BH1	BH2	BH2	BH3	BH4
	-				2.10	
Depth		0.1-0.2	0.1-0.4	0.1-0.4A	0.1-0.1	0.1-0.2
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	30/05/2017	30/05/2017	30/05/2017	30/05/2017	30/05/2017
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 45g
Sample Description	-	Brown	Brown	Brown	Brown	Brown sandy
		coarse-grained	coarse-grained	coarse-grained	coarse-grained	soil
		soil & rocks	soil & rocks	soil & rocks	soil & rocks	
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		delected	delected	delected	delected	delected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected
Asbestos ID - soils						
Our Reference:	UNITS	167858-10	167858-12	167858-13	167858-14	167858-15
Your Reference		BH5/1	BH6	BH7	BH7	BH8
	-	21.10,1	2.10	2		21.0
Depth		0.1-0.5	0.1-0.5	0.2-0.7	0.2-0.7A	0.1-0.1
Date Sampled		24/05/2017	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date analysed	-	30/05/2017	30/05/2017	30/05/2017	30/05/2017	30/05/2017
Sample mass tested	g	Approx. 40g	Approx. 45g	Approx. 35g	Approx. 35g	Approx. 35g
Sample Description	-	Brown sandy	Brown sandy	Brown sandy	Brown sandy	Brown
		soil	soil	soil	soil	coarse-grained
						soil & rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				

MethodID	MethodologySummary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

MethodID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

DL3953 - Maq Parts

		Cile		с. DI		1 4113		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Date analysed	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	167858-1	<25 <25	LCS-9	102%
TRHC6 - C10	mg/kg	25	Org-016	<25	167858-1	<25 <25	LCS-9	102%
Benzene	mg/kg	0.2	Org-016	<0.2	167858-1	<0.2 <0.2	LCS-9	107%
Toluene	mg/kg	0.5	Org-016	<0.5	167858-1	<0.5 <0.5	LCS-9	101%
Ethylbenzene	mg/kg	1	Org-016	<1	167858-1	<1 <1	LCS-9	96%
m+p-xylene	mg/kg	2	Org-016	~2	167858-1	<2 <2	LCS-9	103%
o-Xylene	mg/kg	1	Org-016	<1	167858-1	<1 <1	LCS-9	98%
naphthalene	mg/kg	1	Org-014	<1	167858-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	101	167858-1	90 96 RPD:6	LCS-9	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Date analysed	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
TRHC 10 - C14	mg/kg	50	Org-003	<50	167858-1	<50 <50	LCS-9	96%
TRHC 15 - C28	mg/kg	100	Org-003	<100	167858-1	<100 <100	LCS-9	98%
TRHC29 - C36	mg/kg	100	Org-003	<100	167858-1	<100 <100	LCS-9	87%
TRH>C10-C16	mg/kg	50	Org-003	<50	167858-1	<50 <50	LCS-9	96%
TRH>C16-C34	mg/kg	100	Org-003	<100	167858-1	<100 <100	LCS-9	98%
TRH>C34-C40	mg/kg	100	Org-003	<100	167858-1	<100 <100	LCS-9	87%
Surrogate o-Terphenyl	%		Org-003	103	167858-1	89 91 RPD:2	LCS-9	119%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Date analysed	-			29/05/2 017	167858-1	29/05/2017 29/05/2017	LCS-9	29/05/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	LCS-9	107%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	LCS-9	92%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	LCS-9	114%
Anthracene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	LCS-9	116%
Pyrene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	LCS-9	121%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	LCS-9	110%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012	<0.2	167858-1	<0.2 <0.2	[NR]	[NR]

Envirolab Reference: 167858 Revision No: R 00

	Client Reference: DL3953 - Maq Parts								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Soil						Base II Duplicate II % RPD			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	167858-1	<0.05 <0.05	LCS-9	117%	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Surrogate p-Terphenyl- d14	%		Org-012	123	167858-1	117 122 RPD:4	LCS-9	112%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organochlorine Pesticides in soil						Base II Duplicate II % RPD			
Date extracted	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017	
Date analysed	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017	
HCB	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	108%	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	99%	
Heptachlor	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	109%	
delta-BHC	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Aldrin	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	95%	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	107%	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	120%	
Dieldrin	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	111%	
Endrin	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	110%	
pp-DDD	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	114%	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	LCS-9	109%	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]	
Surrogate TCMX	%		Org-005	98	167858-1	89 90 RPD:1	LCS-9	116%	

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Date analysed	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	81%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	84%
Dimethoate	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	88%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	82%
Malathion	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	77%
Parathion	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	83%
Ronnel	mg/kg	0.1	Org-008	<0.1	167858-1	<0.1 <0.1	LCS-9	87%
Surrogate TCMX	%		Org-008	98	167858-1	89 90 RPD:1	LCS-9	91%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Date analysed	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	167858-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	167858-1	<0.1 <0.1	LCS-9	100%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	167858-1	ا167858-1 <0.1 <0.1 [۱		[NR]
Surrogate TCLMX	%		Org-006	98	167858-1	89 90 RPD:1	LCS-9	91%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Date analysed	-			26/05/2 017	167858-1	26/05/2017 26/05/2017	LCS-9	26/05/2017
Arsenic	mg/kg	4	Metals-020	<4	167858-1	7 7 RPD:0	LCS-9	115%
Cadmium	mg/kg	0.4	Metals-020	<0.4	167858-1	<0.4 <0.4	LCS-9	98%
Chromium	mg/kg	1	Metals-020	<1	167858-1	20 19 RPD:5	LCS-9	107%
Copper	mg/kg	1	Metals-020	<1	167858-1	21 17 RPD:21	LCS-9	110%
Lead	mg/kg	1	Metals-020	<1	167858-1	25 28 RPD:11	LCS-9	102%
Mercury	mg/kg	0.1	Metals-021	<0.1	167858-1	<0.1 <0.1	LCS-9	97%
Nickel	mg/kg	1	Metals-020	<1	167858-1	8 6 RPD:29	LCS-9	98%
Zinc	mg/kg	1	Metals-020	<1	167858-1	31 32 RPD: 3	LCS-9	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II % RPD		
Date prepared	-			29/05/2 017	[NT]	[NT]	LCS-9	29/05/2017
Date analysed	-			29/05/2 017	[NT]	[NT]	LCS-9	29/05/2017
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-9	102%
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-9	100%
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	5 [Dup. Sm#	Base+[Duplicate Duplicate + %RP	Spike Sm# D	Spike % Reco	overy
Date extracted	-	1	67858-10	26/05/2	017 26/05/201	7 167858-3	26/05/201	7
Date analysed	-	1	67858-10	26/05/2	017 26/05/201	7 167858-3	26/05/201	7
TRHC6 - C9	mg/kg	g 1	67858-10		<25 <25	167858-3	81%	
TRHC6 - C10	mg/kợ	g 1	67858-10		<25 <25	167858-3	81%	
Benzene	mg/kg	g 1	67858-10	<	<0.2 <0.2	167858-3	82%	
Toluene	mg/kg	a 1	67858-10		<0.5 <0.5	167858-3	81%	
Ethylbenzene	ma/ka	- a 1	67858-10		<1 <1	167858-3	74%	
m+p-xvlene	ma/ka	- a 1	67858-10		<1 <1 <2 <2 167858-3		83%	
o-Xvlene	ma/ka		67858-10		<1 <1	167858-3	75%	
naphthalene	ma/ka	a 1	67858-10		<1 <1	[NR]	[NR]	
<i>Surrogate</i> aaa- Trifluorotoluene	%	1	67858-10	93	 101 RPD: 8	167858-3	107%	

		Client Reference	e: DL3953 - Maq Part	ts	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted		167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Date extracted	-	167858-10	20/05/2017 20/05/2017	167959.2	20/05/2017
	-	107050-10	20/05/2017 20/05/2017	107050-5	20/05/2017
TRHC 10 - C14	mg/kg	167858-10	<50 <50	167858-3	103%
TRHC 15 - C28	mg/kg	167858-10	<100 <100	167858-3	107%
TRHC29 - C36	mg/kg	167858-10	<100 <100	167858-3	113%
TRH>C10-C16	mg/kg	167858-10	<50 <50	167858-3	103%
TRH>C16-C34	mg/kg	167858-10	<100 <100	167858-3	107%
TRH>C34-C40	mg/kg	167858-10	<100 <100	167858-3	113%
Surrogate o-Terphenyl	%	167858-10	87 89 RPD:2	167858-3	89%
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Date analysed	-	167858-10	29/05/2017 29/05/2017	167858-3	29/05/2017
Naphthalene	mg/kg	167858-10	<0.1 <0.1	167858-3	107%
Acenaphthylene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	167858-10	<0.1 <0.1	167858-3	89%
Phenanthrene	mg/kg	167858-10	<0.1 <0.1	167858-3	103%
Anthracene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	167858-10	<0.1 <0.1	167858-3	110%
Pyrene	mg/kg	167858-10	<0.1 <0.1	167858-3	121%
Benzo(a)anthracene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	167858-10	<0.1 <0.1	167858-3	102%
Benzo(b,j+k)fluoranthene	mg/kg	167858-10	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	167858-10	<0.05 <0.05	167858-3	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	167858-10	115 118 RPD:3	167858-3	116%

		Client Reference	e: DL3953 - Maq Parl	S	
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Date analysed	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
HCB	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	167858-10	<0.1 <0.1	167858-3	105%
gamma-BHC	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	167858-10	<0.1 <0.1	167858-3	98%
Heptachlor	mg/kg	167858-10	<0.1 <0.1	167858-3	106%
delta-BHC	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	167858-10	<0.1 <0.1	167858-3	92%
Heptachlor Epoxide	mg/kg	167858-10	<0.1 <0.1	167858-3	103%
gamma-Chlordane	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	167858-10	<0.1 <0.1	167858-3	117%
Dieldrin	mg/kg	167858-10	<0.1 <0.1	167858-3	108%
Endrin	mg/kg	167858-10	<0.1 <0.1	167858-3	106%
pp-DDD	mg/kg	167858-10	<0.1 <0.1	167858-3	111%
Endosulfan II	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	167858-10	<0.1 <0.1	167858-3	104%
Methoxychlor	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	167858-10	91 90 RPD: 1	167858-3	114%

		Client Reference	e: DL3953 - Maq Part	ts	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus			Base + Duplicate + % RPD		
Date extracted	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Date analysed	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Azinphos-methyl (Guthion)	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	167858-10	<0.1 <0.1	167858-3	83%
Chlorpyriphos-methyl	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	167858-10	<0.1 <0.1	167858-3	89%
Dimethoate	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	167858-10	<0.1 <0.1	167858-3	92%
Fenitrothion	mg/kg	167858-10	<0.1 <0.1	167858-3	104%
Malathion	mg/kg	167858-10	<0.1 <0.1	167858-3	78%
Parathion	mg/kg	167858-10	<0.1 <0.1	167858-3	83%
Ronnel	mg/kg	167858-10	<0.1 <0.1	167858-3	88%
Surrogate TCMX	%	167858-10	91 90 RPD:1	167858-3	91%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Date analysed	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Aroclor 1016	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	167858-10	<0.1 <0.1	167858-3	100%
Aroclor 1260	mg/kg	167858-10	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	167858-10	91 90 RPD:1	167858-3	91%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Date analysed	-	167858-10	26/05/2017 26/05/2017	167858-3	26/05/2017
Arsenic	mg/kg	167858-10	<4 <4	167858-3	91%
Cadmium	mg/kg	167858-10	<0.4 <0.4	167858-3	80%
Chromium	mg/kg	167858-10	6 6 RPD:0	167858-3	123%
Copper	mg/kg	167858-10	8 10 RPD:22	167858-3	121%
Lead	mg/kg	167858-10	8 9 RPD:12	167858-3	81%
Mercury	mg/kg	167858-10	<0.1 <0.1	167858-3	98%
Nickel	mg/kg	167858-10	5 5 RPD:0	167858-3	119%
Zinc	mg/kg	167858-10	32 38 RPD:17	167858-3	93%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 167858-1, 3, 4, 6, 8, 10, 12 to 15 were sub-sampled from jars provided by the client.

Asbestos ID was analysed by Approved Identifier: Lucy Zhu Asbestos ID was authorised by Approved Signatory: Lulu Scott

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Sydney Lab Envirolab Services 12 Ashley St, Chatswood, NSW 2067 12 Ashley St, Chatswood, NSW 2067 1300 42 43 44 Combol=TRH/BTEX/Pb		nber / Site etc (ie report title): Combo3=TRH/BIEX/PAH/PD Combo3=TRH/BTEX/PAH/Met	DL3453 - Muy Kurs Combo4=TRH/BTEX/PAH/Met/Phen	Combo5=TRH/BTEX/PAH/OC/PCB/Met	ComboB=1KH/B1EX/PAH/OC/DF2/PKeY/Per	Combo8=TRH/BTEX/PAH/OC/OP/PCB/Met/Phen	me day / 1 day / 2 day / 3 day f urgent turnaround is required - Combool=FIRH/BIEX/PAH/OC/PCB/Met/Phen/CN	uis / Combo11=IKH/BIEX/PAH/UC/PCB/12met/Pren/CN Combo12=TRH/BTEX/PAH/OC/PCB/Met/TCLP-PAH ,6 M	Combo13=TRH/BTEX/PAH/OC/OP/PCB/Met/TCLP-PAH	Tests Required Comme	Provide as information a sample as y					Environde 27 A	Chatswood N:	101 dol	Pata Dahaiwad: JT/S	Time Received: (4.15	Received by:	Temps (pourAmbient 6,	George Heart/Broken/Not					tus anly:	Samples Received: Cool or Ambient (circle one)	Temperature Received at: 6.5 (if applicable	Transported by: Hand delivered / courier
STODY - Client	 A - National phone number 1. 	Client Project Name / Nur		PO No.:	Envirolab Quote No. :	Date results required:	Or choose: standard / sai Note: Inform lab in advance	Report format: esdat / eq	Lab Comments:		23/Hd E 94007 V9 94007	X	X	X	X	X	X	X	X	Χ	X	Χ	X	X	A X	X	X	Received by (Company):	Print Name: DW	Date & Time: 25 [5]	Signature
AIN OF CU	IROLAB GROUI								ronmental.com.au	ition	n Date <u>Type o</u>	198 LI-J-77																	repairs		
AB CH	ENV		[minim manual	a 11	11	3/38 Leighton Place	Hornsby	Mob:	<u>Sydney@dlaenvi</u>	Sample informa	Client Sample ID or Depth information	11-0-1-0-1	-0-2-2-2	H2-0.1-70.4	11 11 11 H	11 - 0.6	3H3 - 0.1-70.1	1 - 0.(-70.8)	7.2-1.0-44	11 - 0.2-70.4	H5/1- 0.1-70.5	11/2 - 0.5 - 70-8	H6 - 0-1-70-5	H- 02-20-CH	A 11 11 - 1	348 - 01-201	11 - 0-1-20:01	(Company): DLA	Matthew Jun	25. 5.13	1. 11
ENVIROL	GROUP	Client: DLA	Contact Person:	Project Mgr:	Sampler:	Address: Unit 3		Phone:	Email:		Envirolab Sample ID	- 3-	2 11	3 B	4	4	6 B	- 14	8	1	10 B(II	12 Bt	13 BI	14 1	IS E	91	Relinquished by	Print Name:	Date & Time:	Signature

APPENDIX C

BOREHOLE LOGS
										<u>Borelo</u>	g	
	Contrast of	D	LA Env A Pa	ironmental Services aciic Environment company				L	ocation	BH1		
Client: Frasers Property Australia Job Type:										Supp	lementary Investigat	tion
Projec	t No:			DL3953		Address:				Ivanhoe E	state, Macquarie Pa	rk NSW
Date:				24/05/2017		Logged By:					MJ	
Hole S	ictor: ize			- 100mm diameter		Co-ordinates:					Not surveyed	
			ç			co oranaces.		1			Not surveyed	
Method	Depth (m)	Graphic Log	USCS Classificatio	Material I	Description		Moisture	Density / Stiffness	Sampling		Comm	ents
HA	0.1			TOPSOIL: sandy loam, pale brown, s siltstone / claystone fragments Reworked natural: siltstone / clayst sandstone fragments	one, weathered	, with			BH1_0.2-0.5 BH1_0.1-0.2			
				Borehole BH1 terminated at 0.5m c compacted material	lepth on extrem	ely						
Notes: Method: SS - Solid Flight Auger HS - Hollow Flight Auger CC - Concrete Core PT - Push Tube RC - Rock Coring HA - Hand Auger			r	Consistency VS - Very Soft S - Soft F - Firm VS - Very Stiff H - Hard Friable - Fb	Plasticity HP - HighlyP MP - Mediu LP - Low Pla	lastic m Plasticity sticity	Moistu D - Dr M - Mo W - Wo	r e Y ist et		Density VL - Ver L - Loose MD - Me D - Dens VD - Ver	y Loose e edium Density se ry Dense	Sheet 1 of 1

						Borelog				
DLA	A Environmental Services A Pacific Environment compeny				L	ocation	BH2			
Client:	Frasers Property Australia	Job Type:				Suppleme	entary Investigatio	n		
Project No:	DL3953	Address:				Ivanhoe Estate	e, Macquarie Park	NSW		
Date:	24/05/2017	Logged By:								
Contractor:	- 100mm diameter	Method:	Hand auger							
Hole Size		Co-ordinates:		1		NO	ot surveyed			
Method Depth (m) Graphic Log	Classification CRCS CD sstification CRCS CD sstific	tion	Moisture	Density / Stiffness	Sampling		Commer	ts		
HA	TOPSOIL: sandy loam, brown to pale brown fine to coarse gravel	n, with roadbase and			BH2_0.1-0.4 (BH2_0.1-0.4A)					
0.5	Reworked natural: sandy clay, pale brown, sandstone gravel and crushed sandstone	fine to coarse			BH2_0.5-0.6					
	Borehole BH2 terminated at 0.6m depth or	n sandstone interface								
Notes: Method: SS - Solid Flight Auger HS - Hollow Flight Auger CC - Concrete Core PT - Push Tube RC - Rock Coring	ConsistencyPlaVS - Very SoftHPS - SoftMPF - FirmLPVS - Very StiffH - HardFriable - Fb	sticity - HighlyPlastic - Medium Plasticity - Low Plasticity	Moistur D - Dry M - Moi W - We	re / ist et		Density VL - Very Loc L - Loose MD - Mediuu D - Dense VD - Very De	n Density nse	Sheet 1 of 1		

									Borelog						
		D	LA Env	ironmental Services acific Environment company					L	ocation	В	H3			
Client:				Frasers Property Australia	Job Type:				Sup	plementary Inve	estigation				
Projec	t No:			DL3953		Address:				Ivanhoe	Estate, Macqua	arie Park NSW			
Date:	Date: 24/05/2017					Logged By:					MJ				
Contra	actor:			-		Method:					Hand auger	r			
Hole S	ize			100mm diameter		Co-ordinates:					Not surveye	d			
Method	Depth (m)	Graphic Log	USCS Classification	Mater	rial Description		Moisture	Density / Stiffness	Sampling		c	Comments			
HA	0.1			TOPSOIL: sandy loam, brown to fine to coarse gravel	pale brown, with roa	adbase and			внз_0.0-0.1						
				Reworked natural: sandy clay, p sandstone gravel and crushed s	pale brown, fine to co	parse			BH3_0.1-0.8						
	0.9			Borehole BH3 terminated at 0.6 compacted material	3m depth on extreme	ly									
Notes Metho SS - So HS - Hi CC - Co PT - Pu RC - Ro	did Flight A ollow Fligh oncrete Co ush Tube ock Coring	uger t Auge re	ir	Consistency VS - Very Soft S - Soft F - Firm VS - Very Stiff H - Hard Friable - Fb	Plasticity HP - HighlyPl MP - Mediur LP - Low Plas	lastic n Plasticity ticity	Moistur D - Dry M - Moi W - We	re st st		Densit VL - Ve L - Loo: MD - N D - Der VD - Ve	Y rry Loose se Aedium Density nse ery Dense	St	neet 1 of 1		

					<u>Borelog</u>					
	DLA Env AP	vironmental Services acitic Environment company					L	ocation	BH4	
Client:		Frasers Property Australia		Job Type:				Supplem	entary Investigati	on
Project No:		DL3953		Address:				Ivanhoe Esta	te, Macquarie Par	k NSW
Date:		24/05/2017		Logged By:					MJ	
Contractor:		- 100mm diamatar		Method:					Hand auger	
HOLE SIZE	_	100mm diameter		Co-ordinates:				r	Not surveyed	
Method Depth (m)	Graphic Log USCS Classificatior	Material	Description		Moisture	Density / Stiffness	Sampling		Comme	nts
HA		TOPSOIL: sandy loam, brown to pa fine to coarse gravel	le brown, with ro	adbase and						
0.2	FILL: sand, yellow						BH4_0.1-0.2			
0.3		Reworked natural: sandy silty clay, brown to pale brown, with grey or fragments	fine to coarse gra	ained, aystone			BH4_0.2-0.4			
		Reworked natural: sandy clay, pale sandstone gravel and crushed san	parse							
0.7 0.7 0.8 0.9 1.0		Borehole BH4 terminated at 0.6m compacted material	depth on extreme	ely						Sheet 1 of 1
Notes: Method: SS - Solid Flight Au HS - Hollow Flight CC - Concrete Cor PT - Push Tube RC - Rock Coring	uger : Auger re	Consistency VS - Very Soft S - Soft F - Firm VS - Very Stiff H - Hard Friable - Fb	Plasticity HP - HighlyP MP - Mediur LP - Low Plas	lastic m Plasticity sticity	Moistur D - Dry M - Moi W - We	r e st t		Density VL - Very Lc L - Loose MD - Medii D - Dense VD - Very D	oose um Density Vense	Sheet 1 of 1

							g_	
DLA	Environmental Services A Pacific Environment company		_	_	L	ocation	BH5	/1
Client:	Frasers Property Australia	Job Type:				Supp	lementary Investig	ation
Project No:	DL3953	Address:				Ivanhoe E	state, Macquarie P	Park NSW
Date:	24/05/2017	Logged By:					MJ	
Contractor:		Method:					Hand auger	
Hole Size	100mm diameter	Co-ordinates:					Not surveyed	
Method Depth (m) Graphic Log	O2 CO CO CO CO CO CO CO CO CO CO CO CO CO		Moisture	Density / Stiffness	Sampling		Comr	ments
HA 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	TOPSOIL: sandy loam, brown to pale brown, with fine to coarse gravel	o coarse			BH5/1_0.1-0.5			
0.6 0.7 0.7 0.7 0.8	sandstone gravel and crushed sandstone							
	Borehole BH5/1 terminated at 0.8m depth on ex compacted material	tremely						
Notes: Method: ISS - Solid Flight Auger HS - Hollow Flight Auger CC - Concrete Core PT - Push Tube RC - Rock Coring	ConsistencyPlasticityVS - Very SoftHP - HighS - SoftMP - MeF - FirmLP - LowVS - Very StiffH - HardFriable - Fb	, IlyPlastic dium Plasticity Plasticity	Moistur D - Dry M - Moi W - We	r e st		Density VL - Ven L - Loose MD - Me D - Dens VD - Ver	y Loose e edium Density se y Dense	Sheet 1 of 1

						<u>Borelo</u>	g				
DL	A Environmental Services A Pacific Environment company				L	ocation	BH5	/ 2			
Client:	Frasers Property Australia	Job Type:				Supp	blementary Investiga	tion			
Project No:	DL3953	Address:				Ivanhoe I	Estate, Macquarie Pa	ark NSW			
Date:	24/05/2017	Logged By: Method:			MJ						
Hole Size	- 100mm diameter	Co-ordinates:			Hand auger						
Method Depth (m) Graphic Log	Material Description		Moisture	Density / Stiffness	Sampling		Comn	nents			
HA 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	TOPSOIL: sandy loam, brown to pale brown, with i	roadbase and									
0.6 	Reworked natural: sandy clay, pale brown, fine to sandstone gravel and crushed sandstone	coarse			BH5/2_0.5-0.8						
	Borehole BH5/2 terminated at 0.8m depth on extr compacted material	remely									
Notes: Method: SS - Solid Flight Auger HS - Hollow Flight Auger CC - Concrete Core PT - Push Tube RC - Rock Coring	Consistency Plasticity VS - Very Soft HP - Highly S - Soft MP - Media F - Firm LP - Low P VS - Very Stiff H - Hard Friable - Fb	yPlastic ium Plasticity lasticity	Moistur D - Dry M - Moi W - We	e st t		Density VL - Ver L - Loos MD - M D - Den VD - Ve	ry Loose ie ledium Density ise ry Dense	Sheet 1 of 1			

			Borelog							
DLA Er	nvironmental Services Pacific Environment company				L	ocation	BH6			
Client:	Frasers Property Australia	Job Type:				Supplemen	tary Investigation			
Project No:	DL3953	Address:				Ivanhoe Estate,	Macquarie Park N	SW		
Date: Contractor:	24/05/2017	Logged By: Method:				MJ Hand auger				
Hole Size	100mm diameter	Co-ordinates:				Not surveyed				
Classification Classi	TOPSOIL: sandy loam, brown to pale brown, wit fine to coarse gravel	Co-ordinates:	Moisture	Density / Stiffness	BH6_0.1-0.5 Sampling	Not	Comments			
	Borehole BH6 terminated at 0.5m depth on und services	Jerground								
Notes: Method: SS - Solid Flight Auger HS - Hollow Flight Auger CC - Concrete Core PT - Push Tube RC - Rock Coring	ConsistencyPlasticitVS - Very SoftHP - HigS - SoftMP - MuF - FirmLP - LowVS - Very StiffH - HardFriable - Fb	ty ;hlyPlastic edium Plasticity v Plasticity	Moistur D - Dry M - Moi W - We	re / st et		Density VL - Very Loos L - Loose MD - Medium D - Dense VD - Very Den	e Density se	Sheet 1 of 1		

C							<u>Bore</u>	log					
		D	LA Env A Pa	ironmental Services actic Environment company					L	ocation	ı	BH7	
Client:				Frasers Property Australia		Job Type:				S	upplementar	y Investigation	
Projec	Project No: DL3953									Ivanh	oe Estate, Ma	cquarie Park NS	W
Date:	store			24/05/2017		Logged By:					N	1J	
Hole S	ize			- 100mm diameter		Co-ordinates:					Not su	rveved	
Method	Depth (m)	Graphic Log	USCS Classification	Materi	al Description		Moisture	Density / Stiffness	Sampling			Comments	
НА	0.1 0.2 0.3 0.4 0.5 0.6 0.7			TOPSOIL: sandy loam, brown to p fine to coarse gravel Reworked natural: sandy clay, pa sandstone gravel and crushed sa	ale brown, with ro	adbase and			BH7_0.2-0.7 (BH7_0.2-0.7A)				
Notessa				compacted material	n depun on extreme	ст у							Sheet 1 of 1
Metho SS - So HS - Ho CC - Co PT - Pu RC - Ro	Notes: Method: SS - Solid Flight Auger HS - Hollow Flight Auger CC - Concrete Core PT - Push Tube RC - Rock Coring			Consistency VS - Very Soft S - Soft F - Firm VS - Very Stiff H - Hard Friable - Fb	Plasticity HP - HighlyP MP - Mediur LP - Low Plas	lastic m Plasticity sticity	Moistu D - Di M - Mo W - W	re γ bist et		Den VL - L - L MD D - I VD -	isity Very Loose oose - Medium De Dense - Very Dense	nsity	

								<u>Borelog</u>		
	DLA En A F	vironmental Services Pacific Environment company					L	ocation	BH8	
Client:		Frasers Property Australia		Job Type:				Supplem	entary Investigati	on
Project No:		DL3953		Address:				Ivanhoe Estat	te, Macquarie Par	k NSW
Date:		24/05/2017		Logged By:					MJ	
Contractor:		-		Method:					Hand auger	
Hole Size		100mm diameter		Co-ordinates:				N	lot surveyed	
Method Depth (m) Graphic Log	USCS Classification	Material	Description		Moisture	Density / Stiffness	Sampling		Comme	ints
		TOPSOIL: sandy loam, brown to pa fine to coarse gravel Reworked natural: siltstone / clays sandstone fragments	le brown, with ro	with			BH8_0.1-0.4 BH8_0.0-0.1			
0.4		Borehole BH8 terminated at 0.4m of compacted material	depth on extreme	ely						Sheet 1 of 1
Notes: Method: SS - Solid Flight Auger HS - Hollow Flight Aug CC - Concrete Core PT - Push Tube RC - Rock Coring	er	Consistency VS - Very Soft S - Soft F - Firm VS - Very Stiff H - Hard Friable - Fb	Plasticity HP - HighlyP MP - Mediur LP - Low Plas	lastic m Plasticity sticity	Moistur D - Dry M - Moi W - We	r e st t		Density VL - Very Lo L - Loose MD - Mediu D - Dense VD - Very D	oose um Density eense	Sheet 1 of 1