

# Appendix A: VGT Surface Sampling

| HRT = Haematized F | Rhyolitic T | uff |
|--------------------|-------------|-----|
|--------------------|-------------|-----|

| Grid   |          |          | _         |                    |             |                                                                                                                                                     |          |
|--------|----------|----------|-----------|--------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Square | Transect |          |           |                    |             |                                                                                                                                                     |          |
| No     | No       | Eastings | Northings | Sampling Comment   | s Lithology | Specimen Comment                                                                                                                                    | Transect |
| 1      | 1        | 398825   | 6405175   | FNS                |             |                                                                                                                                                     |          |
| 2      | 1        | 398875   | 6405175   | FNS                |             |                                                                                                                                                     |          |
| 3      | 1        | 398925   | 6405175   | FNS                |             |                                                                                                                                                     |          |
| 4      | 1        | 398975   | 6405175   | FNS                |             |                                                                                                                                                     |          |
| 5      | 1        | 399025   | 6405175   | FNS                |             |                                                                                                                                                     |          |
|        |          |          |           | Large boulder      |             | Fresh. Creamy - white plagioclase<br>laths, opaque - clear quartz, mica<br>crystals set in a pink - red fine<br>grained matrix. Possibly orthoclase |          |
| 6      | 2        | 398725   | 6405125   | nearby too. Floats | HRT         | and/or haematite.                                                                                                                                   |          |
| 7      | 2        | 398775   | 6405125   | Outcrop but float  | HRT         |                                                                                                                                                     |          |
| 8      | 2        | 398825   | 6405125   | FNS                |             |                                                                                                                                                     |          |
| 9      | 2        | 398875   | 6405125   | FNS                |             |                                                                                                                                                     |          |
| 10     | 2        | 398925   | 6405125   | FNS                |             |                                                                                                                                                     |          |
| 11     | 2        | 398975   | 6405125   | FNS                |             |                                                                                                                                                     |          |
| 12     | 2        | 399025   | 6405125   | FNS                |             |                                                                                                                                                     |          |
| 13     | 2        | 399075   | 6405125   | FNS                |             |                                                                                                                                                     |          |
| 14     | 3        | 398675   | 6405075   |                    | HRT         | Weathered. Plag, Qtz, Mica set in<br>cream - brown matrix.                                                                                          | -        |
| 15     | 3        | 398725   | 6405075   | Insitu. Hard       | HRT         | Fresh.                                                                                                                                              | 6 1 440  |
| 15     | 5        | 590725   | 0403073   | Floats, Insitu too |             | 116511.                                                                                                                                             |          |
| 16     | 3        | 398775   | 6405075   | hard               | HRT         | Slightly weathered.                                                                                                                                 |          |
| 17     | 3        | 398825   | 6405075   | FNS                |             |                                                                                                                                                     | Non-Alth |
| 18     | 3        | 398875   | 6405075   |                    |             |                                                                                                                                                     |          |
| 19     | 3        | 398925   | 6405075   | FNS                |             |                                                                                                                                                     |          |
| 20     | 3        | 398975   | 6405075   | FNS                |             |                                                                                                                                                     |          |
| 21     | 3        | 399025   | 6405075   |                    |             |                                                                                                                                                     |          |
| 22     | 3        | 399075   | 6405075   | FNS                |             |                                                                                                                                                     |          |

| Grid   |          |          |           |                     |           |                                  |                                 |
|--------|----------|----------|-----------|---------------------|-----------|----------------------------------|---------------------------------|
| Square | Transect |          |           |                     |           |                                  |                                 |
| No     | No       | Eastings | Northings | Sampling Comments   | Lithology | Specimen Comment                 | Transect Photo                  |
| 23     | 4        | 398625   | 6405025   |                     | HRT       | Slightly weathered.              | Addition                        |
| 24     | 4        | 398675   | 6405025   | No Sample. Hard     |           |                                  |                                 |
| 25     | 4        | 398725   | 6405025   | No Sample. Hard     |           |                                  |                                 |
| 26     | 4        | 398775   | 6405025   | FNS                 |           |                                  |                                 |
| 27     | 4        | 398825   | 6405025   | FNS                 |           |                                  | ACCESSION AND A CONTRACTOR OF A |
| 28     | 4        | 398875   | 6405025   | No Sample. Float    |           |                                  |                                 |
| 29     | 4        | 398925   | 6405025   | Float               | HRT       | Fresh.                           |                                 |
| 30     | 4        | 398975   | 6405025   | FNS                 |           |                                  |                                 |
| 31     | 4        | 399025   | 6405025   | FNS                 |           |                                  |                                 |
| 32     | 4        | 399075   | 6405025   | FNS                 |           |                                  |                                 |
| 33     | 4        | 399125   | 6405025   | FNS                 |           |                                  |                                 |
| 34     | 5        | 398575   | 6404975   |                     | HRT       | Weathered.                       |                                 |
| 35     | 5        | 398625   | 6404975   |                     | HRT       | Weathered.                       |                                 |
| 36     | 5        | 398675   | 6404975   |                     | HRT       | Weathered.                       |                                 |
|        |          |          |           | Outcrop too hard to |           |                                  | the state of the                |
|        |          |          |           | sample. Floaters    |           | (1) Weathered. (2) Slightly      |                                 |
| 37     | 5        | 398725   | 6404975   | nearby              | HRT       | weathered, pink - brown matrix   |                                 |
| 38     | 5        | 398775   | 6404975   | Float               | HRT       | Fresh.                           |                                 |
|        |          |          |           | Outcrop too hard to |           |                                  |                                 |
|        |          |          |           | sample. Floaters    |           |                                  |                                 |
| 39     | 5        | 398825   | 6404975   | nearby              | HRT       | Fresh.                           |                                 |
| 40     | 5        | 398875   | 6404975   |                     | HRT       | Fresh. Minor iron staining.      |                                 |
|        |          |          |           |                     |           | Slightly weathered. Pink - brown |                                 |
| 41     | 5        | 398925   | 6404975   |                     | HRT       | matrix.                          |                                 |
|        |          |          |           | Lone sample in      |           |                                  |                                 |
| 42     | 5        | 398975   | 6404975   | paddock. Float      | HRT       | Fresh.                           |                                 |
| 43     | 5        | 399025   | 6404975   |                     | HRT       | Slightly weathered.              |                                 |
| 44     | 5        | 699075   | 6404975   | FNS                 |           |                                  |                                 |

| Grid   |          |          |           |                   |           |                                        |                      |
|--------|----------|----------|-----------|-------------------|-----------|----------------------------------------|----------------------|
| Square | Transect |          |           |                   |           |                                        |                      |
| No     | No       | Eastings | Northings | Sampling Comments | Lithology | Specimen Comment                       | Transect Photo       |
| 45     | 6        | 398475   | 6404925   |                   | HRT       | Fresh.                                 |                      |
| 46     | 6        | 398525   | 6404925   |                   | HRT       | Weathered.                             | All IN A REAL MARKED |
| 47     | 6        | 398575   | 6404925   |                   | HRT       | Slightly weathered.                    | 46 CTONA 40 MA MO    |
| 48     | 6        | 398625   | 6404925   |                   | HRT       | Slightly weathered.                    | C MARINE CONTRACTOR  |
| 49     | 6        | 398675   | 6404925   |                   | HRT       | Weathered.                             | Alice to a a         |
|        |          |          |           |                   |           | Fresh. Secondary iron staining (silver |                      |
| 50     | 6        | 398725   | 6404925   |                   | HRT       | grey)                                  | A CALSON ADDITION    |
| 51     | 6        | 398775   | 6404925   |                   | HRT       | Fresh.                                 |                      |
| 52     | 6        | 398825   | 6404925   |                   | HRT       | Slightly weathered.                    |                      |
| 53     | 6        | 398875   | 6404925   | Floats (?)        | HRT       | Weathered.                             |                      |
| 54     | 6        | 398925   | 6404925   |                   | HRT       | Slightly weathered.                    |                      |
|        |          |          |           | Paddock sample.   |           |                                        |                      |
| 55     | 6        | 398975   | 6404925   | Float             | HRT       | Slightly weathered.                    |                      |
| 56     | 6        | 399025   | 6404925   | FNS               |           |                                        |                      |
| 57     | 6        | 399075   | 6404925   | FNS               |           |                                        |                      |

HRT = Haematized Rhyolitic Tuff

| Grid   |          |          |           |                       |             |                     |                              |
|--------|----------|----------|-----------|-----------------------|-------------|---------------------|------------------------------|
| Square | Transect |          |           |                       |             |                     |                              |
| No     | No       | Eastings | Northings | Sampling Comments     | 5 Lithology | Specimen Comment    | Transect Photo               |
| 58     | 7        | 398475   | 6404875   | FNS                   |             |                     |                              |
| 59     | 7        | 398525   | 6404875   |                       | HRT         | Weathered. HRT(?)   |                              |
| 60     | 7        | 398575   | 6404875   | Insitu. Hard          | HRT         | Weathered.          | CARE TO AND AND A SHI CORING |
| 61     | 7        | 396625   | 6404875   | Float                 | HRT         | Fresh.              |                              |
|        |          |          |           | Float. Outcrop too    |             |                     |                              |
| 62     | 7        | 398575   | 6404875   | hard                  | HRT         | Slightly weathered. |                              |
|        |          |          |           |                       |             |                     |                              |
|        |          |          |           | (Bit more sediments   |             |                     |                              |
| 63     | 7        | 398726   | 6404875   | in this area). Float  | HRT         | Fresh.              |                              |
|        |          |          |           | Float. A lot of float |             |                     |                              |
| 64     | 7        | 398775   | 6404875   | around                | HRT         | Fresh.              |                              |
| 65     | 7        | 398825   | 6404875   |                       | HRT         | Fresh.              |                              |
| 66     | 7        | 398875   | 6404875   |                       | HRT         | Slightly weathered. |                              |
|        |          |          |           | Float. Steep          |             |                     |                              |
| 67     | 7        | 398925   | 6404875   | paddock.              | HRT         | Fresh.              |                              |
| 68     | 7        | 398975   | 6404875   | FNS                   |             |                     |                              |
|        |          |          |           |                       |             |                     |                              |
| 69     | 7        | 399025   | 6404875   | One single boulder    | HRT         | Slightly weathered. |                              |
| 70     | 7        | 399075   | 6404875   | FNS                   |             |                     |                              |
| 71     | 7        | 399125   | 6404875   | FNS                   |             |                     |                              |

#### HRT = Haematized Rhyolitic Tuff

| Grid   |          |          | J         |                      |             |                     |                     |
|--------|----------|----------|-----------|----------------------|-------------|---------------------|---------------------|
| Square | Transect |          |           |                      |             |                     |                     |
| No     | No       | Eastings | Northings | Sampling Comment     | s Lithology | Specimen Comment    | Transect Photo      |
| 72     | 8        | 398475   | 6404825   |                      | HRT         | Weathered.          |                     |
|        |          |          |           | (Bit more sediments  |             |                     |                     |
| 73     | 8        | 398525   | 6404825   | in this area). Float | HRT         | Slightly weathered. |                     |
| 74     | 8        | 398575   | 6404825   | Insitu. Hard         | HRT         | Fresh.              |                     |
| 75     | 8        | 398625   | 6404825   |                      | HRT         | Fresh.              |                     |
| 76     | 8        | 398675   | 6404825   |                      | HRT         | Fresh.              |                     |
|        |          |          |           | Outcrop Insitu.      |             |                     | Market Market       |
|        |          |          |           | Sample is edge off   |             |                     |                     |
| 77     | 8        | 398725   | 6404825   | larger rock          | HRT         | Slightly weathered. |                     |
|        |          |          |           | Float. Lots of float |             |                     |                     |
| 78     | 8        | 398775   | 6404825   | here                 | HRT         | Slightly weathered. |                     |
| 79     | 8        | 398825   | 6404825   |                      | HRT         | Slightly weathered. | THE SALAN OF STREET |
| 80     | 8        | 398875   | 6404825   |                      | HRT         | Slightly weathered. |                     |
| 81     | 8        | 398925   | 6404825   | FNS                  |             |                     |                     |
| 82     | 8        | 398975   | 6404825   | Float                | HRT         | Slightly weathered. |                     |
| 83     | 8        | 399025   | 6404825   | FNS                  |             |                     |                     |
| 84     | 8        | 399075   | 6404825   | FNS                  |             |                     |                     |
| 85     | 8        | 399125   | 6404825   | FNS                  |             |                     |                     |
| 86     | 8        | 399175   | 6404825   | FNS                  |             |                     |                     |

HRT = Haematized Rhyolitic Tuff

| Grid   |          |          |           |                      |           |                                      |                         |
|--------|----------|----------|-----------|----------------------|-----------|--------------------------------------|-------------------------|
| Square | Transect |          |           |                      |           |                                      |                         |
| No     | No       | Eastings | Northings | Sampling Comments    | Lithology | Specimen Comment                     | Transect Photo          |
|        |          |          |           | Float on grazed      |           |                                      |                         |
| 87     | 9        | 398475   | 6404775   | paddock              | HRT       | Fresh.                               |                         |
| 88     | 9        | 398525   | 6404775   | Insitu. Hard         | HRT       | Slightly weathered.                  |                         |
| 89     | 9        | 398575   | 6404775   |                      | HRT       | Fresh.                               |                         |
|        |          |          |           |                      |           |                                      | A CALLER AND A CALL YOU |
| 90     | 9        | 398625   | 6404775   |                      | HRT       | Fresh. With qtz lithic fragment ~2cm |                         |
| 91     | 9        | 398675   | 6404775   |                      | HRT       | Fresh. Dense. Silver - grey iron     |                         |
|        |          |          |           |                      |           |                                      |                         |
| 92     | 9        | 398725   | 6404775   | Hard outcrop. Insitu | HRT       | Slightly weathered.                  |                         |
| 93     | 9        | 398775   | 6404775   |                      | HRT       | Slightly weathered.                  | A TAT 94 AB             |
| 94     | 9        | 398825   | 6404775   |                      | HRT       | Fresh.                               |                         |
| 95     | 9        | 398875   | 6404775   | FNS                  |           |                                      |                         |
| 96     | 9        | 398925   | 6404775   |                      | HRT       | Fresh.                               |                         |
| 97     | 9        | 398975   | 6404775   | FNS                  |           |                                      |                         |
| 98     | 9        | 399025   | 6404775   | FNS                  |           |                                      |                         |
| 99     | 9        | 399075   | 6404775   | FNS                  |           |                                      |                         |
| 100    | 9        | 399125   | 6404775   | FNS                  |           |                                      |                         |
| 101    | 9        | 399175   | 6404775   | FNS                  |           |                                      |                         |

HRT = Haematized Rhyolitic Tuff

| HRT = Haematized Rhyolitic Tuff |
|---------------------------------|
| Legend: FNS = Found no sample   |

|        |          |          |           | HRT = Haematized Rh   | yolitic Tuff |                                          |                                                                                                                 |
|--------|----------|----------|-----------|-----------------------|--------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|        |          |          | Legend:   | FNS = Found no samp   | le           |                                          |                                                                                                                 |
| Grid   |          |          |           |                       |              |                                          |                                                                                                                 |
| Square | Transect |          |           |                       |              |                                          |                                                                                                                 |
| No     | No       | Eastings | Northings | Sampling Comments     | Lithology    | Specimen Comment                         | Transect Photo                                                                                                  |
| 102    | 10       | 398475   | 6404725   | Float in paddock      | HRT          | Fresh.                                   |                                                                                                                 |
|        |          |          |           | Float in paddock      |              |                                          |                                                                                                                 |
| 103    | 10       | 398525   | 6404725   | gully                 | HRT          | Slightly weathered                       |                                                                                                                 |
| 104    | 10       | 398575   | 6404725   |                       | HRT          | Fresh. Slightly brown, hard              |                                                                                                                 |
| 105    | 10       | 398625   | 6404725   |                       | HRT          | Slightly weathered                       |                                                                                                                 |
| 106    | 10       | 398675   | 6404725   |                       | HRT          | Fresh. Brown matrix                      | 103                                                                                                             |
|        |          |          |           |                       |              |                                          |                                                                                                                 |
| 107    | 10       | 398725   | 6404725   | Insitu. Steep outcrop | HRT          | Fresh. Pink - brown matrix               |                                                                                                                 |
| 108    | 10       | 398775   | 6404725   |                       | HRT          | Fresh.                                   |                                                                                                                 |
|        |          |          |           | Insitu. Flake off     |              |                                          |                                                                                                                 |
| 109    | 10       | 398825   | 6404725   | edge.                 | HRT          | Fresh.                                   |                                                                                                                 |
|        |          |          |           | Altered               |              |                                          |                                                                                                                 |
| 110    | 10       | 398875   | 6404725   | conglomerate          | HRT (?)      | Very weathered.                          | State - A - AL                                                                                                  |
|        |          |          |           | Altered sheet flow in |              |                                          |                                                                                                                 |
| 111    | 10       | 398925   | 6404725   | gully, spring         | HRT (a) / Qt | z (a) Fresh. (b) Highly weathered Qtzite | 116.                                                                                                            |
| 112    | 10       | 398975   | 6404725   | FNS                   |              |                                          |                                                                                                                 |
| 113    | 10       | 399025   | 6404725   | FNS                   |              |                                          | Kangananga Kur Shi Tangananga Kur S |
| 114    | 10       | 399075   | 6404725   | FNS                   |              |                                          |                                                                                                                 |
| 115    | 10       | 399125   | 6404725   | FNS                   |              |                                          |                                                                                                                 |

| Grid           No         No         Eastings         Northings         Sampling Comments         Lthology         Specimen Comment         Tansect Photo           116         11         398475         6404675         Uttrop         HRT         Slightly weathered. Brown matrix         Tansect Photo           117         11         398575         6404675         HRT         Fresh. Brown matrix         Fresh. Brown matr                                                                                                                                                                                                                                                                                                                                                  |      |    |          | Legena    |                         | ріс       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----------|-----------|-------------------------|-----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No         Eastings         Northings         Sampling Comments         Lithology         Specimen Comment         Transect Photo           116         11         398475         6404675         Outcrop         H RT         Slightly weathered. Brown matrix           117         113         398525         6404675         H RT         Fresh. Frey - brown matrix           118         11         398625         6404675         H RT         Fresh. Rev matrix           120         11         398675         6404675         H RT         Fresh. Red matrix           121         13         398675         6404675         H RT         Fresh. Tersh. It brown matrix           122         11         398725         6404675         H RT         Weathered.           122         11         39875         6404675         H RT         Slightly weathered. Red matrix           123         11         39825         6404675         Float. No sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grid |    |          |           |                         |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 116       11       398475       6404675       Outcrop       HRT       Slightly weathered. Brown matrix         117       11       398525       6404675       HRT       Fresh. Grey - Brown matrix         119       11       398625       6404675       HRT       Fresh. Brown matrix         119       11       398625       6404675       HRT       Fresh. Norm matrix         120       11       398675       6404675       HRT       Fresh. It brown matrix         121       11       39875       6404675       HRT       Weathered.         122       11       39875       6404675       FIAT       Weathered. Red matrix         122       11       39825       6404675       FIAT       Weathered. Red matrix         123       11       39825       6404675       FIAT       Slightly weathered. Red matrix         123       11       39825       6404675       FIAT       Bightly weathered. Green matrix         126       11       398975       6404675       FNS       Image: State S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |          |           |                         |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 117       11       398525       6404675       HRT       Fresh. Grey - brown matrix         118       11       398575       6404675       HRT       Fresh. Brown matrix         120       11       398675       6404675       HRT       Fresh. Brown matrix         121       11       398675       6404675       HRT       Fresh. Lt brown matrix         121       11       398725       6404675       HRT       Fresh. Lt brown matrix         122       11       398725       6404675       FIOat. No sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No   | No | Eastings | Northings | Sampling Comments       | Lithology | Specimen Comment                           | Transect Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 118       11       398575       6404675       HRT       Fresh. Brown matrix         119       11       398625       6404675       HRT       Fresh. Red matrix         120       11       398675       6404675       HRT       Fresh. Lt brown matrix         121       11       39875       6404675       HRT       Weathered.         122       11       39875       6404675       HRT       Weathered.         123       11       398825       6404675       HRT       Slightly weathered. Red matrix         124       11       398875       6404675       Float. No sample       HRT       Slightly weathered. Green matrix         125       11       398925       6404675       Float. No sample       HRT       Slightly weathered. Green matrix         126       11       399075       6404675       FNS       HRT       Fresh.         130       12       398475       6404625       FNS       HRT       Fresh.         131       12       398255       6404625       HRT       Fresh.       HRT         131       12       398675       6404625       HRT       Fresh.       HRT         132       12       398675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116  | 11 | 398475   | 6404675   | Outcrop                 | HRT       | Slightly weathered. Brown matrix           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117  | 11 | 398525   | 6404675   |                         | HRT       | Fresh. Grey - brown matrix                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 120       11       398675       6404675       HRT       Fresh. Lt brown matrix         121       11       398725       6404675       HRT       Weathered.         122       11       398775       6404675       FNS         123       11       398825       6404675       FNS         124       11       398875       6404675       Float. No sample         125       11       398825       6404675       Float. No sample         126       11       398975       6404675       Float. No sample         127       1399025       6404675       FNS         128       11       399025       6404675       FNS         129       11       399025       6404675       FNS         130       12       398525       6404625       FNS         131       12       398525       6404625       HRT       Fresh.         132       12       398575       6404625       HRT       Fresh.         133       12       398575       6404625       HRT       Fresh.         133       12       398675       6404625       HRT       Fresh.         133       12       3986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118  | 11 | 398575   | 6404675   |                         | HRT       | Fresh. Brown matrix                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119  | 11 | 398625   | 6404675   |                         | HRT       | Fresh. Red matrix                          | COMPANY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 122       11       398775       6404675       FNS         123       11       398825       6404675       HRT       Slightly weathered. Red matrix         124       11       398875       6404675       Float. No sample         125       11       398975       6404675       Float. No sample         126       11       398975       6404675       Float. No sample         127       11       399925       6404675       FNS         128       11       399075       6404675       FNS         129       11       399125       6404675       FNS         130       12       398475       6404625       Float       HRT       Fresh.         131       12       398525       6404625       Float       HRT       Fresh.         133       12       398525       6404625       HRT       Fresh.         133       12       398575       6404625       HRT       Fresh.         133       12       398575       6404625       HRT       Fresh.         135       12       398775       6404625       HRT       Fresh.         135       12       39875       6404625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120  | 11 | 398675   | 6404675   |                         | HRT       | Fresh. Lt brown matrix                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 123       11       398825       6404675       HRT       Slightly weathered. Red matrix         124       11       398875       6404675       Float. No sample         125       11       398925       6404675       Float. No sample         126       11       398925       6404675       Float. No sample         127       11       399025       6404675       FNS         128       11       399025       6404675       FNS         129       11       399125       6404675       FNS         129       11       399125       6404675       FNS         130       12       39825       6404625       FNS         131       12       398575       6404625       HRT       Fresh.         133       12       398575       6404625       HRT       Fresh.         133       12       398675       6404625       HRT       Fresh.         134       12       398675       6404625       HRT       Fresh.         135       12       398775       6404625       FNS       Image: Fresh.         136       12       398756       6404625       FNS       (a) Iron rich Qtz vein (?). (c) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121  | 11 | 398725   | 6404675   |                         | HRT       | Weathered.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 124       11       398875       6404675       Float. No sample         125       11       398925       6404675       Float. No sample         126       11       398975       6404675       Float       HRT       Slightly weathered. Green matrix         127       11       399075       6404675       FNS       Image: Stress of St | 122  | 11 | 398775   | 6404675   | FNS                     |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123  | 11 | 398825   | 6404675   |                         | HRT       | Slightly weathered. Red matrix             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 126       11       398975       6404675       Float       HRT       Slightly weathered. Green matrix         127       11       399025       6404675       FNS         128       11       399075       6404675       FNS         129       11       399125       6404675       FNS         129       11       399125       6404675       FNS         130       12       39875       6404625       Float       HRT       Fresh.         131       12       398575       6404625       HRT       Fresh.       Fresh.         132       12       398575       6404625       HRT       Fresh.       Fresh.         133       12       398675       6404625       HRT       Fresh.       Fresh.         134       12       398675       6404625       to sample       HRT       Fresh.         135       12       398775       6404625       FNS       Foat. Insitu too hard       Fresh.         135       12       398775       6404625       FNS       Foat. No outcrop       HRT       Fresh.         136       12       398875       6404625       Float. No outcrop       HRT       Fresh. <td>124</td> <td>11</td> <td>398875</td> <td>6404675</td> <td>Float. No sample</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 124  | 11 | 398875   | 6404675   | Float. No sample        |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125  | 11 | 398925   | 6404675   | Float. No sample        |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126  | 11 | 398975   | 6404675   | Float                   | HRT       | Slightly weathered. Green matrix           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127  | 11 | 399025   | 6404675   | FNS                     |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128  | 11 | 399075   | 6404675   | FNS                     |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129  | 11 | 399125   | 6404675   | FNS                     |           |                                            | The second secon |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130  | 12 | 398475   | 6404625   | Float                   | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 133       12       398625       6404625       HRT       Fresh.         134       12       398675       6404625       to sample       HRT       Fresh.         134       12       39875       6404625       to sample       HRT       Fresh.         135       12       39875       6404625       FNS       HRT       Fresh.         136       12       39875       6404625       Float. No outcrop       HRT       Fresh.         137       12       398875       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       altered V?       HRT (?)         139       12       398975       6404625       Float       HRT       Fresh.         140       12       398975       6404625       Float       HRT       Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131  | 12 | 398525   | 6404625   |                         | HRT       | Fresh.                                     | Non and A set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 134       12       398675       6404625       to sample       HRT       Fresh.         135       12       398725       6404625       FNS         136       12       398775       6404625       FNS         137       12       398825       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       altered V?       HRT / Qtz       HRT (?)         139       12       398925       6404625       Float       HRT       Fresh.         140       12       398975       6404625       Float       HRT       Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 132  | 12 | 398575   | 6404625   |                         | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 134       12       398675       6404625       to sample       HRT       Fresh.         135       12       398725       6404625       FNS       HRT       Fresh.         136       12       39875       6404625       FNS       Steep gully. Dull hit /       (a) Iron rich Qtz vein (?). (c) Iron rich         138       12       398875       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       altered V?       HRT / Qtz       HRT (?)         139       12       398975       6404625       Float       HRT       Fresh.         140       12       398975       6404625       Float       HRT       Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133  | 12 | 398625   | 6404625   |                         | HRT       | Fresh.                                     | Children Children (Children Children Ch |
| 135       12       398725       6404625       HRT       Fresh.         136       12       398775       6404625       FNS         137       12       398825       6404625       Float. No outcrop       HRT       Fresh.         137       12       398875       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       altered V?       HRT / Qtz       HRT (?)         139       12       398925       6404625       Float       HRT       Fresh.         140       12       398975       6404625       Float       HRT       Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |          |           | Float. Insitu too haro  | 1         |                                            | 130 Star to the star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 136       12       398775       6404625       FNS         137       12       398825       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       altered V?       HRT / Qtz       HRT (?)         139       12       398925       6404625       Float       HRT       Fresh.         140       12       398975       6404625       Float       HRT       Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 134  | 12 | 398675   | 6404625   | to sample               | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 137       12       398825       6404625       Float. No outcrop       HRT       Fresh.         138       12       398875       6404625       altered V?       HRT / Qtz       HRT (?)         139       12       398925       6404625       Float       HRT       Fresh.         140       12       398975       6404625       Float       HRT       Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135  | 12 | 398725   | 6404625   |                         | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Steep gully. Dull hit /         (a) Iron rich Qtz vein (?). (c) Iron rich           138         12         398875         6404625         altered V?         HRT / Qtz         HRT (?)           139         12         398925         6404625         Float         HRT         Fresh.           140         12         398975         6404625         Float         HRT         Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 136  | 12 | 398775   | 6404625   | FNS                     |           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 138         12         398875         6404625         altered V?         HRT / Qtz         HRT (?)           139         12         398925         6404625         Float         HRT         Fresh.           140         12         398975         6404625         Float         HRT         Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137  | 12 | 398825   | 6404625   | Float. No outcrop       | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 139         12         398925         6404625         Float         HRT         Fresh.           140         12         398975         6404625         Float         HRT         Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |          |           | Steep gully. Dull hit / | /         | (a) Iron rich Qtz vein (?). (c ) Iron rich |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 140 12 398975 6404625 Float HRT Fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138  | 12 | 398875   | 6404625   | altered V?              | HRT / Qtz | HRT (?)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 139  | 12 | 398925   | 6404625   | Float                   | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 141 12 399025 6404625 Float HRT Weathered. Green matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140  | 12 | 398975   | 6404625   | Float                   | HRT       | Fresh.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 141  | 12 | 399025   | 6404625   | Float                   | HRT       | Weathered. Green matrix                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 142 12 399075 6404625 Float HRT Slightly weathered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 142  | 12 | 399075   | 6404625   | Float                   | HRT       | Slightly weathered                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 143 12 399125 6404625 Insitu. HRT Fresh. Brown matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143  | 12 |          |           | Insitu.                 | HRT       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 144 12 399175 6404625 Float HRT Fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 144  | 12 | 399175   | 6404625   | Float                   | HRT       | Fresh                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

HRT = Haematized Rhyolitic Tuff

| Grid |          |          |           |                     |           |                                        |
|------|----------|----------|-----------|---------------------|-----------|----------------------------------------|
|      | Transect |          |           |                     |           |                                        |
| No   | No       | Eastings | Northings | Sampling Comments   | Lithology | Specimen Comment                       |
| 145  | 13       | 398475   | 6404575   | Float               | HRT       | Fresh. Brown matrix                    |
| 146  | 13       | 398525   | 6404575   |                     | HRT       | Fresh. Brown matrix                    |
| 147  | 13       | 398575   | 6404575   |                     | HRT       | Fresh.                                 |
| 148  | 13       | 398625   | 6404575   |                     | HRT       | Slightly weathered.                    |
| 149  | 13       | 398675   | 6404575   | Outcrop. Insitu     | HRT       | Fresh                                  |
| 150  | 13       | 398725   | 6404575   |                     | HRT       | Fresh                                  |
| 151  | 13       | 398775   | 6404575   | FNS                 |           |                                        |
| 152  | 13       | 398825   | 6404575   | FNS                 |           |                                        |
| 153  | 13       | 398875   | 6404575   | FNS                 |           |                                        |
| 154  | 13       | 398925   | 6404575   | FNS                 |           |                                        |
| 155  | 13       | 398975   | 6404575   | FNS                 |           |                                        |
| 156  | 13       | 399025   | 6404575   | Large outcrop       | HRT       | Fresh                                  |
| 157  | 13       | 399075   | 6404575   | Outcrop and float   | HRT       | Fresh                                  |
|      |          |          |           | Float - ridge top / |           |                                        |
| 158  | 13       | 399125   | 6404575   | saddle              | HRT       | Fresh                                  |
| 159  | 14       | 398475   | 6404525   | Float               | HRT       | Slightly weathered. Brown matrix       |
| 160  | 14       | 398525   | 6404525   | Float               | HRT       | Fresh. Brown matrix                    |
| 161  | 14       | 398575   | 6404525   |                     | HRT       | Fresh.                                 |
| 162  | 14       | 398625   | 6404525   | Float. No sample    |           |                                        |
| 163  | 14       | 398675   | 6404525   | Outcrop. Insitu     | HRT       | Fresh. Brown matrix                    |
| 164  | 14       | 398725   | 6404525   |                     | HRT (?)   | Very weathered. Volcanic (?)           |
| 165  | 14       | 398775   | 6404525   |                     | HRT       | Very - extreme weathered               |
| 166  | 14       | 398825   | 6404525   | FNS                 |           |                                        |
|      |          |          |           | Float. No sample    |           |                                        |
| 167  | 14       | 398875   | 6404525   | (Volcanics)         |           |                                        |
|      |          |          |           | Insitu. Volcanic    |           |                                        |
| 168  | 14       | 398925   | 6404525   | conglomerate        | VCG       | Volcanoclastic conglomerate            |
| 169  | 14       | 398975   | 6404525   | FNS                 |           |                                        |
|      |          |          |           |                     |           | (a) Fresh. Brown matrix (b) Fine       |
|      |          |          |           |                     |           | grained volcanic, qtz crystals in grey |
| 170  | 14       | 399025   | 6404525   | Insitu              | HRT       | matrix. (c) Weathered                  |
| 1/0  | 14       | 222072   | 0404525   | IIISILU             |           |                                        |

|        |          |          | Legena    |                   | pic       |                                  |                    |
|--------|----------|----------|-----------|-------------------|-----------|----------------------------------|--------------------|
| Grid   |          |          |           |                   |           |                                  |                    |
| Square | Transect |          |           |                   |           |                                  |                    |
| No     | No       | Eastings | Northings | Sampling Comments | Lithology | Specimen Comment                 | Transect Photo     |
| 171    | 15       | 398525   | 6404475   |                   | HRT       | Weathered. Light brown matrix    |                    |
| 172    | 15       | 398575   | 6404475   |                   | HRT       | Fresh. Brown matrix              | A                  |
| 173    | 15       | 398625   | 6404475   |                   | HRT       | Slightly weathered. Brown matrix |                    |
| 174    | 15       | 398675   | 6404475   |                   | HRT       | Fresh. Brown matrix              | A ASA ASA DO DO DO |
| 175    | 15       | 398725   | 6404475   | Float (?)         | HRT       | Fresh.                           |                    |
| 176    | 15       | 398775   | 6404475   |                   | HRT       | Weathered. Brown matrix          | 2100 100           |
| 177    | 15       | 398825   | 6404475   | FNS               |           |                                  |                    |
| 178    | 15       | 398875   | 6404475   | FNS               |           |                                  |                    |
| 179    | 15       | 398925   | 6404475   | FNS               |           |                                  | The second second  |
| 180    | 16       | 398625   | 6404425   | FNS               |           |                                  |                    |
| 181    | 16       | 398675   | 6404425   | Float, no outcrop | HRT       | Weathered. Brown matrix          | 10                 |
| 182    | 16       | 398725   | 6404425   | Insitu            | HRT       | Fresh.                           |                    |
| 183    | 16       | 398875   | 6404475   | FNS               |           |                                  |                    |

HRT = Haematized Rhyolitic Tuff

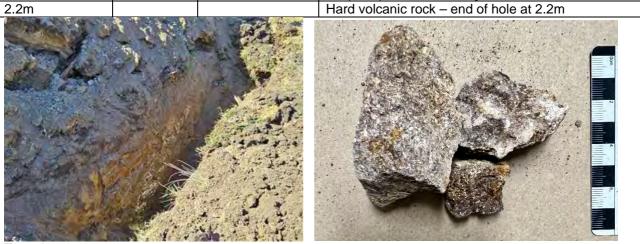


# Appendix B: VGT Test Pit Logs

# Hillview Hard Rock Quarry: Test Pit Sampling Tables

| Test Pit 2 |            |                                                         |                                        |                               |  |  |  |
|------------|------------|---------------------------------------------------------|----------------------------------------|-------------------------------|--|--|--|
| Eastings   | 399060.57  |                                                         | Elevation                              | 108m                          |  |  |  |
| Northings  | 6404597.77 | 7                                                       | Date                                   | 17.07.2024                    |  |  |  |
| Logged By  | TF         |                                                         | Checked                                | RG                            |  |  |  |
| Depth      | 1.2        |                                                         | Rock at base?                          | Volcanic, extremely weathered |  |  |  |
|            |            |                                                         |                                        |                               |  |  |  |
| From       | То         | Thickness                                               | Description                            |                               |  |  |  |
| 0          | 0.3m       | 0.3m                                                    | A1 soil horizon, brown clay            |                               |  |  |  |
| 0.3m       | 1.2m       | 0.9m                                                    | B1 soil horizon, grey brown sandy clay |                               |  |  |  |
| 1.2m       |            | Extremely weathered volcanic rock at base, end of hole. |                                        |                               |  |  |  |
|            |            |                                                         |                                        |                               |  |  |  |




Test pit 2

## Tost Dit 5

| Test Fit 5 |           |           |                                        |                            |  |
|------------|-----------|-----------|----------------------------------------|----------------------------|--|
| Eastings   | 398915.09 | 9         | Elevation                              | 106.5m                     |  |
| Northings  | 6404611.8 | 38        | Date                                   | 17.07.2024                 |  |
| Logged By  | TF        |           | Checked                                | RG                         |  |
| Depth      | 0.5       |           | Rock at base?                          | Volcanic, fresh            |  |
|            |           |           |                                        |                            |  |
| From       | To        | Thickness | Description                            |                            |  |
| 0          | 0.13m     | 0.13m     | Dark brown clay/sand                   |                            |  |
| 0.13m      | 0.5m      | 0.27m     | B1 soil horizon, grey brown sandy clay |                            |  |
| 0.5m       |           |           | Fresh, red volcan                      | ic rock – end of hole 0.5m |  |
|            |           |           |                                        |                            |  |



| Test Pit 6 |           |           |                    |                                          |  |  |
|------------|-----------|-----------|--------------------|------------------------------------------|--|--|
| Eastings   | 398954.77 | 7         | Elevation          | 101m                                     |  |  |
| Northings  | 6404643.3 | 31        | Date               | 17.07.2024                               |  |  |
| Logged By  | TF        |           | Checked            | RG                                       |  |  |
| Depth      | 2.2       |           | Rock at base?      | Volcanic, slightly weathered             |  |  |
|            |           |           |                    |                                          |  |  |
| From       | То        | Thickness | Description        |                                          |  |  |
| 0          | 1.0m      | 1.0m      | A1 soil horizon, d | A1 soil horizon, dark brown sandy clay   |  |  |
| 1.0m       | 2.2m      | 1.2m      | Grey, silty and ha | Grey, silty and hard with green rock     |  |  |
| 2.2m       |           |           | Hard volcanic roc  | Hard volcanic rock – end of hole at 2.2m |  |  |



| Test Pit 7 |           |           |                                       |                                   |  |
|------------|-----------|-----------|---------------------------------------|-----------------------------------|--|
| Eastings   | 398921.42 | 2         | Elevation                             | 108.2m                            |  |
| Northings  | 6404698.4 | 42        | Date                                  | 17.07.2024                        |  |
| Logged By  | TF        |           | Checked                               | RG                                |  |
| Depth      | 1.4       |           | Rock at base?                         | Volcanic, moderately<br>weathered |  |
|            |           |           |                                       |                                   |  |
| From       | То        | Thickness | Description                           |                                   |  |
| 0          | 0.7m      | 0.7m      | Dark brown high quality soil          |                                   |  |
| 0.7m       | 1.4m      | 0.7mm     | Yellow/grey clay                      |                                   |  |
| 1.4m       |           |           | Hard volcanic rock – end of hole 1.4m |                                   |  |
|            |           |           |                                       |                                   |  |




| Test Pit 8 |          |                                     |                       |                            |
|------------|----------|-------------------------------------|-----------------------|----------------------------|
| Eastings   | 398961.0 | 9                                   | Elevation             | 101.8m                     |
| Northings  | 6404690. | 73                                  | Date                  | 17.07.2024                 |
| Logged By  | TF       |                                     | Checked               | RG                         |
| Depth      | 1.5      |                                     | Rock at base?         | Volcanic, highly weathered |
|            |          |                                     |                       |                            |
| From       | То       | Thickness                           | Description           |                            |
| 0          | 0.3m     | 0.3m                                | Dark brown muddy soil |                            |
| 0.3m       | 1.5m     | 1.2m                                | Yellow/grey clay      |                            |
| 1.5m       |          | Weathered rock, End of hole at 1.5m |                       |                            |
|            |          |                                     |                       |                            |





| Test Pit 10 |            |           |                                      |                              |  |  |
|-------------|------------|-----------|--------------------------------------|------------------------------|--|--|
| Eastings    | 398978.86  |           | Elevation                            | 106.43m                      |  |  |
| Northings   | 6404783.10 |           | Date                                 | 17.07.2024                   |  |  |
| Logged By   | TF         |           | Checked                              | RG                           |  |  |
| Depth       | 1.8        |           | Rock at base?                        | Volcanic, slightly weathered |  |  |
|             |            |           | ·                                    |                              |  |  |
| From        | То         | Thickness | Description                          |                              |  |  |
| 0           | 0.3m       | 0.3m      | Dark brown mud, A1 soil horizon      |                              |  |  |
| 0.3m        | 1.5m 1.2m  |           | Yellow/grey clay                     |                              |  |  |
| 1.5m        | 1.8m 0.3m  |           | Hard volcanic rock, end of hole 1.8m |                              |  |  |
|             |            |           |                                      |                              |  |  |
|             |            |           |                                      |                              |  |  |



| Test Pit 13 |          |                             |                   |                            |  |
|-------------|----------|-----------------------------|-------------------|----------------------------|--|
| Eastings    | 399026.2 | 2                           | Elevation         | 107.04m                    |  |
| Northings   | 6404872. | 50                          | Date              | 17.07.2024                 |  |
| Logged By   | TF       |                             | Checked           | RG                         |  |
| Depth       | 1.1m     |                             | Rock at base?     | Volcanic, highly weathered |  |
|             |          |                             |                   |                            |  |
| From        | То       | Thickness                   | Description       |                            |  |
| 0           | 1.1m     | 1.1m                        | Grey / brown clay |                            |  |
| 1.1m        |          | Weathered rock, End of hole |                   |                            |  |
|             |          |                             |                   |                            |  |





| Test Pit 17 |           |           |                               |                                   |  |
|-------------|-----------|-----------|-------------------------------|-----------------------------------|--|
| Eastings    | 399100.70 | )         | Elevation                     | 103.41m                           |  |
| Northings   | 6404645.2 | 24        | Date                          | 17.07.2024                        |  |
| Logged By   | TF        |           | Checked                       | RG                                |  |
| Depth       | 0.6m      |           | Rock at base?                 | Volcanic, moderately<br>weathered |  |
| _           |           |           |                               |                                   |  |
| From        | То        | Thickness | Description                   |                                   |  |
| 0           | 0.15m     | 0.15m     | A1 soil horizon, d            | lark brown clay                   |  |
| 0.15m       | 0.35m     | 0.2m      | A2 – grey brown clay          |                                   |  |
| 0.35m       | 0.55m     | 0.2m      | B1 horizon, orange sandy clay |                                   |  |
| 0.55m       | 0.6m      | 0.05m     | Rock at base, en              | d of hole 0.6m                    |  |
|             | 1         |           |                               |                                   |  |



| Test Pit 20 |          |           |                                                |                               |  |
|-------------|----------|-----------|------------------------------------------------|-------------------------------|--|
| Eastings    | 398983.2 | 8         | Elevation                                      | 110m                          |  |
| Northings   | 6404521. | 67        | Date                                           | 17.07.2024                    |  |
| Logged By   | TF       |           | Checked                                        | RG                            |  |
| Depth       | 3.2m     |           | Rock at base?                                  | Volcanic, extremely weathered |  |
|             | -        |           |                                                |                               |  |
| From        | То       | Thickness | Description                                    |                               |  |
| 0           | 0.5m     | 0.5m      | A1 soil horizon, d                             | lark brown clay               |  |
| 0. 5m       | 2.0m     | 1.5m      | Sandy orange bro                               | own clay                      |  |
| 2.0m        | 3.2m     | 1.2m      | Increasing sand in clay                        |                               |  |
| 3.2m        |          |           | Equipment refusal, extremely weathered rock at |                               |  |
|             |          |           | base, end of hole                              | e 3.2m                        |  |
|             |          |           |                                                |                               |  |



## Test Pit 21

| I COL FIL ZI |           |           |                                   |                                                    |  |  |
|--------------|-----------|-----------|-----------------------------------|----------------------------------------------------|--|--|
| Eastings     | 399013.0  | 5         | Elevation                         | 106.55m                                            |  |  |
| Northings    | 6404564.0 | 65        | Date                              | 17.07.2024                                         |  |  |
| Logged By    | TF        |           | Checked                           | RG                                                 |  |  |
| Depth        | 1.6m      |           | Rock at base?                     | Volcanic, extremely weathered                      |  |  |
|              |           |           |                                   |                                                    |  |  |
| From         | То        | Thickness | Description                       |                                                    |  |  |
| 0            | 0.4m      | 0.4m      | Brown sandy clay, A1 soil horizon |                                                    |  |  |
| 0.4m         | 1.4m      | 1.0m      | Brown/grey streaky clay           |                                                    |  |  |
| 1.4m         | 1.6m      | 0.2m      | Pale grey clay                    |                                                    |  |  |
| 1.6m         |           |           | Extremely weather                 | Extremely weathered rock at base, end of hole 1.6m |  |  |



| Test Pit 22 |            |           |                                   |                               |  |
|-------------|------------|-----------|-----------------------------------|-------------------------------|--|
| Eastings    | 399006.47  |           | Elevation                         | 100.34m                       |  |
| Northings   | 6404627.59 |           | Date                              | 17.07.2024                    |  |
| Logged By   | TF         |           | Checked                           | RG                            |  |
| Depth       | 2.4m       |           | Rock at base?                     | Volcanic, extremely weathered |  |
| -           | -<br>-     |           |                                   | · · ·                         |  |
| From        | То         | Thickness | Description                       |                               |  |
| 0           | 0.3m       | 0.3m      | Brown sandy clay, A1 soil horizon |                               |  |
| 0.3m        | 1.9m       | 1.6m      | Brown / orange clay               | Brown / orange clay           |  |
| 1.9m        | 2.4m       | 0.5m      | Extremely weathered               | ed & soft volcanic rock       |  |
| 2.4m        |            |           | Equipment refusal, end of hole    |                               |  |
|             |            |           | 6                                 |                               |  |



| Test Pit 23 |  |
|-------------|--|
|-------------|--|

| Eastings  | 398918.75  | Elevation     | 110.33m              |
|-----------|------------|---------------|----------------------|
| Northings | 6404556.60 | Date          | 17.07.2024           |
| Logged By | TF         | Checked       | RG                   |
| Depth     | 2.5m       | Rock at base? | Volcanic, Moderately |
|           |            |               | weathered            |

| From | То   | Thickness | Description                            |
|------|------|-----------|----------------------------------------|
| 0    | 0.4m | 0.4m      | Dark brown sandy soil, A1 soil horizon |
| 0.4m | 2.5m | 2.1m      | Brown / orange clay                    |
| 2.5m |      |           | Volcanic rock at 2.5m, end of hole     |
|      |      |           |                                        |



| Test Pit 24 |          |                            |                                               |                              |
|-------------|----------|----------------------------|-----------------------------------------------|------------------------------|
| Eastings    | 399064.2 | 9                          | Elevation                                     | 103.75m                      |
| Northings   | 6404939. | 68                         | Date                                          | 17.07.2024                   |
| Logged By   | TF       |                            | Checked                                       | RG                           |
| Depth       | 1.2m     |                            | Rock at base?                                 | Volcanic, slightly weathered |
|             |          |                            |                                               |                              |
| From        | То       | Thickness                  | Description                                   |                              |
| 0           | 0.5m     | 0.5m                       | Dark brown good quality soil, A1 soil horizon |                              |
| 0.5m        | 1.2m     | 1.2m 0.7m Red / brown clay |                                               |                              |
| 1.2m        |          |                            | Very hard volcani                             | ic rock at 1.2m, end of hole |
|             |          |                            |                                               |                              |



| Test Pit 25 |           |           |                    |                                  |  |
|-------------|-----------|-----------|--------------------|----------------------------------|--|
| Eastings    | 399185.14 | 1         | Elevation          | 95.82m                           |  |
| Northings   | 6404861.9 | 94        | Date               | 17.07.2024                       |  |
| Logged By   | TF        |           | Checked            | RG                               |  |
| Depth       | 1.1m      |           | Rock at base?      | Volcanic, fresh                  |  |
|             |           |           |                    |                                  |  |
| From        | To        | Thickness | Description        |                                  |  |
| 0           | 0.5m      | 0.5m      | Dark brown soil, / | Dark brown soil, A1 soil horizon |  |
| 0.5m        | 1.0m      | 0.5m      | Red / brown clay   | Red / brown clay                 |  |
| 1.0m        | 1.1m      | 0.1m      | Hard, red volcani  | c rock at 1.1m, end of hole      |  |
|             |           |           |                    |                                  |  |



| Test Pit 26 |           |                                 |                                  |                               |
|-------------|-----------|---------------------------------|----------------------------------|-------------------------------|
| Eastings    | 399164.73 | 3                               | Elevation                        | 102.22m                       |
| Northings   | 6404798.7 | 70                              | Date                             | 17.07.2024                    |
| Logged By   | TF        |                                 | Checked                          | RG                            |
| Depth       | 1.05m     |                                 | Rock at base?                    | Volcanic, moderate weathering |
|             |           |                                 |                                  |                               |
| From        | То        | Thickness                       | Description                      |                               |
| 0           | 0.3m      | 0.3m                            | Dark brown soil, A1 soil horizon |                               |
| 0.3m        | 0.6m      | 0.3m                            | Brown clay                       |                               |
| 0.6m        | 1.05m     | 0.45m                           | Sandy clay                       |                               |
| 1.05m       |           | Hard rock at 1.05m, end of hole |                                  |                               |





#### Test Pit 27

| Test Pit 27 |           |           |                        |                 |
|-------------|-----------|-----------|------------------------|-----------------|
| Eastings    | 399164.1  | 8         | Elevation              | 111.31m         |
| Northings   | 6404635.2 | 28        | Date                   | 17.07.2024      |
| Logged By   | TF        |           | Checked                | RG              |
| Depth       | 0.9m      |           | Rock at base?          | Volcanic, fresh |
|             |           |           |                        |                 |
| From        | То        | Thickness | Description            |                 |
| 0           | 0.3m      | 0.3m      | Dark brown soil, /     | A1 soil horizon |
| 0.3m        | 0.7m      | 0.4m      | Red/brown streaky clay |                 |
| 0.7m        | 0.9m      | 0.2m      | Weathered red vo       | olcanic rock    |
| 0.0         |           |           | المعاممة المعال        |                 |



| Test Pit 28 |           |           |                                    |                              |  |
|-------------|-----------|-----------|------------------------------------|------------------------------|--|
| Eastings    | 399136.57 | ,         | Elevation                          | 114.79m                      |  |
| Northings   | 6404585.8 | 8         | Date                               | 17.07.2024                   |  |
| Logged By   | TF        |           | Checked                            | RG                           |  |
| Depth       | 0.9m      |           | Rock at base?                      | Volcanic, slightly weathered |  |
|             |           |           |                                    |                              |  |
| From        | То        | Thickness | Description                        |                              |  |
| 0           | 0.3m      | 0.3m      | Dark brown soil, A1 soil horizon   |                              |  |
| 0.3m        | 0.7m      | 0.4m      | Grey clay                          | Grey clay                    |  |
| 0.7m        | 0.9m      | 0.2m      | Weathered red volcanic rock        |                              |  |
| 0.9m        |           |           | Hard red rock at 0.9m, end of hole |                              |  |
|             |           |           |                                    |                              |  |





| Test Pit 29 |         |           |               |                               |
|-------------|---------|-----------|---------------|-------------------------------|
| Eastings    | 399040. | 60        | Elevation     | 98.47m                        |
| Northings   | 6404662 | 2.08      | Date          | 17.07.2024                    |
| Logged By   | TF      |           | Checked       | RG                            |
| Depth       | 2.1m    |           | Rock at base? | Volcanic, extremely weathered |
|             |         |           |               |                               |
| From        | То      | Thickness | Description   |                               |
| -           |         |           |               |                               |

| From | 10    | Inickness | Description                                   |
|------|-------|-----------|-----------------------------------------------|
| 0    | 0.4m  | 0.4m      | Grey / brown sandy soil, A1 soil horizon      |
| 0.4m | 2.1 m | 1.7m      | Red / orange and brown clay                   |
| 1.7m |       |           | Weathered red volcanic rock, end of hole 1.7m |
|      |       |           |                                               |



| Test Pit 30 |            |           |                     |                             |
|-------------|------------|-----------|---------------------|-----------------------------|
| Eastings    | 399025.27  |           | Elevation           | 111.92m                     |
| Northings   | 6404526.61 |           | Date                | 17.07.2024                  |
| Logged By   | TF         |           | Checked             | RG                          |
| Depth       | 1.1m       |           | Rock at base?       | Volcanic, Fresh             |
|             |            |           |                     |                             |
| From        | То         | Thickness | Description         |                             |
| 0           | 0.4m       | 0.4m      | Dark brown soil, A1 |                             |
| 0.4m        | 1.1 m      | 0.7m      | Sandy orange grey   | clay                        |
| 1.1m        |            |           | Weathered red volc  | anic rock, end of hole 1.1m |
| Test pit 30 |            |           |                     |                             |



# Appendix C: VGT Drill Logs

| Plan of:          |                      | Hillvie           | ew Qua             | rry - Dr                | rill Hole Lo                   | og (DDH2                   | ) 0-5m                        | L                        | _ocation:         | Off M          | aytoms Lane, Booral, NSW                     |                                          | Source:              | Drill logs and Qual | test reports                                        |             | Plan By:                                                                                                         | то                                                 |
|-------------------|----------------------|-------------------|--------------------|-------------------------|--------------------------------|----------------------------|-------------------------------|--------------------------|-------------------|----------------|----------------------------------------------|------------------------------------------|----------------------|---------------------|-----------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Figure:           |                      | xxxx              |                    |                         |                                |                            |                               |                          | Council:          | Grea           | Lakes Shire Council                          |                                          | Survey:              | Not applicable      |                                                     |             | Project<br>Manager:                                                                                              | GT                                                 |
| Version/<br>Date: | 1                    | V4 3/0            | )4/2023            |                         |                                |                            |                               | T                        | Fenure:           | N/A            |                                              |                                          | Projection:          | Not applicable      |                                                     | l           |                                                                                                                  |                                                    |
| Our Ref           | :                    | 1195_             | HV_DD              | H2 Log                  | J_P1                           |                            |                               | C                        | Client:           | Trico          | n Mining Equipment Pty Ltd                   |                                          | Contour<br>Interval: | Not applicable      |                                                     |             |                                                                                                                  |                                                    |
|                   |                      |                   |                    |                         |                                |                            |                               |                          |                   |                |                                              |                                          | 50                   |                     |                                                     |             |                                                                                                                  |                                                    |
|                   |                      | OLE L<br>lole: DI |                    |                         |                                | Date                       | l <b>lview</b><br>e Logged: ( |                          |                   |                |                                              | <i>i</i> ct <sup>1</sup>                 |                      |                     |                                                     |             |                                                                                                                  |                                                    |
| -                 |                      | ber: 3430         |                    |                         |                                | Date                       | e Commen<br>e Complete        | ed: 13/12                | 2/2016            |                | v                                            | gu                                       |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   |                      | -                 | Equipme<br>ssessme |                         |                                |                            | face RL: 18<br>ordinates: E   |                          | HD<br>2.97 N:6404 | 803.67         |                                              | Environmental<br>Compliance<br>Solutions |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   | ion: Off<br>ed by: N |                   | s Lane, I          | Booral                  |                                | Drill                      | ing Contra                    | ctor: D a                | and E Drilling    | g              |                                              | 1 of21                                   |                      |                     |                                                     |             |                                                                                                                  |                                                    |
| Drilli<br>Meth    | ng El                | levation<br>(RL)  | Depth<br>(m)       | Core<br>Recovery<br>(%) | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa) | UCS<br>Strength<br>(Mpa)      | racture<br>equency<br>/m | Fracture<br>Log   | Graphic<br>Log | Lithological<br>Description                  | Additional<br>Informatior                |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   |                      |                   | 0                  | - B                     |                                |                            | <u> </u>                      | <u>ч</u> Е               |                   | D.D.           | Hematized Rhyolitic Tuff-                    | Becoming                                 |                      |                     |                                                     |             |                                                                                                                  |                                                    |
| A                 |                      |                   |                    |                         | 0.74                           | 0.76                       | -                             |                          |                   | D D.           | brown,grey to pink,<br>weathered, porphrytic | competer                                 | t                    | 1+0                 | A COLORED OF THE OWNER                              |             |                                                                                                                  |                                                    |
| u<br>g<br>e       |                      |                   |                    | 60                      |                                |                            |                               | 2                        |                   | · ^ . 4        |                                              |                                          |                      | and to be           |                                                     | (C          |                                                                                                                  |                                                    |
| r                 | 190                  |                   |                    |                         |                                |                            |                               |                          |                   | ۵. d.          |                                              |                                          |                      | 1 C                 |                                                     |             | 4                                                                                                                | 721                                                |
|                   | 189                  |                   | 1                  |                         |                                |                            | -                             |                          | _                 | D . A .        |                                              |                                          |                      |                     |                                                     | -           |                                                                                                                  |                                                    |
|                   |                      |                   |                    |                         |                                |                            |                               |                          |                   | D.D.           |                                              |                                          |                      | - Allen             | 15×1- C                                             | 1 CL        | N/C                                                                                                              |                                                    |
|                   |                      |                   |                    | 95                      |                                |                            |                               | 5                        |                   | 0 0<br>0 0     |                                              |                                          |                      | 1 Contraction       |                                                     |             |                                                                                                                  | 4                                                  |
|                   |                      |                   |                    | 55                      |                                |                            |                               | 0                        |                   | A . A .        |                                              |                                          |                      |                     |                                                     |             | and the second |                                                    |
|                   | 188                  | _                 |                    |                         |                                |                            |                               |                          |                   | A 4            |                                              |                                          |                      |                     | (Alexandre                                          |             |                                                                                                                  |                                                    |
|                   |                      |                   | 2                  |                         | 10.11                          | 5.62                       |                               |                          |                   | D . A .        |                                              |                                          |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   |                      |                   |                    |                         |                                |                            |                               |                          |                   | D              |                                              |                                          |                      | De c                |                                                     | Y           | 7                                                                                                                |                                                    |
| Ē                 |                      |                   |                    | 100                     |                                |                            |                               | >5                       |                   | D D            |                                              |                                          |                      | 777                 | 1-4-54                                              | all         |                                                                                                                  | <u>- ( e / c / c / c / c / c / c / c / c / c /</u> |
| Diamond Drill     | 407                  |                   |                    |                         |                                |                            |                               |                          |                   | .∆. Ą.         |                                              |                                          |                      | 10 CT               | Citas                                               | L.          | e l'                                                                                                             |                                                    |
| Diam              | 187                  |                   | 3                  |                         |                                |                            | _                             |                          |                   | A A            |                                              |                                          |                      | R                   | A T                                                 |             |                                                                                                                  |                                                    |
|                   |                      |                   |                    |                         |                                |                            |                               |                          |                   | D . A .        |                                              |                                          |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   |                      |                   |                    | 100                     |                                |                            |                               | 3                        |                   | D .A.          |                                              |                                          |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   |                      |                   |                    | 100                     |                                |                            |                               | 5                        |                   | DA             |                                              |                                          |                      |                     |                                                     |             |                                                                                                                  |                                                    |
|                   | 186                  | _                 |                    |                         |                                |                            |                               |                          |                   | A A A          |                                              |                                          |                      | <u>Qualtest R</u>   | <u>esource Matei</u>                                | rial Testin | <mark>g Assessm</mark>                                                                                           | <u>ient Extra</u>                                  |
|                   |                      |                   | 4                  |                         |                                |                            | -                             |                          |                   | ·              |                                              |                                          |                      |                     |                                                     | _           | Table 24 –                                                                                                       | Material Suito                                     |
|                   |                      |                   |                    |                         | 8.95                           | 8                          | 215                           |                          |                   | A A            |                                              |                                          |                      | 1.000               |                                                     |             |                                                                                                                  | 1.000                                              |
|                   |                      |                   |                    | 95                      |                                |                            |                               | 3                        |                   | DA             | Hematized Rhyolitic Tuff-                    |                                          |                      | Sample<br>Number    | Identification                                      | Durable     | Concrete<br>Aggregate                                                                                            | Concrete<br>Sand                                   |
|                   | 185                  |                   | 5                  |                         |                                |                            |                               |                          |                   | A A A A A      | dark red to pink, porphrytic                 |                                          |                      | DDH2                | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii)     | Yes         | Yes (i)                                                                                                          | Yes (i)                                            |
|                   |                      | nation:           |                    | nave be                 | en sourced                     | from field                 | observatio                    | ons and                  | geotechnic        |                | cted and provided by Qualtest Labo           | pratories.                               |                      | DDH2 S-2            | Rhyolitic Tuff<br>Trachyte (ii)                     | Yes         | Yes (i)                                                                                                          | Yes (i)                                            |
| *: Sul            | o Vertic             | al Joint          | n multiple         |                         |                                |                            |                               |                          |                   |                | ,                                            |                                          |                      |                     |                                                     |             |                                                                                                                  |                                                    |
| Prep              | ared B               | y: MA/SI          | K                  |                         | rvey Data                      | Chec                       | ked By: S                     | K                        |                   |                | Version: 3430_HQ_GA_DDH                      | I2_V3                                    |                      | (                   | Provided that the app<br>deleterious alkali-silica  | reactivity. |                                                                                                                  |                                                    |
|                   |                      |                   |                    |                         |                                |                            |                               |                          |                   |                |                                              |                                          |                      |                     | The Rhyolitic Tuff/ Rhyo<br>suitable boulders are p |             | ely to be suitable                                                                                               | for dimension                                      |





#### <u>act</u>

| Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
| e                             | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |

engineering design to take into account the potential for mild or slow

on stone and marine armour rock, if defect spacing is minimal and

| Plan                        | of:                                                                                                          | Hillvi                                                       | ew Qua                                      | rry - Dri | ill Hole Lo                    | og (DDH2)                           | ) 5-10m    | Location:                                                             | Off                                     | Maytoms Lane, Booral, NSW             |                                                                                  | Source:              | D    | rill logs and Qualt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | est reports                                                                   |                                | Plan By:            | то                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|-----------|--------------------------------|-------------------------------------|------------|-----------------------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|----------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|---------------------|------------------------------------|
| Figur                       | e:                                                                                                           | xxxx                                                         |                                             |           |                                |                                     |            | Council:                                                              | Grea                                    | at Lakes Shire Council                |                                                                                  | Survey:              | N    | lot applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                | Project<br>Manager: | GT                                 |
| Versi<br>Date:              |                                                                                                              | V4 4/0                                                       | 04/2023                                     |           |                                |                                     |            | Tenure:                                                               | N/A                                     |                                       | -                                                                                | Projection           | 1: N | lot applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                |                     |                                    |
| Our R                       | Ref:                                                                                                         | 1195_                                                        | HV_DD                                       | H2 Log    | _P2                            |                                     |            | Client:                                                               | Trico                                   | on Mining Equipment Pty Ltd           |                                                                                  | Contour<br>Interval: |      | lot applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                |                     |                                    |
| Ni<br>Pr<br>Cli<br>Pr<br>Lo | OREH(<br>ame of H<br>oject Numb<br>ient: Tricon<br>oject: Geol<br>ocation: Off<br>ogged by: M<br>rilling Ele | ole: D<br>ber: 3430<br>Mining<br>ogical A<br>Maytom<br>IA/SK | DH2<br>)<br>Equipme<br>ssessme<br>s Lane, I | nt        | Diametral<br>Strength<br>(Mpa) | Date<br>Date<br>Date<br>Surf<br>Coo |            | 08/12/2016<br>3/12/2016<br>5 AHD<br>672.97 N:6404<br>D and E Drilling |                                         | Lithological<br>Description           | Environmental<br>Compliance<br>Solutions<br>2 of 21<br>Additional<br>Information |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                |                     |                                    |
|                             | 184 -                                                                                                        |                                                              | 6 -                                         | 95        | 7.08                           | 7.59                                | 6          |                                                                       | 4 7 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 |                                       |                                                                                  |                      |      | Part of the second seco |                                                                               |                                |                     |                                    |
|                             | Diamond Drill <b>581</b>                                                                                     |                                                              | 7 -                                         | 95        |                                |                                     |            |                                                                       | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.  |                                       |                                                                                  |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                |                     |                                    |
|                             | 182 -                                                                                                        |                                                              | 8 -                                         | 95        | 8.67                           | 5.75                                | 6          |                                                                       | A A A A A A A A A A                     |                                       |                                                                                  |                      |      | Qualtast Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | esource Mater                                                                 | tial Tostin                    |                     | Nont Extra                         |
|                             | 181 -                                                                                                        |                                                              | 9 -                                         | 95        |                                |                                     | 6*         |                                                                       | D.A.                                    | Dyke- grey to dark grey,<br>aphanitic | Pyrite<br>crystallisatic                                                         | on                   | /    | Sample<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Identification                                                                | Durable                        |                     | Material Suite<br>Concrete<br>Sand |
|                             | 180 -                                                                                                        | _                                                            | 10                                          |           |                                |                                     |            |                                                                       | D .A.                                   | Hematized Rhyolitic Tuff-             |                                                                                  |                      |      | DDH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii)                               | Yes                            | Yes (i)             | Yes (i)                            |
| Da<br>*:<br>>1              | Sub Vertica<br>I: Rubble z                                                                                   | d within<br>al Joint<br>one with                             | multiple                                    |           | en sourced                     |                                     |            | nd geotechnica                                                        |                                         | lected and provided by Qualtest Labor |                                                                                  |                      |      | DDH2 S-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rhyolitic Tuff<br>Trachyte (ii)<br>rovided that the app                       | Yes                            | Yes (i)             | Yes (i)                            |
| Pr<br>Lo                    | epared By<br>g updated 03                                                                                    | : MA/SI<br>8/04/2023                                         | ∧<br>following                              | ADW Sur   | vey Data                       | Chec                                | ked By: SK |                                                                       |                                         | Version: 3430_HQ_GA_DDH2              | ۷_۷3                                                                             |                      |      | d<br>(ii) Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eleterious alkali-silica<br>ne Rhyolitic Tuff/ Rhyo<br>vitable boulders are p | reactivity.<br>odacite are lik |                     |                                    |





#### <u>ract</u>

| Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
| e                             | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |

engineering design to take into account the potential for mild or slow

on stone and marine armour rock, if defect spacing is minimal and

| Pla        | n of:                                                                                       | Hillview Qua                                                       | arry - Dr               | ill Hole L                     | .og (DDH                                        | l2) 10-15m                                        | Location:                                                     | Off Maytoms Lane, Booral, NSW                                                                                               |                                                                             | Source:              | Drill logs and Qualtest reports | Plan By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | то                |
|------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Fig        | ure:                                                                                        | xxxx                                                               |                         |                                |                                                 |                                                   | Council:                                                      | Great Lakes Shire Council                                                                                                   |                                                                             | Survey:              | Not applicable                  | Project<br>Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GT                |
| Ver<br>Dat | sion/<br>e:                                                                                 | V4 4/04/2023                                                       | 3                       |                                |                                                 |                                                   | Tenure:                                                       | N/A                                                                                                                         |                                                                             | Projection:          | Not applicable                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 |
| Oui        | Ref:                                                                                        | 1195_HV_DI                                                         | DH2 Log                 | _P3                            |                                                 |                                                   | Client:                                                       | Tricon Mining Equipment Pty Ltd                                                                                             |                                                                             | Contour<br>Interval: | Not applicable                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            | Name of H<br>Project Num<br>Client: Tricor<br>Project: Geo<br>Location: Off<br>Logged by: N | n Mining Equipmo<br>ological Assessme<br>ff Maytoms Lane,<br>MA/SK | ent<br>Booral           |                                | Date<br>Date<br>Date<br>Surfa<br>Coor<br>Drilli | ing Contractor: D a                               | 12/2016<br>2/2016<br>ID<br>2.97 N:6404803.67<br>nd E Drilling | V                                                                                                                           | Environmental<br>Compliance<br>Solutions<br>3 of 21                         |                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            | Drilling E<br>Method                                                                        | Elevation Depth<br>(RL) (m)                                        | Core<br>Recovery<br>(%) | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa)                      | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequency | Fracture Graphic<br>Log Log                                   | Lithological<br>Description                                                                                                 | Additional<br>Information                                                   |                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            |                                                                                             |                                                                    |                         | 9.54                           | 5.28                                            |                                                   | DA                                                            | dark red to pink, porphrytic                                                                                                |                                                                             |                      |                                 | and a stand of the | and and the       |
|            | 179                                                                                         | 11                                                                 | 95                      | 4.51                           | 2.85                                            | 4*                                                |                                                               | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic<br>Hematized Rhyolitic Tuff-                                      | Feldspathic<br>veining<br>Plagioclase<br>alteration                         |                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            | 178<br>III<br>O 7                                                                           | 12                                                                 |                         |                                |                                                 |                                                   |                                                               | weathered, porphrvtic<br>Dyke- grey to dark grey,<br>aphanitic<br>Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic | Some pyrite<br>crystallisation<br>Some<br>weathering<br>on upper<br>contact |                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar (13)<br>1 m/ ( |
|            | Diamond Drill                                                                               | — 13                                                               | 100                     |                                |                                                 | 7                                                 |                                                               | Hematized Rhyolitic Tuff-                                                                                                   | Feldspathic veining                                                         |                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

. . AD . .

· A'.

4. D . 0 4:

.0 4 ·D.

· 0

Hematized Rhyolitic Tuff-dark red, porphrytic

Hematized Rhyolitic Tuff-

Version: 3430\_HQ\_GA\_DDH2\_V3

Δ. 4. D ·D - 0 4.

D

1\*

>6

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories.

Checked By: SK

95

95

9.65

8.76

14

15

176

175

Other information:

\*: Sub Vertical Joint

Prepared By: MA/SK

>1: Rubble zone with multiple joints

Log updated 03/04/2023 following ADW Survey Data

## **Qualtest Resource Material Testing Assessment Extract**

|                  |                                                 |         | J                     |                  | Potenti   | al Product Suite                   | ability      |         |             |
|------------------|-------------------------------------------------|---------|-----------------------|------------------|-----------|------------------------------------|--------------|---------|-------------|
| Sample<br>Number | Identification                                  | Durable | Concrete<br>Aggregate | Concrete<br>Sand | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |
| DDH2             | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii) | Yes     | Yes (i)               | Yes (i)          | Yes       | Yes                                | Yes          | Yes     | Yes         |
| DDH2 S-2         | Rhyolitic Tuff<br>Trachyte (ii)                 | Yes     | Yes (i)               | Yes (i)          | Yes       | Yes                                | Yes          | Yes     | Yes         |

(i) Provided that the appropriate precautions are taken in mix and engineering design to take into account the potential for mild or slow

deleterious alkali-silica reactivity.

suitable boulders are procured.

4/30 Glenwood Drive, Thornton NSW 2322 PO Box 2335, Greenhills NSW 2323 ph: (02) 4028 6412 email: mail@vgt.com.au www.vgt.com.au ABN: 26 621 943 888 VGT Environmental Compliance Solutions Pty Ltd



This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.



(ii) The Rhyolitic Tuff/ Rhyodacite are likely to be suitable for dimension stone and marine armour rock, if defect spacing is minimal and

| lan of                                    | :                                                             | Hill                                                                                   | view Q                                        | uarry -       | Drill Hole                     | e Log (DI                                     | OH2) 15-20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loca                                                                | tion:                                    | Off Maytoms Lane, Booral, N                                            | ISW                                                               |   | Source:              | Drill logs and Qualt | est reports                                                                                                            |                                   | Plan By:              | то                           |
|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|---------------|--------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|---|----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|------------------------------|
| igure:                                    |                                                               | xx                                                                                     | xx                                            |               |                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cou                                                                 | ncil:                                    | Great Lakes Shire Council                                              |                                                                   |   | Survey:              | Not applicable       |                                                                                                                        |                                   | Project<br>Manager:   | GT                           |
| ersior<br>ate:                            | ר/                                                            | V4 -                                                                                   | 4/04/20                                       | 23            |                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tenu                                                                | re:                                      | <br>N/A                                                                |                                                                   |   | Projection:          | Not applicable       |                                                                                                                        | L                                 |                       |                              |
| ur Re                                     | f:                                                            | 119                                                                                    | 5_HV_                                         | DDH2 L        | og_P4                          |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clier                                                               | it:                                      | Tricon Mining Equipment Pty                                            | <sup>,</sup> Ltd                                                  |   | Contour<br>Interval: | Not applicable       |                                                                                                                        |                                   |                       |                              |
| Nal<br>Proj<br>Clie<br>Proj<br>Loc<br>Log | me of<br>ect Nui<br>nt: Tric<br>ect: Ge<br>ation: C<br>ged by | Hole: E<br>mber: 343<br>on Mining<br>cological J<br>Off Maytor<br>: MA/SK<br>Elevation | DDH2<br>30<br>g Equipm<br>Assessm<br>ms Lane, | ent<br>Booral | Diametral<br>Strength<br>(Mpa) | Date<br>Date<br>Date<br>Surf<br>Coo<br>Drilli | Iview<br>Logged: 03/01/20<br>Commenced: 08/<br>Completed: 13/12<br>acce RL: 189.85 AF<br>rdinates: E:398672<br>ng Contractor: D a<br>Son the form of the form of the form<br>Son the form of the form of the form<br>Son the form of the form of the form of the form of the form<br>Son the form of the form | 12/2016<br>2/2016<br>ID<br>2.97 N:6404<br>nd E Drilling<br>Fracture | Graphic                                  | Lithological<br>Description                                            | Environmental<br>Compliance<br>Solutions<br>4 of 21<br>Additional |   |                      |                      |                                                                                                                        |                                   |                       |                              |
| wier                                      | thod                                                          | (RL)                                                                                   | (m)                                           |               |                                |                                               | Stre<br>Stre<br>(N<br>Frec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Log                                                                 | Log                                      | orange, weathered, friable,                                            | Information                                                       |   |                      |                      |                                                                                                                        |                                   |                       |                              |
|                                           |                                                               |                                                                                        |                                               |               | 3.54                           | 3.09                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | A 4<br>D A                               | porphrytic                                                             |                                                                   |   |                      | Call of              | 4                                                                                                                      | Res Marries                       |                       |                              |
|                                           | 174                                                           |                                                                                        | 10                                            | 95            |                                |                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | 0 0 0 0 0                                | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic,             |                                                                   |   | $\backslash$         |                      |                                                                                                                        |                                   |                       | 131<br>M (C                  |
|                                           |                                                               |                                                                                        | - 16                                          | 85            |                                |                                               | >6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | Q. D. D.                                 | Hematized Rhyolitic Tuff-<br>orange, weathered, friable,<br>porphrytic |                                                                   |   |                      |                      |                                                                                                                        |                                   |                       |                              |
|                                           | 173                                                           |                                                                                        | - 17                                          |               | 6.79                           | 5.54                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                          | Dyke- grey to dark grey,<br>aphanitic                                  | Some pyrite<br>crystallisation                                    |   |                      |                      |                                                                                                                        |                                   |                       | t                            |
| Diamond Drill                             | 172                                                           |                                                                                        |                                               | 95            |                                |                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | D. D |                                                                        |                                                                   |   |                      | e I+                 |                                                                                                                        |                                   |                       | Le in                        |
|                                           |                                                               |                                                                                        | - 18                                          | 85            | 10.39                          | 7.26                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | 00000                                    | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic              | Some<br>feldspathic<br>veining                                    |   | /                    |                      | E. L.                                                                                                                  |                                   |                       | Anna an                      |
|                                           | 171                                                           |                                                                                        | - 19                                          |               |                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 0.0.0                                    |                                                                        |                                                                   | - |                      | Qualtest R           | esource Mater                                                                                                          | rial Testin                       | -                     | nent Extra<br>Material Suita |
|                                           |                                                               |                                                                                        |                                               | 95            |                                |                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | D D D                                    | Hematized Rhyolitic Tuff-<br>grey to dark red, porphrytic              |                                                                   |   | /                    |                      |                                                                                                                        |                                   |                       |                              |
|                                           | 170                                                           |                                                                                        | _ 20                                          |               |                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 0 0 0 0                                  | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic              |                                                                   |   |                      | Sample<br>Number     | Identification<br>Hematized<br>Rhyolitic Tuff/                                                                         | Durable                           | Concrete<br>Aggregate | Concrete<br>Sand             |
| Data                                      | a inclu                                                       | rmation<br>ded within                                                                  | :<br>n this log                               | have bee      | en sourced                     | from field of                                 | bservations and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | geotechnica                                                         |                                          | cted and provided by Qualtest Labora                                   | atories.                                                          |   |                      | DDH2                 | Ryhodacite (ii)<br>Rhyolitic Tuff                                                                                      | Yes                               | Yes (i)               | Yes (i)                      |
| *: S<br>>1:<br><b>Pre</b>                 | ub Ver<br>Rubble<br>pared                                     | tical Joint<br>zone wi<br><b>By: MA</b> /S                                             | t<br>th multip<br>SK                          |               |                                |                                               | ked By: SK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                          | Version: 3430_HQ_GA_DDH2                                               |                                                                   |   |                      | d<br>(ii) T          | Trachyte (ii)<br>rovided that the app<br>eleterious alkali-silica<br>he Rhyolitic Tuff/ Rhyo<br>uitable boulders are p | a reactivity.<br>odacite are like |                       |                              |





#### <u>act</u>

| Potential Product Suitability |                                    |              |         |            |  |  |  |  |  |  |  |
|-------------------------------|------------------------------------|--------------|---------|------------|--|--|--|--|--|--|--|
| Road Base                     | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fil |  |  |  |  |  |  |  |
| Yes                           | Yes                                | Yes          | Yes     | Yes        |  |  |  |  |  |  |  |
| Yes                           | Yes                                | Yes          | Yes     | Yes        |  |  |  |  |  |  |  |

engineering design to take into account the potential for mild or slow

on stone and marine armour rock, if defect spacing is minimal and

| :                                                                                  | Hillvie                                                    | w Quar                    | ry - Dril                    | l Hole            | Log (DDH                                            | l2) 20-25m                                                                                        | Lo                                         | cation:         | Off Maytoms Lane, Booral                                  | , NSW                                                            | Source:              | Drill logs and Qual | test reports                                                                                            |                                 | Plan By:                            | то             |
|------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|------------------------------|-------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|-----------------------------------------------------------|------------------------------------------------------------------|----------------------|---------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|----------------|
|                                                                                    | xxxx                                                       |                           |                              |                   |                                                     |                                                                                                   | Co                                         | uncil:          | Great Lakes Shire Council                                 | I                                                                | Survey:              | Not applicable      |                                                                                                         |                                 | Project<br>Manager:                 | GT             |
| ı/                                                                                 | V1 4/04                                                    | 4/2023                    |                              |                   |                                                     |                                                                                                   | Тег                                        | nure:           | N/A                                                       |                                                                  | Projection:          | Not applicable      |                                                                                                         | l                               |                                     |                |
| f:                                                                                 | 1195_⊦                                                     | IV_DDI                    | H2 Log_                      | _P5               |                                                     |                                                                                                   | Cli                                        | ent:            | Tricon Mining Equipment F                                 | <sup>S</sup> ty Ltd                                              | Contour<br>Interval: | Not applicable      |                                                                                                         |                                 |                                     |                |
| OREHO                                                                              |                                                            | DG                        |                              |                   | Hillv                                               | iew                                                                                               |                                            |                 |                                                           |                                                                  |                      |                     |                                                                                                         |                                 |                                     |                |
| ame of H<br>oject Numb<br>ent: Tricon<br>oject: Geolo<br>cation: Off<br>gged by: M | ole: DD<br>ber: 3430<br>Mining Ec<br>ogical Ass<br>Maytoms | H2<br>quipment<br>essment | oral                         |                   | Date Lo<br>Date Co<br>Date Co<br>Surface<br>Coordir | ogged: 03/01/<br>ommenced: 0<br>ompleted: 13/<br>e RL: 189.85 /<br>nates: E:3986<br>Contractor: D | 8/12/2016<br>12/2016<br>AHD<br>72.97 N:640 |                 | V                                                         | Environmental<br>Compliance<br>Solutions<br>5 of 21              |                      | C Lag               |                                                                                                         |                                 |                                     | Antopolicies   |
|                                                                                    | evation [<br>(RL)                                          | epth e<br>(m) S           | Recovery<br>(%)<br>Diametral | Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa)<br>IICS                  | Strength<br>(Mpa)<br>Fracture<br>Frequency                                                        | Fracture                                   | Graphic<br>Log  | Lithological<br>Description                               | Additional<br>Information                                        |                      | <u> </u> c  +       |                                                                                                         | 4                               |                                     | le le          |
|                                                                                    |                                                            | 8                         | 30 (                         | ).29              | 0.17                                                | 8                                                                                                 | VVV                                        |                 | Dyke- grey to dark grey,<br>aphanitic                     | Dyke, some<br>pyrite<br>crystallisation,<br>weathered at<br>base |                      |                     | 2. 1                                                                                                    |                                 |                                     |                |
| 169 -                                                                              |                                                            | 21 —                      |                              |                   |                                                     |                                                                                                   |                                            |                 |                                                           |                                                                  |                      |                     |                                                                                                         | × (0)                           |                                     |                |
| 168 -                                                                              |                                                            | 22 —                      | 90                           |                   |                                                     | 7*                                                                                                |                                            | 0 0 0 0 0       | Hematized Rhyolitic Tuff-                                 |                                                                  |                      |                     |                                                                                                         |                                 |                                     |                |
| iond Drill                                                                         |                                                            | 9                         | 90                           | 1.82              | 9.71                                                | 4*                                                                                                |                                            | 0 0 0 0 0 0     | dark red to pink. porphrytic                              |                                                                  |                      |                     |                                                                                                         | 7                               | 24,4                                |                |
| Diamond<br>Diamond                                                                 |                                                            | 23 —                      |                              |                   |                                                     |                                                                                                   |                                            |                 |                                                           |                                                                  | /                    |                     |                                                                                                         | 1                               |                                     | X              |
| 166 -                                                                              |                                                            | 24 —                      | 95                           |                   |                                                     | 11                                                                                                |                                            |                 | Hematized Rhyolitic Tuff-<br>grey to dark red, porphrytic |                                                                  |                      | Qualtest R          | esource Mater                                                                                           | rial Testin                     |                                     |                |
|                                                                                    |                                                            | 9                         | 95                           |                   |                                                     | 4*                                                                                                |                                            |                 | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic |                                                                  |                      | Sample<br>Number    | Identification                                                                                          | Durable                         | Table 24 –<br>Concrete<br>Aggregate | Material Suito |
| 165 -                                                                              |                                                            | 25                        | <u></u>                      | 9.44              | 9.72 2                                              | 209                                                                                               |                                            |                 |                                                           |                                                                  | /                    | DDH2                | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii)                                                         | Yes                             | Yes (i)                             | Yes (i)        |
| ta includeo<br>Sub Vertica<br>: Rubble zo                                          | d within th<br>al Joint<br>one with r                      | •                         |                              | ourced fr         |                                                     |                                                                                                   | d geotechnie                               | cal data collec | ted and provided by Qualtest Labo                         |                                                                  |                      | DDH2 S-2            | Rhyolitic Tuff<br>Trachyte (ii)                                                                         | Yes                             | Yes (i)                             | Yes (i)        |
| epared By<br>g updated 03                                                          | 7: MA/SK<br>8/04/2023 fo                                   | llowing AL                | W Survey                     | Data              | Checked                                             | 1 By: SK                                                                                          |                                            |                 | Version: 3430_HQ_GA_DDH                                   | 2_V3                                                             |                      | c<br>(ii) T         | Provided that the app<br>deleterious alkali-silica<br>he Rhyolitic Tuff/ Rhyo<br>uitable boulders are p | reactivity.<br>odacite are like |                                     |                |





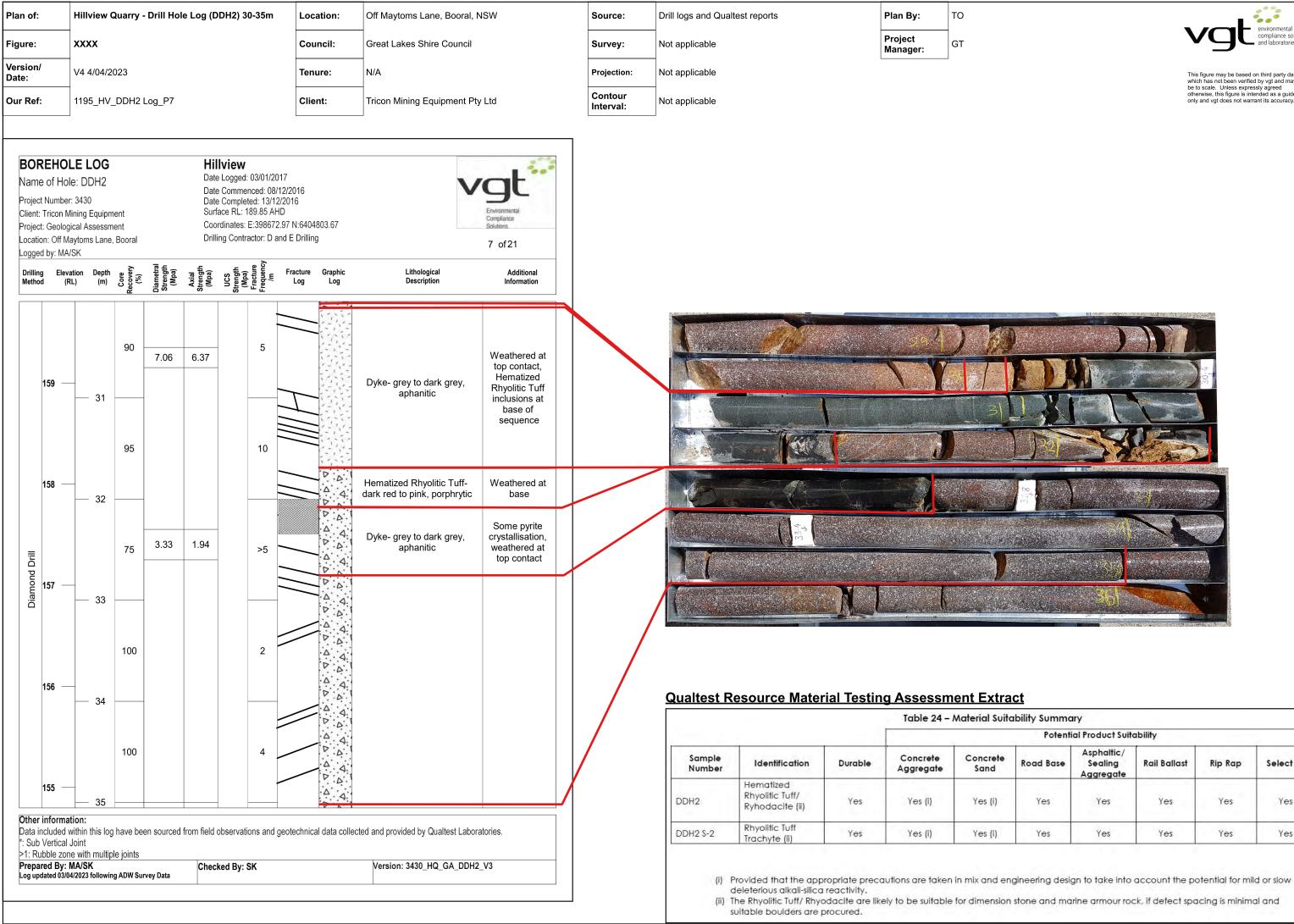
## <u>ract</u>

| Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
| e                             | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |

engineering design to take into account the potential for mild or slow

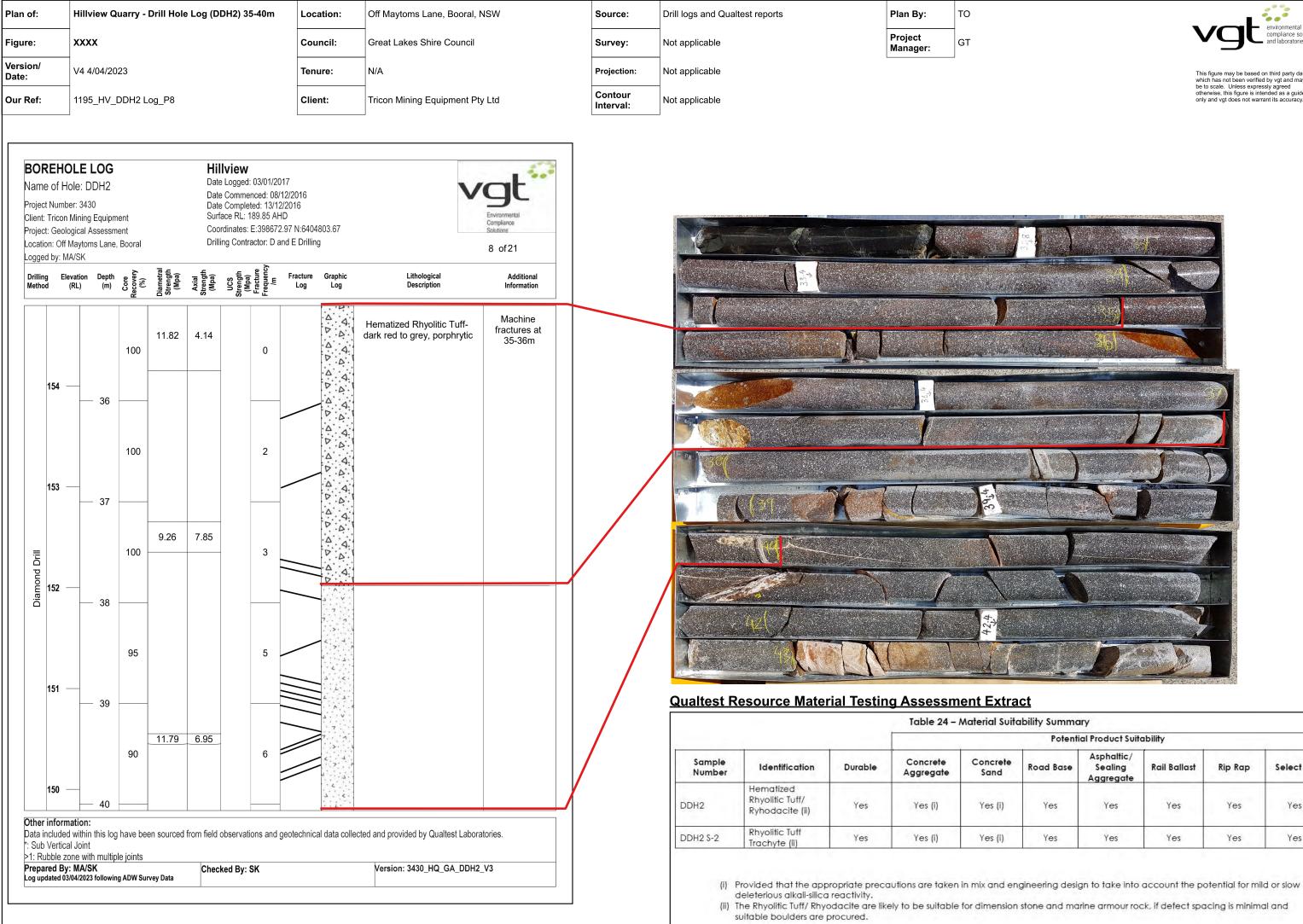
on stone and marine armour rock, if defect spacing is minimal and

| n of:                                                                                                            | Hillvie                                                                     | w Quar                                        | ry - Dı     | ill Hole I                     | .og (DDI                                      | H2) 25-3(                                                                                           | 0m                                                           | Loca                               | ion:                                    | Off Mayto                      | oms Lane, B                                                | ooral, NS          | SW                                                       |      | Source:              | Drill logs and Qua | Itest reports                                                                                          |                                  | Plan By:              | ТО               |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|-------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|-----------------------------------------|--------------------------------|------------------------------------------------------------|--------------------|----------------------------------------------------------|------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|------------------|
| ure:                                                                                                             | xxxx                                                                        |                                               |             |                                |                                               |                                                                                                     |                                                              | Coun                               | cil:                                    | Great Lak                      | kes Shire Co                                               | ouncil             |                                                          |      | Survey:              | Not applicable     |                                                                                                        |                                  | Project<br>Manager:   | GT               |
| sion/<br>e:                                                                                                      | V4 4/0                                                                      | 4/2023                                        |             |                                |                                               |                                                                                                     |                                                              | Tenu                               | e:                                      | N/A                            |                                                            |                    |                                                          |      | Projection:          | Not applicable     |                                                                                                        |                                  |                       |                  |
| r Ref:                                                                                                           | 1195_1                                                                      |                                               | H2 Log      | _P6                            |                                               |                                                                                                     |                                                              | Clien                              | t:                                      | Tricon Mir                     | ning Equipm                                                | nent Pty L         | .td                                                      |      | Contour<br>Interval: | Not applicable     |                                                                                                        |                                  |                       |                  |
| BOREH<br>Name of<br>Project Nul<br>Client: Tric<br>Project: Ge<br>Location: C<br>Logged by<br>Drilling<br>Method | Hole: Dl<br>mber: 3430<br>on Mining<br>cological A<br>Off Maytom<br>: MA/SK | DH2<br>)<br>Equipmer<br>ssessmer<br>s Lane, E | nt<br>ooral | Diametral<br>Strength<br>(Mpa) | Date<br>Date<br>Date<br>Surf<br>Coo<br>Drilli | Liview<br>e Logged: 0<br>e Commence<br>complete<br>face RL: 18<br>rrdinates: E<br>ing Contract<br>S | ced: 08/1<br>ed: 13/12<br>39.85 AH<br>E:398672<br>ctor: D ar | 2/2016<br>/2016<br>D<br>.97 N:6404 |                                         |                                | Lithological<br>Description                                |                    | 6 of 21<br>Addition<br>Calcite<br>veining                | n    |                      |                    |                                                                                                        |                                  |                       |                  |
| 164                                                                                                              |                                                                             | 26 -                                          | 90          |                                |                                               |                                                                                                     | >5                                                           |                                    | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Hematiz<br>dark red<br>Dyke- g | red Rhyolitic<br>to pink, por<br>grey to dark<br>aphanitic | phrytic            | Dyke, sor<br>pyrite<br>crystallisat<br>weathered<br>base | ion, |                      |                    |                                                                                                        |                                  |                       |                  |
| Diamond Drill                                                                                                    |                                                                             | 27                                            | 90          | 6.05                           | 4.15                                          |                                                                                                     | 6                                                            |                                    |                                         |                                |                                                            |                    |                                                          |      |                      |                    |                                                                                                        |                                  | NY<br>NY              |                  |
| 161                                                                                                              |                                                                             | 28 -                                          | 75 -        | 11.85                          | 7.32                                          |                                                                                                     | 3                                                            |                                    |                                         | Hematiz<br>dark red            | red Rhyolitic<br>to pink, por                              | : Tuff-<br>phrytic | Weathere<br>base                                         | d at |                      | Qualtest R         | Resource Mater                                                                                         | rial Testir                      | ng Assessm            | nent Extra       |
|                                                                                                                  |                                                                             |                                               |             |                                |                                               |                                                                                                     | -                                                            |                                    |                                         |                                |                                                            |                    |                                                          |      |                      |                    |                                                                                                        |                                  | Table 24 –            | Material Sui     |
|                                                                                                                  |                                                                             |                                               | 90          |                                |                                               |                                                                                                     | 7                                                            | <                                  | 0. D. 0.                                |                                |                                                            |                    |                                                          |      | /                    | Sample<br>Number   | Identification                                                                                         | Durable                          | Concrete<br>Aggregate | Concrete<br>Sand |
| 160                                                                                                              |                                                                             | 30                                            |             |                                |                                               |                                                                                                     |                                                              | <u> </u>                           | 0.0                                     |                                |                                                            |                    |                                                          |      |                      | DDH2               | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii)                                                        | Yes                              | Yes (i)               | Yes (i)          |
| Other info<br>Data incluo<br>*: Sub Vert<br>>1: Rubble                                                           | ded within<br>tical Joint                                                   | -                                             |             | n sourced                      | from field                                    | observatio                                                                                          | ons and g                                                    | eotechnic                          | al data colle                           | ected and prov                 | vided by Qual                                              | test Labora        | atories.                                                 |      |                      | DDH2 S-2           | Rhyolitic Tuff<br>Trachyte (ii)                                                                        | Yes                              | Yes (i)               | Yes (i)          |
| Prepared<br>Log updated                                                                                          | By: MA/SI<br>1 03/04/2023                                                   | K<br>following /                              | ADW Sur     | vey Data                       | Chec                                          | ked By: Sl                                                                                          | К                                                            |                                    |                                         | Versior                        | n: 3430_HQ_(                                               | GA_DDH2_           | _V3                                                      |      |                      | (ii)               | Provided that the app<br>deleterious alkali-silico<br>The Rhyolitic Tuff/ Rhy<br>suitable boulders are | a reactivity.<br>odacite are lik |                       |                  |



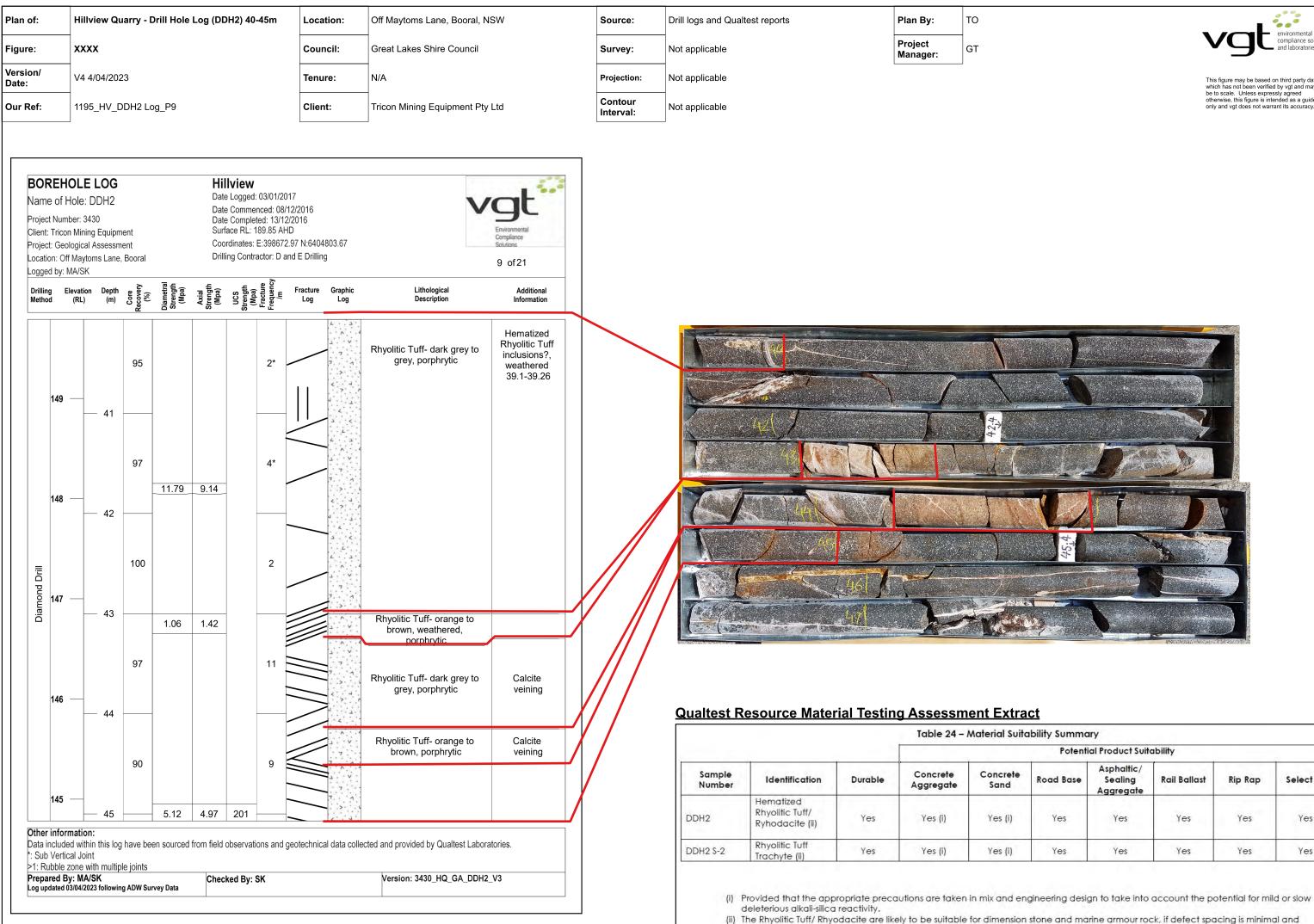



| Suito                         | uitability Summary |                                    |              |         |             |  |  |  |  |  |  |  |
|-------------------------------|--------------------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|--|
| Potential Product Suitability |                    |                                    |              |         |             |  |  |  |  |  |  |  |
| te                            | Road Base          | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |  |
| )                             | Yes                | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |  |
| )                             | Yes                | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |  |


engineering design to take into account the potential for mild or slow

ion stone and marine armour rock, if defect spacing is minimal and






| Potential Product Suitability |           |                                    |              |         |             |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|
| 1                             | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |





| Potential Product Suitability |           |                                    |              |         |             |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|
| 1                             | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |



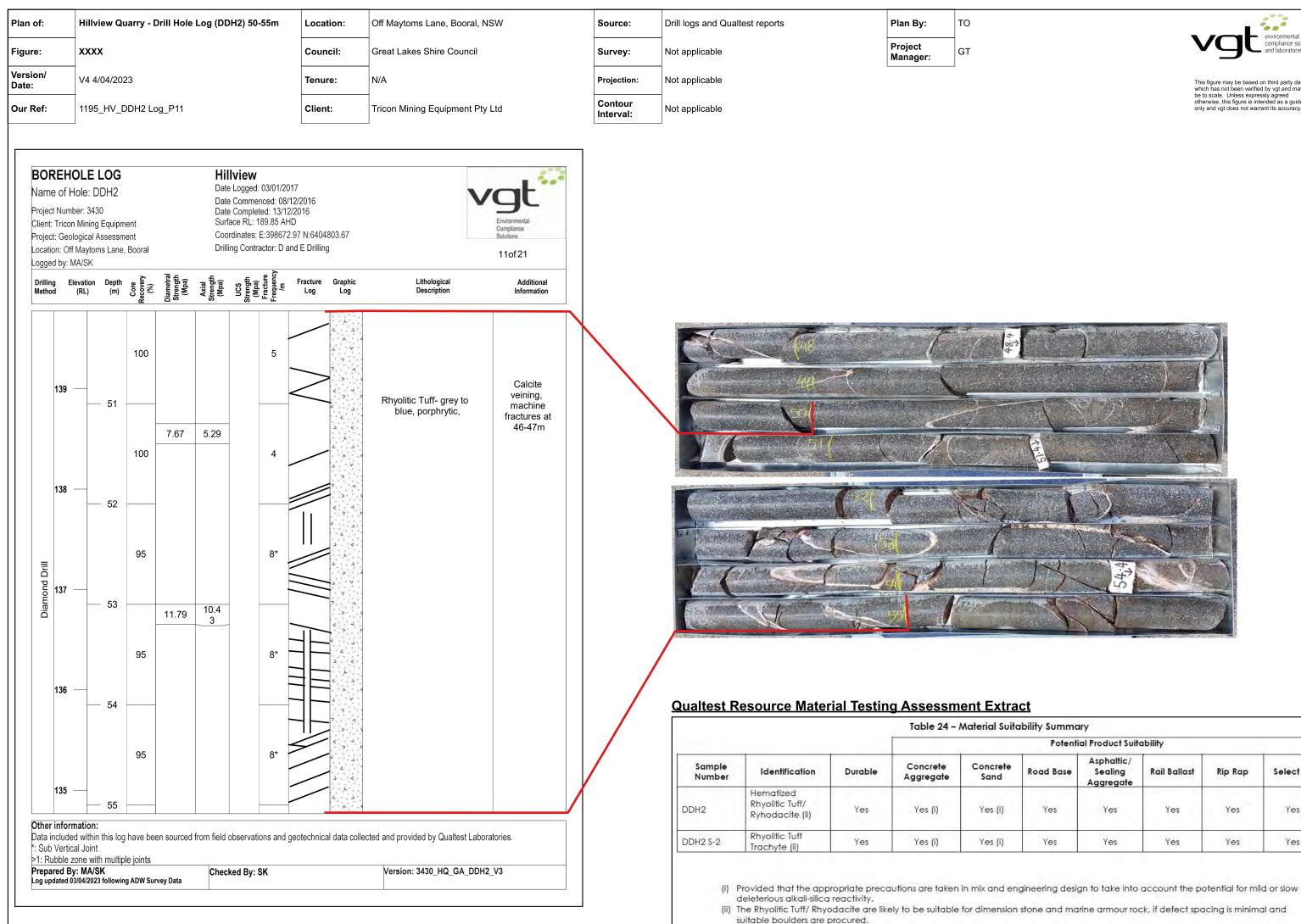
suitable boulders are procured.



| Potential Product Suitability |           |                                    |              |         |             |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|
|                               | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |

| Plan of:                                                                                  | Hillview C                                                      | uarry - D     | rill Hole                      | Log (D                                           | DH2) 45-50  | Dm L                                                                  | ocation:         | Off Maytoms Lane,           | Booral, NSW                                                                      | Source:              | Drill logs and Qual | test reports                                                                                          |                                  | Plan By:              | то                          |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------|--------------------------------------------------|-------------|-----------------------------------------------------------------------|------------------|-----------------------------|----------------------------------------------------------------------------------|----------------------|---------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|-----------------------------|
| Figure:                                                                                   | xxxx                                                            |               |                                |                                                  |             | С                                                                     | ouncil:          | Great Lakes Shire           | Council                                                                          | Survey:              | Not applicable      |                                                                                                       |                                  | Project<br>Manager:   | GT                          |
| Version/<br>Date:                                                                         | V4 4/04/20                                                      | 23            |                                |                                                  |             | Т                                                                     | enure:           | N/A                         |                                                                                  | Projection:          | Not applicable      |                                                                                                       |                                  |                       |                             |
| Our Ref:                                                                                  |                                                                 | DDH2 Log      | g_P10                          |                                                  |             | с                                                                     | lient:           | Tricon Mining Equi          | pment Pty Ltd                                                                    | Contour<br>Interval: | Not applicable      |                                                                                                       |                                  |                       |                             |
| Name of I<br>Project Num<br>Client: Trico<br>Project: Gec<br>Location: Of<br>Logged by: I | n Mining Equipn<br>blogical Assessn<br>ff Maytoms Lane<br>MA/SK | ent<br>Booral | Diametral<br>Strength<br>(Mpa) | Date<br>Date<br>Date<br>Surfa<br>Coor<br>Drillin |             | : 08/12/2016<br>13/12/2016<br>5 AHD<br>8672.97 N:64<br>: D and E Dril | ing              | Lithological<br>Description | Environmental<br>Compliance<br>Solutions<br>10of 21<br>Additional<br>Information |                      |                     |                                                                                                       |                                  |                       |                             |
| 144                                                                                       | 46                                                              | 95            |                                |                                                  | 3           |                                                                       |                  |                             |                                                                                  |                      |                     |                                                                                                       |                                  |                       |                             |
| 143                                                                                       | 47                                                              |               | 3.3                            | 2.02                                             |             |                                                                       | 2                |                             |                                                                                  |                      |                     | 48                                                                                                    |                                  | (                     |                             |
| Diamond Drill<br>Diamond Drill                                                            | 48                                                              | 95            |                                |                                                  | 3           | *   <br>  <br>                                                        |                  |                             |                                                                                  |                      |                     | <b>1</b>                                                                                              |                                  | 20                    |                             |
| 141                                                                                       | 49                                                              | 100           | 8.85                           | 5.75                                             | 137         |                                                                       |                  |                             |                                                                                  |                      | Qualtest R          | <u>esource Mate</u>                                                                                   | <u>rial Testin</u>               | -                     | nent Extra<br>Material Suit |
| 140                                                                                       | _                                                               | 100           |                                |                                                  | 2           |                                                                       |                  |                             |                                                                                  |                      | Sample<br>Number    | Identification<br>Hematized                                                                           | Durable                          | Concrete<br>Aggregate | Concrete<br>Sand            |
| Other infor                                                                               | mation:                                                         |               |                                |                                                  |             |                                                                       | 6                |                             |                                                                                  |                      | DDH2                | Rhyolitic Tuff/<br>Ryhodacite (ii)                                                                    | Yes                              | Yes (i)               | Yes (i)                     |
|                                                                                           | ed within this log                                              | have been     | sourced f                      | rom field c                                      | bservations | and geotechn                                                          | ical data collec | cted and provided by Qualte | est Laboratories.                                                                |                      | DDH2 S-2            | Rhyolitic Tuff<br>Trachyte (ii)                                                                       | Yes                              | Yes (i)               | Yes (i)                     |
| >1: Rubble :<br>Prepared B                                                                | zone with multip                                                |               | y Data                         | Check                                            | ed By: SK   |                                                                       |                  | Version: 3430_HQ_G          | A_DDH2_V3                                                                        |                      | (ii) 1              | Provided that the app<br>deleterious alkali-silica<br>he Rhyolitic Tuff/ Rhyo<br>uitable boulders are | i reactivity.<br>odacite are lik |                       |                             |

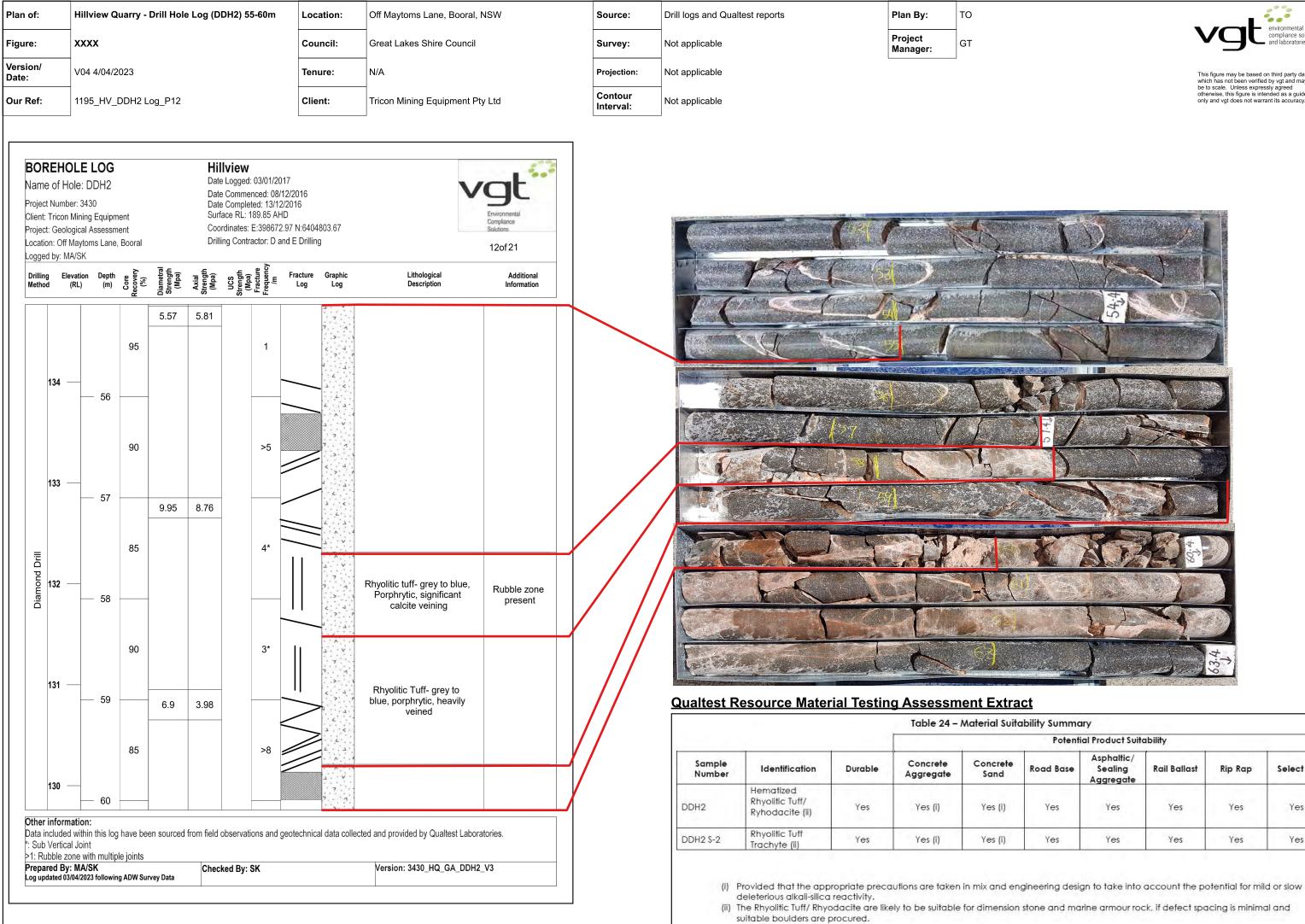





#### <u>ract</u>

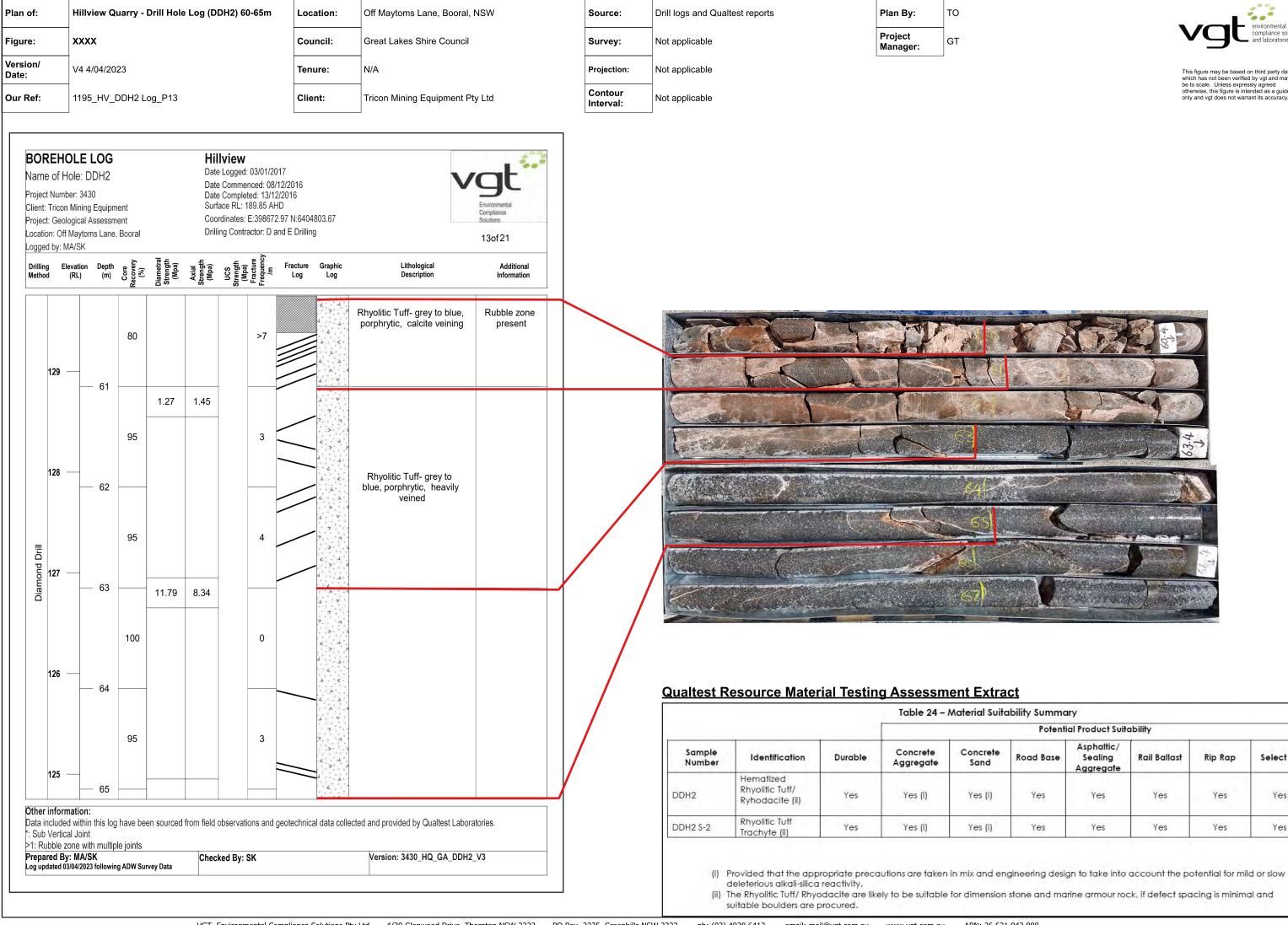
| Potential Product Suitability |           |                                    |              |         |             |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|
|                               | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |

engineering design to take into account the potential for mild or slow


on stone and marine armour rock, if defect spacing is minimal and

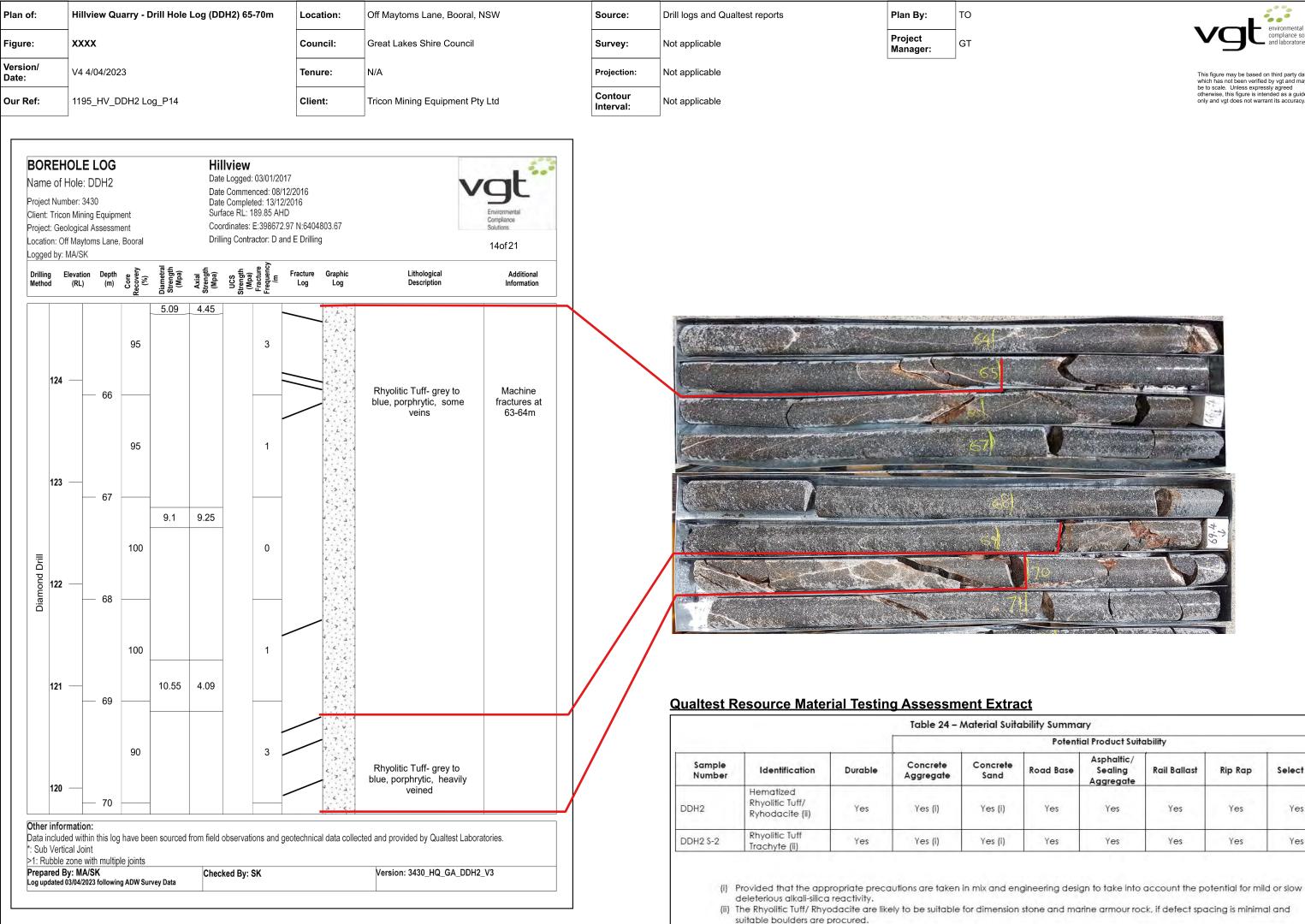







| Potential Product Suitability |           |                                    |              |         |             |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|
|                               | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |






| Potential Product Suitability |           |                                    |              |         |             |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|
| 1                             | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |





| Potential Product Suitability |           |                                    |              |         |             |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|
|                               | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |
| 1                             | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |





This figure may be based on third party data which has not been verified by ugt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and ugt does not warrant its accuracy.

|   | Potential Product Suitability |                                    |              |         |             |  |  |  |  |  |  |
|---|-------------------------------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
|   | Road Base                     | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
|   | Yes                           | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
| 1 | Yes                           | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |

| Plan         | of:                                        | н                                                   | lillview Q                                          | uarry -                   | Drill Hole                     | e Log (Di                                | DH2) 70                                                        | 0-75m                                                                              | Loc                                                      | ation:         | Off May  | /toms Lane                  | e, Booral, | NSW                                                 |  | Source:              | Dril | logs and C | ualtest rep | orts   |         |        | Plan By:              | то                           |
|--------------|--------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------|--------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|----------|-----------------------------|------------|-----------------------------------------------------|--|----------------------|------|------------|-------------|--------|---------|--------|-----------------------|------------------------------|
| Figu         | re:                                        | x                                                   | XXX                                                 |                           |                                |                                          |                                                                |                                                                                    | Со                                                       | uncil:         | Great L  | akes Shire.                 | e Council  |                                                     |  | Survey:              | Not  | applicable |             |        |         |        | Project<br>Manager:   | GT                           |
| Vers<br>Date | ion/<br>:                                  | v                                                   | 4 4/04/20                                           | 23                        |                                |                                          |                                                                |                                                                                    | Ten                                                      | ure:           | N/A      |                             |            |                                                     |  | Projection:          | Not  | applicable |             |        |         |        |                       |                              |
| Our          | Ref:                                       | 1                                                   | 195_HV_[                                            | DDH2 L                    | .og_P15                        |                                          |                                                                |                                                                                    | Clie                                                     | ent:           | Tricon I | Vining Equ                  | ipment P   | ty Ltd                                              |  | Contour<br>Interval: | Not  | applicable |             |        |         |        |                       |                              |
|              | Name<br>Project I<br>Client: T<br>Project: | of Hol<br>Number<br>Tricon M<br>Geolog<br>n: Off Ma | lining Equipr<br>ical Assessn<br>aytoms Lane<br>/SK | nent<br>nent<br>e, Booral |                                | Dat<br>Dat<br>Dat<br>Sur<br>Coc<br>Drill | te Comme<br>te Comple<br>face RL:<br>ordinates:<br>lling Contr | 1: 03/01/20<br>enced: 08/<br>eted: 13/1:<br>189.85 AF<br>: E:398672<br>ractor: D a | /12/2016<br>2/2016<br>HD<br>2.97 N:6404<br>and E Drillir |                |          |                             | V          | Environmental<br>Compliance<br>Solutions<br>15of 21 |  |                      |      |            |             |        |         |        |                       |                              |
|              | Drilling<br>Method                         | Eleva<br>(R                                         | ation Depth<br>RL) (m)                              | Core<br>Recovery<br>(%)   | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa)               | UCS<br>Strength<br>(Mpa)                                       | (mpa)<br>Fracture<br>Frequency<br>/m                                               | Fracture<br>Log                                          | Graphic<br>Log |          | Lithological<br>Description |            | Addition<br>Information                             |  |                      |      |            |             |        |         |        |                       |                              |
|              | Drill 1                                    | 19 —<br> 18 —                                       | — 71<br>— 72<br>— 73                                | 95<br>90<br>90            | 9.69                           | 1.67                                     |                                                                | 3*<br>2*<br>6*                                                                     |                                                          |                |          |                             |            |                                                     |  |                      |      |            |             |        |         |        |                       |                              |
|              |                                            | 16 —                                                | 74                                                  | 95                        | _                              |                                          |                                                                | 2*                                                                                 |                                                          |                |          |                             |            |                                                     |  |                      | G    | lualtest   | Resou       | Irce M | aterial | Testii | ng Assess<br>Table 24 | <u>ment Ex</u><br>- Material |

· L ·

Version: 3430\_HQ\_GA\_DDH2\_V3

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories.

Checked By: SK

115 -

Other information:

\*: Sub Vertical Joint

>1: Rubble zone with multiple joints Prepared By: MA/SK Log updated 03/04/2023 following ADW Survey Data

- 75

|                  |                                                 |         | Table 24 – I          | Material Suito   | ibility Summa | iry                                |              |         |             |
|------------------|-------------------------------------------------|---------|-----------------------|------------------|---------------|------------------------------------|--------------|---------|-------------|
|                  |                                                 |         |                       |                  | Potenti       | al Product Suite                   | ability      |         |             |
| Sample<br>Number | Identification                                  | Durable | Concrete<br>Aggregate | Concrete<br>Sand | Road Base     | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |
| DDH2             | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii) | Yes     | Yes (i)               | Yes (i)          | Yes           | Yes                                | Yes          | Yes     | Yes         |
| DDH2 S-2         | Rhyolitic Tuff<br>Trachyte (ii)                 | Yes     | Yes (i)               | Yes (i)          | Yes           | Yes                                | Yes          | Yes     | Yes         |

(i) Provided that the appropriate precautions are taken in mix and engineering design to take into account the potential for mild or slow deleterious alkali-silica reactivity.
 (ii) The Rhyolitic Tuff/ Rhyodacite are likely to be suitable for dimension stone and marine armour rock, if defect spacing is minimal and suitable boulders are procured.



This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.



# <u>ktract</u>

| Plan of:                              |                                                           | Hillvie                                                           | w Quarry                              | / - Drill Ho                          | ole Log (I                         | DH2) 75-80m                                                                                                                              | Loc                                      | ation:         | Off Maytoms Lane, Boora                        | I, NSW                                              | \$       | Source:              | Drill logs and Qua                                                                                              | Itest reports                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plan By:            | ТО                |
|---------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|------------------------------------------------|-----------------------------------------------------|----------|----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| Figure:                               |                                                           | xxxx                                                              |                                       |                                       |                                    |                                                                                                                                          | Co                                       | uncil:         | Great Lakes Shire Counci                       | I                                                   | :        | Survey:              | Not applicable                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project<br>Manager: | GT                |
| Version/<br>Date:                     |                                                           | V4 4/0                                                            | 4/2023                                |                                       |                                    |                                                                                                                                          | Ter                                      | ure:           | N/A                                            |                                                     | F        | Projection:          | Not applicable                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
| Our Ref:                              |                                                           | 1195_H                                                            | IV_DDH                                | 2 Log_P16                             | 6                                  |                                                                                                                                          | Clie                                     | ent:           | Tricon Mining Equipment I                      | Pty Ltd                                             |          | Contour<br>Interval: | Not applicable                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
| Project N<br>Client: Tr<br>Project: ( | of Ho<br>Number<br>ricon M<br>Geolog<br>: Off M<br>by: MA | le: DDH<br>r: 3430<br>/ining Eq<br>gical Asse<br>laytoms L<br>/SK | l2<br>uipment<br>ssment<br>ane, Boora |                                       | Da<br>Da<br>Da<br>Sui<br>Co<br>Dri | Ilview<br>te Logged: 03/01/2<br>te Commenced: 08<br>te Completed: 13/1<br>face RL: 189.85 Al<br>ordinates: E:39867<br>ling Contractor: D | 9/12/2016<br>2/2016<br>HD<br>2.97 N:6404 |                |                                                | Environmental<br>Compliance<br>Solutions<br>16of 21 |          |                      |                                                                                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
| Drilling<br>Method                    | Elev<br>(F                                                | ation Do<br>RL)                                                   | Core (m)<br>Recovery                  | (%)<br>Diametral<br>Strength<br>(Moa) | Axial<br>Strength<br>(Mpa)         | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequenc<br>/m                                                                                   | Fracture<br>Log                          | Graphic<br>Log | Lithological<br>Description                    | Additional<br>Information                           |          |                      | Late F                                                                                                          |                                                    | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                  |                   |
|                                       |                                                           |                                                                   |                                       | 8.5                                   | 3.98                               |                                                                                                                                          | >                                        | ч<br>          |                                                |                                                     | $\wedge$ |                      |                                                                                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <u>1</u>          |
|                                       |                                                           |                                                                   | 95                                    |                                       |                                    | 2                                                                                                                                        |                                          | 7 A<br>2 4     |                                                |                                                     |          |                      | Antin                                                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
| 1                                     | 14 —                                                      | _                                                                 |                                       |                                       |                                    |                                                                                                                                          |                                          | J . L .        | Rhyolitic Tuff- grey to blue, porphrytic, some | Machine<br>fractures                                |          |                      | The second se |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
|                                       |                                                           | - 7                                                               | 6                                     |                                       |                                    |                                                                                                                                          |                                          | L              | veins                                          | 78-81.4m                                            |          |                      | And and a second second                                                                                         | the line                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <mark>0</mark> 10 |
|                                       |                                                           |                                                                   | 100                                   |                                       |                                    | 4                                                                                                                                        |                                          |                |                                                |                                                     |          |                      | Lik                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
| 1 <sup>,</sup>                        | 13 —                                                      |                                                                   |                                       |                                       |                                    |                                                                                                                                          |                                          | ~ ~ ~ ~        |                                                |                                                     |          |                      | Carl Con                                                                                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Jan               | 78                |
|                                       |                                                           | - 7                                                               | 7                                     | 9.89                                  | 5.25                               |                                                                                                                                          | -                                        | 2<br>2<br>2    |                                                |                                                     |          |                      | +1·81                                                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | E.                |
|                                       |                                                           |                                                                   | 100                                   |                                       |                                    | 3*                                                                                                                                       |                                          | د<br>۸         |                                                |                                                     |          |                      |                                                                                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Para and Para     |
| Diamond Drill                         |                                                           |                                                                   |                                       |                                       |                                    |                                                                                                                                          |                                          | 7. 1           |                                                |                                                     |          |                      |                                                                                                                 | K k                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
| Diam<br>Diam                          | 12 —                                                      | 7                                                                 | 8                                     | _                                     |                                    |                                                                                                                                          |                                          | L . L          |                                                |                                                     |          |                      |                                                                                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
|                                       |                                                           |                                                                   |                                       |                                       |                                    |                                                                                                                                          |                                          | 2<br>          |                                                |                                                     |          |                      | 81.4                                                                                                            | 57                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |
|                                       |                                                           |                                                                   | 95                                    |                                       |                                    | 1*                                                                                                                                       |                                          | 2              |                                                |                                                     |          |                      | ( )                                                                                                             | 6                                                  | for the second s |                     | 1                 |
| 1                                     | 11 —                                                      | 7                                                                 | .9                                    | 9.63                                  | 3.7                                |                                                                                                                                          |                                          | 7.4            |                                                |                                                     |          |                      | Qualtest R                                                                                                      | esource Mater                                      | rial Testin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Assessm           | ent Extra         |
|                                       |                                                           |                                                                   |                                       |                                       |                                    | -                                                                                                                                        |                                          |                |                                                |                                                     |          | /                    |                                                                                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | Material Suit     |
|                                       |                                                           |                                                                   | 100                                   |                                       |                                    | 2*                                                                                                                                       |                                          | <br>           |                                                |                                                     |          |                      | Sample                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concrete            | Concrete          |
| 1                                     | 10 —                                                      |                                                                   | .0                                    |                                       |                                    |                                                                                                                                          |                                          | · · · ·        |                                                |                                                     |          |                      | Number                                                                                                          | Identification<br>Hematized                        | Durable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aggregate           | Sand              |
| Other in                              |                                                           | ation:                                                            |                                       |                                       |                                    |                                                                                                                                          |                                          | 7. 1           |                                                |                                                     | /        |                      | DDH2                                                                                                            | Rhyolitic Tuff/<br>Ryhodacite (ii)                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes (i)             | Yes (i)           |
| Data incl<br>*: Sub V                 | luded v<br>ertical                                        | within thi:<br>Joint                                              | s log have<br>ultiple joint           |                                       | ed from field                      | observations and                                                                                                                         | geotechnic                               | al data colle  | cted and provided by Qualtest Lab              | oratories.                                          |          |                      | DDH2 S-2                                                                                                        | Rhyolitic Tuff<br>Trachyte (ii)                    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes (i)             | Yes (i)           |
| Prepare                               | d By:                                                     | MA/SK                                                             |                                       | S<br>Survey Data                      | Chee                               | cked By: SK                                                                                                                              |                                          |                | Version: 3430_HQ_GA_DDF                        | 12_V3                                               |          |                      | (i)                                                                                                             | Provided that the app<br>deleterious alkali-silica | propriate preco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | autions are taker   | n in mix and er   |

VGT Environmental Compliance Solutions Pty Ltd 4/30 Glenwood Drive, Thornton NSW 2322 PO Box 2335, Greenhills NSW 2323 ph: (02) 4028 6412 email: mail@vgt.com.au www.vgt.com.au

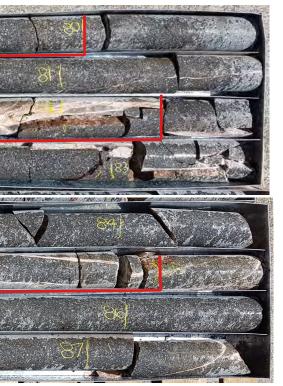
suitable boulders are procured.



This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.



| Suitability Summary           |           |                                    |              |         |             |  |  |  |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
| Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |  |
| rete<br>d                     | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
| (i)                           | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
| (i)                           | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |

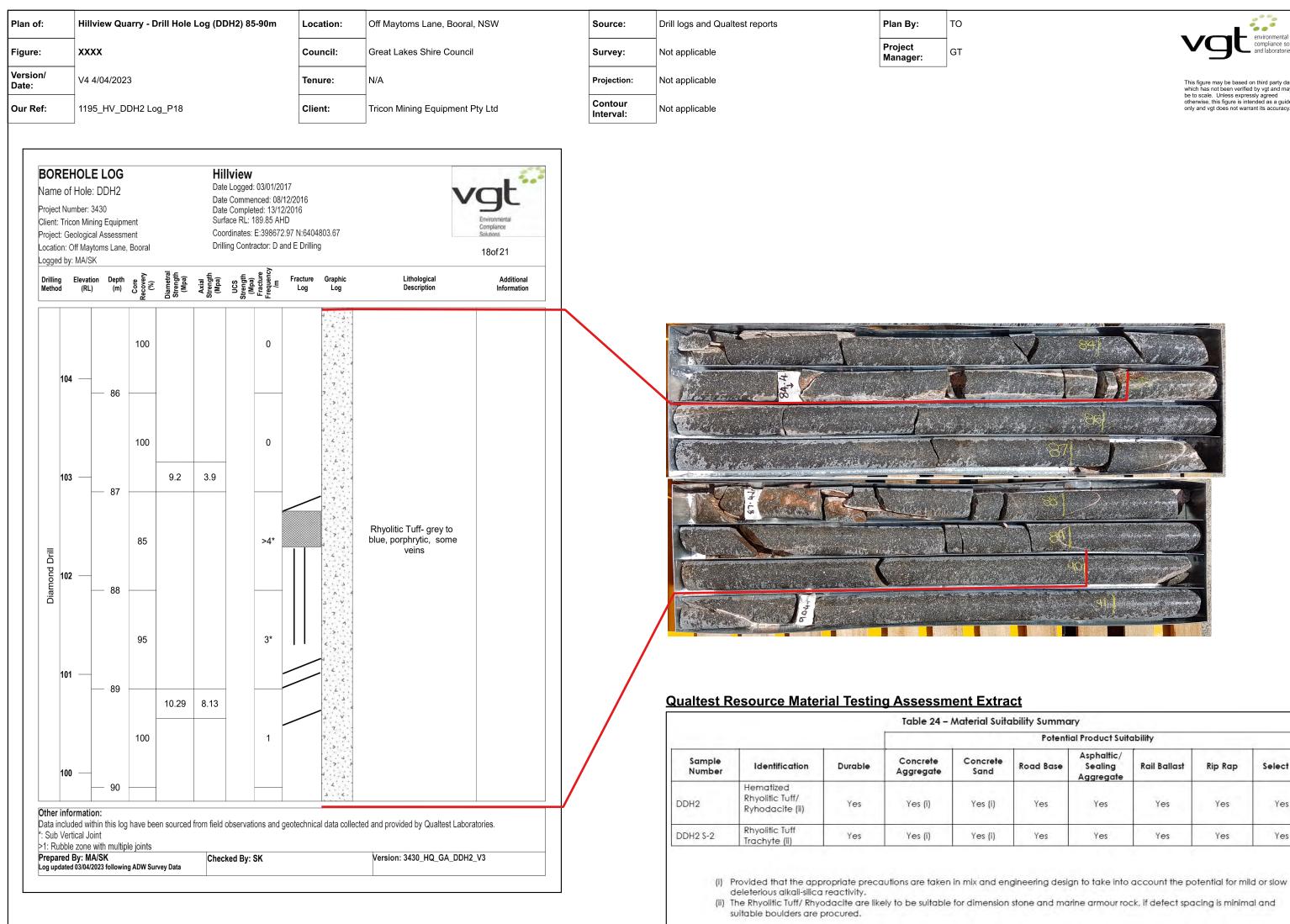

engineering design to take into account the potential for mild or slow

(ii) The Rhyolitic Tuff/ Rhyodacite are likely to be suitable for dimension stone and marine armour rock, if defect spacing is minimal and

| an of:                                              |                                                            | Hillview                               | Quarry -                     | Drill Hole                     | e Log (DI                                       | DH2) 80-85m                                                                                                                    | Loc                                         | ation:                                | Off Maytoms Lane, Booral,           | NSW                                                 | Source:              | Drill logs and Qual | test reports                                                                                              |                                | Plan By:              | то                           |
|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------|--------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------|---------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|------------------------------|
| gure:                                               |                                                            | хххх                                   |                              |                                |                                                 |                                                                                                                                | Cou                                         | ıncil:                                | Great Lakes Shire Council           |                                                     | Survey:              | Not applicable      |                                                                                                           |                                | Project<br>Manager:   | GT                           |
| rsion/<br>te:                                       |                                                            | V4 4/04/2                              | 023                          |                                |                                                 |                                                                                                                                | Ten                                         | ure:                                  |                                     |                                                     | Projection:          | Not applicable      |                                                                                                           |                                |                       |                              |
| r Ref:                                              |                                                            | 1195_HV                                | _DDH2 L                      | .og_P17                        |                                                 |                                                                                                                                | Clie                                        | ent:                                  | Tricon Mining Equipment P           | ty Ltd                                              | Contour<br>Interval: | Not applicable      |                                                                                                           |                                |                       |                              |
|                                                     |                                                            |                                        |                              |                                |                                                 |                                                                                                                                |                                             |                                       | _                                   |                                                     |                      |                     |                                                                                                           |                                |                       |                              |
| Name<br>Project<br>Client: <sup>-</sup><br>Project: | of Ho<br>Numbe<br>Tricon I<br>Geolog<br>n: Off M<br>by: MA |                                        | oment<br>sment<br>ne, Booral |                                | Date<br>Date<br>Date<br>Surfa<br>Coor<br>Drilli | Iview<br>a Logged: 03/01/2<br>a Commenced: 04<br>b Completed: 13/<br>ace RL: 189.85 A<br>rdinates: E:39863<br>ng Contractor: D | 8/12/2016<br>12/2016<br>NHD<br>72.97 N:6404 |                                       | V                                   | Ervironmental<br>Compliance<br>Solutions<br>17of 21 |                      |                     |                                                                                                           |                                |                       |                              |
| Drilling<br>Method                                  | Elev<br>(                                                  | vation Dep<br>RL) (m                   | Core<br>Recovery<br>(%)      | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa)                      | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequenc                                                                               | Fracture<br>Log                             | Graphic<br>Log                        | Lithological<br>Description         | Additional<br>Information                           |                      |                     |                                                                                                           |                                |                       |                              |
|                                                     |                                                            |                                        | 100                          |                                |                                                 | 0                                                                                                                              |                                             | 4 4 4                                 |                                     |                                                     |                      |                     |                                                                                                           |                                |                       |                              |
|                                                     | 109 —                                                      | _                                      |                              | 11.82                          | 1.46                                            |                                                                                                                                |                                             | 2<br>                                 |                                     |                                                     |                      | (                   |                                                                                                           |                                |                       | 1                            |
|                                                     |                                                            | - 81                                   |                              |                                |                                                 |                                                                                                                                | -                                           | 3 V<br>7<br>7<br>7                    |                                     |                                                     |                      | 418                 | -                                                                                                         | - Andrews                      |                       |                              |
|                                                     |                                                            |                                        | 95                           |                                |                                                 | 1*                                                                                                                             |                                             | · · · · · · · · · · · · · · · · · · · | Rhyolitic Tuff- grey to             |                                                     |                      | 197                 |                                                                                                           | pene                           | n l                   |                              |
|                                                     | 108 —                                                      | 82                                     |                              | -                              |                                                 |                                                                                                                                |                                             | 7. 1<br>                              | blue, porphrytic, heavily<br>veined |                                                     |                      |                     |                                                                                                           |                                |                       |                              |
|                                                     |                                                            |                                        |                              |                                |                                                 |                                                                                                                                |                                             |                                       |                                     |                                                     |                      |                     | <u></u>                                                                                                   | <u></u>                        |                       |                              |
| nd Drill                                            | 107 —                                                      |                                        | 95                           | 7.51                           | 2.52                                            | 7*                                                                                                                             |                                             | 7. 1<br>                              |                                     |                                                     |                      | <u> Vilaniana</u>   | <u> </u>                                                                                                  | <del></del>                    |                       |                              |
| Diamond Drill                                       | 107 —                                                      | - 83                                   |                              | -                              |                                                 |                                                                                                                                |                                             | 4<br>                                 |                                     |                                                     |                      |                     |                                                                                                           | <u>en esterne</u>              | T T                   | <u>i de la calacia</u>       |
|                                                     |                                                            |                                        | 95                           |                                |                                                 | 4*                                                                                                                             |                                             | 2<br><br>                             |                                     |                                                     | /                    |                     | hter strange and                                                                                          | dia in the second              |                       | when from                    |
|                                                     | 106 —                                                      | _                                      |                              |                                |                                                 |                                                                                                                                |                                             | 7. 1                                  |                                     |                                                     |                      |                     |                                                                                                           |                                |                       |                              |
|                                                     |                                                            | - 84                                   |                              | -                              |                                                 |                                                                                                                                |                                             |                                       |                                     |                                                     |                      | Qualtest R          | esource Mater                                                                                             | <u>rial Testin</u>             |                       | nent Extra<br>Material Suito |
|                                                     |                                                            |                                        | 95                           | 7.49                           | 5.94                                            | 3*                                                                                                                             |                                             | L                                     |                                     |                                                     |                      |                     | 1                                                                                                         |                                | -                     | 1                            |
|                                                     | 105 —                                                      |                                        |                              |                                |                                                 |                                                                                                                                |                                             | 7                                     |                                     |                                                     | /                    | Sample<br>Number    | Identification<br>Hematized                                                                               | Durable                        | Concrete<br>Aggregate | Concrete<br>Sand             |
| Other i                                             | nform                                                      |                                        |                              | -                              |                                                 |                                                                                                                                |                                             | 4                                     |                                     |                                                     |                      | DDH2                | Rhyolitic Tuff/<br>Ryhodacite (ii)                                                                        | Yes                            | Yes (i)               | Yes (i)                      |
| Data in<br>*: Sub \                                 | cluded<br>√ertical                                         | within this I<br>I Joint               | -                            |                                | from field o                                    | observations and                                                                                                               | d geotechnica                               | al data collec                        | ted and provided by Qualtest Labor  | atories.                                            |                      | DDH2 \$-2           | Rhyolitic Tuff<br>Trachyte (ii)                                                                           | Yes                            | Yes (i)               | Yes (i)                      |
| >1: Rul<br>Prepar<br>Log upd                        | ed By:<br>ated 03/                                         | ne with mul<br>MA/SK<br>04/2023 follov | upie joints<br>ving ADW Su   | rvey Data                      | Checl                                           | ked By: SK                                                                                                                     |                                             |                                       | Version: 3430_HQ_GA_DDH2            | _V3                                                 |                      | (ii)                | Provided that the app<br>deleterious alkali-silica<br>The Rhyolitic Tuff/ Rhyo<br>suitable boulders are p | reactivity.<br>odacite are lik |                       |                              |

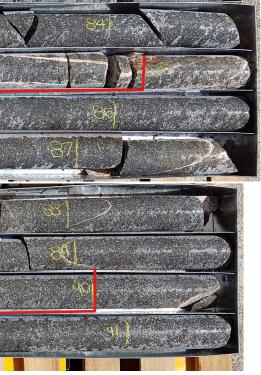


This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.

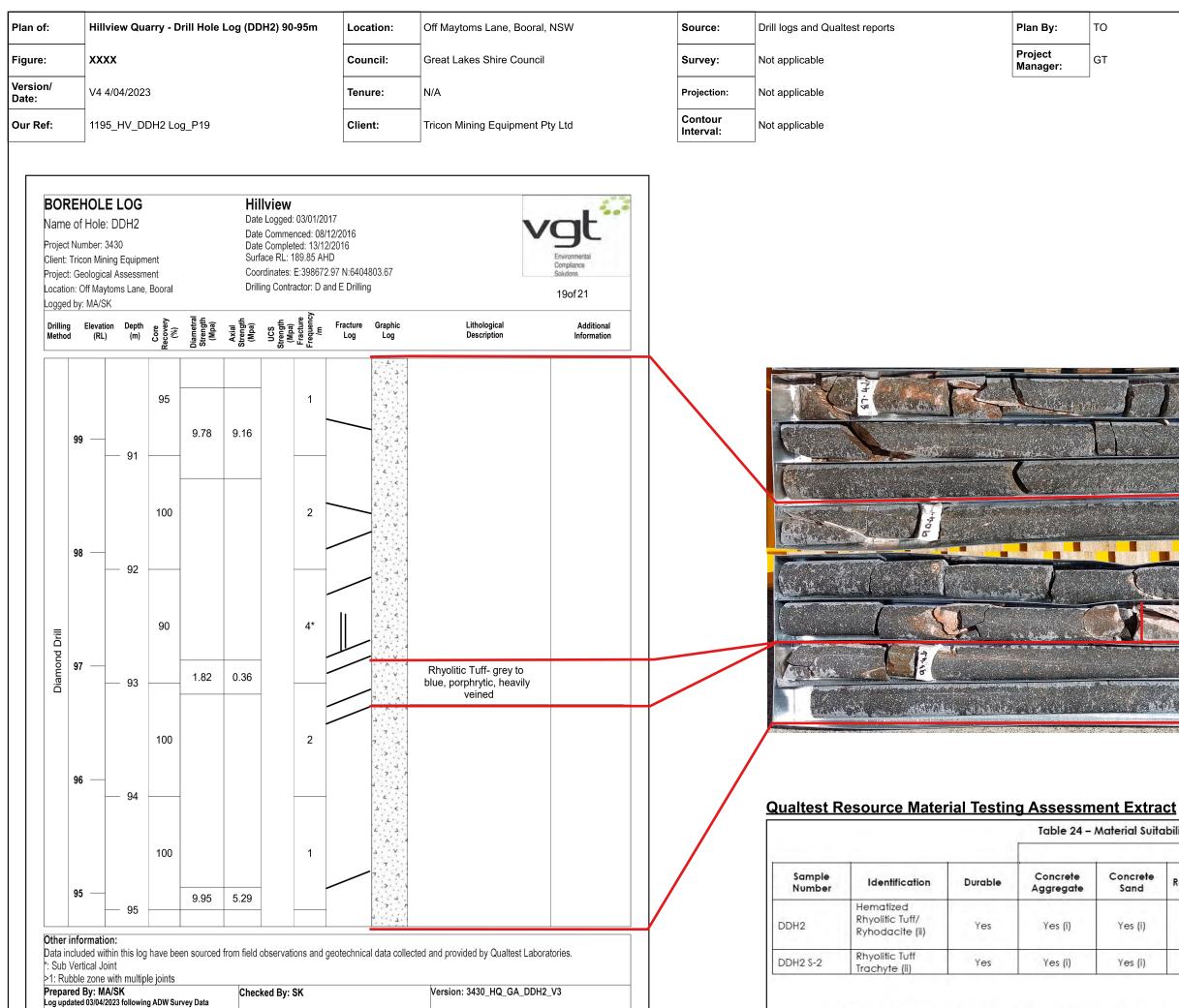



# ract

| Potential Product Suitability |                                    |              |         |            |  |  |  |  |  |  |
|-------------------------------|------------------------------------|--------------|---------|------------|--|--|--|--|--|--|
| Road Base                     | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fil |  |  |  |  |  |  |
| Yes                           | Yes                                | Yes          | Yes     | Yes        |  |  |  |  |  |  |
| Yes                           | Yes                                | Yes          | Yes     | Yes        |  |  |  |  |  |  |


engineering design to take into account the potential for mild or slow

ion stone and marine armour rock, if defect spacing is minimal and



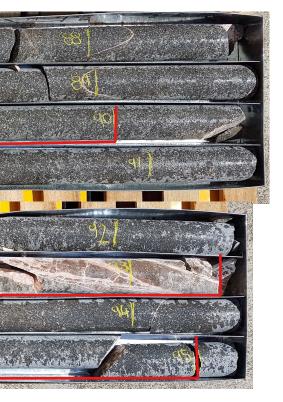



This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.



|   | Potential Product Suitability |                                    |              |         |             |  |  |  |  |  |  |  |
|---|-------------------------------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|--|
|   | Road Base                     | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |  |
|   | Yes                           | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |  |
| 1 | Yes                           | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |  |




(i) Provided that the appropriate precautions are taken in mix and engineering design to take into account the potential for mild or slow deleterious alkali-silica reactivity

suitable boulders are procured.

ph: (02) 4028 6412 4/30 Glenwood Drive, Thornton NSW 2322 PO Box 2335, Greenhills NSW 2323 ABN: 26 621 943 888 VGT Environmental Compliance Solutions Pty Ltd email: mail@vgt.com.au www.vgt.com.au



This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.



|   | Potential Product Suitability |                                    |              |         |             |  |  |  |  |  |  |
|---|-------------------------------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
|   | Road Base                     | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
|   | Yes                           | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
| 1 | Yes                           | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |

(ii) The Rhyolitic Tuff/ Rhyodacite are likely to be suitable for dimension stone and marine armour rock, if defect spacing is minimal and



deleterious alkali-silica reactivity

suitable boulders are procured.



| Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|
|                               | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |

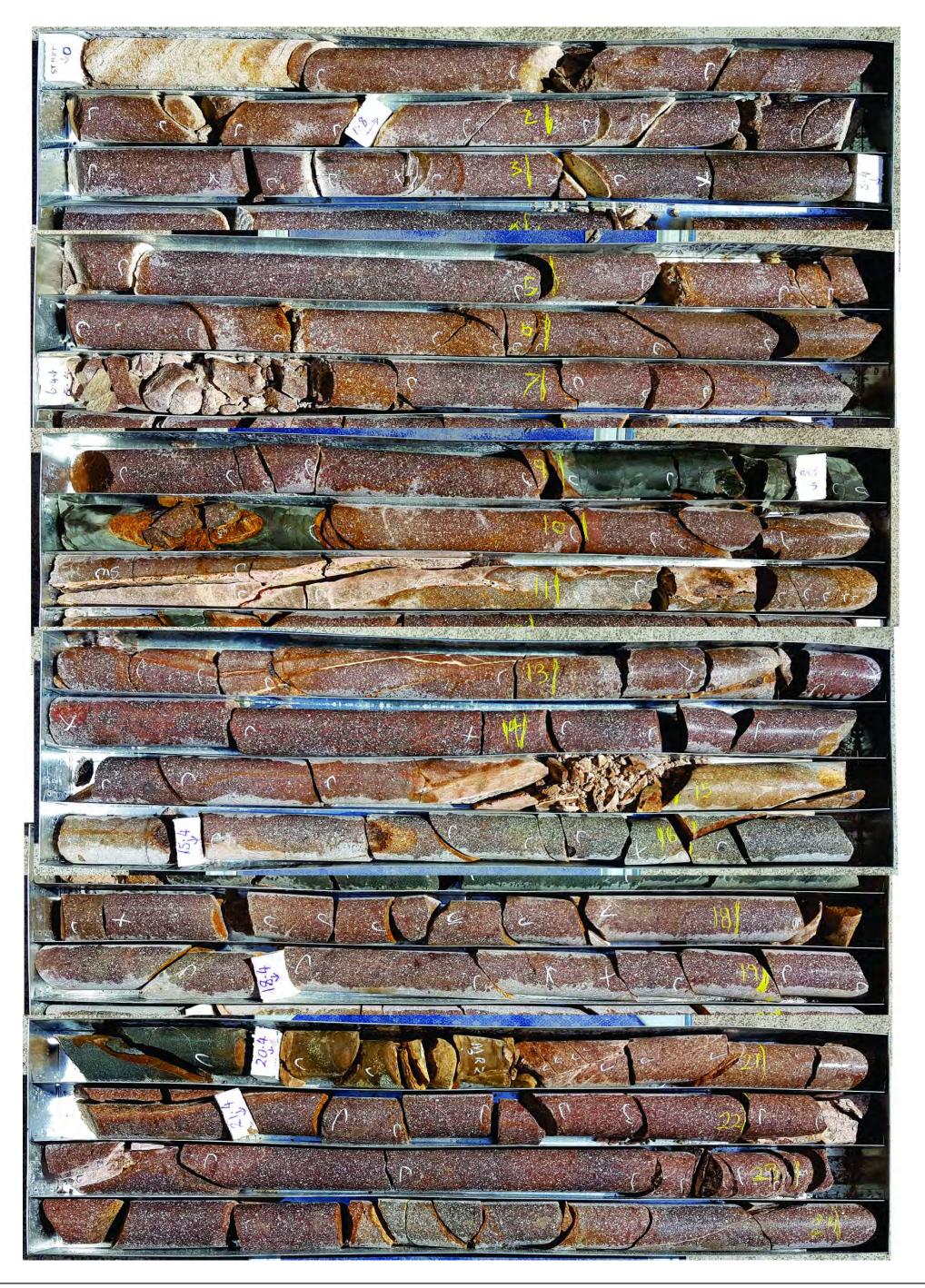
(i) Provided that the appropriate precautions are taken in mix and engineering design to take into account the potential for mild or slow

(ii) The Rhyolitic Tuff/ Rhyodacite are likely to be suitable for dimension stone and marine armour rock, if defect spacing is minimal and

| хххх                                |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I, NSW                                              | Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drill logs and Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | то                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cou                                                                                                                                                                                                                                                                                                        | ncil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Great Lakes Shire Counci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                   | Survey:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project<br>Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V4 4/04                             | /2023                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tenu                                                                                                                                                                                                                                                                                                       | ure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | Projection:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1195_H                              | IV_DDH2                                                                                                                                            | Log_P21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clie                                                                                                                                                                                                                                                                                                       | nt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tricon Mining Equipment F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ⊃ty Ltd                                             | Contour<br>Interval:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/01/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| er: 3430<br>Mining Ec<br>ogical Ass | luipment<br>essment                                                                                                                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dat<br>Sur<br>Coc                                                                                                                                           | te Completed<br>face RL: 189<br>prdinates: E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d: 13/12/2<br>9.85 AHD<br>398672.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2016<br>97 N:6404                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Environmental<br>Compliance<br>Solutions<br>21of 21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| evation D<br>(RL)                   | epth Core<br>Core<br>Recovery                                                                                                                      | (%)<br>Diametral<br>Strength<br>(Mna)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Axial<br>Strength<br>(Mpa)                                                                                                                                  | UCS<br>Strength<br>(Mpa)<br>Fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency<br>/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fracture<br>Log                                                                                                                                                                                                                                                                                            | Graphic<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Additional<br>Information                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 85                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 101                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hole Terminated at Target<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-I-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 102                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 103                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 104                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualtest R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | esource Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>rial Testin</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Durable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concrete<br>Aggregate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concrete<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | 105                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DDH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ation:<br>within the                | is log have                                                                                                                                        | been source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed from field                                                                                                                                               | observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ns and ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otechnica                                                                                                                                                                                                                                                                                                  | al data collec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ted and provided by Qualtest Labo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pratories.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DDH2 S-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rhyolitic Tuff<br>Trachyte (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| one with n<br>: MA/SK               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chec                                                                                                                                                        | cked By: Sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Version: 3430_HQ_GA_DDH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I2_V3                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | deleterious alkali-silica<br>The Rhyolitic Tuff/ Rhyo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reactivity.<br>odacite are lik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | LE LC<br>le: DDI<br>r: 3430<br>lining Ec<br>gical Ass<br>laytoms I<br>/SK<br>ration D<br>RL)<br>ation:<br>within th<br>Joint<br>ne with n<br>MA/SK | LE LOG<br>le: DDH2<br>r: 3430<br>Aining Equipment<br>gical Assessment<br>laytoms Lane, Boora<br>/SK<br>ration Depth go go<br>(m) go go<br>go<br>assessment<br>assessment<br>laytoms Lane, Boora<br>/SK<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment | LELOG<br>le: DDH2<br>r: 3430<br>/ining Equipment<br>gical Assessment<br>laytoms Lane, Booral<br>/SK<br>ration Depth g $g g g g g g g g g g g g g g g g g g$ | le: DDH2 Data<br>T: 3430 Data<br>Jining Equipment Sur<br>gical Assessment Coordination of the set of the | LE LOG       Hillview         le: DDH2       Date Logged: 0         r: 3430       Date Commend         gical Assessment       Coordinates: E:         laytoms Lane, Booral       Drilling Contract         /SK       registration       registration         attion       mm       gives       registration         101       stion:       stion:       stion:         within this log have been sourced from field observatior Joint       not       stion:         MAISK       MAISK       Checked By: SP | LE LOG       Hillview         le: DDH2       Date Logged: 03/01/2011         r: 3430       Date Completed: 13/1/22         Jining Equipment       Surface RL: 189.85 AHD         gical Assessment       Coordinates: E: 398672.5         laytoms Lane, Booral       Drilling Contractor: D and         /SK | LE LOG<br>le: DDH2       Hillview<br>Date Logget: 03/01/2017<br>Date Commenced: 03/12/2016<br>Surface RL: 18/38/AHD         r: 3430       Surface RL: 18/38/AHD         Jayloms Lane, Booral       Drilling Contractor: D and E Drilling         JSK       Strace RL: 18/38/AHD         ation       Bage R         ation       Bage R         Image Ruphment       Strace RL: 18/38/AHD         JSK       Drilling Contractor: D and E Drilling         JSK       Image Ruphment         ation       Base         Image Ruph       Base         Image Ruphment       Base         JSK       Image Ruphment         Image Ruphment       Base         Image Ruphm | Le       LOG       Hillview         Le: DDH2       ::340       Date Logge::0301/2017         ining Equipment       :22016         ipcal Assessment       :2007         laytoms Lane, Booral       :2007         SK       :2007         ation       provide the interview         ining Countrates:       :3308/72.97 N:6404803.67         Date Logge:       :3102         SK       :2007         ation       provide the interview         ining Countrates:       :3308/72.97 N:6404803.67         Dilling Contractor:       D and E Drilling         SK       :2007         ation       :2008         ining Countractor:       D and E Drilling         ining Countractor:       :2007         ining Countractor:       :2007 | LE LOG                                              | LE LOC<br>67.300<br>Arring Equipment<br>1000 Arring Expansion<br>Laptons Lane, Board<br>101 min S S E       Hilly can<br>be Commenced 001/2016<br>Suffice RL: 188.5 AHD<br>2016/188.5 AHD | Little     Little     Little     Little     Little     Little     Little       If     If     Date Logget (001/01/17)     Date Logget (001/01/17)     Date Logget (001/02/16)       Jack Commerced Strates     Date Logget (001/02/16)     Surface RL (186 Str Million)     Date Logget (001/02/16)       Jack Commerced Strates I Date Logget (001/02/16)     Date Logget (001/02/16)     Surface RL (186 Str Million)     Date Logget (001/02/16)       Jack Commerced Strates I Date Logget (001/02/16)     Date Logget (001/02/16)     Surface RL (186 Str Million)     Date Logget (001/02/16)       Jack Death Document     Coordinates: E39972 Str Ms Hold 03 Str     Date Logget (001/02/16)     Surface RL (186 Str Million)       Jack Death Document     Date Logget (001/02/16)     Surface RL (186 Str Million)     Date Logget (001/02/16)       Jack Death Document     Date Logget (001/02/16)     Surface RL (186 Str Million)     Date Logget (001/02/16)       Jack Death Document     Date Logget (001/02/16)     Date Logget (001/02/16)     Surface RL (186 Str Million)       Jack Death Document     Date Logget (001/02/16)     Date Logget (001/02/16)     Surface RL (186 Str Million)       Jack Death Document     Date Logget (001/02/16)     Date Logget (001/02/16)     Surface RL (186 Str Million)       Jack Death Document     Date Logget (001/02/16)     Date Logget (001/02/16)     Surface RL (186 Str Million) | Interval:       Note Legit 201       Interval:       Note possible         LE LOG       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Le DOB       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Legit: X00007       Interval:       Note possible         Set State       Date Legit: X00007       Date Leg | Itel:     Itel: | Image for public data     Image for public data     Image for public data       LE     LOS     Del to public data     Del to public data       LE     LOS     Del to public data     Del to public data       LE     LOS     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     Del to public data     Del to public data       LE     Del to public data     D | Hindow       Internet       Internet       Marketing         EE DOG       Um suppression       Um suppression       Um suppression         Hindow       Um suppression       Um suppression       Um suppression       Um suppression         Hindow       Um suppression       Um suppression       Um suppression       Um suppression       Um suppression         Hindow       Um suppression       Um suppression       Um suppression       Um suppression       Um suppression         Hindow       Um suppression       Um suppression       Um suppression       Um suppression       Um suppression         Hindow       Hindow       Um suppression       Um suppression       Um suppression       Um suppression         Hindow       Hindow       Um suppression |



This figure may be based on third party data which has not been verified by vgt and may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and vgt does not warrant its accuracy.




| uitability Summary            |           |                                    |              |         |             |  |  |  |  |  |  |
|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|--|
| Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |  |
| te                            | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |
|                               | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |  |


engineering design to take into account the potential for mild or slow

on stone and marine armour rock, if defect spacing is minimal and

| Plan of         | Hillview Quarry - BBH2 Core Photos            | Location: | Off Maytoms Lane, Booral, NSW   | Source:              | VGT Photography 2023 | Plan By:            | то  |                                                                                                                       |
|-----------------|-----------------------------------------------|-----------|---------------------------------|----------------------|----------------------|---------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| Figure          | Page 1                                        | Council:  | Great Lakes Shire Council       | Survey:              | Not applicable       | Project<br>Manager: | GVT | vgt environmental<br>compliance solutions<br>and laboratories                                                         |
| Versio<br>Date: | / V0 21/02/2023                               | Tenure:   | Not Applicable                  | Projection:          | Not applicable       |                     | _   | This figure may be based on third party<br>data which has not been verified by vgt<br>and may not be to scale. Unless |
| Our Re          | 1195_HV_SEARS_Q008_V0_BHH2 Core<br>Box 1 to 6 | Client:   | Tricon Mining Equipment Pty Ltd | Contour<br>Interval: | Not applicable       |                     |     | expressly agreed otherwise, this figure<br>is intended as a guide only and vgt<br>does not warrant its accuracy.      |



| Pla      | an of:        | Hillview Quarry - BBH2 Core Photos             | Location: | Off Maytoms Lane, Booral, NSW   | Source:              | VGT Photography 2023 | Plan By:            | то  | 1. T                                                                                                                  |
|----------|---------------|------------------------------------------------|-----------|---------------------------------|----------------------|----------------------|---------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| Fig      | jure:         | Page 2                                         | Council:  | Great Lakes Shire Council       | Survey:              | Not applicable       | Project<br>Manager: | GVT | Vgc environmental<br>compliance solutions<br>and laboratories                                                         |
| Ve<br>Da | rsion/<br>te: | V0 21/02/2023                                  | Tenure:   | Not Applicable                  | Projection:          | Not applicable       |                     |     | This figure may be based on third party<br>data which has not been verified by vgt<br>and may not be to scale. Unless |
| Ou       | ır Ref:       | 1195_HV_SEARS_Q008_V0_BHH2 Core<br>Box 7 to 12 | Client:   | Tricon Mining Equipment Pty Ltd | Contour<br>Interval: | Not applicable       |                     |     | expressly agreed otherwise, this figure<br>is intended as a guide only and vgt<br>does not warrant its accuracy.      |



| P  | lan of:         | Hillview Quarry - BBH2 Core Photos              | Location: | Off Maytoms Lane, Booral, NSW   | Source:              | VGT Photography 2023 | Plan By:            | то  |                                                                                                                       |
|----|-----------------|-------------------------------------------------|-----------|---------------------------------|----------------------|----------------------|---------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| Fi | igure:          | Page 3                                          | Council:  | Great Lakes Shire Council       | Survey:              | Not applicable       | Project<br>Manager: | GVT | voit compliance solutions<br>and laboratories                                                                         |
|    | ersion/<br>ate: | V0 21/02/2023                                   | Tenure:   | Not Applicable                  | Projection:          | Not applicable       |                     | -   | This figure may be based on third party<br>data which has not been verified by vgt<br>and may not be to scale. Unless |
| 0  | ur Ref:         | 1195_HV_SEARS_Q008_V0_BHH2 Core<br>Box 13 to 18 | Client:   | Tricon Mining Equipment Pty Ltd | Contour<br>Interval: | Not applicable       |                     |     | expressly agreed otherwise, this figure<br>is intended as a guide only and vgt<br>does not warrant its accuracy.      |



| Р  | lan of:         | Hillview Quarry - BBH2 Core Photos              | Location: | Off Maytoms Lane, Booral, NSW   | Source:              | VGT Photography 2023 | Plan By:            | то  |                                                                                                                       |  |
|----|-----------------|-------------------------------------------------|-----------|---------------------------------|----------------------|----------------------|---------------------|-----|-----------------------------------------------------------------------------------------------------------------------|--|
| Fi | gure:           | Page 4                                          | Council:  | Great Lakes Shire Council       | Survey:              | Not applicable       | Project<br>Manager: | GVT | vojte environmental<br>compliance solutions<br>and laboratories                                                       |  |
|    | ersion/<br>ate: | V0 21/02/2023                                   | Tenure:   | Not Applicable                  | Projection:          | Not applicable       |                     | -   | This figure may be based on third party<br>data which has not been verified by vgt<br>and may not be to scale. Unless |  |
| 0  | ur Ref:         | 1195_HV_SEARS_Q008_V0_BHH2 Core<br>Box 19 to 24 | Client:   | Tricon Mining Equipment Pty Ltd | Contour<br>Interval: | Not applicable       |                     |     | expressly agreed otherwise, this figure<br>is intended as a guide only and vgt<br>does not warrant its accuracy.      |  |

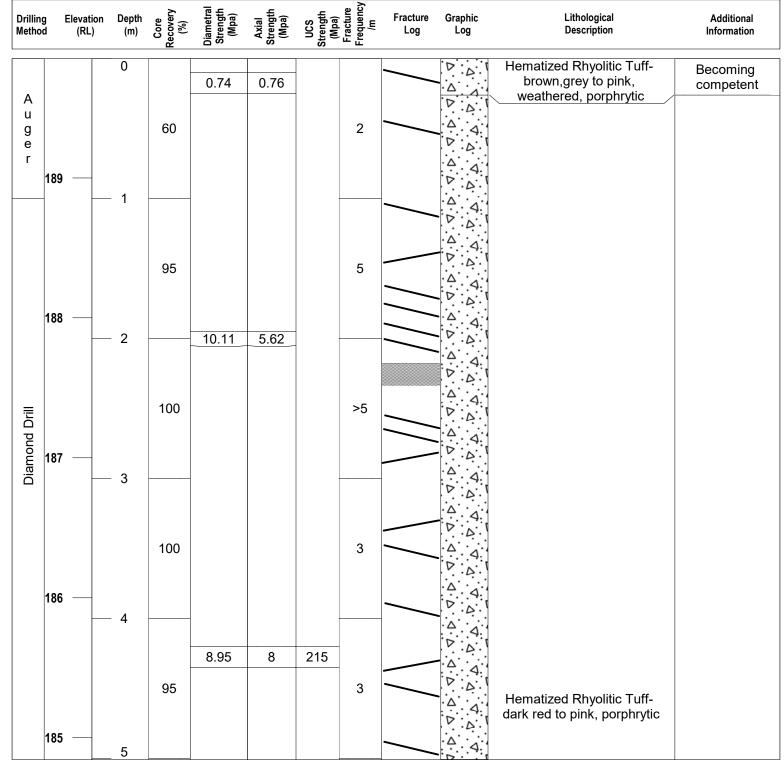


| Pla        | n of:       | Hillview Quarry - BBH2 Core Photos              | Location: | Off Maytoms Lane, Booral, NSW   | Source:              | VGT Photography 2023 | Plan By:            | то  |                                                                                                                       |
|------------|-------------|-------------------------------------------------|-----------|---------------------------------|----------------------|----------------------|---------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| Fig        | ure:        | Page 5                                          | Council:  | Great Lakes Shire Council       | Survey:              | Not applicable       | Project<br>Manager: | GVT | Vgc environmental<br>compliance solutions<br>and laboratories                                                         |
| Ver<br>Dat | sion/<br>e: | V0 21/02/2023                                   | Tenure:   | Not Applicable                  | Projection:          | Not applicable       |                     |     | This figure may be based on third party<br>data which has not been verified by vgt<br>and may not be to scale. Unless |
| Ou         | r Ref:      | 1195_HV_SEARS_Q008_V0_BHH2 Core<br>Box 25 to 26 | Client:   | Tricon Mining Equipment Pty Ltd | Contour<br>Interval: | Not applicable       |                     |     | expressly agreed otherwise, this figure<br>is intended as a guide only and vgt<br>does not warrant its accuracy.      |



VGT Environmental Compliance Solutions Pty Ltd 4/30 Glenwood Drive, Thornton NSW 2322 PO Box 2335, Greenhills NSW 2323 ph: (02) 4028 6412 email: mail@vgt.com.au www.vgt.com.au ABN: 26 621 943 888

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



1 of 21

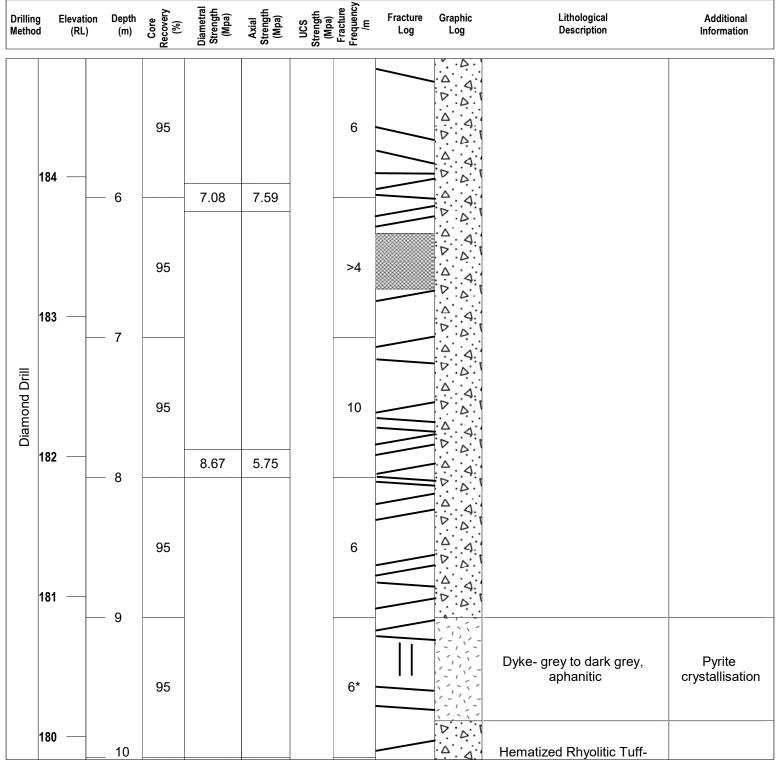


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>.og updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



2 of 21



#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK                               | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|--------------------------------------------------|----------------|-----------------------------|
| Log updated 03/04/2023 following ADW Survey Data | -              |                             |

Name of Hole: DDH2

## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



3 of 21

| Drilling<br>Metho | g Elevatio<br>d (RL) | n Depth<br>(m) | Core<br>Recovery<br>(%) | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa) | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequency<br>/m | Fracture<br>Log | Graphic<br>Log           | Lithological<br>Description                                                                                                                 | Additional<br>Information                                                         |
|-------------------|----------------------|----------------|-------------------------|--------------------------------|----------------------------|---------------------------------------------------------|-----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                   |                      |                |                         | 9.54                           | 5.28                       |                                                         | >               |                          | dark red to pink, porphrytic                                                                                                                |                                                                                   |
|                   | 179 —                | — 11           | 95                      |                                |                            | 4*                                                      |                 | 0.0.0.0.0.0<br>0.0.0.0.0 | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic                                                                                   | Feldspathic<br>veining                                                            |
|                   | 178 —                | — 12           | 95                      | 4.51                           | 2.85                       | 5                                                       |                 |                          | Hematized Rhyolitic Tuff-<br>orange to pink,<br>weathered, porphrytic<br>Dyke- grey to dark grey,<br>aphanitic<br>Hematized Rhyolitic Tuff- | Plagioclase<br>alteration<br>Some pyrite<br>crystallisation<br>Some<br>weathering |
| Diamond Drill     | 177 —                |                | 100                     |                                |                            | 7                                                       |                 |                          | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic                                                                                   | Feldspathic<br>veining                                                            |
|                   | 470                  | — 13           | 95                      |                                |                            | 1*                                                      |                 |                          |                                                                                                                                             | venning                                                                           |
|                   | 176 —                | — 14           | 95                      | 9.65                           | 8.76                       | >6                                                      |                 |                          | Hematized Rhyolitic<br>Tuff-dark red, porphrytic                                                                                            |                                                                                   |
|                   | 175 —                | 15             |                         |                                |                            |                                                         |                 |                          | Hematized Rhyolitic Tuff-                                                                                                                   |                                                                                   |

### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK                               | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|--------------------------------------------------|----------------|-----------------------------|
| Log updated 03/04/2023 following ADW Survey Data | -              |                             |

Name of Hole: DDH2

## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling

>



4 of 21

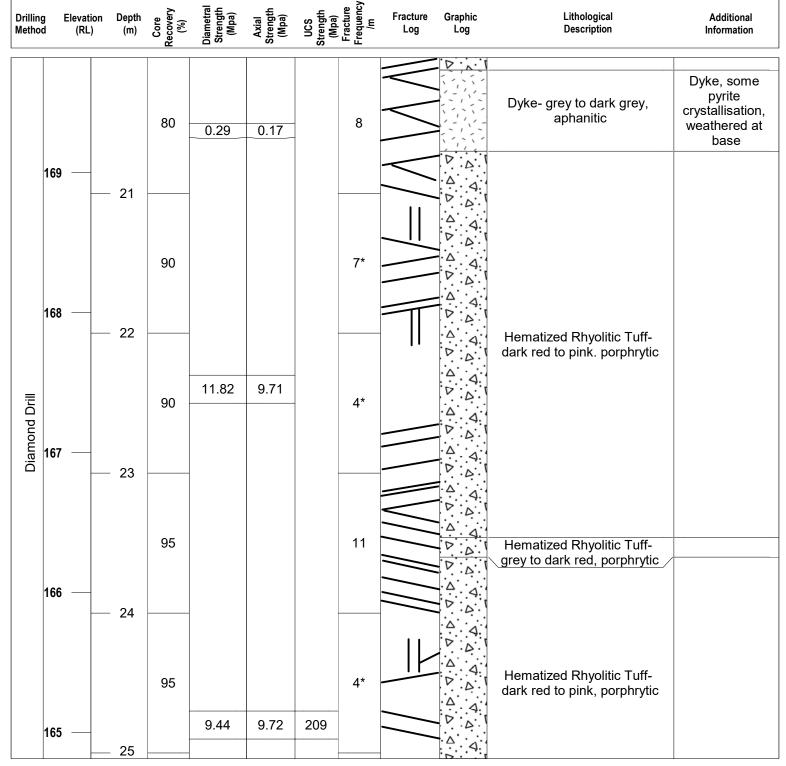
| Drillin<br>Metho | g Elevati<br>d (RL) | on Depth<br>(m) | Core<br>Recovery<br>(%) | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa) | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequency | Fracture<br>Log | Graphic<br>Log                                                                   | Lithological<br>Description                                                                        | Additional<br>Information      |
|------------------|---------------------|-----------------|-------------------------|--------------------------------|----------------------------|---------------------------------------------------|-----------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|
|                  |                     |                 | -                       | 3.54                           | 3.09                       |                                                   |                 |                                                                                  | orange, weathered, friable, porphrytic                                                             |                                |
|                  | 174 —               | — 16            | 95                      |                                |                            | 6                                                 |                 | A . A . A . A . A . A . A                                                        | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic,                                         |                                |
|                  |                     |                 | 85                      |                                |                            | >6                                                | $\sim$          | 4.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0. | Hematized Rhyolitic Tuff-<br>orange, weathered, friable,<br>porphrytic<br>Dyke- grey to dark grey, | Some pyrite                    |
|                  | 173 —               | — 17            |                         | 6.79                           | 5.54                       |                                                   |                 |                                                                                  | aphanitic                                                                                          | crystallisation                |
| Diamond Drill    | 172 —               | — 18            | 95                      |                                |                            | 7                                                 |                 | D. 0. D. 0. D. 0                                                                 |                                                                                                    |                                |
|                  | 171 —               |                 | 85                      | 10.39                          | 7.26                       | 6                                                 |                 |                                                                                  | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic                                          | Some<br>feldspathic<br>veining |
|                  |                     | — 19            | 95                      |                                |                            | 7                                                 |                 |                                                                                  | Hematized Rhyolitic Tuff-<br>grey to dark red, porphrytic                                          |                                |
|                  | 170 —               | 20              |                         |                                |                            |                                                   |                 | 0.0.0                                                                            | Hematized Rhyolitic Tuff-<br>dark red to pink, porphrytic                                          |                                |

### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK                               | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|--------------------------------------------------|----------------|-----------------------------|
| Log updated 03/04/2023 following ADW Survey Data | -              |                             |

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



5 of 21

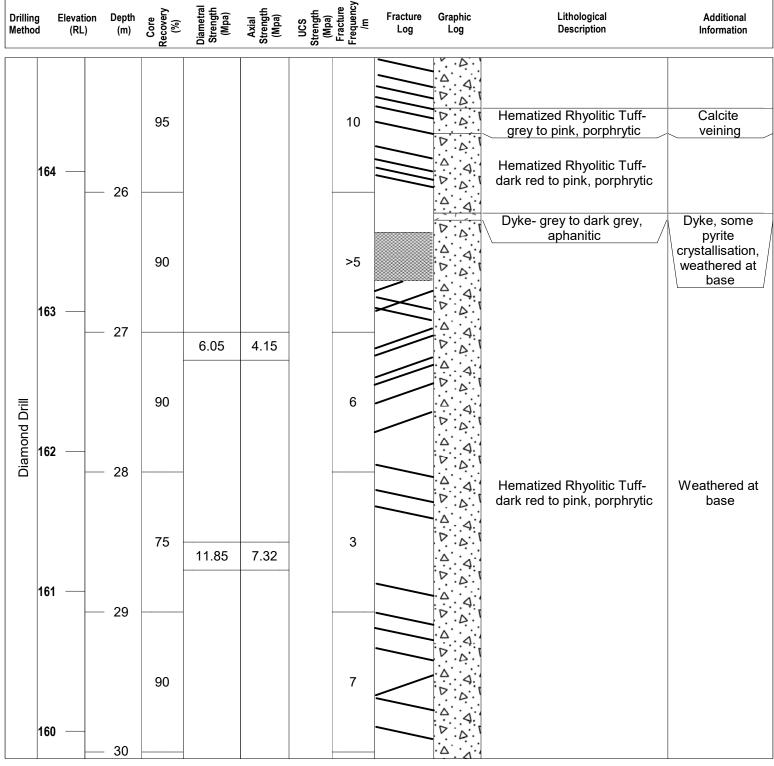


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|-----------------------------|
|------------------------------------------------------------------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



6 of 21

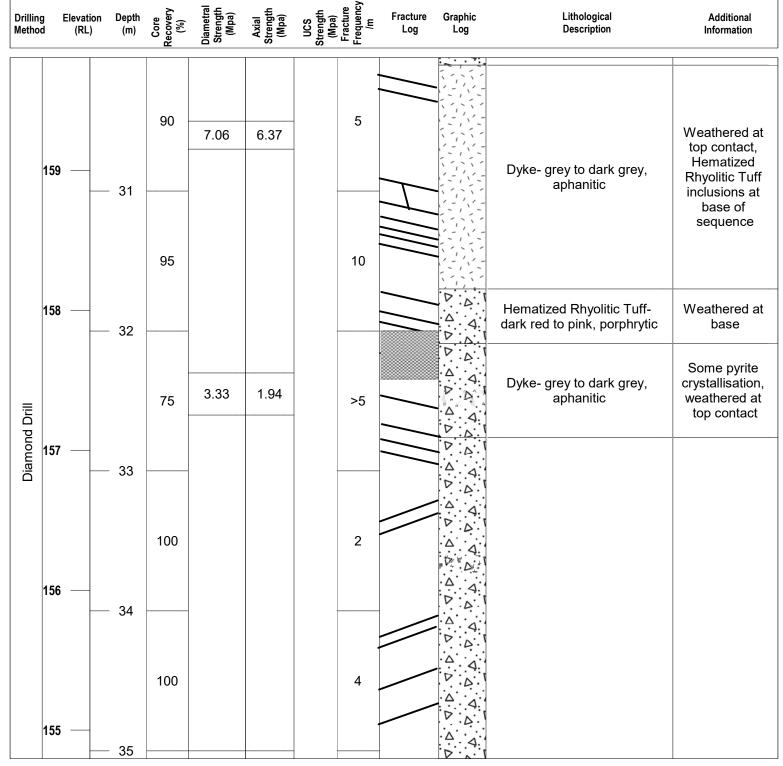


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Log updated 05/04/2025 following ADW Survey Data | Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|--------------------------------------------------|------------------------------------------------------------------------|----------------|-----------------------------|
|--------------------------------------------------|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



7 of 21

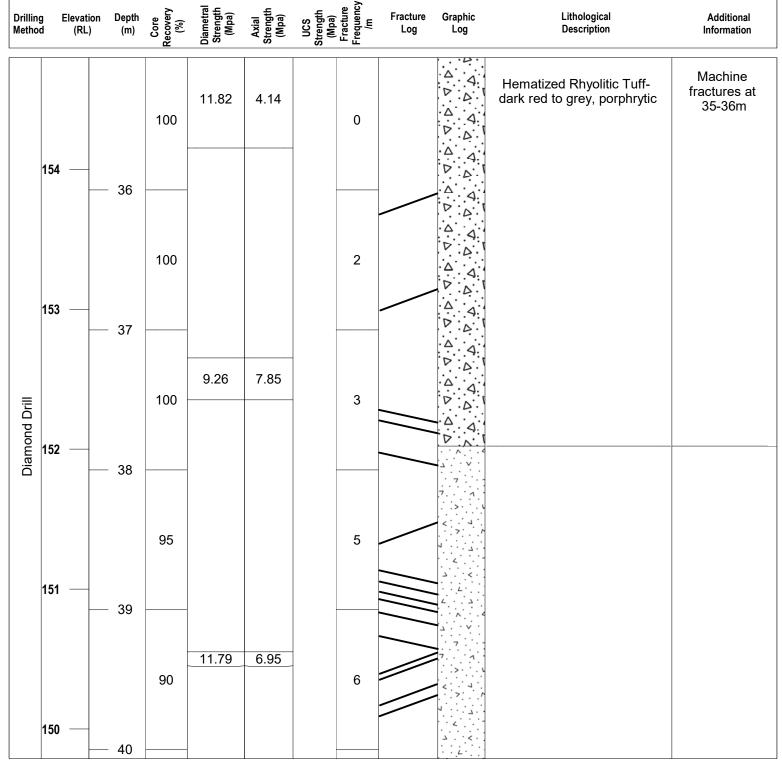


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|                                                                        |                |                             |

Name of Hole: DDH2


Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



8 of 21

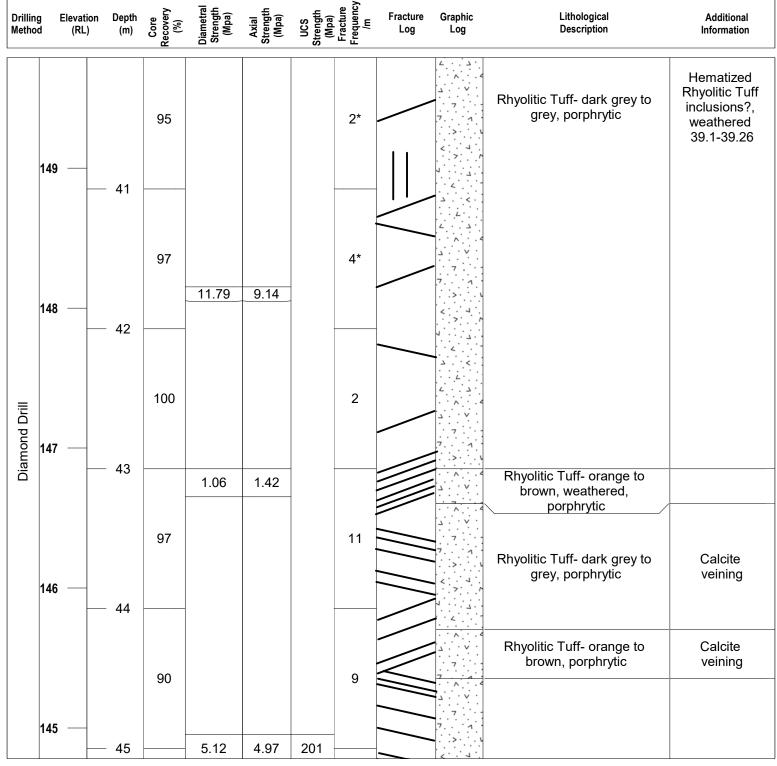


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

## Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



9 of 21

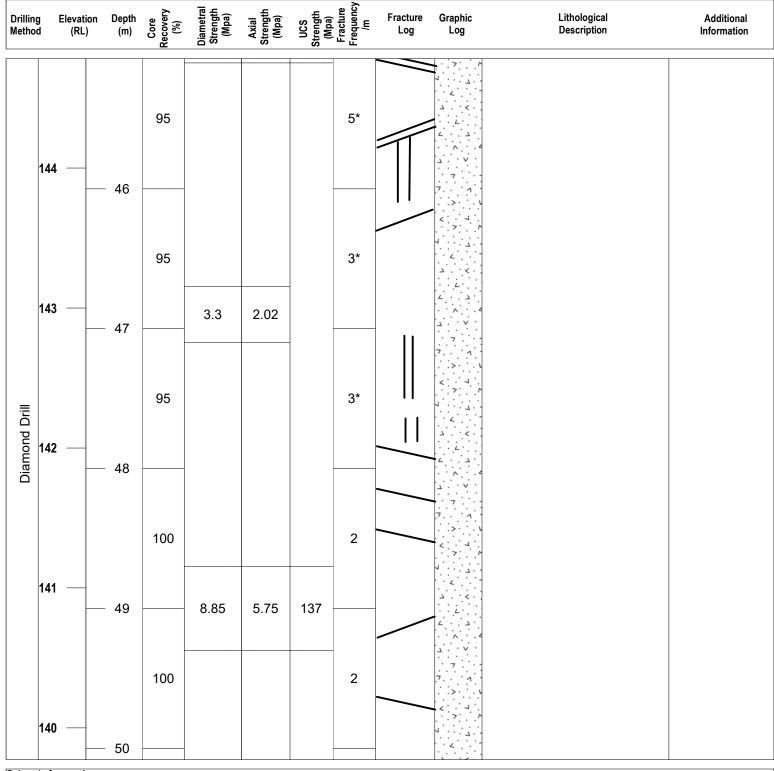


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK                               | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|--------------------------------------------------|----------------|-----------------------------|
| Log updated 03/04/2023 following ADW Survey Data |                |                             |

Name of Hole: DDH2


Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



10of 21

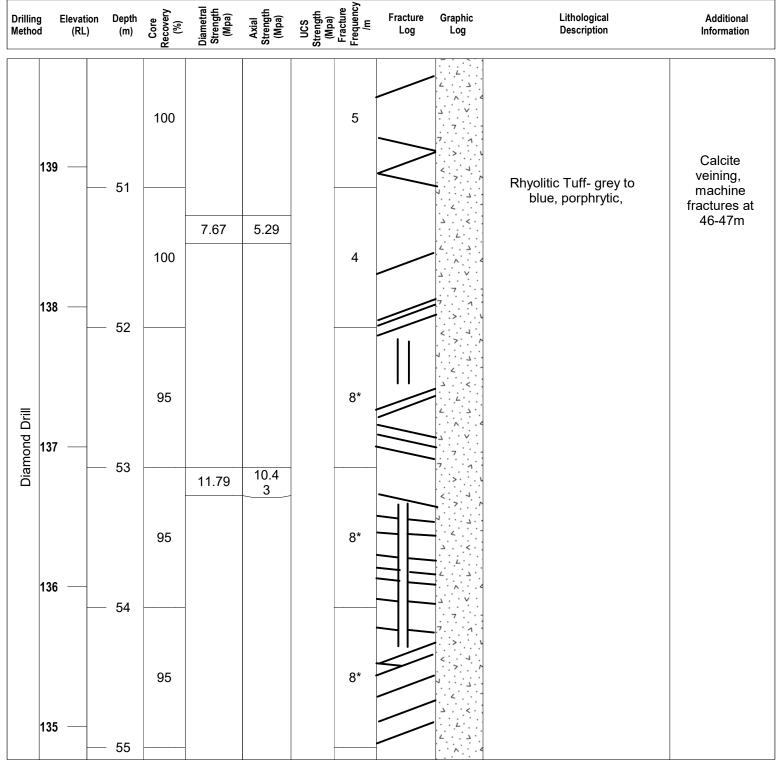


### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



11of 21

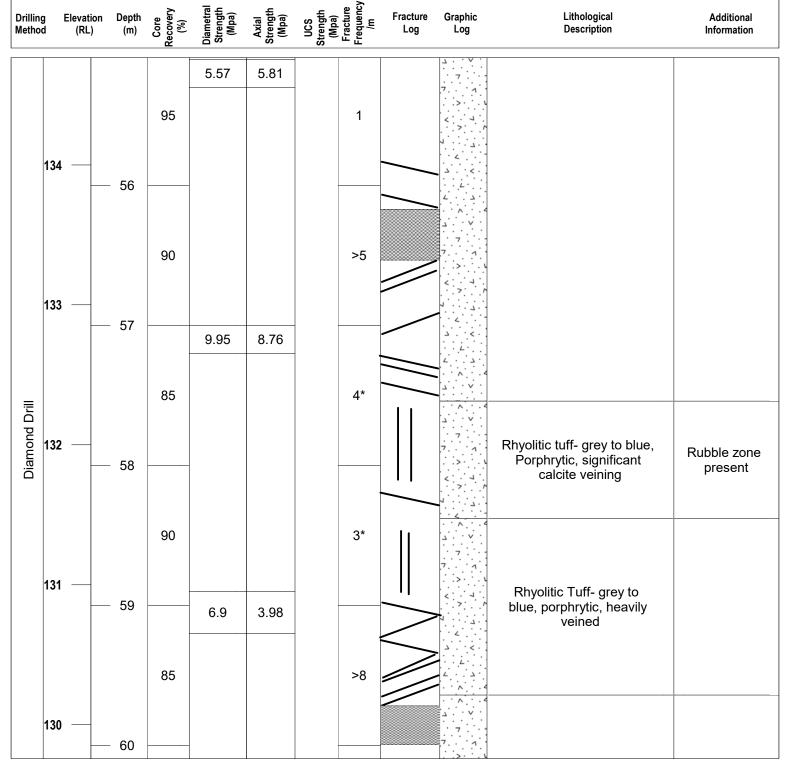


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



12of 21



#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2

## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



13of 21

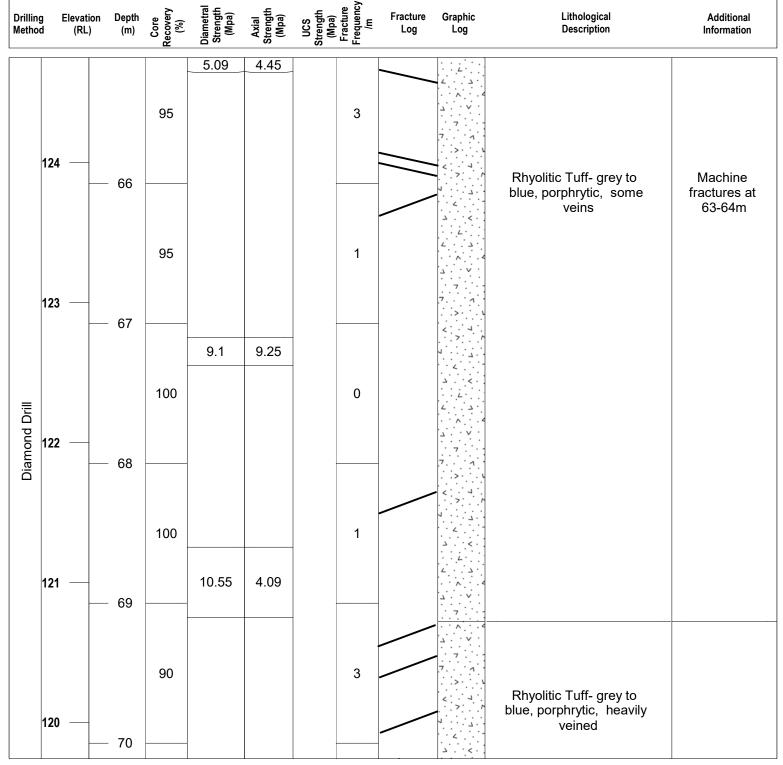
| Drilling<br>Method | j Ele | vation<br>RL) | Depth<br>(m) | Core<br>Recovery<br>(%) | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa) | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequency<br>/m | Fracture<br>Log | Graphic<br>Log                        | Lithological<br>Description                                    | Additional<br>Information |
|--------------------|-------|---------------|--------------|-------------------------|--------------------------------|----------------------------|---------------------------------------------------------|-----------------|---------------------------------------|----------------------------------------------------------------|---------------------------|
|                    | 129 – |               |              | 80                      |                                |                            | >7                                                      |                 | ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ | Rhyolitic Tuff- grey to blue,<br>porphrytic, calcite veining   | Rubble zone<br>present    |
|                    |       |               | - 61         | 0.5                     | 1.27                           | 1.45                       |                                                         |                 | · · · · · · · · · · · · · · · · · · · |                                                                |                           |
|                    | 128 – |               | - 62         | 95                      |                                |                            | 3                                                       |                 |                                       | Rhyolitic Tuff- grey to<br>blue, porphrytic, heavily<br>veined |                           |
| Diamond Drill      | 407   |               |              | 95                      |                                |                            | 4                                                       |                 |                                       | Venied                                                         |                           |
| Diamo              | 127 – |               | - 63         |                         | 11.79                          | 8.34                       |                                                         |                 | · · · · · · · · · · · · · · · · · · · |                                                                |                           |
|                    | 126 – |               | 0.4          | 100                     |                                |                            | 0                                                       |                 |                                       |                                                                |                           |
|                    |       |               | - 64         | 95                      |                                |                            | 3                                                       |                 | · · · · · · · · · · · · · · · · · · · |                                                                |                           |
|                    | 125 – |               | - 65         |                         |                                |                            |                                                         |                 |                                       |                                                                |                           |

#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



14of 21

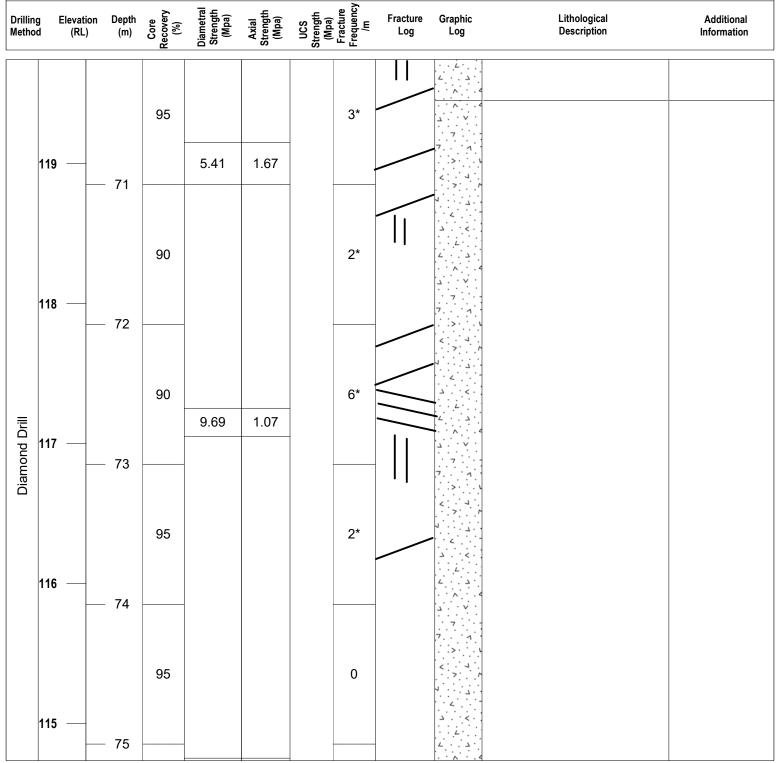


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>.og updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



15of 21

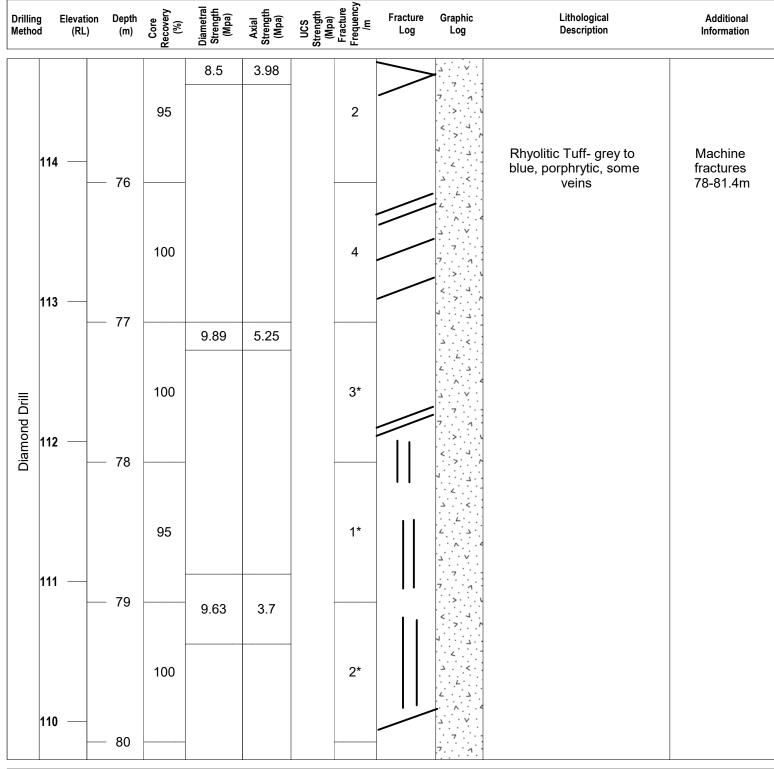


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK         Checked By: SK         Version: 3430_H           Log updated 03/04/2023 following ADW Survey Data         Checked By: SK         Version: 3430_H | HQ_GA_DDH2_V3 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



16of 21

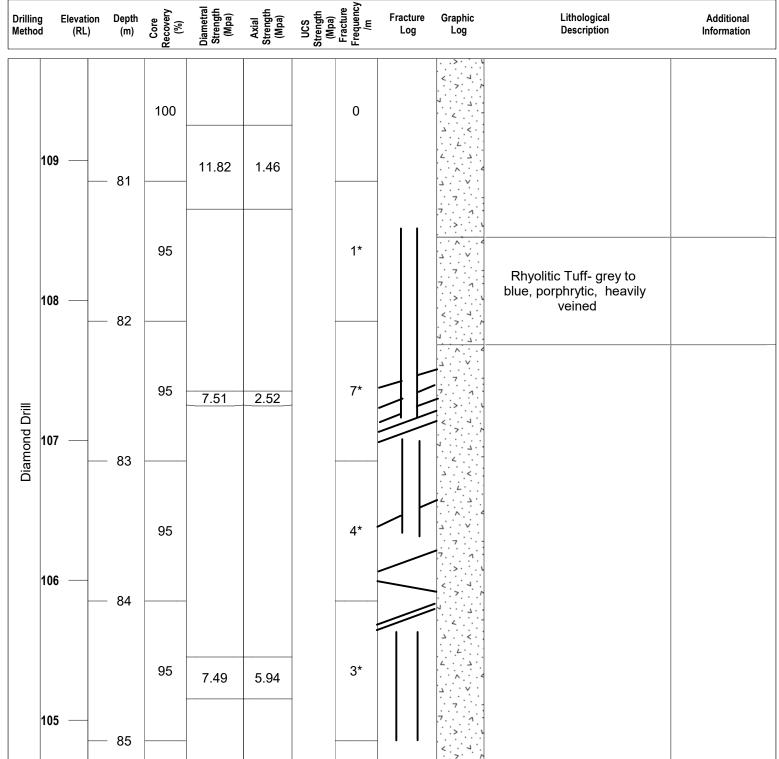


### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2


Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



17of 21

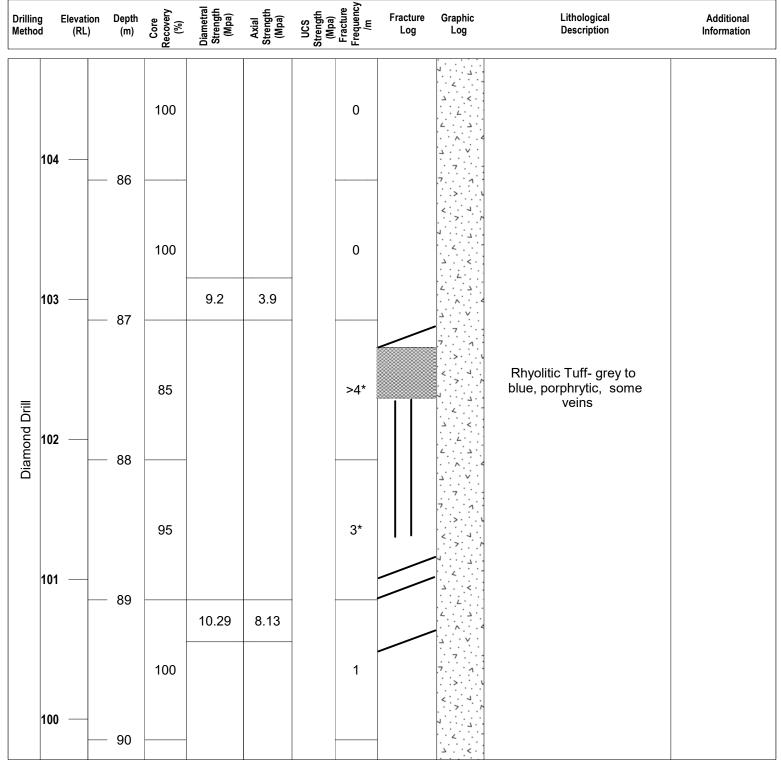


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
| -3-F                                                                   |                |                             |

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



18of 21

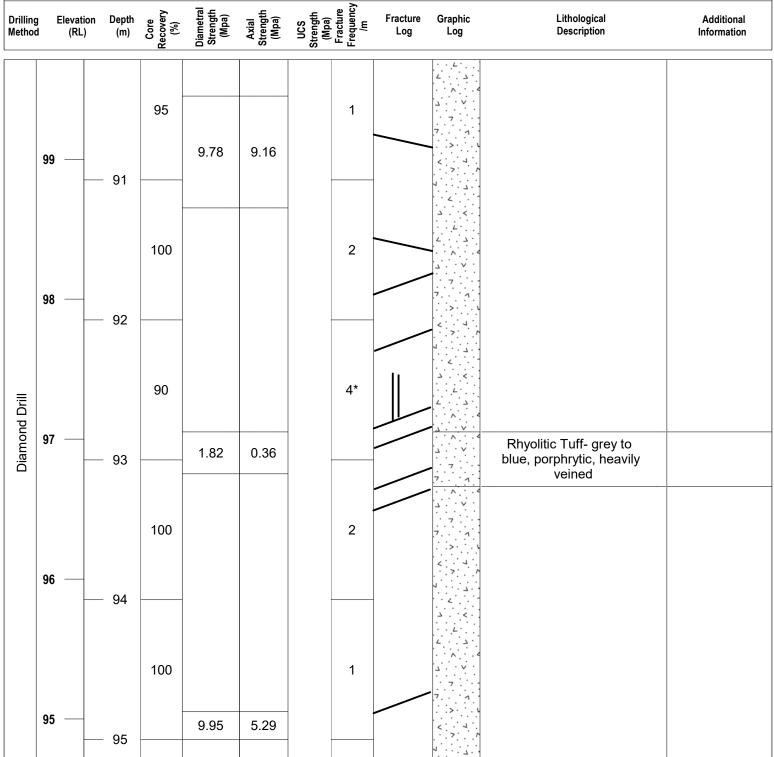


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | ecked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|--------------|-----------------------------|
|------------------------------------------------------------------------|--------------|-----------------------------|

Name of Hole: DDH2


Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



19of 21

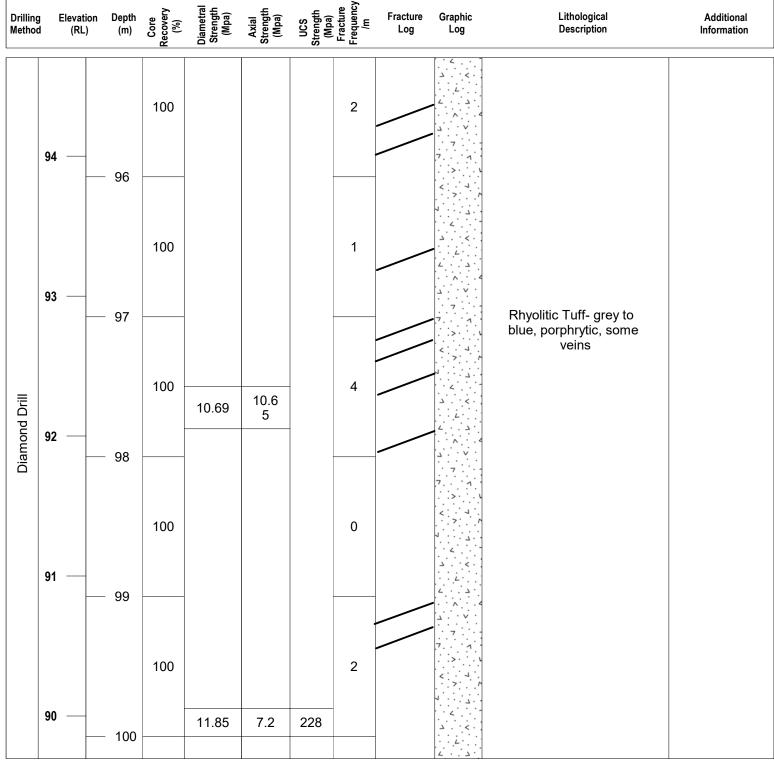


#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|                                                                        |                |                             |

Name of Hole: DDH2


## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



20of 21



#### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>.og updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|------------------------------------------------------------------------|----------------|-----------------------------|

Name of Hole: DDH2

## Project Number: 3430 Client: Tricon Mining Equipment Project: Geological Assessment Location: Off Maytoms Lane, Booral Logged by: MA/SK

# Hillview

Date Logged: 03/01/2017 Date Commenced: 08/12/2016 Date Completed: 13/12/2016 Surface RL: 189.85 AHD Coordinates: E:398672.97 N:6404803.67 Drilling Contractor: D and E Drilling



21of 21

| Drilling<br>Nethod | Elevation<br>(RL) | n Depth<br>(m) | Core<br>Recovery<br>(%) | Diametral<br>Strength<br>(Mpa) | Axial<br>Strength<br>(Mpa) | UCS<br>Strength<br>(Mpa)<br>Fracture<br>Frequency<br>/m | Fracture<br>Log | Graphic<br>Log | Lithological<br>Description        | Additional<br>Information |
|--------------------|-------------------|----------------|-------------------------|--------------------------------|----------------------------|---------------------------------------------------------|-----------------|----------------|------------------------------------|---------------------------|
| Diamond Drill      | 89 —              | — 101          | 85                      |                                |                            | 0                                                       |                 |                |                                    |                           |
|                    | 88 —              | — 102          |                         |                                |                            |                                                         |                 |                | Hole Terminated at Target<br>Depth |                           |
|                    | 87 —              | — 103          |                         |                                |                            |                                                         |                 |                |                                    |                           |
|                    | 86 —              | — 104          |                         |                                |                            |                                                         |                 |                |                                    |                           |
|                    | 85 —              | — 105          |                         |                                |                            |                                                         |                 |                |                                    |                           |

### Other information:

Data included within this log have been sourced from field observations and geotechnical data collected and provided by Qualtest Laboratories. \*: Sub Vertical Joint

| Prepared By: MA/SK<br>Log updated 03/04/2023 following ADW Survey Data | Checked By: SK | Version: 3430_HQ_GA_DDH2_V3 |
|------------------------------------------------------------------------|----------------|-----------------------------|
|                                                                        |                |                             |

Name of Hole: PH 3

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

## Hillview

Date Commenced:27/09/2016 Date Completed: 29/09/2016 Surface RL: 194.38m AHD Coordinates: E: 398601 N:6404686 Drilling Contractor: Total Drilling



1 of 6

| Drill<br>Type |                                                                                                                                     | Water Photo<br>Level Log | Graphic<br>Log | Description                                                        | Additional<br>Information |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|--------------------------------------------------------------------|---------------------------|
|               | 194 — 0<br>193 — 1                                                                                                                  |                          |                | Weathered Hematized Rhyolitic Tuff -<br>Dark Red/Red, porphyritic. |                           |
|               | 192       —       2         191       —       3         191       —       4         190       —       5         189       —       5 |                          |                | Weathered Hematized Rhyolitic Tuff-<br>Dark Red/Red, porphyritic   | Carbonate clay            |
| Hammer        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                               |                          |                | Weathered Hematized Rhyolitic Tuff-<br>Dark Red/red, porphrytic    |                           |
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                               |                          |                | Hematized Rhyolitic Tuff- dark<br>purple/grey,                     | Some weathering           |
|               | 175 — 19<br>20                                                                                                                      | CENTS                    |                |                                                                    |                           |

Other Information: No Piezometer installed Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA/SK | Checked By: SK | 3430_TH_GA_LOG_PH3_V2 |  |
|------------------|----------------|-----------------------|--|
|                  |                |                       |  |
|                  |                |                       |  |

Name of Hole: PH 3

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

## Hillview

Date Commenced:27/09/2016 Date Completed: 29/09/2016 Surface RL: 194.38m AHD Coordinates: E: 398601 N:6404686 Drilling Contractor: Total Drilling



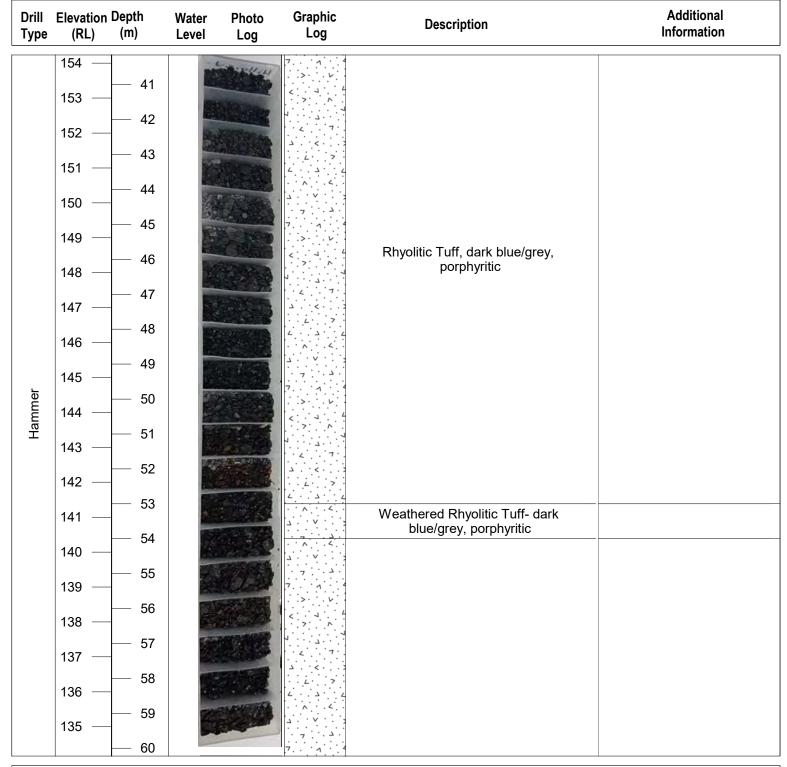
2 of 6

| Drill<br>Type | Elevation<br>(RL)                                                                                                                                                                                   | Depth<br>(m)                                                                                                                                                                       | Water<br>Level | Photo<br>Log | Graphic<br>Log                        | Description                                                                           | Additional<br>Information                                   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|---------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Hammer        | 174         173         172         171         171         170         169         168         167         166         165         164         163         164         163         161         160 | <ul> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>30</li> <li>31</li> <li>32</li> <li>33</li> <li>34</li> </ul> |                |              |                                       | Rhyolitic Tuff, dark purple/grey,<br>porphyritic                                      |                                                             |
|               | 159 —                                                                                                                                                                                               | — 35<br>— 36                                                                                                                                                                       | 110            |              |                                       | Hematized Rhyolitic Tuff/ Dyke-light<br>grey to dark grey, porphrytic to<br>aphanitic | Calcite precipitation                                       |
|               | 158 —<br>157 —                                                                                                                                                                                      | 37                                                                                                                                                                                 |                |              |                                       | Dyke- dark grey to blue, aphanitic                                                    | Pyrite crystalisation,<br>magnetic,calcite<br>precipitation |
|               | 156 —                                                                                                                                                                                               | - 38                                                                                                                                                                               |                |              |                                       | Weathered Rhyolitic Tuff- dark<br>blue/grey, porphyritic                              |                                                             |
|               | 155 —                                                                                                                                                                                               | 39<br>40                                                                                                                                                                           | ALMA A         |              | · · · · · · · · · · · · · · · · · · · |                                                                                       |                                                             |

Other Information: No Piezometer installed Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA/SK | Checked By: SK | 3430_TH_GA_LOG_PH3_V2 |
|------------------|----------------|-----------------------|
|                  |                |                       |

Name of Hole: PH 3


Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced:27/09/2016 Date Completed: 29/09/2016 Surface RL: 194.38m AHD Coordinates: E: 398601 N:6404686 Drilling Contractor: Total Drilling



3 of 6



| Logged By: MA/SK | Checked By: SK | 3430_TH_GA_LOG_PH3_V2 |
|------------------|----------------|-----------------------|
|                  |                |                       |

Name of Hole: PH 3

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced:27/09/2016 Date Completed: 29/09/2016 Surface RL: 194.38m AHD Coordinates: E: 398601 N:6404686 Drilling Contractor: Total Drilling



4 of 6

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|-------------------------------------------------------|
|                                                       |

| Logged By: MA/SK | Checked By: SK | 3430_TH_GA_LOG_PH3_V2 |
|------------------|----------------|-----------------------|
|                  |                |                       |

Name of Hole: PH 3

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced:27/09/2016 Date Completed: 29/09/2016 Surface RL: 194.38m AHD Coordinates: E: 398601 N:6404686 Drilling Contractor: Total Drilling



5 of 6

| Drill<br>Type | Elevation<br>(RL) | Depth<br>(m) | Water<br>Level | Photo<br>Log | Graphic<br>Log                             | Description                                    | Additional<br>Information |
|---------------|-------------------|--------------|----------------|--------------|--------------------------------------------|------------------------------------------------|---------------------------|
|               | 114 —<br>113 —    | 81           | 2              | Calify a     | · · · · · · · · · · · · · · · · · · ·      |                                                |                           |
|               | 112 —             | - 82         |                |              |                                            |                                                |                           |
|               | 112 -             | - 83         |                | 131234       |                                            |                                                |                           |
|               | 110 —             | - 84         |                |              | · · · · · · · · · · · · · · · · · · ·      |                                                |                           |
|               | 109 —             | - 85         |                |              | , , , , , , , , , , , , , , , , , , ,      |                                                |                           |
|               | 108 —             | 86           |                |              | · · · · · · · · · · · · · · · · · · ·      |                                                |                           |
|               | 107 —             | 87           |                |              | · · · · · · · · · · · · · · · · · · ·      | Rhyolitic Tuff- Grey/blue to red,              | Some weathering,          |
|               | 106 —             | 88           |                | 12.49        | · · · · · · · · · · · · · · · · · · ·      | porphyritic.                                   | magnetic, calcite veining |
|               | 105 —             | 89           |                | No. Con      | · · · · · · · · · · · · · · · · · · ·      |                                                |                           |
| Hammer        | 104 —             | 90           |                | N 160        | <                                          |                                                |                           |
|               | 103 —             | 91           |                | and a        | × · · · · · · · · · · · · · · · · · · ·    | Rhyolitic Tuff, dark blue/grey,                |                           |
|               | 102 —             | 92           |                |              | ۲۰۰۰ ۲۰۰۰ ۲                                | porphyritic                                    |                           |
|               | 101 —             | 93           |                |              | L                                          |                                                |                           |
|               | 100 —             | 94           |                |              |                                            |                                                |                           |
|               | 99 —              | 95           |                | a sub        | 4<br>· · · · · · · · · · · · · · · · · · · | Rhyolitic Tuff Grey/blue to red,               | Some weathering,          |
|               | 98 —              | 96           |                |              | · · · · · · · · · · · · · · · · · · ·      | porphyritic.                                   | magnetic, calcite veining |
|               | 97 —              | 97           |                | -            | · · · · · · · · · · · · · · · · · · ·      |                                                |                           |
|               | 96 —              | 98           |                | 100          | 4                                          | Rhyolitic Tuff, dark blue/grey,<br>porphyritic |                           |
|               | 95 —              | 99           |                |              | N                                          |                                                |                           |
|               | 94                | 100          |                |              | · · · · · · · · · · · · · · · · · · ·      |                                                |                           |

| Logged By: MA/SK | Checked By: SK | 3430_TH_GA_LOG_PH3_V2 |
|------------------|----------------|-----------------------|
|                  |                |                       |
|                  |                |                       |

Name of Hole: PH 3

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced:27/09/2016 Date Completed: 29/09/2016 Surface RL: 194.38m AHD Coordinates: E: 398601 N:6404686 Drilling Contractor: Total Drilling



6 of 6

| $\begin{bmatrix} 87 \\ - \\ 86 \\ - \\ 108 \\ 85 \\ - \\ 109 \\ 84 \\ - \\ 110 \\ 83 \\ - \\ 111 \\ 82 \\ - \\ 112 \\ 82 \\ - \\ 112 \\ 82 \\ - \\ 112 \\ 81 \\ - \\ 113 \\ 80 \\ - \\ 114 \\ 80 \\ - \\ 114 \\ 80 \\ - \\ 114 \\ 80 \\ - \\ 114 \\ 80 \\ - \\ 116 \\ 79 \\ - \\ 115 \\ - \\ 79 \\ - \\ 115 \\ - \\ 79 \\ - \\ 116 \\ 78 \\ - \\ 116 \\ 78 \\ - \\ 116 \\ 77 \\ - \\ 117 \\ 76 \\ - \\ 118 \\ - \\ 118 \\ - \\ 118 \\ - \\ 118 \\ - \\ 118 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 110 \\ - \\ 100 \\ - \\ 100 \\ - \\ 100 \\ - \\ 100 \\ - \\ 100 \\ - \\ 100 \\ - \\ 100 \\ - \\ 100 \\ - \\ 1$ | Drill<br>Type | Elevation<br>(RL)                                                                                                | Depth<br>(m)                                                                                                                                                           | Water<br>Level | Photo<br>Log | Graphic<br>Log | Description                                          | Additional<br>Information |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------|------------------------------------------------------|---------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 94         93         92         91         90         88         87         86         85         84         83 | <ul> <li>101</li> <li>102</li> <li>103</li> <li>104</li> <li>105</li> <li>106</li> <li>107</li> <li>108</li> <li>109</li> <li>110</li> <li>111</li> <li>112</li> </ul> |                |              |                | Rhyolitic Tuff, dark blue/grey,<br>porphyritic       | contamination, weathered  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                                  | -                                                                                                                                                                      |                |              | L              | Hole terminated due to difficult drilling conditions |                           |
| $\begin{array}{ c c c c c }\hline 77 & - & 117 \\ \hline 77 & - & 118 \\ \hline 76 & - & 118 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 79 —<br>78 —                                                                                                     | 116                                                                                                                                                                    |                |              |                |                                                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 77 —                                                                                                             | - 117                                                                                                                                                                  |                |              |                |                                                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 76 —<br>75 —                                                                                                     |                                                                                                                                                                        |                |              |                |                                                      |                           |

| Logged By: MA/SK | Checked By: SK | 3430_TH_GA_LOG_PH3_V2 |
|------------------|----------------|-----------------------|
|                  |                |                       |

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



1 of 7

| Drill<br>Type | Elevation D<br>(RL) | )epth<br>(m) |          | eter Photo<br>Log | Graphic<br>Log | Description                                                                | Additional<br>Information               |
|---------------|---------------------|--------------|----------|-------------------|----------------|----------------------------------------------------------------------------|-----------------------------------------|
|               | 189 —<br>188 —      |              | 0        | HARRING .         |                | Weathered Hematized Rhyolitic Tuff-<br>Cream to red in colour, porphrytic. | Clayey                                  |
|               | 187 —               |              | 2        |                   |                | Hematized Rhyolitic Tuff/Dyke- red to grey/black aphanitic to porphrytic   |                                         |
|               | 186 —               |              | 4        | all and a         |                |                                                                            |                                         |
|               | 185 —               | !            | 5        |                   |                | Hematized Rhyolitic Tuff- Red to<br>purple, porphrytic                     |                                         |
|               | 184 —<br>183 —      | (            | 6        |                   |                | pulple, polphrytic                                                         |                                         |
|               | 182 —               |              | 7        |                   |                |                                                                            |                                         |
|               | 181 —               |              | 8        |                   |                | Hematized Rhyolitic Tuff/Dyke- red to grey/black aphanitic to porphrytic   |                                         |
| Hammer        | 180 —               |              | 10       | 200               |                |                                                                            | Dykes, magnetic                         |
| Ham           | 179 —               |              | 11       |                   | D              |                                                                            |                                         |
|               | 178 —               |              | 12       |                   |                |                                                                            |                                         |
|               | 177 —               |              | 13       |                   |                | Hematized Rhyolitic Tuff- red/purple,                                      |                                         |
|               | 176 —               |              | 14       |                   |                |                                                                            |                                         |
|               | 175 —<br>174 —      |              | 15       | ARA               |                | porphrytic                                                                 |                                         |
|               | 173 —               |              | 16<br>17 |                   |                |                                                                            |                                         |
|               | 172 —               |              | 18       | No.               |                |                                                                            |                                         |
|               | 171 —               |              | 19       |                   |                | Fines- brown to cream in colour, isolated fragments of Rhyolitic Tuff      | Magnetic, possible<br>fault/shear zone? |
|               | 170 —               |              | 20       | anotana           |                |                                                                            |                                         |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By: SK | Version: 3430_TH_LOG_PH4_V2 |
|---------------|----------------|-----------------------------|
|               |                |                             |

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



2 of 7

| Drill<br>Type | Elevation  <br>(RL)                       | Depth<br>(m) |                                                                        |  |                                                                             | Additional<br>Information                    |
|---------------|-------------------------------------------|--------------|------------------------------------------------------------------------|--|-----------------------------------------------------------------------------|----------------------------------------------|
|               | 169 —<br>168 —<br>167 —<br>166 —<br>165 — |              | 21<br>22<br>23<br>24<br>25                                             |  | Hematized Rhyolitic Tuff- red/purple,<br>porphrytic                         | Minute traces of calcite                     |
|               | 163 —<br>162 —                            |              | 26<br>27                                                               |  | Hematized Rhyolitic Tuff/Dyke- red to<br>grey/black aphanitic to porphrytic | Dyke, magnetic                               |
| ler           | 161 —<br>160 —                            |              | 28 29                                                                  |  | Hematized Rhyolitic Tuff- red to<br>purple porphrytic                       |                                              |
| Hammer        | 159 —                                     |              | 30                                                                     |  | Hematized Rhyolitic Tuff/Dyke- red to<br>grey/black aphanitic to porphrytic |                                              |
|               | 158 —                                     |              | 31                                                                     |  | Dyke- black to dark grey, fine crystal size, aphanitic texture.             | Pyrite crystallisation                       |
|               | 157 —<br>156 —<br>155 —<br>154 —          |              | <ul> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> </ul> |  | Hematized Rhyolitic Tuff/Dyke- red to<br>grey/black aphanitic to porphrytic | Calcite precipitation at<br>35-36m, magnetic |
|               | 153 —<br>152 —<br>151 —                   |              | 37                                                                     |  | Hematized Rhyolitic Tuff - red in<br>Colour, porphrytic                     | Calcite precipitation,<br>magnetic           |
|               | 150 —                                     |              | 39<br>40                                                               |  | Rhyolitic Tuff- grey/blue to brown,                                         |                                              |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_LOG\_PH4\_V2

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



3 of 7

| Drill<br>Type | Elevation I<br>(RL) | Depth<br>(m) |                            |              | Graphic<br>Log                            | Description                                                      | Additional<br>Information                    |
|---------------|---------------------|--------------|----------------------------|--------------|-------------------------------------------|------------------------------------------------------------------|----------------------------------------------|
|               | 149 —               |              | 44                         | - Consellar  | 7. 1 4<br>                                | Altered, porphrytic,                                             |                                              |
|               | 148 —               |              | 41<br>42                   |              | 7 · · · · · · · · · · · · · · · · · · ·   | Rhyolitic Tuff- grey to blue in colour, porphrytic               | Magnetic                                     |
|               | 147 —               |              | 42 43                      |              |                                           | Rhyolitic Tuff- grey to blue in colour,<br>porphrytic            | Magnetic, calcite<br>precipitation           |
|               | 146 —               |              | 44                         |              | · · · · · · · · · · · · · · · · · · ·     |                                                                  | Magnetic, calcite                            |
|               | 145 —               |              | 45                         |              | 7. 1 4<br>                                | Rhyolitic Tuff- grey blue to red, slightly weathered, porphrytic | precipitation, some quartz veining           |
|               | 144 —               |              | 46                         |              | · · · · · · · · · · · · · · · · · · ·     |                                                                  |                                              |
|               | 143 —               |              | 47                         |              | · · · · · · · · · · · · · · · · · · ·     | Rhyolitic Tuff- grey to blue in colour,                          | Calcite precipitation, magnetic, some quartz |
|               | 142 —               | <br>         | 48                         |              | <                                         | porphrytic                                                       | veining                                      |
| ۲.            | 141 —               |              | 49                         |              |                                           |                                                                  |                                              |
| Hammer        | 140 —               |              | 50                         |              | · · · · · · · · · · · · · · · · · · ·     |                                                                  |                                              |
| T             | 139 —               |              | 50<br>51                   |              | <                                         |                                                                  |                                              |
|               | 138 —               |              | 52                         | AND SECURING | ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч |                                                                  |                                              |
|               | 137 —               |              | 53                         |              |                                           |                                                                  |                                              |
|               | 136 —               |              | 54                         |              | 2 · · · · · · · · · · · · · · · · · · ·   |                                                                  |                                              |
|               | 135 —               |              | 55                         |              | 7.31<br>7.31<br>                          |                                                                  |                                              |
|               | 134 —               |              | -                          |              |                                           |                                                                  |                                              |
|               | 133 —               |              | 57                         |              |                                           |                                                                  |                                              |
|               | 132 —               |              | 56<br>57<br>58<br>59<br>60 |              |                                           |                                                                  |                                              |
|               | 131 —               |              | 59                         |              | · · · · · · · · · · · · · · · · · · ·     |                                                                  |                                              |
|               | 130 —               |              | 60                         |              | 7                                         |                                                                  |                                              |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By: SK | Version: 3430_TH_LOG_PH4_V2 |
|---------------|----------------|-----------------------------|
|               |                |                             |

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



4 of 7

| Drill<br>Type | Elevation<br>(RL)                         | Depth<br>(m) | Piezom<br>Design | neter Pho<br>Lo                                                                                                 |                                         | Graphic<br>Log                          | Description                                                      | Additional<br>Information                       |
|---------------|-------------------------------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
|               | 129 —                                     |              | 61               |                                                                                                                 |                                         | L                                       | Rhyolitic Tuff- grey blue to red, slightly weathered, porphrytic | Quartz Veining, magnetic, calcite precipitation |
|               | 128 —                                     |              | 62               |                                                                                                                 | ··· ···                                 | < · · · · ·                             |                                                                  |                                                 |
|               | 127 —                                     |              | 62<br>63         | 13                                                                                                              | ۲                                       |                                         |                                                                  |                                                 |
|               | 126 —                                     |              | 64               |                                                                                                                 |                                         |                                         |                                                                  |                                                 |
|               | 125 —                                     |              | 65               | FREE                                                                                                            |                                         |                                         |                                                                  |                                                 |
|               | 124 —                                     |              | 66               |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·   |                                         |                                                                  |                                                 |
|               | 123 —                                     | <br>         | 67               | To and the second se | · · · · · · · · · · · · · · · · · · ·   | 2                                       |                                                                  |                                                 |
|               | 122 —                                     |              | 68               |                                                                                                                 |                                         | · · · · · ·                             |                                                                  |                                                 |
| ŗ             | 121 —                                     |              | 68<br>69         | -                                                                                                               | · · · · · · · · · · · · · · · · · · ·   | 1.4                                     |                                                                  |                                                 |
| Hammer        | 120 —                                     |              | 70               |                                                                                                                 | < · · · · · · · · · · · · · · · · · · · |                                         |                                                                  |                                                 |
| T             | 119 —                                     |              | 71<br>72         |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·   | л.<br>7.<br><.                          |                                                                  |                                                 |
|               | 118 —                                     | -            | 72               |                                                                                                                 |                                         | · ۲ ـ ۲                                 |                                                                  |                                                 |
|               | 117 —                                     |              | 73               | A STREET                                                                                                        |                                         |                                         | Rhyolitic Tuff- grey to blue in colour,                          | Possible fault                                  |
|               | 116 —                                     |              | 73<br>74         |                                                                                                                 |                                         | <u></u>                                 | porphrytic                                                       |                                                 |
|               | 115 —                                     |              | 75               |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·   |                                         |                                                                  |                                                 |
|               | 114 —                                     |              | 76               |                                                                                                                 |                                         | ч ч<br>ч ч                              |                                                                  |                                                 |
|               | 113 —                                     | -            | 77               |                                                                                                                 |                                         |                                         |                                                                  |                                                 |
|               | 114 —<br>113 —<br>112 —<br>111 —<br>110 — |              | 78               |                                                                                                                 | . د<br><br><br>د                        | < · · · · · · · · · · · · · · · · · · · |                                                                  |                                                 |
|               | 111 —                                     |              | 79               |                                                                                                                 |                                         | × · · · · ·                             |                                                                  |                                                 |
|               | 110 —                                     |              | 80               |                                                                                                                 | · 7<br>                                 |                                         |                                                                  |                                                 |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By: SK | Version: 3430_TH_LOG_PH4_V2 |
|---------------|----------------|-----------------------------|
|               |                |                             |

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



5 of 7

| Drill<br>Type | Elevation<br>(RL) | Depth Pie<br>(m) Des | zometer<br>sign | Photo<br>Log | Graphic<br>Log                        | Description                                      | Additional<br>Information                                               |
|---------------|-------------------|----------------------|-----------------|--------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|
|               | 109 —             | - 81                 |                 |              | × × × ×                               |                                                  |                                                                         |
|               | 108 —             | - 82                 |                 | 123          |                                       |                                                  |                                                                         |
|               | 107 —             | - 83                 |                 |              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                                         |
|               | 106 —             | - 84                 |                 |              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                                         |
|               | 105 —             | - 85                 |                 |              | 7. 7 . C                              |                                                  |                                                                         |
|               | 104 —             | - 86                 |                 |              | 4<br>                                 |                                                  |                                                                         |
|               | 103 —             | - 87                 |                 |              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                                         |
|               | 102 —             | - 88                 |                 |              | L. 7<br>L                             |                                                  |                                                                         |
|               | 101 —             | - 89                 |                 |              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                                         |
| Hammer        | 100 —             | 90                   |                 |              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                                         |
| На            | 99 —              | 91                   |                 |              |                                       |                                                  |                                                                         |
|               | 98 —              | 92                   |                 | and a        | <                                     |                                                  |                                                                         |
|               | 97 —              | 93                   |                 |              | ۷ · ۰ · ۰ · ۰                         |                                                  |                                                                         |
|               | 96 —              | - 94                 |                 |              | ۰ د <sub>7</sub>                      |                                                  |                                                                         |
|               | 95 —              | - 95                 |                 |              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                                         |
|               | 94 —              | 06                   |                 | 263          | N                                     |                                                  |                                                                         |
|               | 93 —              | - 97                 |                 | 2.6          | ۲۰۰۲ کر ۲۰۰۶<br>۲۰۰۲ ک                | Rhyolitic Tuff- grey to blue/ red,<br>porphrytic | Slight weathering, quartz<br>veined, calcite precipitation,<br>magnetic |
|               | 92 —              | 98                   |                 | the s        | 7                                     | Po. P. 1 740                                     | magnetic                                                                |
|               | 91 —              | — 99                 |                 |              | 7. 1.4<br>                            |                                                  |                                                                         |
|               | 90 —              | — 100                |                 |              | 4                                     |                                                  |                                                                         |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_LOG\_PH4\_V2

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



6 of 7

| Drill<br>Type | Elevation  <br>(RL) | Depth Piezor<br>(m) Desig | neter Photo<br>n Log | Graphic<br>Log                                   | Description | Additional<br>Information |
|---------------|---------------------|---------------------------|----------------------|--------------------------------------------------|-------------|---------------------------|
|               | 89 —                | 101                       | i Cililia            | ۲۰۰ ، ۲۰۰ ،<br>۲۰۰ ، ۲۰۰ ، ۲۰۰ ، ۲۰۰ ، ۲۰۰ ، ۲۰۰ |             |                           |
|               | 88 —                | 102                       |                      | · · L · 7 · L                                    |             |                           |
|               | 87 —                | 103                       |                      |                                                  |             |                           |
|               | 86 —                | 104                       |                      | · · · · · · · · · · · · · · · · · · ·            |             |                           |
|               | 85 —                | 105                       |                      |                                                  |             |                           |
|               | 84 —                | 106                       |                      | · · · · · · · · · · · · · · · · · · ·            |             |                           |
|               | 83 —                | 107                       |                      | · · · · · · · · · · · · · · · · · · ·            |             |                           |
|               | 82 —                | 108                       |                      | 7.7.4                                            |             |                           |
| <u>ب</u>      | 81 —                | 109                       |                      | < J                                              |             |                           |
| Hammer        | 80 —                | - 110                     |                      | · · · · · · · · · · · · · · · · · · ·            |             |                           |
| T             | 79 —                | 111                       |                      | L                                                |             |                           |
|               | 78 —                | 112                       |                      | · · · · · د · · · د                              |             |                           |
|               | 77 —                | 113                       |                      |                                                  |             |                           |
|               | 76 —                | 114                       |                      | 7. ^ /                                           |             |                           |
|               | 75 —                | 115                       |                      | ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲            |             |                           |
|               | 74 —                | 1105                      |                      | ے                                                |             |                           |
|               | 73 —                |                           |                      | · · · · · · · · · · · · · · · · · · ·            |             |                           |
|               | 72 —                | 118                       |                      | <                                                |             |                           |
|               | 71 —                | - 119<br>- 120            |                      | 2 7.                                             |             |                           |
|               | 70 —                |                           | c                    |                                                  |             |                           |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By: SK | Version: 3430_TH_LOG_PH4_V2 |
|---------------|----------------|-----------------------------|
|               |                |                             |

Name of Hole: PH 4

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 04/10/2016 Date Completed: 11/10/2016 Surface RL: 189.83 AHD Coordinates: E: 398671.72 N: 6404803.76 Drilling Contractor: Total Drilling



7 of 7

| Drill<br>Type |              | Depth<br>(m) | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Description                                                              | Additional<br>Information                     |
|---------------|--------------|--------------|----------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|
|               | 69 —<br>68 — |              |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dyke- black to dark grey, aphanitic                                      | Calcite veining, magnetic                     |
|               | 67 —<br>66 — |              | 123 <sup>9</sup>     |              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                               |
|               | 65 —         |              | 125                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                               |
|               | 64 —         |              | 126                  |              | ل<br>۲۰.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                               |
|               | 63 —<br>62 — |              | 127<br>128           |              | ۲ <u>۲</u><br>۲ ۲۰۰۲ ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                                               |
|               | 61 —         |              | 129                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rhyolitic Tuff- grey to blue slightly Slight We<br>red, porphrytic veine |                                               |
| Hammer        | 60 —         |              | 130                  |              | × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |                                               |
| Т             | 59 —         |              | 131                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | Slight Weathering, quartz<br>veined, magnetic |
|               | 58 —<br>57 — |              | 132<br>133           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                               |
|               | 56 —         |              | 134                  |              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                               |
|               | 55 —         |              | 135                  |              | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                                               |
|               | 54 —         |              |                      |              | <ul> <li></li> <li><!--</td--><td></td></li></ul> |                                                                          |                                               |
|               | 53 —<br>52 — |              | 137                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                               |
|               | 51 —         |              | 138<br>139           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                               |
|               | 50 —         |              | 1000                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                               |

Other Information: Hole Drilled to 140m, Piezo Installed to RL 123m due to blockage. Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By: SK | Version: 3430_TH_LOG_PH4_V2 |  |  |
|---------------|----------------|-----------------------------|--|--|
|               |                |                             |  |  |

Name of Hole: PH 5

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 12/10/2016 Date Completed: 27/10/2016 Surface RL:180.93 m AHD Coordinates: E: 398462.10 N: 6404674.32 Drilling Contractor: Total Drilling



1 of 5

| Drill<br>Type | Elevation Depth Piez<br>(RL) (m) Desi                                                                                       | cometer Photo<br>ign Log | Graphic<br>Log | Description                                                             | Additional<br>Information |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|-------------------------------------------------------------------------|---------------------------|
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                       |                          |                | Weathered Hematized Rhyolitic<br>Tuff- orange to red, porphrytic,       | Clayey                    |
| Hammer        | 177 - 4 $176 - 5$ $175 - 6$ $174 - 7$ $173 - 8$ $172 - 9$ $171 - 10$ $170 - 11$ $169 - 12$ $168 - 13$ $167 - 14$ $166 - 15$ |                          |                | Hematized Rhyolitic Tuff-Red to<br>orange, porphrytic                   | Magnetic, some weathering |
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                       |                          |                | Hematized Rhyolitic Tuff- orange,<br>red to blue, dark grey, porphrytic | Magnetic, some weathering |

Other Information: Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By:SK      | Version: 3430_TH_GA_LOG_PH5_V3 |
|---------------|--------------------|--------------------------------|
|               | · · · · <b>,</b> · |                                |
|               |                    |                                |
|               |                    |                                |

Name of Hole: PH 5

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 12/10/2016 Date Completed: 27/10/2016 Surface RL:180.93 m AHD Coordinates: E: 398462.10 N: 6404674.32 Drilling Contractor: Total Drilling



2 of 5

| Drill  | Elevation Depth Piezometer                                                                                                                                   | Photo | Graphic | Description                                                   | Additional                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------------------------------------------|---------------------------|
| Type   | (RL) (m) Design                                                                                                                                              | Log   | Log     |                                                               | Information               |
| Hammer | 160       21 $159$ 22 $158$ 23 $157$ 24 $156$ 25 $155$ 26 $154$ 27 $153$ 28 $152$ 29 $151$ 30 $150$ 31 $149$ 32 $146$ 35 $144$ 37 $143$ 38 $142$ 39 $141$ 40 |       |         | Hematized Rhyolitic Tuff- orange<br>red to purple, porphrytic | Magnetic, some weathering |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By:SK Version: 3430\_TH\_GA\_LOG\_PH5\_V3

Name of Hole: PH 5

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 12/10/2016 Date Completed: 27/10/2016 Surface RL:180.93 m AHD Coordinates: E: 398462.10 N: 6404674.32 Drilling Contractor: Total Drilling



3 of 5

| Drill | Elevation Depth Piezom                                                                                                                                                                                     | phic Description | Additional  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Type  | (RL) (m) Design                                                                                                                                                                                            | og               | Information |
|       | (RL) (m) Design $140 - 41$ $139 - 42$ $138 - 43$ $137 - 44$ $136 - 45$ $135 - 46$ $134 - 47$ $133 - 48$ $132 - 49$ $131 - 50$ $130 - 51$ $129 - 52$ $128 - 53$ $127 - 54$ $126 - 55$ $125 - 56$ $124 - 57$ |                  | Information |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By:SK Version: 3430\_TH\_GA\_LOG\_PH5\_V3

Name of Hole: PH 5

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 12/10/2016 Date Completed: 27/10/2016 Surface RL:180.93 m AHD Coordinates: E: 398462.10 N: 6404674.32 Drilling Contractor: Total Drilling



4 of 5

| Drill<br>Type | Elevation<br>(RL) | Depth P<br>(m) D | iezometer<br>esign | Photo<br>Log | Graphic<br>Log                        | Description | Additional<br>Information |
|---------------|-------------------|------------------|--------------------|--------------|---------------------------------------|-------------|---------------------------|
|               | 120 —             | 61               |                    |              | · · · · · · · · · · · · · · · · · · · |             |                           |
|               | 119 —             | - 62             |                    |              |                                       |             |                           |
|               | 118 —             | - 63             |                    |              | <                                     |             |                           |
|               | 117 —             | - 64             |                    |              | ے                                     |             |                           |
|               | 116 —             | - 65             |                    |              | · · · · · · · · · · · · · · · · · · · |             |                           |
|               | 115 —             | - 66             |                    |              | · · · · · · · · · · · · · · · · · · · |             |                           |
|               | 114 —             | - 67             |                    |              |                                       |             |                           |
|               | 113 —             | 68               |                    |              | · · · · · · · · · · · · · · · · · · · |             |                           |
| Ļ             | 112 —             | - 69             |                    |              | 7                                     |             |                           |
| Hammer        | 111 —             | - 70             |                    | -            | · · · · · · · · · · · · · · · · · · · |             |                           |
| Ĩ             | 110 —             | - 71             |                    |              | <                                     |             |                           |
|               | 109 —             | - 72             |                    |              |                                       |             |                           |
|               | 108 —             | - 73             |                    |              | · . L                                 |             |                           |
|               | 107 —             | - 74             |                    | -            | · · · · · · · · · · · · · · · · · · · |             |                           |
|               | 106 —             | - 75             |                    |              | 7. 7 K                                |             |                           |
|               | 105 —             | - 76             |                    |              | 4.7.7                                 |             |                           |
|               | 104 —             | - 77             |                    |              | 2 7                                   |             |                           |
|               | 103 —             | - 78             |                    |              | L. 7<br>L                             |             |                           |
|               | 102 —             | - 79             |                    |              | · · · · · · · · · · · · · · · · · · · |             |                           |
|               | 101 —             | - 80             |                    |              | · · · · · · · · · · · · · · · · · · · |             |                           |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By:SK Version: 3430\_TH\_GA\_LOG\_PH5\_V3

Name of Hole: PH 5

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 12/10/2016 Date Completed: 27/10/2016 Surface RL:180.93 m AHD Coordinates: E: 398462.10 N: 6404674.32 Drilling Contractor: Total Drilling



5 of 5

| 99 - 82<br>98 - 83<br>97 - 84<br>96 - 85<br>95 - 86<br>94 - 87<br>93 - 88<br>92 - 89<br>91 - 90 | 7       Λ       ζ         2       7       Λ         3       ζ       7         4       ζ       7         4       ζ       7         4       ζ       7         4       ζ       7         4       ζ       7         5       ζ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ         7       Λ       ζ    < | ematized Rhyolitic Tuff/Dyke -<br>Red to dark grey/dark blue,<br>porphrytic to anphinitic | Possible fault/shear zone,<br>some weathering |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA

Name of Hole: PH7

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

#### Hillview

Date Commenced: 07/12/2016 Date Completed: 07/12/2016 Surface RL: 190.25m AHD Coordinates: E:398673.19 N:6404802.76 Drilling Contractor: D and E Drilling



1 of 3

| Drill<br>Type | Elevation<br>(RL)                         | Depth<br>(m)          | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log | Description                                                                                | Additional<br>Information            |
|---------------|-------------------------------------------|-----------------------|----------------------|--------------|----------------|--------------------------------------------------------------------------------------------|--------------------------------------|
| Auger         | 189 —                                     | 0                     |                      |              |                | Weathered Rhyodacite- pink to brown,<br>Porphrytic                                         | 20cm topsoil                         |
|               | 188 —<br>187 —<br>186 —<br>185 —<br>184 — | 2<br>3<br>4<br>5<br>6 |                      |              |                | Hematized Rhyolitic Tuff- Pink to orange,<br>porphyritic                                   | Some weathering                      |
| Hammer        | 183 —<br>182 —<br>181 —<br>180 —          | — 7<br>— 8<br>— 9     |                      |              |                | Hematized Rhyolitic Tuff, pink, purple to orange, porphrytic                               | Slight weathering,                   |
| Han           | 179 —<br>178 —<br>177 —                   | 1:<br>1:              | 2                    |              |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple<br>to dark grey/blue, porphrytic to aphanitic | Multiple small<br>dykes?,magnetic    |
|               | 176 —<br>175 —<br>174 —                   | 14<br>19<br>10        | 6                    |              |                | Hematized Rhyolitic Tuff- pink, purple to orange, porphrytic                               | Slight weathering                    |
|               | 173 —<br>172 —                            | — 1                   |                      | 1.1.5        |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple to dark grey/blue, porphrytic to aphanitic    | Hematite nodule?,<br>dykes, magnetic |
|               | 171 —                                     |                       | 8<br>9<br>1          |              |                | Hematized Rhyolitic Tuff- pink to purple,<br>porphrytic                                    |                                      |
|               | 170 —                                     | 2                     |                      |              |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple                                               |                                      |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH7\_V3

Name of Hole: PH7

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

#### Hillview

Date Commenced: 07/12/2016 Date Completed: 07/12/2016 Surface RL: 190.25m AHD Coordinates: E:398673.19 N:6404802.76 Drilling Contractor: D and E Drilling



2 of 3

| Drill<br>Type | Elevation Depth Piezomete<br>(RL) (m) Design          | r Photo<br>Log | Graphic<br>Log | Description                                                                                | Additional<br>Information |
|---------------|-------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------|---------------------------|
|               |                                                       | Part and they  |                | to dark grey/blue, porphrytic to aphanitic                                                 | Dyke                      |
|               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A CARA         |                | Weathered Hematized Rhyolitic Tuff- pink to brown, porphrytic                              |                           |
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                |                | Hematized Rhyolitic Tuff- pink to purple,                                                  |                           |
|               |                                                       | aká d          |                | porphrytic                                                                                 |                           |
|               | 165 - 25                                              |                | P P            | Hematized Rhyolitic Tuff- pink, purple to orange, porphrytic                               | Some weathering           |
|               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple<br>to dark grey/blue, porphrytic to aphanitic | Magnetic                  |
|               |                                                       | AE 3           |                | Hematized Rhyolitic Tuff, pink, purple to                                                  |                           |
| <u> </u>      | 161 — 29                                              |                |                | orange, porphrytic                                                                         | Some weathering           |
| Hammer        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple to dark grey/blue, porphrytic to aphanitic    | Dyke                      |
|               | 159 — 31 — 158 — 32 — 31                              | 4              |                |                                                                                            |                           |
|               |                                                       |                |                | Dyke- dark grey to dark blue, aphanitic                                                    | Magnetic                  |
|               |                                                       |                |                |                                                                                            |                           |
|               |                                                       |                |                |                                                                                            |                           |
|               | 154 - 36                                              |                |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple                                               |                           |
|               | 153 — 37<br>152 — 38                                  |                |                | Hematized Rhyolitic Tuff/ Dyke- pink, purple<br>to dark grey/blue, porphrytic to aphanitic | Dyke                      |
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                |                |                                                                                            |                           |
|               |                                                       | ATTAIN T       |                |                                                                                            |                           |

Other Information: Log updated 03/04/2023 following ADW Survey Data

| Logged By: MA | Checked By: SK | Version: 3430_TH_GA_LOG_PH7_V3 |
|---------------|----------------|--------------------------------|
| 33 3          | j i i i i j i  |                                |
|               |                |                                |
|               |                |                                |

Name of Hole: PH7

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

#### Hillview

Date Commenced: 07/12/2016 Date Completed: 07/12/2016 Surface RL: 190.25m AHD Coordinates: E:398673.19 N:6404802.76 Drilling Contractor: D and E Drilling



3 of 3

| Drill<br>Type |                         | Depth<br>(m)                 | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log                        | Description                                                          | Additional<br>Information                                              |
|---------------|-------------------------|------------------------------|----------------------|--------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
|               | 149 —<br>148 —          | — 4 <sup>2</sup><br>— 42     |                      |              |                                       | Rhyolitic tuff/Dyke- Dark grey to dark blue, porphrytic to aphanitic | Dyke                                                                   |
| Hammer        | 147 —<br>146 —<br>145 — | — 42<br>— 43<br>— 44<br>— 48 |                      |              | · · · · · · · · · · · · · · · · · · · | Rhyolitic tuff - dark grey/blue to orange,<br>Porphrytic             | Quartz veining,<br>some weathering,<br>some water<br>intercepted @ 44m |
|               | 144 —<br>143 —          | — 46<br>— 47                 |                      |              |                                       | Hole Terminated at Target Depth                                      |                                                                        |
|               | 142 —                   | - 48                         | 8                    |              |                                       |                                                                      |                                                                        |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH7\_V3

Name of Hole: PH 8

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 13/12/2016 Date Completed: 13/12/2016 Surface RL: 181.15m AHD Coordinates: E:398463.58 N: 6404673.63 Drilling Contractor: D and E Drilling



1 of 3

| Drill<br>Type | Elevation<br>(RL)                                                                                               |                  | Piezometer<br>Design                                | Photo<br>Log | Graphi<br>Log |                                                                                            | Additional<br>Information |
|---------------|-----------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------|---------------------------|
|               | 181 —<br>180 —<br>179 —<br>178 —                                                                                | 0<br>1<br>3      |                                                     |              |               | Weathered Hematized Rhyolitic Tuff- orange<br>to brown, porphrytic                         | Dyke, Some<br>weathering  |
|               | 177 —<br>176 —                                                                                                  | 4<br>5           |                                                     |              |               | Hematized Rhyolitic Tuff- brown to orange, porphrytic                                      | Some weathering           |
|               | 175 —<br>174 —<br>173 —                                                                                         | 6<br>7<br>8      |                                                     |              |               | Weathered Dyke/Hematized Rhyolitic Tuff-<br>prange, brown to grey, porphrytic to aphanitic | Magnetic                  |
| Hammer        | 172         171         170         169         168         167         166         165         164         163 | 1<br>1<br>1<br>1 | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0 |              |               | łematized Rhyolitic Tuff- dark purple, grey to<br>orange, porphrytic                       | Slight weathering         |
|               | 162 —                                                                                                           | 1                | 9                                                   | Hilling .    |               | Rhyolitic Tuff- dark grey to blue, porphrytic                                              |                           |

| Other Information: Log updated 03/04/2023 following ADW Survey Data |                |                                |  |  |  |  |
|---------------------------------------------------------------------|----------------|--------------------------------|--|--|--|--|
| Logged By: MA                                                       | Checked By: SK | Version: 3430_TH_GA_LOG_PH8_V3 |  |  |  |  |

Name of Hole: PH 8

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 13/12/2016 Date Completed: 13/12/2016 Surface RL: 181.15m AHD Coordinates: E:398463.58 N: 6404673.63 Drilling Contractor: D and E Drilling



2 of 3

| Drill<br>Type | Elevation<br>(RL)                |        | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log                          | Description                                              | Additional<br>Information           |
|---------------|----------------------------------|--------|----------------------|--------------|-----------------------------------------|----------------------------------------------------------|-------------------------------------|
|               | 161 —<br>160 —<br>159 —<br>158 — | 2<br>2 | 1<br>2<br>3          |              |                                         | Rhyolitic Tuff- dark blue, grey to orange,<br>porphrytic | Some weathering                     |
|               | 157 —<br>156 —<br>155 —          | 2      |                      |              | · · · · · · · · · · · · · · · · · · ·   | eathered Rhyolitic Tuff- brown to orange, porphrytic     |                                     |
|               | 154 —<br>153 —                   |        | 7<br>8<br>9          |              | · · · · · · · · · · · · · · · · · · ·   | Rhyolitic Tuff- dark blue, grey to orange,<br>porphrytic | Some weathering                     |
| Hammer        | 152 —<br>151 —                   | 3(     | 9                    |              | · · · · · · · · · · · · · · · · · · ·   |                                                          |                                     |
|               | 150 —<br>149 —                   | 3:     |                      |              | <                                       | Rhyolitic Tuff- dark grey to blue, porphrytic            | Some weathering,<br>calcite veining |
|               | 148 —<br>147 —                   | 3      | 4                    |              | · · · · · · · · · · · · · · · · · · ·   |                                                          |                                     |
|               | 146 —<br>145 —                   |        |                      |              | < · · · · · · · · · · · · · · · · · · · |                                                          |                                     |
|               | 144 —<br>143 —                   | 3      |                      | 7            | د. ۲<br>۷. ۰۰                           |                                                          |                                     |
|               | 142 —<br>141                     | 3      |                      | - William    | · · · · · · · · · · · · · · · · · · ·   |                                                          |                                     |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH8\_V3

Name of Hole: PH 8

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 13/12/2016 Date Completed: 13/12/2016 Surface RL: 181.15m AHD Coordinates: E:398463.58 N: 6404673.63 Drilling Contractor: D and E Drilling



3 of 3

| Drill<br>Type | Elevation<br>(RL)                                               | Depth<br>(m) | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log | Description                                              | Additional<br>Information |
|---------------|-----------------------------------------------------------------|--------------|----------------------|--------------|----------------|----------------------------------------------------------|---------------------------|
| Hammer        | 141         140         139         138         137         136 | 4<br>4<br>4  |                      |              |                | Rhyolitic Tuff- dark blue, grey to orange,<br>Porphrytic | Some calcite veining      |
|               | 135 —                                                           |              | io<br>17             |              |                | Hole Terminated at Taget Depth                           |                           |
|               | 134 —                                                           |              | 18                   |              |                |                                                          |                           |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA

Name of Hole: PH 9

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 15/12/2016 Date Completed: 15/12/2016 Surface RL:158.04m AHD Coordinates: E: 398794.30 N: 6404421.15 Drilling Contractor: D and E Drilling



1 of 2

| Drill<br>Type | Elevation<br>(RL)                | Depth Pie<br>(m) De | zometer Photo<br>sign Log | Graphic<br>Log                    | Description                                                                                                    | Additional<br>Information |
|---------------|----------------------------------|---------------------|---------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|
| Auger         | 158 —<br>157 —<br>156 —<br>155 — | 0                   |                           |                                   | Weathered Hematized Rhyolitic Tuff- pink to<br>orange, porphrytic                                              |                           |
|               | 154 —                            | 4                   |                           |                                   | Fines- orange to dark orange, silty, some coarse quartz fragments                                              |                           |
|               | 153 —<br>152 —                   | - 6                 |                           |                                   | Weathered Hematized Rhyolitic Tuff- orange<br>to brown, porphrytic, some fines                                 |                           |
|               | 151 —<br>150 —                   | - 7                 |                           | · D · D                           | Fines- orange to dark orange, silty, some<br>coarse quartz fragments and black<br>aphanitic textured fragments |                           |
| mer           | 149 —<br>148 —                   | 9                   |                           |                                   | Weathered Hematized Rhyolitic Tuff pink to<br>orange, porphrytic                                               |                           |
| Hammer        | 147 —                            | 11                  |                           | D A D                             | Fines- orange to dark orange, silty, some coarse quartz fragments                                              |                           |
|               | 146 —<br>145 —                   | 12<br>13            |                           |                                   | Weathered- pink to orange, porphrytic                                                                          |                           |
|               | 144 —<br>143 —                   | 14<br>15            |                           | F                                 | Fines- orange to dark orange, silty, aphanitic textured fragments                                              |                           |
|               | 142 —                            | 16                  |                           |                                   | Weathered Hematized Rhyolitic Tuff- orange<br>to brown, porphrytic                                             |                           |
|               | 141 —<br>140 —                   | 17<br>18            |                           |                                   | Weathered Hematized Rhyolitic Tuff- orange to brown, porphrytic                                                |                           |
|               | 139 —                            | - 19                |                           |                                   |                                                                                                                |                           |
|               | 138                              | 20 =                |                           | $\cdot \Delta \cdot \cdot \Delta$ |                                                                                                                |                           |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH9\_V3

Name of Hole: PH 9

Project Number: 3430 Client: Tricon Mining Equipment Project: Hillview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 15/12/2016 Date Completed: 15/12/2016 Surface RL:158.04m AHD Coordinates: E: 398794.30 N: 6404421.15 Drilling Contractor: D and E Drilling



2 of 2

| Drill<br>Type | Elevation<br>(RL)                                           | Depth Piezometer<br>(m) Design                                                                | Photo G<br>Log                     | raphic<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Description                                |                     | Additional<br>Information                        |
|---------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|--------------------------------------------------|
|               | 137 —<br>136 —<br>135 —<br>134 —<br>133 —<br>132 —<br>131 — |                                                                                               |                                    | 4. D. A. D. D. D. D. A. D. | Hematized Rhyolitic Tuff-<br>purple, porph |                     | Some weathering                                  |
| Hammer        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$       | Weathered Hematized Rhyolitic Tuff-<br>orange, brown to dark blue, porphrytic to<br>aphanitic | ie, porphrytic to                  | Calcite precipitation<br>Dyke<br>Calcite precipitation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                     |                                                  |
|               |                                                             |                                                                                               | Dyke-dark blue to black, aphanitic | ck, aphanitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pyrite crystallisation                     |                     |                                                  |
|               | 127 —<br>126 —<br>125 —<br>124 —                            |                                                                                               |                                    | 0 D D D D 0 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hematized Rhyolitic Tuff-<br>pink, Porphr  |                     | Calcite precipitation                            |
|               | 123 —                                                       | $35^{\circ}$                                                                                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dyke-dark blue to bla                      | ck, aphanitic       | Calcite precipitation,<br>Pyrite crystallisation |
|               | 122 —                                                       |                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hole Terminated at T                       | arget Depth         |                                                  |
|               | 121 —                                                       | 37 38                                                                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                     |                                                  |
| her In        | formation                                                   | Log updated 03/04/20                                                                          | 23 following ADW                   | Survey D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data                                       |                     |                                                  |
| ogged         | By: MA                                                      |                                                                                               | Checked By: SK                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ver                                        | sion: 3430_TH_GA_LO | G_PH9_V3                                         |

Name of Hole: PH 10

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 14/12/2016 Date Completed: 14/12/2016 Surface RL: 157.98m AHD Coordinates: E: 398794.41 N:6404422.35 Drilling Contractor: D andE Drilling



1 of 4

| Drill<br>Type | Elevation Depth<br>(RL) (m)                           | Piezometer<br>Design  | Photo<br>Log | Graphic<br>Log           | Description                                                                                     | Additional<br>Information |
|---------------|-------------------------------------------------------|-----------------------|--------------|--------------------------|-------------------------------------------------------------------------------------------------|---------------------------|
|               | 0<br>157 — 1<br>156 — 2                               |                       |              |                          | athered Hematized Rhyolitic Tuff-<br>wn, red to light orange, porphrytic                        |                           |
|               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                       |              | A Wea                    | athered Hematized Rhyolitic Tuff-<br>wn, red to light orange, porphrytic                        |                           |
|               | 153 <u>5</u><br>152 <u>6</u>                          |                       |              |                          | athered Hematized Rhyolitic Tuff/<br>Dyke- red, orange to dark grey,<br>porphrytic to aphanitic |                           |
|               | 151 — 7                                               | ,                     |              | Wea<br>E                 | athered Hematized Rhyolitic Tuff/<br>Dyke- red, orange to dark grey,<br>porphrytic to aphanitic | Calcite precipitation     |
| Hammer        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 1 2 3               |              | D A D A D A Weather brow | athered Hematized Rhyolitic Tuff-<br>wn, red to light orange, porphrytic                        | Hardness increasing @12m  |
|               | 142 — 1<br>141 — 1<br>140 — 1                         | 5<br>6<br>7<br>8<br>9 |              | A A A Wea<br>A A A brow  | athered Hematized Rhyolitic Tuff-<br>wn, red to light orange, porphrytic                        |                           |
|               |                                                       |                       | D :          |                          |                                                                                                 |                           |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH10\_V3

Name of Hole: PH 10

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 14/12/2016 Date Completed: 14/12/2016 Surface RL: 157.98m AHD Coordinates: E: 398794.41 N:6404422.35 Drilling Contractor: D andE Drilling



2 of 4

| Drill<br>Type | Elevation Depth<br>(RL) (m)                           | n Piezometer<br>Design                                                    | Photo<br>Log | Graphic<br>Log  | Description                                                                                         | Additional<br>Information                     |
|---------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 21     22       22     23       23     24       25     26       26     27 |              | He He           | ematized Rhyolitic Tuff- orange to<br>dark red, porphrytic                                          | Some weathering                               |
|               | 130 — 2<br>129 — 2                                    |                                                                           |              |                 | eathered Hematized Rhyolitic Tuff/<br>Dyke-orange, red to grey, blue,<br>porphrytic to aphanitic    | Calcite precipitation                         |
| mer           |                                                       |                                                                           |              |                 | Dyke- dark grey to blue, aphanitic                                                                  | Pyrite crystalation, calcite<br>precipitation |
| Hammer        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                           |              | D A D A D A Her | matized Rhyolitic Tuff- dark red to<br>light purple, porphrytic                                     | Some weathering                               |
|               | 122 — 3<br>121 — 3                                    | 35<br>36<br>37<br>38                                                      |              |                 | eathered Hematized Rhyolitic Tuff/<br>/ke-dark red, purple to dark grey,<br>porphrytic to aphanitic | Calcite precipitation                         |
|               | 119 — 3                                               |                                                                           |              | D. D. D. D. D   |                                                                                                     |                                               |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH10\_V3

Name of Hole: PH 10

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 14/12/2016 Date Completed: 14/12/2016 Surface RL: 157.98m AHD Coordinates: E: 398794.41 N:6404422.35 Drilling Contractor: D andE Drilling



3 of 4

| Drill<br>Type | Elevation<br>(RL)       |                          | Piezomet<br>Design | er Photo<br>Log  | Graphi<br>Log                          |                                                                                        | Additional<br>Information                                          |
|---------------|-------------------------|--------------------------|--------------------|------------------|----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|               | 117 —<br>116 —          | — 4 <sup>2</sup><br>— 42 |                    |                  |                                        | Hematized Rhyolitic Tuff- dark purple<br>to dark grey, porphrytic                      | Calcite precipitation, some weathering                             |
|               | 115 —<br>114 —          | — 43<br>— 44             | 3 4 4              |                  |                                        |                                                                                        |                                                                    |
|               | 113 —<br>112 —<br>111 — | — 48<br>— 46             |                    |                  |                                        | Rhyolitic Tuff- light grey to blue, porphrytic                                         | Calcite precipitation                                              |
|               | 110 —                   | — 47<br>— 48             | в                  |                  | · · · · · · · · · · · · · · · · · · ·  |                                                                                        |                                                                    |
| Hammer        | 109 —<br>108 —          | — 49<br>— 50             |                    | 14.1204          |                                        |                                                                                        |                                                                    |
| Ï             | 107 —                   | — 5 <sup>-</sup>         | EE                 |                  |                                        | Dyke- dark grey to blue, aphanitic                                                     | Pyrite crystalisation,<br>magnetic, calcite<br>precipitation       |
|               | 106 —                   | - 52                     |                    |                  | 7                                      | Rhyolitic Tuff- light grey, porphrytic                                                 |                                                                    |
|               | 105 —<br>104 —          | — 53<br>— 54             | 4                  | TE B             |                                        | Dyke- dark grey to blue, aphanitic                                                     | Dyke, pyrite crystalisation,<br>magnetic, calcite<br>precipitation |
|               | 103 —                   | 58                       |                    |                  | ······································ | Hematized Rhyolitic Tuff/ Dyke- light<br>grey to dark grey, porphrytic to<br>aphanitic | Magnetic, calcite<br>precipitation                                 |
|               | 102 —                   | — 56                     |                    |                  | ۲۰۰۰ ۲۰<br>۲۰۰۰ ۲۰۰۰ ۲۰                | Rhyolitic Tuff- light grey, porphrytic                                                 | Water intersected                                                  |
|               | 101 —<br>100 —          | — 57<br>— 58             |                    |                  |                                        | Rhyolitic Tuff/ Dyke- light grey to dark grey, porphrytic to aphanitic                 | Magnetic, calcite precipitation                                    |
|               | 99 —                    | 59                       | 9                  |                  |                                        | Dyke- dark grey to blue, aphanitic                                                     | Dyke, pyrite crystallisation,<br>magnetic, calcite                 |
|               | 98 —                    | 60                       |                    | 4/2023 following | <                                      |                                                                                        | precipitation, some                                                |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA

Version: 3430\_TH\_GA\_LOG\_PH10\_V3

Name of Hole: PH 10

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 14/12/2016 Date Completed: 14/12/2016 Surface RL: 157.98m AHD Coordinates: E: 398794.41 N:6404422.35 Drilling Contractor: D andE Drilling



4 of 4

| Drill<br>Type | Elevatior<br>(RL) | ם Depth<br>(m)   | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log                          | Description                                             |                    | Additional<br>Information       |
|---------------|-------------------|------------------|----------------------|--------------|-----------------------------------------|---------------------------------------------------------|--------------------|---------------------------------|
|               |                   |                  |                      | a missellist |                                         |                                                         |                    | weathering                      |
|               | 97 —<br>96 —      | 6 <sup>2</sup>   | 2                    |              |                                         | Rhyolitic Tuff/ Basalt- lig<br>dark grey, porphrytic to |                    | Magnetic, calcite precipitation |
|               | 95 —              | - 6              | 3                    | A Parts      | 7                                       |                                                         |                    |                                 |
|               | 94 —              | 64               |                      |              | د <sub>7</sub>                          |                                                         |                    |                                 |
|               | 93 —              | - 6              |                      |              | <                                       |                                                         |                    |                                 |
|               | 92 —              | - 6              | 6                    |              | 2 7                                     |                                                         |                    |                                 |
| Hammer        | 91 —              | - 6              |                      | AND A        | · · › · · · · · · · · · · · · · · · · · |                                                         |                    |                                 |
| Haı           | 90 —              | - 68             | 8                    | AND A        | 7                                       | Rhyolitic Tuff- dark purp<br>porphrytic                 | ple to grey,       |                                 |
|               | 89 —              | - 69             |                      |              | · · · · · · · · · · · · · · · · · · ·   |                                                         |                    |                                 |
|               | 88 —              | - 70             | ∘┆ <u>╡</u> ┥┣       |              | <                                       |                                                         |                    |                                 |
|               | 87 —              | - 7 <sup>.</sup> |                      |              | ×                                       |                                                         |                    |                                 |
|               | 86 —              | - 72             |                      |              | × ۲ ۲                                   |                                                         |                    |                                 |
|               | 85 —              | - 7:             | 3                    |              |                                         |                                                         |                    |                                 |
|               | 84 —              | - 74             |                      |              |                                         | Rhyolitic Tuff/ Basalt- lig<br>dark grey, Porphrytic to |                    | Magnetic, calcite precipitation |
|               | 83 —              | - 7              |                      |              |                                         | Hole Terminated at Ta                                   | rget Depth         |                                 |
|               | 82 —              | ⊥ 7(             | 6 ———                |              |                                         |                                                         |                    |                                 |
|               |                   |                  |                      |              |                                         |                                                         |                    |                                 |
|               |                   |                  |                      |              |                                         |                                                         |                    |                                 |
|               |                   |                  |                      |              |                                         |                                                         |                    |                                 |
| ther Inf      | formation         | : Log up         | odated 03/04/20      | 23 following | g ADW Survey                            | Data                                                    |                    |                                 |
| ogged         | By: MA            |                  |                      | Checked      | By: SK                                  |                                                         | Version: 3430_TH_G | A_LOG_PH10_V3                   |
|               |                   |                  |                      |              |                                         |                                                         |                    |                                 |

Name of Hole: PH 11

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

#### Hillview

Date Commenced: 19/12/2016 (Collected) Date Completed: 19/12/2016 Surface RL: 113.57m AHD Coordinates: E:399018.56 N:6404504.41 Drilling Contractor: D and E Drilling



1 of 2

|        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$       |                       |                    |                                                                        |                       |
|--------|------------------------------------------------------------|-----------------------|--------------------|------------------------------------------------------------------------|-----------------------|
| Hammer | - 6<br>107 - 7<br>106 - 8<br>105 - 9<br>104 - 1<br>103 - 1 |                       | Hematized F<br>bro | Rhyolitic Tuff- orange to<br>own, porphrytic                           |                       |
|        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$      | 2<br>3<br>4<br>5<br>6 | Dyke-orang         | ered Rhyolitic Tuff/<br>le, brown to dark grey,<br>nrytic to aphanitic | Calcite precipitation |
|        | 97 — 1<br>96 — 1<br>95 — 1                                 |                       |                    |                                                                        |                       |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH11\_V3

Name of Hole: PH 11

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

#### Hillview

Date Commenced: 19/12/2016 (Collected) Date Completed: 19/12/2016 Surface RL: 113.57m AHD Coordinates: E:399018.56 N:6404504.41 Drilling Contractor: D and E Drilling



2 of 2

| Drill<br>Type | Elevation  <br>(RL) |                  | Piezometer<br>Design | Photo<br>Log | Graphic<br>Log | Description       | Additional<br>Information |
|---------------|---------------------|------------------|----------------------|--------------|----------------|-------------------|---------------------------|
|               | 93 —                | — 2 <sup>.</sup> |                      |              |                | brown, porphrytic |                           |
|               | 92 —                | — 22             |                      |              |                |                   |                           |
|               | 91 —                | — 23             |                      |              |                |                   |                           |
|               | 90 —                | — 24             | <u>ک</u><br>4        |              |                | Hole Terminated   |                           |
|               | 89 —                | — 2              | 5                    |              |                |                   |                           |
|               | 88 —                | — 20             | 6                    |              |                |                   |                           |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA

Version: 3430\_TH\_GA\_LOG\_PH11\_V3

Name of Hole: PH 12

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 19/12/2016 (collected) Date Completed: 19/12/2016 Surface RL: 88.15m AHD Coordinates: E: 399114.48 N: 6404843.48 Drilling Contractor: D and E Drilling



1 of 1

| Drill<br>Type | Elevation Depth<br>(RL) (m)                           |  | Photo<br>Log  | Graphic<br>Log                                             | Description                                                                        | Additional<br>Information                |
|---------------|-------------------------------------------------------|--|---------------|------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|
|               | 88 0                                                  |  | CINER<br>CINE |                                                            | Weathered Rhyolitic Tuff - brown<br>to purple                                      |                                          |
|               | 87 — 1<br>86 — 2<br>85 — 3                            |  |               |                                                            | Weathered Hematized Rhyolitic<br>Tuff- brown, dark purple to orange,<br>porphrytic |                                          |
|               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |               | Hematized Rhyolitic Tuff-dark purple to orange, porphrytic | Some weathering                                                                    |                                          |
|               |                                                       |  |               | Fi<br>fragm                                                | Fines- brown, some isolated<br>fragments of weathered Hematized<br>Rhyolitic Tuff  | Possible fault or shear zone?            |
| Hammer        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |  |               |                                                            | Hematized Rhyolitic Tuff-dark<br>purple to orange, porphrytic                      | Some weathering, some<br>calcite veining |

Other Information: Log updated 03/04/2023 following ADW Survey Data

Logged By: MA Checked By: SK Version: 3430\_TH\_GA\_LOG\_PH12\_V3

Name of Hole: PH 12

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 19/12/2016 (collected) Date Completed: 19/12/2016 Surface RL: 88.15m AHD Coordinates: E: 399114.48 N: 6404843.48 Drilling Contractor: D and E Drilling



1 of 1

| Drill<br>Type | Elevation<br>(RL) | Depth<br>(m) | Piezometer<br>Design | Photo<br>Log  | Graphic<br>Log  | Description |                 | <i>l</i><br>In | Additional formation |
|---------------|-------------------|--------------|----------------------|---------------|-----------------|-------------|-----------------|----------------|----------------------|
|               |                   | 20           | )                    |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
|               |                   |              |                      |               |                 |             |                 |                |                      |
| Other In      | formation:        | Log up       | dated 03/04/202      | 3 following A | ADW Survey Data |             |                 |                |                      |
| Logged        | By: MA            |              |                      | Checked By    | r: SK           |             |                 |                |                      |
| Logged        | ⊔y. I¥IA          |              |                      | CHECKEU D     | ,               |             | Version: 3430_T | H_GA_LOG_PH    | 12_V3                |

Name of Hole: PH 13

Project Number: 3430 Client: Tricon Mining Equipment Project: Hilview Geological Investigation Location: Off Maytoms Lane, Booral Logged by: MA/SK

### Hillview

Date Commenced: 19/12/2016 (Collected) Date Completed: 19/12/2016 Surface RL: 100.24m AHD Coordinates: E: 398919.44 N: 6405189.27 Drilling Contractor: D and E Drilling



1 of 1

| Drill<br>Type |                                                      | epth<br>(m) | Piezometer<br>Design            | Photo<br>Log | Graphic<br>Log | Description                                                                                          | Additional<br>Information                         |
|---------------|------------------------------------------------------|-------------|---------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|               | 100 —<br>99 —<br>98 —                                | :           | 0 1 2                           |              |                | Weathered Hematized Rhyolitic<br>Tuff- pink, orange to brown,<br>porphrytic                          | Clay, possible joints?                            |
| Hammer        | 97 —<br>96 —<br>95 —<br>94 —<br>93 —<br>92 —<br>91 — |             | 3<br>4<br>5<br>6<br>7<br>8<br>9 |              |                | Weathered Hematized Rhyolitic<br>Tuff- pink, orange to brown,<br>porphrytic                          | Some Clay, possible joints?                       |
| На            | 90 —<br>89 —<br>88 —                                 |             | 11<br>12<br>13                  |              |                | Hematized Rhyolitic Tuff/ Dyke-<br>dark red, purple to grey, dark<br>grey, porphrytic to aphanitic   | Calcite precipitation                             |
|               | 87 —<br>86 —<br>85 —                                 |             |                                 |              |                | Hematized Rhyolitic Tuff- dark red, purple to orange, porphrytic                                     | Some Weathering                                   |
|               | 84 —                                                 |             |                                 |              |                | Hematized Rhyolitic Tuff/ zdyke-<br>dark red, purple to grey, dark                                   | Calcite precipitation                             |
|               | 83 —                                                 |             |                                 | STOCK -      | D . A . D      | grey, porphrytic to aphanitic<br>Hematized Rhyolitic Tuff- dark<br>red, purple to orange, porphrytic | Some Weathering                                   |
|               | 82 —                                                 |             |                                 | Share and    |                | Dyke- dark grey, aphanitic, some calcite veining                                                     | Calcite precipitation, some pyrite mineralisation |

 Other Information: Log updated 03/04/2023 following ADW Survey Data

 Logged By: MA
 Checked By: SK

 Version: 3430\_TH\_GA\_LOG\_PH13\_V3



# Appendix D: Qualtest Resource Material Testing

Resource Material Testing Assessment

Hillview Quarry, Karuah

NEW15P-0045-AC 13 April 2017





13 April 2017

Tricon Mining Equipment Pty Ltd RMB1085 Pacific Highway Somersby NSW 2250

#### Attention: Greg Thompson

Dear Greg,

# RE: PROPOSED RESOURCE DEVELOPMENT – HILLVIEW QUARRY, KARUAH MATERIAL TESTING ASSESSMENT

Please find enclosed our Material Testing Assessment report for the proposed Quarry Resource Development located at Karuah and referred to as Hillview Quarry.

The report includes test results, descriptions and discussion of the engineering properties of the range of rock types encountered during investigation drilling performed within the resource. A broad range of tests were performed to demonstrate the engineering properties of the resource, primarily for use as construction aggregate in the concrete, asphalt, sealing and road building industry.

If you have any questions regarding this report, please do not hesitate to contact Alan Cullen or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

2rc

Jason Lee Principal Geotechnical Engineer

Alan Cullen Principal Geotechnician

## Table of Contents:

| 1.0 |      | Introduction1                                              |
|-----|------|------------------------------------------------------------|
| 2.0 |      | Scope of Testing1                                          |
| 3.0 |      | Results2                                                   |
|     | 3.1  | Bulk Density (AS1141.4)2                                   |
|     | 3.2  | Particle Density and Water Absorption (AS1141.5, 6 & 6.1)2 |
|     | 3.3  | Particle Size Distribution (AS1141.11.1)4                  |
|     | 3.4  | Passing 75 Micron in Aggregates – By Washing (AS1141.12)5  |
|     | 3.5  | Particle Shape by Proportional Calliper (AS1141.14)6       |
|     | 3.6  | Wet/Dry Strength Variation (AS1141.22)6                    |
|     | 3.7  | Los Angles Abrasion Value (AS1141.23)7                     |
|     | 3.8  | Sodium Sulphate Soundness (AS1141.24)7                     |
|     | 3.9  | Stripping and Initial Adhesion (RMS T230 & RMS T238)8      |
|     | 3.10 | Cerchar Abrasion9                                          |
|     | 3.11 | Sugar in Aggregates (AS1141.35)11                          |
|     | 3.12 | Soluble Salts (AS1012.20)11                                |
|     | 3.13 | Alkali Reactivity (RMS T363)11                             |
|     | 3.14 | Polished Aggregate Friction Value (PAFV – AS1141.41/42)12  |
|     | 3.15 | Methylene Blue Value13                                     |
|     | 3.16 | Atterberg Limits (AS1289.3.1.1, 3.2.1, 3.3.1, 3.4.1)       |
|     | 3.17 | Point Load Test (RMS T223)15                               |
|     | 3.18 | Uniaxial Compressive Strength (AS4133.4.2.1)16             |
|     | 3.19 | Petrographic Examination (ASTM C295)17                     |
| 4.0 |      | Summary17                                                  |
| 5.0 |      | Limitations21                                              |

## Attachments:

| Appendix A: | Results of Laboratory Testing – Qualtest (2017) |
|-------------|-------------------------------------------------|
| Appendix B: | Results of Laboratory Testing – External (2017) |

# 1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this report on behalf of Tricon Mining Equipment Pty Ltd (Tricon) for the proposed resource development located at Karuah and referred to as Hillview Quarry.

This report presents the results of laboratory testing conducted by Qualtest and other specialist laboratories on samples obtained from the recent drilling investigations performed by VGT Pty Ltd - Environmental Compliance Solutions (VGT), together with discussion and recommendations on the engineering properties of the resource, primarily for use as construction aggregate in the concrete, asphalt, sealing and road building industry.

# 2.0 Scope of Testing

The following scope of testing was undertaken on samples retrieved from cored boreholes. The scope performed was aimed at providing a broad suite of testing to cover as many potential markets within the construction materials industry. Tests were chosen to give an overall performance comparison with current Australian Standards (AS2758) and NSW Roads and Maritime Services (RMS) standards. The tests covered physical characteristics, durability, geological properties, and chemical performance of the recovered samples. The scope of testing performed on samples of potential quarry materials provided included:

- AS1141.4 Bulk Density
- AS1141.5 Fine Particle Density & Absorption
- AS1141.6 Coarse Particle Density & Absorption
- AS1141.6.1 Coarse & Fine Weighted Bulk Density & Absorption
- AS1141.11 Particle Size Distribution
- AS1141.12 Material finer than 75 micron
- AS1141.14 Particle Shape
- A\$1141.22 Wet/Dry Strength Variation
- AS1141.23
   Los Angeles Abrasion
- AS1141.24
   Sodium Sulphate Soundness
- AS1141.35
   Sugar in Aggregates
- AS1141.41/42
   Polished Aggregate Friction Test
- A\$1012.20
   Chlorides and Sulphates
- AS4133.4.1 Point Load Strength
- AS4133.4.2.1 Uniaxial Compressive Strength of Rock
- A\$1289.3.1.1,3.2.1,3.3.1,3.4.1 Atterberg Limits including Plasticity Index
- RMS T219
   Acid soluble Sulphates
- RMS T363
   Alkali Reactivity
- RMST659
   Methylene Blue Value
- ASTM C 295
   Petrographic analysis

The purpose of the study was to assess the available rock types, and potential uses of each material within the construction industry. The scope of tests listed above was carried out on a selection of composite rock core samples considered to be representative of the potential resource, sampled from between 0.0 and 100.0m from recovered core from Borehole DDH 2 across the varying depths.

The resource identified two representative rock types based upon the Petrographic Analysis results as summarised in Table 1. A composite of representative samples were selected and tested based on their potential material qualities and potential suitability for use as construction industry material.

| Sample ID | Depth (m)        | Rock Type                |
|-----------|------------------|--------------------------|
| DDH2 P-1  | Composite Sample | Hematized Rhyolitic Tuff |
| DDH2 P-2  | Composite Sample | Rhyolitic Tuff           |

#### Table 1 – Description of Representative Rock Types and Samples Tested

## 3.0 Results

#### 3.1 Bulk Density (AS1141.4)

Bulk Density is defined as the mass of particles divided by the total volume they occupy. The total volume includes particle volume, inter-particle void volume and internal pore volume.

| Sample ID            | Rock Type      | Uncompacted<br>Bulk Density<br>(t/m <sup>3</sup> ) | Compacted<br>Bulk Density<br>(t/m <sup>3</sup> ) | AS2758 Concrete<br>Aggregate Spec. |
|----------------------|----------------|----------------------------------------------------|--------------------------------------------------|------------------------------------|
| DDH2 (0.0 to 100.0m) | Rhyolitic Tuff | 1.33                                               | 1.50                                             | > 1.2 t/m³                         |

#### Table 2 – Bulk Density Results (AS1141.4)

#### 3.2 Particle Density and Water Absorption (AS1141.5, 6 & 6.1)

The Particle Density and Water Absorption test is universally accepted within the Australian Construction Industry as the definitive measure of fine & coarse aggregate density and water absorption. It is used to determine these properties for both coarse grained aggregate and natural and manufactured sands.

The Particle Density test produces results similar to Specific Gravity (Apparent Particle Density), but also takes into account the voids that may be present in the material being tested. At the same time, the amount of water that is held within those voids is calculated and reported as the Water Absorption of the material. The definition of the four reportable parameters which are calculated is set out below: -

<u>Apparent Density:</u> The dry mass of particles divided by their volume, with the volume including only the impermeable voids.

<u>Particle Density – Dry:</u> The dry mass of particles divided by their volume, with the volume including both permeable and impermeable voids.

<u>Particle Density - Saturated Surface Dry (SSD):</u> The SSD mass of particles divided by their volume, with the volume including both permeable and impermeable voids.

<u>Water Absorption</u>: The ratio expressed as a percentage, of the mass of water held in the permeable voids of the particles brought to SSD condition following soaking under water for 24 hours, to the oven dried mass of the material.

The test properties listed above provide key design parameters for concrete and asphalt mixes.

For Concrete mixes, the SSD density which accounts for water contained within permeable voids allows for calculation of the mix yield and concrete voids in the design calculation process. Attempts have been made in some specifications to limit the water absorption of aggregates, to minimise the practical difficulties that arise when dealing with highly absorptive aggregates. Because the density determination has accounted for the water in voids, they do not impede the cement hydration process, thus a more accurate determination of water demand and water-cement ratio design is possible. In other words, whilst low water absorptions are preferable, higher absorptions do not present insurmountable hurdles to concrete and asphalt mix designs.

| Sample ID                            | Rock Type         | Particle<br>Density<br>Dry Basis<br>(t/m <sup>3</sup> ) | Particle<br>Density<br>SSD Basis<br>(t/m <sup>3</sup> ) | Apparent<br>Particle<br>Density<br>(t/m <sup>3</sup> ) | Water<br>Absorption<br>(%) | AS2758<br>Concrete<br>Aggregate<br>Spec. Dry<br>Basis |
|--------------------------------------|-------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------|-------------------------------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic<br>Tuff | 2.47                                                    | 2.52                                                    | 2.60                                                   | 2.1                        | > 2.1 t/m³                                            |

Table 3 – Particle Density Fine Results (AS1141.5 - <4.75mm)

The AS 1141.5 Particle Density test can be used to determine particle density and water absorption properties in natural and manufactured fine materials.

For fine aggregates, the particle density test is carried out on material of size less than 4.75mm and a test portion of about 500g. This portion is immersed in water at room temperature for at least 24 hours and agitated in a manner that removes all the entrapped air. This is to ensure the pores are filled with water. The sample is then dried back to a point where the SSD condition can be determined.

This point is normally determined by using a cone apparatus and tamping rod.

When the material is Surface Saturated Dry (SSD), it should collapse on removal of the supporting cone. If it fails to collapse, it is deemed to still be too wet and further drying is required. This procedure of determining SSD works well for rounded natural sands with low quantities of passing 75 micron fines.

The results indicate that the fines produced are below the preferable limit of 3% in RMS 3152 for Asphalt.

The composite rhyolitic tuff sample tested returned a low water absorption value of 2.1%. The Concrete and Asphalt industry generally prefers materials to have water absorptions less than 2.5%.

| Sample ID                            | Rock Type         | Particle<br>Density<br>Dry Basis<br>(t/m <sup>3</sup> ) | Particle<br>Density<br>SSD Basis<br>(t/m <sup>3</sup> ) | Apparent<br>Particle<br>Density<br>(t/m <sup>3</sup> ) | Water<br>Absorption<br>(%) | AS2758<br>Concrete<br>Aggregate<br>Spec. Dry<br>Basis |
|--------------------------------------|-------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------|-------------------------------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic<br>Tuff | 2.49                                                    | 2.53                                                    | 2.58                                                   | 1.3                        | > 2.1 t/m³                                            |

Table 4 - Particle Density Coarse Results (AS1141.6 - >4.75 mm to <19.0mm)

Whilst the fines portion of Rhyolitic Tuff from DDH2 had an absorption of 2.1%, the coarse fraction produced a lower water absorption of 1.3%. Both results are within acceptable and normal working limits.

When assessing aggregates for mix design purposes that have both fine and coarse portions, it is normal to refer to their weighted ratio density and absorption to get an overall picture of the Particle Density and Water Absorption characteristics as outlined in Table 5.

| Sample ID                            | Rock Type      | Particle<br>Density<br>Dry Basis<br>(t/m³) | Particle<br>Density<br>SSD Basis<br>(t/m <sup>3</sup> ) | Apparent<br>Particle<br>Density<br>(t/m <sup>3</sup> ) | Water<br>Absorption<br>(%) | AS2758<br>Concrete<br>Aggregate<br>Spec. Dry<br>Basis |
|--------------------------------------|----------------|--------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------|-------------------------------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | 2.48                                       | 2.52                                                    | 2.59                                                   | 1.7                        | > 2.1 t/m³                                            |

 Table 5 – Particle Density Results (AS1141.6 - Weighted)

The particle density and water absorption results obtained from the composite sample of Rhyolitic Tuff from Borehole DDH2 (in either it's fine, coarse or combined weighted state), all meet and are below the normal absorption maximum requirement of 2.5% sought by the concrete and asphalt Industry. The dry density and apparent particle density of material from this source also exceed the minimum density requirements of 2.1 t/m3. This would indicate that the resource density and absorption characteristics are reasonably uniform, and blending or mixing of the resource products during production process (either by design or inadvertently), should not create undue problems.

### 3.3 Particle Size Distribution (AS1141.11.1)

The Particle Size Distribution or grading of the aggregates tested is primarily a function of the crushing process. The rock core samples provided for testing were crushed in a laboratory "Jaw Crusher" to produce a targeted 20mm minus run of crush product. This crushed product was then graded to produce the particle size distribution results presented in Table 6.

Once graded, certain portions of the graded aggregate and fines were extracted from the total sample to perform the respective testing nominated in the testing schedule.

In the particle size distribution test, the aggregate is dried to a constant mass and then separated through a series of sieves, made with punched plate and woven wire in progressively smaller openings. For samples tested to Australian Standards, the sieves conform to AS1152 and form part of the metric "half Series", where each successive sieve opening is half the size of the next largest sieve in the series.

Once separated, the mass of particles retained on each sieve is measured and compared with the mass of the total sample. Particle size distribution is then expressed as the cumulative mass percentage passing each sieve. Results are presented in a tabulated form or as graphs in a logarithmic format.

The test method for grading used in this assessment is described in AS1141.11.1, and was performed in the material's dried, unwashed state. The percent passing the 75 micron fraction was performed to AS1141.12 method and is a washed method where the dried sample is soaked for 12 hours and then washed over a 75 micron wash sieve.

Particle size distribution, or grading, is one of the most influential and commonly reported characteristics of an aggregate. Grading influences concrete durability, road base compatibility, porosity, workability, cement and water requirements, strength and shrinkage. However, it is the total aggregate grading in the mix that is critical to the mix performance. The grading of an individual component is not critical to the mix performance and an unsuitable grading can be improved by blending with other components. In this case the individual grading is not critical but once the blend is established, the consistency of individual components is critical to the production of a consistent product.

The individual grading percentages presented in Table 6, whilst not comparable to any individual specification, are indicative of a material that when crushed with normal crushing and screening equipment will produce similar material with the same physical characteristics and shape. The shape of individual particles can be changed and improved depending upon the screening and crushing equipment utilised in the production process. Improvement in the shape to a more cubical dimension will ultimately improve some durability aspects associated with the rock crushed from this resource, such as wet /dry variation.

| Sample ID        | Rock Type      | Sieve Size<br>(mm) | %Passing |
|------------------|----------------|--------------------|----------|
|                  |                | 19.0               | 100      |
|                  |                | 13.2               | 92       |
|                  |                | 9.5                | 73       |
|                  | Rhyolitic Tuff | 6.7                | 58       |
|                  |                | 4.75               | 43       |
| DDH2 - composite |                | 2.36               | 26       |
| (0.0m to 100.0m) |                | 1.18               | 17       |
|                  |                | 0.60               | 11       |
|                  |                | 0.425              | 8        |
|                  |                | 0.300              | 6        |
|                  |                | 0.150              | 2        |
|                  |                | 0.075              | 0        |

Table 6 – Particle Size Distribution Results (AS1141.11)

## 3.4 Passing 75 Micron in Aggregates – By Washing (AS1141.12)

The percentage passing 75 microns is calculated as the loss on washing expressed as a percentage of the original sample mass.

The 75-micron fraction size is used in Australia as a near approximation to the 60-micron size limit that in geological terms marks the boundary between fine Sand and Silt/Clay.

In natural aggregates, the total passing 75 microns will include the silt and clay fractions and will be composed of silt and clay minerals. In many specifications including AS 2758.1, the percentage passing 75 microns has been specified as a control over clay and silt fines that may cause water and cement demand, shrinkage, cracking, and control the permeability of some materials.

Percent passing results provided in Table 6 give indicative values that may be expected from material crushed in the normal manner.

The percent passing the 75 micron is an indication of the silt and clay fines within a particular crushed product. The percentage returned from crushed rock composite sample DDH2 was 2%, this is expected to consist of predominately silt size fraction as the fines produced were non-plastic when Atterberg limit testing was performed on the recovered fines.

| Sample ID                            | Rock Type      | Material<br>Finer Than<br>75µ<br>(%) | AS2758<br>Concrete<br>Aggregate<br>Spec | RMS 3151 Sealing<br>Aggregate Spec |
|--------------------------------------|----------------|--------------------------------------|-----------------------------------------|------------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | 2.0                                  | 0 – 2                                   | 0 - 1                              |

Table 7 – Material Finer Than 75µ Results (AS1141.12)

The results indicate that after the primary run of crush process in the laboratory, material passing the 75 micron sieve was equal to the specification limits. In the quarry production environment, this can be improved by either by appropriate screening, dust extraction systems or by washing of the end product. Through implementation of such measures, it is anticipated that specification limits outlined in Table 7 may be met. Manufactured sand for concrete production is generally washed to control the minus 75 micron percentage.

## 3.5 Particle Shape by Proportional Calliper (AS1141.14)

The shape of the aggregate and crushed fines is primarily influenced by the crushing and screening process. The material processed and tested has been crushed with a primary "jaw crusher" which produces more flaky and elongated shapes than a cone crusher or "Barmac" system.

Aggregate is generally shaped through a series of primary and secondary crushers and recirculated to obtain more cubical, better shaped aggregate for concrete, sealing aggregate and asphalt production.

The shape of individual particles influences not only the durability test results performance, but also the physical flow ability of concrete and the ultimate compatibility and stability of the end product. Improving the shape characteristics of a material to make it more cubical can have a positive influence on these physical and durability test parameters.

The particle shape test determines the percent of Misshapen or poorly shaped less desirable particles within a sample at 2:1 and 3:1 size ratios. The test determines the shape of individual particles and grades them according to their length, breadth and thickness.

The samples tested demonstrated total misshapen particles percentages of 7% to 3%. These well shaped results are not typical of a single run of crush product through a primary jaw crusher. The percentage misshapen should decrease when recirculated over a secondary crushing process such as a "cone crusher", which will generally halve these current percentage misshapen values.

It is assessed that aggregate crushed in the above manner (single run of crush, through a jaw crusher) would be suitable for road base pavement products and certain asphalt applications, but would generally require further processing to be suitable for high strength concrete and superior performance aggregate.

| Sample ID                            | Rock Type         | Total<br>Misshapen<br>Particles<br>2:1<br>(%) | Total<br>Misshapen<br>Particles<br>3:1<br>(%) | AS2758<br>Concrete<br>Aggregate<br>Spec | RMS 3151<br>Sealing<br>Aggregate<br>Spec | RMS 3152<br>Asphalt<br>Aggregate<br>Spec |
|--------------------------------------|-------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic<br>Tuff | 7                                             | 3                                             | <35%                                    | <35%                                     | <35%                                     |

Table 8 – Particle Shape Results (AS1141.14)

## 3.6 Wet/Dry Strength Variation (AS1141.22)

The Wet/Dry Strength Variation test determines the load (in KN) required to produce 10% fines in an aggregate sample when tested in its dry (oven), and wet (SSD) conditions. The difference between these two strengths is expressed as a % variation. Wet strength is typically lower than the dry strength due to the presence of moisture within the aggregate particles during crushing, while a large difference between wet and dry conditions indicates potential water sensitivity of the rock when placed in saturated site conditions.

| Sample ID                            | Rock Type      | Dry<br>Strength<br>(kN) | Wet<br>Strength<br>(kN) | Wet/Dry<br>Strength<br>Variation<br>(%) | AS2758<br>Concrete<br>Aggregate<br>Spec |
|--------------------------------------|----------------|-------------------------|-------------------------|-----------------------------------------|-----------------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | 246                     | 215                     | 13                                      | <25%                                    |

Table 9 – Wet/Dry Strength Variation Results (AS1141.22)

The wet/dry variation test is an excellent method of assessing the durability and wet strength of a product. The wet/dry test performed on a composite sample of the cored rock from DDH2 indicate that despite the crushed rocks shape characteristics, the Rhyolitic Tuff material performed well, further demonstrating the rock deposits high strength and durability characteristics.

It is assessed that in general the Rhyolitic Tuff would be suitable for concrete and asphalt production as it returned results well less than 25%.

DDH2 composite returned a low wet/dry variation result of 13%, however this result is expected to improve further with better shaping which would occurs during actual production.

Based on these wet/dry results the Rhyolitic Tuff rock types are assessed to be hard and durable and suitable for concrete, asphalt and road base applications. Blending of the different rock types in the correct ratios would also improve the overall performance of the end products. Tested DDH2 composite material also complied with the wet strength criteria of greater than 100kN.

## 3.7 Los Angles Abrasion Value (AS1141.23)

This test involves placing a portion of aggregate in a steel drum, fitted with an internal baffle, with a specified number of steel balls. The drum is rotated a fixed number of times to distress the aggregate by impact loading, with some contribution from self-abrasion.

The test was originally developed in the context of wear resistance in cold areas (where the surfacing is trafficked by studded tyres) and for relatively low strength rocks such as limestone. The test result is determined by sizing the post-test material at a specified sieve size (1.8 mm) with the ratio of the -1.8mm fraction to the original charge mass giving the LA value. The higher the LA value, the less durable the rock. It is generally accepted that results of lower than 25% indicate that the rock is suitable for most construction industry applications.

The results of the testing on the composite sampled material from DDH2 demonstrated that the Rhyolitic Tuff performed well under the Los Angles abrasion test, with values of 17%. There is a general correlation of the Los Angeles Value test results with wet/dry strength variation testing.

| Sample ID                            | Rock Type      | Los Angeles<br>Value | AS2758 Concrete<br>Aggregate Spec |
|--------------------------------------|----------------|----------------------|-----------------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | 17                   | <25%                              |

Table 10 – Los Angeles Abrasion Value Results (AS1141.23)

## 3.8 Sodium Sulphate Soundness (AS1141.24)

This test is commonly used to assess an aggregate's suitability for use in concrete. Whilst the test is designed for aggregates in concrete, the exposure classifications can be used as a guide when assessing the suitability of source rock for similar applications.

The test is designed to assess the resistance of rock fabric to salt crystallization pressure, which is a measure of the susceptibility of the rock to physical breakdown. The extent of this breakdown is assessed by repeated immersion of the aggregate in a saturated solution of Sodium Sulphate. This is followed by oven drying to dehydrate the salt precipitated in permeable pores and rehydration of the salt during subsequent immersion, which generates crystallization pressure. Internal expansive forces derived from rehydration of the salt on re-immersion, mimic freezing (crystallization of water) or salt action. This provides a measure of the integrity of the rock fabric when subjected to physical weathering associated with the expansion caused by the freezing of water in aggregate pores, and the expansion of salts on rehydration in marine conditions following repeated wetting and drying.

| Sample ID                                          | Individual Fractions Tested<br>(mm) | Individual Sample Size Loss<br>(%) |  |
|----------------------------------------------------|-------------------------------------|------------------------------------|--|
|                                                    | Loss 19.0 to 13.2mm                 | 0.1                                |  |
|                                                    | Loss 13.2 to 9.5mm                  | 0.3                                |  |
|                                                    | Loss 9.5 to 4.75 mm                 | 0.1                                |  |
| DDH2 - composite<br>(0.0 to 100.0m) Rhyolitic Tuff | Loss 4.75 to 2.36 mm                | 0.3                                |  |
|                                                    | Loss 2.36 to 1.18 mm                | 0.4                                |  |
|                                                    | Loss 1.18 to 0.600mm                | 0.5                                |  |
|                                                    | Total Weighted Loss                 | 0.3                                |  |

Table 11 - Sodium Sulphate Soundness Results (AS1141.24)

The results of Sodium Sulphate Soundness testing are highly dependent on particle size, a consequence of variation to the surface area/volume ratio and its effect on the degree of saturation achieved during the wetting cycle.

High loss results are a fairly reliable indication of poor durability consequently low losses are an indication of good durability. The Rhyolitic Tuff from this resource has extremely low losses, which demonstrates the sources excellent durability characteristics making it suitable for all concrete and asphalt applications.

AS2758 specification breaks the requirements into 3 sub-classes based on the material's maximum weighted average loss of 6%, 9% and 12%. The weighted loss results for the composite sampled material within DDH2 of the resource are all below 6% and are therefore assessed to be suitable for any exposure conditions, including armour rock and dimension stone, providing suitable quarrying methods are used to minimise fractures.

#### 3.9 Stripping and Initial Adhesion (RMS T230 & RMS T238)

Adhesion between bitumen and aggregate is one of the functional properties that guarantee durability of asphalt mixes and seals. Adhesion can be reduced and the cohesion within asphalt lost through the presence of water at the bitumen/stone interface. This is referred to as "stripping".

Adhesion is greatly influenced predominantly by mineral characteristics within parent rock as well as within the properties of the bitumen. Reduced resistance against stripping of certain aggregates can be improved by the addition of hydrated lime (or filler containing hydrated lime) to an asphalt mix. The use of additives in bitumen can improve the adhesion but in general work more selectively and depending on the aggregate/bitumen combination.

The resistance to stripping and initial adhesion test is an assessment of the extent of stripping and initial adhesion between cover aggregates and bituminous binder under wet and dry conditions. The assessment can be performed with or without treatment with pre-coating materials and addition of bitumen agent.

The following results have been performed using standard pre-coat and bitumen additives and show that the crushed aggregate from DDH2 performed well in both the stripping and adhesion tests performed using additive combinations stated.

Bitumen class 170, polyseal \$35E bitumen binder and \$AMI precoat with 1% redicote422/60 were used in the stripping and adhesion tests performed, with both binder combinations tested returning adhesions of less than 5%, and stripping values of less than 2%.

| Method   | Property                                                                                                                                                                                                                       | Result   | Specification<br>RMS 3258 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|
| RMS T238 | Initial Adhesion using SAMI C170 binder with<br>7% kerosene, on NEW17W0307-S01<br>aggregates, precoated with SAMI standard<br>precoat plus 1% redicote 422/60, soaked<br>curing condition and unsoaked curing<br>condition     | <5<br><5 | Maximum<br>10% Stripping  |
| RMS T230 | Resistance to stripping using SAMI C170<br>binder on same precoated aggregates, plus<br>1% redicote422/60.0ven temperature for<br>conditioning=68.5Cand tendency for<br>aggregates to crumble when pulled is <2%               | <2       | Maximum<br>10% Stripping  |
| RMS T238 | Initial Adhesion using Polyseal S35E binder with<br>8% kerosene, on NEW17W0307-S01<br>aggregates ,precoated with SAMI standard<br>precoat plus 1% redicote 422/60, soaked<br>curing condition and unsoaked curing<br>condition | <5<br><5 | Maximum<br>10% Stripping  |
| RMS T230 | Resistance to stripping using polyseal S35E<br>binder on same precoated aggregates, plus<br>1% redicote422/60.0ven temperature for<br>conditioning=68.5Cand tendency for<br>aggregates to crumble when pulled is <2%           | <2       | Maximum<br>10% Stripping  |

| Table 12 – Stripping and Initial Adhesion | n (RMS T230 & RMS T238) |
|-------------------------------------------|-------------------------|
|-------------------------------------------|-------------------------|

The samples where this testing was performed were relatively flaky and demonstrated more breakdown than would normally be expected from crushed rock of this type in the stripping test. It is considered that if better shaped aggregate was produced, the end test result would have been improved.

## 3.10 Cerchar Abrasion

The Cerchar Scratch test (1986) was developed in France in the mid-1980s to help predict the wear of cutters on the tunnel boring machines. The test is a useful low cost method of predicting the rate of wear of cutter heads, excavator bucket teeth, and crushing and screening plant. The test is performed on a small freshly broken rock sample, requiring less than 25mm in size. The sample is scratched by a hardened sharp heat treated alloy steel needle of defined geometry over a length of 10mm in 1 second, under a static load of 70N. This provides a wear classification referred to as the Cerchar Abrasivity Index (CAI). The CAI is calculated as the average measure of the worn-flat diameters (in tenths of mm) on the testing needle.



Figure 1 above shows the cerchar abrasivity machine and the 10mm long scratches on rock samples.

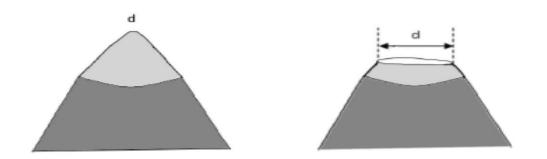



Figure 2 above shows how the CAI is obtained from a steel needle's "sharp point" (left); the test produces a conical blunt surface where its new diameter is measured in integers of 0.1mm, with a scale going from 1 to 6.

The cerchar abrasivity test performed on pieces of aggregate from DDH2 and tested in the manner described above returned a CAI rating of 2.5%. This abrasivity rating places the Rhyolitic Tuff rock from DDH2 in the 'Very High' tool wear bracket of around 500m3 of excavation per cutter disc.

| Sample ID               | Classification                      | Average CAI <sub>s</sub> (HRC55) |
|-------------------------|-------------------------------------|----------------------------------|
| DDH2 - composite sample | Rhyolitic Tuff<br>High Abrasiveness | 2.71                             |

| Table 13 - Cerchar | Abrasivity | Index |
|--------------------|------------|-------|
|--------------------|------------|-------|

The table shown below modified from Maidl (2001) shows the comparison of field unconfined compressive strength, tool wear rate and predicted excavated cubic metre wear rate for cutter discs.



## 3.11 Sugar in Aggregates (AS1141.35)

Sugar retards the set-in concrete; therefore, aggregates are tested to ensure there is no presence of sugar in materials crushed and proposed for use as concrete aggregate. No sugar was detected within any samples of crushed aggregate tested.

| Table 14 – Sugar in Aggregates Results (AS1141 | .35) |
|------------------------------------------------|------|
|------------------------------------------------|------|

| Sample ID                            | Rock Type      | Content      |
|--------------------------------------|----------------|--------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | Not Detected |

## 3.12 Soluble Salts (AS1012.20)

Excessive quantities of some soluble salts may cause efflorescence on concrete, corrosion of reinforcing steel, or disintegration of the mass of concrete. Permissible levels of soluble salts are generally expressed as a proportion of the relevant ion present in the concrete by mass of concrete or by mass of Portland cement.

AS1141.20 determines the chloride ion and sulphate ion content within aggregates proposed for use as concrete aggregate. The total individual percentage of chloride and sulphate ion reportable in aggregate is for amounts in excess of 0.01%. The total combined aggregate chloride salt content should not exceed 0.04% for use in reinforced concrete. The total sulphate ion content allowable within a concrete mix and expressed as SO<sub>3</sub> should not exceed 5% by mass of Portland cement.

#### Table 15 - Chlorides Results (1012.20)

| Sample ID                            | Rock Type      | Chlorides (Cl)<br>(%) | Sulphates<br>(SO4)<br>(%) |
|--------------------------------------|----------------|-----------------------|---------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | 0.004                 | 0.001                     |

#### Table 16 – Sulphates Results (RMS T219)

| Sample ID                            | Rock Type      | Sulphates (SO₃)<br>(%) |
|--------------------------------------|----------------|------------------------|
| DDH2 - composite<br>(0.0m to 100.0m) | Rhyolitic Tuff | 0.010                  |

Samples from the deposit (depending upon the rock source) demonstrated different content levels of soluble salt ions, but despite slightly elevated sulphates (SO<sub>4</sub>) the total sulphates expressed as (SO<sub>3</sub>) are below AS2758.1 guideline requirements.

## 3.13 Alkali Reactivity (RMS T363)

In most concrete, aggregates are more or less chemically inert. However, some aggregates react with the alkali hydroxides in concrete, causing expansion and cracking over a period of many years. This alkali-aggregate reaction has two forms: Alkali-Silica Reaction (ASR) and Alkali-Carbonate Reaction (ACR).

**Alkali-Silica Reaction (ASR)** is of more concern as aggregates containing reactive silica materials are more common. In ASR, aggregates containing certain forms of silica will react with alkali hydroxide in concrete to form a gel that swells as it adsorbs water from the

surrounding cement paste or the environment. These gels can induce enough expansive pressure to damage concrete.

Alkali-silica reaction can be controlled using certain supplementary cementitious materials. In proper proportions, silica fume, fly ash, and ground granulated blast-furnace slag have significantly reduced or eliminated expansion due to alkali-silica reactivity. In addition, lithium compounds have been used to reduce ASR.

Although potentially reactive aggregates exist throughout Australia, alkali-silica reaction distress in concrete is not that common because of the measures taken to control it. It is also important to note that not all ASR gel reactions produce destructive swelling.

Alkali-Carbonate Reaction (ACR) is observed within certain dolomitic rocks. Dedolomitisation (the breaking down of dolomite) is normally associated with expansion. This reaction and subsequent crystallization of brucite may cause considerable expansion. The deterioration caused by alkali-carbonate reactions is similar to that caused by ASR, however, ACR is relatively rare because aggregates susceptible to this phenomenon are less common and are usually unsuitable for use in concrete for other reasons. Sampled materials are not considered dolomitic rocks so ACR is considered unlikely in regards to material from this source.

The samples obtained from the respective boreholes were crushed and combined with SL-Berrima GP cement and tested for alkali reactivity in accordance with RMS T363 procedures. The mortar bar expansion percentages set out in Table 17 range from a maximum of 0.098% at 10 days, to a maximum of 0.206% at 21 days.

Based on the assessment criteria, the samples are classified as slowly reactive as the sample has less than 0.10% expansion at 10 days (Slowly-Reactive) and have greater than 0.10% expansion (Slowly Reactive) after 21 days.

| Sample ID                           | Rock Type      | 10 Day<br>Expansion<br>(%) | 21 Day<br>Expansion<br>(%) | Classification   |
|-------------------------------------|----------------|----------------------------|----------------------------|------------------|
| DDH2 - composite<br>(0.0 to 100.0m) | Rhyolitic Tuff | 0.098                      | 0.206                      | Slowly Reactive* |

Table 17- Alkali Reactivity Results (RMS T363)

Where samples are reactive further testing with fly ash based cements are recommended.

## 3.14 Polished Aggregate Friction Value (PAFV – AS1141.41/42)

In NSW, the measurement of aggregate polishing values can be obtained from using a horizontal testing wheel/flat mould system and applied to Australian Polished Aggregate Friction Value (PAFV).

An aggregate's resistance to polishing is measured by performing pendulum friction tests on laboratory polished pieces of aggregate and comparing to a known reference sample of 'Panmure Basalt'. The Australian standards relevant to polishing of aggregates are:

**AS1141.40-1999**: Methods for sampling and testing aggregates – Polished aggregate friction value - Vertical road-wheel machine.

**AS1141.41-1999**: Methods for sampling and testing aggregates – Polished aggregate friction value – Horizontal bed machine.

AS1141.42-1999: Methods for sampling and testing aggregates – Pendulum friction test.

The first two standards describe alternative methods for accelerated polishing of aggregates in the laboratory, using coarse and then fine abrasive materials to wear away (polish) the aggregate's micro texture. Following polishing by either method, the third standard is used to

determine the friction angle value of the resulting polished aggregate using a pendulum friction test. Depending on the test method used, this value is then reported as the PAFV (AS1141-41 & 42, and also NSW RMS 3151 & 3152) or PSV (other states) of the aggregate.

The two polishing regimes in AS1141.40 and AS1141.41 were designed to give results that were comparable between the two methods. However, there are differences between the PAFV and the PSV test, including the coarse abrasive, water and abrasive feed rates, polishing time, reference aggregate and rubber for friction testing. Therefore, PSV and PAFV results may not be directly comparable.

The RMS 3151 and 3152 specification standards for use as sealing aggregates and asphalt aggregate vary slightly with regards to their PAFV requirements. Aggregates with PAFV values of greater than 44 are required for sealing aggregates and greater than 48 for asphalt. The general accepted rule is that the higher the PAFV value, the better the performance of the aggregate in terms of skid resistance. This should also be judged in conjunction with suitable aggregate strength, abrasion and durability results.

| Sample ID                           | Rock Type      | PAFV Value | RMS 3151<br>Sealing<br>Aggregate | RMS 3152<br>Asphalt<br>Aggregate |
|-------------------------------------|----------------|------------|----------------------------------|----------------------------------|
| DDH2 - composite<br>(0.0 to 100.0m) | Rhyolitic Tuff | 50         | >44                              | ≥48                              |

## Table 18 – PAFV Results (AS1141.41/42)

Samples that were crushed and tested in accordance AS1141.41 and AS1141.42 displayed PAFV values in excess of the specification requirements. It is therefore assessed that all resource material tested may be suitable for use as both sealing and asphalt aggregate.

Whilst all samples tested performed well relating to their strength and abrasion characteristics, durability and mineralogical make up should also be considered when assessing their performance.

The rhyolite materials from DDH2, performed well and are likely to be suitable materials for sealing and asphalt aggregate.

## 3.15 Methylene Blue Value

Methylene Blue (MB) dye absorption has been used for a considerable period as a means of determining and specifying the presence of clay minerals in aggregates. The test determines the quantity of MB dye required to coat the active agents in the soil in a mono molecular layer.

The test is completed on the passing 75-micron fraction recovered from a sample of fine aggregate of known mass. A MB of 1 mg/ml is titrated against slurry of the passing 75-micron material. As each aliquot of MB is added, the sample is tested for end point by removing a small drop of the slurry on a stirring rod and placing the dyed dust and liquid drop onto a filter paper. The filter paper draws off a 'halo' of water from around the dust particles. At the end point, when the dust cannot absorb any further MB, this 'halo' is permanently stained a light blue colour. The Methylene Blue Value (MBV) of the aggregate is reported as the number of milligrams of dye absorbed per gram of material passing 75 microns.

The MBV expresses the quantity of MB required to cover the total surface of the clay fraction with a mono-molecular layer of the MB. It is therefore proportional to the product of the clay content times the specific surface of the clay. However, the result can be affected by the presence of organics, zeolites and iron hydroxides. Some literature also suggests minor absorption by carbonates and unbalanced charged particles on freshly crushed surfaces, but these effects are considered minor. The MB test is used to evaluate the amount and nature of deleterious fines in a fine aggregate which may cause stripping. The higher the MBI the more susceptible the aggregate or mix will be to stripping.

The ISSA procedure (Bulletin145) recommends that mineral aggregate fillers and fines be rejected if the MBV exceeds 10mg/g for basalt rocks or 7 mg/g for grit stones (meta-Greywackes). RMS specifications for fines used in asphalt (RMS 3152) require further investigation of an aggregate if the MBV exceeds 8mg/g.

| Sample ID                           | Rock Type      | Methylene Blue Value<br>(mg/g) | Recommended Limit<br>RMS 3152 |
|-------------------------------------|----------------|--------------------------------|-------------------------------|
| DDH2 - composite<br>(0.0 to 100.0m) | Rhyolitic tuff | 2.5                            | 8mg/g                         |

#### Table 19 - Methylene Blue Value Results

The MBV obtained on crushed fines from borehole DDH2 indicate that the clay activity in the samples tested is substantially below recommended limits.

This would indicate that rock quarried from the resource meets the recommended specification requirements and would be unlikely to liberate further fines during the production processes.

## 3.16 Atterberg Limits (AS1289.3.1.1, 3.2.1, 3.3.1, 3.4.1)

The knowledge of the crushed rock soil consistency is important in defining or classifying a rock type and aids in predicting crushed rock performance when used as a construction material. The soil or crushed rock fines have been assessed for their soil consistency by means of the Atterberg Limit test.

For cohesive soils, there is a range of moisture contents within which the soil (silt or clay) is of a plastic consistency. The Atterberg Limits test provides a means of measuring the plastic range of a cohesive soil in numerical terms.

Water can be added and mixed into cohesive soil until the soil becomes slurry, and behaves as a viscous fluid. This is defined as the liquid state. As the cohesive soil is dried back slowly and evenly it begins to gain strength and offers resistance to deformation. The condition is known as the plastic state. Further reduction of moisture in the soil will cause it to shrink and become stiffer until it shows little plastic condition and the cohesive soil becomes brittle. This is defined as the semi-solid state. With further drying, the soil will continue to shrink until no further moisture can be removed. At this point further drying has no more effect on the volume change and the soil is defined as being in a solid state.

The change from one phase to the next does not occur at a precise time but takes place as a transition over a period of time. The plastic range is then reported in the following terms:

- Liquid Limit (W<sub>L</sub>) Liquid state;
- Plastic Limit (W<sub>P</sub>) Plastic state;
- Plasticity Index (IP) Plasticity Index;
- Linear Shrinkage (Ls) Liquid linear shrinkage.

The plasticity index is not determined by a test, it is the measure of plasticity of a soil as the difference between the Liquid Limit ( $W_L$ ) and the Plastic Limit ( $W_P$ ). The liquid Linear Shrinkage (Ls) is defined as the decrease in length, expressed as a percentage of the original length.

The plastic limit test is used throughout engineering specifications and the construction industry as a defining test of materials plasticity.

The test is performed on the material component that passes the 425-micron test sieve. The materials are then moistened and cured and its respective plastic and liquid state determined.

Rock samples obtained from the resource were crushed and the produced fines were collected and tested to determine their plasticity. Atterberg Limit test results are presented in Table 20.

| Sample ID                           | Rock Type      | Liquid Limit<br>(%) | Plastic limit<br>(%) | Plasticity<br>Index | Linear<br>shrinkage<br>(%) |
|-------------------------------------|----------------|---------------------|----------------------|---------------------|----------------------------|
| DDH2 - composite<br>(0.0 to 100.0m) | Rhyolitic Tuff | Not<br>obtainable   | Not<br>obtainable    | Non-Plastic         | 0.0                        |

Table 20 – Atterberg Limits Results (AS1289.3.1.1, 3.2.1, 3.3.1, 3.4.1)

The crushed rock fines produced from the composite sample from DDH2 sources did not display any reaction to the Atterberg Limits test. They were Non-Plastic, meaning that the liquid limit and or plastic limit could not be obtained due to the non- reactive nature of the fines produced.

The production of Non-plastic fines from these source rocks is ideal for the production of good quality aggregate for use as concrete and road sealing purposes, but is not ideal for the production of top quality road base and select which require some plasticity in order to produce a cohesive uniform compactable blend.

Further testing of overburden materials should be performed in order to establish likely blending ratios required going forward for the introduction of plastic fines during the production process whilst producing road base materials.

## 3.17 Point Load Test (RMS T223)

The point load strength index test is a method developed for determining the strength of rock specimens in the field with portable equipment.

Specimens in the form of either rock core (the diametric and axial test) or irregular lumps (the irregular lump test) are broken by application of a concentrated load using a pair of conical platens. A point load strength index (Is (50)) is obtained and may be used to classify rocks by strength. It can also be used to estimate uniaxial compressive strength where index-to-strength conversation factors are used.

The point load test is an accepted rock mechanics testing procedure used for the calculation of a rock strength index. This index can be used to estimate other rock strength parameters. The rock strength determined by the point load test, like the load frame strengths that they estimate, is an indication of the intact rock strength, and not necessarily the strength of the rock mass.

Specimens should be tested at close to their in-situ moisture content and strengths may vary due to sample geometry and rock properties. Rock that is bedded, schistose or otherwise shows observable anisotropy should be tested in both weakest and strongest directions. The uncorrected point load strength is corrected using equivalent core diameter calculation and expressed in MPa as Point Load Index (Is (50)).

| Sample ID               | Rock Type      | Strength<br>Diametral<br>Is50 (MPa) | Strength<br>Axial<br>Is50 (MPa) | Anisotropy<br>Index |
|-------------------------|----------------|-------------------------------------|---------------------------------|---------------------|
| DDH2 (4.20 to 4.35m)    |                | 8.95                                | 8.00                            | 1.12                |
| DDH2 (10.00 to 10.20m)  |                | 9.54                                | 5.28                            | 1.80                |
| DDH2(22.30 to 22.50m)   |                | 11.82                               | 9.71                            | 1.22                |
| DDH2(30.50 to 30.70m)   |                | 7.06                                | 6.37                            | 1.11                |
| DDH2 (41.70 to 41.80m)  |                | 11.79                               | 9.14                            | 1.29                |
| DDH2 (51.20 to 51.40m)  | Rhyolitic Tuff | 7.67                                | 5.29                            | 1.45                |
| DDH2 (62.90 to 63.20m)  |                | 11.79                               | 8.34                            | 1.41                |
| DDH2 (70.70 to 71.00m)  |                | 5.41                                | 1.67                            | 3.25                |
| DDH2 (80.60 to 81.20m)  |                | 11.82                               | 1.46                            | 8.10                |
| DDH2 (90.40 to 91.20m)  |                | 9.78                                | 9.16                            | 1.07                |
| DDH2 (99.80 to 100.00m) |                | 11.85                               | 7.20                            | 1.65                |

The point load test results performed on rocks from this resource indicate that the material has  $I_{550}$  strength values range between 1.5 MPa to 12 MPa, placing it in the high strength to extremely high strength classification category. Rock of this strength rating is generally suitable for most construction purposes.

#### 3.18 Uniaxial Compressive Strength (AS4133.4.2.1)

Compressive strength is probably the most widely used and quoted rock engineering parameter. Under uniaxial load conditions, the maximum stress that a rock sample can sustain is referred to as Uniaxial Compressive Strength (UCS). It is one of the most important mechanical properties of rock material, used in design, analysis and modelling of quarry benches and infrastructure design.

The method is based on a rock sample of 54 mm in diameter and with a height from 2.5 to 3 times greater than its diameter. The specimen is placed in the compression test machine and compressive force is applied to the sample. The force should have a constant increase over time until the sample breaks and is disintegrated, while simultaneously axial and lateral deformations are measured. The result is Uniaxial Compressive Strength. If axial deformations are measured, Young's modulus of elasticity can be obtained. Where lateral deformations are measured, the sample's Poisson's coefficient is also obtained.

| Sample ID              | Rock Type      | UCS<br>(MPa) |
|------------------------|----------------|--------------|
| DDH2(4.20 to 4.35m)    |                | 215          |
| DDH2 (24.70 to 24.90m) |                | 209          |
| DDH2 (44.90 to 45.10m) | Rhyolitic Tuff | 201          |
| DDH2 (48.70 to 49.30m) |                | 137          |
| DDH2(99.80 to 100.00m) |                | 228          |

Table 22– Uniaxial Compressive Strength Results (AS4133.4.2.1)

The uniaxial compressive strengths obtained indicate the intact rock strength of the sample to be strong to very strong.

Point load testing indicated that the material is between 1.5 Mpa to 12 MPa (very strong), while Uniaxial Compressive Strength testing performed on a sample of rhyolitic tuff as outlined in Table 22 returned values ranging from 137MPa to 215MPa on samples taken over a range of depths from the surface to a depth of 100m. These results indicate a good correlation with the numerous point load strength tests performed on DDH2. These uniaxial compressive strengths

mirror the Point load testing performed and indicate the rock from DDH2 is in the "very strong" range over the majority of the cored profile.

## 3.19 Petrographic Examination (ASTM C295)

Petrographic examination of rock and source material is normally conducted in accordance with ASTM C295 by preparation of a petrological thin section of the source rock in question (microns thick), mounted on a glass slide suitable for use in a stereoscopic polarising microscope of high resolution at 500 x magnification.

A point count of approximately 100 individual points on the slide is made by viewing the slide and identifying and classifying each point. Due to the nature of this test, the results can vary significantly from one petrographic to another for the same sample. For this reason, petrographic examination reports are often used as a screening tool only for specifics, to identify potentially deleterious minerals and any classification is normally confirmed or denied based upon subsequent physical, mechanical or chemical tests undertaken on rock samples taken from the source in question.

Selected samples of core of each rock type encountered were dispatched for analysis. Geochempet Services performed Petrographic analysis and geological descriptions for potential uses on the material based on the mineralogical assessment. The results of the petrographic analysis are summarised in the table below.

| Sample<br>Number | Identification                 | Durable | Suitable for<br>Concrete<br>Aggregate | Suitable<br>for<br>Concrete<br>Sand | Suitable<br>for<br>Road<br>base | Suitable for<br>Asphaltic/<br>Sealing<br>Aggregate | Suitable<br>for Rail<br>Ballast | Suitable<br>for<br>Rip Rap | Free<br>Silica<br>Content<br>(%) |
|------------------|--------------------------------|---------|---------------------------------------|-------------------------------------|---------------------------------|----------------------------------------------------|---------------------------------|----------------------------|----------------------------------|
| DDH2<br>P-1      | Hematized<br>Rhyolitic<br>Tuff | Yes     | Yes (i)(ii)                           | Yes (i)                             | Yes                             | Yes                                                | Yes                             | Yes                        | 29 - 30                          |
| DDH2<br>P-2      | Rhyolitic<br>Tuff              | Yes     | Yes (i)(ii)                           | Yes (i)                             | Yes                             | Yes                                                | Yes                             | Yes                        | 29                               |

 Table 23 – Petrographic Analysis Results (ASTM C295)

(i) Provided that the appropriate precautions are taken in mix and engineering design to take into account the potential for mild or slow deleterious alkali-silica reactivity.

(ii) Quality may be diminished by the presence of about 6% weak minerals, which could increase water demand in concrete products.

## 4.0 Summary

Based on the laboratory testing and drilling investigation program undertaken the resource primarily consists of two representative rock types of similar quality, varying quantities and depths across the site. Both these materials from an engineering, quarrying and construction perspective are very similar in nature whilst being technically different from a geological viewpoint. The laboratory testing undertaken has been performed on a composite sample of both rock types. The conclusions regarding the geological differences between both rock types are set out below along with summary of the combined properties of both materials from an engineering and construction perspective.

Both rock types presented for petrographic analysis from DDH2 are described as crystal acid tuffs with a composition equivalent broadly to rhyolite or more specifically to rhyodacite (i.e. equivalent to acid volcanic rock) which is now devitrified, only slightly altered, finely crystalline,

unweathered, non - porous and carrying between 2% and 6% weak mineral inclusions. Both rock types characterised are classified as hard, strong and predicted to be durable.

The Hematized Rhyolitic Tuff/ Rhyodacite samples tested had 17% to 19% of finely microcrystalline quartz and it is predicted to have substantial potential for deleterious alkali-silica reactivity in concrete.

However, if appropriate precautions are taken such as the use of flyash and shrinkage limited cement blends in the production and design phase this can be controlled. RMS T363 accelerated Mortar Bar testing performed by Network Geotechnics on crushed aggregate from DDH2 in combination with Port Kembla GP cement are classified as slowly reactive as the sample has less than 0.10% expansion at 10 days (Slowly-Reactive) and have greater than 0.10% expansion (Slowly Reactive) after 21 days.

Due to the non-porous and unweathered nature of the Hematized Rhyolitic Tuff /Rhyodacite it is also likely to be suitable for use as Dimension Stone and Armour Rock subject to consideration of the impact of jointing or veining from visual inspection of the quarry face.

The rock is considered to have adequate strength and durability for use in Asphaltic / Sealing Aggregate and is also suitable for use as a source of Roadbase, Rail Ballast, and Rip Rap.

The RMS 3151 and 3152 specification standards for use as sealing aggregates and asphalt aggregate vary slightly with regards to their PAFV requirements. Aggregates with PAFV values of greater than 44 are required for sealing aggregates and greater than 48 for asphalt. The general accepted rule is that the higher the PAFV value, the better the performance of the aggregate in terms of skid resistance. This should also be judged in conjunction with suitable aggregate strength, abrasion and durability results.

The sample that was crushed and tested in accordance AS1141.41 and AS1141.42 returned a PAFV value of 50. This is in excess of the specification requirements of either 44 or 48. It is therefore assessed that the resource material tested may be suitable for use as both sealing and asphalt aggregate.

The uniaxial compressive strengths mirror the Point load testing performed and indicate the rock from DDH2 is in the "very strong" range over the majority of the cored profile, with Uniaxial compressive strength testing performed on core samples indicate the material has a compressive strength of 137 to 215 MPa.

The produced fines were non-plastic and water absorption test results indicate that the weighted average performed on coarse and fine material obtained was 1.7%. This is within the specified requirements for concrete & asphalt but is also expected to improve once suitable crushing and processing techniques are implemented.

Chemical testing performed demonstrate the low soluble salts and relatively low Methylene Blue Adsorption rates are consistent with material suitable for use as Concrete Sand and Asphalt filler.

The free silica content within both samples is about 29% to 30% with 10% and 12% as common Quartz and 17% to 19% as finely micro-crystalline quartz all locked within crystalline rock. Cerchar abrasivity index testing also indicates that material from this source will be highly abrasive on plant and equipment.

The products may be won either separately or in conjunction with each other and blended to meet individual specification requirements. Table 25 below outlines the potential suitability for each material source.

|                  |                                                 |         |                       | Potential Product Suitability |           |                                    |              |         |             |  |  |  |  |  |
|------------------|-------------------------------------------------|---------|-----------------------|-------------------------------|-----------|------------------------------------|--------------|---------|-------------|--|--|--|--|--|
| Sample<br>Number | Identification                                  | Durable | Concrete<br>Aggregate | Concrete<br>Sand              | Road Base | Asphaltic/<br>Sealing<br>Aggregate | Rail Ballast | Rip Rap | Select Fill |  |  |  |  |  |
| DDH2             | Hematized<br>Rhyolitic Tuff/<br>Ryhodacite (ii) | Yes     | Yes (i)               | Yes (i)                       | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |
| DDH2 S-2         | Rhyolitic Tuff<br>Trachyte (ii)                 | Yes     | Yes (i)               | Yes (i)                       | Yes       | Yes                                | Yes          | Yes     | Yes         |  |  |  |  |  |

Table 24 – Material Suitability Summary

(i) Provided that the appropriate precautions are taken in mix and engineering design to take into account the potential for mild or slow deleterious alkali-silica reactivity.

(ii) The Rhyolitic Tuff/ Rhyodacite are likely to be suitable for dimension stone and marine armour rock, if defect spacing is minimal and suitable boulders are procured.

## 5.0 Limitations

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete borehole locations. It should be noted that subsurface conditions between and away from the borehole locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Alan Cullen or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Jason Lee Principal Geotechnical Engineer

Alan Cullen Principal Geotechnician

#### Attachments:

Appendix A: Appendix B: Results of Laboratory Testing – Qualtest (2017) Results of Laboratory Testing – External (2017) **APPENDIX A:** 

Results of Laboratory Testing - Qualtest (2017)



QUALTEST Laboratory (NSW) Pty Ltd (20708) 8 Ironbark Close Warabrook NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

|                                                                                                                                                                                               |                                        |                                                                       |        | Repo                                                       | rt No: MAT:NEW17                                                                                                                    |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|--------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Material Test Rep                                                                                                                                                                             | oort                                   |                                                                       |        |                                                            |                                                                                                                                     | Issue No: 1                            |
| Client: VGT Pty Ltd<br>Unit 4/30 Glenwo<br>Thornton NSW                                                                                                                                       |                                        |                                                                       |        |                                                            | Accredited for compliance wit<br>The results of the tests, calibr<br>measurements included in thi<br>to Australian/national standar | ations and/or<br>s document are tracea |
| Principal:<br>Project No.: NEW15P-0045<br>Project Name: Material Testing                                                                                                                      |                                        |                                                                       |        |                                                            |                                                                                                                                     |                                        |
|                                                                                                                                                                                               |                                        |                                                                       |        | ACCREDITATION                                              | NATA Accredited Laboratory<br>Date of Issue: 8/03/2017                                                                              | Number: 18686                          |
| Sample Details                                                                                                                                                                                |                                        |                                                                       |        |                                                            | ze Distribution                                                                                                                     |                                        |
| Sample ID: NEW17<br>Client Sample ID: -                                                                                                                                                       | W-0307S01                              |                                                                       |        | Method:<br>Drying by:                                      | AS 1141.11.1<br>Oven                                                                                                                |                                        |
| Sampling Method:SampleDate Sampled:23/01/2Source:On-Site                                                                                                                                      |                                        |                                                                       |        | Note:                                                      | Sample Not Washed                                                                                                                   |                                        |
| Material: Rock Co<br>Specification: No Spe<br>Project Location: Thornto<br>Sample Location: DDH2                                                                                              | cification                             |                                                                       |        | Sieve Size<br>19.0mm<br>13.2mm<br>9.5mm<br>6.7mm<br>4.75mm | % Passing<br>100<br>92<br>73<br>58<br>43                                                                                            | Limits                                 |
| Other Test Results                                                                                                                                                                            |                                        |                                                                       |        | 2.36mm<br>1.18mm                                           | 26<br>17                                                                                                                            |                                        |
| Description<br>Finer 75µm (%)<br>Drying Method<br>Misshapen Particles (%)<br>Flat Particles (%)<br>Elongated Particles (%)<br>Flat & Elongated Particles (%)<br>Calliper Ratio                | Method<br>AS 1141.12<br>AS 1141.14     | Result<br>2<br>Oven<br>7<br>5.8<br>1.6<br>0.0<br>2:1                  | Limits | 600µm<br>425µm<br>300µm<br>150µm<br>75µm                   | 11<br>8<br>6<br>2<br>0                                                                                                              |                                        |
| Unrounded P<br>Misshapen Particles (%)                                                                                                                                                        | SD values used for fract<br>AS 1141.14 | ion selection<br>3                                                    |        |                                                            |                                                                                                                                     |                                        |
| Flat Particles (%)<br>Elongated Particles (%)<br>Flat & Elongated Particles (%)                                                                                                               | A3 1141.14                             | 1.9<br>1.2<br>0.0                                                     |        |                                                            |                                                                                                                                     |                                        |
| Calliper Ratio<br>Unrounded P                                                                                                                                                                 | SD values used for fract               | 3:1<br>ion selection                                                  |        | Chart                                                      |                                                                                                                                     |                                        |
| Nominal Sample Size (mm)<br>Nature of Sample<br>Agg Size and Crush Details<br>Fraction Size<br>Wet Strength (kN)<br>Dry Strength (kN)<br>Wet/Dry Strength Variation (%)<br>Breakdown Occurred | Con                                    | 20<br>shed Rock<br>stant Rate<br>) + 9.5 mm<br>215<br>246<br>13<br>No |        | % Passing                                                  |                                                                                                                                     |                                        |
| Cylinder Size (diameter in mm)                                                                                                                                                                |                                        | 150                                                                   |        | 40                                                         |                                                                                                                                     | /                                      |
| Los Angeles Value<br>Test Grading                                                                                                                                                             | AS 1141.23                             | 17<br>B                                                               |        | 30                                                         |                                                                                                                                     |                                        |
| Loss 19.0 to 13.2 mm (%)<br>Loss 13.2 to 9.5 mm (%)<br>Loss 9.5 to 4.75 mm (%)                                                                                                                | AS 1141.24                             | 0.1<br>0.3<br>0.1                                                     |        | mugal                                                      | 300µm                                                                                                                               | 4.75mm<br>8.7mm<br>9.5mm<br>13.2mm     |

### Comments

NP = Non Plastic



QUALTEST Laboratory (NSW) Pty Ltd (20708) 8 Ironbark Close Warabrook NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                                                                                   |        | Керо                                                               | rt No: MAT:NEW17                                                                                                                        |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Material Test Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ort                                                                         |                                                                                                                                   |        |                                                                    |                                                                                                                                         | Issue No:                                     |
| Client: VGT Pty Ltd<br>Unit 4/30 Glenwoo<br>Thornton NSW 23                                                                                                                                                                                                                                                                                                                                                                                                                                                      | od Drive                                                                    |                                                                                                                                   |        |                                                                    | Accredited for compliance with<br>The results of the tests, calibra<br>measurements included in this<br>to Australian/national standard | ations and/or<br>document are tracea          |
| Dringingly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                                                                   |        | NATA                                                               |                                                                                                                                         |                                               |
| Principal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                                                                   |        |                                                                    | XX                                                                                                                                      |                                               |
| Project No.: NEW15P-0045<br>Project Name: Material Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                                                                   |        | WORLD RECOGNISED                                                   | Approved Signatory: Adam Dv<br>(Senior Geotechnician)<br>NATA Accredited Laboratory N<br>Date of Issue: 8/03/2017                       |                                               |
| Sample Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |                                                                                                                                   |        | Particle Siz                                                       | ze Distribution                                                                                                                         |                                               |
| Sample ID: NEW17W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /-0307S01                                                                   |                                                                                                                                   |        | Method:                                                            | AS 1141.11.1                                                                                                                            |                                               |
| Client Sample ID: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                                   |        | Drying by:                                                         | Oven                                                                                                                                    |                                               |
| Sampling Method:SampledDate Sampled:23/01/201Source:On-Site                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                                          |                                                                                                                                   |        | Note:                                                              | Sample Not Washed                                                                                                                       |                                               |
| Material: Rock Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                                                   |        |                                                                    |                                                                                                                                         |                                               |
| Specification: No Specification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                   |        | Sieve Size<br>19.0mm                                               | % Passing                                                                                                                               | Limits                                        |
| Project Location: Thornton,<br>Sample Location: DDH2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , NSVV                                                                      |                                                                                                                                   |        | 13.2mm                                                             | 100<br>92                                                                                                                               |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                                                                                   |        | 9.5mm                                                              | 73                                                                                                                                      |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                                                                                   |        | 6.7mm                                                              | 58                                                                                                                                      |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                                                                                   |        | 4.75mm                                                             | 43                                                                                                                                      |                                               |
| Other Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                                                   |        | 2.36mm                                                             | 26                                                                                                                                      |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                                                                                   |        | 1.18mm                                                             | 17                                                                                                                                      |                                               |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method                                                                      | Result                                                                                                                            | Limits | 600µm                                                              | 11                                                                                                                                      |                                               |
| Loss 1.18 to 0.600 mm (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             | 0.5                                                                                                                               |        | 425µm<br>300µm                                                     | 8                                                                                                                                       |                                               |
| Total Weighted Loss (%)<br>Uncompacted Bulk Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS 1141.4                                                                   | 0.3                                                                                                                               |        | 150µm                                                              | 6<br>2                                                                                                                                  |                                               |
| Compacted Bulk Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A0 1141.4                                                                   | 1.50                                                                                                                              |        | 75µm                                                               | 0                                                                                                                                       |                                               |
| Aggregate Moisture Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | As                                                                          | Received                                                                                                                          |        |                                                                    | · ·                                                                                                                                     |                                               |
| Nominal Size Of Sample (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             | 20                                                                                                                                |        |                                                                    |                                                                                                                                         |                                               |
| Apparent Particle Density (t/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AS 1141.5                                                                   | 2.60                                                                                                                              |        |                                                                    |                                                                                                                                         |                                               |
| Particle Density Dry (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             | 2.47                                                                                                                              |        |                                                                    |                                                                                                                                         |                                               |
| Particle Density SSD (t/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             | 2.52                                                                                                                              |        |                                                                    |                                                                                                                                         |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | <b>∩</b> 4                                                                                                                        |        |                                                                    |                                                                                                                                         |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | 2.1                                                                                                                               |        | _                                                                  |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AS 1141.6.1                                                                 | 2.59                                                                                                                              |        | _                                                                  |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m³)<br>Particle Density Dry (t/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                       | AS 1141.6.1                                                                 | 2.59<br>2.48                                                                                                                      |        | _                                                                  |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m³)<br>Particle Density Dry (t/m³)<br>Particle Density SSD (t/m³)                                                                                                                                                                                                                                                                                                                                                                                                        | AS 1141.6.1                                                                 | 2.59<br>2.48<br>2.52                                                                                                              |        | Chart                                                              |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m³)<br>Particle Density Dry (t/m³)<br>Particle Density SSD (t/m³)<br>Water Absorption (%)                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 2.59<br>2.48<br>2.52<br>1.7                                                                                                       |        | Chart                                                              |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m³)<br>Particle Density Dry (t/m³)<br>Particle Density SSD (t/m³)<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m³)                                                                                                                                                                                                                                                                                                                                   | AS 1141.6.1<br>AS 1141.6.1                                                  | 2.59<br>2.48<br>2.52                                                                                                              |        | Chart                                                              |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )                                                                                                                                                                                       |                                                                             | 2.59<br>2.48<br>2.52<br>1.7<br>2.58                                                                                               |        | 1.000                                                              |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)                                                                                                                                                               | AS 1141.6.1                                                                 | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3                                                                        |        | 1.000                                                              |                                                                                                                                         | /                                             |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History                                                                                                                                             | AS 1141.6.1<br>AS 1289.1.1                                                  | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried                                                           |        | 1.000                                                              |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation                                                                                                                              | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1                                   | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved                                             |        |                                                                    |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)                                                                                                      | AS 1141.6.1<br>AS 1289.1.1                                                  | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0                                      |        |                                                                    |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)<br>Mould Length (mm)                                                                                 | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1                                   | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0<br>250                               |        |                                                                    |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)<br>Mould Length (mm)<br>Crumbling                                                                    | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1                                   | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0<br>250<br>No                         |        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)<br>Mould Length (mm)<br>Crumbling<br>Curling                                                         | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1                                   | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0<br>250                               |        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                                                                                                                         |                                               |
| Water Absorption (%)<br>Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)<br>Mould Length (mm)<br>Crumbling<br>Curling<br>Cracking<br>Liquid Limit (%) | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1                                   | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0<br>250<br>No<br>No                   |        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)<br>Mould Length (mm)<br>Crumbling<br>Curling<br>Cracking                                             | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1<br>AS 1289.3.4.1<br>AS 1289.3.1.1 | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0<br>250<br>No<br>No<br>No             |        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                                                                                                                         |                                               |
| Apparent Particle Density - Weighted (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Apparent Particle Density - Coarse (t/m <sup>3</sup> )<br>Particle Density Dry (t/m <sup>3</sup> )<br>Particle Density SSD (t/m <sup>3</sup> )<br>Water Absorption (%)<br>Sample History<br>Preparation<br>Linear Shrinkage (%)<br>Mould Length (mm)<br>Crumbling<br>Curling<br>Cracking<br>Liquid Limit (%)                         | AS 1141.6.1<br>AS 1289.1.1<br>AS 1289.1.1<br>AS 1289.3.4.1<br>AS 1289.3.1.1 | 2.59<br>2.48<br>2.52<br>1.7<br>2.58<br>2.49<br>2.53<br>1.3<br>Air-dried<br>Dry Sieved<br>0.0<br>250<br>No<br>No<br>No<br>No<br>No |        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                                                                                                                         | 4 Term<br>6 Trum<br>8 Sam<br>13 Jan<br>19 Jan |

## Comments

NP = Non Plastic



8 Ironbark Close Warabrook NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@gualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Issue Number:

This report replaces all previous issues

# Point Load Strength Report - Diametral and Axial Testing of Rock Core

|                                 |                   |                   |                       |                  |                    |                |                         |                    |                             |                            |                               |                                                                   |                |                         | A 1                |                             | This report replace        | all previous issue                     |
|---------------------------------|-------------------|-------------------|-----------------------|------------------|--------------------|----------------|-------------------------|--------------------|-----------------------------|----------------------------|-------------------------------|-------------------------------------------------------------------|----------------|-------------------------|--------------------|-----------------------------|----------------------------|----------------------------------------|
| Client:                         | VGT Pty           | / Ltd             |                       |                  |                    |                |                         | R                  | eport No.:                  |                            |                               | PL:NEW                                                            | /17W-0073      |                         | Acc                | redited for complic         | nce with ISO/IEC 1702      | 5.                                     |
| Project:                        | Materia           | al Testing        |                       |                  |                    |                |                         | Р                  | roject No.:                 |                            |                               | NEW15P-0045 {This document may not be reproduced except in full.} |                |                         |                    |                             | pt in full.}               |                                        |
| ocation:                        | : Thornto         | on, NSW           |                       |                  |                    |                |                         | V                  | Vork Order                  | No:                        |                               | NEW                                                               | /17W-0073      | NA                      | TA                 |                             | NX                         | 7                                      |
|                                 |                   |                   |                       |                  |                    |                |                         | S                  | ample No.:                  |                            |                               |                                                                   | S01            |                         | -                  | $\bigcirc$                  | (I)                        | /                                      |
| Date Sampled: 8/12 - 13/12/2016 |                   |                   |                       |                  |                    |                |                         |                    |                             |                            |                               |                                                                   |                | Approved Si             | gnatory:           | Adam Dwy                    |                            |                                        |
| Date Tested: 10/01/2017         |                   |                   |                       |                  |                    |                |                         |                    |                             |                            |                               |                                                                   | WORLD REC      |                         |                    | Title: S                    | enior Geotechnicia         |                                        |
|                                 |                   | •                 |                       |                  |                    |                |                         |                    |                             |                            |                               |                                                                   |                | ACCREDI                 | TATION             | Date                        | of Issue:                  | 13/01/201                              |
| Test Met                        | hod: AS           | 5 4133.4.1 - 2007 |                       |                  |                    |                |                         |                    |                             |                            |                               |                                                                   |                |                         | NATA Accredi       | ted Laboratory N            | lumber:                    | 1868                                   |
|                                 |                   |                   |                       |                  |                    |                | Diametral Te            | st                 |                             |                            |                               | Axial Test                                                        |                |                         |                    |                             |                            |                                        |
| Borehole                        | Test Depth<br>(m) | Rock Type         | Moisture<br>Condition | Length L<br>(mm) | Diameter D<br>(mm) | Load P<br>(kN) | l <sub>s</sub><br>(Mpa) | Size<br>Correction | І <sub>s(50)</sub><br>(Мра) | Strength<br>Classification | Width W<br>(diameter)<br>(mm) | Platen<br>Separation<br>D (mm)                                    | Load P<br>(kN) | l <sub>s</sub><br>(Mpa) | Size<br>Correction | I <sub>s(50)</sub><br>(Mpa) | Strength<br>Classification | Anisotropy<br>Index I <sub>a(50)</sub> |
| DDH2                            | 0.10 - 0.25       | Light Brown       | N                     | 99.5             | 60.9               | 2.52           | 0.68                    | 1.09               | 0.74                        | м                          | 60.9                          | 40                                                                | 2.25           | 0.73                    | 1.050              | 0.76                        | м                          | 0.98                                   |
| DDH2                            | 1.95 - 2.05       | Blue / Pink       | N                     | 99.3             | 60.9               | 34.31          | 9.25                    | 1.09               | 10.11                       | EH                         | 60.9                          | 41.22                                                             | 17.01          | 5.32                    | 1.057              | 5.62                        | VH                         | 1.80                                   |
| DDH2                            | 4.20 - 4.35       | Blue / Pink       | N                     | 111.3            | 60.9               | 30.37          | 8.19                    | 1.09               | 8.95                        | VH                         | 60.9                          | 36.78                                                             | 22.14          | 7.76                    | 1.030              | 8.00                        | νн                         | 1.12                                   |
| DDH2                            | 5.90 - 6.10       | Blue / Pink       | N                     | 133.7            | 60.9               | 24.03          | 6.48                    | 1.09               | 7.08                        | VH                         | 60.9                          | 36.84                                                             | 21.04          | 7.37                    | 1.030              | 7.59                        | νн                         | 0.93                                   |
| DDH2                            | 7.80 - 8.00       | Blue / Pink       | N                     | 127.6            | 60.9               | 29.42          | 7.93                    | 1.09               | 8.67                        | VH                         | 60.9                          | 36.81                                                             | 15.93          | 5.58                    | 1.030              | 5.75                        | VH                         | 1.51                                   |
| DDH2                            | 10.00 - 10.20     | Blue / Pink       | Ν                     | 108.6            | 57.0               | 29.20          | 8.99                    | 1.06               | 9.54                        | VH                         | 60.9                          | 45.52                                                             | 17.26          | 4.89                    | 1.081              | 5.28                        | νн                         | 1.80                                   |
| DDH2                            | 11.40 - 11.60     | Light Grey / Pink | Ν                     | 141.7            | 60.9               | 15.32          | 4.13                    | 1.09               | 4.51                        | VH                         | 60.9                          | 44.13                                                             | 9.10           | 2.66                    | 1.073              | 2.85                        | н                          | 1.58                                   |
| DDH2                            | 13.90 - 14.10     | Blue / Pink       | N                     | 88.5             | 60.9               | 32.75          | 8.83                    | 1.09               | 9.65                        | VH                         | 60.9                          | 40.29                                                             | 26.04          | 8.34                    | 1.051              | 8.76                        | VH                         | 1.10                                   |

3.54

6.79

10.39

0.29

11.82

9.44

6.05

11.85

7.06

3.33

VH

VH

EH

L

EH

VН

VH

EH

VH

VH

Abbreviation

EH

VH

н М

L

VL

60.9

60.7

60.9

60.3

60.7

60.7

60.7

60.7

60.6

60.6

41.37

49.42

38.28

41.4

61.32

50.7

58.31

35.54

43.2

38.9

| 89.0        | 60.7          | 11.24                | 3.05   | 1.09        |
|-------------|---------------|----------------------|--------|-------------|
| Strength Cl | assification: | I <sub>s(50)</sub> M | pa Ter | m           |
|             |               | > 10                 | Ext    | remely High |

12.01

22.92

35.25

0.97

40.00

31.87

20.42

40.00

23.79

3.24

6.22

9.50

0.27

10.83

8.65

5.54

10.86

6.48

1.09

1.09

1.09

1.09

1.09

1.09

1.09

1.09

1.09

N = Natural S = Saturated

D = Drv

Light Grey

Blue

Blue

Light Brown

Blue

Blue

Blue / Brown

Blue

Dark Blue

Dark Blue

DDH2

DDH2

DDH2 DDH2

DDH2

DDH2

DDH2

DDH2

DDH2

DDH2

Moisture Condition:

15.00 - 15.30

16.75 - 17.00

18.40 - 18.60

20.50 - 20.60

22.30 - 22.50

24.70 - 24.90

27.00 - 27.20

28.50 - 28.70

30.50 - 30.70

32.30 - 32.60

Ν

Ν

Ν

Ν

Ν

Ν

Ν

Ν

Ν

Ν

146.7

92.4

115.6

68.7

117.6

104.8

118.9

130.8

163.0

60.9

60.7

60.9

60.3

60.8

60.7

60.7

60.7

60.6

ly High Strength 3 to 10 Very High Strength 1 to 3 **High Strength** 

0.3 to 1 Medium Strength 0.1 to 0.3 Low Strength Very Low Strength < 0.1

Comments: \* Specimens approached the loading apparatus' maximum capabilities, so testing was halted short of failure. The true result is > 40 kN. The true corresponding Mpa results will also be greater than reported.

\*\* Specimens fractured through weak vein.

9.37

19.25

20.72

0.51

39.83

34.43

16.37

19.69

19.90

5.58

2.92

5.04

6.98

0.16

8.40

8.79

3.63

7.17

5.97

1.86

1.058

1.100

1.039

1.056

1.155

1.106

1.142

1.021

1.067

1.042

3.09

5.54

7.26

0.17

9.71

9.72

4.15

7.32

6.37

1.94

VH

VH

VH

L

VH

VH

VH

VH

VH

н

1.15

1.22

1.43

1.71

1.22

0.97

1.46

1.62

1.11

1.72



8 Ironbark Close Warabrook NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

# Point Load Strength Report - Diametral and Axial Testing of Rock Core

|             |                       | Diametral Test |                | Axial Test       |                                     |                              |
|-------------|-----------------------|----------------|----------------|------------------|-------------------------------------|------------------------------|
| Test Metho  | d: AS 4133.4.1 - 2007 |                |                | NATA Acc         | redited Laboratory Number:          | 18686                        |
|             |                       |                |                | ACCREDITATION    | Date of Issue:                      | 13/01/2017                   |
| Date Tested | d: 10/01/2017         |                |                | WORLD RECOGNISED | Title:                              | Senior Geotechnician         |
| Date Sampl  |                       |                |                |                  | Approved Signatory:                 | Adam Dwyer                   |
|             |                       | Sample No.:    | S01            |                  | CAL                                 | $\sim$                       |
| Location:   | Thornton, NSW         | Work Order No: | NEW17W-0073    | NATA             | N                                   |                              |
| Project:    | Material Testing      | Project No.:   | NEW15P-0045    |                  | {This document may not be reprodu   | ced except in full.}         |
| Client:     | VGT Pty Ltd           | Report No.:    | PL:NEW17W-0073 |                  | Accredited for compliance with ISO/ | EC 17025.                    |
|             |                       |                |                |                  | This report                         | replaces all previous issues |

|              |                   |                    |                       | Diametral Test   |                    |                      |                         |                    |                             |                            |                               |                                |                | Ах                      | ial Test           |                             |                            |                                        |
|--------------|-------------------|--------------------|-----------------------|------------------|--------------------|----------------------|-------------------------|--------------------|-----------------------------|----------------------------|-------------------------------|--------------------------------|----------------|-------------------------|--------------------|-----------------------------|----------------------------|----------------------------------------|
| Borehole     | Test Depth<br>(m) | Rock Type          | Moisture<br>Condition | Length L<br>(mm) | Diameter D<br>(mm) | Load P<br>(kN)       | l <sub>s</sub><br>(Mpa) | Size<br>Correction | l <sub>s(50)</sub><br>(Mpa) | Strength<br>Classification | Width W<br>(diameter)<br>(mm) | Platen<br>Separation<br>D (mm) | Load P<br>(kN) | l <sub>s</sub><br>(Mpa) | Size<br>Correction | I <sub>s(50)</sub><br>(Mpa) | Strength<br>Classification | Anisotropy<br>Index I <sub>a(50)</sub> |
| DDH2         | 35.00 - 30.70     | Blue / Pink        | N                     | 165.1            | 60.8               | * 40.00              | 10.82                   | 1.09               | 11.82                       | EH                         | 60.8                          | 54.31                          | 15.49          | 3.68                    | 1.124              | 4.14                        | VH                         | 2.85                                   |
| DDH2         | 37.20 - 37.50     | Blue / Pink        | Ν                     | 190.4            | 60.8               | 31.35                | 8.48                    | 1.09               | 9.26                        | VH                         | 60.8                          | 66.01                          | 34.15          | 6.68                    | 1.175              | 7.85                        | VH                         | 1.18                                   |
| DDH2         | 39.30 - 39.40     | Blue / Pink        | Ν                     | 120.6            | 60.9               | * 40.00              | 10.79                   | 1.09               | 11.79                       | EH                         | 60.9                          | 42.11                          | 21.37          | 6.54                    | 1.062              | 6.95                        | VH                         | 1.70                                   |
| DDH2         | 41.70 - 41.80     | Blue / Pink        | Ν                     | 111.0            | 60.9               | * 40.00              | 10.79                   | 1.09               | 11.79                       | EH                         | 60.9                          | 57.33                          | 35.68          | 8.03                    | 1.138              | 9.14                        | VH                         | 1.29                                   |
| DDH2         | 43.00 - 43.20     | Grey / Light Brown | Ν                     | 87.5             | 60.6               | 3.58                 | 0.97                    | 1.09               | 1.06                        | н                          | 60.6                          | 46.89                          | 4.72           | 1.30                    | 1.087              | 1.42                        | н                          | 0.75                                   |
| DDH2         | 44.90 - 45.10     | Blue / Light Grey  | Ν                     | 163.5            | 60.7               | 17.29                | 4.69                    | 1.09               | 5.12                        | VH                         | 60.7                          | 37.20                          | 13.84          | 4.81                    | 1.032              | 4.97                        | VH                         | 1.03                                   |
| DDH2         | 46.70 - 47.10     | Blue / Pink        | Ν                     | 85.5             | 60.9               | 11.19                | 3.02                    | 1.09               | 3.30                        | VH                         | 60.9                          | 41.32                          | 6.11           | 1.91                    | 1.057              | 2.02                        | н                          | 1.64                                   |
| DDH2         | 48.70 - 49.30     | Blue / Pink        | Ν                     | 78.2             | 60.8               | 29.95                | 8.10                    | 1.09               | 8.85                        | VH                         | 60.8                          | 36.80                          | 15.92          | 5.59                    | 1.030              | 5.75                        | VH                         | 1.54                                   |
| DDH2         | 51.20 - 51.40     | Light Grey / Pink  | Ν                     | 83.3             | 60.9               | 26.02                | 7.02                    | 1.09               | 7.67                        | VH                         | 60.9                          | 37.31                          | 14.81          | 5.12                    | 1.033              | 5.29                        | VH                         | 1.45                                   |
| DDH2         | 53.00 - 53.20     | Light Grey / Pink  | Ν                     | 115.5            | 60.9               | * 40.00              | 10.79                   | 1.09               | 11.79                       | EH                         | 60.9                          | 44.63                          | 33.56          | 9.70                    | 1.076              | 10.43                       | EH                         | 1.13                                   |
| DDH2         | 55.10 - 55.30     | Light Grey / Pink  | Ν                     | 110.4            | 60.8               | 18.85                | 5.10                    | 1.09               | 5.57                        | VH                         | 60.8                          | 56.65                          | 22.47          | 5.12                    | 1.135              | 5.81                        | VH                         | 0.96                                   |
| DDH2         | 57.00 - 57.20     | Blue / Pink        | Ν                     | 113.7            | 60.9               | 33.76                | 9.10                    | 1.09               | 9.95                        | VH                         | 60.9                          | 51.16                          | 31.33          | 7.90                    | 1.109              | 8.76                        | VH                         | 1.14                                   |
| DDH2         | 58.90 - 59.20     | Light Grey / Pink  | Ν                     | 142.5            | 60.8               | 23.36                | 6.32                    | 1.09               | 6.90                        | VH                         | 60.8                          | 37.26                          | 11.13          | 3.86                    | 1.033              | 3.98                        | VH                         | 1.73                                   |
| DDH2         | 61.00 - 61.30     | Light Grey / Pink  | Ν                     | 100.0            | 61.3               | 4.37                 | 1.16                    | 1.10               | 1.27                        | н                          | 61.3                          | 52.52                          | 5.33           | 1.30                    | 1.118              | 1.45                        | н                          | 0.88                                   |
| DDH2         | 62.90 - 63.20     | Light Grey / Pink  | N                     | 124.6            | 60.9               | * 40.00              | 10.79                   | 1.09               | 11.79                       | EH                         | 60.9                          | 48.78                          | 28.73          | 7.60                    | 1.098              | 8.34                        | VH                         | 1.41                                   |
| DDH2         | 64.90 - 65.20     | Blue / Pink        | N                     | 159.5            | 60.8               | 17.23                | 4.66                    | 1.09               | 5.09                        | VH                         | 60.8                          | 36.73                          | 12.29          | 4.32                    | 1.029              | 4.45                        | VH                         | 1.14                                   |
| DDH2         | 67.10 - 67.30     | Blue / Pink        | Ν                     | 95.1             | 60.8               | 30.80                | 8.33                    | 1.09               | 9.10                        | VH                         | 60.8                          | 47.77                          | 31.31          | 8.47                    | 1.092              | 9.25                        | VH                         | 0.98                                   |
| DDH2         | 68.60 - 69.10     | Light Grey / Pink  | N                     | 140.2            | 60.9               | 35.82                | 9.66                    | 1.09               | 10.55                       | EH                         | 60.9                          | 56.83                          | 15.85          | 3.60                    | 1.136              | 4.09                        | VH                         | 2.58                                   |
| Moisture Cor | ndition:          | D = Dry            |                       | Strength Cl      | assification:      | I <sub>s(50)</sub> M | pa Te                   | rm                 |                             | Abbreviation               | C                             | omments                        | * Spec         | imens appro             | bached the lo      | ading appa                  | ratus' maximu              | m                                      |

EH

VH

н

Μ

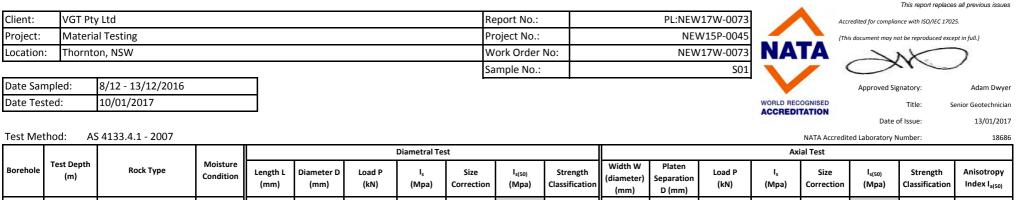
L

VL

N = Natural S = Saturated

> 10 Extremely High Strength 3 to 10 Very High Strength 1 to 3 High Strength 0.3 to 1 Medium Strength 0.1 to 0.3 Low Strength Very Low Strength < 0.1

Comments: \* Specimens approached the loading apparatus' maximum capabilities, so testing was halted short of failure. The true result is > 40 kN. The true corresponding Mpa results will also be greater than reported.


\*\* Specimens fractured through weak vein.



8 Ironbark Close Warabrook NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.gualtest.com.au ABN: 98 153 268 896

Issue Number: 1

# Point Load Strength Report - Diametral and Axial Testing of Rock Core



| Borenole    | (m)            | коск туре         | Condition | Length L<br>(mm) | Diameter D<br>(mm) | Load P<br>(kN)       | ا <sub>s</sub><br>(Mpa) | Size<br>Correction | I <sub>s(50)</sub><br>(Мра) | Strength<br>Classification | (diameter)<br>(mm) | Separation<br>D (mm) | Load P<br>(kN) | ۱ <sub>s</sub><br>(Mpa) | Size<br>Correction | I <sub>s(50)</sub><br>(Мра) | Strength<br>Classification | Anisotropy<br>Index I <sub>a(50)</sub> |
|-------------|----------------|-------------------|-----------|------------------|--------------------|----------------------|-------------------------|--------------------|-----------------------------|----------------------------|--------------------|----------------------|----------------|-------------------------|--------------------|-----------------------------|----------------------------|----------------------------------------|
| DDH2        | 70.70 - 71.00  | Light Grey / Pink | Ν         | 105.2            | 60.9               | 18.37                | 4.95                    | 1.09               | 5.41                        | νн                         | 60.9               | 36.77                | ** 4.61        | 1.62                    | 1.030              | 1.67                        | н                          | 3.25                                   |
| DDH2        | 72.60 - 72.80  | Blue / Pink       | Ν         | 116.9            | 60.9               | 32.87                | 8.86                    | 1.09               | 9.69                        | VH                         | 60.9               | 55.53                | ** 4.08        | 0.95                    | 1.130              | 1.07                        | н                          | 9.04                                   |
| DDH2        | 75.10 - 75.30  | Blue / Pink       | Ν         | 121.1            | 60.8               | 28.78                | 7.79                    | 1.09               | 8.50                        | VH                         | 60.8               | 52.56                | 14.53          | 3.57                    | 1.116              | 3.98                        | νн                         | 2.13                                   |
| DDH2        | 77.00 - 77.20  | Blue              | N         | 91.6             | 60.9               | 33.55                | 9.05                    | 1.09               | 9.89                        | VH                         | 60.9               | 47.61                | 17.74          | 4.81                    | 1.092              | 5.25                        | νн                         | 1.88                                   |
| DDH2        | 78.80 - 79.30  | Blue / White      | N         | 92.4             | 61.0               | 32.77                | 8.81                    | 1.09               | 9.63                        | VH                         | 61.00              | 45.52                | 12.09          | 3.42                    | 1.081              | 3.70                        | νн                         | 2.61                                   |
| DDH2        | 80.60 - 81.20  | Blue / Pink       | Ν         | 94.2             | 60.8               | * 40.00              | 10.82                   | 1.09               | 11.82                       | EH                         | 60.80              | 50.03                | ** 5.12        | 1.32                    | 1.104              | 1.46                        | н                          | 8.10                                   |
| DDH2        | 82.50 - 82.60  | Blue / Pink       | Ν         | 127.4            | 60.9               | 25.49                | 6.87                    | 1.09               | 7.51                        | VH                         | 60.9               | 52.31                | ** 9.17        | 2.26                    | 1.115              | 2.52                        | н                          | 2.98                                   |
| DDH2        | 84.40 - 84.70  | Blue / Pink       | N         | 112.9            | 60.9               | 25.42                | 6.85                    | 1.09               | 7.49                        | VH                         | 60.9               | 43.91                | 18.88          | 5.55                    | 1.072              | 5.94                        | νн                         | 1.26                                   |
| DDH2        | 86.70 - 87.00  | Blue / Pink       | N         | 134.6            | 60.9               | 31.23                | 8.42                    | 1.09               | 9.20                        | VH                         | 60.9               | 57.01                | 15.16          | 3.43                    | 1.137              | 3.90                        | νн                         | 2.36                                   |
| DDH2        | 89.00 - 89.30  | Blue / Pink       | Ν         | 102.5            | 60.9               | 34.91                | 9.41                    | 1.09               | 10.29                       | EH                         | 60.9               | 38.19                | 23.17          | 7.82                    | 1.039              | 8.13                        | VH                         | 1.27                                   |
| DDH2        | 90.40 - 91.20  | Blue / Pink       | Ν         | 152.1            | 60.9               | 33.19                | 8.95                    | 1.09               | 9.78                        | VH                         | 60.9               | 38.10                | 26.07          | 8.82                    | 1.038              | 9.16                        | VH                         | 1.07                                   |
| DDH2        | 92.80 - 93.10  | Light Grey / Pink | N         | 115.7            | 61.0               | 6.18                 | 1.66                    | 1.09               | 1.82                        | н                          | 61.0               | 56.91                | ** 1.40        | 0.32                    | 1.137              | 0.36                        | м                          | 5.04                                   |
| DDH2        | 94.80 - 95.00  | Blue / Pink       | N         | 134.8            | 60.8               | 33.69                | 9.11                    | 1.09               | 9.95                        | VH                         | 60.8               | 37.79                | 14.94          | 5.11                    | 1.036              | 5.29                        | νн                         | 1.88                                   |
| DDH2        | 97.50 - 97.80  | Blue              | N         | 130.9            | 60.7               | 36.09                | 9.80                    | 1.09               | 10.69                       | EH                         | 60.7               | 50.63                | 37.69          | 9.63                    | 1.106              | 10.65                       | EH                         | 1.00                                   |
| DDH2        | 99.80 - 100.00 | Blue              | N         | 138.1            | 60.7               | * 40.00              | 10.86                   | 1.09               | 11.85                       | EH                         | 60.7               | 52.96                | 26.37          | 6.44                    | 1.117              | 7.20                        | νн                         | 1.65                                   |
|             |                |                   |           |                  |                    |                      |                         |                    |                             |                            |                    |                      |                |                         |                    |                             |                            |                                        |
|             |                |                   |           |                  |                    |                      |                         |                    |                             |                            |                    |                      |                |                         |                    |                             |                            |                                        |
|             |                |                   |           |                  |                    |                      |                         |                    |                             |                            |                    |                      |                |                         |                    |                             |                            |                                        |
| Moisture Co | ndition:       | D = Dry           |           | Strength Cl      | assification:      | I <sub>s(50)</sub> M | pa Te                   | rm                 |                             | Abbreviation               | C                  | omments              | S: * Spec      | imens appro             | bached the lo      | ading appa                  | ratus' maximu              | m                                      |
|             |                | N = Natural       |           |                  |                    | > 10                 | Ext                     | tremely High Stre  | ength                       | EH                         | са                 | pabilities, so       | testing was    | nalted short            | of failure. T      | he true resu                | ult is > 40 kN.            |                                        |

VH

н М

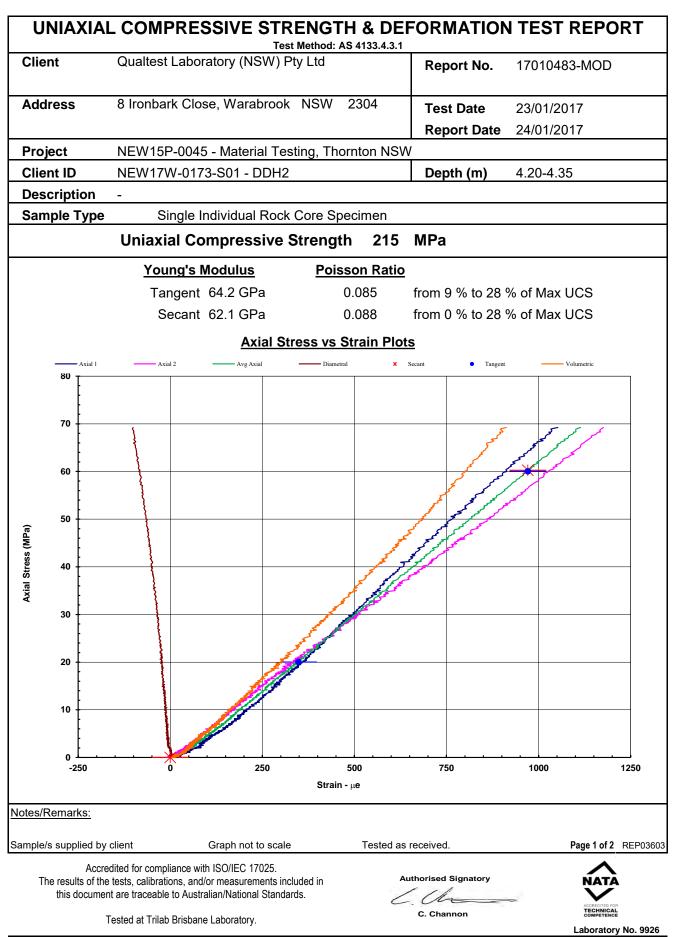
L VL

N = Natural S = Saturated > 10 Extremely High Strength

< 0.1

Very High Strength 3 to 10 1 to 3 High Strength 0.3 to 1 Medium Strength

0.1 to 0.3 Low Strength Very Low Strength \*\* Specimens fractured through weak vein.


The true corresponding Mpa results will also be greater than reported.

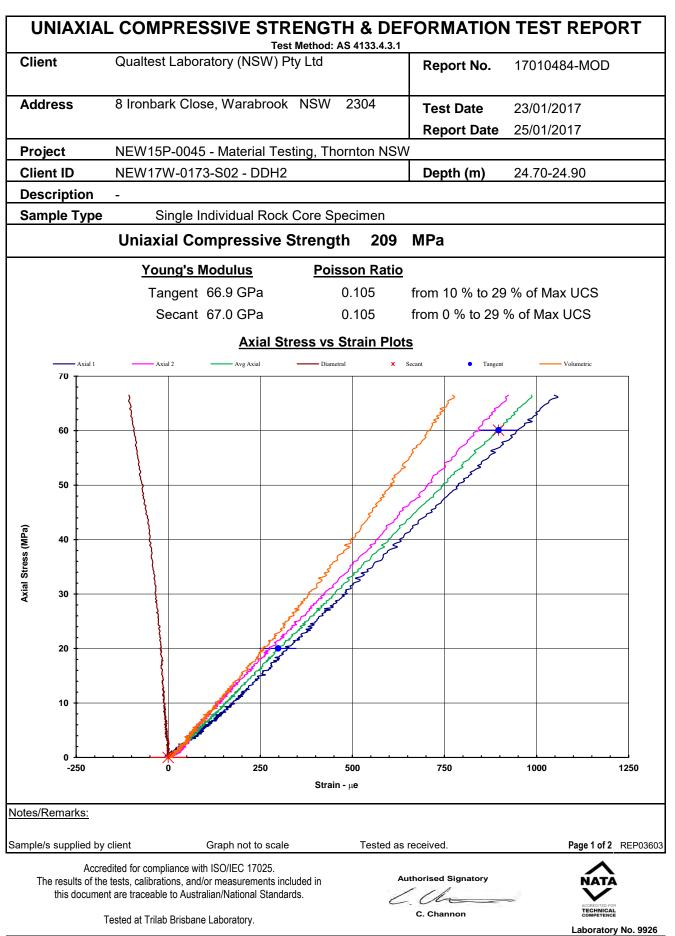
**APPENDIX B**:

Results of Laboratory Testing – External (2017)



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323





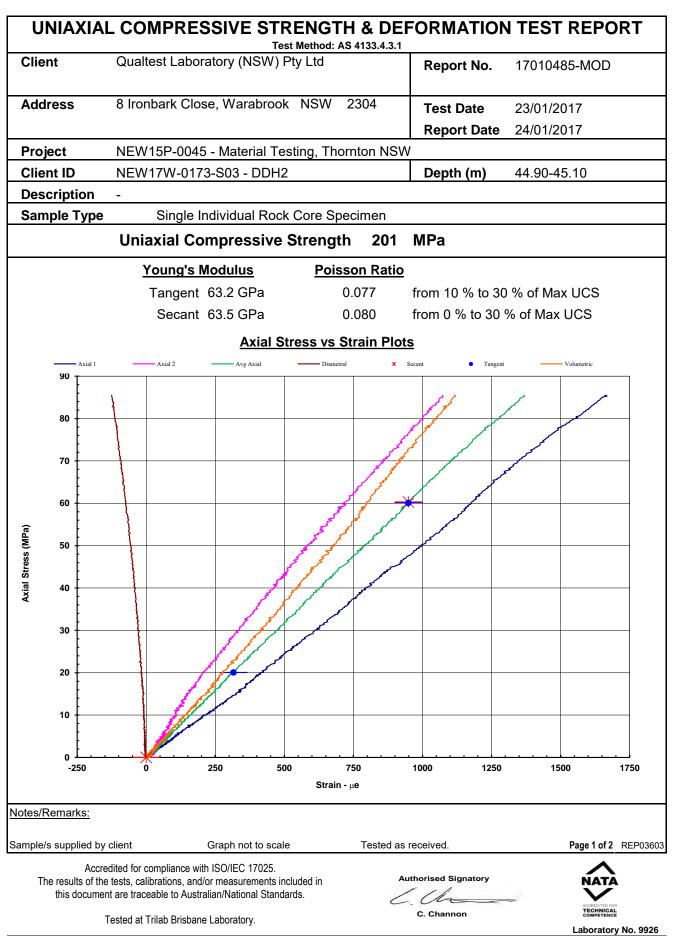

**Perth** 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

|                                                               |                                         | VE STRENGTH &<br>Test Method: AS 4133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                  |                       |
|---------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|-----------------------|
| Client                                                        | Qualtest Laborator                      | y (NSW) Pty Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R           | eport No.                        | 17010483-MOD          |
| Average Sample                                                | e Diameter (mm)                         | 60.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Moisture (  | Content (%)                      | 0.5                   |
| Sample Height (                                               | mm)                                     | 158.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wet Dens    | ity (t/m³)                       | 2.61                  |
| Duration of Test                                              | (min)                                   | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dry Densi   | ty (t/m <sup>3</sup> )           | 2.59                  |
| Rate of Loading                                               |                                         | 16.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bedding (   | ?)                               | Nil                   |
| Mode of Failure                                               |                                         | Disintegration .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Appa   | ratus                            | Kelba 1000kN Load Cel |
|                                                               | CLIENT:                                 | Qualtest Laboratory (NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W) Pty L to | 1                                | 1                     |
|                                                               | PROJECT:                                | NEW15P-0045 - Materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d           |                                  | or                    |
|                                                               | LAB SAMPLE No.                          | Testing, Thornton NSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | BEFORE TE                        | 51                    |
|                                                               | BOREHOLE:                               | 17010483<br>NEW17W-0173-S01 - DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | E: 23/1/17<br>TH: 4.20-4.3       | 5                     |
|                                                               | Dominolit.                              | 112 117 11-0175-501 - D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 111. 4.20-4.5                    | 2                     |
|                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                  |                       |
|                                                               | CLIENT:<br>PROJECT:                     | Qualtest Laboratory (NSV<br>NEW15P-0045 - Material<br>Testing, Thornton NSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | AFTER TEST                       |                       |
|                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | AFTER TEST                       | r                     |
|                                                               | PROJECT:                                | NEW15P-0045 - Material<br>Testing, Thornton NSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE        |                                  |                       |
|                                                               | PROJECT:<br>LAB SAMPLE No.              | NEW15P-0045 - Material<br>Testing, Thornton NSW<br>17010483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE        | : 13/1/17                        |                       |
|                                                               | PROJECT:<br>LAB SAMPLE No.<br>BOREHOLE: | NEW15P-0045 - Material<br>Testing, Thornton NSW<br>17010483<br>NEW17W-0173-S01 - DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H2 DEPT     | :: <u>13////</u><br>H: 4.20-4.35 |                       |
| otes/Remarks:<br>ample/s supplied by cli                      | PROJECT:<br>LAB SAMPLE No.<br>BOREHOLE: | NEW15P-0045 - Material<br>Testing, Thornton NSW<br>17010483<br>NEW17W-0173-S01 - DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE        | :: <u>13////</u><br>H: 4.20-4.35 |                       |
| ample/s supplied by cli<br>Accredite<br>The results of the te | PROJECT:<br>LAB SAMPLE No.<br>BOREHOLE: | NEW15P-0045 - Material<br>Testing, Thornton NSW<br>17010483<br>NEW17W-0173-S01 - DD<br>Internet State | H2 DEPT     | :: <u>13////</u><br>H: 4.20-4.35 |                       |
| ample/s supplied by cli<br>Accredite<br>The results of the te | PROJECT:<br>LAB SAMPLE No.<br>BOREHOLE: | NEW15P-0045 - Material<br>Testing, Thornton NSW<br>17010483<br>NEW17W-0173-S01 - DD<br>Internet State | Author      | red.                             |                       |



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323





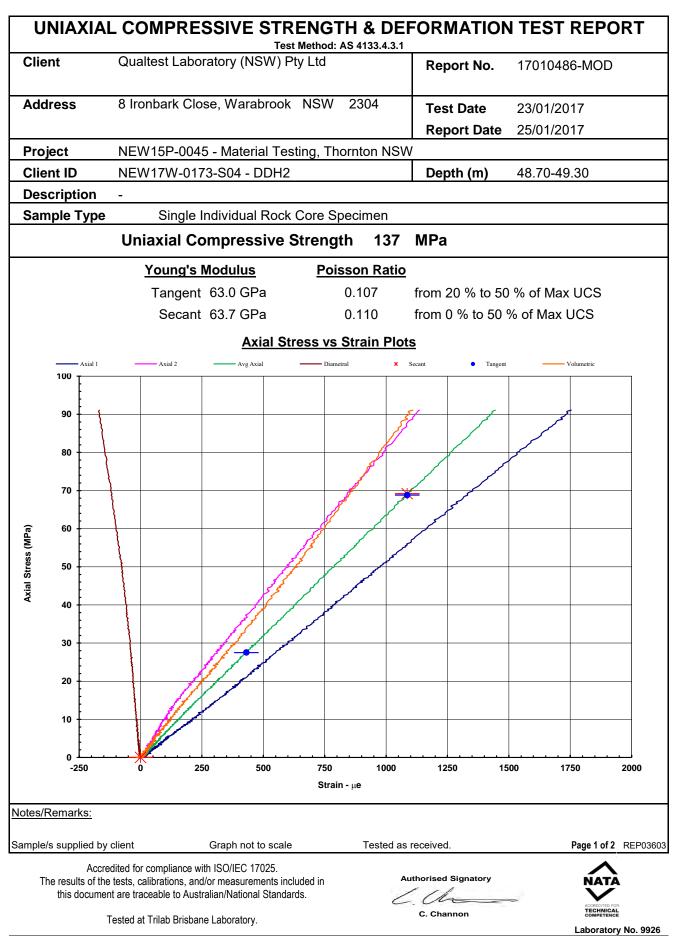

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

| UNIAXIAL                                | COMPRESSIV                                                                                                                    | /E STRENGTH<br>Test Method: AS 4           |           | FORMATION                        | I TEST REPORT                                     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|----------------------------------|---------------------------------------------------|
| Client C                                | Qualtest Laboratory                                                                                                           |                                            | 133.4.3.1 | Report No.                       | 17010484-MOD                                      |
| Average Sample                          | Diameter (mm)                                                                                                                 | 60.7                                       | Moist     | ure Content (%)                  | 0.4                                               |
| Sample Height (n                        | nm)                                                                                                                           | 158.1                                      | Wet D     | Density (t/m <sup>3</sup> )      | 2.61                                              |
| Duration of Test                        |                                                                                                                               | 8.73                                       |           | ensity (t/m <sup>3</sup> )       | 2.60                                              |
| Rate of Loading (                       | . ,                                                                                                                           | 23.94                                      |           | ng (°)                           | Nil                                               |
| Mode of Failure                         |                                                                                                                               | Disintegration                             |           | Apparatus                        | Kelba 1000kN Load Cell                            |
|                                         | CLIENT:                                                                                                                       | Qualtest Laboratory (                      | NSW) Pr   | ty 1 td                          |                                                   |
|                                         | PROJECT:                                                                                                                      | NEW15P-0045 - Mate                         |           | BEFORE TES                       | 2T                                                |
|                                         |                                                                                                                               | Testing, Thornton NS                       | W         |                                  | 51                                                |
|                                         | LAB SAMPLE No.<br>BOREHOLE:                                                                                                   | 17010484<br>NEW17W-0173-S02 -              | DDH2      | DATE: 23/1/17<br>DEPTH: 24.70-24 | 90                                                |
|                                         | BOREHOLE:                                                                                                                     | NEW17W-0175-502 -                          | DDH2      | DEFTH: 24.70-24                  |                                                   |
|                                         | CLIENT:                                                                                                                       | Qualtest Laboratory (                      | (NSW) P   | ty Ltd                           |                                                   |
|                                         | PROJECT:                                                                                                                      | NEW15P-0045 - Mate                         |           | AFTER TES                        | т                                                 |
|                                         | LAB SAMPLE No.                                                                                                                | Testing, Thornton NS<br>17010484           |           | DATE: 23/1/17                    |                                                   |
|                                         | BOREHOLE:                                                                                                                     | NEW17W-0173-S02 -                          |           | DEPTH: 24.70-24                  | .90                                               |
|                                         |                                                                                                                               |                                            |           |                                  |                                                   |
| Notes/Remarks:                          |                                                                                                                               |                                            |           |                                  |                                                   |
| Sample/s supplied by clie               | ent Graph                                                                                                                     | not to scale                               | Tested as | received.                        | Page 2 of 2 REP03603                              |
| The results of the tes this document ar | d for compliance with ISO/IE<br>ts, calibrations, and/or meas<br>e traceable to Australian/Na<br>ed at Trilab Brisbane Labora | surements included in<br>tional Standards. | 6         | Authorised Signatory             | ACCENTION FOR<br>TECHNICAL<br>Laboratory No. 9926 |



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323





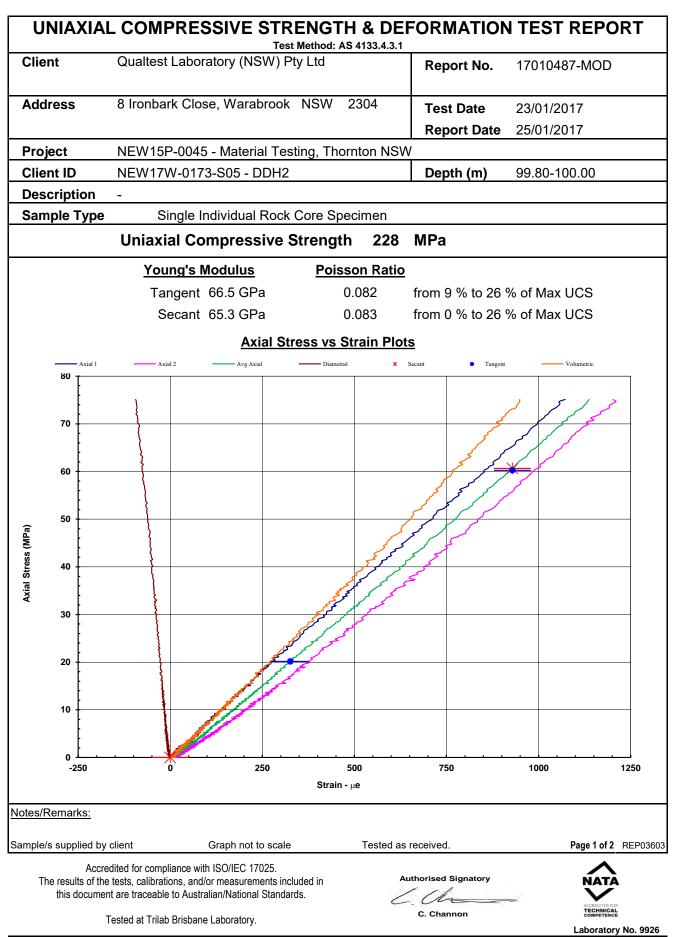

**Perth** 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

| Average Sample Diameter<br>Sample Height (mm)<br>Duration of Test (min)<br>Rate of Loading (MPa/min<br>Mode of Failure   | )<br>F:<br>CT:<br>MPLE No.<br>IOLE:<br>T:<br>CT: | 60.6<br>160.2<br>10.20<br>19.71<br>Disintegration<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485<br>NEW17W-0173-S03 -                                     | Wet D<br>Dry De<br>Beddir<br>Test A<br>NSW) Pty<br>rial<br>W<br>1<br>DDH2 1 | Apparatus Ke<br>y Ltd<br>BEFORE TEST<br>DATE: 2.1/11/17<br>DEPTH: 44.90-45.10<br>WILLIA<br>AFTER TEST                                               | 0.6<br>2.60<br>2.59<br>Nil<br>elba 1000kN Load Ce |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Sample Height (mm)<br>Duration of Test (min)<br>Rate of Loading (MPa/min<br>Mode of Failure                              | )<br>F:<br>CT:<br>MPLE No.<br>IOLE:<br>T:<br>CT: | 10.20<br>19.71<br>Disintegration<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485<br>NEW17W-0173-S03 -                                                      | Wet D<br>Dry De<br>Beddir<br>Test A<br>NSW) Pty<br>rial<br>W<br>1<br>DDH2 1 | Pensity (t/m <sup>3</sup> )<br>ensity (t/m <sup>3</sup> )<br>ng (°)<br>Apparatus Ke<br>y Ltd<br>BEFORE TEST<br>DATE: 23/11/17<br>DEPTH: 44.90-45.10 | 2.59<br>Nil                                       |
| Duration of Test (min)<br>Rate of Loading (MPa/min<br>Mode of Failure                                                    | F:<br>CT:<br>MPLE No.<br>IOLE:<br>F:<br>CT:      | 19.71<br>Disintegration Qualtest Laboratory ( NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485 NEW17W-0173-S03 - Qualtest Laboratory ( NEW15P-0045 - Mate<br>Testing, Thornton NS       | Dry De<br>Beddir<br>Test A<br>NSW) Pty<br>rial<br>W 1<br>DDH2 1             | ensity (t/m <sup>3</sup> )<br>ng (°)<br>Apparatus Ke<br>y Ltd<br>BEFORE TEST<br>DATE: 2.1/11/4<br>DEPTH: 44.90-45.10                                | Nil                                               |
| Rate of Loading (MPa/min<br>Mode of Failure                                                                              | F:<br>CT:<br>MPLE No.<br>IOLE:<br>F:<br>CT:      | 19.71<br>Disintegration Qualtest Laboratory ( NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485 NEW17W-0173-S03 - Qualtest Laboratory ( NEW15P-0045 - Mate<br>Testing, Thornton NS       | Beddir<br>Test A<br>NSW) Pty<br>erial<br>W 1<br>DDH2 1                      | ng (°)<br>Apparatus Ke<br>y Ltd<br>BEFORE TEST<br>DATE: 23/1/17<br>DEPTH: 44.90-45.10                                                               | Nil                                               |
| Mode of Failure                                                                                                          | F:<br>CT:<br>MPLE No.<br>IOLE:<br>F:<br>CT:      | Disintegration<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485<br>NEW17W-0173-S03 -<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS | Test A                                                                      | Apparatus Ke<br>y Ltd<br>BEFORE TEST<br>DATE: 2.1/11/17<br>DEPTH: 44.90-45.10<br>WILLIA<br>AFTER TEST                                               |                                                   |
| PROJEC<br>LAB SAN<br>BOREH<br>CLIENT<br>PROJEC<br>LAB SAN                                                                | CT:<br>MPLE No.<br>IOLE:<br>F:<br>CT:            | NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485<br>NEW17W-0173-S03 -<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS                                            | rial<br>W<br>IDDH2 I                                                        | BEFORE TEST<br>DATE: 2J/1).7<br>DEPTH: 44.90-45.10                                                                                                  |                                                   |
| PROJEC<br>LAB SAN<br>BOREH<br>CLIENT<br>PROJEC<br>LAB SAN                                                                | CT:<br>MPLE No.<br>IOLE:<br>F:<br>CT:            | NEW15P-0045 - Mate<br>Testing, Thornton NS<br>17010485<br>NEW17W-0173-S03 -<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS                                            | rial<br>W<br>IDDH2 I                                                        | BEFORE TEST<br>DATE: 2J/1).7<br>DEPTH: 44.90-45.10                                                                                                  |                                                   |
| BOREH<br>CLIENT<br>PROJEC<br>LAB SAT                                                                                     | IOLE:                                            | 17010485<br>NEW17W-0173-S03 -<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS                                                                                          | (NSW) Pty<br>erial                                                          | DATE: 23/11/17<br>DEPTH: 44.90-45.10                                                                                                                |                                                   |
| BOREH<br>CLIENT<br>PROJEC<br>LAB SAT                                                                                     | IOLE:                                            | NEW17W-0173-S03 -<br>Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS                                                                                                      | DDH2 I<br>(NSW) Pty<br>erial<br>(W                                          | DEPTH: 44.90-45.10                                                                                                                                  |                                                   |
| CLIENT<br>PROJEC<br>LAB SAT                                                                                              | Г:<br>CT:                                        | Qualtest Laboratory (<br>NEW15P-0045 - Mate<br>Testing, Thornton NS                                                                                                                           | (NSW) Pty<br>erial<br>W                                                     | y Ltd<br>AFTER TEST                                                                                                                                 |                                                   |
| LAB SA                                                                                                                   |                                                  | Testing, Thornton NS                                                                                                                                                                          | W                                                                           |                                                                                                                                                     |                                                   |
|                                                                                                                          |                                                  |                                                                                                                                                                                               |                                                                             |                                                                                                                                                     |                                                   |
| DOREM                                                                                                                    |                                                  | 17010485<br>NEW17W-0173-S03 -                                                                                                                                                                 |                                                                             | DATE: 23/1117<br>DEPTH: 44.90-45.10                                                                                                                 |                                                   |
|                                                                                                                          |                                                  |                                                                                                                                                                                               |                                                                             |                                                                                                                                                     |                                                   |
| tes/Remarks:                                                                                                             |                                                  |                                                                                                                                                                                               | Turi                                                                        |                                                                                                                                                     | <b>D A (2) -</b>                                  |
| mple/s supplied by client                                                                                                |                                                  | n not to scale                                                                                                                                                                                | Tested as I                                                                 | received.                                                                                                                                           | Page 2 of 2 REP03                                 |
| Accredited for complian<br>The results of the tests, calibration<br>this document are traceable to<br>Tested at Trilab B |                                                  |                                                                                                                                                                                               |                                                                             | Authorised Signatory                                                                                                                                | NATA                                              |



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323






**Perth** 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

| Client Qual           | Itest Laboratory                     | (NSW) Pty Ltd                                                                   |                   | Report No.                       | 17010486-MOD         |
|-----------------------|--------------------------------------|---------------------------------------------------------------------------------|-------------------|----------------------------------|----------------------|
| Average Sample Dia    | meter (mm)                           | 60.7                                                                            | Moist             | ure Content (%)                  | 0.5                  |
| Sample Height (mm)    | )                                    | 161.2                                                                           | Wet               | Density (t/m <sup>3</sup> )      | 2.60                 |
| Duration of Test (min | ו)                                   | 9.35                                                                            | Dry D             | Density (t/m <sup>3</sup> )      | 2.59                 |
| Rate of Loading (MPa  | a/min)                               | 14.68                                                                           | Bedd              | ing (°)                          | Nil                  |
| Mode of Failure       |                                      | Disintegration                                                                  | Test              | Apparatus                        | Kelba 1000kN Load Ce |
| C                     | LIENT:                               | Qualtest Laboratory (                                                           | NSW) P            | 'ty Ltd                          |                      |
|                       | ROJECT:                              | NEW15P-0045 - Mater                                                             |                   | BEFORE TES                       | ST                   |
| 1.4                   | AB SAMPLE No.                        | Testing, Thornton NSV<br>17010486                                               | N                 |                                  | 51                   |
|                       | OREHOLE:                             | NEW17W-0173-S04 - 1                                                             | DDH2              | DATE: 23/1/17<br>DEPTH: 48.70-49 | 30                   |
|                       |                                      |                                                                                 | Ser Se            |                                  |                      |
| PF                    | LIENT:<br>ROJECT:                    | Qualtest Laboratory (?<br>NEW15P-0045 - Mater<br>Testing, Thornton NSV          | ial               | AFTER TES                        | T                    |
| PF<br>LA              | ROJECT:                              | NEW15P-0045 - Mater                                                             | rial<br>N         |                                  |                      |
| PF<br>LA              | ROJECT:<br>AB SAMPLE No.             | NEW15P-0045 - Mater<br>Testing, Thornton NSV<br>17010486                        | rial<br>N         | AFTER TES<br>DATE: ZJ/ili7       |                      |
| PF<br>LA              | ROJECT:<br>AB SAMPLE No.             | NEW15P-0045 - Mater<br>Testing, Thornton NSV<br>17010486                        | rial<br>N         | AFTER TES<br>DATE: ZJ/ili7       |                      |
| PF                    | ROJECT:<br>AB SAMPLE No.<br>OREHOLE: | NEW15P-0045 - Mater<br>Testing, Thornton NSV<br>17010486<br>NEW17W-0173-S04 - 1 | rial<br>N<br>DDH2 | AFTER TES<br>DATE: ZJ/ili7       |                      |



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323



The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506



**Perth** 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

| UNIAXIAL C                                 | OMPRESSI                                                                                 | /E STRENGTH &<br>Test Method: AS 41                                  |          | FORMATION                       | I TEST REPORT          |
|--------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|---------------------------------|------------------------|
| Client Q                                   | ualtest Laboratory                                                                       |                                                                      | JJ.4.3.1 | Report No.                      | 17010487-MOD           |
| Average Sample [                           | Diameter (mm)                                                                            | 60.4                                                                 | Moist    | ure Content (%)                 | 0.4                    |
| Sample Height (m                           | m)                                                                                       | 160.0                                                                | Wet D    | Density (t/m <sup>3</sup> )     | 2.64                   |
| Duration of Test (min)                     |                                                                                          | 10.73                                                                | Dry D    | ensity (t/m <sup>3</sup> )      | 2.63                   |
| Rate of Loading (MPa/min)                  |                                                                                          | 21.22                                                                | Beddi    | ing (°)                         | Nil                    |
| Mode of Failure                            | ,                                                                                        | Disintegration                                                       | Test /   | Apparatus                       | Kelba 1000kN Load Cell |
|                                            | CLIENT:                                                                                  | Qualtest Laboratory (N                                               | SW) Pt   | ty Ltd                          |                        |
|                                            | PROJECT:                                                                                 | NEW15P-0045 - Mater                                                  |          | BEFORE TES                      | ST                     |
|                                            | LAB SAMPLE No.                                                                           | Testing, Thornton NSV<br>17010487                                    |          | An and the set of the           |                        |
|                                            | BOREHOLE:                                                                                | NEW17W-0173-S05 - E                                                  |          | DATE: 23/114<br>DEPTH: 99.80-10 | 0.00                   |
|                                            | CLIENT:<br>PROJECT:                                                                      | Qualtest Laboratory (<br>NEW15P-0045 - Mater<br>Testing Thornton NSV | rial     | ty Ltd<br>AFTER TES             | T                      |
|                                            | LAB SAMPLE No.                                                                           | Testing, Thornton NSV<br>17010487                                    |          | DATE: 23/1/17                   | 1                      |
|                                            | BOREHOLE:                                                                                | NEW17W-0173-S05 - 1                                                  | DDH2     | DEPTH: 99.80-10                 | 0.00                   |
| Notes/Remarks:                             | t Crock                                                                                  |                                                                      |          | received                        |                        |
| Sample/s supplied by clien                 | •                                                                                        |                                                                      | ested as | received.                       | Page 2 of 2 REP03603   |
| The results of the tests this document are | for compliance with ISO/II<br>s, calibrations, and/or mea-<br>traceable to Australian/Na | surements included in<br>ational Standards.                          |          | Authorised Signatory            |                        |
| Teste                                      | d at Trilab Brisbane Labora                                                              | atory.                                                               |          |                                 | Laboratory No. 9926    |

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

|                 |                                                | CERC                                                                                    | HAR ABRASIVI                         | TY INDEX TES                        | T REPO   | ORT        |              |                                           |
|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------|------------|--------------|-------------------------------------------|
|                 |                                                |                                                                                         | est Method for Laboratory D          | etermination of Abrasive            |          | -          |              |                                           |
| Client          | t Qualtest Laboratory (NSW) Pty Ltd Report No. |                                                                                         | rt No.                               | 17020012-CERC                       |          |            |              |                                           |
| Address         | 8 Ironbar                                      | k Close, Wara                                                                           | abrook NSW 2304                      |                                     | Test     | Date       | 1/02/2017    |                                           |
|                 |                                                |                                                                                         |                                      |                                     |          | rt Date    | 2/02/2017    |                                           |
| Project         | NEW15F                                         | 2-0045 - Mater                                                                          | rial Testing - Various, I            | NSW                                 | Depth    | n (m)      | Not Supplied | ł                                         |
| Client ID       |                                                | -0307-S01 - DDH2 Sample Type                                                            |                                      | Single Indivi<br>Core Specin        |          |            |              |                                           |
| Descriptio      | UN -                                           |                                                                                         | SAMP                                 | LE DETAILS                          |          |            |              |                                           |
| Sample Dia      | meter (mm):                                    |                                                                                         | 60.6                                 | Moisture Conter                     | at (9/). |            | 0.2          |                                           |
| Sample Dia      |                                                |                                                                                         | 69.9                                 | Dry Density (t/m                    |          |            | 2.64         |                                           |
| Surface Typ     |                                                | Smoot                                                                                   | h (Saw Cut) Surface                  | Wet Density (t/m                    | -        |            | 2.65         |                                           |
| ounder y        |                                                | Giilou                                                                                  |                                      | S OF TESTING                        | . /      | <u>I</u>   | 2.00         |                                           |
| Hardness o      | of Tip Used                                    | 17 HRC                                                                                  | Hardness of Tip Use                  | d 39 HRC                            | Hard     | ness of Ti | p Used       | 53 HRC                                    |
| Average Dia     | -                                              | *CAI                                                                                    | Average Diameter (m                  | _                                   |          | ge Diamet  |              | *CAI                                      |
| 0.5             |                                                | 5.02                                                                                    | 0.34                                 | 3.39                                |          | 0.24       |              | 2.40                                      |
|                 |                                                |                                                                                         | CAI v's                              | n : High abrasiven<br>Hardness Plot |          |            |              |                                           |
| 6.00            |                                                |                                                                                         | Test Data                            | Line of Best                        | Fit      |            |              |                                           |
| 5.00            |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
| 4.00            |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
|                 |                                                |                                                                                         |                                      |                                     | -        |            |              |                                           |
| <b>B</b> 3.00   |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
| 2.00            |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
| 1.00            |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
|                 |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
| 0.00            |                                                | 10                                                                                      | 20<br>Ha                             | 30<br>rdness (HRC)                  | 40       |            | 50           | 60                                        |
| Remarks:        |                                                |                                                                                         |                                      |                                     |          |            |              |                                           |
| ample/s supplie | ed by client                                   |                                                                                         | * CAI values corrected for s         | mooth surface.                      |          |            | Page: 1 of 2 | REP068                                    |
| The results of  | the tests, calibrati<br>nent are traceable     | liance with ISO/IEC<br>ons, and/or measur<br>to Australian/Nation<br>Brisbane Laborator | ements included in<br>nal Standards. | Authorised S<br>C. Chan<br>C. Chan  |          | 5          |              | ACCHEDITED FOR<br>TECHNICAL<br>COMPETENCE |
|                 |                                                |                                                                                         |                                      |                                     |          |            | Lal          | ooratory No. 992                          |

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

|             |                                                                                                                                                                          | AR ABRASIVITY INDEX                              |                                                        | e Cerchar Method |          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------|----------|
| Client      | Qualtest Laboratory (NS                                                                                                                                                  | SW) Pty Ltd                                      | Report No.                                             | 17020012-CER     | C        |
|             |                                                                                                                                                                          | BEFORE & AFTER PHOT                              | <u></u>                                                |                  |          |
|             |                                                                                                                                                                          |                                                  | -                                                      |                  |          |
|             | CLIENT:                                                                                                                                                                  | Qualtest Laboratory (NSW) I                      | Pty Ltd                                                |                  |          |
|             | PROJECT:                                                                                                                                                                 | NEW15P-0045 - Material<br>Testing - Various, NSW | BEFORE TEST                                            |                  |          |
|             | LAB SAMPLE No.                                                                                                                                                           | 17020012                                         | DATE:1/02/17                                           |                  |          |
|             | BOREHOLE:                                                                                                                                                                | NEW17W-0307-S01 - DDH2                           | DEPTH: Not Supplie                                     | ed               |          |
|             |                                                                                                                                                                          |                                                  |                                                        |                  |          |
|             | CLIENT:                                                                                                                                                                  | Qualtest Laboratory (NSW) I                      | Pty Ltd                                                |                  |          |
|             | PROJECT:                                                                                                                                                                 | NEW15P-0045 - Material<br>Testing - Various, NSW | AFTER TEST                                             |                  |          |
|             | LAB SAMPLE No.                                                                                                                                                           | 17020012                                         | DATE: 1/02/17                                          |                  |          |
|             | BOREHOLE:                                                                                                                                                                | NEW17W-0307-S01 - DDH2                           | DEPTH: Not Supplied                                    | d                |          |
|             |                                                                                                                                                                          |                                                  |                                                        |                  |          |
| Remarks:    |                                                                                                                                                                          |                                                  |                                                        |                  |          |
| The results | Accredited for compliance with ISO/IEC<br>of the tests, calibrations, and/or measure<br>cument are traceable to Australian/Natior<br>Tested at Trilab Brisbane Laborator | ements included in nal Standards.                | ace.<br>orised Signatory<br>Contractions<br>C. Channon |                  | REP06801 |

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

ACCURATE QUALITY RESULTS FOR TOMORROW'S ENGINEERING

|                         | ORGANIC MA                                                                                                                                                                                                                                         |                           | REPORT                |                                                             |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------------------------------------------|--|--|
| Client:                 | Qualtest Laboratory Pty Ltd                                                                                                                                                                                                                        | Source:                   | NEW 17W-0307-S01      |                                                             |  |  |
| Address:                | 8 Ironbark Close, Warabrook NSW 2304                                                                                                                                                                                                               | Sample<br>Description:    | Sandy GRAVEL          |                                                             |  |  |
| Project:                | Material Analysis                                                                                                                                                                                                                                  | Report No:                | B35669-OC             |                                                             |  |  |
| Job No:                 | B17041                                                                                                                                                                                                                                             | Lab No:                   | B35669                |                                                             |  |  |
| Test Proce              |                                                                                                                                                                                                                                                    | f the organic matter cont |                       |                                                             |  |  |
| Sampling:<br>Preparatio | Sampled by Client           n:         Prepared in accordance with the test method                                                                                                                                                                 |                           | Date Sampled:         | 23/01/2017                                                  |  |  |
|                         |                                                                                                                                                                                                                                                    |                           |                       |                                                             |  |  |
|                         | Organic Matter (%)                                                                                                                                                                                                                                 |                           | 0.1                   |                                                             |  |  |
|                         |                                                                                                                                                                                                                                                    |                           | Authorised Signatory: |                                                             |  |  |
| NAT                     | The results of the tests, calibrations and/or measurements included<br>in this document are traceable to Australian/national standards.<br>Accredited for compliance with ISO/IEC 17025. This document shall<br>not be reproduced, except in full. |                           | Brok                  | 7/02/2017                                                   |  |  |
|                         | NATA Accredited Laboratory Number: 14874                                                                                                                                                                                                           |                           | Brad Morris           | Date:                                                       |  |  |
| MAC<br>GEO              |                                                                                                                                                                                                                                                    |                           |                       | Macquarie Geotechnical<br>3 Watt Drive<br>Bathurst NSW 2795 |  |  |



**PRODUCT TEST REPORT** 

Test completed on: 17-03-2017

36389

ME70306

01-03-2017

**RMS 3258** 

QTPO17-0071

**NEW Aggregates** 

NEW17W-0307-S01

SAMI Bitumen Class 170

Test Report No.:

Client Sample No.:

SAMI Sample No.:

Date on P. Order:

Sample Details:

Binder Type:

Specification:

Product:



#### **SAMI Bitumen Technologies**

12 Grand Ave, Camellia NSW 2142 Or PO Box 164 Winston Hills, NSW 2153

Laboratory @samibitumen.com.au

Ph: 02 9638 0150 Fax: 02 8209 4873

| Method   | Property                                                                                                                                                                                                              | Result | Specification            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|
| RMS T238 | Initial Adhesion using SAMI C170 binder<br>with 7% kerosene*, on NEW17W0307-S01<br>aggregates, precoated with SAMI standard<br>precoat plus 1% Redicote 422/60, soaked                                                |        | Maximum<br>10% stripping |
|          | curing condition<br>and                                                                                                                                                                                               | <5%    |                          |
|          | unsoaked curing condition                                                                                                                                                                                             | <5%    |                          |
| RMS T230 | Resistance to stripping using SAMI C170<br>binder on same precoated aggregates, plus<br>1% Redicote 422/60. Oven temperature for<br>conditioning = 68.5C and tendency for<br>aggregates to crumble when pulled is <2% | <2%    | Maximum<br>10% stripping |

Certificate Issued Date: 17-03-2017 Sampling Method: Test as received Testing Operator Name: M. T. Softening point of SAMI C170 (ME70258) = 48.5C; \*Viscosity of cutback binder at test temperature =15000 stokes

p. Ch.

Authorised Officer of the Company B. Chik, Quality Manager

Doc: SAMI-IT09M29MC170 Issue A Revision 0 09/05/2007 Page 1 of 1



**NEW Aggregates** 

NEW17W-0307-S01

PRODUCT TEST REPORT

Test completed on: 17-03-2017

36390

ME70306

01-03-2017

**RMS 3268** 

QTPO17-0071

Polyseal S35E

Test Report No.:

Client Sample No.:

SAMI Sample No.:

Date on P. Order:

Sample Details:

Binder Type:

Specification:

Product:



**SAMI Bitumen Technologies** 

12 Grand Ave, Camellia NSW 2142 Or PO Box 164 Winston Hills, NSW 2153

Laboratory @samibitumen.com.au

Ph: 02 9638 0150 Fax: 02 8209 4873

| Method   | Property                                                                                                                                                                                                                         | Result   | Specification            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|
| RMS T238 | Initial Adhesion using Polyseal S35E binder<br>with 8% kerosene, on NEW17W-0307-S01<br>aggregates, precoated with SAMI standard<br>precoat plus 1% Redicote 422/60, soaked<br>curing condition and<br>unsoaked curing conditions | <5<br><5 | Maximum<br>10% stripping |
| RMS T230 | Resistance to stripping using Polyseal<br>S35E binder on same precoated<br>aggregates plus 1% Redicote 422/60.<br>Oven temperature for conditioning = 74.0C<br>and tendency for aggregates to crumble<br>when pulled is <2%      | <2       | Maximum<br>10% stripping |

Certificate Issued Date: 28-10-2016 Sampling Method: Test as received Testing Operator Name: G. Y. Softening point of Polyseal S35E (C17176) = 54.0C For RMS T238, viscosity of cutback binder at test temperature = 15000 stokes

p. Ch.

Authorised Officer of the Company B. Chik, Quality Manager

Doc: SAMI-IT09M29MCS35E Issue A Revision 0 25/10/2006 Page 1 of 1

Partnering with road paving businesses Adding value through focus, expertise and innovation www.samibitumen.com.au

Page 1 of 3

### SYDNEY ANALYTICAL LABORATORIES

Office: PO BOX 48 ERMINGTON NSW 2115

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8903 Fax: (02) 9838 8919 A.C.N. 003 614 695 A.B.N. 81 829 182 852 NATA No: 1884

#### ANALYTICAL REPORT for:

QUALTEST LABORATORY PTY LTD

8 IRONBARK CLOSE WARABROOK, NSW 2304

ATTN: ADAM DWYER

| JOB NO:          | SAL26195H |
|------------------|-----------|
| CLIENT ORDER:    | 17W-0307  |
| DATE RECEIVED:   | 02/02/17  |
| DATE COMPLETED:  | 10/02/17  |
| TYPE OF SAMPLES: | AGGREGATE |
| NO OF SAMPLES:   | 1         |
|                  |           |



. . . . . . . . . . . Issued on 10/02/17

Lance Smith (Chief Chemist)

# SYDNEY ANALYTICAL LABORATORIES

#### ANALYTICAL REPORT

JOB NO: SAL26195H CLIENT ORDER: 17W-0307

|   | SAMPLES             | Cl<br>%            | S04<br>% as S03    |           |
|---|---------------------|--------------------|--------------------|-----------|
| 1 | NEW17W-0307-S01     | 0.004              | 0.001              |           |
|   | od Code<br>Daration | 0.001<br>C32<br>P5 | 0.001<br>C33<br>P5 |           |
|   |                     |                    | C                  | C33<br>P5 |

RESULTS ON DRY BASIS SAMPLE DESCRIPTION: DDH2

Page 3 of 3

### SYDNEY ANALYTICAL LABORATORIES

#### ANALYTICAL REPORT

JOB NO: SAL26195H CLIENT ORDER: 17W-0307

#### METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

- P5 Sample dried, split and crushed to -150um
- C32 Acid Soluble Chloride AS1012.20
- C33 Acid Soluble Sulphate AS1012.20

### Page 1 of 3

### SYDNEY ANALYTICAL LABORATORIES

Office: PO BOX 48 ERMINGTON NSW 2115

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8903 Fax: (02) 9838 8919 A.C.N. 003 614 695 A.B.N. 81 829 182 852 NATA No: 1884

### ANALYTICAL REPORT for:

#### QUALTEST LABORATORY PTY LTD

8 IRONBARK CLOSE WARABROOK, NSW 2304

ATTN: DANE CULLEN

| JOB NO:          | SAL26262C |
|------------------|-----------|
| CLIENT ORDER:    | 17W-0307  |
| DATE RECEIVED:   | 29/03/17  |
| DATE COMPLETED:  | 31/03/17  |
| TYPE OF SAMPLES: | AGGREGATE |
| NO OF SAMPLES:   | 1         |



Issued on 31/03/17 Lance Smith (Chief Chemist)

### SYDNEY ANALYTICAL LABORATORIES

#### ANALYTICAL REPORT

JOB NO: SAL26262C CLIENT ORDER: 17W-0307

|   | SAMPLES         |     |    | S04  |  |
|---|-----------------|-----|----|------|--|
|   |                 | olo | as | SO3  |  |
| 1 | NEW17W-0307-S01 |     | 0  | .010 |  |

| MDL         | 0.001 |
|-------------|-------|
| Method Code | C34   |
| Preparation | P5    |

RESULTS ON DRY BASIS SAMPLE DESCRIPTION: DDH2

Page 3 of 3

### SYDNEY ANALYTICAL LABORATORIES

#### ANALYTICAL REPORT

JOB NO: SAL26262C CLIENT ORDER: 17W-0307

#### METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

P5 Sample dried, split and crushed to -150um

C34 Acid Soluble Sulphate - RMS T219



## **TEST REPORT**

| Client:<br>Principal:<br>Project:<br>Location: | Qualtest<br>-<br>Material Testing<br>Various Locations, N              | SW                                                      | Job No:<br>Tested By:<br>Checked By:              | W07/3<br>TM<br>HU | 3100                              | Sheet:<br>Date:<br>Date: | 1 of 1<br>3.02.17<br>6.02.17 |
|------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------------|-----------------------------------|--------------------------|------------------------------|
|                                                | nple Description:<br>Sample Number:<br>Date Sampled:<br>Client Number: | Rock Core (DDH2)<br>38<br>23/01/2017<br>NEW17W-0307-S01 | Sample Proced<br>Laboratory Nu<br>Client Job Numl | mber:             | Sampled by<br>W59855<br>NEW17W-03 |                          |                              |
|                                                | TEST PROCEDU                                                           |                                                         | TEST RESUL                                        |                   |                                   |                          |                              |
| Sı                                             | ıgar                                                                   | Not Detected/Detected                                   | Not Detected                                      | 1                 |                                   |                          |                              |

**REMARKS:** 



This document is issued in accordance with NATA's accreditation requirements. Accreditied for compliance with ISO/IEC 17025

APPROVED SIGNATORY Harry Ubungen

DATE 6/02/2017

Document No. RP125 Version 2 22-6-10

Wollongong Laboratory 1318



ACN 069 211 561 Unit 1/140 Industrial Road Oak Flats NSW 2529 Telephone 61 2 4257 4458 Facsimilie 61 2 4257 4463 Email southcoast@netgeo.com.au

### **TEST REPORT**

| Client:<br>Project:<br>Location:<br>GTR Number : |                   | ocations, NSW        | R<br>R         | ob Number:<br>eport Number:<br>eport Date:<br>ested By: | W07/3100<br>-<br>6/02/2017<br>Tim Mathie |  |
|--------------------------------------------------|-------------------|----------------------|----------------|---------------------------------------------------------|------------------------------------------|--|
|                                                  |                   | Sample               | Identification |                                                         |                                          |  |
| Sam                                              | ple Description : | Rock Core (DDH2)     | Sampling Proce | edure: Sampled I                                        | By Client                                |  |
| S                                                | Sample Number:    | 38                   |                |                                                         |                                          |  |
| Labo                                             | oratory Number:   | W59855               | Date Sa        | ampled: 23/01/                                          | /2017                                    |  |
|                                                  | Client Number:    | NEW17W-0307-S01      |                |                                                         |                                          |  |
| DE                                               | TERMINATION       | N OF LIGHT PARTICLES | 6 - AS 1141.31 |                                                         |                                          |  |
|                                                  | TEST PRO          | DCEDURE              | TEST RESUL     | TS                                                      |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  | Light Particles   | %                    | 0              |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |
|                                                  |                   |                      |                |                                                         |                                          |  |

REMARKS:



This document is issued in accordance with NATA's accreditation requirements. Accreditied for compliance with ISO/IEC 17025

Wollongong Laboratory 1318

APPROVED SIGNATORY Harry Ubungen DATE 6/02/2017



## **TEST REPORT**

| Client:                | Qualtest Laboratory   |                  | Job No:     | W07/3100 | Sheet:     | 1 of 1  |
|------------------------|-----------------------|------------------|-------------|----------|------------|---------|
| Principal:<br>Project: | -<br>Material Testing |                  | Tested By:  | ТМ       | Date:      | 3.02.17 |
| Location:              | Various Locations, I  | NSW              | Checked By: | HU       | Date:      | 6.02.17 |
| S                      | ample Description:    | Rock Core (DDH2) | Sample Pro  | ocedure: | Sampled By | Client  |
|                        | Sample Number:        | 38               |             |          |            |         |
|                        | Date Sampled:         | 23/01/2017       | Client      | Number:  | NEW17W-030 | 7-S01   |
| L                      | aboratory Number:     | W59855           |             |          |            |         |

### Determination of Methylene Blue Adsorption Value of Road Construction Materials

| TEST PROCEDURE<br>AS 1141.66 |      | TEST RESULT |
|------------------------------|------|-------------|
| Methylene Blue Value (MBV)   | mg/g | 2.5         |
|                              |      |             |
|                              |      |             |
|                              |      |             |
|                              |      |             |
|                              |      |             |

**REMARKS**:



Accreditied for compliance with ISO/IEC 17025

APPROVED SIGNATORY Harry Ubungen

DATE 6/02/2017

Document No RP145.2

Version 1 30-10-12

Wollongong Laboratory 1318



ACN 069 211 561 Unit 1/140 Industrial Road Oak Flats NSW 2529 AUSTRALIA Telephone: 61 2 4257 4458 Facsimile: 61 2 4257 4463 Email: southcoast@netgeo.com.au

# TEST REPORT

### Accelerated mortar bar test for the assessment of alkali-reactivity of aggregate

Client: Qualtest Project: Material Testing Location: Warabrook NSW 
 Job No:
 W07/3100
 Page:
 1 of 1

 Report Number:
 1
 Ed. No:
 1

 Test Date
 10/03/2017
 1

This report replaces all previous issues of the above report number.

Date Sampled: 8/12/2016

Sample Location: Not Known

Sampled by: Client

Sampling Procedure: Sampled by Client

Sample Number: W60067 (#39)

Type of aggregate: Crushed Cores (DDH2)

Source of aggregate: Not Known

Type of cement used: Port Kembla GP

Source of cement : Cement Australia Port Kembla

Test Method: RMST363

Client sample number: NEW17W-0307-S01

| Flow (%)              | 7    |
|-----------------------|------|
| Water to cement ratio | 0.42 |

| Age (days) | Change in length (%) |
|------------|----------------------|
| 1          | 0.004                |
| 3          | 0.032                |
| 7          | 0.069                |
| 10         | 0.098                |
| 14         | 0.138                |
| 21         | 0.206                |

| Table T363/A |            |                |  |  |
|--------------|------------|----------------|--|--|
| Aggregate    | Reactivity | Classification |  |  |

| ortar Bar Expansion (%) in 1M NaOH (80°C) |            | Classification  |  |
|-------------------------------------------|------------|-----------------|--|
| 10 days                                   | ys 21 days |                 |  |
| < 0.10*                                   | < 0.10*    | Non-reactive    |  |
| < 0.10*                                   | ≥ 0.10*    | Slowly reactive |  |
| ≥ 0.10*                                   | >> 0.10*   | Reactive        |  |

\* 0.15% for naturally occurring fine aggregates

#### **REMARKS**:



Accredited for compliance with ISO/IEC 17025

APPROVED SIGNATORY
Tim Mathie

DATE 3/04/2017



ACN 069 211 561 Unit 1/140 Industrial Road Oak Flats NSW 2529 AUSTRALIA Telephone: +61 2 4257 4458 Facsimile: +61 2 4257 4463 Email: southcoast@netgeo.com.au

### **TEST REPORT**

Test Date

# DETERMINATION OF POLISHED AGGREGATE FRICTION VALUE

Client: Qualtest Project: Material Testing Location: Warrabrook NSW Job No: W07/3100 Report Number: 1 Page: 1 of 1 Ed. No: 1

This report replaces all previous issues of the above report number.

Date Sampled: 8/12/2016

Sample Location: Not known

Sampled by: Client

Sampling Procedure: Sampled by Client

Sample Number: W60067

Sample Description: Crushed Core (DDH2)

Client Sample Number: NEW17W-0307-S01

Size of aggregate tested: -9.5+6.7

Reference material: Panmure Basalt

15/03/2017

Ambient air temperature: 25°C

Size of slider: 75mm

Polishing Test Method: AS1141.41

Friction Testing Method: AS1141.42

|                                                                                             | Test sample | Reference sample<br>Panmure Basalt |
|---------------------------------------------------------------------------------------------|-------------|------------------------------------|
| The unpolished test sample mean friction value corrected to a temperature of $23^{\circ}$ C | 77          | 75                                 |
| The polished test sample mean friction value corrected to a temperature of $23^{\circ}$ C   | 48          | 49                                 |
| The polished aggregate friction value (PAFV)                                                | 50          | 51                                 |

**REMARKS:** 



Accredited for compliance with ISO/IEC 17025

Wollongong Laboratory: 1318

APPROVED SIGNATORY Tim Mathie DATE 16/03/2017



# **Geochempet Services**

ABN 980 6945 3445 PETROLOGICAL and GEOCHEMICAL CONSULTANTS Principals: K.E. Spring BSc (Hons), MAppSc and H.M. Spring B.Sc



5/14 Redcliffe Gardens Drive Clontarf Q 4019

Telephone: (07) 3284 0020

Email: <u>info@geochempet.com</u> <u>www.geochempet.com</u>

### PETROGRAPHIC REPORT ON A DRILL CORE SAMPLE (NEW17W-0117-S01)

prepared for

### QUALTEST LABORATORY (NSW) PTY LTD WARABROOK, NSW

Order Number: QTPO17-0015

Invoice Number: 00007463

Client Ref: Adam Dwyer

Kent oping

K. E. Spring B.Sc (Hons), MAppSc 7 February 2017 Page 1 of 6

FEBRUARY, 2017

*Ql170201* 

The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services

Issued by

| Sample Number:        | NEW17W-0117-S01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Date Sampled</b> :                                                                                                                                                                                                                                                                                                                     | 13/12/16                                                                                                                                                                                             |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borehole Descript.:   | DDH2-P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Received:                                                                                                                                                                                                                                                                                                                            | 13/01/17                                                                                                                                                                                             |
| Project Name:         | Material Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                      |
| Work Order No.:       | NEW17W-0117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Project No.</b> : NEW                                                                                                                                                                                                                                                                                                                  | 15P-0045                                                                                                                                                                                             |
| Location:             | Warrabrook, NSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                      |
| <u>Work Requested</u> | Petrographic analysis in relation to s<br>base, concrete sand/aggregate, aspha<br>rap, marine armour rock and dimensi                                                                                                                                                                                                                                                                                                                                                                                                              | ltic/sealing aggregate, r                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |
| <u>Methods</u>        | Account taken of ASTM C295<br>Assessment of Aggregates for Concre<br>and rock for engineering purpo.<br>(Appendix B), and of the content of<br>Cement and Concrete Association of<br>entitled Alkali Aggregate Reaction -<br>Damage to Concrete Structures in Au<br>ASTM C 294 Standard Guide for P<br>Ballast and to the content of the<br>Australia (AS 2758.7 – Appendix E<br>Engineering Purposes- Part 7: Raily<br>ASTM C1721-09 Standard Guide<br>Dimension Stone, and in accordance<br>Guide for Evaluation of Rock to be a | ete, the AS2758.1 – 201<br>ses part 1; Concrete<br>of the 2015 joint publi<br>of Australia and Standa<br><i>Guidelines on Minimisi</i><br><i>ustralia</i> and in acco<br><i>Petrographic Assessmer</i><br>ne 1996 publication 6<br>B), entitled Aggregates<br>way Ballast, and in acco<br><i>for Petrographic A</i><br>ce with ASTM D4992 | 4 Aggregates<br>e aggregates<br>ication of the<br>rds Australia,<br>ng the Risk of<br>ordance with<br>nt of Railway<br>of Standards<br>and Rock for<br>cordance with<br>ssessment of<br>-07 Standard |

### Identification Hematized rhyolitic tuff

### **Description**

The supplied sample of drill core consists of moderate red, apparently unweathered, quite robust acid tuff, displaying numerous phenoclasts of transparent quartz, pinkish feldspar, and sparse biotite and opaque oxide grains set in a very finely crystalline, obviously vitroclastic matrix. The ends of the core are a parallel set of limonite and manganese-coated joint surfaces. The rock can only be very lightly scratched by a steel tool.

*Ql170201* 

Page 2 of 6



Plate 1. Photograph of the supplied drill core sample.

A thin section was prepared to permit detailed microscopic examination in transmitted polarised light of the drill core. An approximate mineralogical composition of the rock expressed in volume percent and based on a count of 100 widely spaced points falling within the thin section, is:

### **Durable Minerals**

- 52% finely microcrystalline feldspars and quartz (17-18%) as devitrification products after former vitric shards
- 41% coarser feldspars and quartz (12%) as devitrification products and phenoclasts
- <1% opaque oxide phenoclasts
- <1% hornblende phenoclasts
  - 5% hematite
- <1% leucoxene
- <1% epidote

### Weak &/or Deleterious Minerals

2% sericite/illite trace fine clay

In thin section, the rock is seen to represent acid tuffaceous rock in which numerous subhedral, corroded and broken phenoclasts (mainly about 0.2 to 5 mm) are dispersed through a finely devitrified matrix with obvious ghosts of former welded vitric shards (about 0.2 to 0.5 mm long) and minor compressed pumice.

The phenoclasts comprise finely clouded by clays and are very slightly sericitized with rare chloritization of plagioclase, finely clay-clouded but otherwise unaltered K-feldspar and beta-form quartz along with minor biotite (now converted to hematite, epidote, leucoxene and sericite), almost completely but similarly-altered hornblende and opaque oxide. The formerly vitroclastic matrix is now devitrified to a finely microcrystalline mosaic (mainly finer than 0.01 mm) with micro-spherulites and related fibrous sheafs of mainly feldspars and quartz. Minor,

### FEBRUARY, 2017

### Ql170201

Page 3 of 6

small patches or clasts in the matrix show coarser devitrification (up to about 0.2 mm grainsize). Fine sericite (possibly illitic) and chlorite is present in minor amounts in the devitrified matrix, which is pervasively, pigmented between former vitric shards by very fine hematite along with small patches of hematitized former mafic minerals.

### **Comments and Interpretations**

The supplied drill core sample (labelled NEW17W-0117-S01) is interpreted to be devitrified tuff which is of broadly rhyolitic composition (using the classification criteria of the International Union of Geological Sciences) or of more specific rhyo-dacitic composition (using narrower, older established British/Australian criteria). The rock is thought to have originated as acid ashflow tuff (or "ignimbrite") composed of phenoclasts of quartz and feldspars dispersed through a welded matrix of vitric shards and minor compressed pumice. At some stage after initial solidification, the tuff was finely devitrified, hematitized and slightly sericitized.

For engineering purposes the rock represented in the supplied drill core sample may be summarised as:

- former vitric crystal **acid tuff** with a composition equivalent broadly to **rhyolite** or more specifically to rhyo-dacite (i.e. equivalent to acid volcanic rock)
- now devitrified, but otherwise only slightly altered
- now finely crystalline
- unweathered
- non-porous
- carrying about 2% of weak mineral (sericite/illite and a trace of fine clays)
- quite hard
- strong

The rock is predicted to be **durable**.

Because the rock carries an estimated 17-18% of finely micro-crystalline quartz (as a devitrification product), it is predicted to have **substantial potential for deleterious alkali-***silica reactivity in concrete*.

Thus, devitrified tuff of the type represented in the supplied sample is predicted to be **suitable for use as a source of manufactured concrete sand and concrete aggregate**: provided that appropriate precautions are taken in mix and engineering design to take account of its perceived potential for substantial deleterious alkali-silica reactivity.

Guidance on how to deal with the perceived potential for deleterious alkali-silica reactivity may be found in the 1996 joint publication of the *Cement and Concrete Association of Australia* and *Standards Australia*, entitled *Alkali Aggregate Reaction - Guidelines on Minimising the Risk of Damage to Concrete Structures in Australia*.

The rock is considered to have **more than adequate strength and durability for use in asphaltic/sealing aggregate**. Some rhyolitic rock types can present problems in relation to bonding to bitumen and polishing in service.

### FEBRUARY, 2017

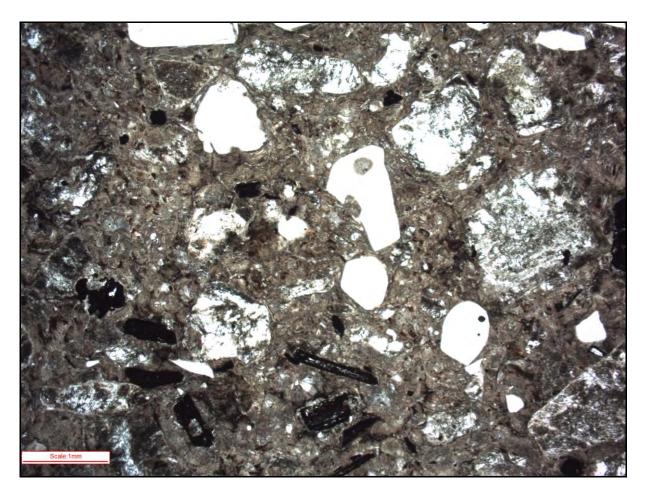
Ql170201

Page 4 of 6

Thus, devitrified tuff of the type represented in the supplied sample is predicted to be **suitable for use as a source of road base, rail ballast** (subject to compliance with the Durability Criteria of CT147 / AS2758.7) **and rip rap**.

Non-porous, unweathered rock equivalent to the supplied sample may be suitable for use as a source of durable marine armour rock. However, supplementary observations at the quarry or using product rock of large size would be required to check whether rock fragments of suitable size, free of weak or permeable joints, veins or other physical defects can be obtained: the more weathered and fractured rock should be avoided. It is common for acid volcanic and sub-volcanic rock to be fairly closely jointed, a characteristic which facilitates quarrying and crushing, but which may limit the availability of armour rock of suitably large and stable size.

It seems from petrographic examination that the rhyolitic tuff may have potential for use as a source of 'granite' dimension stone ('granite' being a very broad, ill-defined term used by stonemasons for almost any crystalline rock which is not 'marble'), subject to appropriate consideration of the impact of jointing or veining from visual inspection at the quarry and the presence of illitic clay.

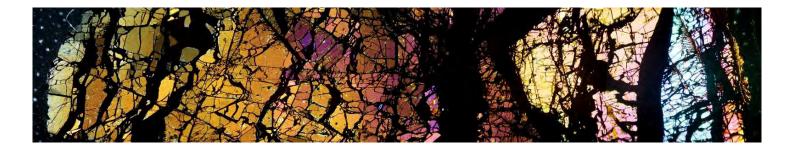

### Free Silica Content

The free silica content is about 29-30%, with 12% as common quartz and 17-18% as finely micro-crystalline quartz, all locked within crystalline rock.

FEBRUARY, 2017

*Ql170201* 

Page 5 of 6




**Plate 2**. Low magnification, plane transmitted light image of part of hematitized acid tuff showing phenoclasts of quartz, feldspar, opaque oxide and altered biotite flakes in a finely devitrified matrix with obvious ghosts of former welded vitric shards showing fine pigmentation of hematite

FEBRUARY, 2017

Ql170201

Page 6 of 6



# **Geochempet Services**

ABN 980 6945 3445 PETROLOGICAL and GEOCHEMICAL CONSULTANTS Principals: K.E. Spring BSc (Hons), MAppSc and H.M. Spring B.Sc



5/14 Redcliffe Gardens Drive Clontarf Q 4019

Telephone: (07) 3284 0020

Email: <u>info@geochempet.com</u> <u>www.geochempet.com</u>

### PETROGRAPHIC REPORT ON A DRILL CORE SAMPLE (NEW17W-0117-S02)

prepared for

### QUALTEST LABORATORY (NSW) PTY LTD WARABROOK, NSW

Order Number: QTPO17-0015

Invoice Number: 00007463

Client Ref: Adam Dwyer

Kent oping

K. E. Spring B.Sc (Hons), MAppSc 7 February 2017 Page 1 of 6

FEBRUARY, 2017

*Ql170202* 

The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services

Issued by

| Sample Number:        | NEW17W-0117-S02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date Sampled:                                                                                                                                                                                                                                                                                                                                   | 13/12/16                                                                                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borehole Descript.:   | DDH2-P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Received:                                                                                                                                                                                                                                                                                                                                  | 13/01/17                                                                                                                                                                                           |
| Project Name:         | Material Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |
| Work Order No.:       | NEW17W-0117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project No.: NEW1                                                                                                                                                                                                                                                                                                                               | 5P-0045                                                                                                                                                                                            |
| Location:             | Warrabrook, NSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |
| <u>Work Requested</u> | Petrographic analysis in relation to s<br>base, concrete sand/aggregate, asphal<br>rap, marine armour rock and dimensio                                                                                                                                                                                                                                                                                                                                                                                                               | ltic/sealing aggregate, ra                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |
| <u>Methods</u>        | Account taken of ASTM C295<br>Assessment of Aggregates for Concre<br>and rock for engineering purpose<br>(Appendix B), and of the content of<br>Cement and Concrete Association of<br>entitled Alkali Aggregate Reaction - C<br>Damage to Concrete Structures in Au<br>ASTM C 294 Standard Guide for P<br>Ballast and to the content of the<br>Australia (AS 2758.7 – Appendix B<br>Engineering Purposes- Part 7: Raily<br>ASTM C1721-09 Standard Guide<br>Dimension Stone, and in accordance<br>Guide for Evaluation of Rock to be u | ete, the AS2758.1 – 201<br>ses part 1; Concrete<br>of the 2015 joint public<br>of Australia and Standar<br><i>Guidelines on Minimisin</i><br><i>ustralia</i> and in acco<br><i>Petrographic Assessmen</i><br>the 1996 publication of<br>B), entitled Aggregates a<br>vay Ballast, and in acco<br><i>for Petrographic As</i><br>with ASTM D4992- | 4 Aggregates<br>e aggregates<br>cation of the<br>rds Australia,<br>ng the Risk of<br>ordance with<br>nt of Railway<br>of Standards<br>and Rock for<br>ordance with<br>ssessment of<br>-07 Standard |

Identification Rhyolitic tuff

### **Description**

The supplied sample of drill core consists of light to medium grey, unweathered, quite robust acid tuff, displaying numerous phenoclasts of transparent quartz, white and pink feldspar, and sparse biotite and opaque oxide grains set in a very finely crystalline, obviously vitroclastic, matrix. The rock can only be very lightly scratched by a steel tool.

*Ql170202* 



Plate 1. Photograph of the supplied drill core sample.

A thin section was prepared to permit detailed microscopic examination in transmitted polarised light of the drill core. An approximate mineralogical composition of the rock expressed in volume percent and based on a count of 100 widely spaced points falling within the thin section, is:

### **Durable Minerals**

- 57% finely microcrystalline feldspars and quartz (19%) as devitrification products after former vitric shards
- 34% coarser feldspars and quartz (10%) as devitrification products and phenoclasts
- <1% opaque oxide phenoclasts
- <1% hornblende phenoclasts
- <1% hematite
  - 3% leucoxene
- <1% epidote

### Weak &/or Deleterious Minerals

6% sericite/illite trace calcite trace fine clay

In thin section, the rock is seen to represent acid tuffaceous rock in which numerous subhedral, corroded and broken phenoclasts (mainly about 0.2 to 3 mm) are dispersed through a finely devitrified matrix with obvious ghosts of former welded vitric shards (about 0.2 to 0.5 mm long) and minor compressed pumice.

### FEBRUARY, 2017

*Ql170202* 

Page 3 of 6

The phenoclasts comprise finely clouded by clays and are slightly sericitized with rare carbonation of plagioclase, finely clay-clouded but otherwise unaltered K-feldspar and beta-form quartz along with minor biotite (now converted to hematite, epidote, leucoxene and sericite), almost completely but similarly-altered hornblende and opaque oxide. The formerly vitroclastic matrix is now devitrified to a finely microcrystalline mosaic (mainly finer than 0.01 mm) with spherulites and related fibrous sheafs of mainly feldspars and quartz. Minor, small patches or clasts in the matrix show coarser devitrification (up to about 0.2 mm grainsize). Fine sericite (possibly illitic) is present in minor amounts in the devitrified matrix, which is pervasively, faintly pigmented between former vitric shards by very fine hematite.

### **Comments and Interpretations**

The supplied drill core sample (labelled NEW17W-0117-S02) is interpreted to be devitrified tuff which is of broadly rhyolitic composition (using the classification criteria of the International Union of Geological Sciences) or of more specific rhyo-dacitic composition (using narrower, older established British/Australian criteria). The rock is thought to have originated as acid ashflow tuff (or "ignimbrite") composed of phenoclasts of quartz and feldspars dispersed through a welded matrix of vitric shards and minor compressed pumice. At some stage after initial solidification, the tuff was finely devitrified and slightly sericitized, hematized and carbonated.

For engineering purposes the rock represented in the supplied drill core sample may be summarised as:

- former vitric crystal **acid tuff** with a composition equivalent broadly to **rhyolite** or more specifically to rhyo-dacite (i.e. equivalent to acid volcanic rock)
- now devitrified, but otherwise only slightly altered
- now finely crystalline
- unweathered
- non-porous
- carrying about 6% of weak mineral (sericite/illite and a trace of calcite and fine clays)
- quite hard
- strong

The rock is predicted to be **durable**.

Because the rock carries an estimated 19% of finely micro-crystalline quartz (as a devitrification product), it is predicted to have **substantial potential for deleterious alkali-silica reactivity in concrete**.

Thus, devitrified tuff of the type represented in the supplied sample is predicted to be **suitable for use as a source of manufactured concrete sand and concrete aggregate**: provided that appropriate precautions are taken in mix and engineering design to take account of its perceived potential for substantial deleterious alkali-silica reactivity.

Guidance on how to deal with the perceived potential for deleterious alkali-silica reactivity may be found in the 1996 joint publication of the *Cement and Concrete Association of Australia* 

### FEBRUARY, 2017

*Ql170202* 

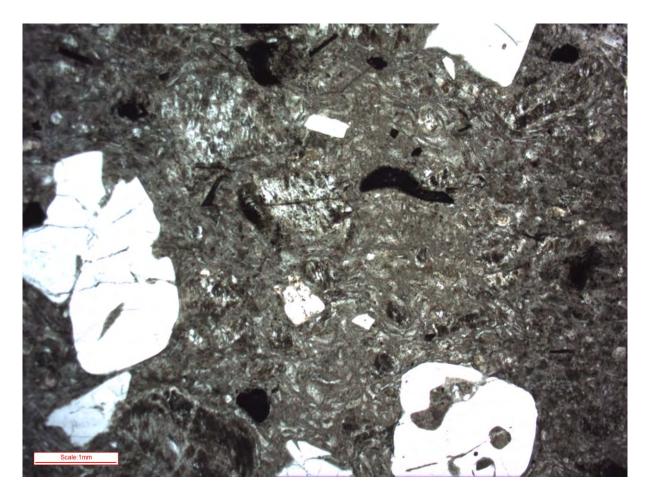
Page 4 of 6

and Standards Australia, entitled Alkali Aggregate Reaction - Guidelines on Minimising the Risk of Damage to Concrete Structures in Australia.

The rock is considered to have **more than adequate strength and durability for use in asphaltic/sealing aggregate**. Some rhyolitic rock types can present problems in relation to bonding to bitumen and polishing in service.

Thus, devitrified tuff of the type represented in the supplied sample is predicted to be **suitable for use as a source of road base, rail ballast** (subject to compliance with the Durability Criteria of CT147 / AS2758.7) **and rip rap**.

Non-porous, unweathered rock equivalent to the supplied sample may be suitable for use as a source of durable marine armour rock. However, supplementary observations at the quarry or using product rock of large size would be required to check whether rock fragments of suitable size, free of weak or permeable joints, veins or other physical defects can be obtained: the more weathered and fractured rock should be avoided. It is common for acid volcanic and sub-volcanic rock to be fairly closely jointed, a characteristic which facilitates quarrying and crushing, but which may limit the availability of armour rock of suitably large and stable size.


It seems from petrographic examination that the rhyolitic tuff may have potential for use as a source of 'granite' dimension stone ('granite' being a very broad, ill-defined term used by stonemasons for almost any crystalline rock which is not 'marble'), subject to appropriate consideration of the impact of jointing or veining from visual inspection at the quarry and the presence of illitic clay.

### **Free Silica Content**

The free silica content is about 29%, with 10% as common quartz and 19% as finely microcrystalline quartz, all locked within crystalline rock.

*Ql170202* 

Page 5 of 6



**Plate 2**. Low magnification, plane polarised, transmitted light image of part of acid tuff showing phenoclasts of white quartz, finely clouded feldspar, hematized and leucoxenized biotite and opaque oxide in a finely devitrified matrix with obvious ghosts of former welded vitric shards

FEBRUARY, 2017

Ql170202

Page 6 of 6



# **Beyond Compliance**

VGT Environmental Compliance Solutions Pty Ltd ABN 26 621 943 888

Unit 4, 30 Glenwood Drive Thornton NSW 2322 PO Box 2335, Greenhills NSW 2323

Ph: (02) 4028 6412 E: mail@vgt.com.au

www.vgt.com.au