APPENDIX I

Air Quality and Greenhouse Gas Assessment

Intended for South32 Limited c/- Illawarra Coal Holdings Pty Ltd

Document type
Final Report

Date March 2019

Project No. **318000189**

DENDROBIUM MINE – PLAN FOR THE FUTURE: COAL FOR STEELMAKING AIR QUALITY AND GREENHOUSE GAS ASSESSMENT

DENDROBIUM MINE – PLAN FOR THE FUTURE: COAL FOR STEELMAKING AIR QUALITY AND GREENHOUSE GAS ASSESSMENT

Revision	Date	Made by	Checked by	Approved by	Signed
Draft	3/11/2017	R. Kellaghan	S. Fishwick	R. Kellaghan	l 1600 1
Final Draft	24/11/2017	R. Kellaghan	S. Fishwick	R. Kellaghan	ranar mellegha
Final	13/12/2017	R. Kellaghan	S. Fishwick	R. Kellaghan	
Final Rev1	14/06/2018	R. Kellaghan	S. Fishwick	R. Kellaghan	
Final Rev2	20/03/2019	R. Kellaghan	M. Parsons	M. Parsons	

Ramboll Pty Ltd Level 3, 100 Pacific Highway PO Box 560 North Sydney NSW 2060 Australia T +61 2 9954 8100 F +61 2 9954 8150 www.ramboll.com

CONTENTS

1.	INTRODUCTION	1
1.1	Existing operations	1
1.2	Project overview	1
1.3	Study objectives and requirements	6
2.	ASSESSMENT APPROACH	7
2.1	Project components and pollutants considered for	
	assessment	7
2.2	Assessment criteria	10
2.2.1	Particulate matter	10
2.2.2	Gaseous pollutants	10
2.2.3	Odour	11
2.3	Modelling approach	11
2.4	Cumulative impacts	12
3.	LOCAL SETTING AND ASSESSMENT LOCATIONS	13
3.1	Local setting	13
3.2	Assessment locations	13
4.	OVERVIEW OF LOCAL AND REGIONAL METEOROLOG	Y
		19
4.1	Introduction	19
4.2	Prevailing winds	21
4.3	Ambient temperature	24
4.4	Rainfall	24
4.5	Meteorological modelling	25
4.5.1	CALMET predicted winds	25
4.5.2	Atmospheric stability and boundary layer heights	26
5.	BASELINE AMBIENT AIR QUALITY	29
5.1	PM_{10} and $PM_{2.5}$ concentrations	29
5.2	TSP and dust deposition	36
5.3	Summary and adopted background for cumulative	
	assessment	36
6.	EMISSIONS INVENTORY	38
6.1	Overview of existing dust controls	38
6.2	Modelling scenarios	38
6.3	Dust emission estimates	39
6.4	Odour emissions from ventilation shafts	41
6.5	Estimated emissions from flaring of gas	41
6.6	Estimated emissions from coal dryer	42
7.	IMPACT ASSESSMENT	43
7.1	Surface Infrastructure Facilities (Dendrobium Pit Top and KVCLF)	43
7.1.1	Annual average modelling predictions	43
7.1.2	Short-term (24-hour average) modelling predictions	47
7.2	Kemira Valley Rail Line	51
7.3	Ventilation shaft locations and flares	54
7.4	Cordeaux Pit Top	56
7.5	Coal Preparation Plant	56
7.5.1	Annual average modelling predictions	56
7.5.2	Short-term (24-hour average) modelling predictions	58
7.5.3	Coal dryer	61
7.6	Coal wash transport and emplacement at West Cliff Coal	61
77	Construction	61
		01

8.	GREENHOUSE GAS ASSESSMENT	62
8.1	Emission sources	62
8.2	Activity data	63
8.3	Summary of GHG emission estimates	64
9.	MANAGEMENT AND MONITORING	66
9.1	Dust complaints	66
10.	CONCLUSION	67
11.	REFERENCES	68

TABLE OF TABLES

Table 1-1: Summary of SEARs for air quality
Table 1-2: Summary of Agency (EPA) comments for air quality 6
Table 2-1: Emissions sources and air quality indicators for assessment 8
Table 2-2: Impact assessment criteria for PM10
Table 2-3: Dust deposition criteria10
Table 2-4: Impact assessment criteria for gaseous products of combustion11
Table 5-1: PM_{10} and $PM_{2.5}$ monitoring statistics across all monitoring sites30
Table 5-2: Mean TSP concentrations (µg/m ³) for on-site data36
Table 5-3: Annual average dust deposition for EPL points (g/m ² /month as
insoluble solids)36
Table 5-4: Adopted background for cumulative assessment37
Table 6-1: Estimated dust emissions for each Project component (kg/annum)
Table 6-2: Odour monitoring data for existing ventilation shafts41
Table 6-3: Odour emission rates for modelling41
Table 6-4: Emission rates and modelling parameters for flaring42
Table 6-5: Estimated emissions from the coal fines dryer stack42
Table 7-1: Predicted Project-only annual average PM ₁₀ , PM _{2.5} and TSP
concentrations (μ g/m ³) and dust deposition rates (g/m ² /month) for the KVCLF
and Dendrobium Pit Top46
Table 7-2: Predicted Project-only and cumulative 24-hour average PM ₁₀ and
$PM_{2.5}$ concentrations ($\mu g/m^3)$ for the KVCLF and Dendrobium Pit Top50
Table 7-3: Predicted Project-only annual average PM ₁₀ , PM _{2.5} and TSP
concentrations (μ g/m ³) and dust deposition rates (g/m ² /month) adjacent to
the rail line52
Table 7-4: Predicted Project-only and cumulative 24-hour average PM ₁₀ and
$PM_{2.5}$ concentration (µg/m³) adjacent to the rail line53
Table 7-5: Predicted ground level concentrations in the vicinity of the Gas
Management Sites54
Table 7-6: Emissions comparison for the coal fines dryer
Table 8-1: Scope 1, 2 and 3 emission sources62
Table 8-2: Activity data and assumptions
Table 8-3: Estimated GHG emissions (tonnes CO ₂ -e)65

TABLE OF FIGURES

Figure 1-1: Regional location 3	
Figure 1-2: General arrangement of the approved Dendrobium Mine	
Figure 1-3: General arrangement of the Project	
Figure 3-1: Regional topography and key Project features14	

Figure 3-2: Sensitive receptor locations in the vicinity of the KVCLF and Dendrobium Pit Top
Figure 3-3: Additional sensitive receptor locations for assessment of the
Kemira Valley Rail Line
Figure 3-4: Sensitive receptor locations in the vicinity of the Ventilation shaft
and central gas management sites17
Figure 3-5: Residential areas in the vicinity of the CPP18
Figure 4-1: Surface observation sites for the region20
Figure 4-2: Wind roses for the on-site station21
Figure 4-3: Seasonal wind roses for the on-site station - 201622
Figure 4-4: Diurnal wind roses for the on-site station - 201623
Figure 4-5: Comparison of long-term temperature records with modelling
period24
Figure 4-6: Long-term rainfall records for Wollongong Airport AWS25
Figure 4-7: Comparison of CALMET winds with observations26
Figure 4-8: Diurnal variations in CALMET-generated mixing heights and
atmospheric stability
Figure 5-1: Location of PM_{10} monitoring sites used for baseline analysis31
Figure 5-2: Time series of 24-hour PM_{10} concentrations at Kembla Grange32
Figure 5-3: Time series of 24-hour PM _{2.5} concentrations at Kembla Grange33
Figure 5-4: Time series of 24-hour PM ₁₀ concentrations at Wollongong34
Figure 5-5: Time series of 24-hour PM _{2.5} concentrations at Wollongong35
Figure 6-1: Summary of annual PM ₁₀ emissions (kg/annum)
Figure 7-1: Predicted annual average PM_{10} concentration ($\mu g/m^3$) for the
KVCLF and Dendrobium Pit Top (Project-only)
Figure 7-2: Predicted annual average $PM_{2,5}$ concentration ($\mu q/m^3$) for the
KVCLF and Dendrobium Pit Top (Project-only)
Figure 7-3: Predicted annual average TSP concentration (μ g/m ³) for the KVCLF
and Dendrobium Pit Top (Project-only)45
Figure 7-4: Predicted annual average dust deposition concentration
(g/m ² /month) for the KVCLF and Dendrobium Pit Top (Project-only)45
Figure 7-5: Predicted maximum 24-hour average PM_{10} concentration ($\mu g/m^3$)
for the KVCLF and Dendrobium Pit Top
Figure 7-6: Predicted maximum 24-hour average $PM_{2.5}$ concentration (μ g/m ³)
for the KVCLF and Dendrobium Pit Top
Figure 7-7: Predicted maximum 1-hour average NO ₂ concentration (μ g/m ³)
from flaring at Shaft Site No. 6B
Figure 7-8: Predicted annual average NO ₂ concentration (μ g/m ³) from flaring
at Shaft Site No. 6B
Figure 7-9: Predicted annual average PM_{10} concentration (µg/m ³) from the CPP
(Project-only)
Figure 7-10: Predicted annual average $PM_{2.5}$ concentration (µg/m ³) from the
CPP (Project-only)
Figure 7-11: Predicted annual average TSP concentration $(\mu g/m^3)$ from the
CPP (Project-only)
Figure 7-12: Predicted annual average dust deposition concentration
$(a/m^2/month)$ from the CPP (Project-only)
Figure 7-13: Predicted maximum 24-hour average PM_{10} concentration (µg/m ³)
from the CPP (Project-only).
Figure 7-14: Frequency distribution of cumulative 24-hour average PM ₁₀
concentration
Figure 7-15: Predicted maximum 24-hour average $PM_{2.5}$ concentration (ug/m ³)
from the CPP (Project-only)

APPENDICES

Appendix 1 Figures

Appendix 2 Assessment locations

Appendix 3 Annual wind rose plots

Appendix 4 Model set up and settings

Appendix 5 Particulate matter emissions inventory development

Appendix 6 Coal properties testing report The Dendrobium Mine (the Mine) is an existing underground coal mine situated in the Southern Coalfield of New South Wales (NSW), approximately 8 kilometres (km) west of Wollongong (**Figure 1-1**). Illawarra Coal Holdings Pty Ltd (Illawarra Coal), a wholly owned subsidiary of South32 Limited (South32), is the owner and operator of the Dendrobium Mine.

Illawarra Coal is seeking a new Development Consent to gain access to Areas 5 and 6 within Consolidated Coal Lease (CCL) 768 and for the use of supporting infrastructure, referred to as *Dendrobium Mine – Plan for the Future: Coal for Steelmaking* (hereafter referred to as the Project).

Ramboll has been commissioned to complete an Air Quality and Greenhouse Gas Assessment (AQA) for the Project.

1.1 Existing operations

The Mine was approved by the NSW Minister for Urban Affairs and Planning on 20 November 2001 under the NSW Environmental Planning and Assessment Act, 1979 (EP&A Act). The Mine was approved under the Commonwealth Environment Protection and Biodiversity Conservation Act, 1999 (EPBC Act) on 20 December 2001.

The existing mining operations are undertaken in accordance with Development Consent DA 60-03-2001 (as modified), as well as the Approval Decision (EPBC 2001/214) under the EPBC Act. Construction for the Mine commenced in January 2002, with longwall mining commencing in April 2005. The general arrangement of the Mine is shown in **Figure 1-2**.

The Mine extracts coal from the Wongawilli Seam within CCL 768 using underground longwall mining methods. The Mine primarily produces hard coking coal and has an approved operational capacity of up to 5.2 million tonnes per annum (Mtpa) of run-of-mine (ROM) coal until 31 December 2030.

The Mine includes five approved underground mining areas, named Areas 1, 2, 3A, 3B and 3C (see **Figure 1-2**). Longwall mining is currently being undertaken in Area 3B, with extraction largely complete in Areas 1, 2 and 3A. Key surface facilities at the Mine include the:

- Dendrobium Pit Top;
- Kemira Valley Coal Loading Facility (KVCLF);
- Kemira Valley Rail Line;
- Dendrobium Coal Preparation Plant (CPP); and
- Dendrobium Nos 1, 2 and 3 Shafts.

1.2 Project overview

The Project seeks to gain access to additional coal within CCL 768 in two proposed future underground mining areas, namely Area 5 and Area 6 (**Figure 1-3**). This extension would be supported by the development of supporting infrastructure and an extension to the life of approved surface operations to 2048.

The Project would include the following activities:

- longwall mining of the Bulli Seam in a new underground mining area (Area 5);
- longwall mining of the Wongawilli Seam in a new underground mining area (Area 6);
- development of underground roadways within the Bulli Seam, Wongawilli Seam and adjacent strata to access mining areas;
- use of existing underground roadways and drifts for personnel and materials access, ventilation, dewatering and other ancillary activities related to Areas 5 and 6;
- development of surface infrastructure associated with mine ventilation and gas management and abatement, and other ancillary infrastructure;
- handling and processing of up to 5.2 Mtpa of ROM coal;

- use of the existing Dendrobium Pit Top, KVCLF, Dendrobium CPP and Dendrobium Shafts with minor upgrades and extensions;
- use of the Cordeaux Pit Top for mining support activities;
- augmentation of mine access arrangements, including upgrades to, and the use of, the Cordeaux Pit Top;
- transport of sized ROM coal from the KVCLF to the Dendrobium CPP via the Kemira Valley Rail Line;
- delivery of product coal from the Dendrobium CPP to the Port Kembla Steelworks for domestic use or to the Port Kembla Coal Terminal (PKCT) for export;
- transport of coal wash by road to customers for engineering purposes (e.g. civil construction fill), for other beneficial uses and/or for emplacement at the West Cliff Colliery Stage 3 and Stage 4 Coal Wash Emplacement;
- development and rehabilitation of the West Cliff Stage 3 Coal Wash Emplacement;
- progressive development of sumps, pumps, pipelines, water storages and other water management infrastructure;
- controlled release of excess water in accordance with the conditions of Environmental Protection Licence 3241 and/or beneficial industrial re-use;
- monitoring, rehabilitation and remediation of subsidence and other mining effects; and
- other associated minor infrastructure, plant, equipment and activities.

1.3 Study objectives and requirements

The AQA forms part of an Environmental Impact Statement (EIS), prepared in accordance with the Secretary's Environmental Assessment Requirements (SEARs). **Table 1-1** provides a summary of the SEARs for air quality and where the requirement has been addressed in this report, while specific comments from the NSW Environment Protection Authority (EPA) are summarised in **Table 1-2**.

Table 1-1: Summary of SEARs for air quality

Requ	uirement	How requirement is addressed
Air, i	including: an assessment of the likely air quality impacts of the development in accordance with the Approved Methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW, with a particular focus on dust emissions including PM _{2.5} and PM ₁₀ , and having regard to EPA's requirements (see Attachment 2) and the Voluntary Land Acquisition and Mitigation Policy; and	Report prepared in accordance with the Approved Methods (refer Section 2).
•	<i>an assessment of the likely greenhouse gas impacts of the development;</i>	Section 8

Table 1-2: Summary of Agency (EPA) comments for air quality

Requirement	How comment is addressed
Mine Ventilation The proponent should examine abatement technology that could be adopted to manage ventilation air, including methane emissions produced during pre- mine gas drainage activities. The proponent should investigate possible odorous air emissions from ventilation shafts and if necessary model odour impacts on the community	Methane emissions will be abated by flaring of pre- and post-mine gas drainage. An assessment of flaring and odour from ventilation shafts is presented in Section 7. An assessment of greenhouse gas emissions from mine ventilation and flaring is presented in Section 8 .
Dust Fallout The proponent should list and assess the location and nature of dust fallout complaints received by Dendrobium Coal over the past 10 years. The Proponent should investigate any additional reasonable and feasible measures available to minimise dust impacts on affected properties and on properties directly to the south east of the Kemira Valley stockpile. Examination of best practice controls should at least include stockpiles controls, train loading controls and controls on dust from rail transport as the line passes close to the affected houses. The proponent should investigate the adoption of best practice real time air quality monitoring equipment that could be used to provide real time air quality monitoring information to the community, and be used to inform mine Trigger Action Response Plans to better manage dust impacts from the mine.	Review of complaints provided in Section 9.1. Existing dust controls (Section 6) are evaluated in a best management practice determination presented in Appendix 5. Recommendations for improvements to the existing monitoring program are provided in Section 9.

2. ASSESSMENT APPROACH

The AQA presents a quantitative assessment of potential air quality impacts, using a Level 2 assessment approach in accordance with the Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales ("the Approved Methods") (NSW EPA, 2016).

An overview of the approach to the assessment is as follows:

- The Project is reviewed for potential emission sources.
- Emissions are estimated for all significant sources, using suitable emission factors and activity data.
- Dispersion modelling using a regulatory dispersion model is used to predict ground level concentrations for key pollutants from the Project, at surrounding sensitive receivers.
- Cumulative impacts are assessed, taking into account the combined effect of existing baseline air quality and/or other local sources of emissions.
- Estimates of the greenhouse gas emissions are presented and benchmarked against Greenhouse Gas accounts for NSW and Australia.

2.1 Project components and pollutants considered for assessment

Air quality impacts are modelled in this AQA for the following key Project components:

- KVCLF fugitive dust from handling and stockpiling of coal, including conveying, sizing, loading the stockpile, maintaining the stockpile and loading trains.
- Dendrobium Pit Top fugitive dust from vehicle movements associated with personnel and materials access to the underground workings via the Dendrobium Tunnel.
- Kemira Valley Rail Line fugitive emissions from coal wagons and diesel emissions from locomotives.
- Dendrobium CPP fugitive dust from handling and stockpiling of coal, including unloading trains, conveying, loading stockpiles, maintaining stockpiles, loading trucks and wind erosion.
- Gas drainage and management, including new upcast ventilation shafts and flaring for preand post-gas management.

Some components of the Project did not require modelling for the reasons summarised below, with further discussion provided in subsequent sections:

- Although part of the project, there is no change to the transport and emplacement of coal wash from the CPP to the West Cliff Coal Wash Emplacement. Local air quality impacts from this Project component have already been assessed and described in the Bulli Seam Operations EIS (PAEHolmes, 2009) and the conclusions remain the same (refer Section 7.6).
- In addition to the Dendrobium Pit Top, the Cordeaux Pit Top would be used to support mining support activities, including mine access. However, unlike the Dendrobium Pit Top, the Cordeaux Pit Top is remote from residential areas (the closest receptor is located over 2 km away) and is a minor source of emissions. See **Section 7.4** for further discussion.
- The coal fines dryer at the CPP is not currently operational and there is no change proposed as part of the Project. If it were to become operational, the dryer was assessed in an air quality assessment which accompanied the EIS for the original approval (HAS, 2000) and the conclusions remain the same (refer **Section 7.5.3**).

A summary of the potential emissions to air for each Project component are identified and summarised in **Table 2-1**.

Table 2-1: Emissions sources and air quality indicators for assessment

Project Component	Emissions source	Air quality indicator	Included in this assessment	Section in this AQA
Surface infrastructure facilities (KVCLF and	Fugitive dust from coal handling and vehicle movements	TSP, PM ₁₀ , PM _{2.5} and dust deposition	Emissions assessed and modelled.	Section 7.1
Dendrobium Pit Top)	Diesel combustion	PM ₁₀ and PM _{2.5}	Emissions assessed and modelled.	
		Oxides of nitrogen (NO _x)	Other gaseous emissions from diesel combustion	
		Sulphur dioxide (SO ₂)	have not been modelled. Based on the relatively	
		Carbon monoxide (CO)	minor quantities of diesel consumed, there	
		Volatile organic compounds (VOCs)	would be no impact on local air quality.	
Kemira Valley Rail	Fugitive dust from coal wagons	TSP, PM ₁₀ , PM _{2.5} and dust deposition	Emissions assessed and modelled.	Section 7.2
Line	Diesel combustion in	PM ₁₀ and PM _{2.5}	Emissions assessed and modelled.	
	locomotives	Oxides of nitrogen (NO _x)	Other gaseous emissions from diesel combustion	
		Sulphur dioxide (SO ₂)	have not been modelled. Based on the relatively	
		Carbon monoxide (CO)	minor quantities of diesel consumed, there	
		Volatile organic compounds (VOCs)	would be no impact on local air quality.	
Ventilation Shaft	Ventilation shafts	TSP, PM ₁₀ , PM _{2.5} and dust deposition	Emissions assessed and modelled.	Section 7.3
Sites (including		Odour		
Central Gas Management)	Flaring	Oxides of nitrogen (NO _x)	Emissions assessed and modelled, as the key pollutants from flaring. Emissions of other pollutants from flaring are negligible and are not modelled.	
Cordeaux Pit Top	Fugitive dust from vehicle movements	TSP, PM_{10} , $PM_{2.5}$ and dust deposition	Potential emissions at the Cordeaux Pit Top would be minor and, given the separation	Section 7.4
	Diesel combustion	PM ₁₀ and PM _{2.5}	distance of >2 km from the closest receptor,	
		Oxides of nitrogen (NO _x)	there would be no impact on local air quality.	
		Sulphur dioxide (SO ₂)		
		Carbon monoxide (CO)		
		Volatile organic compounds (VOCs)		
СРР	Fugitive dust from coal handling	TSP, PM_{10} , $PM_{2.5}$ and dust	Emissions assessed and modelled.	Section 7.5
		deposition		

Project Component	Emissions source	Air quality indicator	Included in this assessment	Section in this AQA
	Diesel combustion	PM ₁₀ and PM _{2.5}	Emissions assessed and modelled.	
		Oxides of nitrogen (NO _x)	Other gaseous emissions from diesel combustion	
		Sulphur dioxide (SO ₂)	have not been modelled. Based on the relatively	
		Carbon monoxide (CO)	minor quantities of diesel consumed, there	
		Volatile organic compounds (VOCs)	would be no impact on local air quality.	
	Coal Dryer	PM_{10} and $PM_{2.5}$	Emissions reviewed and found to result in	Section 7.5.3
		Oxides of nitrogen (NO _x)	negligible potential impacts, consistent with HAS	
		Sulphur dioxide (SO ₂)	(2000) assessment.	
		Carbon monoxide (CO)		
		Volatile organic compounds (VOCs)		
Coal wash transport	Fugitive dust from coal handling	TSP, PM_{10} , $PM_{2.5}$ and dust	There is no material change to the transport and	Section 7.6
and emplacement		deposition	emplacement of coal wash from the CPP to the	
	Diesel combustion	PM ₁₀ and PM _{2.5}	West Cliff Coal Wash Emplacement, and local air	
		Oxides of nitrogen (NO _x)	quality impacts have already been assessed in	
		Sulphur dioxide (SO ₂)	the Bulli Seam Operations EIS. Therefore, no	
		Carbon monoxide (CO)	further assessment is required as impacts would	
		Volatile organic compounds (VOCs)	be minor, as assessed in PAEHolmes (2009).	
Construction	N/A	N/A	Most of the construction activities for the Project	Section 7.7
			would either be minor upgrades or occur at	
			locations separated from sensitive receptors	
			(i.e. the Central Gas Management Sites). All	
			construction activities would be short-term and	
			potential emissions could be controlled using	
			standard mitigation and management practices.	
			Therefore, construction phase emissions are not	
			modelled in this report.	
All components	All major sources	Greenhouse gases (GHG)	Emissions quantified.	Section 8

2.2 Assessment criteria

2.2.1 Particulate matter

When first regulated, airborne particulate matter (PM) was assessed based on concentrations of "total suspended particulate matter" (TSP). In practice, this typically referred to PM smaller than about 30-50 micrometres (μ m) in diameter. As air sampling technology improved and the importance of particle size and chemical composition become more apparent, ambient air quality standards have been revised to focus on the smaller particle sizes, thought to be most dangerous to human health. Contemporary air quality assessment typically focuses on "fine" and "coarse" inhalable PM, based on health-based ambient air quality standards set for PM₁₀ (particulate matter smaller than 10 μ m in diameter) and PM_{2.5} (particulate matter smaller than 2.5 μ m in diameter).

Air quality criteria for PM in Australia are given for particle size metrics including TSP, PM₁₀ and PM_{2.5}. The 2016 update to the 'Approved Methods', gazetted on 20 January 2017, includes particle assessment criteria that are consistent with revised National Environment Protection (Ambient Air Quality) Measure (AAQ NEPM) national reporting standards (National Environment Protection Council [NEPC], 1998; NEPC, 2015). For this report, predicted ground level concentrations (GLCs) are assessed against the NSW EPA's impact assessment criteria presented in **Table 2-2**.

PM metric	Averaging period	Concentration (µg/m ³)
TSP	Annual	90
DM	24-hour	50
FM10	Annual	25
DM.	24-hour	25
F112.5	Annual	8

Table 2-2: Impact assessment criteria for PM

Note: $\mu g/m^3$ = micrograms per cubic metre.

The Approved Methods also prescribes nuisance-based goals for dust deposition, which relate to amenity type impacts such as soiling of exposed surfaces. The NSW EPA impact assessment criteria for dust deposition are summarised in **Table 2-3**, illustrating the maximum increase and total dust deposition rates that would be acceptable for dust nuisance to be avoided.

Table 2-3: Dust deposition criteria

Pollutant	Maximum Increase in Dust Deposition	Maximum Total Dust Deposition Level
Deposited dust (assessed as insoluble solids)	2 g/m ² /month	4 g/m²/month

Note: $g/m^2 = grams per square metre.$

2.2.2 Gaseous pollutants

The impact assessment criteria for gaseous products of combustion are prescribed in the Approved Methods and summarised in **Table 2-4**. The impact assessment criteria for "criteria pollutants¹" are applied at the nearest existing or likely future off-site sensitive receptor and compared against the 100th percentile (i.e. the highest) dispersion modelling prediction. Both the incremental and cumulative impacts need to be considered (i.e. consideration of background is required for criteria pollutants).

The impact assessment criteria for "air toxics" are applied at, and beyond, the site boundary and reported as the 99.9th percentile of the dispersion modelling predictions. Only incremental

Ramboll

¹ "Criteria pollutants" is used to describe air pollutants that are commonly regulated and typically used as indicators for air quality. In the Approved Methods the criteria pollutants are TSP, PM_{10} , NO_2 , SO_2 , CO, ozone (O_3), deposition dust, hydrogen fluoride and lead.

impacts for these pollutants need to be reported. Air toxics include the various VOC components of combustion exhaust emissions.

Table 2-4: Impact assessmen	t criteria for gaseous	products of combustion
-----------------------------	------------------------	------------------------

Pollutant	Averaging period	Concent	Concentration	
		µg/m ^{3 1}	pphm ²	
NO ₂	1-hour	246	12	
	Annual	62	3	
SO ₂	10-minute	712	25	
	1-hour	570	20	
	24-hour	228	8	
	Annual	60	2	
СО	15-minute	100,000	8,700	
	1-hour	30,000	2,500	
	8-hour	10,000	900	
VOCs				
1,3-butadiene	1-hour ³	40	1.8	
Benzene	1-hour ³	29	0.9	
PAHs (as BaP)	1-hour ³	0.4	_	
Note 1: Gas volumes for criteria pollut	ants expressed at 0°C and 1 atmosp	here, and principal toxics at 2	5°C	
Note 2: pphm – parts per hundred mil	lion			
Note 3: Expressed as the 99.9 th percer	ntile			

2.2.3 Odour

Dynamic olfactometry is the accepted method of odour measurement and involves a sample of odorous air being presented to a panel of people with decreasing quantities of clean odour-free air. The panellists note when the smell becomes detectable, and the correlation between the known dilution ratios and the panellists' responses are used to calculate the number of dilutions required to achieve the odour detection threshold. The units for odour measurement are "odour units" (ou), which, according to the method described above, are effectively "dilutions to threshold".

The odour nuisance level can be as low as 2 ou and as high as 10 ou (for less offensive odours), whereas an odour assessment criterion of 7 ou is likely to represent the level below which "offensive" odours should not occur. The NSW EPA's *Technical framework - Assessment and management of odour from stationary sources in NSW* (NSW DEC, 2006) recommends that, as a design criterion, no individual should be exposed to ambient odour levels of greater than 7 ou.

The Approved Methods prescribes odour goals that take into account the population density for a particular area. The most stringent odour goal of 2 ou is considered to be acceptable for the whole population and, therefore, appropriate for urban areas (NSW EPA, 2016).

The 2 ou odour goal should be compared against the 99th percentile of the dispersion modelling predictions. The 1-hour average dispersion modelling prediction is converted to a peak (i.e. 1-second 'nose response average') based on a peak to mean ratio of 2.3, in accordance with the Approved Methods.

2.3 Modelling approach

Dispersion modelling for this assessment uses the CALPUFF modelling system, which is commonly used in NSW for applications where non-steady state conditions may occur (i.e. complex terrain or coastal locations).

The Approved Methods provides recommendations for the selection of dispersion models and includes CALPUFF and TAPM as alternative models.

The modelling for this assessment uses a combination of TAPM and CALMET/CALPUFF, as follows:

- TAPM is used to generate gridded three-dimensional upper air data for each hour of the model run period for input into CALMET.
- CALMET, the meteorological pre-processor for the dispersion model CALPUFF, calculates fine resolution three-dimensional meteorological data using a combination of surface observations and the prognostic TAPM upper air data.
- CALPUFF then calculates the dispersion of plumes within this three-dimensional meteorological field.

2.4 Cumulative impacts

Cumulative impacts are assessed by combining the contribution from the Project with the existing ambient air quality environment, described based on baseline monitoring data for the region (described in **Section 5**).

3. LOCAL SETTING AND ASSESSMENT LOCATIONS

3.1 Local setting

The KVCLF and Dendrobium Pit Top are located in Mount Kembla, approximately 8 km west of Wollongong on the Illawarra Escarpment. The Kemira Valley Rail Line runs from the KVCLF to the Dendrobium CPP, located within the Port Kembla Steelworks Precinct.

The regional setting and the key Project components considered in this report are shown in **Figure 3-1**. The KVCLF sits on the edge of the escarpment, at an elevation of approximately 70 m Australian Height Datum (AHD). The terrain rises sharply into the escarpment, to an elevation greater than 400 m AHD. The regional and local topography and coastal setting have a strong influence on the prevailing meteorology, described further in **Section** 4.

3.2 Assessment locations

There are a number of residential areas around the KVCLF and Dendrobium Pit Top, including Mount Kembla / Kembla Heights, Cordeaux Heights and Figtree, while the Kemira Valley Rail Line passes through the residential areas of Unanderra and Cringila.

Locations representative of these residential areas have also been identified and selected as discrete sensitive receptors, shown in **Figure 3-2**. Additional receptor locations, selected to assess impacts from the rail line, are shown in **Figure 3-3**. Non-residential sensitive receptors are also shown, including schools, places of worship and recreational areas. It is noted that there are a small number of commercial and mine-owned receptors in the vicinity of the KVCLF and Dendrobium Pit Top that are not shown in the figures but are listed in **Appendix** 2. These commercial premises are mostly associated with the Dendrobium Mine.

The Ventilation Shaft Sites (also used for central gas management) are remote from any residential areas. Ventilation Shaft No 6B is the closest gas management site to sensitive receptors, located approximately 1 km away as shown in **Figure 3-4**. The Cordeaux Pit Top is located approximately 2 km from these same receptors.

The Dendrobium CPP is located close to the residential areas of Cringila, Port Kembla and Warrawong, as shown in **Figure 3-5**. Specific discrete sensitive receptors have not been identified in this report, but these residential areas are assessed with reference to the contour plots, which show predicted ground level concentrations of key pollutants across all areas in the vicinity of the CPP.

Figure 3-1: Regional topography and key Project features

14

Figure 3-2: Sensitive receptor locations in the vicinity of the KVCLF and Dendrobium Pit Top

Figure 3-3: Additional sensitive receptor locations for assessment of the Kemira Valley Rail Line

Figure 3-4: Sensitive receptor locations in the vicinity of the Ventilation shaft and central gas management sites

Figure 3-5: Residential areas in the vicinity of the CPP

4. OVERVIEW OF LOCAL AND REGIONAL METEOROLOGY

4.1 Introduction

Meteorological mechanisms govern the generation, dispersion, transformation and eventual removal of pollutants from the atmosphere. To adequately characterise the dispersion meteorology of a region, information is needed on the prevailing wind regime, ambient temperature, rainfall, relative humidity, mixing depth and atmospheric stability.

Analysis of meteorology for the region is presented based on the closest Bureau of Meteorology (BoM) automatic weather station (AWS) and NSW Office of Environment and Heritage (OEH) monitoring sites, as follows:

- Kembla Grange OEH site located approximately 6 km south of the KVCLF.
- Wollongong OEH site located approximately 5.5 km east of the KVCLF.
- Wollongong Airport BoM AWS located approximately 16 km south of the KVCLF.
- Bellambi AWS located approximately 11 km north-east of the KVCLF.

The locations of the surface observation sites in relation to the KVCLF are shown in Figure 4-1.

These monitoring locations are also used as surface observation sites in the meteorological monitoring for the assessment (described in **Section 4.5**).

Illawarra Coal operates an on-site meteorological monitoring station at the Dendrobium Pit Top, and these data are also included in the modelling to refine the performance of the meteorological model in predicting local winds for the area around the KVCLF.

Figure 4-1: Surface observation sites for the region

4.2 Prevailing winds

Five years of hourly data were reviewed for Wollongong Airport and the annual wind roses for 2012 to 2016 are presented in **Figure A3-1** (**Appendix** 3). The annual wind roses for Wollongong show consistency in wind direction, average wind speeds and the percentage occurrence of calm winds (<= 0.5 m/s) for each year.

Wind roses for the on-site station for the most recent four years of data are presented in **Figure 4-2**. Annual wind roses for 2015, 2016 and 2017 show consistency in wind direction and average wind speeds, with some variability in the percentage occurrence of calm winds.

Based on this analysis, the most recent complete year (2016) was considered suitable for modelling. The 2016 annual wind rose for the regional surface observation sites is presented in **Figure A3-2** (**Appendix** 3). Most sites display a dominant westerly component, the exception being the Wollongong OEH site, which displays a south-west component. Each site also displays a secondary north-east component. Average wind speeds are approximately 3 metres per second (m/s) at Kembla Grange, 4 m/s at Wollongong Airport and Belambi AWS and 2 m/s at Wollongong. The percentage occurrence of calm winds (<0.5 m/s) is consistent across all sites and slightly higher at Wollongong.

Figure 4-2: Wind roses for the on-site station

Seasonal and diurnal wind roses for the on-site station in **Figure 4-3** and **Figure 4-4** demonstrate consistent wind speeds and directions across all seasons and day and night periods. Seasonal and diurnal wind roses for Kembla Grange (**Figure A3-3** in **Appendix** 3) demonstrate higher wind speeds during the day and dominant onshore winds, particularly during summer. Night-time winds are dominant by westerly drainage flow from elevated terrain in all seasons.

Figure 4-3: Seasonal wind roses for the on-site station - 2016

Figure 4-4: Diurnal wind roses for the on-site station - 2016

4.3 Ambient temperature

The minimum, maximum, mean and upper and lower quartile temperatures for each month of the modelling year (2016) are presented as a box and whisker plot shown in **Figure 4-5**, based on data from Wollongong Airport. The modelling year is compared with long-term records at the Wollongong Airport and shown to correlate well with the long-term trends. The upper and lower quartile and mean temperatures for 2016 fall within the long-term mean monthly maximum and minimum temperatures.

The highest temperature for 2016 occurred in December, which was also the highest temperature on record. The lowest temperature for 2016 occurred in July and all minimum temperatures for 2016 are above the long-term minimum.

while upper and lower whiskers indicate maximum and minimum values.

Figure 4-5: Comparison of long-term temperature records with modelling period

4.4 Rainfall

Precipitation is important to air pollution since it impacts on dust generation potential and represents a removal mechanism for atmospheric pollutants. Fugitive emissions may be harder to control during low rainfall periods while drier periods may also result in more frequent dust storms and bushfire activity, resulting in higher regional background dust levels. Rainfall also acts as a removal mechanism for dust, lowering pollutant concentrations by removing them more efficiently than during dry periods.

To provide a conservative (upper bound) estimate of the pollutant concentrations, wet deposition (removal of particles from the air by rainfall) was not included in the dispersion modelling for this report. Nevertheless, long-term rainfall records for Wollongong Airport are presented in **Figure 4-6**. On average, the highest monthly rainfall occurs in February and March and the highest number of rain days occur in November and March.

Figure 4-6: Long-term rainfall records for Wollongong Airport AWS

4.5 Meteorological modelling

Where no upper air measurements are available, CALMET can be run using prognostic upper air data (as a three-dimensional "3D.dat" file) and used to drive an "initial guess" wind field. The model then incorporates mesoscale and local scale effects, including surface observations, to adjust the final wind field. This modelling approach is known as the "hybrid" approach (TRC, 2011) and is adopted for this assessment. TAPM was used to generate gridded upper air data for each hour of the model run period, for input into CALMET.

TAPM and CALMET model settings are described in **Appendix** 4, selected in accordance with recommendations in the Approved Methods and in TRC (2011).

Surface observations are included in the modelling (referred to as data assimilation) to provide real-world observations and improve the accuracy of the wind field. The surface observations are incorporated into both TAPM and CALMET modelling, for each of the sites shown in **Figure 4-1**.

4.5.1 CALMET predicted winds

CALMET predicted wind speeds are compared with observations at Kembla Grange OEH site and the on-site meteorological station and shown in **Figure 4-7**. Both the Kembla Grange OEH site and the on-site station were included as surface observation sites in the modelling; therefore, the CALMET winds are expected to match closely to the observation. The dominant wind directions, mean wind speeds and frequency of calms are all similar.

Figure 4-7: Comparison of CALMET winds with observations

4.5.2 Atmospheric stability and boundary layer heights

The atmospheric boundary layer constitutes the first few hundred metres of the atmosphere. This layer is directly affected by the earth's surface, either through the retardation of air flow due to the frictional drag of the earth's surface (mechanical mechanisms), or as result of the heat and moisture exchanges that take place at the surface (convective mixing) (Stull, 1997; Oke, 2003). During the daytime, the atmospheric boundary layer is characterised by thermal turbulence due to the heating of the earth's surface and the extension of the mixing layer to the lowest elevated subsidence inversion. Due to radiative flux divergence, nights are typically characterised by weak to no vertical mixing and the predominance of stable conditions. These conditions are normally associated with low wind speeds and, hence, lower dilution potentials.

CALMET-generated mixing heights are extracted at three locations - Port Kembla, Kembla Grange and the KVCLF - to provide an indication of the spatial variation in CALMET predicted atmospheric boundary layer heights and the average boundary layer heights by hour of the day, as shown in **Figure 4-8**. As seen in median and upper and lower quartiles, the highest boundary layer heights are experienced during the daytime hours, peaking in the mid to late afternoon. Higher day-time wind velocities and the onset of incoming solar radiation increases the amount of mechanical and convective turbulence in the atmosphere. As turbulence increases so too does the depth of the boundary layer, generally contributing to higher mixing depths and greater potential for atmospheric dispersion of pollutants. It is noted that the maximum mixing heights in the modelling data for night-time hours reflect the increased mechanical mixing from higher wind speeds near the coast.

Atmospheric stability refers to the degree of turbulence or mixing that occurs in the atmosphere and is a controlling factor in the rate of atmospheric dispersion of pollutants. The Monin-Obukhov length (L) provides a measure of the stability of the surface layer (i.e. the layer above the ground in which vertical variation of heat and momentum flux is negligible - typically about 10 per cent [%] of the mixing height). Negative L values correspond to unstable atmospheric conditions, while positive L values correspond to stable atmospheric conditions. Very large positive or negative L values correspond to neutral atmospheric conditions. **Figure 4-8** illustrates the diurnal variation of atmospheric stability derived from the Monin-Obukhov length calculated by AERMET for modelling. The diurnal profile at all locations illustrates that atmospheric instability increases during daylight hours as convective energy increases, while stable atmospheric conditions prevail during the night-time. The potential for atmospheric dispersion of emissions is, therefore, greatest during daytime hours and lowest during evening through to early morning hours.

5. BASELINE AMBIENT AIR QUALITY

Illawarra Coal has implemented an air quality monitoring program for the Mine, shown in **Appendix** 1 and including:

- Five dust deposition gauge locations, measuring monthly dust deposition and conducting additional microscopic analysis.
- Two high volume air sampler (HVAS) locations, measuring TSP and PM₁₀ concentrations on a monthly basis.

A review of the on-site monitoring data and other regional sources of data is provided in the following sections. The locations used for the baseline review are shown in **Figure 5-1**.

5.1 PM₁₀ and PM_{2.5} concentrations

The average PM_{10} concentrations for the on-site data are summarised in **Table 5-1** for each year. It is noted that these are not true annual averages, as the HVAS are only run once a month. For the same reason, it is not possible to determine the maximum 24-hour PM_{10} concentrations or the number of days over the impact assessment criteria.

Nevertheless, the data are useful to provide an indication of background conditions in the vicinity of the Dendrobium Pit Top and the KVCLF. Concentrations are consistently higher at Point 21, which is located on the roof of the bathhouse building at the Dendrobium Pit Top, compared with Point 20, which is located at the entrance to the KVCLF. The average background PM_{10} concentration across both sites and all years is approximately 70% of the impact assessment criteria.

The on-site monitoring data alone are not suitable to derive background datasets for cumulative assessment. For the assessment of cumulative 24-hour impacts, continuous measurements of PM_{10} and $PM_{2.5}$ are needed. It is also preferable to calculate annual means on more than one measurement per month.

Reference is, therefore, made to the NSW OEH sites at Kembla Grange and Wollongong, which both measure PM_{10} and $PM_{2.5}$ on a continuous basis. Summary statistics for the past five years are presented in **Table 5-1**. $PM_{2.5}$ was only added at Kembla Grange in February 2015; however, measurements of fine particles by nephelometry² are available for the previous five years and can be used to fill in gaps in the $PM_{2.5}$ data record. A linear relationship between the two variables is derived based on the available data and used to "predict" $PM_{2.5}$ concentrations where direct measurement is not available.

At Kembla Grange, annual average background PM_{10} concentrations are 74% of the impact assessment criteria (based on the previous five years). At Wollongong, annual average background PM_{10} concentrations are 70% of the impact assessment criteria (based on the previous five years). At both sites, annual average background $PM_{2.5}$ concentrations are greater than 80% of the impact assessment criteria (based on the previous five years).

Exceedances of the 24-hour average impact assessment criteria for PM_{10} occurred in each of the previous five years at Kembla Grange and in 2013 and 2016 at Wollongong. Exceedances of the 24-hour average impact assessment criteria for $PM_{2.5}$ occurred in 2013 and 2016 at Kembla Grange and in 2013, 2015 and 2016 at Wollongong. Time series plots of the 24-hour average concentrations at Kembla Grange and Wollongong are presented in **Figure 5-2** to **Figure 5-5**.

Data are also presented for the Port Kembla area, based on monitoring sites operated by BlueScope Steel. Under its Environment Protection Licence (EPL), BlueScope Steel is required to report online real-time hourly PM₁₀ concentration data for two monitoring sites, one located in Warrawong (Old Scout Hall) and one located north of the steelworks (near the North Gate visitors centre). Summary statistics for 2016 are presented in **Table 5-1**.

² Monitoring method for fine particles using light-scattering sensors. Used as a measure of visibility (or coefficient of light scattering).
The annual mean for Warrawong (the site closest to the CPP) is similar in magnitude to the other monitoring locations (72% of the impact assessment criteria), although the number of days above 50 μ g/m³ is higher than Kembla Grange. The annual mean for North Gate is higher than all other sites (84% of the impact assessment criteria) and the number of days above 50 μ g/m³ is the same as for Warrawong.

Site	Parameter	Statistic	2012	2013	2014	2015	2016
		Mean	16.5	12.8	14.4	13.4	14.2
EPL Point 20	PM10	Max. daily	-	-	-	-	-
		Days over 50 µg/m ³	-	-	-	-	-
		Mean	16.8	24.2	25.9	19.9	19.3
EPL Point 21	PM10	Max. daily	-	-	-	-	-
		Days over 50 µg/m³	-	-	-	-	-
		Mean	18.3	18.5	17.3	17.8	20.0
	PM10	Max. daily	57.2	102.2	99.2	62.8	56.3
Kembla		Days over 50 µg/m³	3	4	1	1	4
Grange OEH		Mean	6.3	6.9	6.3	6.5	6.6
	PM _{2.5}	Max. daily	18.5	98.5	16.4	23.8	32.0
		Days over 25 µg/m³	0	5	0	0	2
		Mean	18.0	17.6	17.7	16.9	17.3
	PM10	Max. daily	47.5	93.8	45.3	45.8	52.9
Wollongong		Days over 50 µg/m ³	0	3	0	0	2
OEH	PM _{2.5}	Mean	4.6	7.7	7.0	7.6	7.4
		Max. daily	15.6	88.4	17.3	31.6	33.7
		Days over 25 µg/m ³	0	4	0	1	3
BlueScope		Mean	-	-	-	-	17.9
Steel – Old Scout Hall	PM10	Max. daily	-	-	-	-	62.9
Warrawong		Days over 50 µg/m ³	-	-	-	-	7
BlueScope		Mean	-	-	-	-	21.1
Steel – North	PM10	Max. daily	-	-	-	-	64.1
Gate		Days over 50 µg/m³	-	-	_	-	7

Table 5-1: PM₁₀ and PM_{2.5} monitoring statistics across all monitoring sites

31

Figure 5-1: Location of PM10 monitoring sites used for baseline analysis

Figure 5-2: Time series of 24-hour PM₁₀ concentrations at Kembla Grange

Figure 5-3: Time series of 24-hour PM_{2.5} concentrations at Kembla Grange

33

Figure 5-4: Time series of 24-hour PM₁₀ concentrations at Wollongong

Figure 5-5: Time series of 24-hour PM_{2.5} concentrations at Wollongong

Ramboll

5.2 TSP and Dust deposition

The average TSP concentrations for the on-site data are summarised in **Table 5-2** for each year. Similar to PM_{10} , TSP concentrations are consistently higher at Point 21 compared with Point 20, and the average background TSP concentration across both sites and all years is 39% of the impact assessment criteria.

Site	Parameter	2012	2013	2014	2015	2016
Point 20	TSP	32.4	30.1	22.0	21.7	19.0
Point 21	TSP	49.3	53.1	50.1	42.0	27.6

Table 5-2: Mean TSP concentrations (µg/m³) for on-site data

The annual average dust deposition monitoring results for EPL monitoring points is presented in **Table 5-3**. Dust deposition rates averaged over the previous five years ranges from 1.0 g/m²/month at Point 6 to 2.7 g/m²/month at Point 18, with an overall average across all sites and years of 1.9 g/m²/month. This is typical of background dust deposition across much of NSW, which is typically measured in the range of 1 g/m²/month to 2 g/m²/month.

Additional visual analysis of the dust deposition monitoring data for all off-site monitoring locations shows that, on average, approximately 10% of the total deposition is comprised of coal dust. The remaining deposited dust is comprised of dirt, vegetation, insects and other fibrous material. At the monitoring sites located on-site at the Dendrobium Pit Top and KVCLF (Point 13 and Point 18) coal dust comprises approximately 20% and 30%, respectively.

Site	2012	2013	2014	2015	2016
Point 6	1.1	1.3	1.0	0.7	1.1
Point 9	2.9	3.1	3.6	2.1	0.7
Point 13	2.8	3.5	3.0	1.2	0.7
Point 17	1.0	0.8	0.9	0.9	0.6
Point 18	3.8	1.9	3.6	1.8	2.4

Table 5-3: Annual average dust deposition for EPL points (g/m²/month as insoluble solids)

5.3 Summary and adopted background for cumulative assessment

Cumulative assessment for annual average PM_{10} and $PM_{2.5}$ is based on a background derived from the period average of all available data from all sites presented in **Table 5-1**, over the most recent five years. This approach accounts for temporal and spatial variation in background PM that might occur for the Project in future years. Similarly, the annual average background TSP concentration and dust deposition rate is taken as the period average of all available data from all sites, presented in **Table 5-2** and **Table 5-3**.

For the assessment of short-term impacts for PM_{10} and $PM_{2.5}$, daily varying concentrations for 2016 from the Kembla Grange monitoring site are paired with modelling predictions for assessment of cumulative impacts. The background values adopted for cumulative assessment are summarised in **Table 5-4**.

Pollutant	Averaging period	Adopted background value	Source
PM ₁₀	24-hour average	Daily varying	Kembla Grange daily monitoring data for 2016
	Annual average	18.9 μg/m³	Period average across all sites for 2012-2016
PM2.5	24-hour average	Daily varying	Kembla Grange daily monitoring data for 2016
	Annual average	6.7 μg/m³	Period average across all sites for 2012-2016
TSP	Annual average	34.7 μg/m³	Period average across all sites for 2012-2016
Dust deposition	Annual average	2 g/m²/month	Period average across all sites for 2012-2016

Table 5-4: Auopteu background for cumulative assessmen
--

6. EMISSIONS INVENTORY

Relevant emissions are estimated for each component of the Project, as outlined in **Table 2-1**, and are summarised as follows:

- KVCLF fugitive dust from handling and stockpiling of coal, including conveying, sizing, loading the stockpile, maintaining the stockpile and loading trains.
- Dendrobium Pit Top fugitive dust from vehicle movements associated with personnel and materials access to the underground workings via the Dendrobium Tunnel.
- Kemira Valley Rail Line fugitive emissions from coal wagons and diesel emissions from locomotives.
- Dendrobium CPP fugitive dust from handling and stockpiling of coal, including unloading trains, conveying, loading stockpiles, maintaining stockpiles, loading trucks, wind erosion.
- Gas drainage and management including dust and odour emissions associated with upcast ventilation shafts and combustion emissions associated with flaring (pre- and postdrainage).
- CPP coal dryer combustion emissions associated with the coal dryer at the CPP.

6.1 Overview of existing dust controls

Existing dust control measures are outlined in the Dendrobium Mine Air Quality Management Plan (AQMP). A review of these existing controls against best management practices (BMP) was completed in 2012, as part of the Particulate Matter Control Best Practice Pollution Reduction Program (PAEHolmes, 2012). This review found that existing measures were in accordance with best practice. An updated BMP determination for the Project is summarised in **Appendix** 5.

The existing dust controls are as follows:

- Wind shielding for conveyors and scrapers to clean the return conveyor.
- Reduced drop height (rill tower) and water sprays for loading the KVCLF stockpile.
- Enclosure of the coal sizer with mechanical extraction and control.
- Automated dust suppression system on the KVCLF stockpile.
- Sealed travel routes at the Dendrobium Pit Top and regular operation of a road sweeper.
- Automated fixed water spray system on the mine portal access road.
- Enclosed train loading and profiling of the load.
- Maintaining moisture content of ROM coal in rail wagons above the Dust Extinction Moisture (DEM) level³.
- Restricted train speeds to minimise fugitive emissions.
- Wind shielding for conveyors and water sprays on transfer points at the CPP.
- Water trucks operating at the CPP stockpile areas.
- Water truck operating on internal travel routes at the CPP.

The majority of these dust controls are incorporated into the emissions inventory, where appropriate control efficiencies are reported in the literature.

6.2 Modelling scenarios

A single modelling scenario is presented for the KVCLF, Dendrobium Pit Top, Rail Line and CPP, based on the maximum production rate of 5.2 Mtpa. For modelling of the ventilation shaft sites (including gas management), it is assumed that two upcast ventilation sites would operate concurrently, nominally representing longwall production at a maximum rate for Area 5 and development driveage for Area 6. While some flexibility is required for the upcast shaft location in Area 6, as a worst case we have modelled the location closest to the receptors (i.e. Shaft Site No 6B). Similarly, for flaring, it is conservatively assumed that the maximum estimated gas flow rate would be all flared from the location closest to the receptors (i.e. Shaft Site No 6B).

³ Measured moisture content for ROM coal arriving at the CPP (6.5%) is higher than the measured DEM level (4.6%). See **Appendix** 6.

6.3 Dust emission estimates

Fugitive dust emissions are estimated using emission factors developed by the US EPA⁴ and the estimated annual emissions for each Project component are presented in **Table 6-1**. Further information on emission inventory development is provided in **Appendix** 5, including the assumptions, input data and emission factors.

The relative contribution of each Project component to annual PM_{10} emissions is presented in **Figure 6-1**.

The largest source of annual PM_{10} emissions are the two upcast ventilation shafts. It is noted that emission estimates for ventilation shafts assume that all the PM is in the fine fraction, so the estimates for TSP, PM_{10} and $PM_{2.5}$ are the same. This is likely to be a conservative overestimate for PM_{10} and $PM_{2.5}$ as the emission estimates are based on measurements of total particulate matter taken at Dendrobium Shaft No 1 (**EML, 2005**). It is also noted that the ventilation shafts are located in remote areas and the ranking of this source in terms of annual emissions is not indicative of the potential impact on receptor locations. The second largest source of annual PM_{10} emissions is the CPP, followed by the KVCLF.

Figure 6-1: Summary of annual PM10 emissions (kg/annum)

⁴ US EPA AP-42 Compilation of Air Pollutant Emission Factors (US EPA, 1997; US EPA, 1998a; US EPA, 1998b;; US EPA, 2006).

Activity	TSP	PM 10	PM _{2.5}
Kemira Valley Coal Loading Facility			
Above-ground conveying (wind erosion)	34	17	3
Coal sizer/crusher	9,750	3,354	227
Loading ROM stockpile	388	184	28
Dozer on ROM stockpile	22,866	5,352	503
Excavator on ROM stockpile	311	147	22
Loading trains	466	220	33
Wind erosion of ROM stockpile	60	30	4
Dendrobium Pit Top			
Light vehicle movements into portal - wheel dust	663	127	31
Heavy vehicle movements into portal - wheel dust	687	132	32
Upcast ventilation shafts			
Ventilation Shaft Site No 5A (upcast)	25,229	25,229	25,229
Ventilation Shaft Site No 6B (upcast)	17,660	17,660	17,660
Kemira Valley Rail Line			
Fugitive dust from coal wagons	3,216	1,608	241
Diesel emissions from locomotives	557	557	540
Dendrobium Coal Preparation Plant			
ROM coal - unloading at dump station	574	272	41
ROM coal - 10% transfer to Raw coal stockpile - conveyor wind erosion	17	8	1
ROM coal - 10% transfer to Raw coal stockpile - conveyor transfer points	230	109	16
ROM coal - 10% transfer to Raw coal stockpile - loading stockpiles	191	91	14
FEL/dozers on stockpile maintenance (raw coal)	53,354	12,488	1,174
ROM coal - 90% transfer to wash plant - conveyor transfer points	1,034	489	74
Washed coal (83% yield ¹) - 20% transfer to Blended Beds - conveyor wind erosion	107	54	8
Washed coal (83% yield) - 20% transfer to Blended Beds - conveyor transfer points	97	46	7
Washed coal (83% yield) - 20% transfer to Blended Beds - loading stockpiles	162	77	12
Washed coal (83% yield) - loading trucks (80%)	648	307	46
Washed coal (83% yield) - hauling to clean coal stockpile (15%)	12,841	2,465	596
Washed coal (83% yield) - direct hauling to PKCT (65%)	13,911	2,670	646
Washed coal (83% yield) - unload to clean coal stockpiles (15%)	97	46	7
Washed coal (83% yield) - rehandle at clean coal stockpile (15%)	97	46	7
Washed coal (83% yield) - hauling from clean coal stockpile to PKCT (15%)	12,841	2,465	596
FEL/dozers on stockpile maintenance (clean coal)	15,122	3,540	333
Wind erosion (combined stockpiles areas)	10,423	5,212	782
Coal wash (17%) - loading trucks	47	22	3
Coal wash (17%) - transport off-site	5,479	1,052	254
Diesel consumption			
Combined KVCLF and Dendrobium Pit Top diesel consumption	1,481	1,481	1,437
Combined CPP diesel consumption	689	689	669
1 Over the life of the Project, product yields range from 66% to 88%, with an average of 78%. A yield of	83% has bee	n assumed fo	or the
modelling scenario. Sensitivity analysis has also been conducted to quantify the change in emissions from	83% to 88%	. The change	e in
emissions estimates (0.1%) is not sufficient to result in any change in outcomes for this assessment and,	therefore, th	e previously	assumed

Table 6-1: Estimated dust emissions for each Project component (kg/annum)

83% yield is retained.

The extent to which emissions factors account for the diesel exhaust component of each activity varies according to the emission factor and/or monitoring method that was used in deriving the emission factor. For example, for hauling on paved surfaces the exhaust component is not included whereas for material processing/handling, the emission factors may include some of the diesel exhaust component. To be conservative for this assessment, it has been assumed that all emission factors do not include the exhaust component, and emissions from diesel combustion are included as a separate emissions source for the KVCLF, the Dendrobium Pit Top and the CPP.

It is noted that the emissions from the rail line include both fugitive dust from coal wagons and diesel exhaust from locomotives. However, material property testing has shown that the measured moisture content for ROM coal arriving at the CPP (6.5%) is higher than the measured DEM level (4.6%). The emission estimates do not take this into account and, therefore, even though fugitive emissions are not expected, emissions have been included to be conservative.

6.4 Odour emissions from ventilation shafts

There are no receptors within 1 km of the proposed upcast ventilation shafts and there is very little potential for odour impacts from the Project. Notwithstanding, odour impacts are assessed using odour emission rates (OERs) derived from previous odour monitoring for existing mine ventilation shafts in the region (see **Table 6-2**).

To derive OERs for modelling, odour measurements from the Appin Ventilation Shaft No 3 are used. At the time of measurement, Appin Ventilation Shaft No 3 exhausted mine ventilation air (MVA) from Area 7 and the measured odour concentration (ou) was higher than previous data from the Dendrobium and Metropolitan Mines. OERs are derived using the maximum air flow rate for Ventilation Shaft Nos 5A and 6B (**Table 6-3**).

Site	Measured odour concentration (OU)	Reference
Dendrobium Mine Ventilation Shaft No 1	54	EML (2005)
Metropolitan Colliery	175	HAS (2008)
Appin Ventilation Shaft No 3	337	TOU (2010)

Table 6-2: Odour monitoring data for existing ventilation shafts

Table 6-3: Odour emission rates for modelling

Site	Flow rate (m ³ /s)	Odour Emission Rate (OU/m ³ /s)
Ventilation Shaft No 5A	500	168,500
Ventilation Shaft No 6B	350	117,950

6.5 Estimated emissions from flaring of gas

Flares would operate at the central gas management sites located at the ventilation shaft sites. To provide a conservative assessment of the potential air quality impacts from flaring, emissions are estimated based on a maximum gas flow of 1.7 m^3 /s, which is derived from a gas content of 10.3 m^3 /t and a maximum production rate of 5.2 Mtpa. Flaring at the maximum gas flow rate is modelled at the central gas management site located closest to receptors (Shaft Site No 6B).

Emissions from flaring are derived based on Chapter 13.5 (Industrial Flares) of the US EPA AP-42 emission factors (US EPA, 1995). Modelling flare emissions can differ from conventional plumes in that the buoyancy flux may be affected by the radiative heat loses during plume rise. The flare emission source has been modelled by replacing Briggs plume rise with numerical plume rise to allow for radiative heat loss, vertical wind shear and ambient temperature stratification, with the "no stack tip downwash" option chosen (Robe, 2009).

For open flames in elevated flares, adjustments are required to determine the effective release height and effective "stack" diameter of the flame; however, in this case the effective stack height and effective stack diameter have been taken as the actual stack height and diameter. This is due to the fact that the proposed flare is enclosed within a flare stack, and the assumption is that the flare stack dimensions will reflect the effective release height and plume diameter. The effective exit velocity is set to 20 m/s and the effective exit temperature is set to 1,273 K (1,000°C), following typical approaches for modelling flare emissions.

US EPA (1995) prescribes emissions factors for NO_x , CO and VOCs. Properly operated flares achieve at least 98% destruction efficiency; therefore, emissions of hydrocarbons (i.e. VOCs) and CO are less than 2% of the hydrocarbons present in the gas. Also, the combustion of methane does not generally produce smoke, so particles are not a concern. The primary pollutant of concern, therefore, is NOx, which is used as an indicator pollutant to assess the potential impacts from flaring for this assessment.

Emission rates and modelling parameters for flaring are provided in **Table 6-4**.

Parameter	Value					
Assumed worst case gas flow rate (m ³ /s)	1.7 (based on gas content of 10.3 \mbox{m}^3/\mbox{t} @ 5.2 Mtpa)					
Assumed exit velocity of release (m/s)	20.0					
Release height (m)	7.0					
Temperature (K)	1,273					
	Emission Factor (lb/MMBtu ¹)	Emissions Rates (g/s)				
NOx emission rate	0.14 3.8					
Note: ¹ MMBtu = Million British Thermal Units. 1 MMBtu = 28.32 m ³ methane						

Table 6-4: Emission rates and modelling parameters for flaring

6.6 Estimated emissions from coal dryer

The coal fines dryer is not currently operational but may become operational for the Project in the future. The dryer would run on natural gas, and emissions are estimated based on a gas requirement of 900 KJ per kg coal and emission factors for natural gas-fired boilers (**DEWHA**, **2010**). The emission estimates are summarised in **Table 6-5**.

Table 6-5: Estimated emissions from the coal fines dryer stack

Stack	NOx	СО	SO ₂	РМ	VOCs
Annual emission (tonnes/annum)	45.5	38.4	0.2	3.4	2.5
Emission rate (grams/second)	1.4	1.2	0.008	0.11	0.08

7. IMPACT ASSESSMENT

7.1 Surface Infrastructure Facilities (Dendrobium Pit Top and KVCLF)

7.1.1 Annual average modelling predictions

The predicted annual average PM_{10} , $PM_{2.5}$, TSP and dust deposition for the KVCLF (including the first 1 km of rail) and Dendrobium Pit Top are presented as contour plots in **Figure 7-1** to **Figure 7-4**. Predictions at private residential receptors are tabulated in **Table 7-1**.

For the majority of private receptors in the vicinity of the KVCLF and Dendrobium Pit Top, the annual average PM_{10} concentration is less than 0.5 µg/m³ (see **Figure 7-1**). To assess against the cumulative impact assessment criterion for annual average PM_{10} , a background of 18.9 µg/m³ was derived (refer **Section 5.3**). When added to each modelling prediction, this would result in a maximum cumulative annual average PM_{10} concentration of 19.9 µg/m³, which complies with the impact assessment criterion of 25 µg/m³.

For the majority of private receptors in the vicinity of the KVCLF and Dendrobium Pit Top, the annual average $PM_{2.5}$ concentration is less than 0.25 µg/m³ (see **Figure 7-2**). To assess against the cumulative impact assessment criterion for annual average $PM_{2.5}$, a background of 6.7 µg/m³ was derived (refer **Section 5.3**). When added to each modelling prediction, this would result in a maximum cumulative annual average $PM_{2.5}$ concentration of 7.1 µg/m³, which complies with the impact assessment criterion of 8 µg/m³.

For the majority of private receptors in the vicinity of the KVCLF and Dendrobium Pit Top, the annual average TSP concentration is less than 1.0 μ g/m³ (see **Figure 7-3**). To assess against the cumulative impact assessment criterion for annual average TSP, a background of 34.7 μ g/m³ was derived (refer **Section 5.3**). When added to each modelling prediction, this would result in a maximum cumulative annual average TSP concentration of 37.3 μ g/m³, which complies with the impact assessment criterion of 90 μ g/m³.

For the majority of private receptors in the vicinity of the KVCLF and Dendrobium Pit Top, the annual average dust deposition is less than $0.1 \text{ g/m}^2/\text{month}$ (see **Figure 7-4**). To assess against the cumulative impact assessment criterion for annual average dust deposition, a background of 2 g/m²/month was derived (refer **Section 5.3**). When added to each modelling prediction, this would result in a maximum cumulative annual average dust deposition of 2.2 g/m²/month. There are, therefore, no exceedances of the impact assessment criteria for incremental or cumulative dust deposition.

It is noted that model runs used to generate contour plots also include the first 1 km of the Kemira Valley Rail Line only (and associated fugitive emission estimates from this section of rail). The tabulated predictions in **Table 7-1** include the full length of the Kemira Valley Rail Line. This was necessary to avoid excessively long run times for CALPUFF sampling grids (required for contouring). As a result, the tabulated results may not exactly match the contour plots at all receptors.

Results for additional receptor locations adjacent to the Kemira Valley Rail Line are presented in **Section 7.2**.

Figure 7-1: Predicted annual average PM_{10} concentration ($\mu g/m^3$) for the KVCLF and Dendrobium Pit Top (Project-only)

Figure 7-2: Predicted annual average $PM_{2.5}$ concentration ($\mu g/m^3$) for the KVCLF and Dendrobium Pit Top (Project-only)

Figure 7-3: Predicted annual average TSP concentration ($\mu g/m^3$) for the KVCLF and Dendrobium Pit Top (Project-only)

Figure 7-4: Predicted annual average dust deposition concentration $(g/m^2/month)$ for the KVCLF and Dendrobium Pit Top (Project-only)

ID	Address	PM10	PM _{2.5}	TSP	DDep
D0004	374 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0005	323-327 Cordeaux Rd Mount Kembla	0.1	<0.1	0.2	<0.1
D0006	214 Cordeaux Rd Mount Kembla	0.2	0.1	0.5	<0.1
D0007	27 Stones Rd Mount Kembla	0.3	0.1	0.7	<0.1
D0009	27 Stones Rd Mount Kembla	0.5	0.1	1.1	0.1
D0054	147 Cordeaux Rd Kembla Heights	<0.1	<0.1	<0.1	<0.1
D0055	145 Cordeaux Rd Kembla Heights	<0.1	<0.1	<0.1	<0.1
D0056	145 Cordeaux Rd Kembla Heights	<0.1	<0.1	<0.1	<0.1
D0057	617 Cordeaux Rd Kembla Heights	<0.1	<0.1	<0.1	<0.1
D0058	145 Cordeaux Rd Kembla Heights	<0.1	<0.1	<0.1	<0.1
D0059	26 Stones Rd Mount Kembla	0.1	0.1	0.3	<0.1
D0060	4-6 Kirkwood Pl Mount Kembla	0.1	0.1	0.3	<0.1
D0061	336 Cordeaux Rd Mount Kembla	0.1	0.1	0.3	<0.1
D0062	381 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0063	379 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0064	377 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0065	372 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0066	364 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0067	358 Cordeaux Rd Mount Kembla	0.1	<0.1	0.2	<0.1
D0068	369 Cordeaux Rd Mount Kembla	0.1	0.1	0.2	<0.1
D0069	367 Cordeaux Rd Mount Kembla	0.1	<0.1	0.2	<0.1
D0070	2 Araluen Ave Mount Kembla	0.1	<0.1	0.2	<0.1
D0071	Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0072	4 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0073	6 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0074	8 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0075	10 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0076	12 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0077	14 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0078	18 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0079	20 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0080	17 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0081	11-13 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0081	9 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0082	7 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0083	5 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0084	3 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0085	1 Araluen Ave Mount Kembla	0.1	<0.1	0.1	<0.1
D0086	2 Cudgee Cres Mount Kembla	0.1	<0.1	0.2	<0.1
D0087	4 Cudgee Cres Mount Kembla	0.1	<0.1	0.2	<0.1
D0088	6 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0089	8 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0090	10 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0091	12 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0092	14 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0093	16 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0094	18 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0095	17 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0096	15 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1

Table 7-1: Predicted Project-only annual average PM₁₀, PM_{2.5} and TSP concentrations (μ g/m³) and dust deposition rates (g/m²/month) for the KVCLF and Dendrobium Pit Top

ID	Address	PM ₁₀	PM _{2.5}	TSP	DDep
D0096	13 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0097	11 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0098	9 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0099	7 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0100	5 Cudgee Cres Mount Kembla	0.1	<0.1	0.1	<0.1
D0101	3 Cudgee Cres Mount Kembla	0.1	<0.1	0.2	<0.1
D0102	1 Cudgee Cres Mount Kembla	0.1	<0.1	0.2	<0.1
D0103	14 Benjamin Rd Mount Kembla	0.1	0.1	0.3	<0.1
D0104	39 Stones Rd Mount Kembla	0.1	0.1	0.3	<0.1
D0111	69 William James Dr Cordeaux Heights	0.1	<0.1	0.2	<0.1
D0112	18 Ridgecrest Cordeaux Heights	0.1	<0.1	0.1	<0.1
D0114	246 O'Briens Rd Figtree	0.5	0.1	1.0	<0.1
D0115	244 O'Briens Rd Figtree	0.4	0.1	0.9	<0.1
D0116	20 Stones Rd Mount Kembla	0.2	0.1	0.3	<0.1
D0117	Stones Rd Mount Kembla	0.4	0.1	0.9	<0.1
D0118	121 O'Briens Rd Figtree	0.4	0.1	0.8	<0.1
D0119	117 O'Briens Rd Figtree	0.2	0.1	0.5	<0.1
D0120	Cordeaux Rd Mount Kembla	0.3	0.1	0.6	<0.1
D0122	Cordeaux Dam Rd Cataract	<0.1	<0.1	0.1	<0.1
D0124	Upper Cordeaux Lake No.2	<0.1	<0.1	0.1	<0.1
D0125	200 Cordeaux Rd Mount Kembla	0.8	0.3	2.1	0.1
D0127	2 William James Dr Mount Kembla	0.8	0.3	2.2	0.1
D0128	7 William James Dr Mount Kembla	0.8	0.3	2.1	0.1
D0129	9 William James Dr Mount Kembla	0.5	0.2	1.3	0.1
D0163	354 Cordeaux Rd Mount Kembla	0.1	<0.1	0.2	<0.1
D0164	15 Benjamin Rd Mount Kembla	0.1	0.1	0.3	<0.1
D0165	23 William James Dr Mount Kembla	0.1	<0.1	0.2	<0.1
D0166	10 William James Dr Mount Kembla	0.2	0.1	0.4	<0.1
D0167	8 William James Dr Mount Kembla	0.2	0.1	0.5	<0.1
D0168	6 William James Dr Mount Kembla	0.4	0.1	0.9	<0.1

Note: DDep = dust deposition.

7.1.2 Short-term (24-hour average) modelling predictions

The predicted Project-only 24-hour average PM_{10} and $PM_{2.5}$ concentrations for the KVCLF and Dendrobium Pit Top are presented as contour plots in **Figure 7-5** to **Figure 7-6**. The Project increment and cumulative predictions at private residential receptors are tabulated in **Table 7-2**.

For the majority of private receptors in the vicinity of the KVCLF, the maximum incremental 24-hour average PM_{10} concentration is less than 5 µg/m³ (see **Figure 7-5**). At the closest private receptor to the KVCLF (approximately 800 m south on Stones Road) the maximum potential incremental increase in 24-hour average PM_{10} concentration is 16.9 µg/m³.

For the assessment of cumulative impacts, a daily varying background concentration from Kembla Grange is paired with each modelling prediction. The background dataset contains four existing exceedances of the impact assessment criterion and, therefore, the cumulative 24-hour average PM_{10} is presented as the 5th highest cumulative concentration. Based on this cumulative analysis, there would be no additional exceedances of the impact assessment criterion for PM_{10} .

For the majority of private receptors in the vicinity of the KVCLF, the maximum incremental 24-hour average $PM_{2.5}$ concentration is less than 1 µg/m³ (see **Figure 7-6**). At the closest private receptor to the KVCLF the maximum potential incremental increase in 24-hour average $PM_{2.5}$ concentration is 3.8 µg/m³.

For the assessment of cumulative impacts, a daily varying background concentration from Kembla Grange is paired with each modelling prediction. The background dataset contains two existing exceedances of the impact assessment criterion and, therefore, cumulative 24-hour average $PM_{2.5}$ is presented as the 3rd highest cumulative concentration. Based on this cumulative analysis, there would be no additional exceedances of the impact assessment criterion for $PM_{2.5}$.

Figure 7-5: Predicted maximum 24-hour average PM_{10} concentration ($\mu g/m^3$) for the KVCLF and Dendrobium Pit Top

Figure 7-6: Predicted maximum 24-hour average $PM_{2.5}$ concentration ($\mu g/m^3)$ for the KVCLF and Dendrobium Pit Top

		PM10	PM _{2.5}	PM ₁₀ ⁽¹⁾	PM _{2.5} ⁽²⁾
ID	Address	Project in	ncrement	Cumu	lative
D0004	374 Cordeaux Rd Mount Kembla	1.2	0.8	47.4	18.2
D0005	323-327 Cordeaux Rd Mount Kembla	1.4	0.3	47.4	18.2
D0006	214 Cordeaux Rd Mount Kembla	1.7	0.8	47.5	18.2
D0007	27 Stones Rd Mount Kembla	9.8	2.3	47.9	18.2
D0009	27 Stones Rd Mount Kembla	4.1	1.2	48.6	18.2
D0054	147 Cordeaux Rd Kembla Heights	0.3	0.1	47.3	18.2
D0055	145 Cordeaux Rd Kembla Heights	0.2	0.1	47.3	18.2
D0056	145 Cordeaux Rd Kembla Heights	0.3	0.1	47.3	18.2
D0057	617 Cordeaux Rd Kembla Heights	0.3	0.1	47.3	18.2
D0058	145 Cordeaux Rd Kembla Heights	0.3	0.1	47.3	18.2
D0059	26 Stones Rd Mount Kembla	1.5	1.0	47.6	18.2
D0060	4-6 Kirkwood Pl Mount Kembla	1.9	0.8	47.4	18.2
D0061	336 Cordeaux Rd Mount Kembla	1.6	0.7	47.4	18.2
D0062	381 Cordeaux Rd Mount Kembla	1.0	0.7	47.4	18.2
D0063	379 Cordeaux Rd Mount Kembla	1.0	0.7	47.4	18.2
D0064	377 Cordeaux Rd Mount Kembla	1.0	0.7	47.4	18.2
D0065	372 Cordeaux Rd Mount Kembla	1.1	0.8	47.4	18.2
D0066	364 Cordeaux Rd Mount Kembla	0.9	0.6	47.4	18.2
D0067	358 Cordeaux Rd Mount Kembla	0.8	0.5	47.4	18.2
D0068	369 Cordeaux Rd Mount Kembla	0.8	0.5	47.4	18.2
D0069	367 Cordeaux Rd Mount Kembla	0.8	0.5	47.4	18.2
D0070	2 Araluen Ave Mount Kembla	0.9	0.6	47.4	18.2
D0071	Araluen Ave Mount Kembla	1.0	0.7	47.3	18.2
D0072	4 Araluen Ave Mount Kembla	0.7	0.4	47.4	18.2
D0073	6 Araluen Ave Mount Kembla	0.7	0.4	47.4	18.2
D0074	8 Araluen Ave Mount Kembla	0.7	0.4	47.3	18.2
D0075	10 Araluen Ave Mount Kembla	0.7	0.4	47.3	18.2
D0076	12 Araluen Ave Mount Kembla	0.7	0.4	47.3	18.2
D0077	14 Araluen Ave Mount Kembla	0.7	0.4	47.3	18.2
D0078	18 Araluen Ave Mount Kembla	0.7	0.4	47.3	18.2
D0079	20 Araluen Ave Mount Kembla	0.7	0.3	47.3	18.2
D0080	17 Araluen Ave Mount Kembla	0.7	0.3	47.3	18.2
D0081	11-13 Araluen Ave Mount Kembla	0.8	0.3	47.4	18.2
D0081	9 Araluen Ave Mount Kembla	0.8	0.3	47.4	18.2
D0082	7 Araluen Ave Mount Kembla	0.8	0.3	47.4	18.2
D0083	5 Araluen Ave Mount Kembla	0.8	0.3	47.4	18.2
D0084	3 Araluen Ave Mount Kembla	0.8	0.3	47.4	18.2
D0085	1 Araluen Ave Mount Kembla	0.7	0.3	47.4	18.2
D0086	2 Cudgee Cres Mount Kembla	1.0	0.3	47.4	18.2
D0087	4 Cudgee Cres Mount Kembla	1.0	0.3	47.4	18.2
D0088	6 Cudgee Cres Mount Kembla	1.0	0.3	47.4	18.2
D0089	8 Cudgee Cres Mount Kembla	1.0	0.3	47.4	18.2
D0090	10 Cudgee Cres Mount Kembla	1.0	0.3	47.4	18.2
D0091	12 Cudgee Cres Mount Kembla	0.9	0.3	47.4	18.2
D0092	14 Cudgee Cres Mount Kembla	0.9	0.3	47.4	18.2
D0093	16 Cudgee Cres Mount Kembla	0.9	0.3	47.4	18.2
D0094	18 Cudgee Cres Mount Kembla	0.8	0.3	47.4	18.2
D0095	17 Cudgee Cres Mount Kembla	1.0	0.2	47 4	18.2

Table 7-2: Predicted Project-only and cumulative 24-hour average PM_{10} and $PM_{2.5}$ concentrations $(\mu g/m^3)$ for the KVCLF and Dendrobium Pit Top

		PM10	PM _{2.5}	PM ₁₀ ⁽¹⁾	PM _{2.5} ⁽²⁾	
ID	Address	Project in	crement	Cumulative		
D0096	15 Cudgee Cres Mount Kembla	1.0	0.2	47.4	18.2	
D0096	13 Cudgee Cres Mount Kembla	1.1	0.2	47.4	18.2	
D0097	11 Cudgee Cres Mount Kembla	1.1	0.3	47.4	18.2	
D0098	9 Cudgee Cres Mount Kembla	1.1	0.3	47.4	18.2	
D0099	7 Cudgee Cres Mount Kembla	1.2	0.3	47.4	18.2	
D0100	5 Cudgee Cres Mount Kembla	1.2	0.3	47.4	18.2	
D0101	3 Cudgee Cres Mount Kembla	1.2	0.3	47.4	18.2	
D0102	1 Cudgee Cres Mount Kembla	1.1	0.3	47.4	18.2	
D0103	14 Benjamin Rd Mount Kembla	1.6	0.6	47.4	18.2	
D0104	39 Stones Rd Mount Kembla	1.5	0.7	47.5	18.2	
D0111	69 William James Dr Cordeaux Heights	0.6	0.2	47.4	18.2	
D0112	18 Ridgecrest Cordeaux Heights	0.5	0.2	47.4	18.2	
D0114	246 O'Briens Rd Figtree	2.5	0.6	47.7	18.2	
D0115	244 O'Briens Rd Figtree	2.6	0.6	47.7	18.2	
D0116	20 Stones Rd Mount Kembla	1.8	1.0	47.5	18.2	
D0117	Stones Rd Mount Kembla	16.9	3.8	47.9	18.2	
D0118	121 O'Briens Rd Figtree	3.5	0.9	48.0	18.2	
D0119	117 O'Briens Rd Figtree	2.8	0.7	47.8	18.2	
D0120	Cordeaux Rd Mount Kembla	4.1	0.9	47.7	18.2	
D0122	Cordeaux Dam Rd Cataract	0.9	0.9	47.3	18.2	
D0124	Upper Cordeaux Lake No.2	0.3	0.1	47.3	18.2	
D0125	200 Cordeaux Rd Mount Kembla	2.6	1.1	48.0	18.4	
D0127	2 William James Dr Mount Kembla	2.5	1.0	48.2	18.4	
D0128	7 William James Dr Mount Kembla	2.7	1.0	48.1	18.4	
D0129	9 William James Dr Mount Kembla	2.5	1.0	47.8	18.3	
D0163	354 Cordeaux Rd Mount Kembla	1.0	0.4	47.4	18.2	
D0164	15 Benjamin Rd Mount Kembla	1.7	0.7	47.5	18.2	
D0165	23 William James Dr Mount Kembla	0.9	0.4	47.5	18.2	
D0166	10 William James Dr Mount Kembla	1.4	0.6	47.5	18.2	
D0167	8 William James Dr Mount Kembla	1.6	0.6	47.7	18.3	
D0168	6 William James Dr Mount Kembla	1.9	0.7	47.6	18.3	
Note: ¹ Ba	sed on 5^{th} highest 24-hour average PM ₁₀ level record	ded for 2016 at H	Kembla Grange	2		
ivote: - Ba	sed on 3 rd nighest 24-hour average PM _{2.5} level recor	aed for 2016 at	Kembla Grang	e		

7.2 Kemira Valley Rail Line

The impacts from ROM coal transportation are assessed for selected receptors immediately adjacent to the rail line (as shown in **Figure 3-3**). The receptors represent those closest to the rail line and subject to the greatest potential impact. If compliance with air quality goals is demonstrated for these receptors, it can be inferred that all other receptors in the vicinity of the rail line would also comply.

The predicted annual average PM_{10} , $PM_{2.5}$, TSP and dust deposition for receptors close to the rail line are tabulated in **Table 7-3**. The predicted Project-only and cumulative 24-hour average PM_{10} and $PM_{2.5}$ concentrations are tabulated in **Table 7-4**.

For the residences closest to the rail line, the highest incremental annual average PM_{10} concentration is 1.0 µg/m³ and the highest incremental annual average $PM_{2.5}$ concentration is 0.4 µg/m³. The highest incremental annual average TSP concentration is 2.6 µg/m³ and the highest incremental annual average dust deposition is 0.2 g/m²/month. Adding the background values described in **Section 7.1** would not result in any exceedance of the impact assessment criteria at receptors close to the rail line.

The maximum incremental 24-hour average PM_{10} concentration is less than 5.0 µg/m³ and the maximum incremental 24-hour average $PM_{2.5}$ concentration is 1.6 µg/m³. When the incremental increases are added to the existing background (**Section 7.1.2**), there would be no additional exceedances of the impact assessment criteria.

It is noted that the modelling includes fugitive dust from coal wagons, in addition to diesel emissions from locomotives. It is noted, however, that fugitive emissions from the coal wagons will be minimal, if present at all, as the measured moisture content for ROM coal arriving at the CPP (6.5%) is higher than the measured DEM level (4.6%) (refer to coal properties testing report in **Appendix** 6).

ID	Address	PM ₁₀	PM _{2.5}	TSP	DDep
D0113	46 Natan Pl Cordeaux Heights	0.5	0.2	1.2	0.1
D0130	48 Natan Pl Cordeaux Heights	0.5	0.2	1.2	0.1
D0131	112 Booreea Blvd Cordeaux Heights	0.8	0.3	2.1	0.1
D0132	110 Booreea Blvd Cordeaux Heights	0.6	0.2	1.5	0.1
D0133	108 Booreea Blvd Cordeaux Heights	0.5	0.2	1.3	0.1
D0134	5 Alukea Rd Cordeaux Heights	0.9	0.3	2.3	0.2
D0135	2 Central Ave Cordeaux Heights	0.7	0.3	2.0	0.1
D0136	49-55 Cordeaux Rd Figtree	0.8	0.3	2.1	0.1
D0137	4 Leigh Cres Unanderra	0.9	0.3	2.5	0.2
D0138	2 Leigh Cres Unanderra	0.9	0.3	2.3	0.1
D0139	1A Leigh Cres Unanderra	0.8	0.3	2.0	0.1
D0140	41A Cordeaux Rd Figtree	0.8	0.3	2.1	0.1
D0141	39 Cordeaux Rd Figtree	0.8	0.3	2.1	0.1
D0142	37 Cordeaux Rd Figtree	1.0	0.4	2.6	0.2
D0143	31/21 Cordeaux Rd Figtree	0.8	0.3	2.2	0.1
D0144	72 Albert St Unanderra	0.6	0.2	1.4	0.1
D0145	70 Albert St Unanderra	0.5	0.2	1.4	0.1
D0146	68 Albert St Unanderra	0.6	0.2	1.4	0.1
D0147	66 Albert St Unanderra	0.5	0.2	1.4	0.1
D0148	64 Albert St Unanderra	0.6	0.2	1.5	0.1
D0149	62 Albert St Unanderra	0.6	0.2	1.5	0.1
D0150	60 Albert St Unanderra	0.5	0.2	1.4	0.1
D0151	58A Albert St Unanderra	0.7	0.3	1.8	0.1
D0152	58 Hurt Pde Unanderra	0.6	0.2	1.4	0.1
D0153	56 Hurt Pde Unanderra	0.7	0.3	1.8	0.1
D0154	54 Hurt Pde Unanderra	0.8	0.3	1.9	0.1
D0155	52 Hurt Pde Unanderra	0.7	0.3	1.8	0.1
D0156	50 Hurt Pde Unanderra	0.6	0.2	1.6	0.1
D0157	48 Hurt Pde Unanderra	0.7	0.3	1.8	0.1
D0158	46 Hurt Pde Unanderra	0.7	0.3	1.8	0.1
D0159	44 Hurt Pde Unanderra	0.7	0.3	1.8	0.1
D0160	42 Hurt Pde Unanderra	0.6	0.2	1.4	0.1
D0161	40 Hurt Pde Unanderra	0.7	0.3	1.9	0.1
D0162	1 Cordeaux Rd Figtree	0.8	0.3	2.1	0.1
D0169	15 Leigh Cres Unanderra	0.2	0.1	0.4	< 0.1

Table 7-3:	Predicted Project-only annual	average PM ₁₀ ,	PM _{2.5} and TSP	concentrations	(µg/m ³) and dust
deposition	rates (g/m ² /month) adjacent	to the rail line			

Note: DDep = dust deposition.

		PM10	PM _{2.5}	PM ₁₀ ⁽¹⁾	PM _{2.5} ⁽²⁾
ID	Address	Project ir	Project increment		lative
D0113	46 Natan Pl Cordeaux Heights	2.8	1.1	47.8	18.4
D0130	48 Natan Pl Cordeaux Heights	2.7	1.0	47.8	18.3
D0131	112 Booreea Blvd Cordeaux Heights	3.2	1.2	48.1	18.4
D0132	110 Booreea Blvd Cordeaux Heights	2.9	1.1	47.9	18.3
D0133	108 Booreea Blvd Cordeaux Heights	2.7	1.1	47.8	18.3
D0134	5 Alukea Rd Cordeaux Heights	4.3	1.6	48.1	18.4
D0135	2 Central Ave Cordeaux Heights	4.1	1.5	48.1	18.4
D0136	49-55 Cordeaux Rd Figtree	4.3	1.5	48.2	18.5
D0137	4 Leigh Cres Unanderra	4.1	1.5	48.3	18.5
D0138	2 Leigh Cres Unanderra	4.3	1.5	48.1	18.4
D0139	1A Leigh Cres Unanderra	4.0	1.4	48.1	18.5
D0140	41A Cordeaux Rd Figtree	4.1	1.4	48.2	18.6
D0141	39 Cordeaux Rd Figtree	3.8	1.3	48.3	18.5
D0142	37 Cordeaux Rd Figtree	4.4	1.5	48.5	18.7
D0143	31/21 Cordeaux Rd Figtree	4.2	1.4	48.4	18.6
D0144	72 Albert St Unanderra	4.0	1.4	47.9	18.4
D0145	70 Albert St Unanderra	4.0	1.4	47.9	18.4
D0146	68 Albert St Unanderra	4.0	1.4	47.9	18.4
D0147	66 Albert St Unanderra	4.0	1.4	47.9	18.4
D0148	64 Albert St Unanderra	4.0	1.4	48.0	18.4
D0149	62 Albert St Unanderra	4.2	1.4	48.0	18.4
D0150	60 Albert St Unanderra	4.2	1.4	47.9	18.4
D0151	58A Albert St Unanderra	4.4	1.5	48.0	18.4
D0152	58 Hurt Pde Unanderra	4.1	1.4	48.0	18.4
D0153	56 Hurt Pde Unanderra	4.3	1.4	48.1	18.5
D0154	54 Hurt Pde Unanderra	4.7	1.5	48.1	18.4
D0155	52 Hurt Pde Unanderra	4.6	1.5	48.0	18.4
D0156	50 Hurt Pde Unanderra	4.4	1.4	48.0	18.5
D0157	48 Hurt Pde Unanderra	4.5	1.5	48.2	18.5
D0158	46 Hurt Pde Unanderra	4.6	1.5	48.2	18.4
D0159	44 Hurt Pde Unanderra	4.8	1.6	48.1	18.4
D0160	42 Hurt Pde Unanderra	4.6	1.5	47.9	18.4
D0161	40 Hurt Pde Unanderra	4.8	1.6	48.2	18.5
D0162	1 Cordeaux Rd Figtree	4.8	1.6	48.3	18.6
D0169	15 Leigh Cres Unanderra	2.8	1.0	47.4	18.2
Note: ¹ Ba	sed on 5 th highest 24-hour average PM ₁₀ level re-	corded for 2016 at	Kembla Grang	е.	
Note: ² Ba	sed on 3 rd highest 24-hour average PM _{2.5} level re	corded for 2016 at	Kembla Grang	ie.	

Table 7-4: Predicted Project-only and cumulative 24-hour average PM_{10} and $PM_{2.5}$ concentration ($\mu g/m^3$) adjacent to the rail line

7.3 Ventilation shaft locations and flares

The predicted incremental ground level concentrations for dust and odour from ventilation shafts and NO_x from flaring is presented in **Table 7-5**.

As described previously, the dust emission estimates for ventilation shafts assume that all the PM is in the fine fraction, so the estimates for TSP, PM_{10} and $PM_{2.5}$ are the same. As the modelling predictions for each size fraction will also be almost identical, results are presented in **Table 7-5** for PM_{2.5} only, which has the most stringent assessment criteria.

As expected, the impacts from dust emissions at the closest receptors are minimal, despite this being the largest source in terms of annual emissions. Adding the background values described in **Section 7.1** would not result in any exceedance of the impact assessment criteria.

Modelling of odour emissions, based on the odour emission rates derived in **Section 6.4**, shows that odour at the closest receptor would be undetectable (all modelling predictions are less than 1 ou) (refer **Table 7-5**).

Emissions from flaring are estimated based on a maximum gas flow rate emitted from the central gas management site located closest to receptors (Shaft Site No 6B). The incremental 1-hour average NO₂ concentration at the closest receptor is less than 25 μ g/m³, compared to the impact assessment criterion of 246 μ g/m³. The incremental annual average NO₂ concentration at the closest receptor is less than 1 μ g/m³, compared to the impact assessment criterion of 62 μ g/m³. Modelling results are presented based on 100% conversion of NO_x to NO₂ for both 1-hour and annual averages (i.e. all NO_x emitted is oxidised to NO₂). Background concentrations of NO₂ in the area are expected to be low and, therefore, cumulative impacts would not occur.

It is noted that potential impacts associated with the ventilation shafts have been estimated based on an assumed flow rate of 500 m³/s for Area 5 and 350 m³/s for Area 6. If the actual flow rate of the upcast ventilation shafts is greater than what has been modelled, then conservatively, emission rates and predicted concentrations at receiver locations can be assumed to increase linearly with flow rate. Given the predicted levels of dust and odour are significantly below the relevant criteria, flow rates could double (at least) and no predicted criteria exceedances would occur. The assumption of linear response to increased flow rate is conservative as increased flow rates may also increase air exit velocity and therefore improve the dispersion of dust and odour. Therefore, increased exit velocity may counter some of the incremental effects at the receiver associated with an increased flow rate. Based on the above, in addition to the distance of the ventilation shafts to receivers and the lack of other emissions sources, a doubling of flow rate compared to what has been modelled in this assessment is considered to result in no exceedances of relevant air quality criteria.

		PM _{2.5} (µg/m ³)		NO _x (µg/	m³)	Odour (OU)	
ID	Address	Annual average	24-hour average	Annual average	1-hour average	Nose response average	
D0121	Cordeaux Dam offices	<0.1	0.8	0.2	28.7	<1	
D0122	Caretaker's Quarters	<0.1	0.9	0.3	23.9	<1	
D0123	Recreation Facility	<0.1	1.0	0.3	22.3	<1	

Table 7-5:	Predicted	ground leve	I concentrations	in the vici	nity of the	Gas Manage	ment Sites
------------	-----------	-------------	------------------	-------------	-------------	------------	------------

The predicted 1-hour average and annual average NO_2 concentrations are also presented as contour plots in **Figure 7-7** and **Figure 7-8**.

Figure 7-8: Predicted annual average NO₂ concentration (μg/m³) from flaring at Shaft Site No. 6B

7.4 Cordeaux Pit Top

As described previously, emissions associated with the Cordeaux Pit Top have not been modelled, based on the relatively minor dust emissions expected from mine access activities at this location and the separation distance of 2 km to the closest receptors. The impacts from the Cordeaux Pit Top would be similar (or lower) in scale to the Dendrobium Pit Top. Negligible Project-only ground level concentrations in the vicinity of the Dendrobium Pit Top are presented above (**Section 7.1**), out to a distance of approximately 500 m. It can be inferred from this that impacts at 2 km (distance from the Cordeaux Pit Top to receptors) would be negligible.

7.5 Coal Preparation Plant

7.5.1 Annual average modelling predictions

The Project-only annual average modelling predictions for the CPP are presented as contour plots only (**Figure 7-9** to **Figure 7-12**). The contour plots can be used to assess compliance at the nearby residential suburbs of Port Kembla, Cringila and Warrawong.

The contour plots show that the incremental annual average PM_{10} concentration across the residential areas is generally less than 1.0 μ g/m³ (see **Figure 7-9**). If a background of 18.9 μ g/m³ is added to this modelling prediction, there would be no exceedances of the annual average impact assessment criterion at residential areas adjacent to the CPP.

It is noted that the monitoring location operated by BlueScope Steel in the vicinity of the CPP recorded annual average PM_{10} concentrations for 2016 that were marginally higher than the derived background. However, these measurements include the existing operations of the CPP and, therefore, if used for background would represent a double counting of these emissions sources. It is noted that there is no proposed change to existing operations at the CPP as a result of the Project and, therefore, the cumulative impacts from the Project should not significantly change compared to what is currently measured at this location.

Figure 7-10 shows that the incremental annual average $PM_{2.5}$ concentration across the residential areas is less than 0.25 µg/m³. If a background of 6.7 µg/m³ is added to this modelling prediction, there would be no exceedances of the annual average impact assessment criterion at residential areas adjacent to the CPP.

Figure 7-10: Predicted annual average PM_{2.5} concentration (µg/m³) from the CPP (Project-only)

Figure 7-11 shows that the incremental annual average TSP concentration across the residential areas is generally less than 2.5 μ g/m³. If a background of 38.5 μ g/m³ is added to this modelling prediction, there would be no exceedances of this impact assessment criterion at residential areas adjacent to the CPP.

Figure 7-12 shows that the incremental annual average dust deposition across the residential areas is less than 0.1 g/m²/month, which complies with the impact assessment criterion of 2 g/m²/month. If a background of 2 g/m²/month is added to this modelling prediction, there would be no exceedances of the cumulative impact assessment criterion at residential areas adjacent to the CPP.

Figure 7-12: Predicted annual average dust deposition concentration $(g/m^2/month)$ from the CPP (Project-only)

7.5.2 Short-term (24-hour average) modelling predictions

The incremental 24-hour average PM_{10} concentrations across residential areas in the vicinity of the CPP are presented in **Figure 7-13**. To the south, across the residential suburb of Warrawong, the maximum incremental 24-hour average PM_{10} concentrations would be less than 10 µg/m³. To the west, across the residential suburb of Cringila, the maximum incremental 24-hour average PM_{10} concentrations would range from 10 – 20 µg/m³.

Figure 7-13: Predicted maximum 24-hour average PM_{10} concentration ($\mu g/m^3$) from the CPP (Project-only)

As described in **Section** 5, BlueScope Steel operates a PM_{10} monitoring station in the suburb of Warrawong. During 2016, there were seven occasions when the 24-hour average PM_{10} concentration exceeded the impact assessment criterion of 50 µg/m³.

To provide an indication of the likelihood of additional exceedances from the Project, predicted 24-hour average concentrations for the suburbs of Warrawong and Cringila are paired with measured 24-hour average concentrations from the Kembla Grange monitoring site during 2016. The Kembla Grange site is selected as background to avoid double counting the influence of existing CPP operations in the BlueScope Warrawong data.

For the cumulative analysis, each combination of model prediction and recorded concentration is combined, assuming that any background value from the dataset could coincide with any given model prediction. The number of days in which the cumulative 24-hour average PM_{10} concentrations is greater than 50 µg/m³ is presented in **Figure 7-14**.

The analysis for Warrawong shows a very small risk of additional exceedances, with less than one additional day above 50 μ g/m³ when compared to the Kembla Grange background data. For Cringila the risk is also small, with one additional day above 50 μ g/m³, when compared to the Kembla Grange data. The predicted cumulative exceedances are less than the number of existing exceedances for 2016 at the BlueScope Warrawong site.

The Project-only 24-hour average $PM_{2.5}$ concentrations across residential areas in the vicinity of the CPP are predicted to be in the range of $2.5 - 5 \ \mu g/m^3$ (see **Figure 7-15**). Similar cumulative analysis was completed for $PM_{2.5}$, by combining each modelling prediction to the measured 24-hour average $PM_{2.5}$ concentrations from the Kembla Grange monitoring site during 2016. For $PM_{2.5}$, the analysis for both suburbs (Warrawong and Cringila) predicts no additional days above 25 $\mu g/m^3$, when compared to the Kembla Grange background data.

Figure 7-15: Predicted maximum 24-hour average $PM_{2.5}$ concentration ($\mu g/m^3$) from the CPP (Project-only)

7.5.3 Coal dryer

The coal fines dryer is not currently operational but may become operational in the future. The coal fines dryer was assessed in an air quality assessment which accompanied the EIS for the original approval (HAS, 2000). The air quality assessment considered emissions for various fuel types and found that emissions would be relatively insignificant when compared to the reported emissions for the Port Kembla Steelworks. For example, using natural gas as a fuel, the operation of the dryer was estimated to increase emissions of NO_x by approximately 0.4%.

The comparative analysis is updated for 2015-2016 National Pollution Inventory (NPI) emission data for the Steelworks⁵, comparing natural gas as the proposed fuel for the dryer (**Table 7-6**). The conclusions of the original air quality assessment remain valid; that is, the operation of the dryer results in a marginal increase in emissions in the local airshed. As there is no proposed change to the operation of the coal fines dryer for the Project, no further assessment is required as emissions from the coal dryer would be negligible.

Stack	NOx	СО	SO ₂	РМ	VOCs
Annual emission – coal dryer (tpa)	45.5	38.4	0.2	3.4	2.5
Annual emissions – Steelworks (tpa)	6,400	110,000	6,300	1,400	130
Coal dryer as % of Steelworks	0.7%	0.03%	0.004%	0.24%	1.9%

Table 7-6: Emissions comparison for the coal fines dryer

7.6 Coal wash transport and emplacement at West Cliff Coal Wash Emplacement Area

While the Project involves transport of coal wash from the CPP to the West Cliff Coal Wash Emplacement Area, this transport would occur by backfilling trucks transporting product coal from the West Cliff Colliery. These truck movements, and the associated backfilling with coal wash and emplacement, were assessed as part of the Bulli Seam Operations EIS.

The air quality assessment prepared for the Bulli Seam Operations EIS (PAEHolmes, 2009) concluded that Project-specific and cumulative dust concentrations and deposition levels would be in compliance with all impact assessment criteria at sensitive receptor locations in the vicinity of West Cliff Colliery. Furthermore, all trucks carrying coal wash are covered and, therefore, the impacts of trucks travelling on public roads would be minimal.

As there is no proposed change to the practice of coal wash emplacement for the Project, these conclusions remain and no further assessment is required.

7.7 Construction

Most of the construction activities for the Project would either be minor upgrades or occur at locations separated from sensitive receptors (i.e. the Central Gas Management Sites). All construction activities would be short-term and potential emissions could be controlled using standard mitigation and management practices. Therefore, construction phase emissions are not required to be assessed further in this report.

⁵ http://www.npi.gov.au/npidata/action/load/individual-facility-detail/criteria/state/NSW/year/2016/jurisdiction-facility/360

8. GREENHOUSE GAS ASSESSMENT

Estimation of GHG emissions is based on the Australian Government Department of the Environment and Energy (DEE) National Greenhouse Accounts Factors (NGAF) workbook (DoE, 2016). The methodologies in the NGAF workbook follow a simplified approach, equivalent to the "Method 1" approach outlined in the National Greenhouse and Energy Reporting (Measurement) Technical Guidelines (DoE, 2014). Emissions are estimated using the fuel energy contents and Scope 1, 2 and 3 emission factors (EF) in the NGAF workbook.

8.1 Emission sources

The GHG emissions sources included in this assessment are listed in **Table 8-1**, representing the most significant sources associated with the Project. Other minor sources of GHG emissions, such as those generated by employee travel and waste disposal, are anticipated to be negligible in comparison and have not been considered further in this assessment.

Scope	Source	Site/Location
Scope 1	Direct emissions from fuel combustion (diesel) by on-site plant	KVCLF, Pit Top ³ and
	and equipment	СРР
	Direct emissions from the flaring of gas for pre- and post-	Ventilation Shaft Sites
	drainage	
	Direct emissions from the venting of gas (via mine ventilation air)	Ventilation Shaft Sites
	Residual (post-mining) fugitive emissions from stockpiled coal	KVCLF and CPP
	Direct emissions from the combustion of gas in the coal dryer	СРР
	ROM coal transportation – Rail transport from KVCLF to CPP	Kemira Valley Rail Line
	Product coal transportation – Road transport from CPP to export terminal $^{\rm 1}$	СРР
	Coal wash transportation – Road transport from CPP to West Cliff Coal Wash Emplacement Area $^{\rm 2}$	СРР
Scope 2	Indirect emissions from the use of electricity purchased from the	KVCLF, Pit Top ³ and
	grid	CPP
Scope 3		Port Kembla
	Downstream emissions generated from the end use of product	Steelworks and export
	coai	markets

Table 8-1: Scope 1, 2 and 3 emission sources

Notes:

¹ GHG emissions associated with this activity are estimated based on a return travel distance of 14 km on internal sealed roads. Fugitive dust emissions associated with this source are also assessed, but for a shorter travel distance (i.e. distance to exit point of the CPP only). This is conservative as some product coal would be transported a shorter distance to the Steelworks.

 $^{\rm 2}$ GHG emissions associated with this activity are also considered in the Bulli Seam Operations EIS as Scope 3.

³ It is noted that GHG emissions associated with primary underground mine access would be similar regardless of whether this occurs at the Dendrobium Pit Top and/or Cordeaux Pit Top.

8.2 Activity data

The coal seam gas content varies across the two mining areas and also as longwall development progresses within each mining area. Gas flow rates for pre-drainage, post-drainage and MVA will have significant variability over the life of the Project. Estimates of CO_2 equivalent⁶ (CO_2 -e) emissions have been provided by Dendrobium, extracted from the production development and gas modelling for the Project.

The gas modelling assumes fugitive emissions from mine ventilation air (MVA) and pre- and postdrainage is all vented (i.e. does not account for planned abatement via flaring). To derive emissions from flaring, the total estimated CO_2 -e emissions are disaggregated into MVA and drainage, based on an assumption that 67% of the total estimated CO_2 -e emissions are emitted via MVA and 33% via pre- and post-drainage. Furthermore, of the 33% released via pre- and post-drainage, 32% of the total estimated CO_2 -e emissions are assumed to be methane (CH_4) and 1% assumed to be CO_2 . The assumed percentage splits are derived from a ventilation study conducted by PALGAS for Area 5.

Additional activity data for GHG emission estimates is summarised in **Table 8-2**, along with the assumptions/inputs used to derive the values.

Activity	Value at Maximum Production	Source of information / assumptions				
Diesel consumption - KVCLF and Dendrobium Pit Top	1,034 kL/annum	A diesel intensity factor (kL/tonne) is derived from 2016 diesel consumption and corresponding ROM coal production. This is then multiplied by the ROM coal				
Diesel consumption - CPP	481 kL/annum	production to estimate diesel consumption for each year.				
Diesel consumption – ROM coal transportation by rail	310 kL/annum	Derived based on a fuel consumption rate for locomotives of 4.03 l/kt-km. The kt-km per annum is estimated based on a travel distance of 10 km multiplied by the ROM coal production for each year. A return trip kt-km is also calculated for empty wagons.				
Diesel consumption – product coal transport for export	1,082 kL/annum	Based on reported diesel fuel consumption for artic trucks ⁷ given in I/km. The annual vehicle kilometres travelled (VKT) is estimated based on a return travel distance of 14 km and the number of trips required to transport product coal (based on production schedule for each year) using trucks with an average payload of 32.4 tonnes (conservatively assessing all product coal going to the PKCT).				
Diesel consumption –coal wash transport to Westcliff Coal Wash Emplacement Area	1,826 kL/annum	Based on reported diesel fuel consumption for artic trucks given in I/km. The annual VKT is estimated based on a return travel distance of 80 km and the number of trips required to transport coal wash (based on production schedule for each year) using trucks with an average payload of 32.4 tonnes.				
Electricity use - KVCLF and Pit Top	49,233 MWHr/annum	An electricity intensity factor (kWHr/tonne) is derived from 2016 electricity use and corresponding ROM coal				
Electricity use - CPP	10,777 MWHr/annum	production. This is then multiplied by the ROM coal production to estimate electricity consumption for each year.				

Table 8-2: Activity data and assumptions

 $^{^{6}}$ Emissions for each individual GHG are calculated separately and then converted to CO2-equivalent on the basis of their global warming potential (in this case 1 for CO₂; 25 for CH₄).

⁷ http://www.abs.gov.au/ausstats/abs@.nsf/mf/9208.0

8.3 Summary of GHG emission estimates

Annual GHG emissions are directly related to the production schedule and, therefore, emissions are calculated for each year based on the production schedule prepared for the EIS. The estimated annual GHG emissions are presented in **Table 8-3** for all Project sources plus processing and transport of coal for the Mine.

Fugitive gas emissions are compared for venting and flaring of pre- and post-gas drainage. The comparison shows that the adoption of flaring as an abatement option would reduce pre- and post-gas drainage emissions by 84% and reduce total fugitive emissions by 28%. Based on the average scope 1 emissions and assuming flaring, the Project represents approximately 0.5% of total GHG emissions for NSW and 0.1% of total GHG emissions for Australia, based on the National Greenhouse Gas Inventory for 2016⁸.

⁸ http://ageis.climatechange.gov.au/

Table 8-3: Estimated GHG emissions (tonnes CO2-e)

	ROM Coal	Production (Mt)				Scope	e 1					Scope 2		Scope 3
Project Year	Approved Mine (Mt)	Project Underground Mining Areas	Total fugitiv (MVA and pre and If pre and post gas	ve emissions post gas drainage) If pre and post gas	Residual fugitive methane (post	Diesel (Dendrobium)	Diesel (CPP)	Natural gas (coal drver)	ROM coal transportation - KVCLF to CPP	Product coal transportation to PKCT (truck)	Coal wash transportation to West Cliff	Electricity (Dendrobium mine)	Electricity (CPP)	End use of coal
		(Areas 5 and 6)	drainage is vented	drainage is flared	mining)				(train)		(truck)	- /		
1	4.7	0.2	181,991	131,377	3,400	2,640	1,228	97,392	851	2,602	8,439	39,318	27,289	10,343,917
2	4.4	0.1	165,035	119,136	1,700	2,424	1,128	106,667	805	2,391	9,243	35,963	25,062	9,499,515
3	3.8	0.2	165,747	119,650	3,400	2,155	1,003	102,029	747	2,180	8,841	32,160	22,277	8,444,014
4	3.2	0.4	323,943	233,849	6,800	1,939	902	102,029	701	1,899	8,841	29,327	20,049	7,599,612
5	2.0	1.2	449,796	324,700	20,400	1,724	802	88,116	655	1,828	7,635	27,539	17,822	6,755,211
6	0.0	3.4	599,241	432,583	57,800	1,832	852	83,479	678	2,110	7,233	32,959	18,936	7,177,412
7	0.0	5.2	834,390	602,333	88,400	2,801	1,304	92,754	885	3,235	8,037	50,408	28,960	10,977,218
8	0.0	4.9	785,481	567,027	83,300	2,640	1,228	92,754	851	3,094	8,037	47,500	27,289	10,343,917
9	0.0	4.4	713,673	515,190	74,800	2,370	1,103	88,116	793	2,743	7,635	42,653	24,505	9,288,415
10	0.0	4.3	771,564	556,980	73,100	2,317	1,078	83,479	782	2,672	7,233	41,684	23,948	9,077,315
11	0.0	3.7	810,081	584,785	62,900	1,993	927	83,479	712	2,321	7,233	35,867	20,606	7,810,713
12	0.0	3.8	942,768	680,569	64,600	2,047	953	92,754	724	2,391	8,037	36,837	21,163	8,021,813
13	0.0	4.1	1,256,622	907,136	69,700	2,209	1,028	88,116	758	2,602	7,635	39,745	22,834	8,655,114
14	0.2	3.8	952,676	687,722	64,600	2,155	1,003	88,116	747	2,461	7,635	38,427	22,277	8,444,014
15	0.3	3.3	1,279,078	923,347	56,100	1,939	902	92,754	701	2,180	8,037	34,376	20,049	7,599,612
16	0.3	2.9	800,983	578,217	49,300	1,724	802	83,479	655	1,899	7,233	30,498	17,822	6,755,211
17	0.3	3.2	712,397	514,268	54,400	1,886	877	92,754	689	2,110	8,037	33,406	19,492	7,388,512
18	0.2	3.6	517,699	373,719	61,200	2,047	953	55,652	724	2,250	4,822	36,489	21,163	8,021,813
19	0.2	3.5	470,989	340,000	59,500	1,993	927	60,290	712	2,180	5,224	35,519	20,606	7,810,713
20	3.1	0.5	491,917	355,107	8,500	1,939	902	69,566	701	1,899	6,028	29,501	20,049	7,599,612
21	3.6	0.3	426,859	308,143	5,100	2,101	978	78,841	735	1,969	6,831	31,539	21,720	8,232,913
22	3.7	0.3	380,543	274,708	5,100	2,155	1,003	51,015	747	2,110	4,420	32,334	22,277	8,444,014
23	3.3	0.3	345,209	249,201	5,100	1,939	902	46,377	701	1,899	4,018	29,153	20,049	7,599,612
24	1.4	2.3	643,614	464,615	39,100	1,993	927	55,652	712	1,828	4,822	33,430	20,606	7,810,713
25	0.0	3.6	692,299	499,760	61,200	1,939	902	55,652	701	1,828	4,822	34,898	20,049	7,599,612
26	0.0	4.3	777,633	561,361	73,100	2,317	1,078	, 69,566	782	2,180	6,028	41,684	23,948	9,077,315
27	0.0	4.7	821,644	593,132	79,900	2,532	1,178	74,203	828	2,250	6,430	45,561	26,176	9,921,716
28	0.0	4.7	876.227	632,535	79,900	2,532	1,178	74,203	828	2,321	6,430	45,561	26,176	9,921.716
29	0.0	0.4	153.284	110.653	6,800	215	100	4,638	332	211	402	3,878	2,228	844,401
_	Max ann	ual	1,279,078	923,347	88,400	2,801	1,304	106,667	885	3,235	9,243	50,408	28,960	10,977,218
	Average a	nnual	632,530	456.614	45,490	2,086	971	77,721	732	2,195	6,734	35,456	21,567	8,174.679
	LOM to	tal	18,343,381	13,241,803	1,319,200	60,500	28,151	2,253,922	21,234	63,643	195,299	1,028,217	625,431	237,065,685
9. MANAGEMENT AND MONITORING

The Dendrobium AQMP outlines the roles, responsibilities, legislative requirements, management measures and monitoring requirements under the Mine's existing approval and EPL.

The existing monitoring data demonstrates compliance with impact assessment criteria at the monitoring locations, which suggests that the existing controls are effective in preventing dust impacts from existing operations. The modelling results presented in this report also suggest that the existing controls would be effective in preventing dust impacts from the Project.

It is noted that, due to the existing PM_{10} monitoring frequency (once a month), it is not possible to determine the maximum 24-hour PM_{10} concentration or the number of days over the impact assessment criteria.

Therefore, it is recommended that the existing monitoring requirements outlined in the AQMP are reviewed and augmented, if required, for the operation of the Project, and detailed in an updated AQMP. Consideration should be given to increasing the existing PM_{10} monitoring frequency from once a month.

9.1 Dust complaints

A review of complaints data for the previous 10 years indicates that, on average, approximately one dust-related complaint is received each year.

The low frequency of dust complaints is consistent with historical compliance monitoring and modelling predictions presented in this report, and provides additional evidence that existing dust controls are effective in protecting receptors.

10. CONCLUSION

Ramboll has been commissioned to complete an AQA for the Project. The Project seeks to gain access to two new underground mining areas and to extend the life of approved surface operations. The Project also includes the continued use of existing surface infrastructure (for the extended mine life) as well as additional ventilation and gas management infrastructure.

Air quality impacts are assessed using a Level 2 assessment approach in accordance with the Approved Methods. Emissions inventories have been developed based on a maximum production rate of 5.2 Mtpa. Dispersion modelling was used to predict ground level concentrations for key pollutants from key Project components, at surrounding private and other sensitive receptors. Cumulative impacts were assessed by taking into account the existing ambient baseline air quality.

The predicted Project-only and cumulative annual average PM_{10} , $PM_{2.5}$ and TSP concentrations and dust deposition levels indicate that no sensitive receptor, in the vicinity of the Dendrobium Pit Top and KVCLF, would experience additional exceedances of the NSW EPA's impact assessment criteria. The predicted cumulative 24-hour average PM_{10} and $PM_{2.5}$ concentrations demonstrated that no additional exceedances of the impact assessment criteria are expected at sensitive receptors in the vicinity of the Dendrobium Mine.

The impact of dust emissions from the ventilation shafts are minor at the closest receptor, and odour would be undetectable (all modelling predictions are less than 1 ou). Emissions from flaring at the ventilation shaft sites are modelled based on a maximum gas flow rate emitted from the site located closest to private receptors (Shaft Site No 6B). The incremental 1-hour average NO₂ concentration from flaring is less than 29 μ g/m³, compared to the impact assessment criterion of 246 μ g/m³, while the incremental annual average NO₂ concentration at the closest receptor is less than 1 μ g/m³, compared to the impact assessment criterion of 62 μ g/m³. Background concentrations in the area are expected to be low to negligible and, therefore, cumulative impacts are not expected.

The impact from coal trains are also assessed, in terms of fugitive emissions from coal wagons and diesel exhaust emissions from locomotives. It is noted that material property testing has shown that the measured moisture content for ROM coal arriving at the CPP (6.5%) is higher than the measured DEM level (4.6%) and, therefore, fugitive emissions are not expected. The emission estimates conservatively do not take this into account and, even with fugitive emissions included, the impact from coal transportation is negligible (and well below the NSW EPA's impact assessment criteria).

Modelling results are presented for the CPP, although it is noted that the existing approved operations would not materially change as a result of the Project. The predicted Project-only annual average PM_{10} , $PM_{2.5}$ and TSP concentrations and dust deposition levels at residential areas in the vicinity of the CPP are below the NSW EPA's impact assessment criteria. The maximum predicted Project-only 24-hour average concentrations across residential areas in the vicinity of the CPP are predicted to be in the range of $10 - 20 \ \mu g/m^3$ for PM_{10} and $2.5 - 5 \ \mu g/m^3$ for $PM_{2.5}$. Cumulative analysis predicted a very low risk of additional exceedances for 24-hour PM_{10} (less than one day) and no additional exceedances for $PM_{2.5}$. The coal fines dryer at the CPP is not currently operational but may become operational in the future. The operation of the dryer would result in insignificant increases in emissions in comparison to other emission sources and, as such, increases in emissions in the local airshed would be negligible.

Annual average Scope 1 emissions represent approximately 0.5% of total GHG emissions for NSW and 0.1% of total GHG emissions for Australia, based on the National Greenhouse Gas Inventory for 2016.

11. REFERENCES

DEWHA (2010). National Pollutant Inventory Emission Estimation Technique Manual for Combustion in Boilers Version 3.2, Department of the Environment, Water, Heritage and the Arts.

DoE (2014). Technical Guidelines for the Estimation of Greenhouse Gas Emissions by Facilities in Australia. National Greenhouse and energy Reporting (Measurement) Determination. July 2014. Published by the Australian Government, Department of the Environment.

DoE (2016). National Greenhouse Accounts Factors – Australian National Greenhouse Accounts. August 2016. Published by the Australian Government, Department of the Environment.

EML (2005). Dendrobium Mine Emission Testing Report – April 2005), EML Air Pty Ltd, 3 May 2005.

HAS (2008). Air Quality Impact Assessment: Metropolitan Coal Project, Holmes Air Sciences, June 2008.

HAS (2000). Air Quality Impact Assessment Dendrobium Underground Mine Extension, Southern Coalfields, NSW. Holmes Air Sciences, February 2000.

Hurley, P. (2008) "TAPM V4. Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper".

Hurley, P., M. Edwards. (2009) "Evaluation of TAPM V4 for Several Meteorological and Air Pollution Datasets." Air Quality and Climate Change 43(3): 19.

Katestone (2011). NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining. Report compiled on behalf of NSW Department of Environment, Climate Change and Water.

NEPC (1998). National Environmental Protection Measure for Ambient Air Quality. National Environmental Protection Council.

NEPC (2003). National Environmental Protection Measure (Ambient Air Quality) Measure, as amended, made under the National Environment Protection Act 1994. National Environmental Protection Council, 7 July 2003.

NEPC (2015). Variation to the National Environment Protection (Ambient Air Quality) Measure. National Environment Protection Act 1994. National Environmental Protection Council, 15 December 2015.

NSW DEC (2006) "Technical Framework: Assessment and management of odour from stationary sources in NSW".

NSW EPA (2016). Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales.

NSW EPA (2012). Technical Report No. 6. Air Emissions Inventory for the Greater Metropolitan Region in New South Wales. 2008 Calendar Year. Off Road Mobile Emissions: Results.

NSW EPA (2014) NSW Coal Mining Benchmarking Study – Best-practice measures for reducing non-road diesel exhaust emissions.

McTanish, G., O'Loingsigh, T., Strong, C. (2011). Update of Dust Storm Index (DSI) maps for 2005 to 2010 and re-analysis and mapping of DSI for 1992-2005, 1992-2008 and 1992-2010 for the Australian Collaborative Rangeland Information System (ACRIS). Australian Government Department of Sustainability, Environment, Water, Population and Communities

Oke T.T. (2003). Boundary Layer Climates, Second Edition, Routledge, London and New York, 435 pp.

PAEHolmes (2009). Air Quality Impact Assessment: Bulli Seam Operations. Illawarra Coal Holdings Pty Ltd.

PAEHolmes (2012). Dendrobium Mine Particulate Matter Control Best Practice Pollution Reduction Program. 2 February 2012.

Robe, F (2009). Flare Modelling CASANZ 2009 Conference Joint Odour and Modelling Workshop – Perth September 6, 2009. TRC Atmospheric Study Group.

Scire, J.S., Strimaitis, D.G. & Yamartino, R.J. (2000) A User's Guide for the CALPUFF Dispersion Model (Version 5), Earth Tech, Inc., Concord.

Stull R. B. (1997). An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, London.

TOU (2010) The Odour Unit Odour Sample Measurement Results - Panel Roster Number: SYD20100618, 22 June 2010.

TRC Environmental Corporation (2011). Generic Guidance and Optimum Model Settings for the Calpuff Modeling System for Inclusion into the 'Approved Methods for the Modeling and Assessment of Air Pollutants in NSW, Australia'.

US EPA (1987). Update of fugitive dust emission factors in AP-42 Section 11.2, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, July 1987.

US EPA (1995) "Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

US EPA (1998a). Emission Factor Documentation for AP-42. Section 13.2.2. Unpaved Roads. Final Report for U.S. United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Emission Factor and Inventory Group. MRI Project No. 4864. September 1998.

US EPA (1998b). AP-42 Emission Factor Database, Chapter 11.9 Western Surface Coal Mining, United States Environmental Protection Agency, 1998.

US EPA (2006). AP-42 Emission Factor Database, Chapter 13.2.5 Industrial Wind Erosion, United States Environmental Protection Agency, November 2006.

US EPA (2015). Revision to the Guideline on Air Quality Models: Enhancements to the AERMOD Dispersion Modeling System and Incorporation of Approaches To Address Ozone and Fine Particulate Matter; Proposed Rule. 40 CFR Part 51. Vol 80. No. 145. July 29, 2015.

APPENDIX 1 FIGURES

Figure A1-1: On-site dust monitoring locations

APPENDIX 2 ASSESSMENT LOCATIONS

Table A2-1: Assessment locations

Identifier	Identifier Category		Address	Location (m MGA, zone 56)		Elevation (m AHD)
				Easting	Northing	
D0001	Residential	(Mine-owned)	17 High St Kembla Heights	298980	6188279	230.0
D0002	Commercial Premises	(Mine-owned)	Dendrobium Pit Top	298909	6188075	209.9
D0003	Commercial Premises	(Mine-owned)	Dendrobium Pit Top	298702	6187827	213.0
D0004	Residential		374 Cordeaux Rd Mount Kembla	298957	6187726	190.8
D0005	School		323-327 Cordeaux Rd Mount Kembla	299434	6187701	129.0
D0006	Residential		214 Cordeaux Rd Mount Kembla	300349	6187985	64.4
D0007	Residential		27 Stones Rd Mount Kembla	300793	6188421	49.5
D0008	Commercial Premises	(Mine-owned)	Kemira Valley	300273	6188795	88.7
D0009	Residential		27 Stones Rd Mount Kembla	300928	6188716	96.2
D0010	Commercial Premises		Kemira Valley Coal Loader	300344	6189321	70.0
D0011	Residential	(Mine-owned)	13 Harry Graham Dr Kembla Heights	298478	6187751	254.5
D0012	Residential	(Mine-owned)	17 Harry Graham Dr Kembla Heights	298493	6187792	252.5
D0013	Residential	(Mine-owned)	25 View St Kembla Heights	298521	6187849	252.7
D0014	Residential	(Mine-owned)	21 Harry Graham Dr Kembla Heights	298477	6187849	254.1
D0015	Residential	(Mine-owned)	23 Harry Graham Dr Kembla Heights	298491	6187863	254.0
D0016	Residential	(Mine-owned)	26 View St Kembla Heights	298533	6187865	252.9
D0017	Residential	(Mine-owned)	25 Harry Graham Dr Kembla Heights	298471	6187893	254.8
D0018	Residential	(Mine-owned)	28 Harry Graham Dr Kembla Heights	298441	6187921	258.9
D0019	Recreation Facility		29 Harry Graham Dr Kembla Heights	298499	6187909	253.7
D0020	Residential	(Mine-owned)	34 View St Kembla Heights	298578	6187909	250.5
D0021	Residential	(Mine-owned)	47 Harry Graham Dr Kembla Heights	298573	6188012	247.8
D0022	Residential	(Mine-owned)	5 Mount St Kembla Heights	298718	6188081	238.2
D0023	Residential	(Mine-owned)	2 Central Ave Kembla Heights	298723	6188114	237.6
D0024	Residential	(Mine-owned)	4 Central Ave Kembla Heights	298738	6188129	236.6

Identifier	Category		Address	Locatio (m MGA, zo	on ne 56)	Elevation (m AHD)
				Easting	Northing	(
D0025	Residential	(Mine-owned)	7 Central Ave Kembla Heights	298787	6188125	232.4
D0026	Residential	(Mine-owned)	11 Central Ave Kembla Heights	298799	6188138	231.8
D0027	Residential	(Mine-owned)	11 Central Ave Kembla Heights	298805	6188147	231.7
D0028	Residential	(Mine-owned)	13 Central Ave Kembla Heights	298812	6188158	231.7
D0029	Residential	(Mine-owned)	6 Central Ave Kembla Heights	298744	6188152	236.4
D0030	Residential	(Mine-owned)	59 Harry Graham Dr Kembla Heights	298682	6188155	240.1
D0031	Residential	(Mine-owned)	61 Harry Graham Dr Kembla Heights	298693	6188165	238.8
D0032	Residential	(Mine-owned)	63 Harry Graham Dr Kembla Heights	298699	6188183	239.9
D0033	Residential	(Mine-owned)	62 Harry Graham Dr Kembla Heights	298663	6188198	247.8
D0034	Residential	(Mine-owned)	5 High St Kembla Heights	298727	6188215	242.0
D0035	Residential	(Mine-owned)	55 Harry Graham Dr Kembla Heights	298657	6188133	244.7
D0036	Residential	(Mine-owned)	7 High St Kembla Heights	298738	6188227	242.2
D0037	Residential	(Mine-owned)	12 Central Ave Kembla Heights	298776	6188206	237.5
D0038	Residential	(Mine-owned)	15 High St Kembla Heights	298770	6188264	242.3
D0039	Residential	(Mine-owned)	82 Harry Graham Dr Kembla Heights	298887	6188536	277.6
D0040	Residential	(Mine-owned)	84 Harry Graham Dr Kembla Heights	298905	6188571	283.7
D0041	Recreation Facility		1 Church Lane Kembla Heights	298595	6187990	246.4
D0042	Residential	(Mine-owned)	6 Church Lane Kembla Heights	298603	6187972	246.7
D0043	Commercial Premises	(Mine-owned)	41 Harry Graham Dr Kembla Heights	298525	6187965	249.3
D0044	Residential	(Mine-owned)	43 Harry Graham Dr Kembla Heights	298544	6187981	247.2
D0045	Residential	(Mine-owned)	30 Harry Graham Dr Kembla Heights	298441	6187940	259.0
D0046	Residential	(Mine-owned)	32 Harry Graham Dr Kembla Heights	298449	6187952	257.1
D0047	Residential	(Mine-owned)	34 Harry Graham Dr Kembla Heights	298458	6187963	254.7
D0048	Residential	(Mine-owned)	36 Harry Graham Dr Kembla Heights	298466	6187975	253.5
D0050	Residential	(Mine-owned)	38 Harry Graham Dr Kembla Heights	298478	6187983	252.3

Identifier	Category		Address	Locatic (m MGA, zo	on ne 56)	Elevation (m AHD)
				Easting	Northing	(,
D0051	Residential	(Mine-owned)	3 Mount St Kembla Heights	298698	6188099	239.7
D0052	Residential	(Mine-owned)	141 Cordeaux Rd Kembla Heights	298163	6187478	289.5
D0053	Place of Worship		617 Cordeaux Rd Kembla Heights	297775	6187197	301.5
D0054	Residential		147 Cordeaux Rd Kembla Heights	297818	6187249	291.7
D0055	Residential		145 Cordeaux Rd Kembla Heights	297922	6187238	305.9
D0056	Residential		145 Cordeaux Rd Kembla Heights	297992	6187279	309.6
D0057	Residential		617 Cordeaux Rd Kembla Heights	297759	6187218	293.8
D0058	Residential		145 Cordeaux Rd Kembla Heights	297835	6187266	291.4
D0059	Residential		26 Stones Rd Mount Kembla	300003	6188477	79.2
D0060	Residential		4-6 Kirkwood Pl Mount Kembla	299549	6188136	84.8
D0061	Residential		336 Cordeaux Rd Mount Kembla	299301	6187892	139.8
D0062	Residential		381 Cordeaux Rd Mount Kembla	298944	6187670	196.3
D0063	Residential		379 Cordeaux Rd Mount Kembla	298959	6187669	193.8
D0064	Residential		377 Cordeaux Rd Mount Kembla	298973	6187668	191.4
D0065	Residential		372 Cordeaux Rd Mt Kembla	298973	6187718	190.1
D0066	Residential		364 Cordeaux Rd Mount Kembla	299026	6187719	183.3
D0067	Residential		358 Cordeaux Rd Mount Kembla	299067	6187710	177.7
D0068	Residential		369 Cordeaux Rd Mount Kembla	299027	6187653	183.2
D0069	Residential		367 Cordeaux Rd Mount Kembla	299045	6187653	181.0
D0070	Residential		2 Araluen Ave Mount Kembla	298984	6187616	191.1
D0071	Residential		Araluen Ave Mount Kembla	298970	6187542	201.4
D0072	Residential		4 Araluen Ave Mount Kembla	299053	6187595	184.2
D0073	Residential		6 Araluen Ave Mount Kembla	299067	6187589	183.4
D0074	Residential		8 Araluen Ave Mount Kembla	299081	6187583	182.7
D0075	Residential		10 Araluen Ave Mount Kembla	299094	6187574	182.6

Identifier	Category	Address	Locatio (m MGA, zo	on ne 56)	Elevation (m AHD)
			Easting	Northing	(
D0076	Residential	12 Araluen Ave Mount Kembla	299106	6187564	182.6
D0077	Residential	14 Araluen Ave Mount Kembla	299120	6187551	182.6
D0078	Residential	18 Araluen Ave Mount Kembla	299142	6187518	184.0
D0079	Residential	20 Araluen Ave Mount Kembla	299163	6187522	180.1
D0080	Residential	17 Araluen Ave Mount Kembla	299180	6187534	175.3
D0081	Residential	11-13 Araluen Ave Mount Kembla	299156	6187580	175.8
D0081	Residential	9 Araluen Ave Mount Kembla	299146	6187595	175.2
D0082	Residential	7 Araluen Ave Mount Kembla	299132	6187603	175.6
D0083	Residential	5 Araluen Ave Mount Kembla	299119	6187610	175.9
D0084	Residential	3 Araluen Ave Mount Kembla	299108	6187623	175.3
D0085	Residential	1 Araluen Ave Mount Kembla	299091	6187626	176.3
D0086	Residential	2 Cudgee Cres Mount Kembla	299215	6187670	158.2
D0087	Residential	4 Cudgee Cres Mount Kembla	299234	6187657	155.3
D0088	Residential	6 Cudgee Cres Mount Kembla	299247	6187645	154.4
D0089	Residential	8 Cudgee Cres Mount Kembla	299245	6187622	155.4
D0090	Residential	10 Cudgee Cres Mount Kembla	299250	6187609	155.7
D0091	Residential	12 Cudgee Cres Mount Kembla	299255	6187594	155.9
D0092	Residential	14 Cudgee Cres Mount Kembla	299244	6187577	158.5
D0093	Residential	16 Cudgee Cres Mount Kembla	299249	6187560	158.8
D0094	Residential	18 Cudgee Cres Mount Kembla	299265	6187539	157.0
D0095	Residential	17 Cudgee Cres Mount Kembla	299304	6187582	149.3
D0096	Residential	15 Cudgee Cres Mount Kembla	299302	6187598	149.6
D0096	Residential	13 Cudgee Cres Mount Kembla	299301	6187614	149.7
D0097	Residential	11 Cudgee Cres Mount Kembla	299297	6187627	150.1
D0098	Residential	9 Cudgee Cres Mount Kembla	299297	6187643	149.9

Identifier Category		Address	Location (m MGA, zone 56)		Elevation (m AHD)
			Easting	Northing	(,
D0099	Residential	7 Cudgee Cres Mount Kembla	299291	6187659	150.2
D0100	Residential	5 Cudgee Cres Mount Kembla	299293	6187673	149.8
D0101	Residential	3 Cudgee Cres Mount Kembla	299273	6187686	151.3
D0102	Residential	1 Cudgee Cres Mount Kembla	299249	6187697	153.1
D0103	Residential	14 Benjamin Rd Mount Kembla	299438	6187906	114.0
D0104	Residential	39 Stones Rd Mount Kembla	300109	6188114	72.6
D0105	Recreation Facility	340 Harry Graham Dr Kembla Heights	299164	6189847	310.4
D0106	Recreation Facility	Stafford Rd Mount Kembla	299611	6187863	94.8
D0107	Place of Worship	301 Cordeaux Rd Mount Kembla	299619	6187726	99.1
D0108	Other	Cordeaux Rd Mt Kembla	299733	6187730	98.6
D0109	Commercial Premises	274 Cordeaux Rd Mount Kembla	299807	6187787	98.6
D0110	Recreation Facility	Stones Rd Mount Kembla	300006	6188179	66.2
D0111	Residential	69 William James Dr Cordeaux Heights	300261	6187372	98.1
D0112	Residential	18 Ridgecrest Cordeaux Heights	300001	6187286	103.6
D0113	Residential	46 Natan Pl Cordeaux Heights	301246	6187096	44.1
D0114	Residential	246 O'Briens Rd Figtree	301611	6188854	176.6
D0115	Residential	244 O'Briens Rd Figtree	301618	6188830	172.6
D0116	Residential	20 Stones Rd Mount Kembla	300092	6188451	84.0
D0117	Residential	Stones Rd Mount Kembla	300718	6188499	51.4
D0118	Residential	121 O'Briens Rd Figtree	300987	6188546	95.8
D0119	Residential	117 O'Briens Rd Figtree	301399	6188357	96.2
D0120	Residential	Cordeaux Rd Mount Kembla	300707	6188164	90.3
D0121	Commercial Premises	Cordeaux Dam Rd Cataract	292632	6199555	358.2
D0122	Caretaker's Quarters	Cordeaux Dam Rd Cataract	292575	6199200	344.4
D0123	Recreation Facility	Cordeaux Dam Rd Cataract	292558	6199320	352.0

Identifier	Category	Address	Locatio (m MGA, zo	n ne 56)	Elevation (m AHD)
			Easting	Northing	(
D0124	Caretaker's Quarters	Upper Cordeaux Lake No.2	296163	6190595	319.4
D0125	Residential	200 Cordeaux Rd Mount Kembla	300476	6187936	52.8
D0126	Commercial Premises	200 Cordeaux Rd Mount Kembla	300533	6187883	51.0
D0127	Residential	2 William James Dr Mount Kembla	301017	6187419	53.2
D0128	Residential	7 William James Dr Mount Kembla	301212	6187296	49.0
D0129	Residential	9 William James Dr Mount Kembla	301218	6187238	43.0
D0130	Residential	48 Natan Pl Cordeaux Heights	301249	6187063	45.6
D0131	Residential	112 Booreea Blvd Cordeaux Heights	301292	6187041	39.0
D0132	Residential	110 Booreea Blvd Cordeaux Heights	301295	6187014	38.0
D0133	Residential	108 Booreea Blvd Cordeaux Heights	301306	6186994	34.8
D0134	Residential	5 Alukea Rd Cordeaux Heights	301784	6186464	26.4
D0135	Residential	2 Central Ave Cordeaux Heights	301826	6186427	23.2
D0136	Residential	49-55 Cordeaux Rd Figtree	301899	6186448	21.5
D0137	Residential	4 Leigh Cres Unanderra	301928	6186349	25.6
D0138	Residential	2 Leigh Cres Unanderra	301957	6186328	27.2
D0139	Residential	1A Leigh Cres Unanderra	301993	6186300	27.4
D0140	Residential	41A Cordeaux Rd Figtree	301978	6186388	22.9
D0141	Residential	39 Cordeaux Rd Figtree	302015	6186360	24.2
D0142	Residential	37 Cordeaux Rd Figtree	302054	6186321	25.2
D0143	Residential	31/21 Cordeaux Rd Figtree	302106	6186315	25.0
D0144	Residential	72 Albert St Unanderra	302019	6186250	24.4
D0145	Residential	70 Albert St Unanderra	302035	6186244	23.4
D0146	Residential	68 Albert St Unanderra	302051	6186241	22.5
D0147	Residential	66 Albert St Unanderra	302068	6186232	21.2
D0148	Residential	64 Albert St Unanderra	302084	6186226	19.9

Identifier	Category	Address	Location (m MGA, zone 56)		Elevation (m AHD)
			Easting	Northing	
D0149	Residential	62 Albert St Unanderra	302101	6186218	18.5
D0150	Residential	60 Albert St Unanderra	302113	6186206	18.0
D0151	Residential	58A Albert St Unanderra	302141	6186219	19.0
D0152	Residential	58 Hurt Pde Unanderra	302166	6186192	17.6
D0153	Residential	56 Hurt Pde Unanderra	302187	6186193	17.3
D0154	Residential	54 Hurt Pde Unanderra	302209	6186188	16.3
D0155	Residential	52 Hurt Pde Unanderra	302228	6186183	15.3
D0156	Residential	50 Hurt Pde Unanderra	302247	6186171	13.8
D0157	Residential	48 Hurt Pde Unanderra	302267	6186166	13.5
D0158	Residential	46 Hurt Pde Unanderra	302284	6186157	13.1
D0159	Residential	44 Hurt Pde Unanderra	302300	6186149	12.8
D0160	Residential	42 Hurt Pde Unanderra	302309	6186135	12.2
D0161	Residential	40 Hurt Pde Unanderra	302351	6186146	14.6
D0162	Residential	1 Cordeaux Rd Figtree	302355	6186213	18.3
D0163	Residential	354 Cordeaux Rd Mount Kembla	299152	6187741	165.2
D0165	Residential	23 William James Dr Mount Kembla	300622	6187387	78.4
D0166	Residential	10 William James Dr Mount Kembla	300841	6187378	70.1
D0167	Residential	8 William James Dr Mount Kembla	300895	6187386	67.2
D0168	Residential	6 William James Dr Mount Kembla	300941	6187401	61.8
D0169	Residential	15 Leigh Cres Unanderra	301820	6186300	30.1
D0164	Residential	15 Benjamin Rd Mount Kembla	299505	6187978	99.8

Note: m AHD = metres Australian Height Datum

APPENDIX 3 ANNUAL WIND ROSE PLOTS

Figure A3-1: Annual wind roses for Wollongong Airport AWS

Figure A3-2: Regional wind roses for Project – 2016

Figure A3-3: Seasonal and diurnal wind roses for Kembla Grange OEH site

APPENDIX 4 MODEL SET UP AND SETTINGS

Γ

Table A4-1: TAPM settings			
Parameter	Setting		
Model Version	TAPM v.4.0.5		
Number of grids (spacing)	4 (30 km, 10 km, 3 km, 1 km)		
Number of grid points	25 x 25		
Vertical grids / vertical extent	30 / 8000 m (~400 mb)		
Centre of analysis	Lat. 150.8250, long34.41667 Easting 300246, Northing 6189170S		
Year of analysis	2016		
Terrain and land use	Default TAPM values based on land use and soils datasets from Geoscience Australia and the US Geological Survey, Earth Resources Observation Systems (EROS) Data Center Distributed Active Archive Center (EDC DAAC)		
Assimilation sites	Kembla Grange OEH, Wollongong OEH, Wollongong Airport AWS		

Table A4-2: CALMET settings			
Parameter	Setting		
Grid domain	20 km x 20 km		
Grid resolution	0.2 km		
Number of grid points	100 × 100		
Reference grid coordinate	290.246, 6179.170		
Vertical grids / vertical extent	10 cell heights / 4,000 m		
Upper air meteorology	Prognostic 3D.dat extracted from TAPM at 1 km grid		
Surface observations	Kembla Grange OEH, Wollongong OEH, Wollongong Airport AWS, Bellambi AWS		

Table A4-3: CALMET model options

Flag	Description	Recommended setting	Value used
NOOBS	Meteorological data options	0,1,2	1 - combination of surface and prognostic data
ICLOUD	Cloud Data Options – Gridded Cloud Fields	4	4 -Gridded cloud cover from Prognostic relative humidity at all levels (MM5toGrads algorithm)
IEXTRP	Extrapolate surface wind observations to upper layers	-4	-4 - similarity theory used
IFRADJ	Compute Froude number adjustment effects	1	1 - applied
IKINE	Compute kinematic effects	0	0 - not computed
BIAS (NZ)	Relative weight given to vertically extrapolated surface observations vs. upper air data	NZ * 0	NZ * 0 - layers in lower levels of model will have stronger weighting towards surface, higher levels will be have stronger weighting to upper air data
TERRAD	Radius of influence of terrain	No default (typically 5- 15km)	3 km
RMAX1 and RMAX2	Maximum radius of influence over land for observations in layer 1 and aloft	No Default	4 km, 10 km

Table A4-3: CALMET model options					
Flag	Description	Recommended setting	Value used		
NOOBS	Meteorological data options	0,1,2	1 - combination of surface and prognostic data		
ICLOUD	Cloud Data Options – Gridded Cloud Fields	4	4 -Gridded cloud cover from Prognostic relative humidity at all levels (MM5toGrads algorithm)		
R1 and R2	Distance from observations in layer 1 and aloft at which observations and Step 1 wind fields are weighted equally	No Default	R1 - 2 km, R2 – 10 km		

Table A4-4: CALPUFF model options				
Flag	Description	Value used	Description	
MCHEM	Chemical Transformation	0	Not modelled	
MDRY	Dry Deposition	1	Yes	
MWET	Wet Deposition	0	Not modelled	
MTRANS	Transitional plume rise allowed?	1	Yes	
MTIP	Stack tip downwash?	1	Yes	
MRISE	Method to compute plume rise	1	Briggs plume rise	
MSHEAR	Vertical wind shear	0	Vertical wind shear not modelled	
MPARTL	Partial plume penetration of elevated inversion?	1	Yes	
MSPLIT	Puff Splitting	0	No puff splitting	
MSLUG	Near field modelled as slugs	0	Not used	
MDISP	Dispersion Coefficients	2	Based on micrometeorology	
MPDF	Probability density function used for dispersion under convective conditions	1	Yes	
MROUGH	PG sigma y,z adjusted for z	0	No	
MCTADJ	Terrain adjustment method	3	Partial Plume Adjustment	
MBDW	Method for building downwash	1	ISC Method	

APPENDIX 5 PARTICULATE MATTER EMISSIONS INVENTORY DEVELOPMENT

Overview

Dust emissions were estimated using US EPA AP-42 emission factors and predictive equations taken from the following chapters:

- Chapter 11.9 Western Surface Coal Mining.
- Chapter 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing.
- Chapter 13.2.1 Paved Roads.
- Chapter 13.2.4 Aggregate Handling and Storage Piles.
- Chapter 13.2.5 Industrial Wind Erosion.

The inputs and assumptions listed in **Table A5-1** are used with the various emission factor equations listed in **Table A5-2** to derive site-specific uncontrolled emission factors for each source. Emissions were quantified for each particle size fraction, with the TSP size fraction also used to predict dust deposition rates. Fine particles (PM_{10} and $PM_{2.5}$) were estimated using the fraction-specific equations or ratios for the different particle size fractions available within the literature (shown in **Table A5-2**).

Input parameter	Value	Source of Information
Dendrobium Pit Top		
Silt loading of paved surface	14 g/m ²	Taken from measurements obtained for the Dust Stop PRP (PAEHolmes, 2012)
Average distance travelled for vehicles accessing the mine portal	0.3 km	Consistent with previous AQA (HAS, 2000)
Average vehicle mass for light vehicles entering the mine portal	12 t	Consistent with previous AQA (HAS, 2000)
Average vehicle mass for heavy vehicles entering the mine portal	30 t	Consistent with previous AQA (HAS, 2000)
KVCLF		
Moisture content of ROM coal	6%	Material properties testing (Appendix 6)
Silt content of ROM coal	2.5%	Material properties testing (Appendix 6)
Dozer hours	2,628	Assumed 30% utilisation (twice the actual utilisation for 2016)
Stockpile area for wind erosion	1.4 ha	Consistent with previous AQA (HAS, 2000)
СРР		
Moisture content of ROM coal	6%	Material properties testing (Appendix 6)
Moisture content of washed coal	9%	Material properties testing (Appendix 6)
Moisture content of coal wash	22%	Client supplied
Silt content of coal	2.5%	Material properties testing (Appendix 6)
Silt content of coal	2.5%	Material properties testing (Appendix 6)
Average vehicle mass for coal trucks	33 t	Consistent with previous AQA (HAS, 2000)
Average distance travelled for hauling to clean coal stockpile	2.0 km	Estimated
Average distance travelled for hauling off-site (to site exit)	0.5 km	Estimated
Silt loading of paved surface	9.7 g/m ²	AP42 13.2.2 Table 13.2.1-3 - value for iron and steel production facility

Table A5-1: Inputs and assumptions for predictive emission factors

The emissions factors (kg/kL) used to estimate PM_{10} and $PM_{2.5}$ emissions for the KVCLF and Dendrobium Pit Top assume the NSW mining fleet average emission performance, taken from the NSW EPA's benchmarking study to evaluate a number of options for reducing diesel emissions for coal mines in NSW (NSW EPA, 2014). Estimates of diesel consumption (kL/annum) are derived from current (2016) diesel consumption data, scaled according to the increase in production from 2016 ROM to the maximum production scenario presented in this report.

The emissions factors for diesel locomotives operating along the rail line assume an emission performance equivalent to US EPA Tier 0 emission factors. An estimate of diesel consumption for the locomotives is based on a NSW fleet average diesel consumption rate of 4.03 L/kilotonne.km (NSW EPA, 2012) and a travel distance of 10 km. The annual coal production and the travel distance are combined to estimate the gross-tonne-km travelled for loaded trains. For the return trip, an estimate of the gross-tonne-km for empty trains is made based on a wagon weight of 23 t, an average of 20 wagons per train. The number of wagons per train was estimated from the reported trains per annum during the FY15 and FY16 and the corresponding ROM coal transported (assuming a wagon capacity of 97 t).

Hourly varying emissions for modelling

Fugitive dust emissions sources can be categorised into three emission source types, as follows:

- Wind-insensitive sources (where the emission rate is independent of the wind speed).
- Wind-sensitive sources (where there is a relationship between the emission rate and wind speed).
- Wind erosion sources (where the emission is dependent on the wind speed).

The annual emissions for wind-independent sources are evenly apportioned for each hour of the year (no adjustment applied). Emission for wind-sensitive sources are relatively minor and, therefore, no adjustment is applied for hourly wind speeds (i.e. evenly apportioned for each hour of the year). Wind-dependent emissions (wind erosions from stockpiles) are adjusted according to the cube of the hourly average wind speed (Skidmore, 1998) and normalised so that the total emission over all hours in the year adds up to the estimated annual total emission. Emissions are grouped into wind speed bands and averaged, such that the magnitude of emissions increase with each wind speed band.

Best Management Practice Determination

In June 2011 the NSW EPA published the best practice document *NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining* (Katestone, 2011).

An overview of the BMP determination for the Project, and the emission reductions applied, is presented in **Table A5-3**.

Emissions Inventory

The emissions inventory for each component of the Project is presented in **Tables A5-4, A5-5** and **A5-6**.

Table A5-2: Equations and emission factors

Inventory activity Units		TSP emission factor/equation	PM ₁₀ emission factor/equation	PM _{2.5} emission factor/equation	EF source
Material handling (conveyor transfer loading trains and trucks, unloading trucks, rehandle)	kg/t	$0.74 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.35 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.053 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	AP42 13.2.4
Dozers on coal	kg/hr	$35.6 \times \frac{s^{1.2}}{M^{1.3}}$	$6.33 \times \frac{s^{1.5}}{M^{1.4}}$	0.022 x TSP	AP42 11.9
Wind erosion from exposed conveyors	kg/ha/yr	0.85 × 1000	0.5 * TSP	0.075 * TSP	AP42 11.9
Stockpile wind erosion	kg/ha/hr	Emission Factor = $k \sum_{i=1}^{N} Pi$ where: Pi = $58(u * - ut *)^{2} + 25(u * - ut *)$	0.5 * TSP	0.075 * TSP	AP42 13.2.5
Hauling on paved surfaces	g/VKT	$3.23 \ x \ sL^{0.91} \times \ W^{1.02}$	$0.62 \ x \ sL^{0.91} \times \ W^{1.02}$	$0.15 \ x \ sL^{0.91} \times \ W^{1.02}$	AP43 13.2.1
Coal sizer	kg/t	0.0125	0.0043	0.0003	AP42 11.19.2

Note: VKT = vehicle kilometre travelled; U/u = wind speed (m/s); M = moisture content (%); s = silt content (%); W = vehicle weight (t); S = speed (km/hr); ha = hectares, u* (friction velocity (m/s)), ut* (threshold friction velocity (m/s))

Table A5-3: BMP determination and emission controls

Activity	ВМР	Applied?	Control %	Comment				
	Speed reduction	Yes	N/A	Speed restrictions would apply, however, controls are not applied in the emission inventory.				
	Surface improvements	Yes	N/A	All travel surfaces at the Dendrobium Pit Top are paved/sealed.				
Hauling	Surface treatments	Yes	50%	Water truck operates at the CPP and a road sweeper operates at the Dendrobium Pit Top.				
	Use of larger trucks	N/A	N/A	Not applicable to an underground mine.				
	ConveyorsYesN/AThe majority of coal movement is via conveyors. It is not practical to use conveyorsConveyorsYesN/A							
Stockpile wind erosion	Water sprays	Yes	50%	Fixed water sprays on KVCLF stockpile. Water trucks operate at the CPP.				
Loading	Minimising drop heights	Yes	75%	Rill tower used to reduce drop heights and water sprays operate during loading.				
Stockplies	Water application	No						
	Wet suppression	Yes	-	Combined control for wind shielding (40%) and watering (50%) applied. It is noted that the coal				
Coal sizing	Wind shielding	Yes	70%	sizer is fully enclosed with mechanical ventilation and duct collection installed. Therefore, control				
-	Dust extraction	Yes		efficiency would be higher than 70%.				
Coal conveying	Wind shielding	Yes	40%					
Loading trains	Enclosure	Yes	70%					
Coal	Load profiling	Yes	N/A					
wagons	Moisture content above DEM	Yes	N/A	Measured moisture content for ROM coal arriving at the CPP (6.5%) is higher than the measured Dust Extinction Moisture (DEM) level (4.6%).				

Table A5-4: Dendrobium Mine - PM_{2.5} emission inventory

Activity	Emission estimate (kg/year)	Intensity	Units	Emission Factor Units	Variable 1	Variable 2 Variable 3		Variable 4	Variable 5	Control %	Control
KVCLF											í l
Above ground conveying (wind erosion)	3	0.07	ha	64 kg/ha/yr	270 length (m)	2.5 width (m)				40	Wind shielding
Coal sizer/crusher	227	5,200,000	t/y	0.0003 kg/t						85	70% for enclosure plus 50% for water sprays
Loading ROM stockpile	28	5,200,000	t/y	0.00002 kg/t	6 moisture content in %	1.2 (wind speed/2.2)^1.3				75	Telescopic chute with water sprays
Dozer on ROM stockpile	503	2,628	h/y	0.2 kg/h	6 moisture content in %	2.5 silt content in %					i i i i i i i i i i i i i i i i i i i
Excavator on ROM stockpile	22	5,200,000	t/y	0.00002 kg/t	6 moisture content in %	1.2 (wind speed/2.2)^1.3	0.2 times re-handled				1
Loading trains	33	5,200,000	t/y	0.00002 kg/t	6 moisture content in %	1.2 (wind speed/2.2)^1.3				70	Enclosure
Wind erosion of ROM stockpile	4	1.4	ha	6 kg/ha/yr						50	Water sprays
Dendrobium Pit Top											
Light vehicle movements into portal - wheel dust	31	12,000	RTV/year	5 Vehicle gross mass (t)	0.30 km/trip	0.01 kg/VKT	14.0 road surface silt load	ding (g/m2)			
Heavy vehicle movements into portal - wheel dust	32	3,000	RTV/year	30 Vehicle gross mass (t	0.20 km/trip	0.05 kg/VKT	14.0 road surface silt load	ding (g/m2)			
Upcast ventilation shafts											
Ventilation Shaft Site No. 5A	25,229	500	m ³ /s	1.6 mg/m ³							
Ventilation Shaft Site No. 6B	17,660	350	m ³ /s	1.6 mg/m ³							
Diesel consumption			,.								
Combined KVCLF and Pit Top	1,437	1034	kL/y	1.39 kg/kL							
Rail			.,								
Fugitive dust from coal wagons	241	0.45	g/wagon/km	10 km/trip	893 trains per year	60 wagons per train	97 wagon capacity (t)				
Diesel emissions from locomotives	540	310	kL/y	1.75 kg/kL							[
СНРР			.,								
ROM coal - unloading at dump station	41	5,200,000	t/y	0.00003 kg/t	6 moisture content in %	1.4 (wind speed/2.2)^1.3				70	Partial enclosure
ROM coal - 10% transfer to Raw coal stockpile - conveyor	1	0.07	ha	64 kg/ha/yr	260 length (m)	2.5 width (m)				70	Partial enclosure
ROM coal - 10% transfer to Raw coal stockpile - conveyor transfer points	16	520,000	t/y	0.00003 kg/t	6 moisture content in %	1.4 (wind speed/2.2)^1.3	4 tranfer points			70	40% for wind shielding plus 50% for water sprays
ROM coal - 10% transfer to Raw coal stockpile - loading stockpiles	14	520,000	t/y	0.00003 kg/t	6 moisture content in %	1.4 (wind speed/2.2)^1.3					
FEL/dozers on stockpile maintenance (raw coal)	1,174	12,264	h/y	0.2 kg/h	6 moisture content in %	3 silt content in %				50	watering
ROM coal - 90% transfer to wash plant - conveyor transfer	74	4,680,000	t/y	0.00003 kg/t	6 moisture content in %	1.4 (wind speed/2.2)^1.3	2 tranfer points			70	40% for wind shielding plus 50% for
Washed coal - 20% transfer to Blended Beds - conveyor wind	8	0.42	ha	64 kg/ha/yr	1,680 length (m)	2.5 width (m)				70	Partial enclosure
Washed coal - 20% transfer to Blended Beds - conveyor transfer points	7	776,880	t/y	0.00001 kg/t	9 moisture content in %	1.4 (wind speed/2.2)^1.3	2.0 tranfer points			70	40% for wind shielding plus 50% for water sprays
Washed coal - 20% transfer to Blended Beds - loading stockpiles	12	776,880	t/y	0.00001 kg/t	9 moisture content in %	1.4 (wind speed/2.2)^1.3					
Washed coal - loading trucks (83%)	46	3,107,520	t/y	0.00001 kg/t	9 moisture content in %	1.4 (wind speed/2.2)^1.3					
Washed coal - hauling to Clean coal stockpile (15%)	596	466,128	t/y	0.003 kg/t	32 t/load	33 Vehicle gross mass (t)	2.0 km/return trip	0.04 kg/VKT	9.7 road surface silt	50	watering
Washed coal - direct hauling to PKCT (65%)	646	2,019,888	t/y	0.001 kg/t	32 t/load	33 Vehicle gross mass (t)	0.5 km/return trip	0.04 kg/VKT	9.7 road surface silt	50	watering
Washed coal - unload to Clean coal stockpiles (15%)	7	466,128	t/y	0.00001 kg/t	9 moisture content in %	1.4 (wind speed/2.2)^1.3					
Washed coal - rehandle at Clean coal stockpile (15%)	7	466,128	t/y	0.00001 kg/t	9 moisture content in %	1.4 (wind speed/2.2)^1.3					
Washed coal - hauling from Clean coal stockpile to PKCT (15%)	596	466,128	t/y	0.003 kg/t	32 t/load	33 Vehicle gross mass (t)	2.0 km/return trip	0.04 kg/VKT	9.7 road surface silt	50	watering
FEL/dozers on stockpile maintenance (clean coal)	333	6,132	h/y	0.1 kg/h	9 moisture content in %	2.5 silt content in %				50	watering
Wind erosion (combined stockpiles areas)	782	13.7	ha	115 kg/ha/yr						50	watering
Coal wash - loading trucks	3	795,600	t/y	0.00000 kg/t	22 moisture content in %	1.4 (wind speed/2.2)^1.3					
Coal wash - transport off-site	254	795,600	t/y	0.00064 kg/t	32 t/load	33 Vehicle gross mass (t)	0.5 km/return trip	0.04 kg/VKT	9.7 road surface silt	50	watering
Diesel consumption										_	
Combined CPP diesel consumption	669	481	kL/y	1.39 kg/kL							

Table A5-5: Dendrobium Mine - PM₁₀ emission inventory

Activity	Emission estimate (kg/year)	Intensity	Units	Emission Factor	Units	Variable 1			Variable 2	Variable 3	Varia	able 4	Variable 5	Control %	Control
Kemira Valley Coal Loading Facility															
Above ground conveying (wind erosion)	17	0.07	ha	425	kg/ha/yr	270 length (m)		2.5 v	vidth (m)					40) Wind shielding
Coal sizer/crusher	3,354	5,200,000	t/y	0.0043	kg/t									85	70% for enclosure plus 50% for water sprays
Loading ROM stockpile	184	5,200,000	t/y	0.0001	kg/t	6 moisture conten	t in %	1.2 (wind speed/2.2)^1.3					75	Telescopic chute with water sprays
Dozer on ROM stockpile	5,352	2,628	h/y	2.0	kg/h	6 moisture conten	t in %	2.5 s	ilt content in %						
Excavator on ROM stockpile	147	5,200,000	t/y	0.0001	kg/t	6 moisture conten	t in %	1.2 (wind speed/2.2)^1.3	0.2 times re-handled					
Loading trains	220	5,200,000	t/y	0.0001	kg/t	6 moisture conten	t in %	1.2 (wind speed/2.2)^1.3					70	Enclosure
Wind erosion of ROM stockpile	30	1.4	ha	43	kg/ha/yr									50	Water sprays
Dendrobium Pit Top															
Light vehicle movements into portal - wheel dust	127	12,000	RTV/year	5	Vehicle gross mass (t)	0.30 km/trip	C	0.04 k	:g/VKT	14.0 road surface silt loa	ding (g/m	2)			
Heavy vehicle movements into portal - wheel dust	132	3,000	RTV/year	30	Vehicle gross mass (t)	0.20 km/trip	C	0.22 k	g/VKT	14.0 road surface silt loa	ading (g/m	2)			
Upcast ventilation shafts															
Ventilation Shaft Site No. 5A	25,229	500	m³/s	1.6	mg/m ³										
Ventilation Shaft Site No. 6B	17,660	350	m ³ /s	1.6	mg/m ³										
Diesel consumption															
Combined KVCLF and Pit Top diesel consumption	1,481	1034	kL/y	1.43	kg/kL										
Kemira Valley Rail Line					-										
Fugitive dust from coal wagons	1,608	3	g/wagon/km	10	km/trip	893 trains per year		60 v	vagons per train	97 wagon capacity (t)					
Diesel emissions from locomotives	557	310	kL/y	1.80	kg/kL										
Dendrobium Coal Preparation Plant					-										
ROM coal - unloading at dump station	272	5,200,000	t/y	0.00017	kg/t	6 moisture conten	t in %	1.4 (wind speed/2.2)^1.3					70) Partial enclosure
ROM coal - 10% transfer to Raw coal stockpile - conveyor wind	8	0.07	ha	425	kg/ha/vr	260 length (m)		2 5 V	vidth (m)					70	Partial enclosure
erosion	0	0.07		125	16,110,11	200 1011501 (11)		2.5 0	iidai (iii)						- Tartial enclosure
ROM coal - 10% transfer to Raw coal stockpile - conveyor transfer points	109	520,000	t/y	0.00017	kg/t	6 moisture conten	t in %	1.4 (wind speed/2.2)^1.3	4 tranfer points				70	40% for wind shielding plus 50% for water sprays
ROM coal - 10% transfer to Raw coal stockpile - loading stockpiles	91	520,000	t/y	0.00017	kg/t	6 moisture conten	t in %	1.4 (wind speed/2.2)^1.3						
FEL/dozers on stockpile maintenance (raw coal)	12,488	12,264	h/y	2.0	kg/h	6 moisture conten	t in %	2.5 s	ilt content in %					50) watering
ROM coal - 90% transfer to wash plant - conveyor transfer points	489	4,680,000	t/y	0.00017	kg/t	6 moisture conten	t in %	1.4 (wind speed/2.2)^1.3	2 tranfer points				70	40% for wind shielding plus 50% for water sprays
Washed coal - 20% transfer to Blended Beds - conveyor wind erosion	54	0.42	ha	425	kg/ha/yr	1,680 length (m)		2.5 v	vidth (m)					70	Partial enclosure
Washed coal - 20% transfer to Blended Beds - conveyor transfer points	46	776,880	t/y	0.00010	kg/t	9 moisture conten	t in %	1.4 (wind speed/2.2)^1.3	2.0 tranfer points				70	40% for wind shielding plus 50% for water sprays
Washed coal - 20% transfer to Blended Beds - loading stockpiles	77	776,880	t/y	0.00010	kg/t	9 moisture conten	t in %	1.4 (wind speed/2.2)^1.3						
Washed coal - loading trucks (83%)	307	3,107,520	t/y	0.00010	kg/t	9 moisture conten	t in %	1.4 (wind speed/2.2)^1.3						
Washed coal - hauling to Clean coal stockpile (15%)	2,465	466,128	t/y	0.011	kg/t	32 t/load		33 V	/ehicle gross mass (t)	2.0 km/return trip	0.17	1 kg/VKT	9.7 road surface silt	50	watering
Washed coal - direct hauling to PKCT (65%)	2,670	2,019,888	t/y	0.003	kg/t	32 t/load		33 V	/ehicle gross mass (t)	0.5 km/return trip	0.17	1 kg/VKT	9.7 road surface silt	50) watering
Washed coal - unload to Clean coal stockpiles (15%)	46	466,128	t/y	0.00010	kg/t	9 moisture conten	t in %	1.4 (wind speed/2.2)^1.3						
Washed coal - rehandle at Clean coal stockpile (15%)	46	466,128	t/y	0.00010	kg/t	9 moisture conten	t in %	1.4 (wind speed/2.2)^1.3						
Washed coal - hauling from Clean coal stockpile to PKCT (15%)	2,465	466,128	t/y	0.011	kg/t	32 t/load		33 V	/ehicle gross mass (t)	2.0 km/return trip	0.17	1 kg/VKT	9.7 road surface silt	50	watering
FEL/dozers on stockpile maintenance (clean coal)	3,540	6,132	h/y	1.2	kg/h	9 moisture conten	t in %	2.5 s	ilt content in %					50	watering
Wind erosion (combined stockpiles areas)	5,212	13.7	ha	763	kg/ha/yr									50	watering
Coal wash - loading trucks	22	795,600	t/y	0.00003	kg/t	22 moisture conten	t in %	1.4 (wind speed/2.2)^1.3						
Coal wash - transport off-site	1,052	795,600	t/y	0.00264	kg/t	32 t/load		33 V	/ehicle gross mass (t)	0.5 km/return trip	0.1	7 kg/VKT	9.7 road surface silt	50) watering
Diesel consumption															
Combined CPP diesel consumption	689	481	kL/y	1.43	kg/kL										

Table A5-6: Dendrobium Mine - TSP emission inventory

Activity	Emission estimate (kg/year)	Intensity	Units	Emission Factor	Units		Variable 1	Variable 2	Variable 3	Varial	ble 4	,	Variable 5	Control %	Control
KVCLF															
Above ground conveying (wind erosion)	34	0.07 ha	а	850	kg/ha/yr	270	length (m)	2.5 width (m)						40	Wind shielding
Coal sizer/crusher	9,750	5,200,000 t/	'y	0.0125	kg/t									85	70% for enclosure plus 50% for water sprays
Loading ROM stockpile	388	5,200,000 t/	'y	0.0003	kg/t	6	moisture content in %	1.2 (wind speed/2.2)^1.3						75	Telescopic chute with water sprays
Dozer on ROM stockpile	22,866	2,628 h/	/y	8.7	kg/h	6	moisture content in %	2.5 silt content in %							
Excavator on ROM stockpile	311	5,200,000 t/	'y	0.0003	kg/t	6	moisture content in %	1.2 (wind speed/2.2)^1.3	0.2 times re-handled						
Loading trains	466	5,200,000 t/	'y	0.0003	kg/t	6	moisture content in %	1.2 (wind speed/2.2)^1.3						70	Enclosure
Wind erosion of ROM stockpile	60	1.4 ha	а	85	kg/ha/yr									50	Water sprays
Dendrobium Pit Top															
Light vehicle movements into portal - wheel dust	663	12,000 RT	TV/year	5	Vehicle gross mass (t)	0.30	km/trip	0.2 kg/VKT	14.0 road surface silt load	ing (g/m2	2)				
Heavy vehicle movements into portal - wheel dust	687	3,000 RT	TV/year	30	Vehicle gross mass (t)	0.20	km/trip	1.1 kg/VKT	14.0 road surface silt load	ing (g/m2	2)				
Upcast ventilation shafts															
Ventilation Shaft Site No. 5A	25,229	500 m	ı³/s	1.6	mg/m ³										
Ventilation Shaft Site No. 6B	17,660	350 m	ı³/s	1.6	mg/m ³										
Diesel consumption															
Combined KVCLF and Pit Top	1,481	1034 kL	/y	1.43	kg/kL										
Rail															
Fugitive dust from coal wagons	3,216	6 g/	/wagon/km	10	km/trip	893	trains per year	60 wagons per train	97 wagon capacity (t)						
Diesel emissions from locomotives	557	310 kL	/y	1.80	kg/kL										
СНРР															
ROM coal - unloading at dump station	574	5,200,000 t/	'y	0.0004	kg/t	6	moisture content in %	1.4 (wind speed/2.2)^1.3						70	Partial enclosure
ROM coal - 10% transfer to Raw coal stockpile - conveyor wind erosion	17	0.07 ha	а	850	kg/ha/yr	260	length (m)	2.5 width (m)						70	Partial enclosure
ROM coal - 10% transfer to Raw coal stockpile - conveyor transfer points	230	520,000 t/	'y	0.0004	kg/t	6	moisture content in %	1.4 (wind speed/2.2)^1.3	4 tranfer points					70	40% for wind shielding plus 50% for water sprays
ROM coal - 10% transfer to Raw coal stockpile - loading stockpiles	191	520,000 t/	'y	0.0004	kg/t	6	moisture content in %	1.4 (wind speed/2.2)^1.3							
FEL/dozers on stockpile maintenance (raw coal)	53,354	12,264 h/	/y	8.7	kg/h	6	moisture content in %	3 silt content in %						50	watering
ROM coal - 90% transfer to wash plant - conveyor transfer points	1,034	4,680,000 t/	'y	0.0004	kg/t	6	moisture content in %	1.4 (wind speed/2.2)^1.3	2 tranfer points					70	40% for wind shielding plus 50% for water sprays
wind erosion	107	0.42 ha	а	850	kg/ha/yr	1,680	length (m)	2.5 width (m)						70	Partial enclosure
Washed coal - 20% transfer to Blended Beds - conveyor transfer points	97	776,880 t/	'y	0.0002	kg/t	9	moisture content in %	1.4 (wind speed/2.2)^1.3	2.0 tranfer points					70	40% for wind shielding plus 50% for water sprays
Washed coal - 20% transfer to Blended Beds - loading stockpiles	162	776,880 t/	'y	0.0002	kg/t	9	moisture content in %	1.4 (wind speed/2.2)^1.3							
Washed coal - loading trucks (83%)	648	3,107,520 t/	'y	0.0002	kg/t	9	moisture content in %	1.4 (wind speed/2.2)^1.3							
Washed coal - hauling to Clean coal stockpile (15%)	12,841	466,128 t/	'y	0.055	kg/t	32	t/load	33 Vehicle gross mass (t)	2.0 km/return trip	0.9	kg/VKT	9.7	road surface silt	50	watering
Washed coal - direct hauling to PKCT (65%)	13,911	2,019,888 t/	'y	0.014	kg/t	32	t/load	33 Vehicle gross mass (t)	0.5 km/return trip	0.9	kg/VKT	9.7	road surface silt	50	watering
Washed coal - unload to Clean coal stockpiles (15%)	97	466,128 t/	'y	0.0002	kg/t	9	moisture content in %	1.4 (wind speed/2.2)^1.3							
Washed coal - rehandle at Clean coal stockpile (15%)	97	466,128 t/	'y	0.0002	kg/t	9	moisture content in %	1.4 (wind speed/2.2)^1.3							
Washed coal - hauling from Clean coal stockpile to PKCT (15%)	12,841	466,128 t/	'y	0.055	kg/t	32	t/load	33 Vehicle gross mass (t)	2.0 km/return trip	0.9	kg/VKT	9.7	road surface silt	50	watering
FEL/dozers on stockpile maintenance (clean coal)	15,122	6,132 h/	/y	4.9	kg/h	9	moisture content in %	2.5 silt content in %						50	watering
Wind erosion (combined stockpiles areas)	10,423	13.7 ha	а	1527	kg/ha/yr									50	watering
Coal wash - loading trucks	47	795,600 t/	'y	0.0001	kg/t	22	moisture content in %	1.4 (wind speed/2.2)^1.3							
Coal wash - transport off-site	5,479	795,600 t/	'y	0.01377	kg/t	32	t/load	33 Vehicle gross mass (t)	0.5 km/return trip	0.9	kg/VKT	9.7	road surface silt	50	watering
Diesel consumption															
Combined CPP diesel consumption	689	481 kL	/y	1.43	kg/kL										

APPENDIX 6 COAL PROPERTIES TESTING REPORT

ABN 97 000 710 074 Newcastle Institute for Energy and Resources 70 Vale St, Shortland NSW 2307 Australia

> Tel. +61 2 4033 9055 Fax +61 2 4033 9044 Email: enquiries@bulksolids.com.au www.bulksolids.com.au

REPORT 9031

Ramboll Environ Australia Pty Ltd

Dust Extinction Moisture and Particle Size Distribution Investigation

То:	Ramboll Environ Australia Pty Ltd	Date:	22/08/2017
Attention:	Ronan Kellaghan	Pages:	6 (excl Appendices)
Email:	RKellaghan@ramboll.com	Authored:	Daniel Ausling
		Reviewed:	Paul Munzenberger

DISCLAIMER

Users of this report are invited to contact TUNRA Bulk Solids if clarification of any aspect is required. The test results presented are for a client supplied bulk material sample. Should the material handled in practice vary from this test sample then the results in this report may be far from optimal. In addition, any extrapolation of the data and / or recommendations to situations other than those for which they were specifically intended without confirmation by TUNRA Bulk Solids may lead to erroneous conclusions. The contents of this report may not be reproduced without the consent of the client; and then only in full. This investigation was performed using the facilities of the Bulk Solids Handling Laboratories of TUNRA Bulk Solids Handling Research Associates and the Centre for Bulk Solids & Particulate Technologies at The University of Newcastle.

lan al

Daniel Ausling Consulting Engineer

Tel: +61 2 4033 9043 Fax: +61 2 4033 9044 Email: <u>daniel.ausling@newcastle.edu.au</u>

TABLE OF CONTENTS

1 IN	TRODUCTION	4							
2 TE	ST RESULTS	4							
2.1	Moisture Content	4							
2.2	Particle Size Distribution	4							
2.3	Dust Extinction Moisture	5							
3 RE	EFERENCES	5							
APPE	APPENDICES								

1 INTRODUCTION

This report has been commissioned by Ramboll Environ Australia Pty Ltd (herein referred to as Ramboll). The testing conducted determined the Dust Extinction Moisture (DEM) and Particle Size Distribution (PSD) of a sample of Wongawilli Dendrobium ROM Coal supplied in the -6.3mm size fraction. This work is covered by the purchase order number AS122085.

2 TEST RESULTS

2.1 Moisture Content

Total moisture content for the test sample is determined using a method derived from AS 1038 Part 1 Method C and is quoted as a percentage of wet weight (%wb). The Wongawilli ROM sample supplied had a nominal top size of 6.3mm.

Wongawilli ROM Coal -6.3mm	Moisture Content (%)
As Supplied	6.5 %
Saturated	27.4 %

Table 1 Moisture Content

2.2 Particle Size Distribution

The particle size distribution of a coarse bulk solid with a majority of particles larger than 0.1mm is determined using a dry sieving technique. The full results can be seen in Figure 1 with the results summarised in Table 2.

Figure 1 Particle size distribution for Wongawilli ROM Coal -6.3mm.

Table 2 Particle Size Distribution Summary

Sample	d₁₀ (mm)	d₅₀ (mm)	d₀₀ (mm)
Wongawilli ROM Coal -6.3mm	0.25	1.6	4.7

2.3 Dust Extinction Moisture

The dust extinction moisture (DEM) determined for the Wongawilli ROM Coal sample provided is summarised in Table 3 with full results presented in Figure 2.

Table 3 Dust Extinction Moisture

Figure 2 Dust number measurement results for Wongawilli ROM Coal -6.3mm.

3 REFERENCES

[1] Australian Standard AS 4156.6-2000, Coal Preparation Part 6: Determination of Dust/Moisture Relationship for Coal.

APPENDICES

APPENDIX: DUST EXTINCTION MOISTURE TEST PROCEDURE

The moisture content at which a material is deemed to emit no dust was determined using a procedure set down in Australian Standard AS-4156.6-2000. This standard was written specifically for coal but has been utilised for other bulk materials by modifying the quantity of sample placed in the test rig; the Standard calls for 1kg of coal in the -6.3mm size fraction. The actual weight of the sample is taken into account when determining the dust number.

AS-4156-2000 should be referred to for a complete explanation of the general test procedure, however, a concise description is as follows. The test rig shown in Figure 1 consists of a rotating drum in which the sample of material to be tested is placed. The drum is rotated at a speed of 30rpm for a period of 10 minutes while an air flow rate of 170L/min is drawn through a hole in the drum lid, through a hollow drive shaft and a paper filter bag which collects the dust generated in the drum. The weight of the filter bag is measured before and after the test to determine the quantity of dust collected. A dust number is then calculated using the formula given in Equation 1.

Figure 1 – Dust Extinction Moisture Test Facility

Dust Number =
$$\frac{M_{b}-M_{a}}{M_{s}} \times 100,000$$
 (1)

Where

1010		
M_{b}	=	Mass of filter bag and dust (grams)
M_{a}	=	Mass of filter bag (grams)
M_{s}	=	Mass of sample in drum (grams)

The test work is conducted on a number of samples over a range of moistures. The dust numbers obtained are plotted on a log-linear graph where a line of best fit that crosses the dust number of 10 is deemed the Dust Extinction Moisture (DEM). The test is performed within a climate controlled chamber with a regulated humidity of between 61-65%RH and a temperature of 20-22°C.

