

2 & 10-22 Kent Road and 685 Gardeners Road, Mascot NSW 21 May 2025

Remedial Action Plan

Document Information

Remedial Action Plan

2 & 10-22 Kent Road and 685 Gardeners Road, Mascot NSW

Prepared by:

Senversa Pty Ltd ABN: 89 132 231 380

Level 24, 1 Market St, Sydney, NSW 2000

tel:+61 2 8252 0000 www.senversa.com.au

Prepared for:

Goodman Property Services (Aust) Pty Ltd

1-11 Hayes Road Roseberry NSW 2018

Revision	Date	Author	Reviewed	Approved	Detail
0	8 May 2025	Zoe Smith	Jason Clay	Jason Clay	Draft for client review
1	21 May 2025	Zoe Smith	Jason Clay	Jason Clay	Final – Rev B SSDA Amendment

Project Manager: Zoe Smith
Project Director: Jason Clay

Disclaimer and Limitations:

This document is confidential and has been prepared by Senversa for use only by its client and for the specific purpose described in our proposal which is subject to limitations. No party other than Senversa's client may rely on this document without the prior written consent of Senversa, and no responsibility is accepted for any damages suffered by any third party arising from decisions or actions based on this document. Matters of possible interest to third parties may not have been specifically addressed for the purposes of preparing this document and the use of professional judgement for the purposes of Senversa's work means that matters may have existed that would have been assessed differently on behalf of third parties.

Senversa prepared this document in a manner consistent with the level of care and skill ordinarily exercised by members of Senversa's profession practising in the same locality under similar circumstances at the time the services were performed.

Permission should be sought before any reference (written or otherwise) is made public that identifies any people, person, address or location named within or involved in the preparation of this report. Senversa requires that this document be considered only in its entirety and reserves the right to amend this report if further information becomes available. This document is issued subject to the technical principles, limitations and assumptions provided herein in **Section 10.0**.

©2025 Senversa Pty Ltd

Senversa acknowledges the traditional custodians of the land on which this work was created and pay our respect to Elders past and present.

Executive Summary

Introduction

Senversa Pty Ltd (Senversa) was engaged by Goodman Property Services (Aust) Pty Ltd (GPSA) to prepare a remedial action plan (RAP) to manage identified contamination at 2 & 10-22 Kent Road and 685 Gardeners Road, Mascot NSW (the site). The site location is indicated on **Figure 1**.

Context

Senversa conducted a detailed site investigation (DSI) which revealed that the southern portions of the site (10-22 Kent Road) were used as a metal foundry from the 1970s to the early 1990s. Subsequently, this portion was utilized for an excavation and earth moving business during the 1990s to early 2000s. It is currently occupied by Eaton Electrical, a manufacturer and distributor of electrical goods.

For the northeastern portion of the site (2 Kent Road), business records prior to 2010 were unavailable. However, it was recorded as being occupied by a surgical equipment supplier until 2015, after which it was taken over by a printing group.

The northwestern portion of the site (685 Gardeners Road) remained undeveloped until 1970, when it was developed into a printing workshop. This area was then used for textile manufacturing from 1982 until 1991. It is understood that since around the 2000s, the warehouse has been utilized for poultry processing.

Senversa understands that GPSA are proposing to redevelop the site into a 120-megavolt ampere (MVA) (n-1) Data Centre, as per proposed in the development designs in **Appendix A**. The redevelopment project is designated State Significant Development (SSD-71368959).

Previous investigations at the site identified contamination, the DSI recommended that an RAP be prepared to address data gaps and manage identified contamination issues to make the site suitable for the proposed development.

The required extent of remediation or management comprises:

- <u>Fill material across the site:</u> while not all fill material is contaminated, for the purposes of planning the remediation all fill material should be considered potentially impacted by asbestos. This is a conservative precautionary approach adopted as the occurrence and concentrations of asbestos in fill have not been delineated laterally or vertically. Fill materials should also be assumed not suitable for use as growing media in landscaping areas unless assessed otherwise.
- Remnant primary chemical storage infrastructure: available information indicates that there is uncertainty in the occurrence of disused underground storage tanks (USTs) within the northern portion of the site (2 Kent Road).
- <u>Hydrocarbon impacted soils:</u> soils local to UST areas impacted by petroleum hydrocarbons, that represent a potential elevated risk if exposed.
- Groundwater: was assessed to represent a low risk provided that it is not extracted and used.

Objective

The remedial objectives are:

- To derive a plan to make the site suitable for ongoing commercial/industrial land use.
- This will be achieved by mitigating potential risks to human health and managing potential environmental impacts during the remedial works, including meeting SSD conditions of approval.

Remedial Strategy

A remedial options assessment was undertaken, and the preferred strategy developed that comprised the following key components:

- 1. Removal to the extent practicable of remaining disused USTs, or decommissioning if otherwise, as required under *Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019* (the UPSS Regulation).
- 2. *In-situ* containment of contaminated soils. This includes leaving undisturbed materials under existing building slabs and pavement to be retained, and capping other contaminated soils via new building slabs, pavement or clean soils and a marker layer.
- 3. Use of suitable site soils or imported media in open space landscaping areas.
- 4. Passive management under a long-term environmental management plan (LTEMP) to restrict use of groundwater and control exposure to residual contamination at depth during deep intrusive works.

The aim is that no actions would be needed for normal site use by workers, visitors and landscaping maintenance workers.

Conclusion

Subject to the suitable implementation of the measures described in this RAP, it is concluded that the site can be made suitable for the intended commercial/industrial use and that the risks to the environment can be appropriately protected during the remediation works. Ongoing passive management of certain intrusive works into residual contaminated soils and impacted groundwater under building slabs, pavement and a marker layer will be required via appropriate implementation of a passive LTEMP.

Contents

Executive	e Summary	ii
List of Ac	cronyms	vii
1.0	Introduction	1
1.1	Background	1
1.2	Proposed Development	1
1.3	SEAR Conditions	2
1.4	Objective	2
1.5	Key Stakeholders	3
1.6	Regulatory and Guidance Requirements	3
2.0	Site Information	4
2.1	Site Identification	4
2.2	Previous Investigations	5
2.3	Site Setting	5
2.4	Contamination Setting	5
2.4.1	Summary of Site History	5
2.4.2	Contamination Summary	6
2.4.3	Data Gaps	7
3.0	Conceptual Site Model	8
4.0	Remediation Strategy	11
4.1	Remedial Objectives	11
4.2	Extent of Required Remediation	11
4.3	Constraints and Limitations	11
4.4	Remediation Policies	12
4.4.1	Soil	12
4.4.2	Groundwater	12
4.4.3	Ecological Sustainable Development	12
4.4.4	UPSS Regulation	13
4.5	Remediation Options Evaluation	13
4.6	Preferred Remediation Approach	14
4.7	Approvals, Permits and Notifications	15
5.0	Remediation Work Plan	16
5.1	Design Review	16
5.2		
5.2	Address Data Gaps	16

5.3.1	Marker Layer	21
5.3.2	Cover Layer	21
5.3.3	Deviations	21
5.4	Materials Management	21
5.4.1	Material Tracking	21
5.4.2	Excavated Fill/Soils	22
5.4.3	Waste (Off-Site Disposal)	22
5.4.4	Imported Materials	23
5.5	Remediation Validation	23
5.6	Ongoing Management	23
6.0	Validation Plan	24
6.1	Data Quality Objectives	24
6.1.1	Step 1 – State the Problem	24
6.1.2	Step 2 – Identify the Decisions	24
6.1.3	Step 3 – Identify Information Inputs	25
6.1.4	Step 4 – Define the Study Boundaries	25
6.1.5	Step 5 – Develop the Decision Rules	26
6.1.6	Step 6 – Specify Limits of Decision Error	27
6.1.7	Step 7 - Optimise the Design for Obtaining Data	29
6.2	Validation Design and Methodology	29
6.3	Environmental Consultant Presence	34
6.4	Quality Assurance and Quality Control	34
6.4.1	Field QA/QC	35
6.4.2	Laboratory QA / QC	36
6.5	Remediation Acceptance Criteria	36
6.6	Validation Reporting	39
7.0	Site Management Provisions	40
7.1	Asbestos Management	40
7.2	Construction Environmental Management	41
7.2.1	Site Access	41
7.2.2	Vehicle Cleaning	41
7.2.3	Dust Control	41
7.2.4	Odour Control	42
7.2.5	Soil Erosion and Surface Water Runoff	42
7.2.6	Site Security and Signage	42
7.3	Worker Health and Safety	43
7.4	Reporting	43
7.4.1	Non-conformance and Corrective Action Reports	43
7.4.2	Incident Management Reports	43

7.4.3	Complaint Reporting	44
7.5	Remediation Schedule	44
7.6	Hours of Operation	44
8.0	Contingency Plan	45
8.1	Remedial Contingencies	45
8.2	Unexpected Finds	46
9.0	Conclusion	47
10.0	Principles and Limitations	48
11.0	References	49
Table	s in Text	
Table 1.	1: SEARs Requirement	2
Table 1.2	2: Roles and Responsibilities	3
Table 2.	1: Site Identification	4
Table 2.2	2: Property Environmental Setting	5
Table 3.	1: Source-Pathway-Receptor Linkages	9
Table 4.	1: Soil Remedial Options Assessment	13
Table 5.	1 Sampling Strategy to Address Data Gaps	17
Table 5.2	2: Capping Design	20
Table 5.3	3: Stockpile Details Required in the Material Tracking Register	22
Table 5.4	4: Importation Details Required in the Material Tracking Register	22
Table 5.	5: On-Site Reuse Details Required in the Material Tracking Register	22
Table 5.6	6: Exportation Details Required in the Material Tracking Register	22
Table 6.	1: Decision Rules	26
Table 6.2	2: Data Quality Indicators	28
Table 6.	3: Validation Strategy and Design	30
Table 6.4	4: Adopted Assessment Criteria	37
Table 8.	1: Contingencies	45
Table 10).1: Principal and Limitation of Investigation	48

Appendices

Figures

Appendix A: Proposed Development Plans

Appendix B: Contamination Data Tables

List of Acronyms

Acronym	Definition	
ABC	Ambient Background Concentration	
ACL	Added Contaminant Limit	
ACM	Asbestos Containing Material	
ANZG	Australian and New Zealand Guidelines	
AS	Australian Standard	
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure	
ASS	Acid Sulfate Soil	
ANZECC	Australian and New Zealand Environment and Conservation Council	
ВН	Borehole	
ВТЕХ	Benzene, Toluene, Ethylbenzene and Xylenes	
CEC	Cation Exchange Capacity	
сос	Chain of Custody	
СоРС	Contaminant of Potential Concern	
сѕм	Conceptual Site Model	
DGV	Default Guideline Values	
DP	Deposited Plan	
DQIs	Data Quality Indicators	
DQOs	Data Quality Objectives	
DSI	Detailed Site Investigation	
EC	Environmental Consultant	
EIL	Ecological Investigation Level	
EIS	Environmental Impact Statement	
ЕМР	Environmental Management Plan	
ENM	Excavated Natural Material	
EPA	Environment Protection Authority (NSW)	

Acronym	Definition	
ESL	Ecological Screening Level	
GPR	Ground-Penetrating Radar	
GPSA	Goodman Property Services (Aust) Pty Ltd	
ha	Hectare	
HEPA	Heads of EPA Australia and New Zealand	
HIL	Health Investigation Level	
HSL	Health Screening Level	
km	Kilometre	
L	Litre	
LAA	Licenced Asbestos Assessor	
LOR	Limit of Reporting	
m	Metre	
m3	Cubic Metres	
m bgl	Metres Below Ground Level	
mg/kg	Milligrams per Kilogram	
mg/L	Milligrams per Litre	
NATA	National Association of Testing Authorities	
NEMP	National Environmental Management Plan	
NEPC	National Environment Protection Council	
NEPM	National Environment Protection Measure	
NHMRC	National Health and Medical Research Council	
ОСР	Organochlorine Pesticides	
ОРР	Organophosphate Pesticides	
PAH	Polycyclic Aromatic Hydrocarbons	

Acronym	Definition	
PASS	Potential Acid Sulfate Soil	
РСВ	Polychlorinated Biphenyl	
PFAS	Per- and Polyfluoroalkyl Substances	
PFOS	Perfluorooctane Sulfonate	
PID	Photo-Ionisation Detector	
POEO Act	Protection of the Environment Operations Act 1997	
QA	Quality Assurance	
QC	Quality Control	
RAP	Remedial Action Plan	
RC	Remediation Contractor	
RPD	Relative Percentage Difference	
RRE	Resource Recovery Exemption	
RRO	Resource Recovery Order	
SEAR	Secretary's Environmental Assessment Requirements	
spp	Species Protection	
SPR	Source-Pathway-Receptor	
SSD	State Significant Development	
TRH	Total Recoverable Hydrocarbons	
UST	Underground Storage Tank	
μg/kg	Micrograms Per Kilogram	
μg/L	Micrograms Per Litre	
VENM	Virgin Excavated Natural Material	
voc	Volatile Organic Compound	

1.0 Introduction

Senversa Pty Ltd (Senversa) was engaged by Goodman Property Services (Aust) Pty Ltd (GPSA) to prepare a remedial action plan (RAP) to manage identified contamination at 2 & 10-22 Kent Road and 685 Gardeners Road, Mascot NSW (the site). The site location is indicated on **Figure 1**.

Northwestern (685 Gardeners Road) is currently operating as a poultry processing factory; the northeastern (2 Kent Road) and southern portions of the site are currently operating as commercial storage and distribution warehouses. Senversa understands that GPSA is proposing to redevelop the site into a 120-megavolt ampere (MVA) (n-1) Data Centre, as per the development designs in **Appendix A**. The redevelopment project is designated State Significant Development (SSD-71368959). The Planning Secretary's Environmental Assessment Requirements (SEAR) require an Environmental Impact Statement (EIS) to be prepared that must address certain requirements, including investigation of contamination and preparation of a RAP, if required.

A preliminary site investigation (PSI)¹ consolidated the understanding of previous works and contamination conditions. A detailed site investigation (DSI)² was then conducted that collected data and presented a conceptual site model (CSM). The DSI recommended that an RAP be prepared to manage identified contamination issues so that the site could be made suitable for the proposed development.

1.1 Background

Senversa prepared a DSI (Senversa, 2025b) that concluded that an RAP is required to manage identified contamination issues to make the site suitable for the proposed development. These key contamination issues relate to risks associated with:

- Managing exposure to and disturbance of soils during intrusive works due to the occurrence of asbestos in fill and potential localised aesthetic and hydrocarbon impacts.
- Removal of point source of contamination, via decommissioning and removal of underground storage tanks (USTs) at the site.
- Controlling use of site soils, which may not be ecologically suitable for use as exposed soils or growing media in landscaping areas.
- Controlling use of groundwater that may not be suitable for extraction and use.
- Appropriate environmental management of site soils and water during development construction works. This includes management of acid sulfate soils that may be disturbed via implementation of an acid sulfate soil management plan.

1.2 Proposed Development

The proposed development (SSD-71368959) will seek approval for the construction of an 120MVA Data Centre. The proposal seeks to demolish existing structures on the site, construct, fit out and the 24/7 operation of a Data Centre, with associated works.

The works subject to SSD-71368959 include the following:

• Site preparation works including demolition, bulk excavation, and removal of existing structures on the site, tree and vegetation clearing, and bulk earthworks.

¹ Senversa (2025a). Preliminary Site Investigation. S21569 002 RPT Rev2, 26 May 2025.

² Senversa (2025b). Detailed Site Investigation. S21569_003_RPT_Rev3, 6 May 2025.

- Construction, fit out and 24/7 operation of a 120 MVA data centre with a maximum building height of 40 m (from natural ground level) and total gross floor area of approximately 26,052 m² comprising:
 - At-grade parking for thirty-four (34) car parking spaces and one (1) accessible car parking spaces.
 - Two (2) 12.5 m loading dock spaces.
 - Four (4) levels of technical data hall floor space with one data hall on ground level, three (3) data halls on levels one and two (2) data halls on level three.
 - Secure entrance lobby on ground level and ancillary office space on each level and mezzanine level.
- Provision of required plant and utilities, including:
 - Six (6) 33 kV switch rooms on ground level.
 - 1,172,000 L above ground diesel storage tanks.
 - 5,125 kL above ground water storage tanks.
 - 72 diesel generators.
- Acoustic screen parapet.
- Vehicle access provided via Gardeners Road and Ricketty Street.

Development plans considered in this RAP are presented in **Appendix A**.

1.3 SEAR Conditions

The SSD application needs to comply with the NSW Planning Secretary's Environmental Assessment Requirements (SEARs), details of how this report complies with SEARs is summarised in **Table 1.1** below.

Table 1.1: SEARs Requirement

SEARs Requirement

Response

"17. Contamination and Remediation.

In accordance with Chapter 4 of SEPP (Resilience and Hazards) 2021, assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable (or will be suitable, after remediation) for the development."

A prerequisite of this is that a preliminary site investigation (PSI) be completed. Pending assessments within the PSI, a DSI may be required. These investigations are required to assess and quantify any contamination on-site and demonstrate that the site is suitable (or can be made suitable) for the proposed land use, that being commercial/industrial. Should contamination be identified on-site during the PSI and DSI, a remedial action plan (RAP) and/or an environmental management plan (EMP) may be required for the proposed development.

This document has been prepared to meet the requirement to prepare a RAP as recommended in the DSI (Senversa, 2025b).

1.4 Objective

The primary objective of this RAP is to describe the remedial processes and procedures required to be implemented during site development works to make the site is suitable for the proposed development. Specific remedial objectives are presented within **Section 6.1.**

1.5 Key Stakeholders

The stakeholders likely involved in the remediation project are listed in **Table 1.2** below.

Table 1.2: Roles and Responsibilities

Role	Organisation	Qualification / Experience Requirement for Remediation			
Owner/Developer	GPSA.	-			
Consent Authority	Department of Planning, Housing and Infrastructure.	-			
Principal Contractor (PC)	TBC.	-			
Remediation Contractor (RC)	TBC.	-			
Environmental Consultant (EC)	TBC.	Suitable trained and experienced. All reports to be prepared under direction of and approved by a person with an EPA-recognised consultant certification scheme: • Environment Institute of Australia and New Zealand - Certified Environmental Practitioner (Site Contamination) (CEnvP (SC)). • Soil Science Australia - Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM).			

TBC = to be confirmed.

1.6 Regulatory and Guidance Requirements

This RAP has been developed with reference to the following guidelines and standards:

- Acid Sulfate Soils Management Advisory Committee, 1998. Acid Sulfate Soil Manual.
- CBC (2017). Contaminated Land Policy, City of Canterbury-Bankstown.
- DUAP & EPA (1998) Managing Land Contamination Planning Guidelines, SEPP 55 Remediation of Land.
- HEPA (2020). *PFAS National Environmental Management Plan* (NEMP). Version 2.0. National Chemicals Working Group of the Heads of EPAs Australia and New Zealand (PFAS NEMP).
- National Environment Protection Council (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure (No.1). This is hereafter referred to as 'ASC NEPM'.
- DEC (2007). Guidelines for the Assessment and Management of Groundwater Contamination.
- NSW EPA (2014). Waste Classification Guidelines. Part 1: Classifying Waste.
- NSW EPA (2015). Technical Note: Light Non-Aqueous Phase Liquid Assessment and Remediation.
- NSW EPA (2017). Guidelines for the NSW Site Auditor Scheme (3rd edition).
- NSW EPA (2020a). Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.
- NSW EPA (2020b). Assessment and Management of Hazardous Ground Gases, Contaminated Land Guidelines.
- NSW EPA (2020c). Guidelines for implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019.
- NSW EPA (2022). Sampling Design part 1 application, Contaminated Land Guidelines.
- WA Department of Health (DOH) (2021) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.

This list may be updated with reference to SSD approval conditions where relevant.

2.0 Site Information

2.1 Site Identification

The project is located on land known as 2 and 10-22 Kent Road, and 685 Gardeners Road, Mascot, legally referred to as Lot 1 DP529177, Lot 1 DP1009083 and Lot 2 DP529177. The site is located on Country of the Gadigal people within the local government area of Bayside Council.

It has a land area of approximately 23,470 m² with frontages to Ricketty Street, Kent Road and Gardeners Road, all of which are classified roads.

The site forms part of the Mascot West Employment lands which comprises a mix of land zoned for industrial, commercial and business park uses. To the east of the site is Mascot Station Town Centre which comprises a mix of retail, commercial, residential and recreational open space land uses.

The site is zoned E3 Productivity Support under the Bayside Local Environmental Plan 2012 (**BLEP 2021**). The proposal is permissible with development consent in the E3 zone and meets the zone objectives.

In its existing state, the site itself contains two large warehouse buildings which are currently leased out to multiple tenants. Large extents of the site consist of hardstand for vehicle circulation and parking with a number of mature trees are located along the site's boundaries.

A summary of the property and site identification is presented in Table 2.1 below:

Table 2.1: Site Identification

Item	Description			
Property Address	2 & 10-22 Kent Road and 685 Gardeners Road, Mascot NSW.			
Site Area	Approximately 23,470 m ² .			
Site Legal Description	Lots 1 and 2 in DP529177 and Lot 1 in DP1009083.			
Geographic Coordinates (Approximate Centre of Site) (GDA2020/MGA56)	Northwest corner: 332052 easting; 6245260 northing. Southwest corner: 332027easting; 6245092 northing. Southeast corner: 332147 easting; 6245083 northing. Northeast corner: 332180 easting; 6245237 northing.			
Current Site Owner	Goodman.			
Local Government Area	Bayside City Council.			
Site Zoning	E3 – Productivity Support.			
Property Use	Commercial warehouses (commercial/industrial premises).			
Surrounding Land Use	 Surrounding land uses in the immediate vicinity of the include: North: Gardeners Road, which is the LGA boundary with the City of Sydney. Further to the north is existing industrial development with Alexandra Canal beyond. South: Ricketty Street is immediately south, with predominantly one (1) to four (4) storey commercial and industrial development beyond. East: Kent Road is immediately to the east, with four (4) to 14 storey high-density residential development beyond. West: to the west is light industrial development typically one (1) to two (2) storeys in height. The surrounding area generally slopes downwards from north to south. 			
Site Location and Features	Figure 1.			

2.2 Previous Investigations

The following investigations have been undertaken to date:

- Epic Environmental Pty Ltd (Epic Environmental) (2023). Due Diligence Environmental Site Assessment. SCL230035.01, 28 July 2023.
- Senversa (2025a). Preliminary Site Investigation. S21569 002 RPT Rev2, 6 May 2025.
- Senversa (2025b). Detailed Site Investigation. S21569_003_RPT_Rev3, 6 May 2025.

The findings of these are summarised in the following sections.

2.3 Site Setting

The property's environmental setting was described in the DSI (Senversa, 2025b), with a summary for the site presented in **Table 2.2.**

Table 2.2: Property Environmental Setting

Item	Description
Geology and Soil	The site is located in an area extensively disturbed by human activity with soil comprising of fill from unknown origin. Deeper natural soils/sediments are comprised of Botany Sands ranging from the Quaternary period in the Cainozoic era.
Hydrology	The site is located within Area 2 of the Botany Sands groundwater restriction zone, where extraction of groundwater by residents for domestic purposes is prohibited and industrial users must have a licence and comply with conditions.
	Groundwater was reported to have been encountered at approximately 2 metres below ground level (m bgl) by Epic Environmental (2023) within the 4 existing groundwater monitoring wells on the southern portion of the site. Groundwater was reported by Epic Environmental (2023) to flow to the west/northwest towards Alexandra Canal (approximately 300 m away), which flows into Botany Bay, approximately 3 km to the south of the site.
Acid Sulphate Soil (ASS)	The Botany Bay 1:25,000 Acid Sulfate Soils (ASS) Risk Map and NSW eSPADE database indicated that the site is located in an area of disturbed terrain and thus could not give an accurate probability for ASS occurrence. Senversa's experience of working on projects in the close vicinity of the site suggest that potential acid sulfate soil (PASS) may be present in natural and potentially dredged sediment fill below the groundwater table in the area.
	The DSI (Senversa, 2025b) reported visual indicators and chromium reducible sulfur and net acidity above relevant action criteria in fill and natural soils that comprise potential acid sulfate soils (PASS). Based on the results, an acid sulfate soil management plan is required if there will be ground disturbance as part of the redevelopment works.
Sensitive Receptors	Alexandra Canal (300 m west) was identified as a sensitive environmental receptor.

2.4 Contamination Setting

2.4.1 Summary of Site History

Site was predominantly farmland with what appeared to be inferred sheds and possible residential buildings up until the late 1930s to early 1940s.

Business records were unavailable pre-1970s; however, multiple large sheds could be seen on aerials of the site from 1940s to 1970s. The development and apparent demolition of sheds on-site was observed on historical aerials during this time.

The southern portions of the site (10-22 Kent Road) were reported as used as a metal foundry between the 1970s to early 1990s. This portion of the site was reported as then being used for an excavation and earth moving business in the 1990s to early 2000s. This was followed by occupation by its current tenant (Eaton Electrical) a manufacturer and distributor of electrical goods.

The northwestern portion of the site (685 Gardeners Road) was reported to remain undeveloped until 1970 when it was developed for use as a printing workshop. The site was used for textile manufacturing from 1982 until 1991. It is understood the warehouse has been used for poultry process since circa 2000s.

Business records for the northern portion of the site (2 Kent Road) were not available before 2010, where it was recorded as being occupied by a surgical equipment supplier until 2015, after which it was reported as being occupied by a printing group.

2.4.2 Contamination Summary

Contamination at the site is considered related to:

- On-site historical use (manufacturing of electrical goods, farmland, ferrous foundry, printing activities and associated chemical storage).
- Filling material from unknown origin and quality across the site.
- Presence of USTs.
- Potential use and storage of per and polyfluoroalkyl substances (PFAS).

Key results are summarised below. Copies of soil vapour, groundwater and soil sampling analytical data from the DSI (Senversa 2025b) are provided in **Appendix B**.

2.4.2.1 Remnant Primary Sources

There were up to six (6) USTs present within the 2 Kent Road portion of the site. These structures were confirmed via ground penetrating radar (GPR). The condition of the USTs are unknown. It is unknown if they were decommissioned *in-situ* or abandoned.

2.4.2.2 Soil

Concentrations of the contaminants of potential concern (CoPCs) in soil were below the adopted human health guidelines, with the exception of those at BH105 that were reported significantly higher for lead and petroleum hydrocarbons.

While asbestos was not observed during field work it was reported to be present in fill at three locations. As such, it should be assumed that bonded asbestos may be present in fill at the site. However, 10 L quantification analysis has not been undertaken to assess the concentration of asbestos in fill on-site due to the soil sampling methodology and size of boreholes limiting sample volumes. Friable asbestos was not detected by laboratory analysis.

A limited number of samples exceeded the conservative soil ecological investigation level (EILs) for heavy metals, total recoverable hydrocarbons (TRH) and benzo(a)pyrene, with the exception of concentrations at BH105 that were reported significantly higher than the rest of the site. These exceedances are not considered significant since most of the site is covered with concrete or asphalt hardstand (and will remain so under the proposed development design) and the assessment criteria are conservative.

2.4.2.3 Groundwater

Groundwater was encountered between approximately 1.1 to 1.8 metres below ground level (m bgl) and generally flowed in a northwest direction. The depth to water (<2 m bgl) and high permeability strata (Botany Sand) indicated groundwater could be encountered during shallow excavations.

A limited number of groundwater samples exceeded the groundwater maintenance of ecosystems criteria for cadmium, copper, zinc, and the PFAS compound perfluorooctance sulphonic acid (PFOS). Senversa considers that the nature of metals in groundwater reported are broadly consistent with site background conditions.

Low-level PFOS concentrations exceeding the adopted ecological assessment criteria in groundwater were observed across most of the site. These low-level concentrations are potentially at background concentrations, with the site located in a heavily industrial area, or may be from potential historical use of the site. No clear source of current or historical PFAS site use has been identified.

There is uncertainty in the nature of groundwater in the northwestern portion of the site at the 685 Gardeners Road (Lot 2 in DP 529177).

2.4.2.4 Soil Vapour

All reported soil vapour analytical results were reported below the adopted human health assessment criteria indicating there is a low risk of vapour intrusion into the existing buildings on-site.

2.4.3 Data Gaps

The DSI (Senversa 2025b) identified uncertainties in the characterisation of contamination at the site. Key data gaps that warrant addressing to inform ongoing management requirements include:

- Uncertainty in contamination conditions in soil and groundwater where there has been limited sampling, including the 685 Gardeners Road portion of the site.
- Condition of remnant USTs in the 2 Kent Road portion of the site.

3.0 Conceptual Site Model

An assessment of source-pathway-receptors (SPR) linkages was compiled for the site (Senversa, 2025b) as presented in **Table 3.1** below. It includes an indication of whether SPR linkages require further investigation or management. The SPR linkages have been classified as follows:

- Incomplete linkage likely to be incomplete with negligible exposure to contamination likely to
 occur via this pathway.
- **Potentially complete** linkage potentially complete. Further data collection required to close data gaps and confirm whether pathway is complete or potentially significant in terms of risk.
- Complete linkage likely to be complete. Based on available information, a complete exposure
 pathway has been identified and/or there is significant uncertainty and these linkages require more
 detailed investigation or risk assessment/management.

Table 3.1: Source-Pathway-Receptor Linkages

Source	Exposure Pathway	Receptor(s)	Status	Assessment of complete linkages
On-Site Sources: Fill material of unknown origin and quality across the site. One of the site.	Dermal contact or incidental ingestion (sub-surface soils).	Site commercial/industrial workers and visitors.	Œ	Most of the site is currently and will be sealed so no complete exposure pathways in most areas. The exposure pathway incomplete for most workers on-site as they would not come into contact with soils during day-to-day activities.
 Potential USTs. Potential use and storage of PFAS. On-site historical use (manufacturing of electrical goods, farmland, ferrous foundry, printing activities and associated chemical storage). 		Current and future intrusive workers (including utility and landscape workers and grounds keepers). Construction workers during redevelopment.	⊠	Generally, CoPC concentrations were reported below the adopted human health assessment criteria. BH105 however reported significantly elevated concentrations of lead and total recoverable hydrocarbons (TRH). As such management of fill in this area should be considered during intrusive works. Additionally, The extent of these impacts is localised and will be covered by buildings or pavement in the future, limiting exposure. It is expected that exposure to construction workers would be managed by standard occupational health and safety measures (e.g. wearing gloves during soil or groundwater handling, etc) implemented as part of a construction environmental management plan for the project. There has been no sampling undertaken within the northwestern portion of the site at 685 Gardeners Road, which reduces the level of certainty in risk. This should be considered during construction.
	Dermal contact or incidental ingestion (sub-surface water).	Site commercial/industrial workers and visitors.	题	Extraction and beneficial use of groundwater is considered unlikely on the basis of the high salinity of groundwater, site location within the Botany Sands groundwater restriction zone, and presence of a reticulated water supply. The exposure pathway incomplete for most workers on-site as they would not come into contact with groundwater during day-to-day activities.
		Current and future intrusive workers (including utility and landscape workers and grounds keepers). Construction workers during redevelopment.	v	There is potential for incidental direct contact to groundwater during shallow excavations. Concentrations of COPC were reported to be generally less than health criteria. However, there is potential for exposure to localised solvent and hydrocarbon impacts near former USTs. Most services would be expected in the top metre and above the water table. However, it is possible deep excavations are required during construction that could intersect the water table in areas of residual contamination. There could be localised pockets of shallower perched water that is impacted by hydrocarbons near former UST areas.

Source	Exposure Pathway	Receptor(s)	Status	Assessment of complete linkages
		Off-site recreational users of Alexanda Canal. Off-site intrusive workers.		Groundwater flows west and may eventually discharge to Alexandra Canal. However, there is no evidence of migration of site-related contaminants at concentrations exceeding recreation health criteria (which are also conservatively protective of intrusive workers) off the property via groundwater.
	Inhalation of vapours (from soil and/or groundwater).	All site users (recreational, commercial workers, construction workers prior to and during construction). Off-site recreational users. Off-site commercial workers.	E	Soil and groundwater sample analysis results identified no concentrations of TRH, benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) or volatile organic compound (VOC) that would indicate a potential vapour intrusion risk to date. Off-site migration of hazardous ground gas has not been identified and is not a likely pathway. There remain some uncertainties in soil vapour conditions in the northwestern portion of the site at 685 Gardeners Road, which reduces the level of certainty in risk.
	Inhalation of contaminated soil dust (from exposed soils).	All site users (commercial workers, intrusive workers, construction workers prior to and during construction).	☑	Negligible opportunity for site users to be exposed to contaminated dust/soil during normal site conditions as surfaces are or will be sealed. Asbestos as bonded asbestos containing material (ACM) was identified in fill at three locations; BH104, BH106 and BH114. Concentrations of AF/FA and >7 mm ACM were reported below the adopted human health assessment criteria for commercial industrial sites. There has been limited sampling in some areas and reliance on boreholes, which have limitations, and asbestos may be more widespread than identified. Potential exposure during construction or intrusive works to contaminated dust/soils would need to be managed during excavation of materials. This could be managed by the implementation of an asbestos management plan to prevent generation of airborne asbestos fibres.
	Direct uptake from soil.	On-site terrestrial flora and fauna (minor landscaping areas).	Ø	Site soils reported variable exceedances of ecological criteria. Due to the heterogenous nature of the soils and these results, site soils should be assumed to be not suitable for use as growing media in landscaping areas unless assessed otherwise.
	Migration and discharge of groundwater or surface water to Alexandra Canal.	Off-site: aquatic ecosystem of Alexandra Canal.	V	Exceedances of the adopted ecological assessment criteria were observed for PFOS. This pathway is potentially complete for adjacent sensitive receptors downgradient of site including Alexandra Canal. The ecological criteria, however, apply to the receiving waters of Alexandra Canal and are not necessarily representative of an actual risk. Leaching of potential contaminants from exposed soils to surface water runoff was not assessed directly but should be managed during construction.

4.0 Remediation Strategy

4.1 Remedial Objectives

Based on results of previous investigations outlined within **Section 2.2** and the CSM in **Section 3.0**, the remedial objectives are as follows:

- To derive a plan to make the site suitable for ongoing commercial/industrial land use.
- This will be achieved by mitigating potential risks to human health and managing potential environmental impacts during the remedial works, including meeting SSD conditions of approval.

4.2 Extent of Required Remediation

On the basis of Senversa's understanding of the contamination and proposed development outlined in this document, the required remediation comprises the following:

- <u>Fill material across the site:</u> while not all fill material is contaminated, for the purposes of remediation planning all fill material should be considered potentially impacted by asbestos. This is a conservative, precautionary approach adopted as the occurrence and concentrations of asbestos in fill have not been delineated laterally or vertically. Fill materials should also be assumed not suitable for use as growing media in landscaping areas unless assessed otherwise.
- <u>Hydrocarbon impacted soils:</u> soils local to former UST areas potentially impacted by petroleum hydrocarbons, that represent a potential elevated risk if exposed.
- Remnant primary chemical storage infrastructure: there is uncertainty in the condition and occurrence of disused USTs in the northeastern portion of the site at 2 Kent Road. GPR indicated the presence of six (6) USTs of varying size within this part of the site.
- Groundwater: was assessed to represent a low risk provided it is not extracted and used. However, potential impacts local to former primary sources (USTs) warrant control to protect workers during deep intrusive construction or maintenance works.

4.3 Constraints and Limitations

The RAP has been developed with consideration of the following key drivers and constraints:

- There is no change in land use proposed, i.e. continued commercial industrial land use.
- Some form of passive long-term EMP (LTEMP) to manage residual soil contamination underlying future building slabs and pavement, and restrict use of groundwater, is a 'presumed remedy'.
- Senversa's understanding of key features of the development works that act to limit exposure to potentially contaminated soils and water:
 - There will be minimal unpaved open space areas being limited to minor landscaping.
 - The earthworks plan is yet to be finalised. There is expected to be minimal net cut or fill to achieve design ground levels.

4.4 Remediation Policies

4.4.1 Soil

The NSW EPA preferred hierarchy on the selection of remediation options for soil in order of preference, based on the schedule A of ASC NEPM is:

- 'on-site treatment of the contamination so that it is destroyed or the associated risk is reduced to an acceptable level; and,
- off-site treatment of excavated soil, so that the contamination is destroyed or the associated risk is reduced to an acceptable level, after which soil is returned to the site; or,
- if the above are not practicable,
 - Consolidation and isolation of the soil on site by containment with a properly designed barrier;
 and
 - Removal of contaminated material to an approved site or facility, followed, where necessary, by replacement with appropriate material, or,
 - Where the assessment indicates remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.'

4.4.2 Groundwater

DEC (2007) groundwater guidelines set out management objectives when contamination is identified, which is to protect human and ecological health and to ultimately restore the groundwater to its natural background quality. To achieve these objectives, the following management responses must be considered:

- Control short-term threats arising from the contamination.
- Restrict groundwater use.
- Prevent or minimise further migration of contaminants from source materials to groundwater.
- Prevent or minimise further migration of the contaminant plume.
- Clean up groundwater to protect human and ecological health, restore the capacity of the groundwater to support the relevant environmental values and, as far as practicable, return groundwater quality to its natural background quality.

NSW EPA (2015) provides guidance that LNAPL needs to be cleaned up:

- To such an extent that further removal or treatment of LNAPL no longer reduces the level of risk;
 and
- Continue if the LNAPL is still spreading.

4.4.3 Ecological Sustainable Development

In addition, it is also a requirement under the *Contaminated Land Management Act 1997* and contaminated land management policies to consider sustainability (environmental, economic and social), in terms of achieving an appropriate balance between the benefits and effects of undertaking the option. The remediation should not proceed if it is likely to cause a greater adverse effect than leaving the site undisturbed. And, where there are large quantities of soil with low levels of contamination, alternative strategies are required to be considered or developed.

Key considerations in this RAP include:

- That there is current and ongoing industrial land use.
- Avoidance of unnecessary generation of waste soil under the Waste Avoidance and Resource Recovery Act 2001.
- The occurrence of soils that report generally acceptable levels of health risk from chemical contaminants, but are heterogenous with fill potentially impacted by asbestos and aesthetics that could be of a large volume.

4.4.4 UPSS Regulation

While there are no known in use underground petroleum storage systems at the site, the *Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019* (the UPSS Regulation) requires removal of disused UPSS unless it is not practicable to do so.

4.5 Remediation Options Evaluation

A remedial options assessment was conducted as presented in **Table 4.1**, and focused on management of contaminated or impacted soils.

There is a presumptive remedy for:

- Removal to the extent practicable of remaining disused USTs as required by UPSS regulations.
- Passive management under an LTEMP to restrict use of groundwater and control exposure to residual contamination at depth during deep intrusive works.

Available information and evaluation of risks supports that active remediation of groundwater or soil vapour is not warranted. However, this will be re-evaluated as an outcome of the data gaps assessment (**Section 5.2**).

Table 4.1: Soil Remedial Options Assessment

Option	Discussion	Conclusion
1. On-Site or Off-Site Treatment	Treatment of hydrocarbon impacted soils on-site is feasible; however, the occurrence of co-contaminants (potentially asbestos, metals and B(a)P) precludes effectiveness and environmental benefit as the soil would still likely require passive management under pavement/buildings. On-site or off-site treatment of contaminated fill material to remove asbestos is not considered legal, appropriate or feasible due to the nature of the asbestos (bonded) and waste laws in laws in NSW. Due to the potential presence of asbestos within the contaminated fill material, it is not suitable for off-site re-use in NSW. Once leaving the site, asbestos contaminated material would become waste and would need to be disposed of at a suitably licensed landfill.	Not feasible.
2. Removal of Contaminated Soils	Excavation and off-site disposal to a suitably licenced landfill facility is technically and logistically feasible but is not considered a viable option given the large volume of fill at the site and the lack of sustainability of this option. However, this approach could remove all contamination, negating the need for ongoing management required for other approaches. This option would incur a significant cost that is not proportionate to the reduction in environmental risk that could be achieved through other methods.	Not cost-effective or sustainable. Targeted removal and disposal of contaminated soils associated with unexpected finds is retained as a contingency.

Capping of fill material in-

slabs and as part of site

is the preferred option.

Implementation of an

LTEMP is required.

situ under existing building

paving and levelling works

Option Discussion Conclusion

3. On-Site Containment with Ongoing Management

There are several options for on-site containment of the contaminated soils. There is a balance between the degree of conservatism in containment design and ongoing management requirements – i.e. a less conservative design (e.g. minimal capping thickness) will require more onerous ongoing management requirements.

All options require ongoing passive management via implementation of a LTEMP. The LTEMP would need to be publicly notified and legally enforceable. Below ground, partial enclosure - remediation would involve excavation of contaminated fill materials and placement within a location identified to require filling for construction purposes. Placement location(s) should be selected within areas that would undergo minor future disturbance such as under warehouse buildings or pavement, with a cover comprising a constructed capping layer and marker placed over impacted fill. A base liner is not considered necessary due to the complexity of construction.

Where contaminated soil remains *in-situ* upon reaching construction RLs, it should be covered with a capping layer as per placed materials. This method is viewed as suitable due to proposed construction methodology and low likelihood of contact with contaminated materials following placement and capping within the site.

Above ground containment - remediation would involve construction of an above ground mound with HDPE cap and soil/clay cover, no base liner. This method is viewed as unsuitable due to restrictions on available space and the potential for creating increased surface water runoff to low lying areas within the site.

In-situ capping (physical separation) – imported material may be used as a capping layer to provide physical separation between contaminated fill and site receptors. The capping layer may include one or more of a combination of environmentally and geotechnically suitable soil material, building slabs and subgrade or pavement and subgrade, with a marker. This option is viewed as being suitable due to the proposed site levelling and construction methodology, site layout mostly comprising buildings/pavement and subsequent low likelihood of contact with contaminated materials.

These options are capable of mitigating risks to low levels, while minimising waste generation and impacts to the surrounding environment/community from truck movements etc. The *in-situ* capping option is preferred as it does not require bulk movement of asbestos-impacted material within the site, which has a greater risk of impact to workers and surrounding environment during remediation works.

Not appropriate.

4. Do Nothing and Ongoing Management

Implementation of an LTEMP is capable of managing residual contamination under the existing site condition and use. However, this is not considered suitable for the developed site where there is the opportunity to reduce risks to more acceptable levels while minimising ongoing management requirements.

4.6 Preferred Remediation Approach

The preferred remediation approach is:

- 1. Removal to the extent practicable of remaining disused USTs as required under UPSS Regulation.
- 2. *In-situ* containment of contaminated soils (*Option 3*). This includes capping contaminated soil via new building slabs, pavement or clean soils and a marker layer.
- 3. Use of suitable imported media in open space landscaping areas.
- 4. Passive management under an LTEMP to restrict use of groundwater and control exposure to residual contamination at depth during deep intrusive works. The aim is that no actions would be needed for normal site use by workers, visitors and landscaping maintenance workers.

While the occurrence of PFAS in groundwater is considered to represent a low risk, consideration should be given in development detailed design so that deep services that intersect the water table do not act as a preferential migration pathway.

The preferred strategy is considered consistent with NSW remediation policy and guidance based on:

- The approach is sympathetic to the construction method and will allow ongoing management under the passive LTEMP with low likelihood for human contact with practicable and minimal control measures – normal site use and typical intrusive works should not require any actions.
- While hydrocarbon impacts can feasibly be treated, potential asbestos and metals impacts cannot be destroyed or treated, with soils likely to still require passive management.
- Removal of contaminated soil is possible; however, this is not with the principles of economically sustainable development, and the large volume (and relatively low level of contamination based on relatively few investigation locations reporting health criteria exceedances) of materials warrants onsite management.
- Excavation and off-site disposal of materials is considered prohibitively expensive and will involve increased potential for dust generation and significant truck movements of contaminated waste materials.
- While groundwater reported some site-related CoPC at concentrations exceeding conservative assessment criteria, risks are low if groundwater is not extracted and used, and average levels are low and metals levels are likely to reflect site background conditions. The capping approach will somewhat reduce exposure of fill to further leaching and control risks to low levels. Senversa considers that clean-up of groundwater to protect human and ecological health, and relevant environmental values are appropriate goals. It is not considered feasible nor warranted to reduce levels of contaminants to <u>natural</u> background given the site's current and ongoing industrial setting, site location within the Botany Sands groundwater restriction zone, and lack of a recognised groundwater resource.

4.7 Approvals, Permits and Notifications

The works will be subject to approval under the *Environmental Planning & Assessment Act 1974* via the SSD planning pathway.

The State Environmental Planning Policy (Resilience and Hazards) 2021 (SEPP 2021) specifies when remediation work will require development consent from the planning authority (Category 1 remediation work). Any remediation works that do not require development consent are Category 2. There are notification requirements for both Category 1 and 2 remediation works.

The proposed works could potentially comprise designated development under *Environmental Planning and Assessment Regulation 2000* and be Category 1 works if it comprises treatment of contaminated soil originating exclusively from the site on which the development is located and involves more than 30,000 m³ of contaminated soil or disturbance of more than an aggregate area of 3 ha of contaminated soil. Senversa does not consider these are triggered on the basis that the fill materials are being largely left undisturbed (i.e. the capping is constructed overlying the fill) and that only a portion of fill materials are contaminated such that the aggregate area would be less than 3 ha (site size 2.29 ha) and 30,000 m³.

While the works may otherwise comprise Category 2 remediation work, Senversa understands that the SSD includes provision for implementation of this RAP, and consent for remediation works will be via the SSD approval pathway.

Due to the presence of asbestos in some fill materials, consideration should be given to SafeWork NSW notification requirements prior to the commencement of site works. This is the responsibility of the 'person conducting a business or undertaking' (PCBU) as per the SafeWork NSW Code of Practice – How to manage and control asbestos in the workplace (December 2022).

If disposal of water to sewer or stormwater is required during construction, approval from Council and/or the water authority will be required prior to this, and is the responsibility of the contractor.

5.0 Remediation Work Plan

The proposed remediation works will broadly comprise the following steps:

- 1. Enabling works including engagement of an environmental consultant (EC), develop of site management plans and establishment of environmental controls.
- 2. Address remaining data gaps (refer Section 5.2).
- 3. As part of demolition, contingency to remove remnant USTs and associated infrastructure to the extent practicable (refer **Section 8.0**).
- 4. Capping contaminated soils, including in new paved areas, unpaved areas and in-ground services (refer **Section 5.3**).
- 5. Management of material imported and exported as waste from the site as part of the remediation works (refer **Section 5.4**).
- 6. Validation of the remediation above (refer **Section 5.5**).
- 7. Ongoing implementation of a passive LTEMP during development operation phase (refer **Section 5.6**).

These steps are described in more detail below.

The SSD conditions of approval have not yet been issued – on receipt, the EC should review these to assess whether there are any changes to the RAP required.

5.1 Design Review

The development design should avoid to the extent practicable deep services that may intersect contaminated groundwater (e.g. more than 2 m bgl) and could act as a preferential migration pathway. If this must occur, then mitigations (e.g. sealing, use of low-permeability 'plugs' in backfilled trenches) should be developed and installed, subject to review and approval by the EC.

5.2 Address Data Gaps

As discussed in **Section 2.4.3**, there are data gaps in the understanding of contamination conditions to be addressed via the remediation and validation process. Senversa proposes the approach described in the table below to close these data gaps. It is envisaged the works are staged prior to and following demolition, with interim reporting of the results and conclusions by the EC.

If the additional inspections and sampling indicates there is potential additional contamination or a change in the site's risk profile, then the EC should evaluate whether further assessment or additional management actions are warranted.

Table 5.1 Sampling Strategy to Address Data Gaps

Data Gap	Description	Mitigation Approach	Suggested Staging	Sampling Design
1. Further Assess Accessible Soils	Despite extensive soil sampling, access restrictions have limited testing in the northwestern 685 Gardeners Road area, creating uncertainty about soil contamination there.	Remedial approach to cap soils across most of the site mitigates the risk. Validation of accessible soils used in landscaping areas. Additional sampling to adequately characterise residual contamination to inform ongoing management requirements.	Additional sampling prior to or following demolition. Validation of capping and sampling of landscaping media during construction.	A stratified sampling design using an approximate 30 m grid in hardstand capped areas targeting discrete areas. With minimum additional locations: • 685 Gardeners Road (0.2 ha): The number of sampling locations required will depend on the fill heterogeneity and sampling results themselves. The EC should evaluate whether a modified sampling density and pattern is warranted to characterise the contamination conditions within the footprint with consideration of the end land use and pavement cover. • Test pits are to be undertaken if practicable with a target depth of termination on 0.5 m into natural material or 3 m bgl. If slab conditions or access preclude pits, then soil bores advanced via hand augur or drilling may be considered by the EC. • Samples collected at surface of soil, 0.5 m, 1.0 m and every 1 m thereafter. • Test pits or bores are to be logged in accordance with the Unified Soil Classification System and AS 1726:2017 Australian Standard. • Field screening of vapour headspace of material is to be undertaken for VOCs using a calibrated photo-lonisation Detector (PID) equipped with a 10.6 eV lamp and recorded on test pit logs. • A minimum of two samples to be analysed per location for: • Metals, TRH, BTEXN, PAHs. • Fill only - asbestos (NEPM 500 mL). • Selected samples for: VOC's, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs).

Data Gap	Description	Mitigation Approach	Suggested Staging	Sampling Design
2. Verify the Nature of Groundwater Quality at 685 Gardeners Road	The nature of groundwater quality at 685 Gardeners Road.	Additional sampling to adequately characterise residual contamination to inform ongoing management requirements.	Preferably during detailed design, and prior to demolition if practicable.	 Install and sample a groundwater monitoring well targeting fill/alluvium. Design should be consistent with existing wells at the site.
				 Gauge, purge and sample the new well using low flow sampling methods consistent with methods adopted in the 2025b DSI with analysis for: heavy metals, TRH, VOCs, and PFAS (trace level).

5.3 Capping Contaminated Soils

Contaminated fill material shall be capped during development earthworks. While natural soils may also be contaminated, the extent is inferred to be limited to areas local to USTs (2 Kent Road) and fill material. The goal is to provide physical separation between potential contaminated materials and receptors to minimise the likelihood of exposure and ongoing management controls during future intrusive works.

The capping shall be via:

- Cover with a marker layer and cover by:
 - new building slabs and sub-grade; or
 - pavement and sub-grade; or
 - clean suitable soils in landscaping areas.
- Install new in-ground surfaces in the cover layer (above) or in trenches lined with a marker geotextile and backfilled with suitable backfill.

There is various guidance on the minimum capping thickness required to manage contaminated soils, including:

- WA DoH (2021) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, Western Australia Department of Health – a depth of at least 0.5 m is recommended for commercial/industrial land uses.
- Guidelines for the assessment of on-site containment of contaminated soil (ANZECC, 1999) The
 separation layer needs to be of an appropriate thickness that is unlikely to be penetrated by future
 users of the site. ANZECC (1999) states that a minimum thickness of 0.5 m is commonly adopted.

However, there is a balance between depth of the capping layer (more conservative), sustainability objectives (e.g. generation of waste due to the potential need to over-excavate to construct the cover layer) and ongoing management controls. Thus, the appropriate depth of the "capping material" above the marker layer will depend on the overlying land use and structures of the developed site – there should be general goals that:

- Contaminated fill materials are preferentially retained underlying buildings or pavement to the extent practicable within design constraints.
- While minimum cover thicknesses are nominated below, the thickness should be maximised to more than 0.5 m where possible and sympathetic with the development construction.

Details and schematics of the different types of capping and minimum thickness are specified in the table below.

Table 5.2: Capping Design

Туре	Design	Schematic		
A. New Pavement	A marker layer should be installed underlying new pavement to the extent practicable. The sub-grade and pavement will act as the cover. The minimum thickness provided is a typical minimum depth of an asphalt roadway, and a deeper cover layer is preferable where able to be accommodated within the earthworks plan.	new pavement sub- grade contaminated soil marker geotextile		
B. In-Ground Services	There should be a preference to install in-ground services above the marker layer. For deeper services where this is not possible: The perimeter of deep service trenches shall be lined with a marker layer. This should connect to surrounding marker layer. Trench backfill materials must be imported material validated as environmentally suitable. There may also be engineering requirements specific to the service or service provider which should be adhered to. This recognises that existing in-ground services could remain in contaminated fill – exposure during maintenance works will be managed via the LTEMP.	cover material (sub-grade / soil) marker geotextile contaminated fill/soil service		
C. Unpaved Areas	In open space unpaved areas (e.g. grassed and landscaping areas), there is a greater likelihood of inadvertent exposure of contaminated soils. Thus, the general cover layer should be of sufficient width and depth to ensure the plant root zone or depth of normal site maintenance activities (e.g. mowing grass) are within suitable material. The minimum capping thickness is 0.3 m, though a deeper layer is warranted where shrubs or trees will be grown. If existing trees are maintained, a thinner layer may be appropriate that would not damage the health of the tree – the requirements for this should be assessed by the EC once the detailed landscaping design is complete.	grass shrub growing contaminated soil small-medium tree shrub shrub sol 50.5 m contaminated soil		

5.3.1 Marker Layer

The purpose of the marker is to provide a visual demarcation between potentially contaminated soils and overlying cover materials that comprise slabs/pavement or have been validated as acceptable for use.

The preference is to use a brightly coloured, geofabric placed over contaminated fill material. Specialised or improvised geotextile fabrics may be used, meeting the following conditions:

- Water permeable.
- High visibility.
- · Rot-proof and chemically inert.
- High tensile strength.
- Coverage of the contaminated area and at least 0.5 m beyond boundary, if practical.
- Parallel sheets and adjoining sheets to be fixed together or overlap by at least 0.2 m.
- It is also expected that the marker layer will be placed to not significantly inhibit the growth of shrubs and trees to be used for landscaping.

5.3.2 Cover Layer

The overlying cover aims to provide physical separation between contaminated soils below the marker and site users. The cover layer material shall comprise imported material validated as environmentally suitable: and/or

The material should also be geotechnically suitable for the development and so that there is sufficient stability of the cover layer.

5.3.3 Deviations

Potential minor deviations required by the development design include:

- There will be some localised areas where the capping thickness is expected to be less than the
 design minimum requirement. If there are other areas of thinner capping then the adequacy of the
 proposed capping layer design shall be assessed by the EC and approved by GPSA prior to
 construction.
- If existing trees are maintained, surface soil validation samples should be collected (Section 6.2), and a thinner capping layer design may be appropriate that would not damage the health of the tree as assessed by the EC and approved by GPSA prior to construction.

There may be other deviations from the conceptual approach and minimum requirements outlined above – if these occur, they should be assessed by the EC and approved by GPSA.

5.4 Materials Management

5.4.1 Material Tracking

Tracking of excavated materials, imported materials and waste must be conducted by the RC and checked by the EC as part of validation.

A Material Tracking Register must be maintained on=site which will provide information regarding the source, characteristics, destination and quantities of material beneficially reused on-site, temporarily stockpiled and disposed off-site or imported to the site for capping / backfilling purposes.

The Material Tracking Register is to include the following information within a summary spreadsheet associated with material stockpiling on the site.

Table 5.3: Stockpile Details Required in the Material Tracking Register

Material Source	Material	Stockpile ID	Quantity (m ³)	Dates Stockpiles	Final
Information	Classification				Destination/Placement

The Material Tracking Register is to include the following information within a summary spreadsheet associated with material imported to the site.

Table 5.4: Importation Details Required in the Material Tracking Register

Supplier	Supplier Address	Supplier Material ID	Classification	Quantity (m³)	Dates Imported	Placement On-Site	Details of Sampling and compliance with RAP
----------	---------------------	-------------------------	----------------	---------------	-------------------	----------------------	---

The Material Tracking Register is to include the following information within a summary spreadsheet associated with material On-site Reuse to the site.

Table 5.5: On-Site Reuse Details Required in the Material Tracking Register

Material Source Information	Classification	Quantity (m ³)	Dates Excavated	Stockpile ID (where relevant)	Placement On- Site	Details of Sampling and compliance with RAP

The Material Tracking Register is to include the following information within a summary spreadsheet associated with material <u>exported</u> from site.

Table 5.6: Exportation Details Required in the Material Tracking Register

Source ID	Date Disposed	Classification	Quantity (T)	Docket no.	NSW EPA Integrated Waste Tracking Solution (IWTS) System Reference	Waste Classification Report Reference
--------------	---------------	----------------	-----------------	------------	--	--

5.4.2 Excavated Fill/Soils

Excavated fill (if any) shall be stockpiled in a designated area and must be managed as potentially contaminated unless its contamination status is assessed otherwise by sampling and analysis by the FC.

Excavated fill shall be preferentially retained on-site under the marker layer. No sampling of this material is required unless visual or olfactory indicators of contamination are identified, then the unexpected finds protocol should be followed (see **Section 8.2**).

Excavated materials stockpiles and stockpiling area should be designed and managed to control potential impacts to the environment (e.g. dust, erosion and leaching). This includes placement of stockpiles on hardstand, a site area that will subsequently be capped, or high-density polyethylene (HDPE) sheeting, with sediment erosion controls and covering stockpiles to minimise the potential for dust generation.

5.4.3 Waste (Off-Site Disposal)

If off-site disposal of excavated materials is required:

- The EC shall classify the waste in accordance with NSW EPA (2014) Waste Classification Guidelines and prepare a waste classification.
- Comply with notification and transport requirements under NSW waste regulations.
- The Material Tracking Register should be maintained to ensure an audit trail for the movement of materials around the site and off-site. This includes retaining copies of waste transport and disposal dockets from the landfill facility to provide evidence of appropriate disposal.

The specific sampling and analysis requirements are documented in **Table 6.3**.

5.4.4 Imported Materials

Where imported fill is required at the site for reinstatement of excavations, to achieve final development levels or for landscaping purposes, the material must be validated as suitable for commercial/industrial use and able to be legally imported. Imported materials must only be any of the following:

- Commercial guarried rock or sand products.
- Virgin Excavated Natural Material (VENM) as defined in EPA (2014) Waste Classification Guidelines and POEO Act 1997.
- Excavated Natural Material (ENM) defined in the Resource Recovery Order (RRO) and Exemption issued under *Protection of the Environment Operations (Waste) Regulation 2014*. VENM should be used in preference to ENM.
- Other material approved in writing by EPA under a resource recovery order or exemption (RRO/RRE) and subject to agreement by GPSA and EC. VENM should be used in preference to these materials which have a greater risk of not being environmentally suitable (e.g. unexpected finds).
- Commercial landscaping products (e.g. mulch).

Imported material may be turned away from site if there is not appropriate supporting documentation for that load or there are visual or olfactory indicators of contamination. Recycled material (inter alia crushed concrete and bricks aggregate or 'DGB') imported as sub-base material represents a higher likelihood of unexpected impacts, and must therefore be supplied by a reputable supplier and validated as required in **Table 6.3**.

The preference is to identify (and validate) suitable material proposed to be imported <u>prior to</u> importation to site.

5.5 Remediation Validation

The EC shall conduct validation of the remediation works. The specific validation strategy is documented in **Section 6.2**.

5.6 Ongoing Management

On completion of the remediation works and development, ongoing passive management of residual contaminated soils and groundwater under the capping system will be required via implementation of an ongoing LTEMP.

The LTEMP shall be prepared by the EC.

Requirements for ongoing environmental management plans in EPA (2020) Site Auditor Guidelines are applicable, including:

- The LTEMP can reasonably be made to be legally enforceable. This may be via compliance with development consent conditions issued, or as it is a legal requirement to manage asbestos under NSW Work Health and Safety Regulation 2017.
- There should be appropriate public notification of any restrictions applying to the land to ensure that potential purchasers or other interested individuals are aware of the restrictions, for example appropriate notations on a planning certificate issued under the *Environmental Planning and Assessment Act* or a covenant registered on the title to land under the *Conveyancing Act 1919*.

Liaison with Council may be required at some point on the presence of the LTEMP.

6.0 Validation Plan

The remediation validation sampling, analytical and quality requirements are described in the following sections.

6.1 Data Quality Objectives

Based on the results of previous investigations and with reference to the CSM outlined above Senversa developed the following data quality objectives (DQOs) for validation of remediation requirements in this RAP. The DQOs have been developed in accordance with the ASC NEPM.

6.1.1 Step 1 – State the Problem

Contamination at 2 & 10-22 Kent Road and 685 Gardeners Road has been subject to extensive investigation. The Senversa 2025b DSI concluded that the key contamination issues that require management relate to managing exposure to and disturbance of soils during intrusive works due to the occurrence of asbestos in fill and potential localised aesthetic and hydrocarbon impacts, presence of disused USTs, and issue of suitable soils for minor landscaping areas.

This RAP sets out the remediation steps to make the site suitable. The remediation works will be conducted ancillary to development works, mostly as part of initial earthworks. The remediation required to make the site suitable for the proposed development broadly comprises capping contaminated fill and ongoing passive management of residual contamination under an LTEMP. There remain some data gaps to be addressed in the characterisation of soil and groundwater within the 685 Gardeners Road portion of the site.

Validation is required to verify the effectiveness of the remedial works undertaken, assess long-term management requirements and document the final site condition.

6.1.2 Step 2 – Identify the Decisions

Based on the objectives of this RAP, the decisions required to meet the objectives are listed below:

- 1. Have data gaps been adequately addressed and are there any changes to the remediation requirements?
- Have remaining primary contamination source structures been removed to the extent practicable?
- 3. Have the capping requirements in the RAP been achieved?
- 4. Was imported material suitable for the proposed land use?
- 5. Was waste material appropriately classified and transported and disposed to a suitably licensed facility?
- 6. Were any unexpected finds encountered during the ground disturbance works appropriately managed?
- 7. Are the validation data suitably reliable and complete?

6.1.3 Step 3 – Identify Information Inputs

The inputs to make the above decisions include:

- Results from previous investigations.
- Additional environmental data collected as part of data gap assessments this includes field observations, field screening measurements, and laboratory analyses of soil samples for CoPC.
- Field observations in relation to removal of subsurface source structures or unexpected finds. Field observations may include odours, sheens, discolouration, asbestos and other indicators of potential contamination.
- Survey data of marker layer and capping thickness to confirm that these comply with RAP requirements.
- Environmental data collected as part of validation of excavated materials if re-used on-site above the marker layer this includes field observations, field screening measurements, and laboratory analyses of soil samples for CoPC.
- · Assessment criteria from guidelines made or approved by NSW EPA.
- Material tracking information of excavated, imported and waste materials.
- Waste classification data for surplus materials prior to off-site disposal this includes field observations, field screening measurements, volume data, and laboratory analyses of soil samples for CoPC.
- Waste tracking and disposal records (including landfill dockets, trade waste disposal).
- Material characterisation data for material proposed to be imported to site this includes literature information on source site, field observations, field screening measurements and laboratory analyses of soil samples for CoPC.
- Data quality assurance / quality control (QA/QC) assessment by comparison against data quality indicators (DQIs).

6.1.4 Step 4 – Define the Study Boundaries

The study population principally comprises fill material and the capping system.

The boundaries of the investigation are identified as follows:

- **Spatial boundaries** the remediation validation extent is limited to the site boundaries as illustrated within **Figure 1** and soils to a depth of 3 m bgl or construction earthworks (whichever is deeper).
- Temporal boundaries the temporal boundary is limited to the data collected during the remediation validation programme of work. Ongoing management will be required under the LTEMP.

6.1.5 Step 5 – Develop the Decision Rules

The decision rules adopted for this investigation are described within the table below.

Table 6.1: Decision Rules

Decision Required to be Made

Decision Basis

1. Have Data Gaps been Adequately Addressed and are there any Changes to the Remediation Requirements?

If the inspection and sampling required in this RAP has been completed, and the findings do not indicate contamination other than asbestos impacts in fill. Fill/soil analytical data shall be compared against adopted assessment criteria:

- If all concentrations of contaminants are reported to be equal to or below the adopted assessment criteria, then no additional management is required.
- Statistical analysis of data sets of chemical CoPC analyte concentrations (i.e. excluding asbestos) will be used as inputs, consistent with guidance in the NEPM (NEPC, 2013). The analysis shall
 - 95% upper confidence limit (UCL) of the arithmetic mean concentration of each analyte shall be less than or equal to the criterion.
 - The maximum concentration of each analyte shall be less than or equal to 250% of the criterion.
 - The standard deviation of each analyte shall be less than or equal to the criterion.

If any of these are exceeded, then additional management needs to be assessed.

2. Have Remaining Contamination Source Structures been Removed?

This will be assessed via inspection by EC and that visual verification that structures have been removed or are not present.

3. Have the Capping Requirements in the RAP Is there evidence of the following: been Achieved?

- Survey data and inspection of marker layer placement across the site, including service trenches.
- Survey data and inspection of top of cover confirming compliant thickness and extent, including service trenches.
- Fill/soils underlying areas not capped shall have been appropriately inspected and sampled as required in this RAP, with an asbestos clearance by an appropriately qualified occupational hygienist.

4. Was Imported Material Suitable for the **Proposed Land Use?**

- Imported quarried products and exempt waste material should meet the definition of the material in the relevant order/exemption or definition of
- Imported material should also contain concentrations of CoPC less than assessment criteria for commercial/industrial land use in this RAP.

5. Was Waste Material Appropriately Classified and Transported and Disposed of to a Suitably Licensed Facility?

Waste should be sampled and classified as per requirements in this RAP. Appropriate material tracking with satisfactory review by EC and retainment of transport and disposal records.

If off-site waste disposal has potentially not been appropriately managed and documented further documentation on the management of waste materials will be required. In the event that insufficient or incorrect information is available in support of waste disposal activities, notification to the NSW EPA Waste Unit may be required where it is believed that waste has been disposed of incorrectly or unlawfully.

6. Are there any Unexpected Finds or Aesthetic Concerns in Fill/Soils Encountered **During the Ground Disturbance Works?**

This should be evaluated as per assessment of data gaps above.

6.1.6 Step 6 – Specify Limits of Decision Error

This step establishes the decision maker's tolerable limits on decision errors, which provide performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for precision, accuracy, representativeness, comparability, completeness and sensitivity. These are defined below, but should broadly include:

- Guidance in ASC NEPM.
- Soil validation sampling design based on acceptable decision errors:
 - Type A error (i.e. deciding that the site is acceptable when it is not) 5% probability.
 - Type B error (i.e. deciding that the site is unacceptable when it is) 20% probability.
- An overall 95% compliance with pre-determined DQIs.

The pre-determined DQIs established for the project are discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that
 are generated during this project is a measure of the closeness of the analytical results obtained by
 a method to the 'true' value. Accuracy is assessed by reference to the analytical results of
 laboratory control samples, laboratory spikes and analyses against reference standards.
- Representativeness expresses the degree with which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in sampling techniques, analytical techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted assessment criteria.

If any of the DQIs are not met, further assessment will be necessary to assess whether the non-conformance will significantly affect the usefulness of the data. Corrective actions may include requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data. DQIs are detailed within the table below.

Table 6.2: Data Quality Indicators

Data Quality Objectives	Frequency	Data Quality Indicator					
Precision							
Blind duplicates (intra laboratory)	1/20 samples (or 1/10 for PFAS).	<30% RPD where result is >10 times limit of reporting (LOR).					
Blind duplicates (inter laboratory)	1/20 samples (or 1/10 for PFAS).	<30% RPD where result is >10 times LOR.					
Accuracy							
Surrogate spikes	All organic samples.	70-130%.					
Laboratory control samples	1 per lab batch.	70-130%.					
Matrix spikes	1 per lab batch.	70-130%. Lower recoveries may be acceptable for OCPs, OPPs, PCBs and phenols and will be assessed according to United States Environmental Protection Agency protocols.					
Representativeness							
Sampling appropriate for media and analytes	Sample density as detailed within Section 6.2.	All samples.					
Samples extracted and analysed within holding times.	NA.	Organics (14 days), inorganics (6 months).					
Rinsate blank	1 per day where non-dedicated equipment is used. Samples are to be analysed for all CoPCs other than asbestos.	<lor.< td=""></lor.<>					
Trip Blank	1 per lab batch (PFAS only).	<lor.< td=""></lor.<>					
Trip spike	1 per lab batch (BTEX only).	70-130%.					
Method blank / field blank	1 per lab batch.	<lor.< td=""></lor.<>					
Comparability							
Senversa standard operating procedures for sample collection & handling	All samples.	All samples.					
NATA* accredited analytical methods used for all analyses	All samples.	All samples.					
Consistent field conditions, sampling staff and laboratory analysis	All samples.	All samples.					
Completeness							
Sample description and Chain of Custodies completed and appropriate	All samples.	All samples.					
Appropriate documentation	All samples	All samples.					
Satisfactory frequency and result for QC samples	All QA / QC samples.	-					
Data from critical samples is considered valid	NA.	Critical samples valid.					
Sensitivity							
Limits of reporting appropriate and consistent	All samples.	All samples.					

^{*}National Association of Testing Authorities

6.1.7 Step 7 - Optimise the Design for Obtaining Data

Based on the validation methodology presented within the RAP the design for obtaining data has been developed based on a combination of:

- Systematic inspection or survey of capping layer components.
- Systematic inspection and sampling of waste and imported materials.
- Judgemental inspection and sampling of remaining sources, their removal and unexpected finds.

The sampling rationale and methodology is described in **Section 6.2**.

6.2 Validation Design and Methodology

As outlined in **Section 5.0**, the general remedial approach will involve the:

- Capping of contaminated fill and soils.
- Classification and validation of excavated site material and imported materials for on-site re-use or disposal.
- Management of unexpected finds.

The strategy and methodology to be adopted for the validation of each of the remediation elements is summarised in **Table 6.3** below.

Validation associated with the data gaps or potential point sources of contamination as identified in **Section 5.2**.

Table 6.3: Validation Strategy and Design

Area/Material	Remedial Approach	Validation Approach	Sampling Design
Capping of Contaminated	Fill/Soils		
1. Capping of Contaminated Fill Material	Marker layer and capping using suitable material is to be installed as specified in this RAP (Section 5.3).	Approval by EC of geofabric marker layer or retained concrete slab proposed to be used. Inspection of top of fill prior to marker layer installation. Survey and inspection of: • Marker layer (installed prior to cover). • Top of capping. The extent and thickness of the capping layer should be calculated and presented on a marked plan by the surveyor. Validation that cover material are environmentally suitable (the RC should also verify the materials are geotechnically suitable for the development).	Inspections by walking along geofabric joins or alignments on a systematic basis (e.g. 50 m alignments and overlaps). Survey points as judged by a suitably qualified surveyor.
2. Characterisation of Soil and Groundwater at 685 Gardeners Road	Address data gaps per Section 5.2 . Unexpected finds management under LTEMP.	Address data gaps per Section 5.2 . EC to evaluate whether further sampling is required.	Minimum of 5 locations in a 30 m grid. Field screening using a PID and logging. Selected soil samples analysed for: TRH, BTEXN, PAHs, metals. OCP, VOCs, PCBs & PFAS. Fill samples for asbestos (500 mL NEPM). Installation, survey, development, gauging and sampling of a groundwater monitoring well for heavy metals, TRH, VOCs, and PFAS (trace level).
3. Removal of USTs	Remove USTs and validate remnant soil around this infrastructure. There were up to six (6) USTs identified within the 2 Kent Road portion of the site. All of these USTs are to be removed as part of the redevelopment works.	As per the NSW EPA UPSS Regulation), USTs onsite are to be removed as part of the proposed redevelopment. Remnant soil is to be validated to confirm that there is no residual contamination around USTs. Should any additional USTs be identified during redevelopment works they should be removed and validated with the same approach.	Environmental oversight of the RC by the EC during active works. Collection of validation samples on the walls and floor of the UST pit, with samples collected by hand from the bucket of the excavator. Samples along the wall and floor should be undertaken at a rate of 1/5 m of floor or wall space. Collection of validation samples targeting lines and other tank infrastructure at a rate of 1/5 m. Collection of validation samples to characterise stockpiled material proposed for re-use within the tank pit at a rate of 1/25 m³, with a minimum of 3 samples per stockpile. On-site measurement of VOC concentrations in soil using a PID to screen for potential hydrocarbon impacts. Soil samples will be submitted for laboratory analysis for heavy metals, TRH, BTEXN and VOCs.

Area/Material	Remedial Approach	Validation Approach	Sampling Design
4. Residual Boundary Landscaping Areas	If existing trees are maintained within the existing landscaping boundary areas and fill is remaining and not capped, surface fill should be characterised to verify whether a thinner capping layer (e.g. mulch) may be appropriate and that would not damage the health of the tree.	Visible assessment to confirm free from visible asbestos and / or other visual or olfactory indicators of contamination. Collection of characterisation samples by EC in accordance with sampling densities prescribed herein.	Near surface soil samples (<0.1 m and 0.5 m bgl) are to be undertaken within residual fill every 30 m. Field screening using a PID and logging. Analysis of samples for: heavy metals, PAH, TRH, BTEX, asbestos (500 mL NEPM) and selected samples of PCBs and OCPs.
Materials Management – R	euse of Excavated Site Material	S	
5. Reuse of Excavated Site Soils or Concrete/ Asphalt <u>Below</u> the Marker Layer	Retention below the marker layer for passive management under the LTEMP.	Inspection by EC for unexpected finds. Consideration and management of acid sulfate soils as per the acid sulfate soil management plan need to be undertaken.	-
6. Reuse of Existing Concrete Slabs and Asphalt <u>Above</u> the Arker Layer	-	Concrete and asphalt slabs are to be inspected and asbestos clearance certificate to be issued by licenced asbestos assessor (LAA)/occupational hygienist prior to crushing for reuse. Slabs need to be cleaned and not impacted with residual sub-slab soil prior to crushing (where relevant). Details of cleaning are to be provided in the clearance letter. Verification of this via sampling crushed concrete stockpiles by EC prior to reuse above marker layer.	Inspection and clearance by LAA of slabs prior to crushing. Sampling of crushed material stockpiles for Asbestos NEPM (500 ml) at rates identified in Table 3 and Table 4 of the NSW EPA (2022) Sampling Design part 1 – application, Contaminated Land Guidelines.
Materials Management – Ir	nported Materials and Waste		
7. Imported Materials – Commercial Products - Quarried Natural Material (e.g. rock)	-	Quarried natural material is to be accompanied by an appropriate supplier certificate. The material should meet the general definition of VENM, except that it may have been processed as part of making the product. Sampling will not be required – inspection is required. The EC will inspect imported quarried material to confirm visual consistency with material reported at the source and absence of anthropogenic material.	

Area/Material	Remedial Approach	Validation Approach	Sampling Design
8. Imported Materials – VENM or Tunnel Spoil Classified under a Resource Recovery Order.		VENM shall meet the definition of VENM under the <i>Protection of the Environment Operations (POEO) Act</i> 1997. It is recommended that sampling of this material is undertaken at source sites where possible. Imported Tunnel Spoil shall meet the definition under a resource recovery order/exemption under the <i>Protection of the Environment Operations (POEO) (Waste) Regulations 2014.</i> The EC may conduct validation sampling or the RC must source and ensure the commercial supplier of the material provides a characterisation letter/report stating that the material meets the definition of VENM or the resource recovery order/exemption. The EC will observe imported material to confirm consistency with material reported at the source. One characterisation letter per material type will be required, which shall be reviewed by the EC. The characterisation letter should include a summary of the site history of the source site, the findings of any environmental site investigations undertaken at that site and the results of any soil analysis undertaken. Minimum sampling requirements should conform with this table.	1 sample per 100 m³ imported, with a minimum of 5 samples collected per source site. A lower sampling density than indicated for stockpiles in NSW EPA (2022). Sampling Design Guideline is considered suitable given the low likelihood of contamination of the material. Field screening using a PID and logging. Material samples analysed for asbestos (500 mL NEPM), heavy metals, PAH, TRH, BTEXN and other relevant CoPCs based on source site land use.

Area/Material	Remedial Approach	Validation Approach	Sampling Design
9. Imported Materials – other Resource Recovery Materials (e.g. ENM, Reused/Recycled Materials, Mulch).	-	Imported exempt waste shall meet the definition of ENM in Excavated Natural Material (ENM) Order 2014 or under a resource recovery order/exemption under the Protection of the Environment Operations (POEO) (Waste) Regulations 2014. The EC will observe imported material to confirm consistency with material reported at the source. It is recommended that sampling of this material is undertaken at source sites where possible. The EC may conduct validation sampling or the RC must source the following information for any ENM imported to the site for review by the EC: The commercial supplier of the material must provide a letter stating that the material is ENM or other exempt waste. One letter per material type will be required. The commercial supplier must provide copies of test results, confirming contaminant concentrations meet the concentration criteria in the RRO.	 Sampling and analysis as per ENM Order or other relevant RRO. In addition to assess suitability: ENM - a minimum of 1 sample per 75 m³ imported, with a minimum of 5 samples collected per source site. A lower sampling density than indicated for stockpiles in NSW EPA (2022). Sampling Design Guideline is considered suitable given the low likelihood of contamination of the material. Other exempt waste - as per Table 3 and Table 4 of the NSW EPA (2022). Sampling Design part 1 – application, Contaminated Land Guidelines. Field screening using a PID and logging. As a minimum, there should be analysis of asbestos (500 mL NEPM), heavy metals, PAH, TRH, BTEXN, OCP and PCBs and other relevant CoPCs based on source site land use.
10. Waste	-	If off-site disposal of excavated materials is required, this will be undertaken in accordance with the NSW EPA (2014) Waste Classification Guidelines. Consideration and management of acid sulfate soils as NSW EPA (2014) Waste Classification Guidelines – Part 4. Site won concrete (e.g. slabs) and inground structures (e.g. redundant services) requiring off-site disposal require a visual inspection and an asbestos clearance certificate from an LAA or competent person to confirm they are not impacted with asbestos prior to off-site disposal at a licenced waste facility.	For soils, as per Table 3 and Table 4 of the NSW EPA (2022). Sampling Design part 1 – application, Contaminated Land Guidelines. As a minimum, there should be analysis of asbestos (absence/presence), heavy metals, PAH, TRH, BTEXN, OCP, PCBs and PFAS. Additional analysis for Toxicity Characteristic Leaching Procedure (TCLP) and acid sulfate soil indicators if required.
11. All Excavated and Placed Contaminated Materials, Imported Materials, and Waste	-	Material Tracking Register as specified in Section 5.4.1 .	-

6.3 Environmental Consultant Presence

A suitably qualified and experienced EC is to be engaged to advise, provide oversight and undertake all validation requirements specified within this RAP. The EC may be one or more entities (i.e. different companies or skillets). The EC is to undertake the following:

- Oversight of all remediation requirements specified within this RAP. This includes physical site
 presence as required to conduct inspections, sampling and monitoring.
- Conduct the data gap assessments (refer Section 5.2) and assess unexpected finds (if any).
- Conduct remediation validation, including:
 - Observations of the materials encountered.
 - Undertake sampling and analysis of site materials as deemed necessary.
 - Inspect and review survey records of capping and marker layers.
 - Classify waste fill/soils.
 - Characterise imported materials.
 - Review materials tracking register maintained by the RC for accurate documentation of locations of excavations, materials beneficially reused on-site, materials taken off-site and imported materials.
- Provide guidance to assist with the appropriate on-site re-use and/or disposal of material (if required).
- Make an evaluation of potential risks to human health and the environment posed by the materials remaining on-site (inclusive of imported materials) and ensure the risk to health and the environment are acceptable (if required).

When the EC is not present the RC will be required to have a suitably trained and qualified person to identify unexpected finds; in particular, in imported materials and during bulk earthworks.

6.4 Quality Assurance and Quality Control

The field and laboratory quality assurance and quality control (QA/QC) plan to be adopted for the investigation has been designed to achieve pre-determined DQI that will demonstrate that the precision, accuracy, representativeness, completeness, comparability and sensitivity of the dataset meet the objectives of the investigation.

The specific QA/QC for the field and laboratory components of the investigation have been developed based on ASC NEPC.

6.4.1 Field QA/QC

The field quality assurance procedures to be adopted and the field quality control samples to be collected during the investigation and the corresponding acceptable control limits are presented below.

Data Type	Comments and Acceptable Control Limits									
Field Personnel	Use appropriately trained field personnel.									
Field Data Collection	 Site conditions and sample locations properly described. Information to be recorded in field notes. Field notes are appropriately completed and summarised in the report on the investigation. 									
Sample Handling (Storage And Transport)	 Soil samples will be collected into the sample jars and bags supplied by the selected analytical laboratory. The filled jars will be stored on ice in a chilled, insulated container until received by the analysing laboratory. Sample numbers, dates, preservation and analytical requirements will be recorded on Chain of Custody (COC) documentation, which will also be delivered to the analytical laboratory. All samples are required to be documented as received by the laboratory chilled and intact. 									
Calibration of Field Equipment	 The Photo-ionisation detector (PID) will be calibrated with isobutylene gas at 100 ppm at the commencement of each day of sampling and if necessary, during the day in accordance with the procedure provided by the supplier. Calibration records will be kept for inclusion in the validation report. 									
Field Duplicates (Intra-Laboratory and Inter- Laboratory)	Intra-laboratory duplicates will be collected and analysed at a rate of 1 in every 20 (or 1/10 for PFAS primary samples), with a minimum of 1 sample.									
	 Inter-laboratory duplicates will be collected and analysed at a rate of 1 in every 20 (or 1/10 for PFAS primary samples), with a minimum of 1 sample. 									
	 The duplicate samples will be obtained from locations suspected of being contaminated and analysed for the key CoPCs (soil: asbestos, TRH, BTEX, M8, PAHs). 									
	 Duplicated samples will be labelled so as to conceal, from the laboratory, the relationship of the primary sample to the secondary sample. RPDs to be less than 30% for inorganic and organic analyses where the results of one or both values are greater than 10 times the limit of reporting. Where both values are less than 10 times the LOR RPDs of less than 100% are acceptable. 									
Rinsate Blanks	 Rinsate blank samples (from an item of sampling equipment) will be collected and analysed at a rate of one per day of sampling. Concentrations of analytes to be less than the laboratory limits of reporting. 									
Trip Spikes	 Laboratory prepared trip spikes will be used and analysed at a rate of one per batch for the soil investigation for BTEX analysis. Recovery to be greater than 70%. 									

6.4.2 Laboratory QA / QC

The laboratory quality assurance procedures to be adopted and the internal laboratory QC samples to be analysed and the corresponding acceptable control limits are presented below.

Item	Comments and Acceptable Control Limits												
Sample Analysis	All sample analyses to be conducted using NATA certified laboratories which will implement a quality control plan in accordance with NEPC (2013).												
Holding Times	 All samples are to be submitted to the laboratory within the required laboratory holding times. Maximum acceptable sample holding times for soil are14 days for organic analyses and 6 months for inorganic analyses (28 days for mercury). 												
Laboratory Detection Limits	All laboratory detection limits to be less than the adopted assessment criteria.												
Laboratory Blanks	 Laboratory blanks to be analysed at a rate of 1 in 20, with a minimum of one analysed per batch. Concentration of analytes to be less than the laboratory detection limits. 												
Laboratory Duplicates	 Laboratory duplicates to be analysed at a rate of 1 in 20, with a minimum of one analysed per batch. RPDs to be less than 30%. 												
Laboratory Control Samples (Lcs)	 LCSs to be analysed at a rate of 1 in 20, with a minimum of one analysed per analytical batch. Control limits: 70 to 130 % Acceptable Recovery. 												
Surrogates	 Surrogate compound concentrations will be required to be spiked at a similar concentration to sample results, at a rate of 1 in 20. Control limits: 70% to 130% Acceptable recovery. 												
Matrix Spikes	 A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte. A matrix spike documents the effect(s) of bias of matrix on method performance. Matrix spike control limits: 70 to 130 % Acceptable recovery. 												

6.5 Remediation Acceptance Criteria

To assess whether the remediation goal has been achieved, validation criteria are adopted for the works:

- Capping extent and depth per the concept design in **Section 5.3**.
- Sourced from ASC NEPM and other NSW EPA made or approved guidelines for the purpose of validating soil samples and screening concentrations of contaminants. Criteria set out in ASC NEPM for a commercial/industrial setting, where available, are adopted based on the proposed redevelopment, the land use zoning of General Industrial (IN1) under the *Canterbury-Bankstown Local Environmental Plan 2023*, the surrounding environmental conditions, and the neighbouring receptors.

The following assessment criteria listed in **Table 6.4** below shall be adopted for the purpose of screening concentrations of contaminants.

Table 6.4: Adopted Assessment Criteria

Media	Receptor	Adopted Assessment Criteria
Soil	Human Health	Health investigation level D (HIL D), applicable for commercial/industrial in ASC NEPM and PFAS NEMP.
		 Health screening level D (HSL D) for vapour intrusion, clay, 0-<1 and 1 - <2m in ASC NEPM.
		Health screening level D (HSL D) for asbestos contamination in ASC NEPM.
		 HSL direct contact applicable for commercial/industrial (HSL D) in CRC CARE (protective of intrusive maintenance workers).
	Ecological	Ther are expected to be limited exposure of site soils to ecological receptors – the developed site will be used for industrial purposes and mostly covered by hard stand and buildings. However, to inform evaluation of management requirements, screening shallow be conducted adopting for soils in landscaping and unpaved areas:
		 Ecological investigation level (EIL) for commercial/industrial sites for soil is applicable to shallow soil to 2 m bgl. Site-specific EILs were calculated consistent with NEPC (2013) using the average of laboratory results; pH, total organic carbon, clay % and CEC.
		 The ASC NEPM (2013) methodology for derivation of site-specific EILs for lead, nickel, chromium III, copper and zinc was used to determine site specific screening criteria. The derivation process requires determination of ambient background concentrations (ABC) and added contaminant limits (ACLs) for these chemicals, and the EIL is then calculated as the ABC plus the ACL. The ACL is calculated using site-specific soil properties such as soil pH, organic carbon content and cation exchange capacity (CEC). Further details are provided in Section 8.1.
		Ecological screening level (ESL) for fine soils in commercial/industrial sites.
		PFAS NEMP interim soil ecological criteria (all land uses) for direct exposure (EDE).
	Infrastructure	Management Limits shall be used to assess the potential impacts of petroleum hydrocarbons which consider potential fire and explosive hazards and the effects of petroleum hydrocarbons on buried infrastructure.
	Aesthetics	The ASC NEPM does not provide assessment criteria but states that site assessment requires balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity. Aesthetic issues generally relate to the presence of low-concern inert foreign material in soil or fill resulting from human activity. Issues that require further assessment could include:
		Highly malodorous soil or extracted groundwater.
		Hydrocarbon sheen on surface water.
		Discoloured chemical deposits or soil staining with chemical waste.
		 Presence of putrescible waste that may generate hazardous levels of methane. Aesthetics considerations are of a lesser concern for areas of the site which will have a sealed surface.
	Waste	Thresholds and limits in NSW EPA (2014) Waste Classification Guidelines.
	VENM	VENM (and quarried natural products) should meet the definition of VENM in POEO Act and the following will apply:
		 Analysis results for organics (i.e. TRH, BTEX, PAH, OCP, OPP and PCB) must be below the LOR. Any results above the LOR should be assessed on a case by case basis before allowing any material on-site.
		 Analysis results for metals should be consistent with the range of expected background concentrations.
		Analysis results should not exceed HIL-D or HSL-D.
		If asbestos is identified, the material will not be acceptable for use at site.
	ENM, other	As per the ENM or other RRO/exemption and the following will apply:
	exempt waste under an	 Analysis results for metals should be consistent with the range of expected background concentrations.
	RRO	Analysis results should not exceed HIL-D or HSL-D.
		If asbestos is identified, the material will not be acceptable for use at site.

Media Receptor Adopted Assessment Criteria

Groundwater Human

Human Health

- HSL for vapour intrusion, clay aquifer, 2-4 m for commercial/industrial (HSL D) in ASC NEPM.
- Incidental contact under recreational or during drain maintenance work settings will be
 assessed via Australian Drinking Water Guidelines (ADWG) (2022) drinking water values x
 10 consistent with evaluation for recreational contact and recreational water quality
 guideline values in PFAS NEMP.

Drinking water guidelines have not been considered, given that there is no groundwater extraction for drinking purposes and provision of a reticulated water supply.

Ecological

- The Default Guidelines Values (DGV) provided by ANZG (2018) will be used to assess aquatic exposure. DGVs apply to receiving waters rather than groundwater under the site. Salt Pan Creek is identified as the closest surface water receptor and is considered a slightly to moderately disturbed environment. As such the 95% spp level is relevant for the assessment. DGVs for freshwater are adopted, which are relevant to Salt Pan Creek. ANZG (2018) states that for chemicals that that bioaccumulate the higher 99% spp level is relevant.
- ECHA (European Chemicals Agency) value for fresh and marine water for formaldehyde.
- Interim water quality guidelines presented in the PFAS NEMP have been adopted for PFAS. The 95% spp DGVs shall be used to assess direct toxicity.

Soil Vapour

Human Health

- HSLs for vapour intrusion (sand, depth based) for commercial/industrial (HSL D) in ASC NEPM.
- Interim soil vapour health investigation levels for volatile organic chlorinated compounds for commercial/industrial (HSL D) in ASC NEPM.

Where VOCs that do not have a HSL/HIL value are detected, additional screening levels have been sought from:

- Reference concentrations in Vapour Intrusion: Technical Practice Note (NSW EPA, 2010); or
- US EPA Regional Screening Levels (RSLs) for Commercial Air adjusted as follows:
 - The RSLs are indoor air values and so have been adjusted to soil vapour screening levels using an attenuation factor of 0.03 consistent with the recent enHealth 2023 guidance.
 - Where the RSLs are based on carcinogenic evaluation the value has also been adjusted by a factor of 10 consistent with the acceptable risk level of 1x10-5 identified in the ASC NEPM.
 - If a compound is not considered to be genotoxic or mutagenic then the threshold RSL value have been selected consistent with evaluation of threshold/ non threshold evaluation in the ASC NEPM.

6.6 Validation Reporting

A validation report shall be prepared by the EC on completion of the in-ground and at-grade development works. This report shall comply with requirements in NSW EPA (2020a) *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land*, including the following:

- Incorporate findings of data gap assessments in Section 5.2.
- Survey data confirming the location and depth of marker layer and capping thickness.
- A summary of material tracking records, including receiving facilities, landfill disposal dockets and NSW EPA IWTS data to be summarised within a table as described in **Section 5.4**.
- · Imported material certificates/classifications.
- Plans of sampling locations (as applicable) including historical and validation sampling.
- Inspection records and photographs.
- Tables of sample inspection, field screening and analysis results.
- NATA approved laboratory reports.
- Validation of field and laboratory data quality.
- · Unexpected finds documentation.
- A summary of environmental monitoring activities (e.g. air monitoring records and asbestos clearance certificates) undertaken by the RC during remediation works.
- Identify ongoing management requirements.

The report will include an assessment of all results and data and re-evaluation of the CSM, and then draw a conclusion on the suitability of the site for ongoing commercial/industrial land use contingent upon appropriate implementation of the LTEMP.

7.0 Site Management Provisions

Prior to the commencement of remediation works the following environmental management procedures and controls are to be implemented. These should include, but are not limited to, the following:

- Asbestos works notification and management controls, including dust and fugitive fibre emission controls and monitoring.
- Sediment/erosion management.
- Stockpile management including identification of temporary stockpiling locations.
- Reference to health and safety management, including provisions for personal protective equipment.
- Excavation water (groundwater and stormwater runoff) management.
- Material tracking and disposal.
- · Site access.
- Noise, odour and vibration controls.
- Monitoring requirements.

It is envisaged that these are developed and documented in:

- Site-Specific Health and Safety Plan (HASP).
- Construction Environmental Management Plan (CEMP).
- Construction Asbestos Management Plan (AMP), which could form part of the CEMP.

These may be prepared specifically for remediation works or for development construction works generally.

The following summarises the site management requirements. There may be additional requirements in DA conditions of approval or from GPSA – the SSD conditions of approval should take preference where there are any conflicts.

7.1 Asbestos Management

Asbestos has been detected in some fill material and will require management during remediation works. As such, remediation works involving asbestos impacted fill material must be conducted in accordance with regulations and SafeWork NSW (2022a/b) codes of practice for managing asbestos in workplaces.

The management controls and procedures shall be documented in the AMP. It is expected that the PC or RC will prepare and implement a construction AMP, including details on the personal protective equipment (PPE) and monitoring. The AMP must be provided to the EC prior to the initiation of the remediation works.

The AMP should be developed in accordance with SafeWork NSW (2022a/b) in consideration of site-specific risks and proposed development works but should consider at a minimum, the following:

- The location and extent of asbestos within the site.
- Notification requirements, including to SafeWork NSW.
- Roles and responsibilities, including appropriate supervision, monitoring and clearance for friable asbestos. E.g., all works that expose and/or penetrate asbestos impacted fill material must be supervised by a Class A licensed asbestos removalist contractor.
- Air monitoring requirements, which should include boundary monitoring for asbestos fibres.
- Demarcation and signage of the works area.
- Training and induction requirements.
- PPE and decontamination procedures.
- Reference to related environmental management controls in the CEMP.

7.2 Construction Environmental Management

The CEMP should outline authority approvals, regulatory requirements, team contacts, preconstruction planning, site management strategy, project administration, project specific requirements, site layout and logistics, construction methodology and construction risks and mitigation measures.

The CEMP should also discuss safety and environmental management and, inclusive of RAP requirements, discuss hazardous materials and unexpected discovery protocol.

7.2.1 Site Access

All remediation-related heavy vehicle access and egress from the site should follow a designated heavy vehicle route specified by the RC. As a minimum, the following traffic control measures will be implemented:

- All streets along the designated heavy vehicle route will be kept free from detritus material sourced from the site during the course of the project. A representative of the contractor will, on a daily basis, monitor the roadways leading to and from the site, and take steps to clean any adversely impacted pavements.
- Materials such as soil, mud, earth or similar tracked onto the driveways will be removed by means such as sweeping and shovelling, but not washing.
- Vehicles travelling along the designated heavy vehicle route shall have covered loads and adhere to the relevant speed limits.

7.2.2 Vehicle Cleaning

The following controls will be placed on operation and movement of vehicles that have been in contact with contaminated material:

- The surface of internal access roads carrying vehicular traffic will be kept clean.
- Vehicles carrying fill material shall be covered at all times with an "enviro-tarp" or similar impervious material to prevent the escape of dust or other material.
- A record of all trucks removing fill or natural materials from the site will be kept in a logbook and tracked to its final destination, NSW EPA IWTS information and tip dockets shall be retained onsite.
- The wheels and wheel arches of all vehicles having had access to the fill material will be inspected and if required, cleaned by the use of a broom or water spray to prevent mud and sediment from being deposited on Council roadways.

7.2.3 Dust Control

All practicable measures will be taken to ensure that dust emanating from the site is minimised. Measures to minimise the potential for dust generation may include:

- Where practicable minimising the excavation area and total number of stockpiles of impacted materials present within the site.
- Any asbestos material which may be encountered during the excavation works will be kept wetted at all times or otherwise covered.
- Use of water sprays over unsealed or bare surfaces, which are generating unacceptable amounts
 of dust.
- Covering of excavation faces and stockpiles, where necessary (if unacceptable amounts of dust are generated or if weather forecasts predict strong winds).
- Establishing dust screens consisting of a minimum of 2 m high shade cloth or similar material secured to a chain wire fence where dust is noted to be escaping the site boundary.
- Maintenance of all dust control measures to ensure good operating condition.
- All vehicles having had access to unpaved areas of the site shall exit via a wheel wash facility to prevent mud and sediment from being deposited on public roadways.

7.2.4 Odour Control

While odour is not considered to be a significant risk, all activities conducted at the site will be controlled such that all equipment used is designed and operated to control the emission of smoke, fumes and vapour into the atmosphere and any possible odours arising from the excavation or stockpiled material is controlled.

Control measures may include:

- Maintenance of construction equipment so that exhaust emissions comply with the relevant NSW legislation.
- Use of covers (if required, e.g. HDPE).

7.2.5 Soil Erosion and Surface Water Runoff

During remediation works, sediment and surface water controls in accordance with the Southern Sydney Regional Organisation of Council's brochure "Soil and Water Management for Urban Development" should be implemented. While the specific controls to be implemented will be documented within contractor site management plans the following should be considered:

- Sediment control.
- · Clean water diversions.
- Stormwater drain protection.

Sediment and clean water diversion control measures (i.e., silt fencing, hay bales, gravel bags etc.) should be strategically placed at the following locations:

- · Down-gradient of temporary stockpiles.
- Up-gradient of temporary stockpiles to redirect water.
- Down-gradient of any surrounding stormwater channels that flow within / through the site as a contingency against overflow into bunded stockpile locations.

Stormwater runoff should be diverted around open excavations.

Stormwater drain protection may comprise:

• Installation of sediment controls in any identified stormwater drains located down-gradient of any temporary stockpile areas.

During remediation works all sediment and surface water controls will be routinely inspected. Should any control measure be damaged or defective, the issue will be reported to the site superintendent to arrange for repair or modification.

7.2.6 Site Security and Signage

The site shall be secured by means of an appropriate fence to guard against unauthorised access if required.

A sign displaying the contact details of the RC will be displayed on the site adjacent to the works area.

The sign/s will be displayed throughout the duration of the remediation works in accordance with NSW regulatory requirements.

7.3 Worker Health and Safety

Remediation works shall be conducted compliant with requirements under relevant NSW or National worker health and safety regulations and guidance.

A worker health and safety plan (HASP) shall be prepared by the RC prior to commencement of remedial works. The HASP shall contain procedures and controls that are to be implemented to mitigate potential risks to site workers and surrounding residents/workers during remediation works. The approved HASP shall be implemented during remediation works.

All personnel undertaking work on the site will have undergone training relevant to the handling and management of contaminated materials including asbestos.

The HASP shall include or address:

- Roles and responsibilities.
- An assessment of hazards, risks and mitigations.
- Establishment of worker protection standards, safety practices and procedures.
- Monitoring requirements, instruments and trigger values (which may prompt a higher level of management).
- Provision for contingencies and emergency response.
- Any other requirements by the site owner or DA consent conditions.

The HASP shall consider normal construction related hazards and controls, and those specific to the proposed remediation works, including:

- Potential exposure to contaminated soil and asbestos.
- Excavations safety.
- Contingency procedures, controls and asbestos air monitoring.
- Personal Protective Equipment (PPE).
- Under/aboveground services, including USTs (if encountered), trade waste drains and sewerage.
- Excavation safety and operation of machinery in restricted spaces like excavations.

7.4 Reporting

7.4.1 Non-conformance and Corrective Action Reports

Non-conformances will be recorded within the Remediation Contractor's Non-Conformance and Corrective Action Report (or equivalent).

Details of the non-conformance, including any immediate corrective actions undertaken, are to be recorded by the on-site project team.

It is the responsibility of the project team to immediately initiate corrective actions, if required. Once completed, the project team will provide details of the actions undertaken on the Non-Conformance Report and sign, date and file the report.

7.4.2 Incident Management Reports

Reporting of environmental incidents will be undertaken in accordance with the EC's incident reporting procedures and timelines.

Records will be kept of any environmental incidents, accidents, hazardous situations, unusual events and unsafe health exposures and the corrective action taken.

The project team will investigate the cause of any emergency so that necessary changes in work practices can be made to prevent the incident recurring.

7.4.3 Complaint Reporting

The project team will maintain a register of complaints, which will include a record of any action taken with respect to the complaints.

If a complaint identifies a non-conformance, a Non-Conformance & Corrective Action report is to be initiated as per requirements of the CEMP.

Nature of the complaint is to be documented in the site's Complaints and Environmental Incidences Register (or equivalent).

7.5 Remediation Schedule

The PC or RC is to prepare a detailed program of remediation works, outlining key activities, milestones and completion dates. It is anticipated that most remediation works will be undertaken following demolition during initial site levelling and civil earthworks associated with site development.

7.6 Hours of Operation

Hours of operation are expected to be consistent with the SSD conditions of approval.

8.0 Contingency Plan

8.1 Remedial Contingencies

The purpose of the contingency plan is to identify unexpected situations that could occur, to specify procedures that can be implemented to manage such situations and to prevent adverse impacts to the environment and human health should these situations occur.

The conditions that may be encountered when undertaking works are uncertain. As unknown and variable sub-surface conditions impose a degree of uncertainty for the project, a set of anticipated conditions has been assumed in developing the RAP. However, because field conditions may vary, flexibility has been built into the RAP to adapt to differing conditions.

The conditions that can reasonably be expected, the resulting problems they may cause, and how these problems may be resolved within the context of the program have been summarised below.

Table 8.1: Contingencies

Potential Scenario	Action
Other Types of Contamination	The capping approach and broad analytical suite adopted in previous investigations mitigates this risk. Further evaluation of associated risks and incorporation into the LTEMP may be required.
Soil Contamination Underlying Existing Trees to Be Retained	If soil contamination is identified underlying existing trees to be retained, contingency management will be required to either: Remove the tree with permission from Council and remediate the soil; or Install a cover and marker layer overlying contamination to the extent that a horticulturalist indicates will not impact tree health, and ongoing management; and Ongoing passive management under the LTEMP.
Contamination of Groundwater	The remedial approach assumes that groundwater is not suitable for extraction and use. There is a low likelihood of active groundwater remediation being required. If required, a risk assessment could be undertaken to quantify risks and a dewatering management plan should be prepared.
Unacceptable Vapour Inhalation Risk	Previous investigation indicate a low and acceptable level of risk from vapour inhalation. However, there are data gaps to verify this, which will be assessed as part of the RAP. If residual soil vapour impacts represent an unacceptable risk via intrusion into future buildings as evaluated as part of the data gaps assessment, then adaptive measures include: Conduct a risk assessment to quantify risks for the specific development design and construction quality. Consolidation or relocation of source contaminated materials, if practicable, in open space areas. Requirement for vapour mitigation in buildings. This potential requirement would be assessed in the data gap assessment and be included in a RAP Addendum. For the purposes of the RAP, the following 'core' requirements for vapour intrusion mitigation are identified: An independent passive vapour management system for each building footprint will be designed and installed. The design shall be documented by a suitably qualified engineer and provided for review and approval by the EC. A construction quality assurance (CQA) plan shall be prepared by a suitably qualified installer and provided for review and approval by the EC. Validation, including CQA, will be documented in a report for review and approval by the EC.

8.2 Unexpected Finds

In addition to the above listed contingencies, the following steps may need to be undertaken should unexpected finds such as stained or odorous materials, buried drums or tanks, or suspect contaminated materials (other than identified impacts) be discovered during the works:

In the event that unexpected finds are encountered, the following protocol will be adopted:

- All works in the affected area will cease, the project manager, RC and GPSA will be contacted.
- The area of concern will be suitably barricaded / suitably fenced.
- Notify the EC and site auditor as soon as practicable.
- The nature of the contamination will be characterised visually and, if required, appropriate sampling and analysis will be completed by the EC.
- The requirement for any additional remediation and or sampling will then be assessed.
- Records will be kept in relation to the nature, location and management of the particular material.

Additional environmental and occupational safety controls may include:

- Upgrade of PPE, for workers within the active work zone, in accordance with the HASP.
- · Segregation and bunding of discovered material.
- Use of odour suppressants (where appropriate).
- Cover the discovered material with plastic sheeting (where appropriate/possible).
- Appropriate sampling and analysis to assess potential contaminants; and
- Appropriate treatment and/or disposal of the materials following receipt of analytical results and any associated regulatory approvals required.

9.0 Conclusion

This RAP was developed to provide a framework describing the requirements for remediation, validation, and worker health and safety and environment management strategies associated with the identified contamination at the site.

Subject to the suitable implementation of the measures described in this RAP, it is concluded that the site can be made suitable for the intended commercial/industrial use and that the risks to the environment can be appropriately protected during the remediation works. Ongoing passive management of certain intrusive works into residual contaminated soils and impacted groundwater under building slabs, pavement and a marker layer will be required via appropriate implementation of a passive LTEMP.

10.0 Principles and Limitations

The following principles are an integral part of site contamination assessment practices and are intended to be referred to in resolving any ambiguity or exercising such discretion as is accorded the user or site assessor.

Table 10.1: Principal and Limitation of Investigation

Area	Field Observation and Analytical Results
Elimination of Uncertainty	Some uncertainty is inherent in all site investigations. Furthermore, any sample, eithe surface or subsurface, taken for chemical testing may or may not be representative of a larger population or area. Professional judgment and interpretation are inherent in the process, and even when exercised in accordance with objective scientific principles, uncertainty is inevitable. Additional assessment beyond that which was reasonably undertaken may reduce the uncertainty.
Failure to Detect	Even when site investigation work is executed competently and in accordance with the appropriate Australian guidance, such as the National Environmental Protection (Assessment of site Contamination) Amendment Measure ('the NEPM'), it must be recognised that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behaviour and fate characteristics of certain substances, complex, discontinuous, random, or heterogeneous distributions of existing target analytes, physical impediments to investigation imposed by the location of services, structures and other man-made objects, and the inherent limitations of assessment technologies.
Limitations of Information	The effectiveness of any site investigation may be compromised by limitations or defects in the information used to define the objectives and scope of the investigation including inability to obtain information concerning historic site uses or prior site assessment activities despite the efforts of the user and assessor to obtain such information.
Chemical Analysis Error	Chemical testing methods have inherent uncertainties and limitations. Senversa routinely seeks to require the laboratory to report any potential or actual problems experienced, or non-routine events which may have occurred during the testing, so that such problems can be considered in evaluating the data.
Level of Assessment	The investigation herein should not be considered to be an exhaustive assessment of environmental conditions on a property. There is a point at which the effort of information obtained and the time required to obtain it outweigh the benefit of the information gained and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly conduct of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable in relation to the objectives of the assessment.
Comparison with Subsequent Inquiry	The justification and adequacy of the investigation findings in light of the findings of a subsequent inquiry should be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made.
Data Useability	Investigation data generally only represent the site conditions at the time the data were generated. Therefore, the usability of data collected as part of this investigation may have a finite lifetime depending on the application and use being made of the data. In all respects, a future reader of this report should evaluate whether previously generated data are appropriate for any subsequent use beyond the original purpose for which they were collected or are otherwise subject to lifetime limits imposed by other laws, regulations or regulatory policies.
Nature of Advice	The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Senversa does not seek or purport to provide legal or business advice.

11.0 References

enHealth (2023). Guidance for the human health risk assessment of volatile chlorinated hydrocarbon vapour intrusion. Canberra. Australian Government Department of Health and Aged Care.

National Environment Protection (Assessment of Site Contamination) Amendment Measure (No.1), National Environment Protection Council (NEPC) (2013). (ASC NEPM).

NSW EPA (2014). Waste Classification Guidelines.

NSW EPA (2017). Guidelines for the NSW Site Auditor Scheme (3rd edition).

NSW Environment Protection Authority (2020). Consultants Reporting on Contaminated Land.

NSW Environment Protection Authority (2022). Sampling Design part 1 – application, Contaminated Land Guidelines.

SafeWork NSW (2022a). Code of Practice: How to Manage and Control Asbestos in the Workplace. December 2022.

SafeWork NSW (2022b). Code of Practice: How to Safely Remove Asbestos. December 2022.

Senversa (2025). Preliminary Site Investigation. S21569_002_RPT_Rev2, 6 May 2025.

Senversa (2025). Detailed Site Investigation. S21569_003_RPT_Rev3, 6 May 2025.

WA Department of Health (2021) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.*

Figures

Figure 1: Site Location and Key Features

Figure 2: Historic Investigation Locations

Appendix A: Proposed Development Plans

Appendix B: Contamination Data Tables

					Me	etals				BTEX							Total Petroleum Hydrocarbons						
					Arsenic	Sadmium	Chromium	Copper	ead	Aercury	vickel	Znc	genzene 3enzene	Toluene	Ethylbenzene	(ylene (m & p)	(ylene (o)	Total Xylene	26-C9 Fraction	C10-C14 Fraction	215-C28 Fraction	229-C36 Fraction	310-C36 Fraction (Sum)
				Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				LOR	4	0.4	1	1	1	0.1	1	1	0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	50
		uman Health - NEPI ent Limits - NEPM			3,000 ^{#1}	900#1	3,600#2	240,000#1	1,500#3	730 ^{#1}	6,000#1	400,000#1	3"	99,000#4	27,000#4			230#4	260#5	20,000#6			-
	TTT managoni			nmercial / Industrial	160 ^{#15}		320 ^{#16}	95#17	1,830 ^{#18}		60#17	150 ^{#17}	75 ^{#19}	135 ^{#19}	165 ^{#19}			95#20	215 ^{#21}	170 ^{#22}			
Location	Field ID	Date Dep	th Type	Lab Report	1																		
BH01	BH01	19/06/2023 0.2 -		325916	-	-	-	-	-	-	-	-	-	T -	-	-	-	-	-	-	-	-	-
BH01	BH01	19/06/2023 0.5 -		325916	10	<0.4	14	33	280	0.2	35	170	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH01 BH02	BH01 BH02	19/06/2023		325916 325916	10 5	<0.4	16 8	67 32	140 92	<0.1 <0.1	12 10	94 94	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50
BH02	BH02	16/06/2023 2.9 -		325916	<4	<0.4	4	7	18	<0.1	4	24	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH03	BH03	19/06/2023 0.2 -		325916	11	<0.4	43	100	65	<0.1	33	120	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	110	110
BH03 BH04	BH03 BH04	19/06/2023 0.9 - 19/06/2023 0.2 -		325916 325916	17 9	<0.4	8 18	100 330	69 62	0.1 <0.1	8 24	130 110	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	1,300 <100	790 <100	2,100 <50
BH04	BH04	19/06/2023 0.2 -		325916	4	<0.4	2	900	87	0.2	3	21	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50 <50
BH05	BH05	19/06/2023 0.2 -		325916	20	<0.4	14	44	120	0.1	10	130	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH05 BH06	BH05 BH06	19/06/2023 2.9 - 19/06/2023 0.5 -		325916 325916	8 5	<0.4	11	29 25	52 48	0.2 <0.1	8	40 63	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50
BH06	BH06	19/06/2023 1 - 1		325916	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06	BH06	19/06/2023 2.9 -		325916	<4	0.6	9	20	36	<0.1	6	72	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH07 BH07	BH07 BH07	16/06/2023		325916 325916	5 <4	<0.4 0.5	27 36	160 210	72 79	<0.1 <0.1	15 16	83 100	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	220 300	180 270	400 560
BH08	BH08	19/06/2023 0.2 -		325916	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
BH08	BH08	19/06/2023 2 - 2		325916	<4	<0.4	73	35	120	0.3	18	67	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH08 BH09	BH08 BH09	19/06/2023 2.9 - 16/06/2023 0.2 -		325916 325916	8 13	<0.4	57 35	100 150	94 89	0.2	30 23	58 85	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 170	<100 180	<50 350
BH09	BH09	16/06/2023 0.5 -		325916	10	<0.4	20	58	91	<0.1	13	100	<0.2	<0.5	<1	<2	<1	<1	<25	<50	220	200	420
BH09	QC04	16/06/2023 0.5 -		325916	9	< 0.4	25	62	80	0.1	14	97	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	200	180	380
BH09 BH10	BH09 QC03	16/06/2023		325916 325916	- 8	<0.4	13	17	38	<0.1	4	43	<0.2	<0.5	- <1	<2	- <1	- <1	- <25	- <50	- <100	<100	- <50
BH10	BH10	16/06/2023 1 - 1	.1 Normal	325916	9	<0.4	11	26	53	< 0.1	6	61	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH10	BH10	16/06/2023 3 - 3		325916	4	3	20	18	43	0.3 <0.1	14	75	<0.2	<0.5	<1	<2	<1	<1	<25	<50	150	<100	150 <50
BH11 BH11	BH11 BH11	16/06/2023		325916 325916	<4 <4	<0.4	13	440 30	53 11	<0.1	8	65 93	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	<100 <100	<50
BH12	BH12	16/06/2023 0 - 0	.1 Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12 BH12	BH12 BH12	16/06/2023 0.5 - 16/06/2023 2 - 2		325916 325916	9 <4	<0.4	13	290	90	0.2 <0.1	12	86 18	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50
BH13	BH13	19/06/2023 1 - 1		325916	7	<0.4	15	54	590	<0.1	12	100	<0.2	<0.5	<1	<2	<1	<1	<25	<50	120	130	250
BH13	BH13	19/06/2023 2.9 -		325916	8	< 0.4	2	<1	2	< 0.1	<1	3	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH14 BH14	BH14 QC02	16/06/2023 0 - 0 16/06/2023 0.5 -		325916 325916	9	<0.4	21	- 60	520	0.4	- 6	390	<0.2	<0.5	- <1	<2	- <1	- <1	- <25	- <50	150	<100	150
BH14	BH14	16/06/2023 0.5 -		325916	9	<0.4	19	22	160	0.4	3	120	<0.2	<0.5	<1	<2	<1	<1	<25	<50	240	110	350
BH14	BH14	16/06/2023 2.9 -		325916	<4	< 0.4	3	2	20	<0.1	<1	20	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH15 BH15	BH15 (triplicate) BH15	19/06/2023 0.2 - 19/06/2023 0.2 -		325916 325916	27 35	0.8	16 22	140 190	210 200	0.1	13 15	300 290	- <0.2	<0.5	- <1	<2	- <1	- <1	- <25	- <50	100	130	230
BH15	BH15	19/06/2023 1 - 1	.1 Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15	BH15	19/06/2023 2 - 2		325916	14	8.5	79	82	170	<0.1	56	530	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	120	120
BH16 BH16	P-QC01 BH16 (triplicate)	16/06/2023 0 - 0 16/06/2023 0 - 0		325916 325916	- <4	<0.4	5	19	33	<0.1	- 6	43	-	-	-	-	-	-	-	-	-	-	-
BH16	BH16	16/06/2023 0 - 0	.1 Normal	325916	4	< 0.4	14	29	34	< 0.1	14	42	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH16 BH17	BH16 BH17 (triplicate)	16/06/2023 2.9 - 16/06/2023 0 - 0		325916 325916	<4 16	<0.4	5	3 16	6 27	<0.1 <0.1	4	9 43	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50 -
BH17	BH17 (Inplicate)	16/06/2023 0 - 0		325916	55	<0.4	11	45	60	0.1	7	94	<0.2	<0.5	- <1	<2	<1	- <1	- <25	- <50	<100	<100	<50
BH17	BH17	16/06/2023 1 - 1	.1 Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17 BH17	BH17 QC01	16/06/2023 4 - 4 16/06/2023 4 - 4		325916 325916	<4 <4	<0.4	<1 <1	<1 <1	1	<0.1 <0.1	<1 <1	1	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50
BH101	QC100	03/06/2024 0.3		353045	<4	<0.4	<1	1	7	<0.1	<1	13	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50 <50
BH101	BH101_0.3-0.4	03/06/2024 0.3 -	0.4 Normal	353045	<4	<0.4	<1	<1	2	<0.1	<1	9	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH101 BH102	BH101_2.5-2.6 BH102 0.11-0.2	03/06/2024 2.5 - 03/06/2024 0.11		353045 353045	<4 4	<0.4 0.7	<1 4	<1 53	<1 310	<0.1 0.2	<1 4	9 280	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50
BH102	BH102_2.8-3.0	03/06/2024 0.11		353158	<4	<0.4	<1	<1	1	<0.1	<1	1	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
BH103	BH103_0.4-0.6	05/06/2024 0.4 -		353594	6	<0.4	13	41	110	<0.1	10	100	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	110	110
BH103 BH103	QC203 BH103_1.9-2.2	05/06/2024 1.9 - 05/06/2024 1.9 -		D ES2418662 353594	- 8	<0.4	14	- 58	- 64	<0.1	- 18	83	<0.2	<0.5	<u>-</u> <1	<2	- <1	- <1	- <25	- <50	<100	<100	- <50
BH104	BH104_0.2-0.3	15/06/2024 0.2		354055	21	0.5	17	130	120	0.1	11	260	<0.2	<0.5	<1	<2	<1	<1	<25	<50	140	120	260
BH104	QC104	15/06/2024 0.2 -	0.3 Field_D	354055	31	0.6	16	520	310	0.2	16	400	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	140	140
BH104 BH104	QC205 BH104_0.6-0.8	15/06/2024		D ES2420087 354055	17 24	0.5	32 17	129 100	151 110	0.1	16 11	328 180	<0.2 <0.2	<0.5 <0.5	<0.5 <1	<0.5 <2	<0.5 <1	<0.5 <1	<10 <25	<50 <50	1,700 380	1,690 440	3,390 820
BH104	BH104_2.5-2.7	15/06/2024 2.5 -		354055	<4	<0.4	1	1	2	<0.1	<1	4	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50
	-	· · · · · · · · · · · · · · · · · · ·																					

					İ				Me	tals						ВТ	FX			Total Petroleum Hydrocarbons						
									1110					 							Total Followin Hydrodanom					
						Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Total Xylene	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)		
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
					LOR	4	0.4	1 #2	1 #1	1 #2	0.1	1 #1	1 #1	0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	50		
				3	mercial / Industrial	3,000#1	900#1	3,600#2	240,000**	1,500#3	730#1	6,000#1	400,000#1	3**	99,000***	27,000#4			230#4	260#5	20,000#6					
	TPH Managem			•	ercial / Industrial	#15		#46	#47	#40		#47	#47	#10	#10	#10			#20	#24	#22					
		Maintenar	nce of Ecosys	stems - Com	mercial / Industrial	160 ^{#15}		320 ^{#16}	95 ^{#17}	1,830 ^{#18}		60 ^{#17}	150 ^{#17}	75 ^{#19}	135 ^{#19}	165 ^{#19}			95 ^{#20}	215 ^{#21}	170 ^{#22}					
Location	Field ID	Date	Depth	Туре	Lab Report																					
BH105	BH105 0.2-0.3	04/06/2024		Normal	353594	470	9.8	430	350	38.000	6.3	14	39,000	<2	<5	10	120	<10	120	480	16,000	3,000	560	19,000		
BH105	BH105_0.2-0.5 BH105_0.4-0.6	04/06/2024		Normal	353594-A	-	-	430	-	- 30,000	-	-	- 39,000	-	-	-	120	-	-	400	-	3,000	300	-		
BH105	QC202	04/06/2024		Interlab D				-	-	_			-		-	_	-					-	-	_		
BH105	BH105 0.8-1.0	04/06/2024		Normal	353594	11	1	13	17	520	0.2	<1	560	<2	<5	<10	40	<10	40	180	3,000	170	<100	3,200		
BH105	BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024		Field D	353594	4	1	6	8	460	<0.1	<1	400	-	-	-	-	-	-	-	-	-	-	-		
BH106	BH106_0.15-0.3		0.15 - 0.3	Normal	353158	<4	< 0.4	<1	1	9	< 0.1	<1	10	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH106	BH106_1.0-1.2	04/06/2024	1 - 1.2	Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH106	QC102	04/06/2024	1 - 1.2	Field_D	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH106	BH106_2.2-2.5	04/06/2024	2.2 - 2.5	Normal	353158	<4	< 0.4	<1	<1	<1	< 0.1	<1	4	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	< 50		
BH107	BH107_0.05-0.2	04/06/2024	0.05 - 0.2	Normal	353158	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		
BH107	BH107_0.4-0.6	04/06/2024		Normal	353158	6	< 0.4	33	24	170	0.9	18	220	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH107	BH107_0.9-1.1	04/06/2024		Normal	353158	<4	< 0.4	5	18	110	< 0.1	12	350	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH108	BH108_0.3-0.5	04/06/2024		Normal	353158	6	< 0.4	17	30	220	<0.1	16	190	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	310	250	560		
BH108	BH108_1.8-2.2	04/06/2024		Normal	353158	<4	< 0.4	2	<1	1	<0.1	<1	31	<0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH109	BH109_0.05-0.2		0.05 - 0.2	Normal	353158	<4	<0.4	20	74	1	<0.1	110	44	< 0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH109	BH109_0.4-0.6	04/06/2024		Normal	353158	<4	<0.4	3	2	79	<0.1	2	8	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH109 BH110	BH109_1.4-1.7 QC105	04/06/2024 15/06/2024		Normal Field D	353158 354055	10	<0.4	23	- 52	- 91	<0.1	- 13	94	<0.2	<0.5	- <1	<2	- <1	- <1	- <25	- <50	- 250	- 190	440		
BH110	BH110 1.0-1.1 - [TRIPLICATE]	15/06/2024		Normal	354055	12	<0.4	35	32	61	<0.1	12	83	<u.z< td=""><td><0.5</td><td>-</td><td>-<-</td><td>-</td><td>-</td><td><z3 -</z3 </td><td><50</td><td>200</td><td>190</td><td>- 440</td></u.z<>	<0.5	-	-<-	-	-	<z3 -</z3 	<50	200	190	- 440		
BH110	BH110_1.0-1.1	15/06/2024		Normal	354055	14	<0.4	20	26	64	<0.1	9	79	<0.2	<0.5	<1	<2	<1	<1	<25	<50	280	240	520		
BH110	QC105 - [TRIPLICATE]	15/06/2024		Field D	354055	9	<0.4	16	31	63	<0.1	9	83	-	-	-	-	-	-	-	-	-	-	-		
BH110	BH110 2.8-2.9	15/06/2024		Normal	354055	<4	<0.4	2	2	3	<0.1	<1	5	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH111	BH111 1.0-1.1	15/06/2024		Normal	354055	<4	< 0.4	12	10	30	< 0.1	5	42	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	210	130	340		
BH111	BH111_2.0-2.1	15/06/2024	2 - 2.1	Normal	354055	8	< 0.4	5	14	26	< 0.1	4	31	< 0.2	< 0.5	<1	<2	<1	<1	42	3,100	6,100	<100	9,200		
BH112	BH112_0.35-0.45	15/06/2024	0.35 - 0.45	Normal	354055	11	< 0.4	15	49	92	< 0.1	16	170	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	480	350	820		
BH112	BH112_1.7-2.0	15/06/2024		Normal	354055	<4	< 0.4	2	1	2	< 0.1	<1	4	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH113	BH113_0.15-0.3		0.15 - 0.3	Normal	354055	<4	< 0.4	3	17	67	< 0.1	3	46	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
BH113	BH113_0.4-0.5	15/06/2024		Normal	354055	<4	< 0.4	11	23	91	< 0.1	6	80	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	140	160	300		
BH113	QC204	15/06/2024		Interlab_D		8	<1	14	29	153	0.1	10	102	<0.2	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<10	<50	140	140	280		
BH114	BH114_0.16-0.3		0.16 - 0.3	Normal	354055	8	<0.4	12	57	83	<0.1	15	130	< 0.2	< 0.5	<1	<2	<1	<1	<25	<50	<100	120	120		
BH114	QC206	15/06/2024		Interlab_D		<5 E	<1	18	32	61	<0.1	24	141	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	<50	<100	<100	<50		
BH114 BH114	BH114_0.9-1.0 BH114_2.4-2.7	15/06/2024 15/06/2024		Normal Normal	354055 354055	5 <4	<0.4	- 8 -<1	28 <1	96	<0.1	16 <1	440 5	<0.2	<0.5	<1 <1	<2 <2	<1 <1	<1 <1	<25 <25	<50 <50	<100 <100	120 <100	120 <50		
BH115	QC106		0.16 - 0.25		354055	7	<0.4	14	91	81	<0.1	10	120	<0.2	<0.5	<1	<2	<1	<1	<25	<50 <50	<100	<100	<50 <50		
BH115	BH115 0.16-0.25		0.16 - 0.25		354055	9	<0.4	13	44	110	0.1	12	130	<0.2	<0.5	<1	<2	<1	<1	<25	<50 <50	140	210	360		
BH115	BH115 1.0-1.2	15/06/2024		Normal	354055	<4	<0.4	1	5	12	<0.1	6	89	<0.2	<0.5	<1	<2	<1	<1	<25	<50	<100	<100	<50		
5.1110	DITTIO_1.0 1.2	10/00/2024	11.1.4	Nomman	004000	\¬	\ ∪.⊤	<u> </u>		14	\U. I		00	~∪.∠	NO.0	\	~~	\ I	\ I	_U	~00	100	< 100	\ 00		

								Total Reco	verable Hv	drocarbons			l .							PAH	Hs							
									ω			<u>-</u>								e e								
						5-C10 Fraction	C6-C10 Fraction minus BTEX (F1)	C10-C16 Fraction	>C10-C16 Fraction minu naphthalene (F2)	.C16-C34 Fraction	334-C40 Fraction	210-C40 Fraction (Sum)	enaphthene	enaphthylene	ıthracene	anz(a)anthracene	anzo(a)pyrene	Benzo(b+j) & Benzo(k)fluoranthene	3enzo(g,h,i)perylene	anzo(b+j+k)fluoranthene	nrysene	benz(a,h)anthracene	uoranthene	Jorene	deno(1,2,3-c,d)pyrene	aphthalene	ienanthrene	rene
					Unit	mg/kg	数値 mg/kg	mg/kg	Mg/kg	mg/kg	mg/kg	mg/kg	Mg/kg	Mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	 mg/kg	mg/kg	か mg/kg	i <u>□</u> mg/kg	mg/kg	≡ mg/kg	<u>ĕ</u> mg/kg	≝ mg/kg	面 mg/kg	mg/kg
					LOR	10	10	50	50	100	100	50	0.1	0.1	0.1	0.1	0.05	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
				0	mercial / Industrial nercial / Industrial	700 ^{#14}	260#7	1,000 ^{#14}	20,000#8	27,000 ^{#9} 3,500 ^{#14}	38,000 ^{#9} 10,000 ^{#14}			-	ļ	-		ļ			-					NL #4		
	11 11 Manageme				mercial / Industrial	700	215	1,000	170	1,700 ^{#23}	3,300 ^{#23}						1.4 ^{#24}									370 ^{#25}		
Location	Field ID	Date	Depth	Туре	Lab Report]																						
BH01	BH01	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH01 BH01	BH01 BH01	19/06/2023 19/06/2023		Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	<100 <100	<100 <100	<50 <50	<0.1	<0.1	<0.1	0.5	0.6	0.9	0.4	-	0.5	<0.1	0.7	<0.1	0.5	<0.1 <0.1	0.2	0.8
BH02	BH02	16/06/2023	1 - 1.1	Normal	325916	<25	<25	<50	<50	130	<100	130	< 0.1	< 0.1	<0.1	0.4	0.73	1	0.5	-	0.6	< 0.1	0.7	<0.1	0.4	<0.1	0.2	0.8
BH02 BH03	BH02 BH03	16/06/2023 19/06/2023		Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	<100 170	<100 <100	<50 170	<0.1	<0.1	<0.1	<0.1	0.1	<0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1 <0.1	<0.1	0.1
BH03 BH04	BH03 BH04	19/06/2023	0.9 - 1 0.2 - 0.3	Normal	325916 325916	<25	<25	75	75 <50	1,800	380	2,300	3.1	6.2 0.2	12	32	28 0.57	42 1	9.1	-	25	2.7	63	3.6	8.4	1.2 0.2	51 0.7	56
BH04	BH04	19/06/2023 19/06/2023	3 - 3.1	Normal Normal	325916	<25 <25	<25 <25	<50 <50	<50	130 <100	<100 <100	130 <50	<0.1 <0.1	< 0.1	0.2 <0.1	0.6	0.3	0.4	0.3	-	0.6	<0.1	0.9	<0.1	0.3	<0.1	0.2	0.8 0.4
BH05 BH05	BH05 BH05	19/06/2023 19/06/2023		Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	100 <100	<100 <100	100 <50	<0.1	0.1 <0.1	<0.1	0.5 0.3	0.6 0.4	0.9 0.5	0.4 0.2	-	0.4 0.3	<0.1	0.8 0.5	<0.1	0.5 0.2	<0.1	0.3 0.2	0.9 0.5
BH06	BH06	19/06/2023		Normal	325916	<25	<25	<50	<50	160	<100	160	<0.1	0.1	0.1	0.3	0.5	0.7	0.2	-	0.4	<0.1	0.6	<0.1	0.2	<0.1	0.2	0.7
BH06 BH06	BH06 BH06	19/06/2023 19/06/2023		Normal Normal	325916 325916	- <25	- <25	- <50	- <50	<100	<100	- <50	<0.1	<0.1	<0.1	<0.1	0.1	<0.2	<0.1	-	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	0.2
BH07	BH07	16/06/2023	0.2 - 0.3	Normal	325916	<25	<25	<50	<50	350	100	450	<0.1	0.2	0.4	1	1	2	0.6	-	0.9	0.1	1.9	0.1	0.5	<0.1	1.1	1.9
BH07 BH08	BH07 BH08	16/06/2023 19/06/2023		Normal Normal	325916 325916	<25 -	<25 -	<50 -	<50 -	490	160	650	<0.1	0.1	0.4	1 -	0.98	1 -	0.6	-	0.8	0.1	2	0.1	0.5	<0.1	1.1	2
BH08	BH08	19/06/2023	2 - 2.1	Normal	325916	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	<0.1	0.2	0.2	0.4	0.1	-	0.2	<0.1	0.3	<0.1	0.2	<0.1	0.2	0.3
BH08 BH09	BH08 BH09	19/06/2023 16/06/2023		Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	<100 290	<100 160	<50 450	<0.1	0.1	0.1	0.2 1.4	0.3 1.5	0.5 2.2	0.2	-	0.2 1.2	<0.1	0.4 2.6	<0.1	0.2	<0.1 0.1	0.2 1.4	0.4 2.6
BH09	BH09	16/06/2023	0.5 - 0.6	Normal	325916	<25	<25	<50	<50	360	150	510	0.1	0.5	0.8	1.6	1.6	2.4	0.9	-	1.4	0.2	3.2	0.3	0.8	0.2	2.4	3.2
BH09 BH09	QC04 BH09	16/06/2023 16/06/2023		Field_D Normal	325916 325916	<25 -	<25 -	<50 -	<50	320	130	460	0.2	0.6	1.2	2.8	2.5	3.8	1.3	-	2.3	0.3	5.5	0.4	1.1	0.2	4.4	5.4
BH10	QC03	16/06/2023	1 - 1.1	Field_D	325916	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	0.2	0.2	0.4	0.2	-	0.2	<0.1	0.3	<0.1	0.1	<0.1	0.2	0.4
BH10 BH10	BH10 BH10	16/06/2023 16/06/2023		Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	<100 170	<100 <100	<50 170	<0.1	<0.1	0.1 <0.1	0.3	0.4	0.6	0.3	-	0.3	<0.1	0.6	<0.1	0.2 <0.1	<0.1 <0.1	0.3	0.6
BH11	BH11	16/06/2023	0.2 - 0.3	Normal	325916	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	<0.1	0.4	0.5	0.7	0.4	-	0.4	< 0.1	0.7	<0.1	0.4	<0.1	0.2	0.7
BH11 BH12	BH11 BH12	16/06/2023 16/06/2023	2 - 2.1 0 - 0.1	Normal Normal	325916 325916	<25 -	<25 -	<50 -	<50 -	<100 -	<100 -	<50 -	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH12	BH12	16/06/2023	0.5 - 0.6	Normal	325916	<25	<25	<50	<50	150	<100	150	<0.1	0.2	0.2	0.7	0.85	1	0.6	-	0.7	0.1	1.4	<0.1	0.5	<0.1	0.7	1.4
BH12 BH13	BH12 BH13	16/06/2023 19/06/2023	2 - 2.1 1 - 1.1	Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	<100 210	<100 <100	<50 210	<0.1 <0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1
BH13 BH14	BH13 BH14	19/06/2023 16/06/2023	2.9 - 3 0 - 0.1	Normal	325916 325916	<25 -	<25 -	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH14	QC02	16/06/2023		Normal Field_D	325916	<25	<25	<50	<50	210	<100	210	<0.1	0.6	1	3	3	4	1.7	-	2.6	0.1	5.6	0.3	2	0.1	3.7	5.6
BH14 BH14	BH14 BH14	16/06/2023 16/06/2023		Normal Normal	325916 325916	<25 <25	<25 <25	<50 <50	<50 <50	310 <100	<100 <100	310 <50	0.2 <0.1	1 <0.1	3 <0.1	5.5 <0.1	4.4 <0.05	9 <0.2	3 <0.1	-	3.9 <0.1	0.2 <0.1	12 <0.1	0.9 <0.1	4 <0.1	0.4 <0.1	8.3 <0.1	12 <0.1
BH15	BH15 (triplicate)	19/06/2023	0.2 - 0.3	Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15 BH15	BH15 BH15	19/06/2023 19/06/2023		Normal Normal	325916 325916	<25 -	<25 -	<50 -	<50	190	110	300	<0.1	0.2	0.2	1 -	1 -	2	1 -	-	1 -	<0.1	2	<0.1	1	<0.1	0.8	2
BH15	BH15	19/06/2023	2 - 2.1	Normal	325916	<25	<25	<50	<50	160	<100	160	<0.1	<0.1	<0.1	0.1	0.2	0.3	0.1	-	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	0.2
	P-QC01 BH16 (triplicate)	16/06/2023 16/06/2023		Field_D Field D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16	BH16	16/06/2023	0 - 0.1	Normal	325916	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	0.1	0.1	0.2	0.1	-	0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.2
	BH16 BH17 (triplicate)	16/06/2023 16/06/2023		Normal Field_D	325916 325916	<25 -	<25 -	<50 -	<50 -	<100 -	<100 -	<50 -	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH17	BH17	16/06/2023	0 - 0.1	Normal	325916	<25	<25	<50	<50	120	<100	120	<0.1	0.2	0.2	0.7	0.8	1	0.6	-	0.7	<0.1	1	<0.1	0.7	<0.1	0.6	1
BH17 BH17	BH17 BH17	16/06/2023 16/06/2023		Normal Normal	325916 325916	- <25	- <25	<50	-	<100	<100	-	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH17	QC01	16/06/2023	4 - 4.1	Field_D	325916	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.2	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH101 BH101	QC100 BH101_0.3-0.4	03/06/2024 03/06/2024		Field_D Normal	353045 353045	<25 <25	<25 <25	<50 <50	<50 <50	<100 <100	<100 <100	<50 <50	<0.1	<0.1	<0.1	<0.1	<0.05 <0.05	-	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1
	BH101_2.5-2.6 BH102_0.11-0.2	03/06/2024 03/06/2024		Normal	353045 353045	<25	<25	<50 <50	<50 <50	<100	<100	<50 <50	<0.1	<0.1 <0.1	<0.1	<0.1	<0.05	-	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	BH102_0.11-0.2 BH102_2.8-3.0	03/06/2024		Normal Normal	353045 353158	<25 <25	<25 <25	<50 <50	<50 <50	<100 <100	<100 <100	<50 <50	<0.1	<0.1	<0.1	0.4 <0.1	0.4 <0.05	-	0.3 <0.1	<0.2	0.4 <0.1	<0.1	0.6 <0.1	<0.1	0.2 <0.1	<0.1	0.2 <0.1	0.6 <0.1
BH103 BH103	BH103_0.4-0.6 QC203	05/06/2024 05/06/2024		Normal Interlab D	353594 D ES2418662	<25 -	<25	<50 -	<50	150	120	270	<0.1	<0.1	<0.1	0.6	0.80	-	0.2	1 -	0.5	<0.1	0.9	<0.1	0.4	<0.1	0.4	1
BH103	BH103_1.9-2.2	05/06/2024	1.9 - 2.2	Normal	353594	<25	<25	- <50	<50	<100	<100	<50	<0.1	<0.1	<0.1	0.3	0.4	-	0.1	0.5	0.2	<0.1	0.5	<0.1	0.1	<0.1	0.2	0.4
	BH104_0.2-0.3 QC104	15/06/2024 15/06/2024		Normal Field D	354055 354055	<25 <25	<25 <25	<50 <50	<50 <50	220 190	110 160	320 350	<0.1	0.2 0.2	0.4	1.1 0.8	0.85 0.90	-	0.5 0.6	1	0.8	0.1 0.2	2.0 1.5	0.2 0.1	0.4 0.7	0.6 0.6	1.5 0.9	1.9 1.6
BH104	QC205	15/06/2024	0.6 - 0.8	Interlab_D	ES2420087	<10	<10	<50	<50	2,840	1,200	4,040	< 0.5	< 0.5	0.7	1.4	1.1		0.8	-	1.1	< 0.5	3.2	< 0.5	0.6	< 0.5	2.2	3.2
	BH104_0.6-0.8 BH104_2.5-2.7	15/06/2024 15/06/2024		Normal Normal	354055 354055	<25 <25	<25 <25	<50 <50	<50 <50	680 <100	340 <100	1,000 <50	0.1 <0.1	0.5 <0.1	0.8 <0.1	1.8 <0.1	1.6 < 0.05	-	0.9 <0.1	2.5 <0.2	1.2 <0.1	0.2 <0.1	3.3 <0.1	0.5 <0.1	1.1 <0.1	0.5 <0.1	2.7 <0.1	3.1 <0.1
Di 1104	DI 1107_2.0 2.1	10/00/2024	2.0 - 2.1	Invilla	1004000	\20	~20	\JU	~ 00	\10U	\10U	~UU	~∪. I	~∪. I	√ U. I	~∪. I	\U.UU		\U. I	\U.∠	~∪. I	~∪. I	\U. I	~∪. I	~∪. I	~∪. I	~∪. I	~∪. I

Coodinan																												
					Г			Total Reco	verable Hy	drocarbons	3									PAH	ls							
					Ī																						ī	
						C6-C10 Fraction	C6-C10 Fraction minus BTEX (F1)	>C10-C16 Fraction	>C10-C16 Fraction minus naphthalene (F2)	>C16-C34 Fraction	>C34-C40 Fraction	>C10-C40 Fraction (Sum)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b+j) & Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Benzo(b+j+k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					LOR	10	10	50	50	100	100	50	0.1	0.1	0.1	0.1	0.05	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		luman Health -		•		#4.4	260#/	#11	20,000#8	27,000#9	38,000#9															NL #4	\longrightarrow	
	TPH Managen				rcial / Industrial	700 ^{#14}		1,000 ^{#14}		3,500#14	10,000#14						#24									#25	\longrightarrow	
		Maintenan	ice of Ecosyst	ems - Comm	ercial / Industrial		215		170	1,700 ^{#23}	3,300 ^{#23}						1.4 ^{#24}									370 ^{#25}		
Location	Field ID	Date	Depth	Туре	Lab Report																							
BH105	BH105 0.2-0.3	04/06/2024		Normal	353594	3,500	3.400	9,900	9,800	2,200	370	12,000	0.5	<0.1	< 0.1	0.4	0.3	-	< 0.1	0.7	0.4	< 0.1	0.8	0.6	0.2	71	0.7	0.7
BH105	BH105 0.4-0.6	04/06/2024		Normal	353594-A	-	-	-	-	-	-	-,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH105	QC202	04/06/2024	0.4 - 0.6	Interlab_D	ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH105	BH105_0.8-1.0	04/06/2024	0.8 - 1	Normal	353594	1,600	1,600	1,900	1,900	<100	<100	1,900	< 0.1	< 0.1	< 0.1	0.1	0.1	-	< 0.1	0.2	0.1	< 0.1	0.3	0.1	< 0.1	29	0.2	0.2
BH105	BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024	0.8 - 1	Field_D	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106_0.15-0.3	04/06/2024		Normal	353158	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	-	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH106	BH106_1.0-1.2	04/06/2024		Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	QC102	04/06/2024		Field_D	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106_2.2-2.5	04/06/2024		Normal	353158	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	-	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
BH107	BH107_0.05-0.2	04/06/2024		Normal	353158		-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-
BH107	BH107_0.4-0.6	04/06/2024		Normal	353158	<25	<25	<50	<50	<100	<100	<50	< 0.1	<0.1	<0.1	0.1	0.1	-	0.1	0.2	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1
BH107	BH107_0.9-1.1	04/06/2024		Normal	353158	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	< 0.05	-	<0.1	<0.2	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
BH108	BH108_0.3-0.5	04/06/2024		Normal	353158	<25	<25	<50	<50	480	170	660	0.1	1.7	1.2	4.0	4.0	-	2.1	6.0	2.8	0.5	8.0	0.1	1.6	0.5	3.1	8.1
BH108	BH108_1.8-2.2	04/06/2024		Normal	353158	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	< 0.05	-	<0.1	<0.2	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
BH109	BH109_0.05-0.2	04/06/2024		Normal	353158	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	< 0.05	-	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH109 BH109	BH109_0.4-0.6 BH109_1.4-1.7	04/06/2024		Normal Normal	353158 353158	<25 -	<25 -	<50 -	<50 -	<100	<100	<50	<0.1	0.2	<0.1	0.3	0.3	-	0.3	0.6	0.2	<0.1	0.4	<0.1	0.2	<0.1	0.1	-
BH110	QC105	15/06/2024		Field D	354055	<25	<25	<50	<50	370	170	540	<0.1	0.5	0.7	1.4	1.2	-	0.7	2.0	1	0.2	3.0	0.4	0.9	<0.1	2.2	2.8
BH110	BH110 1.0-1.1 - [TRIPLICATE]	15/06/2024		Normal	354055	-	-	-	-	-	- 170	-	<u.1< th=""><th>- 0.5</th><th>-</th><th>1.4</th><th>- 1.2</th><th>-</th><th>-</th><th>2.0</th><th>-</th><th>- 0.2</th><th>3.0</th><th>-</th><th>0.9</th><th><0.1</th><th></th><th>-</th></u.1<>	- 0.5	-	1.4	- 1.2	-	-	2.0	-	- 0.2	3.0	-	0.9	<0.1		-
BH110	BH110 1.0-1.1	15/06/2024		Normal	354055	<25	<25	<50	<50	440	220	660	<0.1	0.2	0.2	0.8	0.63	-	0.5	1	0.6	0.1	1.6	<0.1	0.3	<0.1	0.7	1.6
BH110	QC105 - [TRIPLICATE]	15/06/2024		Field D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110 2.8-2.9	15/06/2024		Normal	354055	<25	<25	<50	<50	<100	<100	<50	0.2	< 0.1	< 0.1	<0.1	< 0.05	-	< 0.1	< 0.2	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1
BH111	BH111 1.0-1.1	15/06/2024		Normal	354055	<25	<25	<50	<50	290	140	420	0.3	0.4	0.8	1.2	0.79	-	0.4	1	0.8	0.1	3.2	0.4	0.3	0.1	4.3	2.9
BH111	BH111 2.0-2.1	15/06/2024		Normal	354055	150	150	5,500	5,500	3,200	<100	8,700	<2.0	<2.0	1.6	1.9	1.1	-	0.6	2	1.1	0.2	5.0	3.2	0.7	7	10	4.2
BH112	BH112_0.35-0.45	15/06/2024	0.35 - 0.45	Normal	354055	<25	<25	54	51	710	280	1,000	1.4	1.6	3.4	13	15	-	6.0	26	17	1.4	32	2.5	4.1	4.7	19	30
BH112	BH112_1.7-2.0	15/06/2024	1.7 - 2	Normal	354055	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	-	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH113	BH113_0.15-0.3	15/06/2024	0.15 - 0.3	Normal	354055	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	0.1	0.3	0.3	-	0.2	0.4	0.2	< 0.1	0.5	< 0.1	0.2	< 0.1	0.3	0.5
BH113	BH113_0.4-0.5	15/06/2024	0.4 - 0.5	Normal	354055	<25	<25	<50	<50	250	180	430	< 0.1	0.3	0.6	1.7	1.3	-	8.0	2	1.2	0.2	2.8	0.3	0.5	0.2	2.3	2.8
BH113	QC204	15/06/2024	0.4 - 0.5	Interlab_D	ES2420087	<10	<10	<50	<50	230	120	350	< 0.5	< 0.5	< 0.5	0.9	1.1	-	0.6	-	0.9	< 0.5	2.4	< 0.5	< 0.5	< 0.5	1.3	2.4
BH114	BH114_0.16-0.3	15/06/2024		Normal	354055	<25	<25	<50	<50	150	140	300	< 0.1	0.1	0.2	0.5	0.66	-	0.4	1	0.5	0.1	0.9	< 0.1	0.4	< 0.1	0.4	0.9
BH114	QC206	15/06/2024			ES2420087	<10	<10	<50	<50	130	<100	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	-	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.8
BH114	BH114_0.9-1.0	15/06/2024		Normal	354055	<25	<25	<50	<50	160	140	300	<0.1	< 0.1	< 0.1	0.4	0.3	-	0.2	0.5	0.2	< 0.1	0.6	< 0.1	0.1	< 0.1	0.3	0.6
BH114	BH114_2.4-2.7	15/06/2024		Normal	354055	<25	<25	<50	<50	<100	<100	<50	<0.1	<0.1	<0.1	< 0.1	< 0.05	-	< 0.1	<0.2	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
BH115	QC106	15/06/2024		Field_D	354055	<25	<25	<50	<50	<100	<100	<50	<0.1	0.2	0.2	0.6	0.68	-	0.6	1	0.4	0.1	0.7	< 0.1	0.6	<0.1	0.3	0.8
BH115	BH115_0.16-0.25	15/06/2024		Normal	354055	<25	<25	<50	<50	300	200	500	<0.1	0.2	0.2	1	0.86	-	0.6	1	0.6	0.2	1.0	<0.1	0.4	<0.1	0.3	1.1
BH115	BH115_1.0-1.2	15/06/2024	1 - 1.2	Normal	354055	<25	<25	<50	<50	<100	<100	<50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	-	< 0.1	< 0.2	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1

							P.	AHs		1				MAH								Haloge	enated Ben	zenes			
							(Half		atic																		
						senzo(a)pyrene TEQ Zero)	Senzo(a)pyrene TEQ (H .OR)	Benzo(a)pyrene TEQ (LOR)	Sum of Polycyclic aroma nydrocarbons (PAH)	,2,4-Trimethylbenzene	,3,5-Trimethylbenzene	sopropylbenzene	-Butylbenzene	- Propylbenzene	-Isopropyltoluene	ec-Butylbenzene	ert-Butylbenzene	ityrene	,2,3-Trichlorobenzene	,2-Dichlorobenzene	,2,4-Trichlorobenzene	,3-Dichlorobenzene	-Chlorotoluene	,4-Dichlorobenzene	-Chlorotoluene	śromobenzene	Chlorobenzene
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					LOR		0.5	0.5	0.05	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
					nercial / Industrial ercial / Industrial	40 ^{#1}	40#1	40#1	4,000#1	1,800#10	1,500 ^{#10}	9,900#10	58,000#10	24,000#10		120,000#10	120,000#10	35,000#10	930#10	9,300#10	110 ^{#10}		23,000#10	11 ^{#10}	23,000#10	1,800 ^{#10}	1,300 ^{#10}
				•	nercial / Industrial																						
Location	Field ID	Date	Depth	Туре	Lab Report	1																					
BH01	BH01	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH01 BH01	BH01 BH01	19/06/2023 19/06/2023		Normal Normal	325916 325916	0.8 <0.5	0.9 <0.5	0.9 <0.5	5.2 2.8	-	<1	<1 -	<1 -	<1 -	<1 -	<1	<1	<1 -	-	-	<1 -	-	-	-	-	-	-
BH02	BH02	16/06/2023	1 - 1.1	Normal	325916	0.9	0.99	1	5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02 BH03	BH02 BH03	16/06/2023 19/06/2023		Normal Normal	325916 325916	<0.5	<0.5	<0.5	0.3 5.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03	BH03	19/06/2023		Normal	325916	39	39	39	340	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04 BH04	BH04 BH04	19/06/2023 19/06/2023		Normal Normal	325916 325916	0.8 <0.5	0.8 <0.5	0.9 <0.5	6.4 2.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05	BH05	19/06/2023		Normal	325916	0.8	0.9	0.9	5.5	-	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	-	-	-	-	-	-
BH05	BH05	19/06/2023		Normal	325916	<0.5	0.5	0.6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06 BH06	BH06 BH06	19/06/2023 19/06/2023		Normal Normal	325916 325916	0.6	0.7	0.7	4.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06	BH06	19/06/2023		Normal	325916	< 0.5	< 0.5	< 0.5	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07 BH07	BH07 BH07	16/06/2023 16/06/2023		Normal Normal	325916 325916	1.5 1.4	1.5	1.5 1.4	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH08	BH08	19/06/2023		Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08 BH08	BH08 BH08	19/06/2023 19/06/2023		Normal Normal	325916 325916	<0.5 <0.5	< 0.5	<0.5	2.1	-	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	-	-	-	-	-	-
ВН09	BH09	16/06/2023		Normal	325916	2.1	<0.5 2.1	2.1	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09	BH09	16/06/2023		Normal	325916	2.3	2.3	2.3	19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09 BH09	QC04 BH09	16/06/2023 16/06/2023		Field_D Normal	325916 325916	3.6	3.6	3.6	32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10	QC03	16/06/2023	1 - 1.1	Field_D	325916	< 0.5	< 0.5	<0.5	2.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10 BH10	BH10 BH10	16/06/2023 16/06/2023		Normal Normal	325916 325916	0.5 <0.5	0.6 <0.5	0.6 <0.5	3.7 1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH11	BH11	16/06/2023		Normal	325916	0.6	0.7	0.7	4.2	-	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	-	-	-	-	-	-
BH11 BH12	BH11 BH12	16/06/2023 16/06/2023	2 - 2.1 0 - 0.1	Normal Normal	325916 325916	<0.5	<0.5	<0.5	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12	BH12	16/06/2023		Normal	325916	1.2	1.2	1.2	8.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12	BH12	16/06/2023		Normal	325916	<0.5	< 0.5	<0.5	< 0.05	-	4	- 4	- 4	- 4	- 4	4	4	- 4	-	-	- 4	-	-	-	-	-	-
BH13 BH13	BH13 BH13	19/06/2023 19/06/2023	1 - 1.1 2.9 - 3	Normal Normal	325916 325916	0.8 <0.5	0.8 <0.5	0.9 <0.5	6.3 < 0.05	-	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	-	-	<1 -	-	-	-	-	-	-
BH14	BH14	16/06/2023		Normal	325916	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH14 BH14	QC02 BH14	16/06/2023 16/06/2023		Field_D Normal	325916 325916	4.3 6.6	4.3 6.6	4.3 6.6	34 69	-	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	-	-	<1 <1	-	-	-	-	-	-
BH14	BH14	16/06/2023	2.9 - 3	Normal	325916	<0.5	<0.5	<0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15 BH15	BH15 (triplicate) BH15	19/06/2023 19/06/2023		Field_D Normal	325916 325916	1.9	2	2	13	-	- <1	- <1	- <1	<u>-</u> <1	- <1	- <1	- <1	- <1	-	-	- <1	-	-	-	-	-	-
BH15	BH15	19/06/2023	1 - 1.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15 BH16	BH15 P-QC01	19/06/2023 16/06/2023		Normal Field D	325916 325916	<0.5	<0.5	<0.5	1.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16	BH16 (triplicate)	16/06/2023	0 - 0.1	Field_D	325916	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16	BH16	16/06/2023		Normal	325916	<0.5	< 0.5	< 0.5	1.1	-	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	-	-	-	-	-	-
BH16 BH17	BH16 BH17 (triplicate)	16/06/2023 16/06/2023		Normal Field_D	325916 325916	<0.5	<0.5	<0.5	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17	BH17	16/06/2023	0 - 0.1	Normal	325916	1.1	1.2	1.2	8.7	-	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	-	-	-	-	-	-
BH17 BH17	BH17 BH17	16/06/2023 16/06/2023		Normal Normal	325916 325916	<0.5	< 0.5	<0.5	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17	QC01	16/06/2023	4 - 4.1	Field_D	325916	< 0.5	< 0.5	< 0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH101 BH101	QC100 BH101 0.3-0.4	03/06/2024		Field_D Normal	353045 353045	<0.5 <0.5	< 0.5	<0.5	<0.05	- <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	<u>-</u> <1	- <1	- <1	<u>-</u> <1	- <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1
BH101	BH101_2.5-2.6	03/06/2024	2.5 - 2.6	Normal	353045	< 0.5	< 0.5	< 0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH102	BH102_0.11-0.2 BH102_2.8-3.0	03/06/2024		Normal	353045 353158	0.6	0.6	0.7	4.1	1	1	1	1	1	-1	1	1	1	- -1	1	1	1	1	1	<u>-</u> -1		1
BH102 BH103	BH102_2.8-3.0 BH103_0.4-0.6	03/06/2024		Normal Normal	353594	<0.5	<0.5 1.1	<0.5	<0.05	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -
BH103	QC203	05/06/2024	1.9 - 2.2	Interlab_D	ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103 BH104	BH103_1.9-2.2 BH104 0.2-0.3	05/06/2024 15/06/2024		Normal Normal	353594 354055	<0.5 1.3	0.5 1.3	0.6 1.3	2.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104	QC104	15/06/2024	0.2 - 0.3	Field_D	354055	1.4	1.4	1.4	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104 BH104	QC205 BH104 0.6-0.8	15/06/2024 15/06/2024		Interlab_D Normal	ES2420087 354055	1.5 2.4	1.8 2.4	2.0	16.5 21	- <1	- <1	- <1	- <1	<u>-</u> <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	<1	- <1	- <1	<u>-</u> <1	- <1	- <1
BH104	BH104_2.5-2.7	15/06/2024		Normal	354055	<0.5	<0.5	<0.5	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

					ſ		D	AHs		1				MAH								Halag	enated Ben	70000			
					•			AI IS			1	ı	1	IVIALI	Ι		1			Ι		rialoge	nateu Den	201103		$\overline{}$	
						Benzo(a)pyrene TEQ (Zero)	Benzo(a)pyrene TEQ (Half LOR)	Benzo(a)pyrene TEQ (LOR)	Sum of Polycyclic aromatic hydrocarbons (PAH)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Isopropylbenzene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene	Styrene	1,2,3-Trichlorobenzene	1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	1,3-Dichlorobenzene	2-Chlorotoluene	1,4-Dichlorobenzene	4-Chlorotoluene	Bromobenzene	Chlorobenzene
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					LOR	0.5	0.5	0.5	0.05	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Hu	ıman Health - N	NEPM Setting	g 'D' - Comm	ercial / Industrial	40 ^{#1}	40 ^{#1}	40 ^{#1}	4,000 ^{#1}	1,800 ^{#10}	1,500 ^{#10}	9,900 ^{#10}	58,000 ^{#10}	24,000 ^{#10}		120,000 #10	120,000 #10	35,000 ^{#10}	930 ^{#10}	9,300 ^{#10}	110 ^{#10}		23,000 ^{#10}	11 ^{#10}	23,000 ^{#10}	1,800 ^{#10}	1,300 ^{#10}
	TPH Manageme	ent Limits - NE	EPM Setting	D - Comme	rcial / Industrial																						
		Maintenand	ce of Ecosyst	ems - Comm	ercial / Industrial																						
Location	Field ID	Date	Depth	Туре	Lab Report																						
BH105	BH105_0.2-0.3	04/06/2024	0.2 - 0.3	Normal	353594	< 0.5	0.5	0.6	77	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH105	BH105 0.4-0.6	04/06/2024	0.4 - 0.6	Normal	353594-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH105	QC202	04/06/2024		Interlab D	ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH105	BH105 0.8-1.0	04/06/2024		Normal	353594	< 0.5	< 0.5	< 0.5	21	390	160	9	<1	27	29	14	<10	<10	<10	<10	<10	<10	<10	<10	<1	<10	<10
BH105	BH105 0.8-1.0 - [TRIPLICATE]		0.8 - 1	Field D	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106 0.15-0.3	04/06/2024		Normal	353158	< 0.5	< 0.5	< 0.5	< 0.05	-	_	-	-	-	-	 -	-	-	-		-	-	-	_		_	
BH106	BH106 1.0-1.2	04/06/2024		Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	QC102	04/06/2024		Field D	353158	-	-	+ -	-	-	-	-	-	-	-	- -	 	-		-	-	-	-	-	-	-	-
BH106	BH106 2.2-2.5	04/06/2024		Normal	353158	< 0.5	< 0.5	<0.5	< 0.05	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH107	BH107 0.05-0.2	04/06/2024		Normal	353158	-	-	<0.5	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
BH107	BH107_0.03-0.2 BH107_0.4-0.6	04/06/2024		Normal	353158	< 0.5	< 0.5	<0.5	0.92	<1			<1			<1					<1				<1		
BH107	BH107_0.4-0.6						<0.5		< 0.05		<1	<1		<1 -	<1		<1	<1	<1	<1		<1	<1 -	<1		<1 -	<1
BH107	BH107_0.9-1.1 BH108 0.3-0.5	04/06/2024		Normal Normal	353158	<0.5 5.7		<0.5 5.7	<0.05 44	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
					353158		5.7											- 4				4	- 4				
BH108	BH108_1.8-2.2	04/06/2024		Normal	353158	< 0.5	< 0.5	<0.5	< 0.05	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH109	BH109_0.05-0.2	04/06/2024		Normal	353158	< 0.5	< 0.5	< 0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109_0.4-0.6	04/06/2024		Normal	353158	< 0.5	< 0.5	0.5	3.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH109	BH109_1.4-1.7	04/06/2024		Normal	353158	-	-	-	- 47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	QC105	15/06/2024		Field_D	354055	1.9	1.9	1.9	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110_1.0-1.1 - [TRIPLICATE]	15/06/2024		Normal	354055	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
BH110	BH110_1.0-1.1	15/06/2024		Normal	354055	1	1	1	8.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH110	QC105 - [TRIPLICATE]	15/06/2024		Field_D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110_2.8-2.9	15/06/2024		Normal	354055	< 0.5	< 0.5	< 0.5	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH111	BH111_1.0-1.1	15/06/2024		Normal	354055	1.2	1.2	1.2	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH111	BH111_2.0-2.1	15/06/2024		Normal	354055	1.8	1.8	1.8	37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH112	BH112_0.35-0.45	15/06/2024		Normal	354055	21	21	21	180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH112	BH112_1.7-2.0	15/06/2024		Normal	354055	< 0.5	< 0.5	< 0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113_0.15-0.3	15/06/2024		Normal	354055	< 0.5	< 0.5	< 0.5	3.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113_0.4-0.5	15/06/2024		Normal	354055	1.9	1.9	1.9	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH113	QC204	15/06/2024		Interlab_D	ES2420087	1.4	1.7	1.9	11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.16-0.3	15/06/2024		Normal	354055	1	1	1	6.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	QC206	15/06/2024		Interlab_D	ES2420087	< 0.5	0.6	1.2	1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.9-1.0	15/06/2024		Normal	354055	< 0.5	< 0.5	0.5	3.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH114	BH114_2.4-2.7	15/06/2024		Normal	354055	< 0.5	< 0.5	< 0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	QC106		0.16 - 0.25	Field_D	354055	1.0	1.0	1.0	6.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_0.16-0.25	15/06/2024	0.16 - 0.25	Normal	354055	1.3	1.3	1.3	7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_1.0-1.2	15/06/2024	1 - 1.2	Normal	354055	< 0.5	< 0.5	< 0.5	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				-				•					•			•	•					•					

							Halogenated	Hydrocarb	ons	I							Chlorin	nated Hydro	carbons							
													Ф				Φ									
						,2-Dibromoethane	sromomethane	dichlorodifluoromethane	richlorofluoromethane	,1-Dichloropropene	,1-Dichloroethane	,1-Dichloroethene	,1,1,2-Tetrachloroethan	,1,1-Trichloroethane	1,2-Dibromo-3- chloropropane	,1,2-Trichloroethane	,1,2,2-Tetrachloroethan	,2,3-Trichloropropane	,2-Dichloroethane	,3-Dichloropropane	,2-Dichloropropane	;2-Dichloropropane	sromochloromethane	ßromodichloromethane	sromoform	Sarbon Tetrachloride
					Unit	9 9	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	ш	uman Haalth	NEDM Sottin	ag 'D' Com	LOR mercial / Industrial	0.16 ^{#10}	1 30 ^{#10}	1 370 ^{#10}	350.000 ^{#10}	1	1 16 ^{#10}	1 1.000 ^{#10}	1 8.8 ^{#10}	1 36.000 ^{#10}	0.064 ^{#10}	1 5 ^{#10}	2.7 ^{#10}	0.11 ^{#10}	2 ^{#10}	1 23.000 ^{#10}	1 11 ^{#10}	1	1 630 ^{#10}	1.3 ^{#10}	1 86 ^{#10}	1 2.9 ^{#10}
				•	nercial / Industrial		30	370	350,000		10	1,000	0.0	36,000	0.064	5	2.1	0.11		23,000	- 11		630	1.3	00	2.9
		Maintenan	ce of Ecosys	tems - Com	mercial / Industrial																					
Location	Field ID	Date	Depth	Туре	Lab Report				_																	
BH01 BH01	BH01 BH01	19/06/2023 19/06/2023		Normal Normal	325916 325916	- <1	- <1	<u>-</u> <1	- <1	- <1	- <1	<u>-</u> <1	- <1	<u>-</u> <1	<1	<u>-</u> <1	- <1	<u>-</u> <1	- <1	- <1	- <1	- <1	- <1	<1	- <1	- <1
BH01	BH01	19/06/2023	0.9 - 1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02 BH02	BH02 BH02	16/06/2023 16/06/2023		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03	BH03	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03 BH04	BH03 BH04	19/06/2023 19/06/2023	0.9 - 1 0.2 - 0.3	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04	BH04	19/06/2023	3 - 3.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05 BH05	BH05 BH05			Normal Normal	325916 325916	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -	<1	<1 -
BH06	BH06	19/06/2023	0.5 - 0.6	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06 BH06	BH06 BH06	19/06/2023 19/06/2023	1 - 1.1 2.9 - 3	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07	BH07	16/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07 BH08	BH07 BH08	16/06/2023 19/06/2023		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08	BH08	19/06/2023	2 - 2.1	Normal	325916	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH08 BH09	BH08 BH09	19/06/2023 16/06/2023		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH09	BH09	16/06/2023	0.5 - 0.6	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09 BH09	QC04 BH09	16/06/2023 16/06/2023		Field_D Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10	QC03	16/06/2023	1 - 1.1	Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10 BH10	BH10 BH10	16/06/2023 16/06/2023		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH11	BH11	16/06/2023	0.2 - 0.3	Normal	325916	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH11 BH12	BH11 BH12	16/06/2023 16/06/2023	2 - 2.1 0 - 0.1	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH12	BH12	16/06/2023	0.5 - 0.6	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12 BH13	BH12 BH13	16/06/2023 19/06/2023	2 - 2.1	Normal Normal	325916 325916	- <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	<1	<u>-</u> <1	- <1	- <1	- <1	- <1	- <1	<1	<1	- <1	- <1	- <1	- <1
BH13	BH13	19/06/2023	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH14 BH14	BH14 QC02	16/06/2023 16/06/2023		Normal Field D	325916 325916	- <1	- <1	<u>-</u> <1	- <1	- <1	- <1	<u>-</u> <1	- <1	<1	<1	- <1	- <1	<u>-</u> <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1
BH14	BH14	16/06/2023	0.5 - 0.6	Normal	325916	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH14 BH15	BH14 BH15 (triplicate)	16/06/2023 19/06/2023		Normal Field D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15	BH15	19/06/2023	0.2 - 0.3	Normal	325916	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH15 BH15	BH15 BH15	19/06/2023 19/06/2023		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16	P-QC01	16/06/2023	0 - 0.1	Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16 BH16	BH16 (triplicate) BH16	16/06/2023 16/06/2023		Field_D Normal	325916 325916	- <1	- <1	<1	<1	- <1	- <1	- <1	<1	<1	<1	- <1	<1	<1	<u>-</u> <1	- <1	<1	<1	<1	<1	- <1	- <1
BH16	BH16	16/06/2023	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH17 BH17	BH17 (triplicate) BH17	16/06/2023 16/06/2023		Field_D Normal	325916 325916	- <1	- <1	- <1	- <1	- <1	<1	- <1	<1	<1	<1	- <1	- <1	<1	<1	- <1	<1	<1	- <1	<1	- <1	- <1
BH17	BH17	16/06/2023	1 - 1.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17 BH17	BH17 QC01	16/06/2023 16/06/2023		Normal Field_D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH101	QC100	03/06/2024	0.3 - 0.4	Field_D	353045	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH101 BH101	BH101_0.3-0.4 BH101_2.5-2.6	03/06/2024		Normal Normal	353045 353045	<1	<1	<1	<1	<1 -	<1	<1	<1 -	<1 -	<1 -	<1	<1 -	<1	<1 -	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -
BH102	BH102_0.11-0.2	03/06/2024	0.11 - 0.2	Normal	353045	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BH102_2.8-3.0 BH103_0.4-0.6	03/06/2024 05/06/2024		Normal Normal	353158 353594	<1 -	<1 -	<1 -	<1	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1	<1	<1 -	<1 -	<1 -	<1 -
BH103	QC203	05/06/2024	1.9 - 2.2	Interlab_D	ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103 BH104	BH103_1.9-2.2 BH104_0.2-0.3	05/06/2024 15/06/2024		Normal Normal	353594 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104	QC104	15/06/2024	0.2 - 0.3	Field_D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104 BH104	QC205 BH104 0.6-0.8	15/06/2024 15/06/2024		Interlab_D Normal	354055	- <1	- <1	- <1	- <1	- <1	- <1	- <1	- <1	<1	<u>-</u> <1	- <1	- <1	- <1	- <1	- <1	<1	<1	- <1	- <1	- <1	- <1
	BH104_2.5-2.7	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

					ı	-	Halogenated	Hydrocarb	ons								Chlorin	ated Hydro	carbons							
																										T
						1,2-Dibromoethane	Sromomethane	Dichlorodifluoromethane	Trichlorofluoromethane	1,1-Dichloropropene	1,1-Dichloroethane	1,1-Dichloroethene	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,2-Dibromo-3- chloropropane	1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	1,2-Dichloroethane	1,3-Dichloropropane	1,2-Dichloropropane	2,2-Dichloropropane	Sromochloromethane	Bromodichloromethane	Bromoform	Carbon Tetrachloride
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					LOR	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Hu	ıman Health -	NEPM Sett	ing 'D' - Com	mercial / Industrial	0.16 ^{#10}	30 ^{#10}	370 ^{#10}	350,000 ^{#10}		16 ^{#10}	1,000 ^{#10}	8.8 ^{#10}	36,000 ^{#10}	0.064 ^{#10}	5 ^{#10}	2.7 ^{#10}	0.11 ^{#10}	2 ^{#10}	23,000 ^{#10}	11 ^{#10}		630 ^{#10}	1.3 ^{#10}	86 ^{#10}	2.9 ^{#10}
	TPH Manageme	ent Limits - N	EPM Settin	ng D - Comm	ercial / Industrial																					
		Maintenand	ce of Ecosy	stems - Com	mercial / Industrial																					
Location	Field ID	Date	Depth	Туре	Lab Report																					
BH105	BH105 0.2-0.3	04/06/2024		Normal	353594	-	-	-	-	-	T -	-	-	-	-	-	-	-	l -	-	-	-	-	-	-	-
BH105	BH105 0.4-0.6	04/06/2024		Normal	353594-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH105	QC202	04/06/2024		Interlab D		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	
BH105	BH105_0.8-1.0	04/06/2024	0.8 - 1	Normal	353594	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
BH105	BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024	0.8 - 1	Field_D	353594	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-
BH106	BH106_0.15-0.3	04/06/2024	0.15 - 0.3	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106_1.0-1.2	04/06/2024	1 - 1.2	Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	QC102			Field_D	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106_2.2-2.5	04/06/2024		Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH107	BH107_0.05-0.2	04/06/2024		Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH107	BH107_0.4-0.6	04/06/2024		Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH107	BH107_0.9-1.1	04/06/2024		Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH108	BH108_0.3-0.5	04/06/2024		Normal	353158		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	<u> </u>
BH108	BH108_1.8-2.2	04/06/2024		Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH109	BH109_0.05-0.2		0.05 - 0.2	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109_0.4-0.6		0.4 - 0.6	Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH109 BH110	BH109_1.4-1.7 QC105	04/06/2024 15/06/2024	1.4 - 1.7	Normal Field D	353158 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110 1.0-1.1 - [TRIPLICATE]		1 - 1.1	Normal	354055		-	-	-	-		-	-	- -	-	-	-		-	-	-	-			-	-
BH110	BH110_1.0-1.1 - [TRIPLICATE]		1 - 1.1	Normal	354055	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH110	QC105 - [TRIPLICATE]		1 - 1.1	Field D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110 2.8-2.9	15/06/2024		Normal	354055	_ <u></u> -	-	-	-	-		-	-		-	-			-	-	-	-		 -	-	-
BH111	BH111 1.0-1.1	15/06/2024		Normal	354055				-		-	-	-	-	-		 		-	-	-	-		 	-	-
BH111	BH111 2.0-2.1	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-
BH112	BH112 0.35-0.45				354055	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-
BH112	BH112 1.7-2.0	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	1 - 1	-	-	-	-	-	-	-	-	-
BH113	BH113_0.15-0.3		0.15 - 0.3	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-
BH113	BH113_0.4-0.5	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-
BH113	QC204	15/06/2024	0.4 - 0.5	Interlab_D	ES2420087	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.16-0.3	15/06/2024	0.16 - 0.3	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	QC206	15/06/2024	0.9 - 1	Interlab_D	ES2420087	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.9-1.0	15/06/2024		Normal	354055	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH114	BH114_2.4-2.7	15/06/2024	2.4 - 2.7	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	QC106	15/06/2024			354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_0.16-0.25	15/06/2024			354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_1.0-1.2	15/06/2024	1 - 1.2	Normal	354055		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

												Chlorina	ited Hydroc	arbons							Solv	ents	Pesticides
						Chlorodibromomethane	Chloroethane	Chloroform	Chloromethane	s-1,2-Dichloroethene	Dibromomethane	-1,3-Dichloropropene	exachlorobutadiene	exachlorocyclopentadiene	xachloroethane	etrachloroethene	ins-1,2-Dichloroethene	ins-1,3-Dichloropropene	richloroethene	/inyl Chloride	Syclohexane	phorone	lirex
					Unit		ර් mg/kg	ပ် mg/kg	ည် mg/kg	ਾਲ mg/kg	⊟ mg/kg	.ජූ mg/kg	当 mg/kg	当 mg/kg	当 mg/kg	<u>β</u> mg/kg	± mg/kg	mg/kg	mg/kg		රි mg/kg	<u>ॲ</u> mg/kg	≅ mg/kg
			NEDMO :		LOR	1	1	1	1	1	1	1	0.5	2	0.5	1	1	1	1	1	1	1	0.1
	TPH Mana	gement Limits - N			nmercial / Industrial	39 ^{#10}	23,000#10	1.4 ^{#10}	460#10	370 ^{#10}	99#10		5.3 ^{#10}	7.5 ^{#10}	8 ^{#10}	100#10	300 ^{#10}		6 ^{#10}	1.7 ^{#10}	27,000#10	2,400 ^{#10}	100#1
		Maintenand	ce of Ecosy	ystems - Com	nmercial / Industrial																		
	Field ID	Date	Depth	Туре	Lab Report																	-	
BH01 BH01	BH01 BH01		0.2 - 0.3 0.5 - 0.6	Normal Normal	325916 325916	- <1	- <1	- <1	<1	- <1	- <1	- <1	<0.5	- <2	<0.5	- <1	- <1	- <1	- <1	<1	<1	- <1	-
BH01 BH02	BH01 BH02	19/06/2023 16/06/2023	0.9 - 1	Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02 BH02	BH02	16/06/2023	1 - 1.1 2.9 - 3	Normal Normal	325916	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03 BH03	BH03 BH03	19/06/2023 19/06/2023	0.2 - 0.3 0.9 - 1	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04	BH04	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04 BH05	BH04 BH05	19/06/2023 19/06/2023	3 - 3.1 0.2 - 0.3	Normal Normal	325916 325916	- <1	- <1	- <1	<1	<1	- <1	- <1	<0.5	- <2	<0.5	- <1	- <1	- <1	- <1	<1	<1	- <1	-
BH05	BH05	19/06/2023	2.9 - 3	Normal	325916	-	-	,		-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06 BH06	BH06 BH06	19/06/2023 19/06/2023	0.5 - 0.6 1 - 1.1	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06 BH07	BH06 BH07		2.9 - 3	Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07	BH07	16/06/2023 16/06/2023	0.2 - 0.3 1 - 1.1	Normal Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08 BH08	BH08 BH08	19/06/2023 19/06/2023	0.2 - 0.3 2 - 2.1	Normal Normal	325916 325916	- <1	- <1	- <1	- <1	- <1	- <1	- <1	<0.5	- <2	- <0.5	- <1	- <1	<1	- <1	- <1	- <1	- <1	-
BH08	BH08	19/06/2023	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09 BH09	BH09 BH09	16/06/2023 16/06/2023	0.2 - 0.3 0.5 - 0.6	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09	QC04	16/06/2023	0.5 - 0.6	Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09 BH10	BH09 QC03	16/06/2023 16/06/2023	1 - 1.1 1 - 1.1	Normal Field D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10	BH10	16/06/2023	1 - 1.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10 BH11	BH10 BH11	16/06/2023 16/06/2023	3 - 3.1 0.2 - 0.3	Normal Normal	325916 325916	<u>-</u> <1	- <1	<1	<1	<1	- <1	<u>-</u> <1	<0.5	<2	<0.5	- <1	- <1	<1	- <1	<1	<1	- <1	-
BH11	BH11	16/06/2023	2 - 2.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12 BH12	BH12 BH12	16/06/2023 16/06/2023	0 - 0.1 0.5 - 0.6	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12 BH13	BH12 BH13	16/06/2023 19/06/2023	2 - 2.1 1 - 1.1	Normal Normal	325916 325916	- <1	- <1	<1	<u>-</u> <1	<1	<1	- <1	<0.5	-	<0.5	- <1	- <1	- <1	- <1	<u>-</u> <1	<u>-</u> <1	- <1	-
BH13	BH13	19/06/2023	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH14 BH14	BH14 QC02	16/06/2023 16/06/2023	0 - 0.1 0.5 - 0.6	Normal Field D	325916 325916	- <1	- <1	- <1	<1	<1	- <1	- <1	<0.5	-	<0.5	- <1	- <1	- <1	<u>-</u> <1	<1	<1	- <1	-
BH14	BH14	16/06/2023	0.5 - 0.6	Normal	325916	<1	<1	<1	<1	<1	<1	<1	< 0.5	<2	< 0.5	<1	<1	<1	<1	<1	<1	<1	-
BH14 BH15	BH14 BH15 (triplicate)	16/06/2023 19/06/2023		Normal Field_D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15 BH15	BH15 BH15	19/06/2023 19/06/2023	0.2 - 0.3	Normal Normal	325916 325916	<1 -	<1 -	<1	<1	<1	<1 -	<1 -	<0.5	<2	<0.5	<1	<1 -	<1 -	<1	<1	<1	<1 -	-
BH15	BH15	19/06/2023	2 - 2.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16 BH16	P-QC01 BH16 (triplicate)	16/06/2023 16/06/2023		Field_D Field_D	325916 325916	-	-			-	-	-	-	-	-	-	-	-	-		-	-	-
BH16	BH16	16/06/2023	0 - 0.1	Normal	325916	<1	<1	<1	<1	<1	<1	<1	< 0.5	<2	<0.5	<1	<1	<1	<1	<1	<1	<1	-
BH16 BH17	BH16 BH17 (triplicate)	16/06/2023 16/06/2023		Normal Field_D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17	BH17	16/06/2023	0 - 0.1	Normal	325916	<1	<1	<1	<1	<1	<1	<1	< 0.5	<2	<0.5	<1	<1	<1	<1	<1	<1	<1	-
BH17 BH17	BH17 BH17	16/06/2023 16/06/2023		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17 BH101	QC01 QC100	16/06/2023 03/06/2024		Field_D Field D	325916 353045	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH101	BH101_0.3-0.4	03/06/2024	0.3 - 0.4	Normal	353045	<1	<1	<1	<1	<1	<1	<u>-</u> <1	<1	-	-	<1	<1	<1	<1	<1	<1	-	<0.1
BH101 BH102	BH101_2.5-2.6 BH102_0.11-0.2	03/06/2024 03/06/2024		Normal Normal	353045 353045	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1
BH102	BH102_2.8-3.0	03/06/2024	2.8 - 3	Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	-
BH103 BH103	BH103_0.4-0.6 QC203	05/06/2024 05/06/2024		Normal Interlab [353594 D ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	BH103_1.9-2.2	05/06/2024	1.9 - 2.2	Normal	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1
BH104 BH104	BH104_0.2-0.3 QC104	15/06/2024 15/06/2024		Normal Field D	354055 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1
BH104	QC205	15/06/2024	0.6 - 0.8	Interlab_0	D ES2420087	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104 BH104	BH104_0.6-0.8 BH104_2.5-2.7	15/06/2024 15/06/2024		Normal Normal	354055 354055	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	-	-	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	-	-
	*				1																		

				Г																		
											Chlorina	ated Hydroc	arbons	1		1				Solv	ents	Pesticides
					Chlorodibromomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	Dibromomethane	cis-1,3-Dichloropropene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Tetrachloroethene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Vinyl Chloride	Cyclohexane	Isophorone	Mirex
				Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		==		LOR	1	1	1#10	1	1	1	1	0.5	2	0.5	1	1	1	1	1	1	1	0.1
		ıman Health - NEPM Se			39 ^{#10}	23,000 ^{#10}	1.4 ^{#10}	460#10	370 ^{#10}	99#10		5.3 ^{#10}	7.5 ^{#10}	8	100 ^{#10}	300#10		6 ^{#10}	1.7 ^{#10}	27,000 ^{#10}	2,400 ^{#10}	100 ^{#1}
	TPH Manageme	ent Limits - NEPM Set																				\blacksquare
		Maintenance of Eco	systems - Comn	nercial / Industrial																		
Location	Field ID	Date Depth	Туре	Lab Report																		
BH105	BH105 0.2-0.3	04/06/2024 0.2 - 0.3	Normal	353594		T -			Г.	Г.	· -			T -	_		T -		I -		_	<0.1
BH105	BH105_0.4-0.6	04/06/2024 0.4 - 0.6	Normal	353594-A		-	-	-	-	-	-		-	-		-	 	-	-	-	-	-
BH105	QC202	04/06/2024 0.4 - 0.6	Interlab D	ES2418662	-	-	-	-	-	-	-	-	-	-	_	-	 -	-	-	-	-	-
BH105	BH105 0.8-1.0	04/06/2024 0.8 - 1	Normal	353594	<10	<10	<10	<10	<10	<10	<10	<10	-	-	<10	<10	<10	<10	<10	<10	-	-
BH105	BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024	Field D	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106 0.15-0.3	04/06/2024 0.15 - 0.		353158	-	<u> </u>	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	<0.1
BH106	BH106_1.0-1.2	04/06/2024 1 - 1.2	Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	QC102	04/06/2024 1 - 1.2	Field D	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106_2.2-2.5	04/06/2024 2.2 - 2.5	Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	-
BH107	BH107 0.05-0.2	04/06/2024 0.05 - 0.	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH107	BH107_0.4-0.6	04/06/2024	Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	< 0.1
BH107	BH107_0.9-1.1	04/06/2024 0.9 - 1.1	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH108	BH108_0.3-0.5	04/06/2024	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.1
BH108	BH108_1.8-2.2	04/06/2024 1.8 - 2.2	Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	-
BH109	BH109_0.05-0.2	04/06/2024 0.05 - 0.	2 Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109_0.4-0.6	04/06/2024	Normal	353158	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	< 0.1
BH109	BH109_1.4-1.7	04/06/2024 1.4 - 1.7	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
BH110	QC105	15/06/2024 1 - 1.1	Field_D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
BH110	BH110_1.0-1.1 - [TRIPLICATE]	15/06/2024 1 - 1.1	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110_1.0-1.1	15/06/2024 1 - 1.1	Normal	354055	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	< 0.1
BH110	QC105 - [TRIPLICATE]	15/06/2024 1 - 1.1	Field_D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110_2.8-2.9	15/06/2024 2.8 - 2.9	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH111	BH111_1.0-1.1	15/06/2024 1 - 1.1	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1
BH111	BH111_2.0-2.1	15/06/2024 2 - 2.1	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.4
BH112 BH112	BH112_0.35-0.45 BH112_1.7-2.0	15/06/2024 0.35 - 0. 15/06/2024 1.7 - 2		354055 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1
BH112	BH112_1.7-2.0 BH113 0.15-0.3	15/06/2024 1.7 - 2 15/06/2024 0.15 - 0.	Normal Normal	354055 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113_0.15-0.3 BH113_0.4-0.5			354055	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	
BH113	QC204	15/06/2024	Normal Interlab D	ES2420087	<u> </u>	-		-	-	-	-	-	 	-	-	-	-	-	-	-	-	<0.1
BH113	BH114 0.16-0.3	15/06/2024 0.4 - 0.5 15/06/2024 0.16 - 0.		354055	-	-	-	-	-	-	-	-	 	-	-	-	-	-	-	-	-	-
BH114	QC206	15/06/2024 0.16 - 0.	Interlab D	ES2420087		-	- -	-			-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114 0.9-1.0	15/06/2024 0.9 - 1	Normal	354055	<1	<1	<1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	-	<0.1
BH114	BH114_2.4-2.7	15/06/2024 0.9 - 1	Normal	354055	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-
BH115	QC106	15/06/2024 0.16 - 0.		354055		-	<u> </u>	-	-	-	-		-	-	-		 	-	-	-	-	-
BH115	BH115 0.16-0.25	15/06/2024 0.16 - 0.		354055		-		<u> </u>			-	-			-	-			-		-	<0.1
BH115	BH115 1.0-1.2	15/06/2024 1 - 1.2	Normal	354055		-	-	-	-	-	-		-	-		-	 	-	-	-	-	-
פוווט	D11110_1.0 1.2	10/00/2024 1 - 1.2	Invilliai	004000																	-	

					ſ			Phth	alates			I		Pi	olychlorina	ated Biphe	envls			1			Organo	chlorine Pe	esticides			
						g.			diatoo						Jorgonionine	l Diprie	Jilyio						Organio		Journal			
						-ethylhexyl) Phthala	Benzyl Phthalate	ıyl Phthalate	thyl Phthalate	ıtyl Phthalate	octyl Phthalate	lor 1016	or 1221	or 1232	or 1242	lor 1248	or 1254	or 1260	s (Sum of total)	<u>o</u>	O.	C	<u>ri</u>	IC (Lindane)	ر		-DDE	
						3is(2	3utyl	Diethyl	Jime	Jiput	Ë	Yrocl	Aroclor	\roc	\roc	Yrocl	\roc	Aroclor	CBs	-BHC	-BHC	3-BHC	Dieldrin	y-BHC	Ndrir	TOC	1,4'-[90
					Unit	5 5	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	Н	uman Health - N	IEPM Setti	ing 'D' - Com	LOR mercial / Industrial	5 160 ^{#10}	1,200 ^{#10}	1 660,000 ^{#10}	1	82,000 ^{#10}	8,200 ^{#10}	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 7 ^{#11}	0.1 0.36 ^{#10}	0.1 1.3 ^{#10}	0.1	0.1	0.1 2.5 ^{#10}	0.1	0.1	0.1	0.1
	TPH Managem				nercial / Industrial																					#25		
		Maintenance	e of Ecosys	stems - Com	mercial / Industrial																					640#25		
Location BH01	Field ID BH01	Date I	Depth	Type Normal	Lab Report 325916		T -	Ι.	l -	l -	T -	l -	l -	-	l -	Ι.	-	-	-	l -	-	-		-				
BH01	BH01	19/06/2023		Normal	325916	<5	<1	<1	<1	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-
BH01 BH02	BH01 BH02	19/06/2023 (16/06/2023 (Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02	BH02	16/06/2023 2	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03 BH03	BH03 BH03	19/06/2023 (19/06/2023 (Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04 BH04	BH04	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05	BH04 BH05	19/06/2023 3 19/06/2023 0	0.2 - 0.3	Normal Normal	325916 325916	- <5	- <1	- <1	<1	<1	- <1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05 BH06	BH05 BH06	19/06/2023 2 19/06/2023 0		Normal Normal	325916 325916	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-
BH06	BH06	19/06/2023	1 - 1.1	Normal	325916	-	-	-	-	-	-		-	<u. i<="" td=""><td>-</td><td><u.1< td=""><td>-</td><td><u.1< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></u.1<></td></u.1<></td></u.>	-	<u.1< td=""><td>-</td><td><u.1< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></u.1<></td></u.1<>	-	<u.1< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></u.1<>	-	-	-	-	-	-	-	-	-	-
BH06 BH07	BH06 BH07	19/06/2023 2 16/06/2023 0		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07	BH07	16/06/2023	1 - 1.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08 BH08	BH08 BH08	19/06/2023 (19/06/2023 2		Normal Normal	325916 325916	<u>-</u> <5	- <1	- <1	- <1	9	- <1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08	BH08	19/06/2023 2	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09 BH09	BH09 BH09	16/06/2023 (16/06/2023 (Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09 BH09	QC04 BH09	16/06/2023 (16/06/2023 (Field_D Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10	QC03	16/06/2023		Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10 BH10	BH10 BH10	16/06/2023 1 16/06/2023 3		Normal Normal	325916 325916	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-
BH11	BH11	16/06/2023	0.2 - 0.3	Normal	325916	<5	<1	<1	<1	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-
BH11 BH12	BH11 BH12	16/06/2023 2 16/06/2023 0		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12	BH12	16/06/2023	0.5 - 0.6	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
BH12 BH13	BH12 BH13	16/06/2023 2 19/06/2023 2		Normal Normal	325916 325916	- <5	<1	- <1	- <1	<1	- <1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH13 BH14	BH13 BH14	19/06/2023 2 16/06/2023 0		Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH14	QC02	16/06/2023	0.5 - 0.6	Field_D	325916	<5	<1	<1	<1	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-		<u> </u>
BH14 BH14	BH14 BH14	16/06/2023 (16/06/2023 2		Normal Normal	325916 325916	<5 -	<1	<1	<1 -	<1 -	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-
BH15	BH15 (triplicate)	19/06/2023	0.2 - 0.3	Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15 BH15	BH15 BH15	19/06/2023 (19/06/2023 (Normal Normal	325916 325916	<5 -	<1	<1	<1 -	<1 -	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH15 BH16	BH15 P-QC01	19/06/2023 2		Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16	BH16 (triplicate)	16/06/2023 (16/06/2023 (Field_D Field_D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16 BH16	BH16 BH16	16/06/2023 (16/06/2023 2		Normal Normal	325916 325916	<5 -	<1	<1	<1	<1 -	<1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-		-	-
BH17	BH17 (triplicate)	16/06/2023	0.1	Field_D	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17 BH17	BH17 BH17	16/06/2023 (16/06/2023 (Normal Normal	325916 325916	<5 -	<1 -	<1	<1 -	2	<1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17	BH17	16/06/2023	4 - 4.1	Normal	325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17 BH101	QC01 QC100	16/06/2023 4 03/06/2024 (Field_D Field_D	325916 353045	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH101	BH101_0.3-0.4 BH101_2.5-2.6	03/06/2024 0	0.3 - 0.4	Normal	353045 353045	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH101 BH102	BH102_0.11-0.2	03/06/2024	0.11 - 0.2	Normal Normal	353045	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH102 BH103	BH102_2.8-3.0 BH103_0.4-0.6	03/06/2024 2 05/06/2024 0		Normal Normal	353158 353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	QC203	05/06/2024	1.9 - 2.2	Interlab_D	ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103 BH104	BH103_1.9-2.2 BH104 0.2-0.3	05/06/2024 15/06/2024 (Normal Normal	353594 354055	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH104	QC104	15/06/2024	0.2 - 0.3	Field_D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104 BH104	QC205 BH104 0.6-0.8	15/06/2024 (15/06/2024 (Interlab_D Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104	BH104_2.5-2.7	15/06/2024 2		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

					_																							
								Phth	alates					Po	olychlorina	ated Biphe	enyls						Organo	chlorine Pe	esticides			
						Phthalate	ialate		9		ite								al)									
						Bis(2-ethylhexyl)	Butyl Benzyl Phth	Diethyl Phthalate	Dimethyl Phthala	Dibutyl Phthalate	Di-n-octyl Phthalate	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Sum of tot	a-BHC	b-BHC	d-BHC	Dieldrin	g-BHC (Lindane)	Aldrin	ТДД	4,4'-DDE	aaa
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	0	mg/kg
					LOR	5	1	1	1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
				9	ercial / Industrial	160#10	1,200 ^{#10}	660,000 ^{#10}		82,000 ^{#10}	8,200#10								7*11	0.36 ^{#10}	1.3 ^{#10}			2.5 ^{#10}				
	TPH Managen	nent Limits - N	EPM Settin	ng D - Comme	rcial / Industrial																							
		Maintenan	ce of Ecosy	stems - Comm	nercial / Industrial																					640 ^{#25}		
1	Field ID	Data	Dandt	T	Lab Danasi																							
BH105	Field ID BH105 0.2-0.3	Date 04/06/2024	Depth	Type Normal	Lab Report 353594		l -	1			l -	-0.1	<0.1	-0.1	-0.1	-0.1	<0.1	<0.1	-0.1	-0.1	-0.1	<0.1	<0.1	<0.1	<0.1	-0.1	-0.1	-0.1
BH105	BH105_0.2-0.3 BH105_0.4-0.6	04/06/2024		Normal	353594-A		-	 -		-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH105	QC202	04/06/2024		Interlab D	ES2418662			+				-	-	-	-	 			-	-	H	H		-	-	-	-	
BH105	BH105 0.8-1.0	04/06/2024		Normal	353594			+ -		-			<u> </u>	-	-	 		<u> </u>	-	-				-	-		-	
BH105	BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024		Field D	353594	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106 0.15-0.3	04/06/2024		Normal	353158	-	-	-	-	-	-	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
BH106	BH106 1.0-1.2	04/06/2024		Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	QC102	04/06/2024		Field D	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106	BH106_2.2-2.5	04/06/2024	2.2 - 2.5	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH107	BH107_0.05-0.2	04/06/2024	0.05 - 0.2	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH107	BH107_0.4-0.6	04/06/2024	0.4 - 0.6	Normal	353158	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH107	BH107_0.9-1.1	04/06/2024	0.9 - 1.1	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	·	-	-	-
BH108	BH108_0.3-0.5	04/06/2024		Normal	353158	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	0.6	< 0.1	< 0.1	0.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH108	BH108_1.8-2.2	04/06/2024		Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109_0.05-0.2	04/06/2024		Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109_0.4-0.6	04/06/2024		Normal	353158	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH109	BH109_1.4-1.7	04/06/2024		Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	QC105	15/06/2024		Field_D	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110 BH110	BH110_1.0-1.1 - [TRIPLICATE] BH110_1.0-1.1	15/06/2024 15/06/2024		Normal Normal	354055 354055	-	-	-	-	-	-	-0.4	- 0.4	-0.4	<0.1	-0.4	-0.4	- 26	26	-0.4	- 0.4	-0.4	- 0.4	- 0.4	- 0.4	- 0.4	-0.4	<0.1
BH110	QC105 - [TRIPLICATE]	15/06/2024		Field D	354055	-	-	 -		-	-	<0.1	<0.1	<0.1	<u.1< td=""><td><0.1</td><td><0.1</td><td>- 20</td><td>- 20</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td></u.1<>	<0.1	<0.1	- 20	- 20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH110	BH110 2.8-2.9	15/06/2024		Normal	354055		 -	 -				-	-	-	-	-	-	-	-	-			-	-	-	-	-	
BH111	BH111_1.0-1.1	15/06/2024		Normal	354055			+ -				<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.5	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH111	BH111 2.0-2.1	15/06/2024		Normal	354055	-	<u> </u>	-	-	-	-	- 0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.1
BH112	BH112 0.35-0.45	15/06/2024			354055	-	-	<u> </u>	-	-	-	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.3	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
BH112	BH112_1.7-2.0	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113 0.15-0.3	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113 0.4-0.5	15/06/2024		Normal	354055	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH113	QC204	15/06/2024	0.4 - 0.5	Interlab D	ES2420087	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.16-0.3	15/06/2024		Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	QC206	15/06/2024	0.9 - 1	Interlab_D	ES2420087	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.9-1.0	15/06/2024	0.9 - 1	Normal	354055	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH114	BH114_2.4-2.7	15/06/2024	2.4 - 2.7	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	QC106	15/06/2024			354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_0.16-0.25	15/06/2024			354055	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	0.2	0.2	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
BH115	BH115_1.0-1.2	15/06/2024	1 - 1.2	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-

								Organo	chlorine F)octicidos					Fungicides	1	Λ.	sbestos			ı			PFA	9		
								Organo	Chlorine F	esticides				l	rungicides		A	SDESIOS			<u>f</u>			PFA	.s 		
				DDT+DDE+DDD	Endosulfan I	endosulfan II	Endosulfan sulfate	Endrin	Chlordane (cis)	Chlordane (trans)	Endrin aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	lexachlorobenzene	Asbestos (absent/present)		AF/FA)	Asbestos in soil (>7mm ACM)	fotal Asbestos g/kg*	3:2 Fluorotelomer Sulfona 6:2 FtS)	s:2 Fluorotelomer sulfonio acid (8:2 FTS)	Perfluorooctanoic acid (PFOA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorohexane sulfonic acid (PFHxS)	Sum of PFHxS and PFOS	
				t mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	g	`		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	ng/kg mg/kg
		Home of Health NEDM Carrie	LOR		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			0.004	0.05		0.0001	0.0002	0.0001	0.0001	0.0001		.0001 0.0001
	TPH Manage	Human Health - NEPM Setting	ng 'D' - Commercial / Industria		1		4,900***	100#1	500 ^{#10}	500*10		50"	0.33**10	2,500#1	80 ^{#1}			0.001	0.05	1			50 ^{#12}	20#13	20#13	20 ^{#12}	
		,	tems - Commercial / Industria																					0.01#26			
Location	Field ID	Date Depth	Type Lab Report	7																							
BH01	BH01	19/06/2023 0.2 - 0.3	Normal 325916	-	T -	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	< 0.0001	<0.0002	< 0.0001	0.0003	< 0.0001	0.0003 0.0	.0003 0.0003
BH01	BH01	19/06/2023 0.5 - 0.6	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH01 BH02	BH01 BH02	19/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-		- Absent	-	-	-	-	-	-	-	-	-		
BH02	BH02	16/06/2023 2.9 - 3	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH03 BH03	BH03 BH03	19/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	-	-	-	-	-		
BH04	BH04	19/06/2023 0.9 - 1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	-	-	-	-	-		
BH04	BH04	19/06/2023 3 - 3.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH05 BH05	BH05 BH05	19/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent -	-	-	-	-	<0.0001	<0.0002	<0.0001	0.0005	<0.0001		.0005 0.0005
BH06	BH06	19/06/2023 0.5 - 0.6	Normal 325916	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH06	BH06	19/06/2023 1 - 1.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	-	-	-	-	-	 	
BH06 BH07	BH06 BH07	19/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	- Absent	-	-	-	-	-	-	-	-	-		
BH07	BH07	16/06/2023 1 - 1.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH08	BH08	19/06/2023 0.2 - 0.3	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	<0.0001	< 0.0002	<0.0001	0.0005	<0.0001	1 1	.0005 0.0005
BH08 BH08	BH08 BH08	19/06/2023 2 - 2.1 19/06/2023 2.9 - 3	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH09	BH09	16/06/2023 0.2 - 0.3	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH09	BH09	16/06/2023 0.5 - 0.6	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH09 BH09	QC04 BH09	16/06/2023	Field_D 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-		- Absent	-	-	-	-	-	-	-	-	-		
BH10	QC03	16/06/2023 1 - 1.1	Field_D 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH10 BH10	BH10 BH10	16/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent -	-	-	-	-	-	-	-	-	-		
BH11	BH11	16/06/2023 0.2 - 0.3	Normal 325916	+ -	+ -	-	-	+ -	-	-	-	-	-	-	 		-	-	-	 -	-	-	-	-	-		
BH11	BH11	16/06/2023 2 - 2.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH12 BH12	BH12 BH12	16/06/2023 0 - 0.1 16/06/2023 0.5 - 0.6	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	<0.0001	<0.0002	<0.0001	0.0003	<0.0001		.0003 0.0003
BH12	BH12	16/06/2023 2 - 2.1	Normal 325916	 -	+ -	-	-	-	-	-	-	-	-	-	 	-	-	-	-	 -	-	-	-	-	-		
BH13	BH13	19/06/2023 1 - 1.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	-	-	-	-	-		
BH13 BH14	BH13 BH14	19/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-		- Absent	-	-	-	-	-	-	-	-	-		
BH14	QC02	16/06/2023 0.5 - 0.6	Field_D 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH14	BH14	16/06/2023 0.5 - 0.6	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	0.0002		< 0.0001	0.0009 0.0	.0011 0.0012
BH14 BH15	BH14 BH15 (triplicate)	16/06/2023	Normal 325916 Field D 325916	-	-	-	-	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH15	BH15	19/06/2023 0.2 - 0.3	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0002	<0.0001	0.001	< 0.0001	0.001 0.	0.001 0.001
BH15	BH15	19/06/2023 1 - 1.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent	-	-	-	-	-	-	-	-	-		
BH15 BH16	BH15 P-QC01	19/06/2023 2 - 2.1 16/06/2023 0 - 0.1	Normal 325916 Field_D 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0002	< 0.0001	0.0003	< 0.0001		.0003 0.0003
BH16	BH16 (triplicate)	16/06/2023 0 - 0.1	Field_D 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH16 BH16	BH16 BH16	16/06/2023	Normal 325916 Normal 325916	-	-	-	-	 -	-	-	-	-	-	-	-	Absent	-	-	-	-	<0.0001	<0.0002	<0.0001	0.0003	<0.0001	1 1	.0003 0.0003
BH17	BH17 (triplicate)	16/06/2023 0 - 0.1	Field D 325916	+ -	+ -	-	-	+ -	-	-	-	-	-	-	 		-	-	-	 -	-	-	-	-	-		
BH17	BH17	16/06/2023 0 - 0.1	Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	<0.0001	< 0.0002	<0.0001	0.0002	< 0.0001	1 1	.0002 0.0002
BH17 BH17	BH17 BH17	16/06/2023	Normal 325916 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	Absent -	-	-	-	-	-	-	-	-	-	-	
BH17	QC01	16/06/2023 4 - 4.1	Field_D 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
BH101	QC100	03/06/2024	Field_D 353045	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001		0.0001 < 0.0001
BH101 BH101	BH101_0.3-0.4 BH101_2.5-2.6	03/06/2024	Normal 353045 Normal 353045	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent -	0 -	<0.001	<0.01	<100	<0.0001	<0.0002	<0.0001	<0.0001	<0.0001		0.0001 < 0.0001
BH102	BH102_0.11-0.2	03/06/2024 0.11 - 0.2	Normal 353045	<0.1		<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent	0	<0.001	<0.01	<100	-	-	-	-	-		
BH102	BH102_2.8-3.0	03/06/2024 2.8 - 3	Normal 353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	< 0.0002	< 0.0001	0.0022	0.0003		.0022 0.0025
BH103 BH103	BH103_0.4-0.6 QC203	05/06/2024	Normal 353594 Interlab D ES2418662	+ -	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	< 0.0005	<0.0002	0.0012	<0.0002	 	- 0.0012
BH103	BH103_1.9-2.2	05/06/2024 1.9 - 2.2	Normal 353594	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent	0	<0.001	<0.01	<100	<0.0001	<0.0003	< 0.0001	0.0012	< 0.0001		.0011 0.0011
BH104	BH104_0.2-0.3	15/06/2024 0.2 - 0.3	Normal 354055	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Present	0.0036		0.0241	_	< 0.0001	<0.0002	<0.0001	< 0.0001	< 0.0001		0.0001 < 0.0001
BH104 BH104	QC104 QC205	15/06/2024	Field_D 354055 Interlab_D ES2420087	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0002	<0.0001	0.0002	<0.0001		.0002 0.0002 - 0.0011
BH104	BH104_0.6-0.8	15/06/2024 0.6 - 0.8	Normal 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0002	< 0.0001	0.0015	< 0.0001		.0015 0.0015
BH104	BH104_2.5-2.7	15/06/2024 2.5 - 2.7	Normal 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

	Toperty dervices Australia I ty Ex																												
									Organo	chlorine P	esticides					Fungicides		A	sbestos						PFA	S			
					DDT+DDE+DDD	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Chlordane (cis)	Chlordane (trans)	Endrin aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	Hexachlorobenzene	Asbestos (absent/present)	Asbestos in soil (<2mm	AF/FA)	Asbestos in soil (>7mm ACM)	Total Asbestos g/kg*	6:2 Fluorotelomer Sulfonate (6:2 FtS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluorooctanoic acid (PFOA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorohexane sulfonic acid (PFHxS)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)	Sum of PFAS
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	g	%(w/w)	%(w/w)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				LOR	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1						0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Hi	uman Health - NEPM Settin	ig 'D' - Comm	nercial / Industrial	3,600 ^{#1}			4,900#10	100 ^{#1}	500 ^{#10}	500 ^{#10}		50 ^{#1}	0.33 ^{#10}	2,500 ^{#1}	80 ^{#1}			0.001	0.05				50 ^{#12}	20 ^{#13}	20 ^{#13}	20 ^{#12}		
	TPH Manageme	ent Limits - NEPM Setting	D - Comme	rcial / Industrial																									
	-	Maintenance of Ecosyst	tems - Comm	nercial / Industrial																					0.01#26				
Location	Field ID	Date Depth	Type	Lab Report																									
BH105	BH105_0.2-0.3	04/06/2024 0.2 - 0.3	Normal	353594	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	Absent	0	< 0.001	< 0.01	<100	-	-	-	-	-	-	-	-
BH105	BH105_0.4-0.6	04/06/2024 0.4 - 0.6	Normal	353594-A		-	-	-	-	-	·	·		-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
BH105	QC202	04/06/2024	Interlab_D	ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	< 0.0002
BH105	BH105_0.8-1.0	04/06/2024 0.8 - 1	Normal	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
BH105	BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024 0.8 - 1	Field_D	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
BH106	BH106_0.15-0.3	04/06/2024 0.15 - 0.3	Normal	353158	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	Present	0.0020	< 0.001	< 0.01	<100	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
BH106	BH106 1.0-1.2	04/06/2024 1 - 1.2	Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	0.0002	< 0.0001	0.0002	0.0002	0.0002
BH106	QC102	04/06/2024 1 - 1.2	Field D	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	0.0005	< 0.0001	0.0005	0.0005	0.0005
BH106	BH106 2.2-2.5	04/06/2024 2.2 - 2.5	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH107	BH107 0.05-0.2	04/06/2024 0.05 - 0.2	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
BH107	BH107 0.4-0.6	04/06/2024	Normal	353158	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	Absent	0	< 0.001	< 0.01	<100	-	-	-	-	-	- 1	-	-
BH107	BH107 0.9-1.1	04/06/2024	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- 1	-	_
BH108	BH108_0.3-0.5	04/06/2024 0.3 - 0.5	Normal	353158	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	Absent	0	< 0.001	< 0.01	<100	< 0.0001	< 0.0002	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
BH108	BH108 1.8-2.2	04/06/2024 1.8 - 2.2	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109 0.05-0.2	04/06/2024 0.05 - 0.2	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	 . 	-	-	-	-	-	-	-	-	- 1	-	-
BH109	BH109_0.4-0.6	04/06/2024 0.4 - 0.6	Normal	353158	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent	0	< 0.001	<0.01	<100		-		-		 	-	_
BH109	BH109_0.4-0.0 BH109_1.4-1.7	04/06/2024	Normal	353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
BH110	QC105	15/06/2024 1 - 1.1	Field D	354055	-	-	-	-	+ -	-	-	-	-	-		-	-		-	-	-	<0.0001	< 0.0002	<0.0001	0.0002	< 0.0001	40.000.	0.0002	0.0002
BH110	BH110 1.0-1.1 - [TRIPLICATE]	15/06/2024 1 - 1.1	Normal	354055	-	-	-	-	+ -	-	-	-	-	-			-		-	-	-	- 0.0001	-	-	-	-	- 0.0002	-	-
BH110	BH110_1.0-1.1	15/06/2024 1 - 1.1	Normal	354055	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent	0	< 0.001	<0.01	<100	< 0.0001	< 0.0002	< 0.0001	0.0002	< 0.0001		0.0002	0.0002
BH110	QC105 - [TRIPLICATE]	15/06/2024 1 - 1.1	Field D	354055		< U. I	<0.1	-	-	-	-		-	-	-		-	-	<0.001	<0.01	- 100	-	<0.0002	<0.0001	-	-	- 0.0002	-	-
BH110	BH110 2.8-2.9	15/06/2024 1 - 1.1	Normal	354055	-					-	-	-	-	-	-	-	<u> </u>		<u> </u>		-	-	-		-		-	-	-
BH111	BH111 1.0-1.1	15/06/2024 1 - 1.1	Normal	354055	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent	0	< 0.001	< 0.01	<100	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
BH111	BH111 2.0-2.1	15/06/2024 1 - 1.1	Normal	354055	< U. I	<0.1	<0.1	< U. I	<0.1	<0.1	< U. I	<u.1< th=""><th>< U. I</th><th></th><th>< U. I</th><th></th><th>ADSEIR</th><th>-</th><th><0.001</th><th><0.01</th><th><100</th><th><0.0001</th><th><0.0002</th><th>-</th><th><0.0001</th><th>-</th><th><0.0001</th><th><0.0001</th><th>-</th></u.1<>	< U. I		< U. I		ADSEIR	-	<0.001	<0.01	<100	<0.0001	<0.0002	-	<0.0001	-	<0.0001	<0.0001	-
BH112	BH112 0.35-0.45	15/06/2024 2 - 2.1		354055			<0.1						<0.1	<0.1			Absent	0	< 0.001	<0.01	<100	-	-		-		-	-	-
BH112	BH112 1.7-2.0	15/06/2024 0.33 - 0.43	Normal	354055	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	- ADSEIR	-	-	<0.01	<100 -	-	-		-	-	-	-	-
BH113	_	15/06/2024 1.7 - 2	Normal	354055		-				-	-	-	-	-	-	-	H		<u> </u>		-		-		-		 	-	-
	BH113_0.15-0.3 BH113_0.4-0.5	15/06/2024 0.15 - 0.5						<0.1	<0.1									0	< 0.001	<0.01	<100						 		-
BH113			Normal	354055	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Absent	U				-0.0005	-0.0005	-0.0000	- 0.000	-0.0000	- 0.000	-	
BH113	QC204	15/06/2024 0.4 - 0.5	Interlab_D	ES2420087	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	<0.0005	< 0.0005	<0.0002	0.0003	<0.0002	0.0003		0.0003
BH114	BH114_0.16-0.3	15/06/2024 0.16 - 0.3	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.0005	- 0.0005	- 0.0000	-	- 0.000	-	-	-
BH114	QC206	15/06/2024 0.9 - 1	Interlab_D	ES2420087	-0.4	-0.4	-0.4	- 0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	- Descent	- 0.004.0	-0.004	-0.04	-400	<0.0005	< 0.0005	< 0.0002	0.0002	< 0.0002	0.0002		0.0002
BH114	BH114_0.9-1.0	15/06/2024 0.9 - 1	Normal	354055	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Present	0.0016	<0.001	< 0.01	<100	<0.0001	< 0.0002	<0.0001	0.0002	<0.0001	0.0002	0.0002	0.0002
BH114	BH114_2.4-2.7	15/06/2024 2.4 - 2.7	Normal	354055		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.0004	- 0.000	- 0.0004	- 0.000	- 0.0004	- 0.0005	-	-
BH115	QC106	15/06/2024 0.16 - 0.25	Field_D	354055	- 0.4	-	-	- 0.4	-	-	- 0.4	- 0.4	- 0.4	-	-	-	-	-	-	-	-	< 0.0001	< 0.0002	0.0001	0.0005	< 0.0001		0.0006	0.0006
BH115	BH115_0.16-0.25	15/06/2024 0.16 - 0.25	Normal	354055	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	Absent	0	< 0.001	< 0.01	<100	< 0.0001	< 0.0002	<0.0001	0.0005	< 0.0001	0.0005	0.0005	0.0005
BH115	BH115_1.0-1.2	15/06/2024 1 - 1.2	Normal	354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Comments

- #1 NEPC (2013) HIL 'D'.
- #2 NEPC (2013) HIL 'D'. Value is for Chromium (VI). Refer Cr III and Cr VI results if speciated data are available.
- #3 NEPC (2013) HIL 'D'. Assumes 50% bioavailability. Consider site-specific bioavailability where appropriate.
- #4 Friebel & Nadebaum (2011) HSL-D.
- #5 HSL for TRH F1 adopted for this historical fraction. Where F1 data are available, screening based on this fraction is not required.
- #6 HSL for TRH F2 adopted for this historical fraction. Where F2 data are available, screening based on this fraction is not required.
- #7 HSL based on vapour intrusion pathway (sand <1 m depth)
- #8 HSL based on direct contact pathways (Friebel and Nadebaum, 2011) as vapour intrusion HSL is not limiting.
- #9 HSL based on direct contact pathways (Friebel and Nadebaum, 2011) as fraction is not volatile.
- #10 USEPA RSLs (May 2024 Update) Industrial.
- #11 NEPC (2013) HIL 'D'. Relates to non-dioxin like PCBs only. Where a PCB source is known or suspected, site-specific risk assessment should be undertaken.
- #12 PFAS NEMP 2.0: Health, Industrial/commercial (HIL D)
- #13 PFAS NEMP 2.0: Health, Industrial/commercial (HIL D). Value is for PFOS+PFHxS
- #14 Coarse soil values adopted for initial screening
- #15 NEPC (2013) EIL Commercial and Industrial. Value applies to aged arsenic (contamination present in soil for at least two years). For fresh contamination refer Schedule B7 of the NEPM.
- #16 NEPC (2013) EIL Commercial and Industrial. Value is for chromium III. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded. #17 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded.
- #18 NEPC (2013) EIL Commercial and Industrial. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded. Assumes ABC of 30 mg/kg #19 NEPC (2013) ESL - Commercial and Industrial. Coarse soil value adopted for initial screening.
- #20 NEPC (2013) ESL Commercial and Industrial. Fine soil value (most conservative) adopted for initial screening.
- #21 ESL for TRH F1 adopted for this historical fraction. Where F1 data are available, screening based on this fraction is not required.
- #22 ESL for TRH >C10-C16 adopted for this historical fraction. Where >C10-C16 data are available, screening based on this fraction is not required.
- #23 ESL for coarse soil adopted for initial screening.
- #24 NEPC (2013) ESL Commercial and Industrial. Value applies to both coarse and fine soil.
- #25 NEPC (2013) EIL Commercial and Industrial. Value applies to both fresh and aged contamination.
- #26 PFAS NEMP 2.0: Ecological, indirect exposure

					ĺ		Ac	cid Sulfate So	ils				А	cid Sulfate So	oils- Accountin	g		
					Unit LOR	() () () () () () () () () () () () () (B Titratable Actual	0.0% Sulfidic - Titratable 0 Actual Acidity	Chromium Reducible N/Sulfur (Scr)	Bar-Chromium Reducible H Sulfur (Scr)	OOO Capacity	on Met Acidity (acidity H units)	Sulfidic - Acid Go Neutralising Capacity	Solitidic - Net Acidity	and an arrow and a sign and a sig	% s-Net Acidity without OO000	kg CaCo3/t	bu juliani sa
	Nation	nal Acid Sulfa	ate Soils Guid	lance 2018	3 (>1,000 T, coarse)		Ü	0.01	0.000	Ŭ	0.00	18 ^{#1}	0.00	0.03 ^{#1}		0.000	0.70	0.70
							-			•		•			-			
Location	Field ID	Date	Depth	Type	Lab Report													
BH101	BH101_2.0-2.1	03/06/2024		Normal	353045	5.0	<5	< 0.01	0.04	24	-	27	-	0.043	27	0.043	2.0	2
BH102	BH102_1.8-2.0	03/06/2024		Normal	353158	4.5	13	0.02	0.01	8	-	21	-	0.033	21	0.033	1.6	2
BH103		05/06/2024		Normal	353594	5.6	<5	< 0.01	0.02	15	-	15	-	0.024	15	0.024	1.1	1
BH104	BH104_2.5-2.7	15/06/2024		Normal	354055	6.0	<5	< 0.01	< 0.005	<3	-	<5	-	< 0.005	<5	< 0.005	< 0.75	< 0.75
BH105	BH105_2.4-2.7	04/06/2024		Normal	353594	5.7	<5	< 0.01	< 0.005	<3	-	<5	-	< 0.005	<5	< 0.005	< 0.75	< 0.75
BH106	BH106_2.2-2.5	04/06/2024		Normal	353158	4.7	13	0.02	0.01	9	-	22	-	0.035	22	0.035	1.7	2
BH107		04/06/2024		Normal	353158	6.0	<5	< 0.01	< 0.005	<3	-	<5	-	< 0.005	<5	< 0.005	< 0.75	< 0.75
BH108		04/06/2024		Normal	353158	5.8	<5	<0.01	0.005	3	-	<5	-	0.0050	<5	0.0050	< 0.75	< 0.75
BH109	BH109_1.4-1.7	04/06/2024		Normal	353158	5.5	<5	<0.01	< 0.005	<3		<5		0.0060	<5	0.0060	< 0.75	< 0.75
BH110	BH110_2.8-2.9	15/06/2024		Normal	354055	9.5	<5	< 0.01	<0.005	<3	4.5	<5	1.4	< 0.005	<5	< 0.005	< 0.75	< 0.75
BH111	BH111_2.0-2.1	15/06/2024		Normal	354055	6.4	<5	< 0.01	<0.005	<3	- 0.40	<5	- 0.40	<0.005	<5	< 0.005	< 0.75	< 0.75
BH112	BH112_0.35-0.45		0.35 - 0.45		354055	6.8	<5	< 0.01	0.04	22	0.40	<5	0.13	< 0.005	22	0.035	1.7	< 0.75
BH114	BH114_2.4-2.7	15/06/2024	Z.4 - Z.1	Normal	354055	5.9	<5	< 0.01	0.01	/	-	7.2	-	0.012	7.2	0.012	< 0.75	< 0.75

Comments

#1 The calculated Net Acidity should only include the ANC, where ANC has been corroborated by other data (e.g. slab iincubatioin data). Otherwise Net Acidity = Potential Sulfidic Acidity + Actual Acidity + Retained Acidity.

Environmental Standards

Commonwealth of Australia, 2018, National Acid Sulfate Soils Guidance 2018 (>1,000 T, coarse)

							Metals									B1	ΓEX		
		red)			tered)					(pa,		n n					â		
		(filter	۶	E	m (filte			(filtered)		(filter		(filtered				izene	8 8	(0)	lene
	enic	enic	m zi	omiu.	nimo.	pper	aq	d (filt	rcury	rcury	<u> </u>	kel (fi	ပ္	zene	euen	ylben) eue) eue	al Xyle
Uni	υ t mg/kg	Ψ Mg/L	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/L	™g/kg	Φ Σ mg/L	. <u>o</u> Z mg/kg	i <u>S</u> mg/L	.⊑ N mg/kg	mg/kg	mg/kg	— ≨ mg/kg	mg/kg	mg/kg	mg/kg
LOR	4	0.05	0.4	1	0.01	1 1	1	0.03	0.1	0.0005	1	0.02	1 1	0.2	0.5	0.5	0.5	0.5	0.5
NSW EPA 2014 - General Solid Waste CT1 (No Leaching NSW EPA 2014 - General Solid Waste SCC1 (with leached)	500		20 100	100 ^{#1} 1,900 ^{#1}			100 1,500		50		40 1,050			10 18	288 518	600 1,080			1,000 1,800
NSW EPA 2014 - General Solid Waste TCLP1 (leached NSW EPA 2014 - Restricted Solid Waste CT2 (No Leaching	400	5	80	400#2	5 ^{#1}		400	5	16	0.2	160	2		40	1.152	2,400			4.000
NSW EPA 2014 - Restricted Solid Waste SCC2 (with leached)	2,000		400	7,600 #2	#1		6,000		200		4,200			72	2,073	4,320			7,200
NSW EPA 2014 - Restricted Solid Waste TCLP2 (leached	<u>) </u>	<u>20</u>			<u>20^{#1}</u>			<u>20</u>		0.8		<u>8</u>							
Location Field ID Date Depth Type Lab Report BH01 19/06/2023 0.2 - 0.3 Normal 325916	-	T -		-	_	l -		-	T -	-	T -		-	-	l -	-	T -	-	
BH01 BH01 19/06/2023 0.5 - 0.6 Normal 325916 BH01 BH01 19/06/2023 0.9 - 1 Normal 325916	10 10	-	<0.4	14 16	-	33 67	280 140	-	0.2 <0.1		35 12	-	170 94	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH02 BH02 16/06/2023 1 - 1.1 Normal 325916	5	-	<0.4	8	-	32	92	-	<0.1	-	10	-	94	< 0.2	< 0.5	<1	<2	<1	<1
BH02 BH02 16/06/2023 2.9 - 3 Normal 325916 BH03 BH03 19/06/2023 0.2 - 0.3 Normal 325916	<4 11	-	<0.4 <0.4	43	-	7 100	18 65	-	<0.1 <0.1	-	33	-	24 120	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH03 BH03 19/06/2023 0.9 - 1 Normal 325916 BH04 BH04 19/06/2023 0.2 - 0.3 Normal 325916	17 9	-	<0.4 <0.4	8 18	-	100 330	69 62	-	0.1 <0.1	-	8 24	-	130 110	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH04 BH04 19/06/2023 3 - 3.1 Normal 325916 BH05 BH05 19/06/2023 0.2 - 0.3 Normal 325916	4 20	-	<0.4	2	-	900 44	87 120	-	0.2		3	-	21	<0.2	<0.5 <0.5	<1	<2	<1	<1
BH05 BH05 19/06/2023 2.9 - 3 Normal 325916	8	-	< 0.4	4	-	29	52	-	0.2	-	2	-	40	< 0.2	< 0.5	<1	<2	<1	<1
BH06 BH06 19/06/2023 0.5 - 0.6 Normal 325916 BH06 BH06 19/06/2023 2.9 - 3 Normal 325916	5 <4	-	<0.4 0.6	11 9	-	25 20	48 36	-	<0.1 <0.1	-	6	-	63 72	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH07 BH07 16/06/2023 0.2 - 0.3 Normal 325916 BH07 BH07 16/06/2023 1 - 1.1 Normal 325916	5 <4	-	<0.4 0.5	27 36	-	160 210	72 79	-	<0.1	-	15 16	-	83 100	<0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1
BH08 BH08 19/06/2023 0.2 - 0.3 Normal 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08 BH08 19/06/2023 2 - 2.1 Normal 325916 BH08 BH08 19/06/2023 2.9 - 3 Normal 325916	<4 8	-	<0.4 <0.4	73 57	-	35 100	120 94	-	0.3	-	18 30	-	67 58	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH09 BH09 16/06/2023 0.2 - 0.3 Normal 325916 BH09 BH09 16/06/2023 0.5 - 0.6 Normal 325916	13 10	-	<0.4 <0.4	35 20	-	150 58	89 91	-	0.1 <0.1	-	23 13	-	85 100	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH09 QC04 16/06/2023 0.5 - 0.6 Field_D 325916 BH10 QC03 16/06/2023 1 - 1.1 Field D 325916	9	-	<0.4 <0.4	25 13	-	62 17	80 38	-	0.1 <0.1	-	14 4	-	97 43	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH10 BH10 16/06/2023 1 - 1.1 Normal 325916	9	-	<0.4	11	-	26	53	-	<0.1	-	6	-	61	<0.2	< 0.5	<1	<2	<1	<1
BH10 BH10 16/06/2023 3 - 3.1 Normal 325916 BH101 BH101_0.3-0.4 03/06/2024 0.3 - 0.4 Normal 353045	4 <4	-	3 <0.4	20 <1	-	18 <1	43	-	0.3 <0.1	-	14 <1	-	75 9	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH101 QC100 03/06/2024 0.3 - 0.4 Field_D 353045 BH101 BH101 2.5-2.6 03/06/2024 2.5 - 2.6 Normal 353045	<4 <4	-	<0.4 <0.4	<1 <1	-	1 <1	7 <1	-	<0.1	-	<1 <1	-	13 9	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH102 BH102_0.11-0.2 03/06/2024 0.11 - 0.2 Normal 353045	4	-	0.7	4	-	53	310	-	0.2	-	4	-	280	< 0.2	< 0.5	<1	<2	<1	<1
BH102 BH102_0.11-0.2 03/06/2024 0.11 - 0.2 Normal 353045-A BH102 BH102_2.8-3.0 03/06/2024 2.8 - 3 Normal 353158	<4	-	<0.4	- <1	-	- <1	- 1	0.07	<0.1	-	- <1	-	- 1	<0.2	<0.5	- <1	- <2	- <1	- <1
BH102 BH102_2.8-3.0 03/06/2024 2.8 - 3 Normal 353158-A BH103 BH103 0.4-0.6 05/06/2024 0.4 - 0.6 Normal 353594	- 6	-	<0.4	- 13	-	- 41	110	-	<0.1	-	10	-	100	<0.2	<0.5	- <1	- <2	<u>-</u> <1	<u>-</u> <1
BH103 BH103_0.4-0.6 05/06/2024 0.4 - 0.6 Normal 353594-B BH103 BH103 1.9-2.2 05/06/2024 1.9 - 2.2 Normal 353594	- 8	-	<0.4	- 14	-	- 58	- 64	0.04	<0.1	-	- 18	-	- 83	<0.2	<0.5	<u>-</u> <1	- <2	<u>-</u> <1	<u>-</u> <1
BH103 QC203 05/06/2024 1.9 - 2.2 Interlab_D ES2418662	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104 BH104_0.2-0.3 15/06/2024 0.2 - 0.3 Normal 354055 BH104 QC104 15/06/2024 0.2 - 0.3 Field_D 354055	21 31	-	0.5 0.6	17 16	-	130 520	120 310	-	0.1	-	11 16	-	260 400	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH104 QC104 15/06/2024 0.2 - 0.3 Field_D 354055-A BH104 BH104 0.6-0.8 15/06/2024 0.6 - 0.8 Normal 354055	- 24	-	- 0.5	- 17	-	- 100	- 110	0.07	0.1	-	- 11	-	- 180	<0.2	<0.5	- <1	- <2	<u>-</u> <1	<u>-</u> <1
BH104 QC205 15/06/2024 0.6 - 0.8 Interlab_D ES2420087	17	-	1	32	-	129	151	-	0.1	-	16	-	328	<0.2	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
BH104 BH104_0.6-0.8 15/06/2024 0.6 - 0.8 Normal 354055-A BH104 BH104_2.5-2.7 15/06/2024 2.5 - 2.7 Normal 354055	<4	-	<0.4	1	-	1	2	-	<0.1	-	<1	-	4	<0.2	<0.5	- <1	<2	<1	- <1
BH105 BH105_0.2-0.3 04/06/2024 0.2 - 0.3 Normal 353594 BH105 BH105_0.2-0.3 04/06/2024 0.2 - 0.3 Normal 353594-B	470	0.5	9.8	430	0.04	350	38,000	- 77	6.3	<0.0005	14	-	39,000	<2	<5 -	10	120	<10	120
BH105 BH105_0.4-0.6 04/06/2024 0.4 - 0.6 Normal 353594-A	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH105 QC202 04/06/2024 0.4 - 0.6 Interlab_D ES2418662 BH105 BH105_0.8-1.0 - [TRIPLICATE] 04/06/2024 0.8 - 1 Field_D 353594	4	-	1	6	-	- 8	460	-	<0.1	-	<1	-	400	-	-	-	-	-	-
BH105 BH105_0.8-1.0 04/06/2024 0.8 - 1 Normal 353594-B BH105 BH105_0.8-1.0 04/06/2024 0.8 - 1 Normal 353594	- 11	-	- 1	- 13	-	- 17	520	4.5 -	0.2	-	- <1	-	- 560	<2	- <5	- <10	- 40	<10	40
BH106 BH106_0.15-0.3	<4	-	<0.4	<1	-	1 -	9	-	<0.1	-	<1 -	-	10	<0.2	<0.5	<1	<2	<1	<1
BH106 QC102 04/06/2024 1 - 1.2 Field_D 353158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH106 QC102 04/06/2024 1 - 1.2 Field_D 353158-A BH106 BH106_2.2-2.5 04/06/2024 2.2 - 2.5 Normal 353158	- <4	-	<0.4	- <1		- <1	- <1	-	<0.1	-	- <1	-	- 4	<0.2	<0.5	- <1	<2	- <1	- <1
BH107 BH107_0.05-0.2 04/06/2024 0.05 - 0.2 Normal 353158 BH107 BH107_0.4-0.6 04/06/2024 0.4 - 0.6 Normal 353158	- 6	-	<0.4	- 33	-	- 24	- 170	-	0.9	-	- 18	-	- 220	<0.2	<0.5	- <1	- <2	<u>-</u> <1	- <1
BH107 BH107_0.4-0.6 04/06/2024 0.4 - 0.6 Normal 353158-A	-	-	-	-	-	-	-	<0.03	-	-	-	-	-	-	-	-	-	-	-
BH107 BH107_0.9-1.1 04/06/2024 0.9 - 1.1 Normal 353158 BH107 BH107_0.9-1.1 04/06/2024 0.9 - 1.1 Normal 353158-A	<4 -	-	<0.4 -	5 -	-	18 -	110	0.1	<0.1	-	12	-	350 -	<0.2	<0.5	<1 -	<2 -	<1 -	<1 -
BH108 BH108_0.3-0.5 04/06/2024 0.3 - 0.5 Normal 353158 BH108 BH108_0.3-0.5 04/06/2024 0.3 - 0.5 Normal 353158-A	6	-	<0.4	17	-	30	220	- 0.98	<0.1		16	-	190	<0.2	<0.5	<1 -	<2	<1	<1
BH108 BH108_1.8-2.2	<4	-	<0.4	2	-	<1	1	-	<0.1	-	<1	-	31	<0.2	<0.5	<1	<2	<1	<1

											Metals							1		BT	EX		
											motaio											!	
					Arsenic	Arsenic (filtered)	Sadmium	Chromium	Chromium (filtered)	Sopper	ead	ead (filtered)	Aercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	3enzene	Toluene	thylbenzene	(ylene (m & p)	Kylene (o)	rotal Xylene
				Unit	mg/kg	mg/L	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		NOW EDA COLL O		LOR		0.05	0.4	1	0.01	1	1	0.03	0.1	0.0005	1	0.02	1	0.2	0.5	0.5	0.5	0.5	0.5
	N	NSW EPA 2014 - General S SW EPA 2014 - General S					100	1,900 ^{#1}			100 1,500		50		1,050			10 18	288 518	1,080			1,000 1,800
	140	NSW EPA 2014 - Gene			300	5	100	1,500	5 ^{#1}		1,500	5	30	0.2	1,000	2		10	310	1,000			1,000
	1	NSW EPA 2014 - Restricte	d Solid Waste	e CT2 (No Leaching)	400		80	400#2			400		16		160			40	1,152	2,400			4,000
	NS	SW EPA 2014 - Restricted			2,000		400	7,600 #2	0.41		6,000		200		4,200			72	2,073	4,320		<u> </u>	7,200
		NSW EPA 2014 - Restrict	ted Solid Was	ste TCLP2 (leached)	J	<u>20</u>	<u> </u>		20 ^{#1}			<u>20</u>		0.8	l	<u>8</u>	<u> </u>	<u> </u>					
Location	Field ID	Date Depth	Туре	Lab Report	<u></u>																		
	BH01	19/06/2023 0.2 - 0.3	Normal	325916	- 10	-	- 0.4	- 44	-	-	-	-	-	-	-	-	- 170	- 0.0	-0.5	-	-	- 4	4
	BH01 BH109 0.05-0.2	19/06/2023	Normal Normal	325916 353158	10 <4	-	<0.4 <0.4	14 20	-	33 74	280 1	-	0.2 <0.1	-	35 110	-	170 44	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH109	BH109_0.05-0.2	04/06/2024	Normal	353158-A	-	-	-	-	-	-	-	-	-	-	-	0.04	-	-	-	-	-	-	-
	BH109_0.4-0.6 BH109_1.4-1.7	04/06/2024	Normal Normal	353158 353158	<4 -	-	<0.4	3	-	2	79 -	-	<0.1	-	2	-	8 -	<0.2	<0.5	<1 -	<2 -	<1 -	<1 -
	BH11	16/06/2023 0.2 - 0.3	Normal	325916	<4	-	<0.4	13	-	440	53	-	<0.1	-	8	-	65	<0.2	< 0.5	<1	<2	<1	<1
	BH11	16/06/2023 2 - 2.1	Normal	325916	<4	-	< 0.4	3	-	30	11	-	<0.1	-	1	-	93	<0.2	< 0.5	<1	<2	<1	<1
	BH110_1.0-1.1 - [TRIPLICATE] QC105 - [TRIPLICATE]	15/06/2024	Normal Field_D	354055 354055	12 9	-	<0.4 <0.4	35 16	-	32 31	61 63	-	<0.1 <0.1	-	12 9	-	83 83	-	-	-	-	-	-
	QC105	15/06/2024 1 - 1.1	Field_D	354055	10	-	<0.4	23	-	52	91	-	<0.1	-	13	-	94	<0.2	<0.5	<1	<2	<1	<1
	BH110_1.0-1.1	15/06/2024 1 - 1.1	Normal	354055	14	-	<0.4	20	-	26	64	-	<0.1	-	9	-	79	<0.2	<0.5	<1	<2	<1	<1
	QC105 BH110_2.8-2.9	15/06/2024	Field_D Normal	354055-A 354055	- <4	-	<0.4	2	-	2	3	-	<0.1	-	- <1	-	5	<0.2	<0.5	- <1	- <2	- <1	- <1
	BH111_1.0-1.1	15/06/2024 1 - 1.1	Normal	354055	<4	-	<0.4	12	-	10	30	-	<0.1	-	5	-	42	<0.2	<0.5	<1	<2	<1	<1
	BH111_2.0-2.1	15/06/2024 2 - 2.1	Normal	354055	8	-	< 0.4	5	-	14	26	-	<0.1	-	4	-	31	<0.2	<0.5	<1	<2	<1	<1
	BH111_2.0-2.1 BH112 0.35-0.45	15/06/2024 2 - 2.1 15/06/2024 0.35 - 0.45	Normal Normal	354055-A 354055	- 11	-	<0.4	- 15	-	- 49	92	-	<0.1	-	16	-	170	<0.2	<0.5	- <1	- <2	<u>-</u> <1	- <1
BH112	BH112_0.35-0.45	15/06/2024 0.35 - 0.45		354055-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BH112_1.7-2.0 BH113_0.15-0.3	15/06/2024 1.7 - 2 15/06/2024 0.15 - 0.3	Normal Normal	354055 354055	<4 <4	-	<0.4 <0.4	3	-	1 17	2 67	-	<0.1 <0.1	-	<1 3	-	4 46	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1	<1 <1
	BH113_0.4-0.5	15/06/2024 0.15 - 0.5	Normal	354055	<4	-	<0.4	11	-	23	91	-	<0.1	-	6	-	80	<0.2	<0.5	<1	<2	<1 <1	<1
BH113	QC204	15/06/2024 0.4 - 0.5	Interlab_D	ES2420087	8	-	<1	14	-	29	153	-	0.1	-	10	-	102	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	BH114_0.16-0.3 BH114_0.9-1.0	15/06/2024	Normal Normal	354055 354055	8 5	-	<0.4 <0.4	12 8	-	57 28	83 96	-	<0.1 <0.1	-	15 16	-	130 440	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
	QC206	15/06/2024 0.9 - 1	Interlab_D	ES2420087	<5	-	<1	18	-	32	61	-	<0.1	-	24	-	141	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
	BH114_2.4-2.7	15/06/2024 2.4 - 2.7	Normal	354055	<4	-	<0.4	<1	-	<1	<1	-	<0.1	-	<1	-	5	<0.2	< 0.5	<1	<2	<1	<1
	BH115_0.16-0.25 QC106	15/06/2024		354055 354055	9 7	-	<0.4	13 14	-	91	110 81	-	0.1 <0.1	-	12 10	-	130 120	<0.2	<0.5 <0.5	<1 <1	<2 <2	<1 <1	<1 <1
BH115	BH115_0.16-0.25	15/06/2024 0.16 - 0.25		354055-A	-	-	-	-	-	-	-	< 0.03	-	-	-	-	-	-	-	-	-	-	-
	BH115_1.0-1.2	15/06/2024 1 - 1.2	Normal	354055	<4	-	<0.4	1	-	5	12	-	<0.1	-	6	-	89	<0.2	< 0.5	<1	<2	<1	<1
	BH12 BH12	16/06/2023	Normal Normal	325916 325916	9	-	<0.4	13	-	290	90	-	0.2	-	12	-	- 86	<0.2	<0.5	- <1	<2	<u>-</u> <1	<1
	BH12	16/06/2023 2 - 2.1	Normal	325916	<4	-	<0.4	2	-	1	6	-	<0.1	-	1	-	18	<0.2	<0.5	<1	<2	<1	<1
	BH13 BH13	19/06/2023 1 - 1.1	Normal	325916 325916	7 8	-	<0.4	15 2	-	54	590 2	-	<0.1	-	12	-	100	<0.2	< 0.5	<1	<2	<1 <1	<1 <1
	QC02	19/06/2023 2.9 - 3 16/06/2023 0.5 - 0.6	Normal Field D	325916	9	-	<0.4	21	-	60	520	-	<0.1 0.4	-	<1 6	+ -	390	<0.2 <0.2	<0.5 <0.5	<1 <1	<2 <2	<1	<1
	BH14	16/06/2023	Normal	325916	9	-	< 0.4	19	-	22	160	-	0.2	-	3	-	120	<0.2	< 0.5	<1	<2	<1	<1
	BH14 BH15 (triplicate)	16/06/2023	Normal Field D	325916 325916	<4 27	-	<0.4 0.8	3 16	-	2 140	20 210	-	<0.1 0.1	-	<1 13	-	20 300	<0.2	<0.5	<1 -	<2 -	<1 -	<1 -
	BH15	19/06/2023 0.2 - 0.3	Normal	325916	35	-	0.8	22	-	190	200	-	0.1	-	15	-	290	<0.2	<0.5	<1	<2	<1	<1
BH15	BH15	19/06/2023 2 - 2.1	Normal	325916	14	-	8.5	79	-	82	170	-	<0.1	-	56	-	530	<0.2	<0.5	<1	<2	<1	<1
	BH16 (triplicate) P-QC01	16/06/2023	Field_D Field D	325916 325916	<4 -	-	<0.4	5	-	19	33	-	<0.1	-	6	-	43	-	-	-	-	-	-
	BH16	16/06/2023 0 - 0.1	Normal	325916	4	-	<0.4	14	-	29	34	-	<0.1	-	14	-	42	<0.2	<0.5	<1	<2	<1	<1
	BH16	16/06/2023 2.9 - 3	Normal	325916	<4	-	<0.4	2	-	3	6	-	<0.1	-	2	-	9	<0.2	<0.5	<1	<2	<1	<1
	BH17 (triplicate) BH17	16/06/2023	Field_D Normal	325916 325916	16 55	-	<0.4	5 11	-	16 45	27 60	-	<0.1 0.1	-	7	-	43 94	<0.2	<0.5	- <1	- <2	<u>-</u> <1	- <1
	BH17	16/06/2023 4 - 4.1	Normal	325916	<4	-	<0.4	<1	-	<1	2	-	<0.1	-	<1	-	2	<0.2	<0.5	<1	<2	<1	<1
BH17	QC01	16/06/2023 4 - 4.1	Field_D	325916	<4	-	< 0.4	<1	-	<1	1	-	<0.1	-	<1	-	1	<0.2	< 0.5	<1	<2	<1	<1

					Total Pe	etroleum		PAHs		MAH	Halo	genated Benz	zenes				Chlorinated	Hydrocarbons			
									sus		40	40				Φ	Φ			Φ	
					-C9 Fraction	C10-C36 Fraction (Sum)	nzo(a)pyrene	senzo(a)pyrene iiltered)	Sum of Polycyclic aromatic hydrocarbo (PAH)	tyrene	-Dichlorobenzene	-Dichlorobenzene	lorobenzene	-Dichloroethene	,1,2- rachloroethane	,1,1-Trichloroethan	,2-Trichloroethan	,1,2,2- etrachloroethane	-Dichloroethane	rbon Tetrachloride	loroform
					90		B B	ш =		Ó	<u>-</u> <u>-</u>	4,	<u>ნ</u>	<u>-</u>	1,1,	_	<u></u>	- F	2,	Ca	<u>ව</u>
				Unit LOR	mg/kg 10	mg/kg 50	mg/kg 0.05	μg/L 0.1	mg/kg 0.05	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1
		NSW EPA 2014 - General		e CT1 (No Leaching)	650	10,000	0.8	0	200	60	86	150	2,000	14	200	600	24	26	10	10	120
	NS NS	SW EPA 2014 - General Sol NSW EPA 2014 - General			650	10,000	10	40	200	108	155	270	3,600	25	360	1,080	43.2	46.8	18	18	216
	<u> </u>	ISW EPA 2014 - General		()	2,600	40,000	3.2	40	800	240	344	600	8,000	56	800	2,400	96	104	40	40	480
	NS	SW EPA 2014 - Restricted So			2,600	40,000	23		800	432	620	1,080	14,400	100	1,440	4,320	172.8	187.2	72	72	864
		NSW EPA 2014 - Restricte	ed Solid Was	ste TCLP2 (leached)				<u>160</u>													
Location	Field ID	Date Depth	Туре	Lab Report																	
	BH01 BH01	19/06/2023	Normal Normal	325916 325916	- <25	- <50	- 0.6	-	5.2	- <1	-	-	-	- <1	<u>-</u> <1	<u>-</u> <1	- <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1
BH01	BH01	19/06/2023 0.9 - 1	Normal	325916	<25	<50	0.3	-	2.8	-	-	-	-	-	-	-	-	-	-	-	-
	BH02 BH02	16/06/2023	Normal Normal	325916 325916	<25 <25	<50 <50	0.73 0.1	-	5.5 0.3	-	-	-	-	-	-	-	-	-	-	-	-
BH03	BH03	19/06/2023	Normal	325916	<25	110	0.68	-	5.8	-	-	-	-	-	-	-	-	-	-	-	-
	BH03 BH04	19/06/2023	Normal Normal	325916 325916	<25 <25	2,100 <50	28 0.57	-	340 6.4	-	-	-	-	-	-	-	-	-	-	-	-
BH04	BH04	19/06/2023 3 - 3.1	Normal	325916	<25	<50	0.3	-	2.4	-	-	-	-	-	-	-	-	-	-	-	-
	BH05 BH05	19/06/2023	Normal Normal	325916 325916	<25 <25	<50 <50	0.6 0.4	-	5.5	<1 -	-	-	-	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -
BH06	BH06	19/06/2023	Normal	325916	<25	<50	0.5	-	4.4	-	-	-	-	-	-	-	-	-	-	-	-
	BH06 BH07	19/06/2023	Normal Normal	325916 325916	<25 <25	<50 400	0.1	-	0.6	-	-	-	-	-	-	-	-	-	-	-	-
BH07	BH07	16/06/2023 1 - 1.1	Normal	325916	<25	560	0.98	-	11	-	-	-	-	-	-	-	-	-	-	-	-
	BH08 BH08	19/06/2023	Normal Normal	325916 325916	- <25	-	0.2	-	2.1	<1	-	-	-	<u>-</u> <1	- <1	<u>-</u> <1	- <1	<u>-</u> <1	- <1	<u>-</u> <1	<u>-</u> <1
BH08	BH08	19/06/2023 2.9 - 3	Normal	325916	<25	<50	0.3	-	2.9	-	-	-	-	-	-	-	-	-	-	-	-
	BH09 BH09	16/06/2023	Normal Normal	325916 325916	<25 <25	350 420	1.5 1.6	-	16 19	-	-	-	-	-	-	-	-	-	-	-	-
BH09	QC04	16/06/2023	Field_D	325916	<25	380	2.5	-	32	-	-	-	-	-	-	-	-	-	-	-	-
	QC03 BH10	16/06/2023	Field_D Normal	325916 325916	<25 <25	<50 <50	0.2	-	3.7	-	-	-	-	-	-	-	-	-	-	-	-
BH10	BH10	16/06/2023 3 - 3.1	Normal	325916	<25	150	0.4	-	1.6	-	-	-	-	-	-	-	-	-	-	-	-
	BH101_0.3-0.4 QC100	03/06/2024	Normal Field D	353045 353045	<25 <25	<50 <50	<0.05 <0.05	-	<0.05	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -	<1 -
BH101	BH101_2.5-2.6	03/06/2024 2.5 - 2.6	Normal	353045	<25	<50	< 0.05	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-
	BH102_0.11-0.2 BH102_0.11-0.2	03/06/2024	Normal Normal	353045 353045-A	<25 -	<50	0.4	-	4.1	-	-	-	-	-	-	-	-	-	-	-	-
BH102	BH102_2.8-3.0	03/06/2024 2.8 - 3	Normal	353158	<25	<50	< 0.05	-	< 0.05	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	BH102_2.8-3.0 BH103_0.4-0.6	03/06/2024	Normal Normal	353158-A 353594	- <25	- 110	0.80	-	5.9	-	-	-	-	-	-	-	-	-	-	-	-
BH103	BH103_0.4-0.6	05/06/2024	Normal	353594-B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BH103_1.9-2.2 QC203	05/06/2024	Normal Interlab D	353594 D ES2418662	<25 -	<50 -	0.4	-	2.7		-	-	-	-	-	-	-	-	-	-	-
BH104	BH104_0.2-0.3	15/06/2024 0.2 - 0.3	Normal	354055	<25	260	0.85	-	12	-	-	-	-	-	-	-	-	-	-	-	-
	QC104 QC104	15/06/2024	Field_D Field_D	354055 354055-A	<25 -	140	0.90	<0.1	10	-	-	-	-	-	-	-	-	-	-	-	-
	BH104_0.6-0.8	15/06/2024 0.6 - 0.8	Normal	354055	<25	820	1.6	-	21	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	QC205 BH104_0.6-0.8	15/06/2024	Interlab_D Normal	354055-A	<10 -	3,390	1.1	-	16.5	-	-	-	-	-	-	-	-		-	-	-
	BH104_2.5-2.7	15/06/2024 2.5 - 2.7 04/06/2024 0.2 - 0.3	Normal	354055	<25	<50	< 0.05	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-
	BH105_0.2-0.3 BH105_0.2-0.3	04/06/2024 0.2 - 0.3	Normal Normal	353594 353594-B	480	19,000	0.3	-	77	-	-	-	-	-	-	-	-	-	-	-	-
	BH105_0.4-0.6	04/06/2024	Normal	353594-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	QC202 BH105_0.8-1.0 - [TRIPLICATE]	04/06/2024 0.4 - 0.6	Field_D	353594	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BH105_0.8-1.0 BH105_0.8-1.0	04/06/2024	Normal Normal	353594-B 353594	- 180	3,200	0.1	-	- 21	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10
	BH106_0.15-0.3	04/06/2024 0.8 - 1	Normal	353158	<25	<50	<0.05	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
	BH106_1.0-1.2 QC102	04/06/2024	Normal Field D	353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	QC102 QC102	04/06/2024 1 - 1.2	Field_D	353158 353158-A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	BH106_2.2-2.5 BH107_0.05-0.2	04/06/2024 2.2 - 2.5 04/06/2024 0.05 - 0.2	Normal	353158 353158	<25	<50	< 0.05	-	< 0.05	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	BH107_0.05-0.2 BH107_0.4-0.6	04/06/2024	Normal Normal	353158 353158	- <25	- <50	0.1	-	0.92	<1	- <1	<1	- <1	<1	<1	<1	- <1	- <1	- <1	- <1	- <1
	BH107_0.4-0.6	04/06/2024 0.4 - 0.6	Normal	353158-A	-25	-50	-0.05	-	-0.05	-	-	-	-	-	-	-	-	-	-	-	-
	BH107_0.9-1.1 BH107_0.9-1.1	04/06/2024	Normal Normal	353158 353158-A	<25 -	<50 -	<0.05 -	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
	BH108_0.3-0.5 BH108_0.3-0.5	04/06/2024	Normal	353158	<25	560	4.0	-0.1	44	-	-	-	-	-	-	-	-	-	-	-	-
	BH108_0.3-0.5 BH108_1.8-2.2	04/06/2024	Normal Normal	353158-A 353158	<25	<50	<0.05	<0.1 -	<0.05	<1	<1	- <1	- <1	<1	<1	<1	- <1	<1	- <1	<1	<1

						Total Pe	etroleum		PAHs		MAH	Halo	ogenated Benz	enes				Chlorinated I	Hydrocarbons			
						26-C9 Fraction	C10-C36 Fraction (Sum)	3enzo(a)pyrene	Benzo(a)pyrene (filtered)	Sum of Polycyclic aromatic hydrocarbons (PAH)	Styrene	,2-Dichlorobenzene	,4-Dichlorobenzene	Chlorobenzene	,1-Dichloroethene	,1,1,2- retrachloroethane	,1,1-Trichloroethane	,1,2-Trichloroethane	1,1,2,2- Tetrachloroethane	,2-Dichloroethane	Sarbon Tetrachloride	Chloroform
					Unit	0	mg/kg	mg/kg	μg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		NSW EDA 20	14 Conora	ol Solid Wasto	LOR CT1 (No Leaching)	10 650	50 10,000	0.05	0.1	0.05 200	60	1 86	1 150	2,000	1 14	200	600	1 24	1 26	10	10	1 120
	N				CC1 (with leached)	650	10,000	10		200	108	155	270	3,600	25	360	1,080	43.2	46.8	18	18	216
					te TCLP1 (leached)				40													
					CT2 (No Leaching) CC2 (with leached)	2,600 2,600	40,000 40,000	3.2 23		800 800	240 432	344 620	600 1,080	8,000 14.400	56 100	800 1.440	2,400 4,320	96 172.8	104 187.2	40 72	40 72	480 864
					te TCLP2 (leached)	2,000	40,000	23	160	800	402	020	1,000	14,400	100	1,440	4,320	172.0	107.2	12	12	004
1	le:p	B . (D	I=	li i Bii i		•			•			•			•		•				
Location BH01	Field ID BH01	Date 19/06/2023	Depth 0.2 - 0.3	Type Normal	Lab Report 325916	-	-	-	T -	-	T -	l -	T -	<u> </u>	-	-	<u> </u>	-	-	I -	-	- 1
BH01	BH01	19/06/2023	0.5 - 0.6	Normal	325916	<25	<50	0.6	-	5.2	<1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1
BH109 BH109	BH109_0.05-0.2 BH109_0.05-0.2	04/06/2024 04/06/2024		Normal Normal	353158 353158-A	<25 -	<50 -	<0.05 -	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH109	BH109_0.4-0.6	04/06/2024	0.4 - 0.6	Normal	353158	<25	<50	0.3	-	3.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH109 BH11	BH109_1.4-1.7 BH11	04/06/2024 16/06/2023		Normal Normal	353158 325916	- <25	- <50	0.5	-	4.2	- <1	-	-	-	<u>-</u> <1	<u>-</u> <1	- <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1	<u>-</u> <1
BH11	BH11	16/06/2023	2 - 2.1	Normal	325916	<25	<50	< 0.05	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH110 BH110	BH110_1.0-1.1 - [TRIPLICATE] QC105 - [TRIPLICATE]	15/06/2024 15/06/2024		Normal Field_D	354055 354055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH110	QC105 - [TKII EIGATE]	15/06/2024		Field_D	354055	<25	440	1.2	-	17	-	-	-	-	-	-	-	-	-	-	-	-
BH110	BH110_1.0-1.1	15/06/2024		Normal	354055	<25	520	0.63	- 0.4	8.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH110 BH110	QC105 BH110_2.8-2.9	15/06/2024 15/06/2024		Field_D Normal	354055-A 354055	- <25	- <50	< 0.05	<0.1	0.2	-	-	-	-	-	-	-	-	-	-	-	-
BH111	BH111_1.0-1.1	15/06/2024	1 - 1.1	Normal	354055	<25	340	0.79	-	17	-	-	-	-	-	-	-	-	-	-	-	-
BH111 BH111	BH111_2.0-2.1 BH111 2.0-2.1	15/06/2024 15/06/2024		Normal Normal	354055 354055-A	42	9,200	1.1	<0.1	37	-	-	-	-	-	-	-	-	-	-	-	-
BH112	BH112_0.35-0.45	15/06/2024			354055	<25	820	15	-	180	-	-	-	-	-	-	-	-	-	-	-	-
BH112 BH112	BH112_0.35-0.45 BH112_1.7-2.0	15/06/2024 15/06/2024		_	354055-A 354055	- 05	- <50	- <0.05	<0.1	-0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113_0.15-0.3	15/06/2024		Normal Normal	354055	<25 <25	<50	0.3	-	<0.05 3.1	-	-	-	-	-	-	-	-	-	-	-	-
BH113	BH113_0.4-0.5	15/06/2024		Normal	354055	<25	300	1.3	-	17	-	-	-	-	-	-	-	-	-	-	-	-
BH113 BH114	QC204 BH114 0.16-0.3	15/06/2024 15/06/2024		Interlab_D Normal	ES2420087 354055	<10 <25	280 120	1.1 0.66	-	11.5 6.1	-	-	-	-	-	-	-	-	-	-	-	-
BH114	BH114_0.9-1.0	15/06/2024	0.9 - 1	Normal	354055	<25	120	0.3	-	3.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH114 BH114	QC206 BH114 2.4-2.7	15/06/2024 15/06/2024		Interlab_D Normal	ES2420087 354055	<10 <25	<50 <50	<0.5 <0.05	-	1.6 <0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_0.16-0.25	15/06/2024	0.16 - 0.25	Normal	354055	<25	360	0.86	-	7.7	-	-	-	-	-	-	-	-	-	-	-	-
BH115 BH115	QC106 BH115 0.16-0.25	15/06/2024 15/06/2024			354055 354055-A	<25	<50	0.68	<0.1	6.2	-	-	-	-	-	-	-	-	-	-	-	-
BH115	BH115_0.16-0.25 BH115_1.0-1.2	15/06/2024		Normal	354055	<25	<50	< 0.05	<u. i<="" td=""><td><0.05</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></u.>	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH12 BH12	BH12 BH12	16/06/2023 16/06/2023		Normal Normal	325916 325916	- 25	-	0.85	-	8.6	-	-	-	-	-	-	-	-	-	-	-	
BH12	BH12	16/06/2023		Normal	325916	<25 <25	<50 <50	< 0.05	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH13	BH13	19/06/2023		Normal	325916	<25	250	0.6	-	6.3	<1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1
BH13 BH14	BH13 QC02	19/06/2023 16/06/2023		Normal Field D	325916 325916	<25 <25	<50 150	<0.05	-	<0.05 34	- <1	-	-	-	<u>-</u> <1	<u>-</u> <1	- <1	- <1	<u>-</u> <1	- <1	<u>-</u> <1	- <1
BH14	BH14	16/06/2023	0.5 - 0.6	Normal	325916	<25	350	4.4	-	69	<1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1
BH14 BH15	BH14 BH15 (triplicate)	16/06/2023 19/06/2023		Normal Field_D	325916 325916	<25	<50 -	<0.05	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH15	BH15	19/06/2023	0.2 - 0.3	Normal	325916	<25	230	1	-	13	<1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1
BH15	BH15	19/06/2023		Normal Field D	325916	<25	120	0.2	-	1.4	-	-	-	-	-	-	-	-	-	-	-	-
BH16 BH16	BH16 (triplicate) P-QC01	16/06/2023 16/06/2023		Field_D Field_D	325916 325916	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH16	BH16	16/06/2023	0 - 0.1	Normal	325916	<25	<50	0.1	-	1.1	<1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1
BH16 BH17	BH16 BH17 (triplicate)	16/06/2023 16/06/2023		Normal Field D	325916 325916	<25 -	<50 -	<0.05	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH17	BH17	16/06/2023	0 - 0.1	Normal	325916	<25	<50	0.8	-	8.7	<1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1
BH17	BH17	16/06/2023		Normal Field D	325916	<25	<50	< 0.05	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
BH17	QC01	16/06/2023	4 - 4.1	Field_D	325916	<25	<50	< 0.05	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-

					[Chlori	nated Hydroca	arbons	PCBs	Asbestos		PF	FAS	
						Tetrachloroethene	Trichloroethene	Vinyl Chloride	PCBs (Sum of total)	Asbestos (absent/present)	Perfluorooctanoic acid (PFOA)	Perfluorooctanoic acid (PFOA)	Sum of PFHxS and PFOS	Sum of PFHxS and PFOS
					Unit	 mg/kg	mg/kg	∷= mg/kg	mg/kg	at As	mg/kg	µg/L	mg/kg	ω μg/L
					LOR	1	1	1	0.1		0.0001	0.01	0.0001	0.01
	N				CT1 (No Leaching) C1 (with leached)	14 25.2	10 18	7.2	50 50		18		1.8	
		NSW EPA	2014 - Gener	al Solid Wast	e TCLP1 (leached)							500		50
					CT2 (No Leaching) CC2 (with leached)	56 100.8	40 72	16 28.8	50 50		72		7.2	
	14				e TCLP2 (leached)	100.6	12	20.0	30		12	2,000	7.2	200
Location	Field ID	Date	Depth	Туре	Lab Report									
BH01	BH01	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	<0.0001	-	0.0003	-
BH01 BH01	BH01 BH01	19/06/2023 19/06/2023	0.5 - 0.6 0.9 - 1	Normal Normal	325916 325916	<1 -	<1 -	<1 -	<0.1	-	-	-	-	-
BH02	BH02	16/06/2023	1 - 1.1	Normal	325916	-	-	-	-	-	-	-	-	-
BH02 BH03	BH02 BH03	16/06/2023 19/06/2023	2.9 - 3 0.2 - 0.3	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-
BH03	BH03	19/06/2023	0.9 - 1	Normal	325916	-	-	-	-	-	-	-	-	-
BH04 BH04	BH04 BH04	19/06/2023 19/06/2023	0.2 - 0.3 3 - 3.1	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-
BH05	BH05	19/06/2023	0.2 - 0.3	Normal	325916	<1	<1	<1	-	-	<0.0001	-	0.0005	-
BH05 BH06	BH05 BH06	19/06/2023 19/06/2023	2.9 - 3 0.5 - 0.6	Normal Normal	325916 325916		-	-	<0.1	-	-	-	-	-
BH06	BH06	19/06/2023	2.9 - 3	Normal	325916	-	-	-	-	-	-	-	-	-
BH07 BH07	BH07 BH07	16/06/2023 16/06/2023	0.2 - 0.3	Normal Normal	325916 325916	-	-	-	-	-	-	-	-	-
BH08	BH08	19/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	<0.0001	-	0.0005	-
BH08 BH08	BH08 BH08	19/06/2023 19/06/2023	2 - 2.1 2.9 - 3	Normal Normal	325916 325916	<1 -	<1 -	<1 -	-	-	-	-	-	-
BH09	BH09	16/06/2023	0.2 - 0.3	Normal	325916	-	-	-	-	-	-	-	-	-
BH09 BH09	BH09 QC04	16/06/2023 16/06/2023	0.5 - 0.6 0.5 - 0.6	Normal Field D	325916 325916	-	-	-	-	-	-	-	-	-
BH10	QC03	16/06/2023	1 - 1.1	Field_D	325916	-	-	-	-	-	-	-	-	-
BH10 BH10	BH10 BH10	16/06/2023 16/06/2023	1 - 1.1 3 - 3.1	Normal Normal	325916 325916	-	-	-	<0.1	-	-	-	-	-
BH101	BH101_0.3-0.4	03/06/2024	0.3 - 0.4	Normal	353045	<1	<1	<1	<0.1	Absent	<0.0001	-	< 0.0001	-
BH101 BH101	QC100 BH101_2.5-2.6	03/06/2024 03/06/2024	0.3 - 0.4 2.5 - 2.6	Field_D Normal	353045 353045	-	-	-	-	-	<0.0001	-	<0.0001	-
BH102	BH102_0.11-0.2	03/06/2024	0.11 - 0.2	Normal	353045	-	-	-	<0.1	Absent	-	-	-	-
BH102 BH102	BH102_0.11-0.2 BH102_2.8-3.0	03/06/2024 03/06/2024	0.11 - 0.2 2.8 - 3	Normal Normal	353045-A 353158	<1	- <1	- <1	-	-	<0.0001	-	0.0025	-
BH102	BH102_2.8-3.0	03/06/2024		Normal	353158-A	-	-	-	-	-	-	<0.01	-	0.04
BH103 BH103	BH103_0.4-0.6 BH103_0.4-0.6	05/06/2024 05/06/2024	0.4 - 0.6	Normal Normal	353594 353594-B	-	-	-	-	-	-	-	-	-
BH103	BH103_1.9-2.2	05/06/2024		Normal	353594	-	-	-	<0.1	Absent	<0.0001	-	0.0011	-
BH103 BH104	QC203 BH104_0.2-0.3	05/06/2024 15/06/2024	1.9 - 2.2 0.2 - 0.3	Interlab_D Normal	ES2418662 354055	-	-	-	0.2	- Present	<0.0002 <0.0001	-	0.0012 <0.0001	-
BH104	QC104	15/06/2024	0.2 - 0.3	Field_D	354055	-	-	-	-	-	<0.0001	-	0.0002	- 0.04
BH104 BH104	QC104 BH104_0.6-0.8	15/06/2024 15/06/2024	0.2 - 0.3 0.6 - 0.8	Field_D Normal	354055-A 354055	<1	- <1	- <1	-	-	<0.0001	<0.01	0.0015	<0.01
BH104	QC205	15/06/2024	0.6 - 0.8	Interlab_D	ES2420087	-	-	-	-	-	<0.0002	-0.01	0.0011	- 0.02
BH104 BH104	BH104_0.6-0.8 BH104_2.5-2.7	15/06/2024 15/06/2024	0.6 - 0.8 2.5 - 2.7	Normal Normal	354055-A 354055	-	-	-	-	-	-	<0.01	-	0.02
BH105	BH105_0.2-0.3	04/06/2024	0.2 - 0.3	Normal	353594	=	-	-	<0.1	Absent	-	-	-	
BH105 BH105	BH105_0.2-0.3 BH105_0.4-0.6	04/06/2024 04/06/2024	0.2 - 0.3 0.4 - 0.6	Normal Normal	353594-B 353594-A	-	-	-	-	-	<0.0001	-	<0.0001	-
BH105	QC202		0.4 - 0.6	Interlab_D	ES2418662	=	-	-	-	-	<0.0002	-	<0.0002	-
BH105 BH105	BH105_0.8-1.0 - [TRIPLICATE] BH105_0.8-1.0	04/06/2024 04/06/2024	0.8 - 1 0.8 - 1	Field_D Normal	353594 353594-B	-	-	-	-	-	-	-	-	-
BH105	BH105_0.8-1.0	04/06/2024	0.8 - 1	Normal	353594	<10	<10	<10	- 0.4	- Donoret	<0.0001	-	< 0.0001	-
BH106 BH106	BH106_0.15-0.3 BH106_1.0-1.2	04/06/2024 04/06/2024	0.15 - 0.3 1 - 1.2	Normal Normal	353158 353158-A	-	-	-	<0.1	Present -	<0.0001 <0.0001	-	<0.0001 0.0002	-
BH106	QC102	04/06/2024	1 - 1.2	Field_D	353158	-	-	-	-	-	<0.0001	-0.01	0.0005	-0.01
BH106 BH106	QC102 BH106_2.2-2.5	04/06/2024 04/06/2024	1 - 1.2 2.2 - 2.5	Field_D Normal	353158-A 353158	<1	<1	- <1	-	-	-	<0.01 -	-	<0.01
BH107	BH107_0.05-0.2	04/06/2024	0.05 - 0.2	Normal	353158	-	-	-	-	- Λ haa4	<0.0001	-	<0.0001	-
BH107 BH107	BH107_0.4-0.6 BH107_0.4-0.6	04/06/2024 04/06/2024	0.4 - 0.6 0.4 - 0.6	Normal Normal	353158 353158-A	<1 -	<1 -	<1 -	0.3	Absent -	-	-	-	-
BH107	BH107_0.9-1.1	04/06/2024	0.9 - 1.1	Normal	353158	-	-	-	-	-	-	-	-	-
BH107 BH108	BH107_0.9-1.1 BH108_0.3-0.5	04/06/2024 04/06/2024	0.9 - 1.1 0.3 - 0.5	Normal Normal	353158-A 353158	-	-	-	0.6	- Absent	<0.0001	-	<0.0001	-
BH108	BH108_0.3-0.5	04/06/2024	0.3 - 0.5	Normal	353158-A	- -A	-	1	-	-	-	-	-	-
BH108	BH108_1.8-2.2	04/06/2024	1.8 - 2.2	Normal	353158	<1	<1	<1	-	-	-	-	-	-

Chlorinated Hydrocarbons PCBs Asbestos	Perfluorooctanoic acid by/gm (PFOA)	OF Perfluorooctanoic acid	SOUND OF PEHXS and PFOS Wight of PFOS COUNTY OF PFO	Sum of PFHxS and PFOS
Unit mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	SXHIA JO ENS/BE	Sum of PFHxS 7/PFOS
Unit mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	SXHIA JO ENS/BE	Sum of PFHxS 7/PFOS
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	SXHIA JO ENS/BE	Sum of PFHxS 7/PFOS
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	o was sold with the sold with	Jo WW PFOS
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	o was sold with the sold with	Jo WW PFOS
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	o was sold with the sold with	Jo WW PFOS
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	mg/kg	μg/L
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	mg/kg	μg/L
Unit mg/kg mg/kg mg/kg mg/kg mg/kg -	mg/kg 0.0001	μg/L	mg/kg	μg/L
LOR 1 1 0.1	0.0001			
NSW EPA 2014 - General Solid Waste CT1 (No Leaching)		0.01	0.0001	0.01
NSW EPA 2014 - General Solid Waste SCC1 (with leached) 25.2 18 7.2 50 NSW EPA 2014 - General Solid Waste TCLP1 (leached) NSW EPA 2014 - Restricted Solid Waste CT2 (No Leaching) 56 40 16 50 NSW EPA 2014 - Restricted Solid Waste SCC2 (with leached) 100.8 72 28.8 50	18			0.01
NSW EPA 2014 - General Solid Waste TCLP1 (leached) NSW EPA 2014 - Restricted Solid Waste CT2 (No Leaching) 56 40 16 50 NSW EPA 2014 - Restricted Solid Waste SCC2 (with leached) 100.8 72 28.8 50	18			
NSW EPA 2014 - Restricted Solid Waste CT2 (No Leaching) 56 40 16 50 NSW EPA 2014 - Restricted Solid Waste SCC2 (with leached) 100.8 72 28.8 50			1.8	
NSW EPA 2014 - Restricted Solid Waste SCC2 (with leached) 100.8 72 28.8 50		500		50
	72		7.2	
NOW LEA 2014 - DESTRICTED SOUR MASTE LEAGUEOUT	1-7-	2,000		200
The state of the s	1	2,000	l .	200
leader leading				
Location Field ID Date Depth Type Lab Report				
BH01 BH01 19/06/2023 0.2 - 0.3 Normal 325916	< 0.0001	-	0.0003	-
BH01 BH01 19/06/2023 0.5 - 0.6 Normal 325916 <1 <1 <1 <0.1 -	-	-	-	-
BH109 BH109_0.05-0.2 04/06/2024 0.05 - 0.2 Normal 353158	-	-	-	-
BH109 BH109_0.05-0.2 04/06/2024 0.05 - 0.2 Normal 353158-A	-	-	-	-
BH109 BH109_0.4-0.6 04/06/2024 0.4 - 0.6 Normal 353158 <1 <1 <1 <0.1 Absent	-	-	-	-
BH109 BH109_1.4-1.7 04/06/2024 1.4 - 1.7 Normal 353158	< 0.0001	-	< 0.0001	- 1
BH11 BH11 16/06/2023 0.2 - 0.3 Normal 325916 <1 <1 <1 <0.1 -	-	-	-	-
BH11 BH11 16/06/2023 2 - 2.1 Normal 325916	-	-	-	-
BH110 BH110_1.0-1.1 - [TRIPLICATE] 15/06/2024 1 - 1.1 Normal 354055	-	-	-	-
BH110 QC105 - [TRIPLICATE] 15/06/2024 1 - 1.1 Field D 354055	-	-	-	-
BH110 QC105 15/06/2024 1 - 1.1 Field D 354055	< 0.0001	-	0.0002	
BH110 BH110_1.0-1.1 15/06/2024 1 - 1.1 Normal 354055 <1 <1 <1 26 Absent	< 0.0001	-	0.0002	- 1
BH110 QC105 15/06/2024 1 - 1.1 Field D 354055-A	-	-	0.0002	_
BH110 BH110_2.8-2.9 15/06/2024 2.8 - 2.9 Normal 354055	 		 	-
BH111 BH111_1.0-1.1 15/06/2024 1 - 1.1 Normal 354055 0.5 Absent	<0.0001	- -	<0.0001	-
		.		\vdash
	-	-	-	
BH111 BH111_2.0-2.1 15/06/2024 2 - 2.1 Normal 354055-A	-	-	-	-
BH112 BH112_0.35-0.45	-	-	-	-
BH112 BH112_0.35-0.45 15/06/2024 0.35 - 0.45 Normal 354055-A	-	-	-	-
BH112 BH112_1.7-2.0 15/06/2024 1.7 - 2 Normal 354055	-	-	-	
BH113 BH113_0.15-0.3 15/06/2024 0.15 - 0.3 Normal 354055	-	-	-	-
BH113 BH113_0.4-0.5 15/06/2024 0.4 - 0.5 Normal 354055 0.1 Absent	-	-	-	
BH113 QC204 15/06/2024 0.4 - 0.5 Interlab_D ES2420087	< 0.0002	-	0.0003	-
BH114 BH114_0.16-0.3 15/06/2024 0.16 - 0.3 Normal 354055	-	-	-	-
BH114 BH114_0.9-1.0 15/06/2024 0.9 - 1 Normal 354055 <1 <1 <1 <0.1 Present	< 0.0001	-	0.0002	-
BH114 QC206 15/06/2024 0.9 - 1 Interlab_D ES2420087	< 0.0002	-	0.0002	-
BH114 BH114_2.4-2.7 15/06/2024 2.4 - 2.7 Normal 354055 - - - - -	-	-	-	-
BH115 BH115_0.16-0.25	< 0.0001	-	0.0005	-
BH115 QC106 15/06/2024 0.16 - 0.25 Field_D 354055	0.0001	-	0.0005	-
BH115 BH115_0.16-0.25 15/06/2024 0.16 - 0.25 Normal 354055-A	-	-	-	-
BH115 BH115_1.0-1.2 15/06/2024 1 - 1.2 Normal 354055	-	-	-	-
BH12 BH12 16/06/2023 0 - 0.1 Normal 325916	< 0.0001	-	0.0003	- 1
BH12 BH12 16/06/2023 0.5 - 0.6 Normal 325916	-	-	-	-
BH12 BH12 16/06/2023 2 - 2.1 Normal 325916	-	-	-	-
BH13 BH13 19/06/2023 1 - 1.1 Normal 325916 <1 <1 <1	-	-	-	-
BH13 BH13 19/06/2023 2.9 - 3 Normal 325916	-	-	-	-
BH14 QC02 16/06/2023 0.5 - 0.6 Field D 325916 <1 <1 <1 <0.1 -	-	-	-	- 1
BH14 BH14 16/06/2023 0.5 - 0.6 Normal 325916 <1 <1 <0.1 -	0.0002	-	0.0009	_
BH14 BH14 16/06/2023 2.9 - 3 Normal 325916	- 0.0002	-	- 0.0003	-
BH15 BH15 (triplicate) 19/06/2023 0.2 - 0.3 Field_D 325916	 	 	-	- -
BH15 BH15 19/06/2023 0.2 - 0.3 Normal 325916 <1 <1 <1	<0.0001	-	0.001	
BH15 BH15 19/06/2023 2 - 2.1 Normal 325916	<0.0001	-	- 0.001	-
	-		-	-
		-	0.0003	
	<0.0001			
BH16 BH16 16/06/2023 0 - 0.1 Normal 325916 <1 <1 <1 <0.1 -	<0.0001	-	0.0003	-
BH16 BH16 16/06/2023 2.9 - 3 Normal 325916	-	-	-	-
BH17 BH17 (triplicate) 16/06/2023 0 - 0.1 Field_D 325916 - - - - - - - - -	-0.0001	-	- 0.0000	-
BH17 BH17 16/06/2023 0 - 0.1 Normal 325916 <1 <1 - -	<0.0001	-	0.0002	-
BH17 BH17 16/06/2023 4 - 4.1 Normal 325916	-	-	-	-
BH17 QC01 16/06/2023 4 - 4.1 Field_D 325916 - - - - -	I -	-	-	-

Comments

#1 As Chromium (VI) #2 As chromium (VI)

				T T												
_	Α	В	С	D	E	F_	G		H	I		J		K	丄	L
2		User Selected	d Ontions		statisti	cs for Da	ta Sets wi	<u>ith N</u>	ion-Detec	ts						
3		ime of Comp		ProUCL 5.2 30/0	7/2024	7:16:35 P	1									
4			om File	21569 ProUCL a	.xls											
5 6			ecision	OFF												
7		<u>onfidence Coe</u> Sootstrap Ope		95% 2000												
8	Number of b	оосы ар оре	iauons	2000												
9	Arsenic															
10 11			T.1.1	N I COL	. 12		<u>l Statistic</u>	CS		N.		D:	01			24
12			Total	Number of Obser	vations	52					mber of mber of					<u>21</u> 31
13				М	nimum	4				INU	IIIDCI OI	111331119	ODSCI	Mear		20.52
14				Ma	ximum									Mediar	า	9
15 16				C	SD							Std.	Error o			8.903
17				Coefficient of V	ariation	3.129							SKE	ewness	5	6.995
18						Norma	I GOF Tes	st								
19				hapiro Wilk Test S							o Wilk G					
20 21				1% Shapiro Wilk					Data N	ot Norma			ance Le	evel		
22			1	Lilliefors Test S % Lilliefors Critica					Data No	ot Norma	fors GO		ance Le	vel		
23			•				t 1% Sign	ifica			11 46 1 70	<u> Jigiiiiic</u>	arree Le			
24																
25 26			QE0/- NI-	ormal UCL	Ass	uming No	rmal Dist	ribut		UCLs (A	\divc*c	d for C	/O14/=-	.cc)		
27			2370 N	95% Student'	s-t UCI	35.43			33 %0		djusted-C)	44.39
28											odified-t				•	36.87
29 30						6.	- 665 =									
31				A-D Test 9	Statistic		a GOF Tes	st	Ander	rson-Da	rlina Ga	mma (OF To	et		
32				5% A-D Critica				Da	ta Not Gan						evel	
33				K-S Test S						iorov-Sn						
34 35				5% K-S Critica Data Not					ta Not Gan		ributed a	it 5% Si	gnifica	nce Le	<u>vel</u>	
36				Data NOL	Gaiiiiii	a DISUID	iteu at 5%	/0 SIC	HIIIICAIICE	e Levei						
37							a Statistic	cs								
38 39					(MLE)					т.		(bias co				0.826
40				Theta ha	t (MLE)						neta star	star (b				<u>24.85</u> 85.88
41			MI	LE Mean (bias cor								E Sd (b				22.58
42 43					_					Approxi	mate Chi					65.51
44			Adjus	sted Level of Signi	<u>ficance</u>	0.045	1				Adjus	ted Chi	Square	e Value	3	65.01
45					Assı	uming Ga	mma Dist	ribut	tion							
46 47			95% A	opproximate Gami	na UCL	26.9					95% A	Adjusted	l Gamn	na UCL		27.11
48						Lognori	nal GOF T	oct								
49				hapiro Wilk Test S		0.815		CSC	Shap	oiro Wilk	Logno	rmal G	OF Tes	st		
50			1	0% Shapiro Wilk					Data Not					Level		
51 52			10	Lilliefors Test S						liefors L				Lovol		
53			10	% Lilliefors Critica Data			at 10% Si	anifi	Data Not		iai at 109	<u> /o Siqriii</u>	icance	Levei		
54						-,										
55 56				M:-:	J D-4-		<u>nal Statist</u>	tics				M	C 1	J D-4-		2.24
57				Minimum of Logge Maximum of Logge								Mean o	f logge			2.34 0.793
58												220		ull		22
59 60				.=	Assur		normal Dis	strib	ution		0001 51	. 1	/ • · · · ·	E)		10.00
61			050/	95% Chebyshev (MVL	H-UCL	17.97 21.68	-				<u>90% Ch</u> 7.5% Ch					19.32 24.95
62				Chebyshev (MVL							, .J /U CIII		, 1·1VU	_, 001	1	<u> </u>
63																
64 65							<u>bution Fre</u> Discernil									
66	<u> </u>			Data	ио по	r ioliom s	iscernit	vie D	riSti IDUTIO	711						
67							istributio	n Fre	ee UCLs							
68 69			0501		LT UCL	35.16						6 BCA E				48.63
70				Standard Bootstr 5% Hall's Bootstr		35.08 88.9	1				95% Pero	95% Bo				19.1 37.81
71				nebvshev(Mean, S		47.23					% Cheby					59.33
72				nebyshev(Mean, S							% Cheby					09.1
73 74						Cue	4 1101 +-	II								
75				95% Student'	s-t UCI	35.43	d UCL to	use							\top	
76																
77 78	The	e calculated	UCLs a	re based on ass								d unbia	sed m	nanne	r.	
78 79			Tf th	Please verify e data were col								S.				
80			AI UI	then con							cou	J,				
81 82														- 0.		
83	Note			ng the selection o are based upon da											<u>_L.</u>	
84	Howev			will not cover all											ician.	
_																

0.5	Α	В	С	D	Е	F	G	Н	I	J	K	L					
	Chromium																
86 87						Canaval	Chablatiaa										
88			Tota	l Number of	Observations		<u>Statistics</u>		Number	of Distinct	Observations	32					
89			10ta	tuilibei oi							Observations	9					
90					Minimum	1					Mean	21.35					
91					Maximum						Median	13.5					
92 93					SD.	50.33				Std.	Error of Mean	5.851					
94				Coefficien	t of Variation	2.357					Skewness	7.562					
95						Normal	GOF Test										
96				Shapiro Wilk	Test Statistic	0.312	101 1030		Shapiro Wi	lk GOF Te	st						
97				1% Shapiro	Wilk P Value	0		Data No	t Normal at	1% Significa	ance Level						
98					Test Statistic					GOF Test							
99 100				1% Lilliefors	Critical Value		0/ 6!!6!		t Normal at	1% Significa	ance Level						
101					Data Not	Normai at 1	.% Signific	ance Level									
102					Ass	umina Norr	nal Distribu	ıtion									
103			95% N	lormal UCL					UCLs (Adju	sted for SI	(ewness)						
104				95% Stu	<u>ıdent's-t UCL</u>	31.1					(Chen-1995)	36.47					
105									95% Modifie	ed-t UCL (Jo	hnson-1978)	31.96					
106 107						C	COE Toot										
108				Δ-D	Test Statistic		GOF Test	∆nder	son-Darling	Gamma G	OF Test						
109					Critical Value		D:				gnificance Lev	/el					
110				K-S	Test Statistic	0.18		Kolmog	orov-Smirn	ov Gamma	GOF Test						
111					Critical Value					ed at 5% Si	gnificance Lev	rel					
112 113				Data	Not Gamm	a Distribut	ed at 5% Si	ignificance	Level								
114						Gamma	Statistics										
115					k hat (MLE)	0.885	Statistics		k	star (hias co	orrected MLE)	0.858					
116				The	eta hat (MLE)						orrected MLE)	24.88					
117					nu hat (MLE)						as corrected)	127					
118			M	1LE Mean (bi	as corrected)	21.35					as corrected)	23.05					
119 120			۸ طف	atad Laval at	Cianificanca	0.0468					Value (0.05)						
121			Auju	isted Level of	f Significance	0.0468			A	ajustea Cni	Square Value	101.5					
122					Assı	uming Gam	ma Distribu	ıtion									
123			95%	Approximate	Gamma UCL				95	% Adjusted	I Gamma UCL	26.71					
124																	
125 126							I GOF Test										
127					<u>Test Statistic</u> Wilk P Value	0.952 0.0193											
128			-		Test Statistic												
129			10		Critical Value												
130					Data Not Lo	gnormal at	10% Signif	ficance Lev	el								
131 132																	
133				Minimum of	Logged Data		l Statistics			Manna	flagged Data	2.399					
134					Logged Data Logged Data						f <u>logged Data</u> f logged Data	2.399 1.071					
135				Maximum Or	Logged Data	0.001				30 0	i logged Data	1.071					
136					Assur	ning Logno	rmal Distril	bution									
137					95% H-UCL	26.17					(MVUE) UCL	28.08					
138 139					(MVUE) UCL	32.05			97.5%	Chebyshev	(MVUE) UCL	37.56					
140			99%	o CHEDYSNEV	(MVUE) UCL	48.38											
141				ı	Vonparamet	tric Distribi	ition Free II	ICL Statisti	cs								
142				•			iscernible I										
143																	
144 145							tribution Fr	ree UCLs		050/ 504 5	a a babas a LICI	40.0					
146			OE0/		05% CLT UCL ootstrap UCL	30.98 31.04					otstrap UCL otstrap-t UCL	40.8 54.07					
147					ootstrap UCL ootstrap UCL	66.77			95%		Bootstrap UCL	31.91					
148					ean, Sd) UCL	38.9					lean, Sd) UCL	46.86					
149					ean, Sd) UCL						ean, Sd) UCL	79.57					
150																	
151 152				050/ 6	idontia t IICI		UCL to Use	1			1						
153				95% Stl	udent's-t UCL	31.1											
154		The calcul	ated UCLs a	re based or	n assumptio	ns that the	data were	collected i	n a random	and unbia	sed manner	<u> </u>					
155					verify the da												
156			If th	ne data wer	e collected	using judg	mental or o	ther non-ra	andom met	hods,							
157				ther	<u>contact a s</u>	statistician	to correctly	/ calculate	UCLs.								
158 159		otor C	otions =====	ing the!	tion of a OFO	LICL SHE H	widod to I- I	n the	s coloret H	oot	riata OFO/ LIC	1					
160	N		stions regard nmendations								<u>riate 95% UCI</u> Studies	<u>L.</u>					
161	Hov										i studies. Isult a statistic	ian.					
162		, 511110							uooi iiiuy								
163																	

	Α	В	С	D	Е	F	G	Н	I	J	K	L			
164	Lead														
165															
166 167			-				<u>Statistics</u>								
168			Total	Number of (<u>Observations</u>	80					Observations				
169					Minimum	1			Numbe	r of Missing C	<u>Observations</u> Mean				
170					Maximum						Median				
171						4239				Std. E	rror of Mean				
172				Coefficient	of Variation						Skewness				
173															
174							GOF Test		<u> </u>						
175 176					Test Statistic	0.128				ilk GOF Tes					
177					Wilk P Value Test Statistic	0 0.486		Data No		1% Significa GOF Test	nce Level				
178			1		Critical Value	0.466		Data No		1% Significa	nce Level				
179			-	70 Lilliciois V			% Signification		- Horrian ac	170 Olqiilica	nee Level				
180															
181					Assı	<u>ıming Norr</u>	nal Distribu								
182			95% No	ormal UCL						sted for Sk					
183 184				95% Stu	dent's-t UCL	1363					(Chen-1995)				
185									95% MODITI	ea-t UCL (Joi	<u>hnson-1978)</u>	1442			
186						Gamma	GOF Test								
187				A-D	Test Statistic			Anders	on-Darlin	Gamma G	OF Test				
188					Critical Value	0.873	Di				nificance Lev	vel			
189					Test Statistic					ov Gamma					
190 191					Critical Value					ed at 5% Sig	anificance Lev	vel			
191				Data	Not Gamm	a Distribut	ed at 5% Si	ignificance	Level						
193						Gamma	Statistics								
194					k hat (MLE)		Statistics		k	star (bias co	rrected MLE)	0.281			
195				The	ta hat (MLE)						rrected MLE)				
196				r	nu hat (MLE)	45.35					as corrected)				
197			MI	<u>LE Mean (bia</u>	s corrected)	574.6					as corrected)				
198 199			A .I'		C: C	0.047					Value (0.05)				
200			Adjus	sted Level of	Significance	0.047			А	diusted Chi S	Square Value	30.38			
201					Λeci	ımina Gəm	ma Distribu	ıtion							
202			95% A	oproximate	Gamma UCL	844.7			91	5% Adjusted	Gamma UCL	850.7			
203			33 70 1	.pp. 0/111140	00	0.117			,	70 7 10 1000					
204							I GOF Test								
205 206					Test Statistic					gnormal GO					
207			1		Wilk P Value					t 10% Signifi					
208			10		<u> Test Statistic</u> Critical Value					ormal GOF					
209			10				7 Data Not Lognormal at 10% Significance Level at 10% Significance Level								
210						,			•						
211						Lognorma	I Statistics								
212					Logged Data	0					logged Data				
213 214			<u>M</u>	laximum of l	Logged Data	10.55				SD of	logged Data	1.759			
215					Accum	nina Loano	rmal Distril	hution							
216					95% H-UCL	430.9	riilai Distrii	DULIOII	90%	6 Chebyshev	(MVLIE) LICI	412			
217			95%	Chebyshev	(MVUE) UCL	498.5					(MVUE) UCL				
218					(MVUE) UCL	854.3									
219					_		_								
220 221					lonparamet										
221					Data do no	t tollow a D	iscernible l	Distribution	<u> </u>						
223					Nonnara	metric Die	tribution Fr	ree IICI s							
224				Q	5% CLT UCL	1354	LIDULION FI	GE UCLS		95% BCA R	ootstrap UCL	2010			
224 225 226 227			95%		otstrap UCL						otstrap-t UCL				
226					otstrap UCL				95%		ootstrap UCL				
227					an, Sd) UCL						ean, Sd) UCL				
228			97.5% Ch	nebyshev(Me	ean, Sd) UCL	3534			99% C	hebyshev(Me	ean, Sd) UCL	5290			
23U 77A						C	IICI +- ''								
229 230 231 232				050/ C+	dent's-t UCL	ouggested	UCL to Use								
232				3570 3LU	uciic 3°t UCL	1303	I .					1			
233	T	he calcula	ited UCLs ai	re based or	assumptio	ns that the	data were	collected in	n a random	and unbia	sed manner	·			
234	-			Please v	erifv the da	ita were co	llected fron	n random lo	cations.						
234 235 236			If th	e data wer	e collected	using judg	mental or o	ther non-ra	ndom met	hods,					
236 237				then	contact a s	tatistician	to correctly	<u>/ calculate l</u>	JCLs.						
237	NI -	tor Cuerra	tions ross"	na tha a-l- '	ion of a OFO	LICI are r	wided to be	n the	colort H	noct annual	into OFO/ US	า			
239	INO		tions regardii mendations a								riate 95% UC	<u>L.</u>			
239 240	Howe										studies. sult a statistic	cian.			
241		Jici, Jiiilul	acionio results	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	c. un ixcui VV	ביים שמנט שכנ	o, ioi addicio	nai moigni U	C GOOT THAY	THAT IS COLD	rait a statistit	JIGITI			
242															

				_	_					_				
242	Α	В	С	D	E	F	G	Н	I	J	K	L		
243	Mercury													
245						General	Statistics							
246			Total	Number of 0	Observations	26				r of Distinct C		6		
247 248					Minimourne	0.1			Numbe	r of Missing C		57		
249					Minimum Maximum	0.1 6.3					Mean Median	0.435 0.2		
250					SD	1.207				Std. E	rror of Mean	0.237		
251				Coefficient	of Variation	2.778					Skewness	4.958		
252 253						Normal	GOF Test							
254			S	hapiro Wilk	Test Statistic	0.28	doi lest		Shapiro W	ilk GOF Test	t			
255			1% S		Critical Value	0.891		Data No		1% Significar	nce Level			
256 257			1		Test Statistic Critical Value	0.435 0.199		Data No		GOF Test 1% Significar	nce Level			
258				70 LINCIOIS (% Signific		t Normal at	1 70 Significal	ICC LCVCI			
259														
260 261			0E0/- N	ormal UCL	Assı	uming Norr	nal Distribu		IICI c (Adiu	sted for Ske	ownocc)			
262			95% N		dent's-t UCL	0.839		9370		ed-CLT UCL (1.07		
263										ed-t UCL (Joh		0.877		
264 265						C	COT Took							
266				A-D	Test Statistic	4.855	GOF Test	Ander	son-Darling	Gamma G	OF Test			
267				5% A-D (Critical Value	0.786	D	ata Not Gam	ma Distribut	ed at 5% Sig	inificance Lev	rel		
268 269					Test Statistic					ov Gamma		ral		
270					Critical Value Not Gamma					<u>.eu at 5% Siq</u>	inificance Lev	rei		
271														
272 273					k hat (MLE)		<u>Statistics</u>		l.	atau (biaa aau	wootod MLC)	0.672		
274				The	ta hat (MLE)	0.732 0.594				star (bias cor star (bias cor		0.673 0.646		
275					nu hat (MLE)	38.04				nu star (bia	as corrected)	34.99		
276 277			M	LE Mean (bia	s corrected)	0.435			A		s corrected)	0.53		
278			Δdius	sted Level of	Significance	0.0398				<u>Chi Square '</u> djusted Chi S		22.46 21.79		
279			Adjus	occa Ecver or	Significance	0.0550	l			ajastea en s	quare value	21.73		
280 281			050/ 4				<u>ma Distribι</u>	ution	0.5	-0/ Adi dada	C	0.600		
282			95% P	<u>Approximate</u>	Gamma UCL	0.677			95	5% Adjusted	Gamma UCL	0.698		
283						Lognorma	I GOF Test							
284 285					Test Statistic					gnormal GO				
286			10% S		Critical Value Test Statistic	0.933 0.288				t 10% Signific				
287			10		Critical Value					t 10% Signific				
288 289					Data Not Loc	gnormal at	t 10% Significance Level							
290						Lognorma	I Statistics							
291				Minimum of I	Logged Data		Jeuristics			Mean of	logged Data	-1.654		
292 293			N	1aximum of 1	Logged Data	1.841				SD of	logged Data	0.899		
294					Accum	nina Loano	rmal Distril	hution						
295					95% H-UCL	0.44	i iliai Distrii	Dution	90%	6 Chebyshev	(MVUE) UCL	0.446		
296					(MVUE) UCL	0.521			97.5%	Chebyshev	(MVUE) UCL	0.626		
297 298			99%	Chebyshev	(MVUE) UCL	0.831	<u> </u>							
299				N	lonparamet	ric Distribu	ıtion Free U	JCL Statisti	<u>cs</u>					
300		· · ·			Data do no							· · ·		
301 302					Nonnar	metric Dic	tribution Fi	roo IICI s						
303 304				9.	5% CLT UCL	0.824	CIDUCION FI	CE UCLS		95% BCA Bo	ootstrap UCL	1.154		
304				Standard Bo	ootstrap UCL	0.817				95% Boo	tstrap-t UCL	4.796		
305 306					ootstrap UCL ean, Sd) UCL	2.427 1.145				Percentile Bo hebyshev(Me		0.896 1.467		
307					ean, Sd) UCL	1.145				hebyshev(Me	,,	2.79		
308		-				•		-				-		
309 310				OEO/. C+	dent's-t UCL		UCL to Use	.						
311				93% STU	uenics-t UCL	0.839	I .							
312		The calcula	ated UCLs a							and unbias	sed manner			
313 314			TE LI.		erify the da					hode				
315			11 th		e collected contact a s					iioas,				
316														
317 318	1		stions regardi											
319	Но		mendations a ations results									ian.		
320	110		Salono results	1100 000	c. an ixcui vv	a aata 3Cl	o, ioi addicio	moignic U	asci iliay		.are a statistic			
321														

222	A B C D E	F	G H I J K	L
322 Nic 323	kel			
324		General	Statistics	
325	Total Number of Observations	66	Number of Distinct Observations 24	4
326			Number of Missing Observations 17	
327	Minimum	1		3.58
328 329	Maximum	110		1.5
330	SD Coefficient of Veriation	<u>15.1</u> 1.112		.858
331	Coefficient of Variation	1.112	Skewness 4	1.505
332		Normal	GOF Test	
333	Shapiro Wilk Test Statistic	0.598	Shapiro Wilk GOF Test	
334	1% Shapiro Wilk P Value	0	Data Not Normal at 1% Significance Level	
335 336	Lilliefors Test Statistic	0.27	Lilliefors GOF Test	
337	1% Lilliefors Critical Value	0.126	Data Not Normal at 1% Significance Level 1% Significance Level	
338	Data Not I	ioiiiiai at 1	170 Significance Level	
338 339	Assu	ıming Norr	mal Distribution	
340	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
341	95% Student's-t UCL	16.68		7.73
342			95% Modified-t UCL (Johnson-1978) 16	6.85
343 344		Gamma	GOF Test	
345	A-D Test Statistic	1.097	Anderson-Darling Gamma GOF Test	
3 4 6	5% A-D Critical Value	0.768	Data Not Gamma Distributed at 5% Significance Level	
347	K-S Test Statistic	0.15	Kolmogorov-Smirnov Gamma GOF Test	
348 349	5% K-S Critical Value	0.112	Data Not Gamma Distributed at 5% Significance Level	
350	Data Not Gamma	<u>a Distribut</u>	ted at 5% Significance Level	
351		Gamma	Statistics	
352	k hat (MLE)	1.56		.499
353	Theta hat (MLE)	8.701		.054
354	nu hat (MLE)	205.9	nu star (bias corrected) 197	
355 356	MLE Mean (bias corrected)	13.58		1.09
357	Adjusted Level of Significance	0.0464	Approximate Chi Square Value (0.05) 166 Adiusted Chi Square Value 165	
358	Aujusted Level of Significance	0.0404	Adjusted Cili Square Value 103)./
358 359	Assu	ming Gam	nma Distribution	
360	95% Approximate Gamma UCL	16.15		5.21
361		_		
362 363	Shapiro Wilk Test Statistic	Lognorma 0.963	al GOF Test Shapiro Wilk Lognormal GOF Test	
364	10% Shapiro Wilk P Value	0.963	Data appear Lognormal at 10% Significance Level	
365	Lilliefors Test Statistic	0.128	Lilliefors Lognormal GOF Test	
366	10% Lilliefors Critical Value	0.0997		
367 368	Data appear Approxir	mate Logn	ormal at 10% Significance Level	
369		Lognormo	al Statistics	
370	Minimum of Logged Data	Lognorma O		2.255
371	Maximum of Logged Data	4.7).859
372				
373 374			ormal Distribution	
375	95% H-UCL 95% Chebyshey (MVUE) UCL	<u>17.34</u> 20.9		8.65 4.03
376	99% Chebyshev (MVUE) UCL	30.16	97.5% CHEDYSHEV (MVOE) OCL 24	+.03
377	33 /0 Chebyshev (Pivol) OCL	20.10		
378 379			ution Free UCL Statistics	
3/9	Data appear t	to follow a	a Discernible Distribution	
380 381	M		stribution Free UCLs	
382	Nonpara 95% CLT UCL	16.63	stribution Free UCLs 95% BCA Bootstrap UCL 18	8.26
383	95% Standard Bootstrap UCL	16.57		9.15
384	95% Hall's Bootstrap UCL	31.26		5.7
385	90% Chebyshev(Mean, Sd) UCL	19.15	95% Chebyshev(Mean, Sd) UCL 21	1.68
386	97.5% Chebyshev(Mean, Sd) UCL	25.18	99% Chebyshev(Mean, Sd) UCL 32	2.06
387 388		Cuancete 4	LUCL to Uso	
389	95% H-UCL	<u>Suggestea</u> 17.34	I UCL to Use	
390	95 % IT-OCE	±/.JT		
391			e data were collected in a random and unbiased manner.	
392			ollected from random locations.	
393 394			mental or other non-random methods,	
394 395	then contact a st	tatistician	to correctly calculate UCLs.	
396	Note: Suggestions regarding the selection of a 95%	UCL are pro	rovided to help the user to select the most appropriate 95% UCL.	
397			oution, and skewness using results from simulation studies.	
			ts; for additional insight the user may want to consult a statistician.	
398	However, simulations results will not cover all real wo	a aata bot		
398 399	However, simulations results will not cover all recal wo			
398	HOWEVEL, SIMULATION STESSALES WITH HOLE COVER ALL INCAL WO			

	А В С	D	Е	F	G	Н	I	J	K	L
401	C10-C36 Fraction (Sum)									
402 403										
404		Number of Obs	convotions		<u>Statistics</u>		Numbor	of Dictinct (Observations	24
405	Total	Number of Obs	<u>SEI VALIOI IS</u>	31					Observations	52
406			Minimum	110			Hamber	OI I IIOOIIIQ V	Mean	
407			Maximum						Median	350
408 409		Cff:-:	SD					Std. E	rror of Mean	
410		Coefficient of	variation	2.512					Skewness	4.124
411				Normal	GOF Test					
412	SI	hapiro Wilk Tes	st Statistic	0.402			Shapiro Wi	lk GOF Tes	t	
413 414	1% SI	hapiro Wilk Crit		0.902		Data No		1% Significa	nce Level	
415	11	<u>Lilliefors Tes</u> % Lilliefors Crit		0.409 0.182		Data No		GOF Test 1% Significat	nco Lovol	
416					L% Signific		L NOITHAL AL .	170 SIGNINCA	ice Levei	
417		_			70 01411110					
418			Assı	<u>ıming Norı</u>	<u>nal Distribւ</u>					
419 420	95% No	ormal UCL		2505				sted for Sk		2005
421		95% Stude	nt's-t UCL	2595					<u>(Chen-1995)</u> hnson-1978)	
422							33 /0 1 louin	cu t oct (so	1113011 13707	2070
423					GOF Test					
424 425			st Statistic	3.796				Gamma G		
426		5% A-D Crit	st Statistic		D	ata Not Gam		ed at 5% Sid ov Gamma		/el
427		5% K-S Crit			D	ata Not Gam				/el
428						ignificance				
429 430										
431		L L	hat (MLE)	Gamma 0.53	<u>Statistics</u>			star (biac co	rrected MLE)	0.5
432			hat (MLE)						rrected MLE)	
433			hat (MLE)	32.85			111000		s corrected)	31
434	ML	LE Mean (bias o	corrected)	1469					s corrected)	
435 436	۸ ماند. د		:c:	0.0412					Value (0.05)	19.28
437	Adjus	sted Level of Si	gnificance	0.0413			A	ajustea Chi S	Square Value	18.77
438			Assu	ıming Gam	ma Distribu	ution				
439	95% A	opproximate Ga					95	% Adjusted	Gamma UCL	2427
440 441				•	LCOFT					
442	CI	hapiro Wilk Tes	et Statistic		I GOF Test		ro Wilk Loc	inormal GO	E Tost	
443		hapiro Wilk Crit		0.94				10% Signifi		
444		Lilliefors Tes		0.205				ormal GOF		
445 446	104	% Lilliefors Crit			100/ 61 1			10% Signific	cance Level	
447		Dat	ta NOT LOC	<u>qnormai at</u>	10% Signi	ficance Lev	<u>ei</u>			
448				Lognorma	I Statistics					
449	N	Minimum of Loc	gged Data					Mean of	logged Data	6.104
450 451		<u>laximum of Loc</u>	gged Data	9.852				SD of	logged Data	1.278
452			Accus	nina Loano	rmal Distri	hution				
453		95	5% H-UCL	1937	ו וופול בוומו	<u> </u>	90%	Chebyshev	(MVUE) UCL	1782
454	95%	Chebyshev (M	IVUE) UCL	2150					(MVUE) UCL	
455 456	99%	Chebyshev (M	IVUE) UCL	3665						
457		No	nnaramot	ric Dietrib	ıtion Free !	JCL Statistic	~e			
458						Distribution				
459										
460 461		0=0			tribution F	ree UCLs		050/ 50: 5		2262
462		95% Standard Boot	CLT UCL						ootstrap UCL otstrap-t UCL	3263 5975
463	9	5tandard Boot 95% Hall's Boot					95%		otstrap-t UCL	
464	90% Ch	nebyshev(Mear					95% Cl	nebyshev(Me	ean, Sd) UCL	4359
465	97.5% Ch	nebyshev(Mear							ean, Sd) UCL	
466 467				C	IICI +- II					
468		95% Stude			UCL to Use	1				
469					·					<u> </u>
470	The calculated UCLs ar							and unbias	sed manner	
471 472						m random lo				
472	If the	e data were o				<u>ther non-ra</u> v calculate l		noas,		
474		then co	oniact a S	เฉนางแบเสกิ	to correctly	v caiculate (JCL3.			
475	Note: Suggestions regarding	ng the selection	n of a 95%	UCL are pro	ovided to hel	p the user to	select the n	nost appropr	iate 95% UC	L.
476										
477 478	However, simulations results	will not cover	all Real Wo	orld data set	s; for additio	nal insight th	e user may	want to cons	sult a statistic	cian.
479										
السارا										

488	Observations Mean Median Error of Mean Skewness st ance Level Ance Level Ance Level Othnson-1978) GOF Test anficance Leve GOF Test									
	Observations Mean Median Error of Mean Skewness st ance Level Ance Level Ance Level Othnson-1978) GOF Test anficance Leve GOF Test	28 1.6 0.66 0.565 5.442								
Registration	Observations Mean Median Error of Mean Skewness st ance Level Ance Level Ance Level Othnson-1978) GOF Test anficance Leve GOF Test	28 1.6 0.66 0.565 5.442								
Total Number of Observations 55	Observations Mean Median Error of Mean Skewness st ance Level Ance Level Ance Level Othnson-1978) GOF Test anficance Leve GOF Test	28 1.6 0.66 0.565 5.442								
Minimum 0.1 Mumber of Missing 485 Minimum 28	Observations Mean Median Error of Mean Skewness st ance Level Ance Level Ance Level Othnson-1978) GOF Test anficance Leve GOF Test	28 1.6 0.66 0.565 5.442								
Maximum 28	Median Error of Mean Skewness st ance Level ance Level (Chen-1995) Shnson-1978) GOF Test anificance Level GOF Test	0.66 0.565 5.442 2.971 2.613								
Std. 6 Std.	st ance Level (cewness) (Chen-1995) (Chen-1978) (Chertaganificance Level (GOF Test anificance Level (GOF Test	0.565 5.442 2.971 2.613								
A88	Skewness st ance Level ance Level (Chen-1995) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1978)	2.971 2.613								
A89 A90 Shapiro Wilk Test Statistic 0.339 Shapiro Wilk GOF Test	st ance Level ance Level (Chen-1995) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1978)	2.971 2.613								
Shapiro Wilk Test Statistic 0.339 Shapiro Wilk GOF Test	kewness) (Chen-1995) (Chen-1978) (Chen-197	2.613 el								
1% Shapiro Wilk P Value	kewness) (Chen-1995) (Chen-1978) (Chen-197	2.613 el								
A93	(cewness) (Chen-1995) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1978) (Chen-1995) (Chen-19	2.613 el								
1% Lilliefors Critical Value 0.138 Data Not Normal at 1% Significated	(cwness) ((Chen-1995) chnson-1978) GOF Test quificance Leve	2.613 el								
Page	(cwness) ((Chen-1995) chnson-1978) GOF Test quificance Leve	2.613 el								
Assuming Normal Distribution	(Chen-1995) chnson-1978) GOF Test quificance Leve	2.613 el								
Page	(Chen-1995) chnson-1978) GOF Test quificance Leve	2.613 el								
95% Student's-t UCL 2.544 95% Adiusted-CLT UCL 500 95% Modified-t UCL (Jo 95% Modifi	(Chen-1995) chnson-1978) GOF Test quificance Leve	2.613 el								
Solit	ohnson-1978) GOF Test gnificance Leve	2.613 el								
502 Gamma GOF Test 503 A-D Test Statistic 4.417 Anderson-Darling Gamma G 504 5% A-D Critical Value 0.8 Data Not Gamma Distributed at 5% Si 505 K-S Test Statistic 0.248 Kolmogorov-Smirnov Gamma 506 5% K-S Critical Value 0.125 Data Not Gamma Distributed at 5% Si 507 Data Not Gamma Distributed at 5% Significance Level 508 Gamma Statistics 510 k hat (MLE) 0.674 k star (bias co 511 Theta hat (MLE) 2.375 Theta star (bias co 512 nu hat (MLE) 74.1 nu star (bias corrected) 513 MLE Mean (bias corrected) 1.6 MLE Sd (bi	gnificance Leve GOF Test									
503 A-D Test Statistic 4.417 Anderson-Darling Gamma G 504 5% A-D Critical Value 0.8 Data Not Gamma Distributed at 5% Si 505 K-S Test Statistic 0.248 Kolmogorov-Smirnov Gamma 506 5% K-S Critical Value 0.125 Data Not Gamma Distributed at 5% Si 507 Data Not Gamma Distributed at 5% Significance Level 508 Gamma Statistics 510 k hat (MLE) 0.674 k star (bias co 511 Theta hat (MLE) 2.375 Theta star (bias co 512 nu hat (MLE) 74.1 nu star (bi 513 MLE Mean (bias corrected) 1.6 MLE Sd (bi	gnificance Leve GOF Test									
504 5% A-D Critical Value 0.8 Data Not Gamma Distributed at 5% Si 505 K-S Test Statistic 0.248 Kolmogorov-Smirnov Gamma 506 5% K-S Critical Value 0.125 Data Not Gamma Distributed at 5% Si 507 Data Not Gamma Distributed at 5% Significance Level 508 Gamma Statistics 510 k hat (MLE) 0.674 k star (bias co 511 Theta hat (MLE) 2.375 Theta star (bias co 512 nu hat (MLE) 74.1 nu star (bi 513 MLE Mean (bias corrected) 1.6 MLE Sd (bi	gnificance Leve GOF Test									
Solid	GOF Test									
506 5% K-S Critical Value 0.125 Data Not Gamma Distributed at 5% Significance Level 507 Data Not Gamma Distributed at 5% Significance Level 508 Gamma Statistics 510 k hat (MLE) 0.674 k star (bias co 511 Theta hat (MLE) 2.375 Theta star (bias co 512 nu hat (MLE) 74.1 nu star (bias corrected) 513 MLE Mean (bias corrected) 1.6 MLE Sd (bias corrected)										
508 509 Gamma Statistics 510 k hat (MLE) 0.674 k star (bias composed to be started to be star		<u> </u>								
509 Gamma Statistics 510 k hat (MLE) 0.674 k star (bias co 511 Theta hat (MLE) 2.375 Theta star (bias co 512 nu hat (MLE) 74.1 nu star (bi 513 MLE Mean (bias corrected) 1.6 MLE Sd (bi										
510 k hat (MLE) 0.674 k star (bias comment 511 Theta hat (MLE) 2.375 Theta star (bias comment 512 nu hat (MLE) 74.1 nu star (bias comment 513 MLE Mean (bias corrected) 1.6 MLE Sd (bias corrected)										
511 Theta hat (MLE) 2.375 Theta star (bias co 512 nu hat (MLE) 74.1 nu star (bi 513 MLE Mean (bias corrected) 1.6 MLE Sd (bi	rrected MLF)	0.649								
513 MLE Mean (bias corrected) 1.6 MLE Sd (bi		2.465								
TILE TICAT (blas corrected)	as corrected)	71.39								
Approximate thi Soliare	as corrected)	1.986								
515 Adjusted Level of Significance 0.0456 Adjusted Chi		52.94 52.51								
516 Additional Education Statistical Control of Control of Statistical Control of Con	Square value									
Assuming Gamma Distribution										
518 95% Approximate Gamma UCL 2.157 95% Adjusted	Gamma UCL	2.175								
519 520 Lognormal GOF Test										
521 Shapiro Wilk Test Statistic 0.934 Shapiro Wilk Lognormal G	OF Test									
522 10% Shapiro Wilk P Value 0.00672 Data Not Lognormal at 10% Signif	0.00672 Data Not Lognormal at 10% Significance Level									
	Lilliefors Lognormal GOF Test									
524 10% Lilliefors Critical Value 0.109 Data Not Lognormal at 10% Signif 525 Data Not Lognormal at 10% Significance Level	icance Level									
526 Data Not Logilorillal at 10% Significance Level										
527 Lognormal Statistics										
F20	f logged Data	-0.432								
SD of the state	f logged Data	1.126								
531 Assuming Lognormal Distribution										
95% H-UCI 1.796 90% Chehyshey	(MVUE) UCL	1.87								
533 95% Chebyshev (MVUE) UCL 2.172 97.5% Chebyshev		2.592								
99% Chebyshev (MVUE) UCL 3.417										
535 Some Support Statistics Nonparametric Distribution Free UCL Statistics										
Data do not follow a Discernible Distribution										
538										
Nonparametric Distribution Free UCLs										
	Sootstrap UCL	2.993								
541 95% Standard Bootstrap UCL 2.502 95% Bo 542 95% Hall's Bootstrap UCL 6.343 95% Percentile B	otstrap-t UCL	5.659 2.601								
90% Chebyshey (Mean Sd.) IICL 3 293 95% Chebyshey (Mean Sd.)		4.06								
544 97.5% Chehyshey/Mean. Sd) IICL 5.125 99% Chehyshey/M		7.217								
545 E46										
Suggested UCL to Use 547 95% Student's-t UCL 2.544	Г									
95% Student's-t UCL 2.544										
The calculated UCLs are based on assumptions that the data were collected in a random and unbia	sed manner.									
Please verify the data were collected from random locations.										
551 If the data were collected using judgmental or other non-random methods, 552 then contact a statistician to correctly calculate UCLs.										
552										
Note: Suggestions regarding the selection of a 95% LICL are provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to help the user to select the most appropriate to the provided to the pr	riate 95% LICI									
Recommendations are based upon data size, data distribution, and skewness using results from simulation										
However, simulations results will not cover all Real World data sets: for additional insight the user may want to con		an.								
557 558										

	A B C D E	F	G H I J K	L
559 560	Sum of Polycyclic aromatic hydrocarbons (PAH)	·	· · · · ·	
561		Conoral	Statistics	
562	Total Number of Observations	57	Number of Distinct Observations	50
563			Number of Missing Observations	26
564 565	Minimum	0.2	Mean	20.41
566	Maximum SD	340 50.81	Median Std. Error of Mean	6.2 6.73
567	Coefficient of Variation	2.489	Skewness	5.198
568 569				
570	Shapiro Wilk Test Statistic	Normal 0.39	GOF Test Shapiro Wilk GOF Test	
571	1% Shapiro Wilk P Value	0.55	Data Not Normal at 1% Significance Level	
572 573	Lilliefors Test Statistic	0.355	Lilliefors GOF Test	
574	1% Lilliefors Critical Value	0.135 Jormal at 1	Data Not Normal at 1% Significance Level 96 Significance Level	
575	Duta Not N	iorinar ac z	. 70 Significance Ecrei	
576 577		ming Norr	nal Distribution	
578	95% Normal UCL 95% Student's-t UCL	31.67	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	36.43
579	95 % Student's t OCL	31.07	95% Modified-t UCL (Johnson-1978)	32.44
580				
581 582	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
583	5% A-D Critical Value	2.883 0.809	Data Not Gamma Distributed at 5% Significance Level	
584	K-S Test Statistic	0.183	Kolmogorov-Smirnov Gamma GOF Test	
585 586	5% K-S Critical Value	0.124	Data Not Gamma Distributed at 5% Significance Level ed at 5% Significance Level	
587	Data NOT Gamma	י הואמו ואפות ני	cu at 3 70 Significance Level	
588			Statistics	
589 590	k hat (MLE)	0.57	k star (bias corrected MLE)	0.552
591	Theta hat (MLE) nu hat (MLE)	35.82 64.96	Theta star (bias corrected MLE) nu star (bias corrected)	37.01 62.88
592	MLE Mean (bias corrected)	20.41	MLE Sd (bias corrected)	27.49
593 594	A 4:	0.0450	Approximate Chi Square Value (0.05)	45.64
595	Adjusted Level of Significance	0.0458	Adjusted Chi Square Value	45.26
596		ming Gam	ma Distribution	
597 598	95% Approximate Gamma UCL	28.12	95% Adjusted Gamma UCL	28.36
599		Lognorma	I GOF Test	
600	Shapiro Wilk Test Statistic	0.986	Shapiro Wilk Lognormal GOF Test	
601 602	10% Shapiro Wilk P Value Lilliefors Test Statistic	0.89 0.0716	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
603	10% Lilliefors Critical Value	0.107	Data appear Lognormal at 10% Significance Level	
604		ognormal a	t 10% Significance Level	
605 606		Lognorma	I Statistics	
607	Minimum of Logged Data	-1.609	Mean of logged Data	1.924
608	Maximum of Logged Data	5.829	SD of logged Data	1.402
609 610	Acque	ina Laana	rmal Distribution	
611	95% H-UCL	31.91	rmal Distribution 90% Chebyshev (MVUE) UCL	30.61
612	95% Chebyshev (MVUE) UCL	36.46	97.5% Chebyshev (MVUE) UCL	44.58
613 614	99% Chebyshev (MVUE) UCL	60.52		
615	Nonparameti	ric Distribu	ition Free UCL Statistics	
616			Discernible Distribution	
617 618	Nonnoro	metric Die	tribution Free UCLs	
619	95% CLT UCL	31.48	95% BCA Bootstrap UCL	37.89
620	95% Standard Bootstrap UCL	31.38	95% Bootstrap-t UCL	54.29
621 622	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	75.93 40.6	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	32.46 49.75
623	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	40.6 62.44	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	87.38
624		-		
625 626	95% H-UCL	Suggested 31.91	UCL to Use	
627	95% H-UCL)	21.91		
628			data were collected in a random and unbiased manner.	
629 630			llected from random locations.	
631			mental or other non-random methods, to correctly calculate UCLs.	
632				
633 634			ovided to help the user to select the most appropriate 95% UCL.	
635			ution, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticial	า.
636	HOWEVEL, SIMULATIONS TESTING WILL HOL COVEL ALL REAL WO		or a determination of the doct may want to consult a statistical	

Table 4: Groundwater Guaging Data 2-22 Kent Road Mascot 21569

Goodman Property Services Australia Pty Ltd

Well ID	Screen Interval	Easting	Northing	Top of Casing	Date Gauged	PID	Total Well Depth	Depth to Water	Depth to Product	Product Thickness	Groundwater Elevation
	(m bgl)	(MGA)	(MGA)	(m AHD)		PPM	(m bTOC)	(m bTOC)	(m bTOC)	(m)	(m AHD)
MW01	2.0 - 5.0	332162.538	6245139.633	4	19/06/2024	0	4.53	1.62	-	-	2.38
MW02	1.0 - 4.0	332099.736	6245084.123	3.98	19/06/2024	0	3.58	1.79	-	-	2.19
MW03	1.0 - 4.0	332037.638	6245140.768	3.67	19/06/2024	0	3.86	1.51	-	-	2.16
MW04	1.0 - 4.0	332088.495	6245185.287	3.6	19/06/2024	0	3.49	1.33	-	-	2.27
MW05	Unknown*	332102.632	6245247.55	2.91	19/06/2024	0	3.86	1.53	-	-	1.38
MW101	1.0 - 4.0	332139.095	6245206.968	3.437	19/06/2024	15.8	3.92	1.11	-	-	2.327
MW102	1.0 - 4.0	332159.594	6245222.331	3.462	19/06/2024	0	3.92	1.4	-	-	2.062
MW103	1.0 - 4.0	332049.745	6245196.377	3.779	19/06/2024	0	3.91	1.73	-	-	2.049
MW104	1.0 - 4.0	332046.078	6245100.92	3.529	19/06/2024	3.8	3.87	1.5	-	-	2.029

Notes

TOC- Top of casing

m bgl- meters below ground level

mTOC- metres below top of casing

m AHD- meters Australian Height Datum

MGA- Map Grid Australia

*Well discovered during site inspection

Table 5: Groundwater Stabilisead Geochemical Parameters 2-22 Kent Road Mascot 21569 Goodman Property Services Australia Pty Ltd

			Unit	B Dissolved Oxygen G (Field)	m2/Sn m2/Sn	PH (Field)	္ဂ် Temp (Field)	O (Er) (mV)	×oppe & (Eh) (mV)
		T							
Location	Date	Time							
MW01	19/06/2024	12:22:00		0.06	532	6.34	20.8	156.5	361.5
MW02	19/06/2024	11:34:00		3.42	90.5	6.44	18.1	89.4	294.4
MW03	18/06/2024	15:56:00		0.58	464	6.89	19.5	79.3	284.3
MW04	19/06/2024	8:30:00		4.82	81.4	6.33	17.7	174.7	379.7
MW05	19/06/2024	15:23:00		0.12	211.3	6.19	19.4	116	321
MW101	19/06/2024	14:14:00		0.07	104.5	5.92	19.1	178.1	383.1
MW102	19/06/2024	13:44:00		0.16	109.6	5.17	19.6	3.3	208.3
MW103	19/06/2024	9:24:00		2.64	91.1	6.87	14.9	48.8	253.8
MW104	19/06/2024	10:47:00		2.18	80.4	6.3	18.2	43.8	248.8
Statistics		•							
Number of Results				9	9	9	9	9	9
Number of Detects				9	9	9	9	9	9
Minimum Concentr	ation			0.06	80.4	5.17	14.9	3.3	208

Notes

Maximum Concentration

Average Concentration *

Median Concentration *

Standard Deviation *

Values presented are those after stabilisation. In accordance with EPA Publication 669, the parameters were considered stable when three consecutive readings (obtained several minutes apart) were within the EC- Electrical Conductivity.

532

196

104.5

177

6.89

6.3

6.33

0.51

20.8

19

19.1

1.7

178.1

99

89.4

62

383

304

294

58

ORP = Oxidation Reduction Potential as millivolts (mV). Field values (Er values, mV) taken with redox probe with a platinum electrode and silver/silver chloride reference electrode. For interpretation of the Er results can be converted to Eh values using the following conversion: Eh (mV) = Er (mV) + 205.

4.82

1.6

0.58

1.8

															ВТ	EX			Т	Total Petro	oleum Hyd	frocarbon	S			Total Rec	overable Hy	drocarbons		
				Unit	Arsenic (filtered)	Zg Cadmium (filtered)	S Chromium (filtered)	S Copper (filtered)	글 Lead (filtered)	Mercury (filtered)	Nickel (filtered)	글 Zinc (filtered)	P Benzene	Toluene	Ethylbenzene	Z Xylene (m & p)	Z/Z	F Total Xylene	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction	C6-C10 Fraction minus BTEX (F1)	S >C10-C16 Fraction	=>C10-C16 Fraction minus naphthalene (F2)	E >C16-C34 Fraction	>C34-C40 Fraction	S >C10-C40 Fraction (Sum)
				LOR		0.0001	0.001	0.001	,	0.00005	0.001	0.001	μg/∟ 1	μg/L 1	μg/L 1	μg/L 2	μ <u>γ</u> /L	μ9/⊑	10	μg/L 50	100	50	μg/L 50	10	10	μg/L 50	50	100	100	μg/L 50
0		NEDM Catting at	DI . O /			0.0001	0.001	0.001	0.001	0.00003	0.001	0.001	5,000#1	NL ^{#1}	NL ^{#1}		'	NL ^{#1}	10	30	100	30	30	10		30	NL ^{#1}	100	100	30
				ndustrial - Default Screen		#2	#3	#4	#/	#2	#2	#/					#5	INL							6,000 ^{#1}			#7	#8	
Α	quatic ecosys	stems DGV - sli		disturbed (95%) - marine		0.0007#2		0.0013#4		0.0001#2	0.007#2	0.008#4	500#2	180#4	80#4		350 ^{#5}	""							640#6		640#6	640 ^{#7}	640#8	
			Recr	reational Water - Health	0.1 ^{#10}	0.02 ^{#10}	0.5 ^{#11}	20 ^{#10}	0.1 ^{#10}	0.01 ^{#10}	0.2 ^{#10}	60 ^{#12}	10 ^{#10}	8,000 ^{#10}	3,000#10			6,000 ^{#10}							900 ^{#13}		900#13	900#14	900 ^{#14}	
Locatio	n Field ID	Date	Туре	Lab Report																										
MW01	MW01	19/06/2024	Normal	354375	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.00005	0.001	0.002	<1	<1	<1	<2	<1	<1	<10	< 50	<100	<100	< 50	<10	<10	< 50	<50	<100	<100	<50
MW02	MW02	19/06/2024	Normal	354375	0.005	< 0.0001	< 0.001	0.002	< 0.001	< 0.00005	< 0.001	0.041	<1	<1	<1	<2	<1	<1	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50
MW03	MW03	18/06/2024	Normal	354375	0.021	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.00005	< 0.001	0.003	<1	<1	<1	<2	<1	<1	<10	<50	370	<100	370	<10	<10	<50	<50	440	<100	440
MW04	MW04	19/06/2024	Normal	354375	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.00005	0.003	0.009	<1	<1	<1	<2	<1	<1	<10	<50	<100	<100	< 50	<10	<10	<50	<50	<100	<100	<50

יום וט	Date	Type	Lab Report																									
/01	19/06/2024	Normal	354375	< 0.001	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 0.001	0.002	<1	<1	<1	<2	<1	<1	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50
/02	19/06/2024	Normal	354375	0.005	< 0.0001	< 0.001	0.002	<0.001 <0.0000	5 < 0.001	0.041	<1	<1	<1	<2	<1	<1	<10	< 50	<100	<100	<50	<10	<10	< 50	<50	<100	<100	<50
/03	18/06/2024	Normal	354375	0.021	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 < 0.001	0.003	<1	<1	<1	<2	<1	<1	<10	< 50	370	<100	370	<10	<10	< 50	<50	440	<100	440
	19/06/2024	Normal	354375	< 0.001	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 0.003	0.009	<1	<1	<1	<2	<1	<1	<10	< 50	<100	<100	<50	<10	<10	< 50	<50	<100	<100	<50
107	19/06/2024	Field_D	354375	< 0.001	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 0.003	0.012	<1	<1	<1	<2	<1	<1	<10	< 50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50
/05	19/06/2024	Normal	354446	0.009	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 < 0.001	< 0.001	<1	<1	<1	<2	<1	<1	<10	< 50	<100	<100	<50	<10	<10	< 50	<50	<100	<100	<50
/101	19/06/2024	Normal	354446	0.001	< 0.0001	0.001	< 0.001	<0.001 <0.0000	5 0.001	0.003	<1	<1	<1	<2	<1	<1	<10	< 50	<100	<100	<50	<10	<10	< 50	< 50	<100	<100	< 50
/102	19/06/2024	Normal	354375	0.001	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 0.002	0.009	<1	<1	<1	<2	<1	<1	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50
/103	19/06/2024	Normal	354375	0.001	< 0.0001	< 0.001	< 0.001	<0.001 <0.0000	5 < 0.001	0.003	<1	<1	<1	<2	<1	<1	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50
207	19/06/2024	Interlab_D	ES2420128	< 0.001	< 0.0001	< 0.001	< 0.001	<0.001 <0.000	1 < 0.001	< 0.005	<1	<2	<2	<2	<2	<2	<20	< 50	<100	< 50	<50	<20	<20	<100	<100	<100	<100	<100
/104	19/06/2024	Normal	354375	0.002	0.0020	< 0.001	< 0.001	<0.001 <0.0000	5 0.004	0.48	<1	<1	<1	<2	<1	<1	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50
/(/(/(/ / / / / / / / / / / / / / /	01 02 03 04 07 05 101 102 103	01 19/06/2024 02 19/06/2024 03 18/06/2024 04 19/06/2024 07 19/06/2024 05 19/06/2024 101 19/06/2024 102 19/06/2024 103 19/06/2024 103 19/06/2024 107 19/06/2024	01 19/06/2024 Normal 02 19/06/2024 Normal 03 18/06/2024 Normal 04 19/06/2024 Normal 07 19/06/2024 Field_D 05 19/06/2024 Normal 101 19/06/2024 Normal 102 19/06/2024 Normal 103 19/06/2024 Normal 103 19/06/2024 Normal 103 19/06/2024 Interlab_D	01 19/06/2024 Normal 354375 02 19/06/2024 Normal 354375 03 18/06/2024 Normal 354375 04 19/06/2024 Normal 354375 07 19/06/2024 Field_D 354375 05 19/06/2024 Normal 354446 101 19/06/2024 Normal 354446 102 19/06/2024 Normal 354375 103 19/06/2024 Normal 354375 103 19/06/2024 Normal 354375 07 19/06/2024 Interlab_D ES2420128	01 19/06/2024 Normal 354375 <0.001 02 19/06/2024 Normal 354375 0.005 03 18/06/2024 Normal 354375 0.021 04 19/06/2024 Normal 354375 <0.001 07 19/06/2024 Field_D 354375 <0.001 05 19/06/2024 Normal 354446 0.009 101 19/06/2024 Normal 354446 0.001 102 19/06/2024 Normal 354375 0.001 103 19/06/2024 Normal 354375 0.001 103 19/06/2024 Normal 354375 0.001 07 19/06/2024 Interlab_D ES2420128 <0.001	01 19/06/2024 Normal 354375 <0.001 <0.0001 02 19/06/2024 Normal 354375 0.005 <0.0001 03 18/06/2024 Normal 354375 0.021 <0.0001 04 19/06/2024 Normal 354375 <0.001 <0.0001 07 19/06/2024 Field_D 354375 <0.001 <0.0001 05 19/06/2024 Normal 354446 0.009 <0.0001 101 19/06/2024 Normal 354446 0.001 <0.0001 102 19/06/2024 Normal 354375 0.001 <0.0001 103 19/06/2024 Normal 354375 0.001 <0.0001 103 19/06/2024 Normal 354375 0.001 <0.0001 07 19/06/2024 Interlab_D ES2420128 <0.001 <0.0001	01 19/06/2024 Normal 354375 <0.001 <0.0001 <0.001 02 19/06/2024 Normal 354375 0.005 <0.0001 <0.001 03 18/06/2024 Normal 354375 0.021 <0.0001 <0.001 04 19/06/2024 Normal 354375 <0.001 <0.0001 <0.001 07 19/06/2024 Field_D 354375 <0.001 <0.0001 <0.001 05 19/06/2024 Normal 354446 0.009 <0.0001 <0.001 101 19/06/2024 Normal 354446 0.001 <0.0001 <0.001 102 19/06/2024 Normal 354375 0.001 <0.0001 <0.001 103 19/06/2024 Normal 354375 0.001 <0.001 <0.001 103 19/06/2024 Normal 354375 0.001 <0.001 <0.001 103 19/06/2024 Interlab_D ES2420128 <0.001 <0.0001	01 19/06/2024 Normal 354375 <0.001 <0.0001 <0.001 <0.001 02 19/06/2024 Normal 354375 0.005 <0.0001 <0.001 0.002 03 18/06/2024 Normal 354375 0.021 <0.0001 <0.001 <0.001 04 19/06/2024 Normal 354375 <0.001 <0.0001 <0.001 <0.001 <0.001 05 19/06/2024 Normal 354375 <0.001 <0.0001 <0.001 <0.001 101 19/06/2024 Normal 354446 0.009 <0.0001 <0.001 <0.001 102 19/06/2024 Normal 354375 0.001 <0.0001 <0.001 <0.001 103 19/06/2024 Normal 354375 0.001 <0.0001 <0.001 <0.001 103 19/06/2024 Normal 354375 0.001 <0.0001 <0.001 <0.001 103 19/06/2024 Normal 354375 <	01 19/06/2024 Normal 354375 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.	01 19/06/2024 Normal 354375 <0.001 <0.0001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00	19/06/2024 Normal 354375	19/06/2024 Normal 354375	19/06/2024 Normal 354375	19/06/2024 Normal 354375 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001	19/06/2024 Normal 354375	19/06/2024 Normal 354375 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.00005 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001	19/06/2024 Normal 354375 0.001 0.0001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.001	19/06/2024 Normal 354375 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.00005 0.001 0.0002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003	11 19/06/2024 Normal 354375	19/06/2024 Normal 354375 0.001 0.0001 0.0001 0.0001 0.0001 0.00005 0.001 0.0002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001	1	1	1	1	1	11 19/06/2024 Normal 354375	1	1

					PAHs					MAH								Halo	ogenated Be	nzenes				H	lalogenate	d Hydrocarb	ons
					Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Isopropylbenzene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene	Styrene	1,2,3-Trichlorobenzene	1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	1,3-Dichlorobenzene	2-Chlorotoluene	1,4-Dichlorobenzene	4-Chlorotoluene	Bromobenzene	Chlorobenzene	1,2-Dibromoethane	Bromomethane	Dichlorodifluoromethane	Trichlorofluoromethane
				Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				LOR	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10	10	10
Groundwa	ater HSLs - N	NEPM Setting 'I	D' - Commercial / In	dustrial - Default Screen	NL #1																						
Aqu	uatic ecosyste	tems DGV - slig	htly to moderately o	disturbed (95%) - marine	50 ^{#2}			30#4							3 ^{#5}	160 ^{#5}	20 ^{#2}	260 ^{#5}		60 ^{#5}			55 ^{#4}				
				· /													"10										
			Recr	eational Water - Health	700#15	560 ^{#12}	600 ^{#12}	4,500 ^{#12}	10,000#12	6,600#12		20,000#12	6,900#12	300 ^{#10}	300 ^{#16}	15,000 ^{#10}	300 ^{#16}		2,400#12	400 ^{#10}	2,500#12	620 ^{#12}	3,000#10	10 ^{#10}	10 ^{#10}	2,000#12	52,000 ^{#12}
			Recr	eational Water - Health	700#15	560#12	600#12	4,500#12	10,000#12	6,600#12		20,000#12	6,900#12	300 ^{#10}	300#16	15,000 ^{#10}	300#16		2,400#12	400 ^{#10}	2,500 ^{#12}	620#12	3,000 ^{#10}	10 ^{#10}	10 ^{#10}	2,000#12	52,000 ^{#12}
Location	Field ID	Date	Type	Lab Report	700 ^{#15}	560#12	600#12	4,500 ^{#12}	10,000#12	6,600#12		20,000#12	6,900#12	300#10	300#16	15,000 ^{#10}	300#16		2,400#12	400#10	2,500 ^{#12}	620 ^{#12}	3,000 ^{#10}	10 ^{#10}	10#10	2,000#12	52,000#12
Location MW01	Field ID				700 #15	560 #12	600 ^{#12}	4,500 ^{#12}	10,000 ^{#12}	6,600 ^{#12}	<1	20,000 ^{#12}	6,900 ^{#12}	300^{#10}	300 ^{#16}	15,000 #10 <1	300 #16	<1	2,400 ^{#12}	400 ^{#10}	2,500 ^{#12}	620 ^{#12}	3,000 ^{#10}	10 ^{#10}	10 ^{#10}	2,000 #12	52,000 ^{#12}
		19/06/2024	Туре	Lab Report				4,500 ^{#12}			<1 <1	,	,			,		<1 <1									
MW01	MW01	19/06/2024 19/06/2024	Type Normal	Lab Report 354375	<1		<1	<1 <1 <1 <1 <1 <1 <1	<1	<1		<1	<1	<1	<1	<1	<1	<1 <1 <1	<1	<1	<1	<1	<1	<1	<10	<10	<10
MW01 MW02	MW01 MW02	19/06/2024 19/06/2024 18/06/2024	Type Normal Normal	Lab Report 354375 354375	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<10 <10	<10 <10
MW01 MW02 MW03	MW01 MW02 MW03	19/06/2024 19/06/2024 18/06/2024 19/06/2024	Type Normal Normal Normal	Lab Report 354375 354375 354375	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<10 <10 <10	<10 <10 <10	<10 <10 <10
MW01 MW02 MW03 MW04	MW01 MW02 MW03 MW04	19/06/2024 19/06/2024 18/06/2024 19/06/2024 19/06/2024	Type Normal Normal Normal Normal	Lab Report 354375 354375 354375 354375	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<10 <10 <10 <10	<10 <10 <10 <10	<10 <10 <10 <10
MW01 MW02 MW03 MW04 MW04	MW01 MW02 MW03 MW04 QC107	19/06/2024 19/06/2024 18/06/2024 19/06/2024 19/06/2024 19/06/2024	Type Normal Normal Normal Normal Field_D	Lab Report 354375 354375 354375 354375 354375	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 -	<1 <1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<10 <10 <10 <10	<10 <10 <10 <10	<10 <10 <10 <10 <10
MW01 MW02 MW03 MW04 MW04 MW05	MW01 MW02 MW03 MW04 QC107 MW05	19/06/2024 19/06/2024 18/06/2024 19/06/2024 19/06/2024 19/06/2024 19/06/2024	Type Normal Normal Normal Normal Field_D Normal	Lab Report 354375 354375 354375 354375 354375 354375 354446	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 -	<1 <1 <1 <1	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1	<1 <1 <1 - <1	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 -	<1 <1 <1 - <1	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 <1 -	<10 <10 <10 <10 -10	<10 <10 <10 <10 -	<10 <10 <10 <10 <10 -
MW01 MW02 MW03 MW04 MW04 MW05 MW101	MW01 MW02 MW03 MW04 QC107 MW05 MW101	19/06/2024 19/06/2024 18/06/2024 19/06/2024 19/06/2024 19/06/2024 19/06/2024	Type Normal Normal Normal Normal Field_D Normal Normal Normal Normal	Lab Report 354375 354375 354375 354375 354375 354375 354446 354446	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 -	<1 <1 <1 <1 - <1 <1	<1 <1 <1 <1 <1 - <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 - <1	<1 <1 <1 <1 <1 - <1 <1	<1 <1 <1 <1 <1 - <1 <1	<1 <1 <1 <1 <1 - <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 - <10 -	<10 <10 <10 <10 - - <10 <10
MW01 MW02 MW03 MW04 MW04 MW05 MW101 MW102	MW01 MW02 MW03 MW04 QC107 MW05 MW101 MW102	19/06/2024 19/06/2024 18/06/2024 19/06/2024 19/06/2024 19/06/2024 19/06/2024 19/06/2024 19/06/2024	Type Normal Normal Normal Normal Field_D Normal Normal Normal Normal	Lab Report 354375 354375 354375 354375 354375 354375 354446 354446 354375	<1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10

															(Chlorinated H	lydrocarbo	ns									
					1,1-Dichloropropene	1,1-Dichloroethane	1,1-Dichloroethene	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,2-Dibromo-3-chloropropane	1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	1,2-Dichloroethane	1,3-Dichloropropane	1,2-Dichloropropane	2,2-Dichloropropane	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorodibromomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	Dibromomethane
				Unit	t μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				LOR	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10	1	10	1	1
Groundy	vater HSLs - N	NEPM Setting	'D' - Commercia	l / Industrial - Default Screen	n																						
Ad	quatic ecosyst	ems DGV - sl	ightly to moderat	tely disturbed (95%) - marine	9		700#4		270#4		1,900 ^{#4}	400#4		1,900#4	1,100 ^{#4}	900#4					240 ^{#4}			370 ^{#2}			
			F	Recreational Water - Health	n	28 ^{#12}	300 ^{#10}	5.7 ^{#12}	80,000#12	10 ^{#17}	2.8 ^{#12}	0.76#12	0.0075 ^{#12}	30 ^{#10}	3,700 ^{#12}	400 ^{#18}		830#12	600#17	1,000 ^{#17}	30 ^{#10}	1,000 ^{#17}	83,000 ^{#12}	3,000#17	1,900 ^{#12}	600 ^{#19}	83 ^{#12}
Location	n Field ID	Date	Туре	Lab Report	1																						
MW01	MW01	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW02	MW02	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW03	MW03	18/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW04	MW04	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW04	QC107	19/06/2024	Field_D	354375	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW05	MW05	19/06/2024	Normal	354446	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	5	<1
MW101	MW101	19/06/2024	Normal	354446	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW102	MW102	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW103	MW103	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<10	<1	<1
MW103	QC207	19/06/2024	Interlab_D	ES2420128	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW104	MW104	19/06/2024	Normal	354375	<1	<1	<1	<1	-1	<1	<1	<1	<1	<1	<1	4	<1	<1	<1	<1	- 4	<1	<10		<10	- 4	<1

				[Chlori	nated Hydrod	arbons			Solvents				Perfluor	oalkane Sulfo	nic Acids	PF	AS
					cis-1,3-Dichloropropene	Hexachlorobutadiene	Tetrachloroethene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Vinyl Chloride	Cyclohexane	6:2 Fluorotelomer Sulfonate (6:2 FtS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluorooctanoic acid (PFOA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorohexane sulfonic acid (PFHxS)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)	Sum of PFAS
				Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				LOR	1	1	1	1	1	1	10	1	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
Groundw	ater HSLs - I	NEPM Setting '	D' - Commercial / Inc	lustrial - Default Screen																
Aq	uatic ecosys	tems DGV - slig	ghtly to moderately d	isturbed (95%) - marine			70 ^{#4}			330#4	100 ^{#4}				19 ^{#9}	0.00023 ^{#9}				
			Recre	ational Water - Health		7 ^{#10}	500 ^{#10}	600 ^{#19}		80 ^{#17}	3 ^{#10}	130,000#12			10 ^{#20}	2 ^{#20}	2 ^{#20}	2 ^{#20}		
						•		•	•	•				•		•	•	•		
Location	Field ID	Date	Туре	Lab Report																
MW01	MW01	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	0.02	0.04	0.01	0.05	0.06	0.07
MW02	MW02	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MW03	MW03	18/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	< 0.01	0.1	0.01	0.11	0.1	0.11
MW04	MW04	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	< 0.01	0.07	0.01	0.09	0.07	0.09
MW04	QC107	19/06/2024	Field_D	354375	-	-	-	-	-	-	-	-	< 0.01	< 0.02	< 0.01	0.07	0.02	0.08	0.07	0.08
MW05	MW05	19/06/2024	Normal	354446	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MW101	MW101	19/06/2024	Normal	354446	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	0.01	< 0.01	< 0.01	< 0.01	0.01	0.01
MW102	MW102	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	0.03	0.38	0.08	0.46	0.41	0.49
MW103	MW103	19/06/2024	Normal	354375	<1	<1	<1	<1	<1	<1	<10	<1	< 0.01	< 0.02	< 0.01	0.04	< 0.01	0.04	0.04	0.04
MW103	QC207	19/06/2024	Interlab_D	ES2420128	-	-	-	-	-	-	-	-	< 0.05	< 0.05	< 0.01	0.05	0.01	0.06	-	0.06
MW104	MW104	19/06/2024	Normal	354375	<1	.4	4	<1			<10		< 0.01	< 0.02	< 0.01	0.02	< 0.01	0.02	0.02	0.02

Comments

- #1 Value for shallow (2-4 m bgl) sand aquifer adopted for initial screening.
- #2 ANZG (2018). Higher species protection level adopted as recommended
- #3 ANZG (2018). The more conservative value (Chromium CrVI) out of the available chromium species was adopted for initial screening purposes.
- #4 ANZG (2018)
- #5 ANZG (2018). Freshwater DGV adopted as an unknown reliability value as recommended
- #6 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.
- #7 CRWB (2019). Value for diesel (C8-C21) mixture.
- #8 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for screening.
- #9 PFAS National Environmental Management Plan (HEPA 2020). Higher species protection level adopted as recommended
- #10 NHMRC (2011) Health. Multiplied by a factor of x10
- #11 NHMRC (2011) Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should be undertaken where guideline is exceeded. Multiplied by a factor of x10
- #12 USEPA Tap Water RSL (TR=1E-06; THQ=0.1) May 2024. Multiplied by a factor of x10
- #13 WHO (2008). Lowest derived value for aliphatic and aromatic fractions in this range. Multiplied by a factor of x10
- #14 Lowest derived value for aliphatic and aromatic fractions in this range (90 ug/L). Multiplied by a factor of x10
- #15 NHMRC (2011) Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation. Multiplied by a factor of x10
- #16 NHMRC (2011) Health. Value is for total TCBs but applies to individual isomers also. Multiplied by a factor of x10
- #17 WHO Guidelines for drinking-water quality. Multiplied by a factor of x10
- #18 WHO Guidelines for drinking-water quality. Provisional guideline due to uncertainties in the health database. Multiplied by a factor of x10
- #19 NHMRC (2011) Health. Value is for total 1,2-DCE but also applied to individual isomers. Multiplied by a factor of x10
- #20 NHMRC (2019) Guidance on PFAS in Recreational Waters

Site	Location	Sampled Date/Time	Sample Type	Sample Comments	Purge/Sampling Comments	Flow Rate	Hydrogen sulfide	Methane	Carbon Dioxide	Carbon Monoxide	Oxygen
Kent Road	VP01	18/06/2024 01:40PM	Normal	LEL - 0.0%	Headspace PID Reading(s) (PPM) 81.1	L/h 0.1	ppm 0	%v/v 0	%v/v 6.4	ppm 0	%v/v 14.1
Kent Road	VP01	25/06/2024 09:15AM	Normal	Canister: 2560 Regulator: 1750 Start: 9:21 -28 hg End: 9:27 -7hg ISO:230 ppm	76.2 - 73	0.1	0	0	6.3	0	14.4
Kent Road	VP02	18/06/2024 01:22PM	Normal	LEL - 0.0%	4.0	0.1	0	0	2.5	0	19
Kent Road	VP02	25/06/2024 09:36AM	Normal	Canister: 2274 Regulator: 1861 Start: 9:50 am at -29 hg End: 9:56 am at7 hg ISO: 240 ppm	8.1 - 9.1	0.1	0	0	2.5	0	18.8
Kent Road	VP03	18/06/2024 01:56PM	Normal	LEL - 0.0%	21.7	0.1	0	0	7.3	0	11.2
Kent Road	VP03	25/06/2024 08:56AM	Normal	Canister: 3530 Regulator: 1753 Start: 9:04 am -29 hg End: 9:10 am -7 hg Iso: 230 ppm	24.1 - 18.9	0.1	0	0	7.2	0	10.8
Kent Road	VP04	18/06/2024 02:22PM	Normal	LEL - 0.0%	0.0 ppm	0.1	0	0	10.6	0	9.8
Kent Road	VP04	25/06/2024 08:05AM	Normal	Canister: 3274 Regulator:1748 Start: 8.35am - 37.5 hg End: 8:43 am -7 hg Iso: 220 PPM	15.5 - 9.8ppm	0.1	0	0	9.8	0	11.2
Kent Road	VP05	18/06/2024 02:16PM	Normal	LEL - 0.0%	0.0 ppm	0.1	0	0	4.3	0	16.9
Kent Road	VP05	25/06/2024 10:03AM	Normal	Canister: 2461 Regulator: 503 Start: 10:08 am at -28hg End: 10:15 am at -7hg ISO: 210 ppm	0-0 ppm	0.1	0	0	4.2	0	17.1
Kent Road	VP06	18/06/2024 03:31PM	Normal	LEL - 0.0%	0.7 ppm	0.1	0	0	2.8	0	10.8
Kent Road	VP07	18/06/2024 03:27PM	Normal	LEL - 0.0%	7.6 ppm	0.1	0	0	5.4	0	9.5
Kent Road	VP08	18/06/2024 03:13PM	Normal	LEL - 0.0%	1.0 ppm	0.1	0	0	0	0	15.7
Kent Road	VP09	18/06/2024 03:17PM	Normal	LEL - 0.0%	23.4 ppm	0.1	0	0	0	0	5.7
Kent Road	VP10	18/06/2024 03:22PM	Normal	LEL - 0.0%	7.2 ppm	0.1	0	0	0.7	0	8.2
Kent Road	VP11	18/06/2024 02:08PM	Normal	LEL - 0.0 %	2.1	0.1	8	0	4.6	0	16
Kent Road	VP11	25/06/2024 10:24AM	Normal	Canister: 3503 Regulator: 628 Start: 10:26am at -29 hg End: 10:31 am at -7hg ISO: 260 PPM	2.6 - 1.8 ppm	0.1	0	0	4.5	0	16.2

	NA BTEX								Vol	atile Organ	nic Compo	unds		M	AH			Halog	enated Ber	nzenes	
	acuum before Analysis	acuum before Shipment	Benzene Toluene Ethylbenzene Xylene (m & p)						3-Butadiene	crolein	obene	ethyl Methacrylate	2,4-Trimethylbenzene	Methyl-4 ethyl benzene	3,5-Trimethylbenzene	tyrene	2-Dichlorobenzene	2,4-Trichlorobenzene	3-Dichlorobenzene	4-Dichlorobenzene	hlorobenzene
Unit	Ha"	Hg"	µq/m3	µg/m3	µg/m3	µg/m3	μg/m3	μg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3
LOR	· · · 9	9	1.6	1.9	2.2	4.3	2.2	2.6	1.1	11	0.9	2	2.5	2.5	2.5	2.1	3	3.7	3	3	2.3
NEPM 2013 Interim HILs for VOCs - Commercial/Industrial																					
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m			4,000	4,800,000	1,300,000			3,000													
Soil Vapour Guideline Commercial (AF=0.03)									136 ^{#3}	2.92 ^{#3}	437,000#3	102,000#3	8,770#3		8,770#3	146,000#3	29,200#3	292 ^{#3}	29,200#4	117,000#3	7,300 ^{#3}

Location	Field ID	Date	Type	Lab Report																					
VP01	VP01	25/06/2024	Normal	354994	-5	-30	<1.6	<1.9	<2.2	<4.3	<2.2	<2.6	<1.1	<11	< 0.9	<2	<2.5	<2.5	<2.5	<2.1	<3	<3.7	<3	<3	<2.3
VP02	VP02	25/06/2024	Normal	354994	-5	-30	<1.6	<1.9	<2.2	<4.3	<2.2	<2.6	<1.1	<11	< 0.9	<2	4	<2.5	<2.5	<2.1	<3	<3.7	<3	<3	<2.3
VP03	VP03	25/06/2024	Normal	354994	-5	-30	<1.6	<1.9	<2.2	<4.3	<2.2	<2.6	<1.1	<11	< 0.9	<2	<2.5	<2.5	<2.5	<2.1	<3	<3.7	<3	<3	<2.3
VP04	VP04	25/06/2024	Normal	354994	-3	-30	<1.6	<1.9	<2.2	<4.3	<2.2	<2.6	<1.1	<11	< 0.9	<2	<2.5	<2.5	<2.5	<2.1	<3	<3.7	<3	<3	<2.3
VP05	VP05	25/06/2024	Normal	354994	-5	-30	<1.6	<1.9	<2.2	<4.3	<2.2	<2.6	<1.1	<11	< 0.9	<2	5	<2.5	<2.5	<2.1	<3	<3.7	<3	<3	<2.3
VP11	VP11	25/06/2024	Normal	354994	-5	-30	<1.6	<1.9	10	200	130	6	<1.1	<11	< 0.9	<2	390	70	240	<2.1	<3	<3.7	<3	<3	<2.3

	Hal	logenated	Hydrocarb	ons									Chlorinate	ed Hydrod	carbons								
	1,2-Dibromoethane	Bromomethane	Dichlorodifluoromethane	Trichlorofluoromethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichlorotrifluoroethane (Freon 113)	1,2-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorotetrafluoroethane (Freon 114)	Benzyl Chloride	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorodibromomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene
	µg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	µg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	µg/m3	µg/m3	μg/m3	µg/m3
LOR	3.8	1.9	2.5	2.8	2	2	2.7	2.7	3.4	3.8	2	2.3	2.5	2.6	3.4	5.2	3.1	1.6	1.3	2.4	1	2	2.3
NEPM 2013 Interim HILs for VOCs - Commercial/Industrial							230,000#1															300 ^{#1}	
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m											, and the second												·
Soil Vapour Guideline Commercial (AF=0.03)	6.8#3	730 ^{#3}	14,600 ^{#3}	106,000 ^{#5}	2,560#3	29,200#3		29.2#3	70.3 ^{#3}	730,000#3	157 ^{#3}	583 ^{#3}	14,600 ^{#6}	83.3 ^{#3}	110 ^{#3}	3,700#3	680 ^{#3}	60.8 ^{#7}	583,000 ^{#3}	14,300#3	13,100 ^{#3}		

Location	Field ID	Date	Туре	Lab Report																							
VP01	VP01	25/06/2024	Normal	354994	<3.8	<1.9	<2.5	<2.8	<2	<2	<2.7	<2.7	<3.4	<3.8	<2	<2.3	<2.5	<2.6	<3.4	<5.2	<3.1	<1.6	<1.3	<2.4	<1	<2	<2.3
VP02	VP02	25/06/2024	Normal	354994	<3.8	<1.9	<2.5	<2.8	<2	<2	<2.7	<2.7	<3.4	<3.8	<2	<2.3	<2.5	<2.6	<3.4	<5.2	<3.1	<1.6	<1.3	<2.4	<1	<2	<2.3
VP03	VP03	25/06/2024	Normal	354994	<3.8	<1.9	<2.5	<2.8	<2	<2	<2.7	<2.7	< 3.4	<3.8	<2	<2.3	<2.5	<2.6	<3.4	<5.2	<3.1	<1.6	<1.3	<2.4	<1	<2	<2.3
VP04	VP04	25/06/2024	Normal	354994	<3.8	<1.9	<2.5	<2.8	<2	<2	<2.7	<2.7	<3.4	<3.8	<2	<2.3	<2.5	<2.6	<3.4	<5.2	<3.1	<1.6	<1.3	<2.4	<1	<2	<2.3
VP05	VP05	25/06/2024	Normal	354994	<3.8	<1.9	<2.5	<2.8	<2	<2	<2.7	<2.7	<3.4	<3.8	<2	<2.3	<2.5	<2.6	<3.4	<5.2	<3.1	<1.6	<1.3	<2.4	<1	<2	<2.3
VP11	VP11	25/06/2024	Normal	354994	<3.8	<1.9	<2.5	<2.8	<2	<2	<2.7	<2.7	<3.4	<3.8	<2	<2.3	<2.5	<2.6	<3.4	<5.2	<3.1	<1.6	<1.3	<2.4	<1	<2	<2.3

			Chl	lorinated H	lydrocarbo	ns										Solvents							
	Ewy frans-1,3-Dichloroethene Sylvans-1,3-Dichloroethene Sylvans-1,3-Dichloroethene Trichloroethene Trichloroethene											4-Methyl-2-pentanone	Acetone	Carbon disulfide	Cyclohexane	Ethanol	Ethyl acetate	Heptane	Hexane	Methyl tert-Butyl Ether (MTBE)	2-Propanol	Tetrahydrofuran	Vinyl acetate
Unit	μg/m3	ppbv	μg/m3	μg/m3	μg/m3	μg/m3	µg/m3	μg/m3	μg/m3	µg/m3	μg/m3	μg/m3	μg/m3	µg/m3	μg/m3	μg/m3	μg/m3	μg/m3	µg/m3	μg/m3	μg/m3	μg/m3	µg/m3
LOR	17	5	5.3	3.4	2	2.3	2.7	1.3	1.8	15	2	20	11.9	16	1.7	9	1.8	2	1.8	1.8	12	1.5	1.8
NEPM 2013 Interim HILs for VOCs - Commercial/Industrial				8,000 ^{#1}			80 ^{#1}	100 ^{#1}															
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m																							
Soil Vapour Guideline Commercial (AF=0.03)	87,700 ^{#3}		186 ^{#3}		5,830 ^{#3}				4,370#3	730,000#3	4,370#3	437,000#3	4,700,000#8	102,000#3	877,000 ^{#3}	15,200,000#9	10,200#3	58,300 ^{#3}	102,000#3	437,000#3	29,200#3	292,000 ^{#3}	29,200 ^{#3}
							•								•								

Location	Field ID	Date	Туре	Lab Report																							
VP01	VP01	25/06/2024	Normal	354994	<17	<5	<5.3	<3.4	<2	<2.3	<2.7	<1.3	<1.8	<15	<2	<20	<11.9	<16	<1.7	30	<1.8	<2	<1.8	<1.8	190	<1.5	<1.8
VP02	VP02	25/06/2024	Normal	354994	<17	<5	<5.3	75	<2	<2.3	<2.7	<1.3	<1.8	<15	<2	<20	30	<16	<1.7	160	<1.8	<2	<1.8	<1.8	400	<1.5	<1.8
VP03	VP03	25/06/2024	Normal	354994	<17	<5	<5.3	<3.4	<2	<2.3	<2.7	<1.3	<1.8	<15	<2	<20	<11.9	<16	<1.7	50	<1.8	<2	2	<1.8	4,200	<1.5	<1.8
VP04	VP04	25/06/2024	Normal	354994	<17	<5	<5.3	<3.4	<2	<2.3	<2.7	<1.3	<1.8	<15	<2	<20	10	<16	<1.7	80	<1.8	<2	<1.8	<1.8	860	<1.5	<1.8
VP05	VP05	25/06/2024	Normal	354994	<17	<5	<5.3	87	<2	<2.3	<2.7	<1.3	<1.8	<15	<2	<20	<11.9	<16	<1.7	70	<1.8	<2	<1.8	<1.8	930	<1.5	<1.8
VP11	VP11	25/06/2024	Normal	354994	<17	<5	<5.3	20	<2	<2.3	<2.7	<1.3	<1.8	<15	<2	<20	<11.9	<16	<1.7	70	<1.8	<2	<1.8	<1.8	240	<1.5	<1.8

Comments

- #1 NEPC 2013 Interim HILs for VOCCs Commercial/Industrial NEPM (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) Interim Soil Vapour HILs for "Commercial/Industrial D."
- #2 NEPM and/or CRC CARE 2011
- #3 USEPA VISL
- #4 USEPA VISL (based on 1,2-DCB as analog)
- #5 HEAST 1987
- #6 USEPA VISL (based on Freon 12 as analog)
- #7 OEHHA IUR-based
- #8 ATSDR 1994
- #9 Cal OEHHA 1999

Senversa Pty Ltd

ABN 89 132 231 380 www.senversa.com.au enquiries@senversa.com.au LinkedIn: Senversa Facebook: Senversa

To the extent permissible by law, Senversa shall not be liable for any errors, omissions, defects or misrepresentations, or for any loss or damage suffered by any persons (including for reasons of negligence or otherwise).

©2025 Senversa Pty Ltd