

Wastewater Management Report – Hillview Quarry

ADW Johnson Pty Ltd 67 Maytoms Lane, Booral NSW 2425 26/03/2024

DOCUMENT CONTROL

	Document Reference	R.0715.001.01_HillviewQuar ry_Booral_WMR	
	Report Type	Non-domestic Report	
Decentralised Water Australia Pty Ltd	Title	Wastewater Management Report – Hillview Quarry	
Unit 2, 12 Channel Road Mayfield West NSW 2304	Project Manager	Scott Jordan	
02 4960 2627	Author(s)	Scott Jordan	
enquiries@decentralisedwater.com.au		Andrew Weekes	
	Client	ADW Johnson Pty Ltd	
	Client Contact	Adam Crampton	(
	Client Reference		

REVISION/CHECKING

REVISION HISTORY	DATE	CHEC	KED BY	ISSU	ied by
R.0715.001.00 Draft for client review	6/07/23	AW	Aw-	SJ	Jun-
R.0715.001.01 Final Report	26/03/24	AW	Aw-	SJ	fr-

Acknowledgement

DWA acknowledges the Traditional Custodians throughout Australia and their continuing connection to land, water, culture and community, and pays respect to their Elders past, present and future.

Limitations Statement

This report and the associated services performed by Decentralised Water Australia (DWA) relate solely to the scope, budget, time, and access constraints as set out in the engagement agreement and quotation between DWA and the Client. DWA accept no liability for any use or reliance on this Report for any purpose not documented in this agreement and quotation by the Client. It has been prepared for the exclusive use of the Client and DWA accepts no liability for any use of or reliance upon this report by any third party.

The outcomes and recommendations contained in this report may have relied upon a range of information and data sources including information and discussions with the client, field investigations (limited to those described in this report), publicly available information and other sources. DWA have not verified the accuracy of third-party data and any inaccuracies or inadequacies may influence the accuracy of our findings. Similarly, both the inherent variability of environmental and ground conditions and the passage of time can lead to changes in ground conditions and other factors which may affect the accuracy of our findings. The Client should seek advice from DWA on the accuracy of findings after more than six months has passed or where changes in relevant conditions are known to have occurred. Data and information collected during field investigations should not be taken as accurate and complete for all depths and locations across the site.

The report and services have been completed in accordance with relevant industry standards, guidelines, and government legislation as of the date of publication unless stated otherwise. Where an engineering design is included, this design has been based on site and construction plans as provided by the Client and/or their representative and documented in the report. DWA accepts no liability for the impact of any changes to site conditions and / or building layout and extents on our design where DWA were not notified of the changes prior to completing our services. Additional costs may be incurred where work has already been completed.

Copyright © Decentralised Water Australia

This report and accompanying plans were prepared for the exclusive use of the Client. No part of this report may be reproduced, stored, or transmitted in any form without the prior consent of Decentralised Water Australia unless permitted under the Copyright Act or as outlined in the contract or terms of engagement. Plans accompanying this document may not be reproduced, stored, or transmitted in any form unless this copyright note is included.

Table of Content

1	I	Introd	luction	1
	1.1	Site	Information	1
2	I	Perfor	rmance Objectives	. 4
	2.1	L	_egislation	. 4
3	0	Site ar	nd Soil Evaluation	7
	3.1	S	Site Assessment	8
	3.2	2 5	Soil Assessment	14
	3.3	3 E	Effluent Management Area Suitability Evaluation	19
	3.4	γ́+ S	Site, Soil and EMA Availability Evaluation Outcomes	24
4	I	Desig	n Basis	25
	4.1	V	Wastewater Servicing Options Evaluation	25
	4.2	2 V	Wastewater Generation	28
	4.3	3 L	and Application Design Basis	30
	4.4	4 T	Freatment System Design Outcomes	33
5	(Opera	ation and Maintenance	36
	5.1	C	Dperation – Treatment System	36
	5.2	<u>2</u> N	Maintenance – Treatment System	36
	5.3	3 N	Maintenance – Land Application Area	37
6	I	Refere	ences	38
A	ppe	endix ⁻	1 Site and Soil Assessment Information	39
А	ppe	endix	2 Design Calculations	40

Table of Figures

Figure 1 Locality Plan	3
Figure 2 Site Assessment Plan (Overview)	12
Figure 3 Site Assessment Plan (Detailed)	13
Figure 4 On-site Wastewater Management Plan	34

Table of Contents

Table 1 Summary of Site Information	2
Table 2 Desktop Site Assessment	8
Table 3 Summary of soil profile characteristics	14
Table 4 Summary of Soil Results and Interpretation	17
Table 5 LAA Setback Distance Assessment	20
Table 6 Site Features/Contributing Factors Evaluation	
Table 7 Outcomes of Initial Screening Process	
Table 8 Summary of Development Details	
Table 9 Design Wastewater Flow	29
Table 10 Wastewater and Effluent Quality Criteria	29
Table 11 Land Application Design Sizing Parameters	
Table 12 Design Basis for Proposed System	
Table 13 Adopted Treatment System Design	

1 Introduction

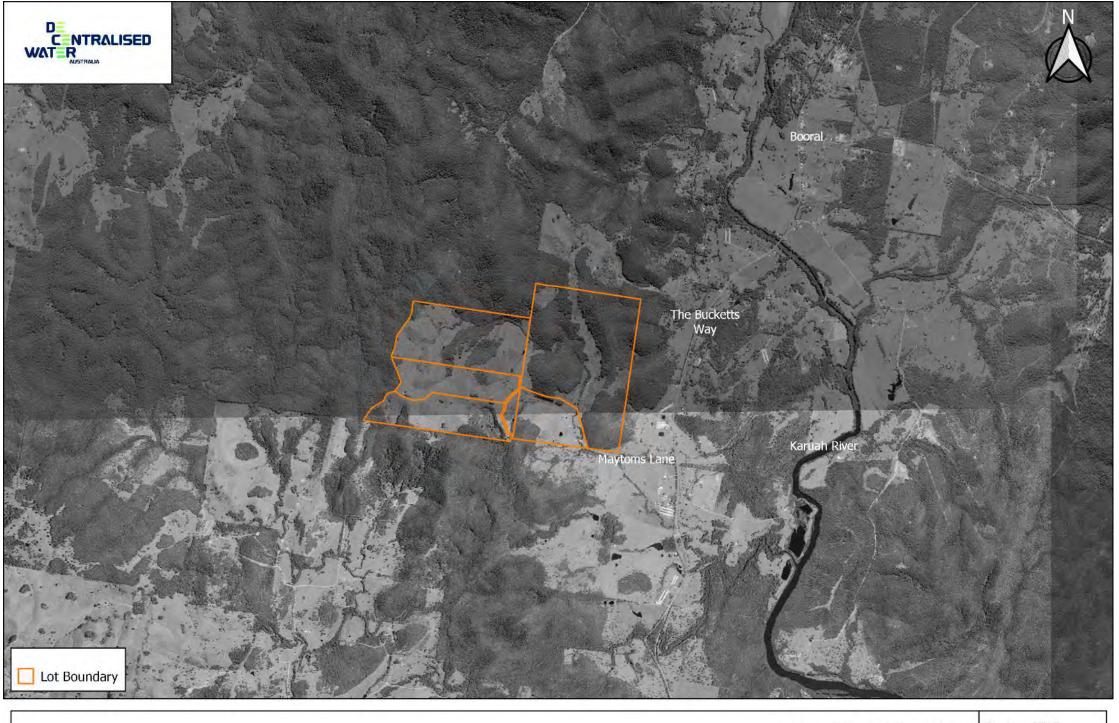
This Wastewater Management Report (WMR) has been prepared by Decentralised Water Australia (DWA) for ADW Johnson Pty Ltd. The report summarises the outcomes from a land capability assessment and proposed design for an on-site wastewater management system to support a proposed hard rock quarry development to be located at 67 Maytoms Lane, Booral NSW 2425.

MidCoast Council (MCC) will require submission of a Wastewater Management Report (WMR) to confirm the suitability of the site for management of wastewater from the proposed development as part of the Development Application (DA) process. The report will demonstrate that adequate arrangements for the management and disposal of sewage are achievable in accordance with the provisions of Councils Local Environmental Plan. The WMR will also be suitable for submission to Council in support of an application to install a wastewater treatment system in accordance with the *Local Government Act*.

This report outlines the outcomes of the project, which involved site and soil assessment, concept design and comprehensive environmental assessment for an on-site wastewater management system to accept, treat and land apply wastewater from the proposed development.

Notwithstanding several identified limitations, the site is generally well suited to on-site wastewater management. Based on the outcomes of the site and soil assessment, it was determined that an on-site sewage management solution is feasible for the site.

1.1 Site Information


The site, which comprises several separate lots is identified as 67 Maytoms Lane, Booral NSW 2425. The site, which is approx. ~400ha in size, is irregular in shape with connectivity to Maytoms Lane available from several of the lots. Slope across the various lots is extremely variable as is landform. The office, amenities and associated structures for the proposed development are to be located on the eastern side of lot 63. Vegetation across the lot comprises grassed open paddocks and dense timbered areas. Several non-perennial watercourses traverse the lot including Double Creek due to the topography and landform.

The location of the site is shown in Figure 1 with details of the site are summarised in Table 1.

Site Information		
	67 Maytoms Lane, Booral NSW 2425	
	Lot 1 DP 159902	
Property Details	Lot 60 DP 1094397	
	Lots 62 & 63 DP 95029	
	Lot 64 DP 95030	
Owner / Applicant	ADW Johnson Pty Ltd	
Allotment Size	~400ha	
Land Zoning	RU2	
Development Type	Non-domestic	
Description of proposed development	Amenities to service a hard rock quarry development.	
Water Supply	Tank Supply	
Power Supply	Grid connected	
Sewer Availability	Not available	
Local Government Area	MidCoast Council (MCC)	

Table 1 Summary of Site Information

Figure 1	Locality Plan	
----------	---------------	--

0	500	1,000	1,500 m

Project:0715 Drawn: 24/4/2023 Revision: 00

2 Performance Objectives

2.1 Legislation

2.1.1 Development Applications

Development applications made under the *Environmental Planning and Assessment Act* and the Great Lakes Environmental Plan 2014 require that adequate arrangements must be made for the provision of essential services that are appropriate for the proposed development. Essential services are generally addressed in the LEP and includes the provision of adequate arrangements for the disposal and management of sewage. Given the development site is in an area not provided with reticulated sewer, alternative suitable arrangement must be developed by the applicant.

2.1.2 Future On-site Sewage Management System Approvals

The NSW local Government Act prescribes matters that apply to the installation and operation of Wastewater Management Systems. Under Chapter 7, Part 1 of the Act the installation and operation of systems are activities that require the approval of the Local Council. That is, a person may only carry out an activity specified in the Table of Approvals under Section 68 of the Act with the prior approval of the council, except in so far as this Act, the regulations or a local policy adopted under Part 3 allows the activity to be carried out without that approval.

The Local Government (General) Regulation prescribes further requirements and guidance. A Council must not approve an application for an approval relating to sewerage work unless it is satisfied that the activity as proposed to be carried out will comply with applicable standards and any applicable requirement of the Regulation. This applies to the installation of a new, or upgrade of an existing Wastewater Management System as well as the ongoing operation of these systems.

The installation of a wastewater management system requires from Council an approval to install under Section 68(C5) of the Act. In determining an application for approval to install, construct or alter a Wastewater System the Council must consider environmental and health protection performance matters that are prescribed in the Regulation. These include:

- Preventing the spread of disease by micro-organisms,
- Preventing the spread of foul odours, contamination of water and degradation of soil and vegetation,
- Discouraging insects and vermin,

- Ensuring that persons do not come into contact with untreated sewage or effluent (whether treated or not) in their ordinary activities on the premises concerned,
- The re-use of resources (including nutrients, organic matter and water),
- The minimisation of any adverse impacts on the amenity of the land on which it is installed or constructed and other land in the vicinity of that land.

The council must also consider any matter specified in guidelines or directions issued by the Director-General in relation to the matters referred to in the above performance objectives.

Additionally, the council must not grant an application for an approval to install, construct or alter a waste treatment device or sewage management facility unless it is satisfied that the activity as proposed to be carried out will comply with any applicable standards established by this Regulation or by or under the Act.

Note: While there are no standards established by the Regulation or Act it is accepted that AS1547: 2012 On-site domestic wastewater management and Environment and Health Protection Guidelines (DLG: 1998) are 2 appropriate reference documents commonly used in the assessment and design of On-site Sewage Management Systems.

The continued operation of Wastewater Management Systems is also addressed in the Regulation. Systems must be operated in a manner that achieves the same installation performance standards mentioned above. Additionally, systems must be operated in accordance with relevant operating specifications and procedures for the system and allow the removal of any treated sewage in a safe and sanitary manner. Further conditions of approval require that the system is maintained in a sanitary condition and that he operation of the system must not discharge into any watercourse or onto any land other than the effluent application area.

The proposed development must also consider the following legislation relevant to wastewater management.

- Environmental Planning and Assessment Act (1979).
- Protection of the Environment Operations Act (1997).

2.1.3 Policies, Standards and Guidelines

The key policies used in this assessment may include:

- NSW Groundwater Policy (specifically the Groundwater Quality Policy),
- Local Planning for Healthy Waterways using NSW Water Quality Objectives,
- NSW Oyster Industry Sustainable Aquaculture Strategy (2016), and
- Using the ANZECC Guidelines and Water Quality Objectives in NSW.

At a broad level, the ANZECC Water Quality Guidelines for Fresh and Marine Waters (2000) and NSW Oyster Industry Sustainable Aquaculture Strategy have been used (in accordance with NSW policy) to determine water quality objectives for the system (where applicable).

The following guidelines and technical references are used by local and state government in assessing applications for systems of this scale.

- AS/NZS1547:2012 On-site domestic wastewater management.
- Environment and Health Protection Guidelines: On-site Sewage Management (NSW DLG, 2023 Draft).

3 Site and Soil Evaluation

A site and soil evaluation of the property was undertaken based on AS/NZS 1547:2012, Section 5.2 and several Appendices including B and D. The broad goal of the site and soil evaluation was to collect sufficient information about the site, soil and local environmental constraints. This information enables good decision making on the suitability for land based on-site wastewater systems for the development and if appropriate, inform the design, location and operation of the system.

The assessment was performed in two stages.

Stage 1 was a desktop study with the objective to collect, in advance, regulatory, planning, and environmental information for the site, development and general area. DWA also used its Geographic Information System (GIS) to identify spatial and geographic data relevant to the site and broader area to help inform decisions during site assessment and in the system selection and design process.

Stage 2 involved a visit to the site to undertake a site and soil assessment having regard to an overall evaluation of not only the individual lot but the broader surrounds. Of importance during this stage is an evaluation of the land within and surrounding the study area with an emphasis on the interaction between surface shape, surface gradient, and water regime. The site visit also allows for the identification, inspection and analysis of sensitive receptors that may influence suitability and subsequent design tasks. A soil survey was completed across the study site with soil samples collected for characterisation and laboratory testing. The complexity of the soil survey is dependent on the size of the lot and the variability in land and soils. While AS1547 (D3.1.1) suggests that an evaluation of 3 representative soil observation boreholes within the lot should be inspected, the exact number will be dependent on several factors including the size of the lot and the landform and soils across the lot.

Soil test pits were excavated to a suitable depth using a shovel and auger with soil samples collected and photographed for examination, laboratory analysis and reporting.

The overall aims of the assessment were to:

- Provide sufficient information for deciding whether the lot is suitable to sustain an on-site system,
- Provide detailed site-specific information identifying the site-and-soil characteristics to be considered when selecting and designing the on-site system,
- Identify, analyse, and evaluate any risks posed by site-and-soil characteristics which might compromise the long-term effectiveness of the on-site system,

- Identify, analyse, and evaluate any risks of contamination of groundwater or surface water and of associated health risks, and
- Develop and refine measures required to reduce and monitor identified risks that can be considered in the design phase of the study.

The field investigation was undertaken on **11 May 2023.**

The outcomes of the site assessment are presented in Section 3.1, with the soil assessment information in Section 3.2 and overall outcomes presented in Section 3.3. A plan showing the site and surrounding area is presented in Figure 2 with photos also provided for context.

3.1 Site Assessment

Site assessment observations for the lot were determined based on AS1547, Section 5.2 (Site and Soil Evaluation). The evaluation utilised methodologies and procedures from Appendices B, C and D of AS1547 as well as the NSW Environment and Health Protection Guidelines, Section 4.3.3 and Table 4 (Site Assessment: Rating for On-site Systems).

Results and corresponding outcomes from the site assessment are presented in Table 2

Site Feature	Observation	Classification	Outcome
Flood potential	Site located above Council defined flood levels	Minor limitation	Minimal impact on design
Exposure	High sun and wind	Minor limitation	Minimal impact on design
Slope % (pre-development conditions)	~18%	Moderate limitation	Consider the degree of slope in the design and location of the LAA. Ensure that the adopted LAA design is appropriate for the observed slope in accordance with AS1547, Table K1.
Slope % (post-development conditions)	<5%	Minor limitation	Minimal impact on design

Table 2 Desktop Site Assessment

Site Feature	Observation	Classification	Outcome
Landform (pre-development conditions)	Linear divergent. Good water shedding surface, spreads run-off but no acceleration.	Minor limitation	Minimal impact on design
Landform (post-development conditions)	Linear planar. Natural drainage but less effective with distance from crest. No spreading or acceleration.	Minor limitation	Minimal impact on design
Run-on and seepage	None, low	Minor limitation	Minimal impact on design
Erosion potential	No signs of erosion observed	Minor limitation	Minimal impact on design
Site drainage	No visible signs of surface dampness	Minor limitation	Minimal impact on design
Fill	No fill observed	Minor limitation	Minimal impact on design
Rocks and rock Outcrops	Surface rock covering <10% LAA observed	Moderate limitation	Consider moderate to major levels of surface rock in the design and location of the LAA. Suitable control measures may be required to reduce the impacts of surface rock such as civil works, increased LAA footprint or surface LAA designs.
Vegetation	Mixed grass and trees	Minor limitation	Minimal impact on design
Watercourses and sensitive receptors	The development site is characterised by several surface dams both naturally existing and proposed processing dams. The closest naturally occurring waterbody to the proposed LAA is ~100m.	Minor limitation	Minimal impact on design

Site Feature	Observation	Classification	Outcome
	Several non-perennial		
	watercourses are located within		
	the development site. The closest		
	existing non-perennial		
	watercourse to the proposed LAA		
	is located between the LAA and		
	office building. This will be		
	removed through approved civil		
	works.		
			Consider level of
	250mm of moderately structured		treatment and LAA
	loam with very few coarse		design to manage
	fragments over a further 80mm of		poorer soil water
Soil water regime	moderately structured loam with	Major limitation	regimes. Adopt
	few coarse fragments. Pit		conservative design
	terminated at 330mm on weather		loading rate (DLR) to
	stone.		ensure adequate
			hydraulic performance.
		National Anna tha attack	Minimal impact on
Acid Sulfate Soils ¹	N/A	Minor limitation	design
Biodiversity Values			Minimal impact on
Map ²	No biodiversity values mapped	Minor limitation	design
Drinking Water			Minimal impact on
Catchment ¹	No	Minor limitation	design
			Nining al incurs at an
Aquaculture Areas ³	No aquaculture mapped	Minor limitation	Minimal impact on design

¹ NSW Government eSpatial Planning Viewer

² NSW Government Biodiversity Values Map and Threshold Tool

³ NSW Fisheries Spatial Data Portal

3.1.1 Site Photos

Photo 1: Entry to the property

Photo 2: Existing dwelling & rural shed

Photo 3: Test pit location

Photo 4: Surface rock out crop



Figure 2 Site Assessment Plan (Overview)

0 200 400 600 m Proje Draw

Project: 0715 Drawn: 7/11/2023 Revision: 00

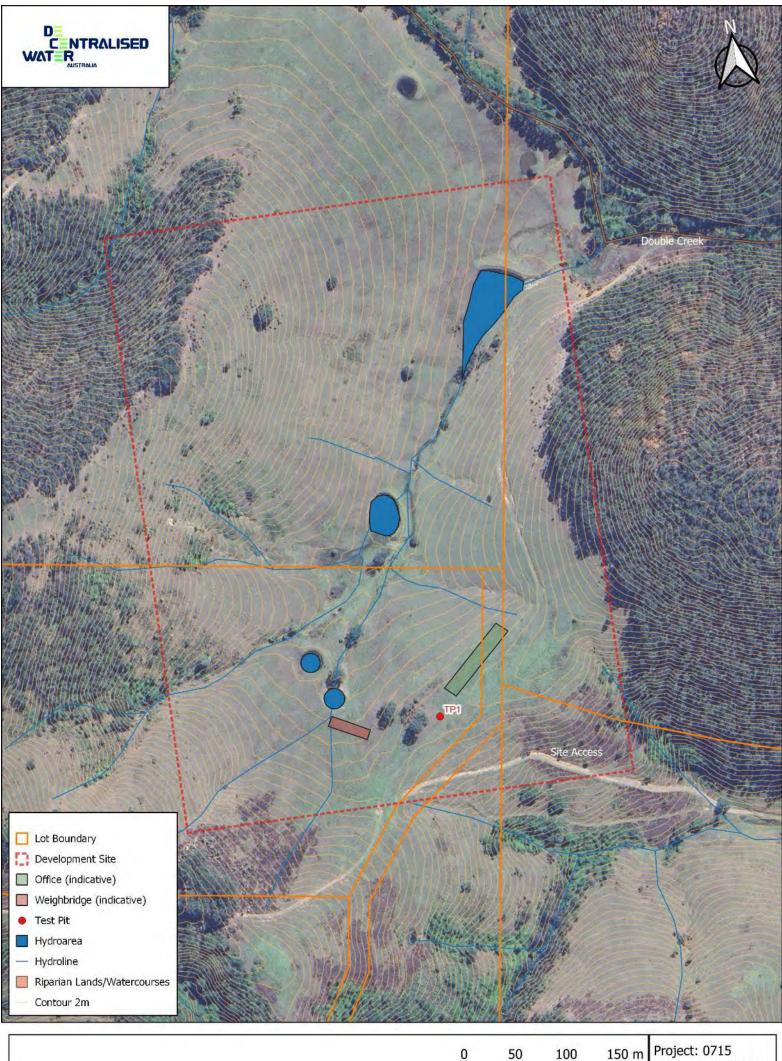
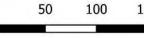



Figure 3 Site Assessment Plan (Detailed)

Project: 0715 Drawn: 7/11/2023 Revision: 00

3.2 Soil Assessment

The site is located on the Ten Mile Road (tm) soil landscape as mapped on the Soil Landscapes of the Dungog 1:100 000 Sheet. This Erosional soil landscape typically consists of undulating low hills on Carboniferous sediments and acid volcanics in the Clarencetown Hills regions. Relief is between 40 – 80 m; elevation 70 – 180 m; slopes 5 – 10%. Uncleared open forest is typical for the area. Soils comprise moderately deep to deep, well to imperfectly drained brown Soloths (Brown Kurosols), yellow Soloths (Yellow Kurosols) and shallow, well-drained Bleached Loams/Lithosols (Bleached-Leptic Tenosols). Qualities and Limitations include high water erosion hazard; high run-on; seasonal waterlogging. Localised shallow soils are common with soils strongly to extremely acid of low fertility.

A composite soil sample of the same test pit was submitted to an appropriately qualified and experienced laboratory for chemical analysis.

Table 3 Summary of soil profile characteristics

Test Pit	Depth (mm)	Texture ⁴	Structure	Colour	Coarse Fragments
	0 – 250	Loam (3)	Moderate	Brown	<2% Very few
TPI	250 - 330	Loam (3)	Moderate	Brown	2-10% Few
	Pit terminated or	n weathered stone.			

A summary of the sub-surface profile is presented in the table below.

3.2.1 Soil Laboratory Results and Interpretation

This section presents the outcomes from the laboratory analysis of both the discrete and composite samples. The information below provides information about each soil test with a summary of the soil results and interpretation presented in Table 4. Interpretation is based on information contained in Hazelton and Murphy (2016). Recommendation of suitable soil remediation or other control measures, if required, are presented at the bottom of Table 4.

⁴ Soil category in brackets

3.2.1.1 pH

The pH value of the soil can influence the soil conditions, vegetation growth and the mobility/availability of nutrients and metals. The pH range most suitable for plant growth is between 5.5 – 9.0 with remediation a consideration if the results fall outside the range. Soi pH can be adjusted with the addition of lime at a rate calculated for the soil result.

3.2.1.2 Salinity and Sodicity

Soil salinity is the accumulation of water-soluble salts in the soil. The predominant cations and anions that contribute to salinity are sodium, calcium, and magnesium in the form of chlorides, sulphates, or carbonates. Elevated salinity can impact plant growth and contribute to erosion and a change in soil texture. Salinity is directly proportional to the measured electrical conductivity of a soil - water extract with the standard units being decisiemens per metre (dS/m). The EC result is converted to ECe to reflect the estimated water-holding capacity of the soil with the conversion factor a function of the soil texture.

Hazelton and Murphy (2016) states that soils with a salinity (ECe) <2 dS/m are considered non-saline and will have negligible effects on plant growth. Soils with a salinity above 4dS/m may start to impact plants.

Sodicity is defined as the level of exchangeable sodium cations in the soil with implications of dispersion on wetting and shrink-swell properties. According to Hazelton and Murphy (2016), soils that are sodic can exhibit the following properties that may be detrimental to the application of wastewater:

- Surface crusting,
- Low infiltration and hydraulic conductivity,
- Hard and dense sub-soils,
- Susceptibility to gully and tunnel erosion.

Sodicity is determined using Exchangeable Sodium Percentage which is calculated as a function of the soluble sodium and cation exchange results. ESP of > 10% (Environment and Health Protection Guideline) is considered a major limitation which should be addressed.

A further indication of sodicity can be obtained from the results of the Emerson Aggregate Test (EAT). Generally, soils with an EAT class of 3(2), 3(1), 7 and 8 are unlikely to be sodic. EAT class of 3(3), and 2(1) may be sodic with class 2(2), 2(3) and 1 most likely to be sodic.

3.2.1.3 Cation Exchange Capacity

The cation exchange capacity (CEC) is the ability of soil particles to retain cations at a given pH and is useful in understanding the ability of a soil to retain pollutants. CEC provides pH buffering and can influence availability of nutrients, calcium levels and soil structural changes. Exchangeable cations are a measure of the most abundant cation sodium, potassium, calcium, magnesium, and aluminium. CEC tends to vary according to soil type with clay soils more likely to exhibit higher results due to the greater ability to bind cations.

3.2.1.4 Phosphorus sorption capacity

The phosphorus sorption capacity is an indicator of the capacity of a soil to absorb phosphorus as effluent moves through the soil profile. According to the EHP Guidelines (DLG 1998), the expected rate of phosphorus sorption by the soil is expected to be in the range 25 – 50% of the P-sorption capacity result beyond which leaching may occur. An optimum soil P-sorption capacity is in the order of 50-years based on the soil phosphorus concentration.

		D	esirable Rang	e	
Test parameter ⁵	Result	Lower limitation		Higher limitation	Interpretation
рН	6.4	6.0 – 9.0	5.0 – 6.0	<5.0	The pH is at the lower end of limitation range indicating a satisfactory result. Adjustment of the soil pH within the LAA is not required.
Electrical conductivity (ECe dS/m)	0.19	<2	2 - 8	>8	The electrical conductivity of the soil is at the lower end of limitation range. Remediation of soil within the LAA is not required.
Exchangeable sodium percentage (ESP%)	2	<6	6 – 15	>15	The ESP result is within the desirable range. Remediation of soil within the LAA is not required.
Emerson aggregate test (EAT)	Class 3(3)	3(1), 3(2), 4, 7, 8	3(3), 2(1), 2(2)	1, 2(3)	The EAT result is indicative of a low risk. Remediation of soil within the LAA is not required.
Cation exchange capacity (cmol/kg)	6.3	>25	6.0 - 25	<6.0	The CEC result is within the desirable range and a low risk. Remediation of soil is not required.
Phosphorus sorption capacity	360	>250	125 - 250	<125	The P-sorption result is within the desirable range and a low risk.

Table 4 Summary of Soil Results and Interpretation

⁵ Composite sample result for all parameters except EAT. EAT result represents most limiting from discrete sample results.

		Desirab	le Range	
Test parameter ⁵	Result	Lower limitation	► Higher limitation	Interpretation
(mg/kg @70%)				
Remediation and Measures	d Control	Nil		Not required

3.3 Effluent Management Area Suitability Evaluation

This section evaluates the property to establish:

- The availability of sufficient useable land suitable for use as an effluent management area, and
- The determination of available setback distances for various site features documented in Appendix R of AS1547.

A setback distance analysis was performed to determine appropriate setback distances for various site features that are referenced in AS1547 – 2012 Appendix R1/R2. As stated in the standard, local conditions and sensitive receiving environments typically require different setback distances. The table is used in conjunction with the outcomes from the site and soil evaluation to provide guidance on what would be an appropriate setback distance for the adopted land application method and design effluent quality against each relevant site feature.

Appendix R of the standard applies a risk-based approach to the determination of setback distances for the various site features. Each setback distance is a range rather than a single prescribed value with the physical horizontal or vertical setback distance determined as a function of a constraint scale for each site or system feature. Selection of a higher or lower distance for each relevant feature is based on the assessor's knowledge and experience using guidance notes included in the Appendix.

Table 5 presents the adopted or available setback distance for each site feature with Table 6 providing further information on the site features and other contributing factors that may influence selection and design of the treatment system and LAA.

AS1547 Range **Contributing Factors** Distance available/ **Site Feature** adopted Table R1 Table R2 Horizontal setback Property boundary >50m 1.5 – 50m Microbial (A) Slope (D) Buildings/houses 2.0 - 6m >6m LAA Method (J) Microbial (A) Surface water (B) Slope (D) Surface water >100m 15 – 100m Location of LAA (E) Drainage (F) Flood potential (G) LAA Method (J) Microbial (A) Groundwater (C) Bore/well⁶ >50m 15 – 50m Geology and soils (H) LAA Method (J) Recreational areas such as N/A to this 3 – 15m swimming pools and play development Microbial (A) equipment Location of LAA (E) LAA Method (J) N/A to this In-ground water tank 4 – 15m development Slope (D) 3.0m or 45° angle Retaining walls, embankments, and N/A to this Flood potential (G) escarpments from toe of wall development Geology and soils (H) Vertical Setback Microbial (A) Groundwater (C) Drainage (F) Groundwater >1.5m 0.6 - <u>></u>1.5m Flood potential (G) Geology and soils (H) Landform (I) LAA Method (J)

Table 5 LAA Setback Distance Assessment

⁶ National Groundwater Information System, Bureau of Meteorology (Australian Government)

Site Feature	Distance available/	AS1547 Range	Contributing Factors
	adopted	Table R1	Table R2
Hardpan or bedrock	>1.5m7	0.5 - <u>></u> 1.5m	Microbial (A) Groundwater (C) LAA Method (J)

⁷ Noting the results from the soil test pit, the design and construction of the land application area will ensure a minimum depth of soil in accordance with AS1547 Appendix K.

Table 6 Site Features/Contributing Factors Evaluation

Site or system feature	4	Constraint Scale		Notes/Comments
leature	Lower constraint		Higher constraint	
Microbial (A)	⊠ Lower microbial levels (e.g., secondary effluent + disinfection) □ Off-site management	□ Some microbial reduction (e.g., secondary effluent)	□ Higher microbial levels (e.g., primary effluent)	Secondary treatment with disinfection proposed
Surface water (B)	 Cat 1 – 3 soils >100m to downslope surface water Lower rainfall area No resource/environmental values in proximity 	□ 50 - 100m to downslope surface water	 Cat 4 – 6 soils <50m to downslope surface water Higher rainfall area High resource/environmental value 	
Groundwater (C)	□ Cat 5 – 6 soils ⊠ Lower environmental value	⊠ Cat 3 – 4 soils	 Cat 1 – 2 soils Gravel aquifer High environmental value 	
Slope (D)	□ 0 - 6% surface ⊠ 0 - 10% subsurface	□ 6 - 10% surface □ 10 - 30% subsurface	□ >10% surface □ >30% subsurface	
Location of LAA (E)	☑ Most site and environmental features located upgradient	□ Some site and environmental features located downgradient	Most site and environmental features located downgradient	

Site or system		Constraint Scale		
feature	Lower constraint		Higher constraint	Notes/Comments
Drainage (F)	□ Cat 1 – 2 soils ⊠ Gently sloping	⊠ Cat 3 - 5 soils	□ Cat 6 soils □ Visible seepage, moisture tolerant plants, or low-lying areas	
Flood potential (G)	⊠ >1:20 AEP LAA ⊠ >1:100 AEP System	_	□ <1:20 AEP LAA □ <1:100 AEP System	
Geology and soils (H)	⊠ Cat 3 – 4 soils □ Suitable geology	□ Cat 2 & 5 soils	□ Cat 1 & 6 soils ⊠ Less suitable geology	Noting the results from the soil test pit, the design and construction of the land application area will ensure a minimum depth of soil in accordance with AS1547 Appendix K.
Landform (I)	⊠ Hill crests, convex side slopes and plains	-	Drainage plains and incise channels	
Application method (J)	⊠ Sub-surface □ Sub-soil □ Mound	-	□ Surface	

3.4 Site, Soil and EMA Availability Evaluation Outcomes

The outcomes from the site, soil and land suitability evaluation assessment have identified the following major or moderate pre-development limitations:

3.4.1 Major Limitations

• Soil depth and soil water regime.

3.4.2 Moderate Limitations

- Rock outcrops, and
- Slope and landform.

A treatment system, land application approach and civil works has been identified in Section 4 that is considered the most suitable wastewater management option taking into consideration the above site constraints.

DWA has also identified the following management controls to address the constraints identified and ensure the preferred system is designed correctly for the site:

- Completion of hydraulic and nutrient balance calculations to size the land application area using assumptions and criteria from published standards, guidelines, and references.
- Demonstration of appropriate horizontal and vertical setbacks to site features, development features and sensitive receptors as outlined in AS1547 (2012 -Appendix R).
- Selection of a treatment system, land application area design and effluent quality standard that is suitable for the observed site, soil, environmental and development features, and subsequent related limitations.
- Completion of civil works across the land application area to improve soil depth and mitigate limitations resulting from the proximal non-perennial watercourse, slope, landform, and soil water regime.

4 Design Basis

The outcomes from the detailed site and soil assessment have determined that the site is generally suitable for a wide range of on-site wastewater management options. These options and a final design basis are discussed in further detail in the following sections.

4.1 Wastewater Servicing Options Evaluation

Several broad options for wastewater servicing solutions were initially considered by DWA that encapsulated the full range of servicing strategies available for this site. These were shortlisted to a single preferred servicing option following an initial screening process as summarised in Table 7 below.

No.	Potential se	rvicing option	Evaluation	
NO.	Treatment	LAA	Evaluation	Progress?
1	Sewer	N/A	- Sewer is not available to the property.	No
2	Primary	Conventional bed	 This is a commonly utilised wastewater management option where the outcomes from the site and soil evaluation have identified that primary treated effluent to a sub-soil land application method can achieve a satisfactory level of environmental and human health protection. This system is suitable for sites that are not constrained by sensitive receiving environments, have sufficient depth of soil of a suitable category and ground slope is <15%. Conventional beds are suitable for small sites where the area of useable land is limited. Based on the outcomes of the site and soil evaluation, this option has not been carried forward due to the depth of in-situ soils. 	Νο
3	Secondary	Sub-surface irrigation	- This is a commonly utilised wastewater management option where the outcomes from the site and soil evaluation have identified that secondary treated effluent to a surface land application method can achieve a satisfactory level of environmental and human health protection. This system is suitable for sites that are not constrained by sensitive receiving environments, have sufficient depth of soil of a	Yes

Table 7 Outcomes of Initial Screening Process

N	Potential se	rvicing option			
No.	Treatment	LAA	EV	/aluation	Progress?
			 suitable category and a relatively gentle ground slope (<10%). The use of spray irrigation provides a cost-effective land application method in comparison to subsurface methods. Based on the outcomes of the site and soil evaluation, this option has been carried forward due to the improved effluent quality and protections afforded by secondary treated effluent and subsurface irrigation. 		
			Assessment Feature	Detail (Po	Result
			Slope Gradient	Sufficient land available with slope gradient <30%	Yes
			Soil depth	0.6m below dripline desirable	Yes
			Soil category	Suitable soil category available on all lots. LAA size reflective of adopted DLR.	Yes
	sment of sub-surf against AS1547 (ace irrigation 2012) Appendix K	Depth to seasonal water table	Preferably > 1.2m	Yes
			Duration of continuous seasonal soil saturation	Not considered a limitation within the upper soil profile.	Yes
			Dispersive (sodic) soil	Soil landscape is typically non- dispersive	Yes
			Climatic factors	Not significant – considered in LAA sizing	Yes
			Lot size	All lots >1ha	Yes

No.	Potential se	rvicing option	Evaluation	Progress?
	Treatment	LAA		, second second
4	Secondary	Surface irrigation	- This is a commonly utilised wastewater management option that provides a high level of performance. Secondary treatment systems provide significantly improved effluent quality characteristics over primary systems. The subsurface land application method delivers enhanced levels of environmental and human health protection resulting from superior assimilation of the applied effluent and nutrients through soil and biological processes.	Νο
			 Based on the outcomes of the site and soil evaluation, this option has not been carried forward. 	
5	Effluent pump- out system	N/A	 It is acknowledged that Effluent Pump Out systems are not a very sustainable method for managing wastewater. They are however necessary where an on-site system utilising land application is unachievable and considered too risky due to identified site or soil limitations. EPO's can typically be cheaper to install however they can be significantly more expensive to operate over the long term compared with other system types. These system types do not meet the principles of ecological sustainable development. Council will generally only approve them where no other system type can achieve the required environmental and human health objectives of the Regulation and guidelines. Notwithstanding the hesitancy of Councils to approved EPO's, there does not appear to be any legislative provision restricting their approval and are sometimes necessary as a system of last resort. Based on the outcomes of the site and soil evaluation, this option can be suitable for non-domestic development however has not been carried forward in this situation due to the operational life of the development. 	Νο

4.2 Wastewater Generation

It is accepted practice that design wastewater quantity is typically derived from site and development features such as water supply source, activity type and occupancy. The design basis for the proposed wastewater management treatment system has therefore been developed based on the proposed development, nature of occupancy and the available water source discussed further in 4.2.1. Information summarising the wastewater generation is presented in Section 4.2.2.

Evaluation of the wastewater quality (influent) and adoption of a suitable effluent quality are important considerations in the selection and design process. Effluent quality is typically evaluated and determined during the LAA selection and design processes being influenced by site, soil, environmental and development features. The process can be iterative where several system type/design and effluent quality scenarios need to be tested to achieve a satisfactory outcome. The adopted wastewater and effluent quality criteria are discussed further in Section 4.2.3.

4.2.1 Development Details

Details of the development summarised in Table 8 are based on information provided to DWA by the client or their agent.

Development Type	Persons	Water Supply	Nature of Occupancy ⁸
Non-domestic	20	Roof capture and tank storage	Average occupancy
Description/Comments:	Information from the client suggests that there will be a maximum of 30 staff in total with the maximum number of staff on the site at any one time limited to 20.		

Table 8 Summary of Development Details

⁸ The level of occupancy can influence system selection and design.

4.2.2 Wastewater Quantity

The wastewater design flow allowance has been selected in accordance with NSW Health, Septic Tank and Collection Well Accreditation Guideline 2001. The equivalent population (EP) has been estimated for the development based on advice from the client. A summary of the design wastewater flows used in design calculations are outlined in the following table.

Equivalent Persons	Adopted Wastewater Flow	Peak Design Wastewater Flow
20EP	36L/EP/Day	720L/day
Description/Comments:	A daily water usage of 36L/EP/Day has been adopted based on information for factories and offices from the NSW Health guideline (2001).	

Table 9 Design Wastewater Flow

4.2.3 Wastewater and Effluent Quality

Wastewater from factories, offices and non-domestic activities are typically derived from kitchens, bathrooms, and toilets. Wastewater typically comprises both blackwater and greywater depending on the source. AS1547 defines blackwater as 'Wastes discharged from the human body either direct to a dry-vault toilet or through a water closet (flush toilet) or urinal.' Greywater is defined as 'Wastes from a bath, shower, basin, laundry, and kitchen, but excluding toilet and urinal wastes. Greywater may still contain pathogens.'

Wastewater and effluent quality criteria adopted for this project are presented in Table 10.

Parameter	Wastewater Value ⁹	Adopted Effluent Value
Biochemical Oxygen Demand	200 – 300mg/L	<20mg/L (90th percentile value per AS1546.3: 2017)
Total Suspended Solids	200 – 300mg/L	<30mg/L (90th percentile value per AS1546.3: 2017)
Total Nitrogen	20 – 100mg/L	35mg/L (Typical for secondary treated effluent)
Total Phosphorus	10 – 25mg/L	12mg/L (Typical for secondary treated effluent)

Table 10 Wastewater and Effluent Quality Criteria

⁹ Environment and Health Protection Guidelines (DLG 1998)

Parameter	Wastewater Value ⁹	Adopted Effluent Value
Faecal Coliforms	10 ³ – 10 ⁶ cfu/100mL	<30cfu/100mL (Maximum value per AS1546.3: 2017)

4.3 Land Application Design Basis

A land application method has been selected based on the outcomes from the site and soil assessment, site location and environmental considerations. The size of the LAA has been determined based on hydraulic and nutrient calculations.

Key design parameters are summarised in Table 11 and Table 12 with the calculations found in Appendix 3.

Parameter	Value	Basis	
Design Loading/Irrigation Rate	3mm/day	AS1547: 2012 Table M1 Category 4 soil	
Soil Depth to Limiting Layer	0.7m	Based on TPI and proposed civil works to ensure adequate depth of soil below sub-surface drip line.	
Climate Data – Rainfall	SILO Data	SILO Data (Lat -32.50, Long 151.90 with elevation 118m)	
Climate Data - Evaporation	SILO Data		
Typical Effluent Quality Total Nitrogen	35mg/L	Secondary Effluent Quality	
Typical Effluent Quality Total Phosphorus	12 mg/L		
Adopted crop nitrogen uptake	250 kg/ha/year	25% of typical mixed grass (to account for reduced clippings removal and soil health).	
Adopted crop phosphorus uptake	30 kg/ha/year		
P-sorption capacity	360mg/kg	Assumed based on laboratory analysis	
Depth of soil for P-sorption	0.7m	Based on Test Pit and final LAA design using in-situ soils	

Table 11 Land Application Design Sizing Parameters

Parameter	Value	Value Basis	
Bulk density	1.4 g/cm²	ТурісаІ	
Soil P-sorption effectiveness	70%	Conservative value	
Nitrogen lost to soil processes	20%	Geary and Gardner (1996)	

Table 12 Design Basis for Proposed System

Calculation Method	LAA Size		Comment		
Hydraulic Calculation	5				
Hydraulic Equation	240m ²	AS1547 (2012) equation			
	774m²	Result reflects maximum land area required for zero storage (June). This result is driven by the high rainfall in comparison to the evaporation. Further explanation about the limitations of monthly water balances is provided in 4.3.2			
Monthly Water Balance	476m ²	Result for next largest LAA size based on zero storage (May)			
	155m²	Result for smallest (minimum) LAA size based on zero storage			
	10	Months of the year balanced based on adopted LAA size			
Nutrient Calculations		Nutrient Utilisation Area (NUA) Data			
Nutrient Calculations		NUA	LAA Width ¹⁰	Downslope Buffer	
Nitrogen Balance	294m ²	0m²	25	0m	
Phosphorus Balance	380m ²	0m²	25m	0m	
Adopted LAA Size	400m ²	A risk-based approach has been applied to the adoption of the LAA size using the outcomes from the hydraulic, monthly water balance and nutrient calculations.			

¹⁰ Indicative LAA width selected.

4.3.1 Land Application Area Design and Construction

The approved civil works proposed for Stage 1 of the development will result in site and topographical conditions that are different to the existing setting. It is understood that the Stage 1 civil works will involve removal and relocation of soil and rock material as part of the site access works and construction of the office building. The works provides an opportunity to design and construct the land application area (LAA) to consider and align with the resulting site conditions. The LAA, which will be located on the north side of the office building, will have a footprint of 400m² with dimensions 25m(L) x 16m (W). The final depth of the area will be a minimum of 700mm which will be achieved through re-use of the in-situ category 3 soils. Access to the LAA will be suitably restricted from persons and vehicles and to prevent damage.

4.3.2 Comment on Monthly Water Balance

While the monthly water balance method provides some indication of the hydraulic capacity of the system over a monthly basis, it can be a significant oversimplification of dynamic soil water processes and can lead to significant oversizing of land application areas (LAA's), particularly in wet climates (i.e., high rainfall and low evapo-transpiration). Under these conditions, lumped monthly water balance calculations do not adequately simulate day to day soil moisture storage or dynamics and will often result in significantly large LAA's that are not feasible or cost effective to construct. This is especially the case for water balances conducted in regions with low winter evapo-transpiration (such as Barrington) and LAA types that have lower DLRs such as irrigation systems.

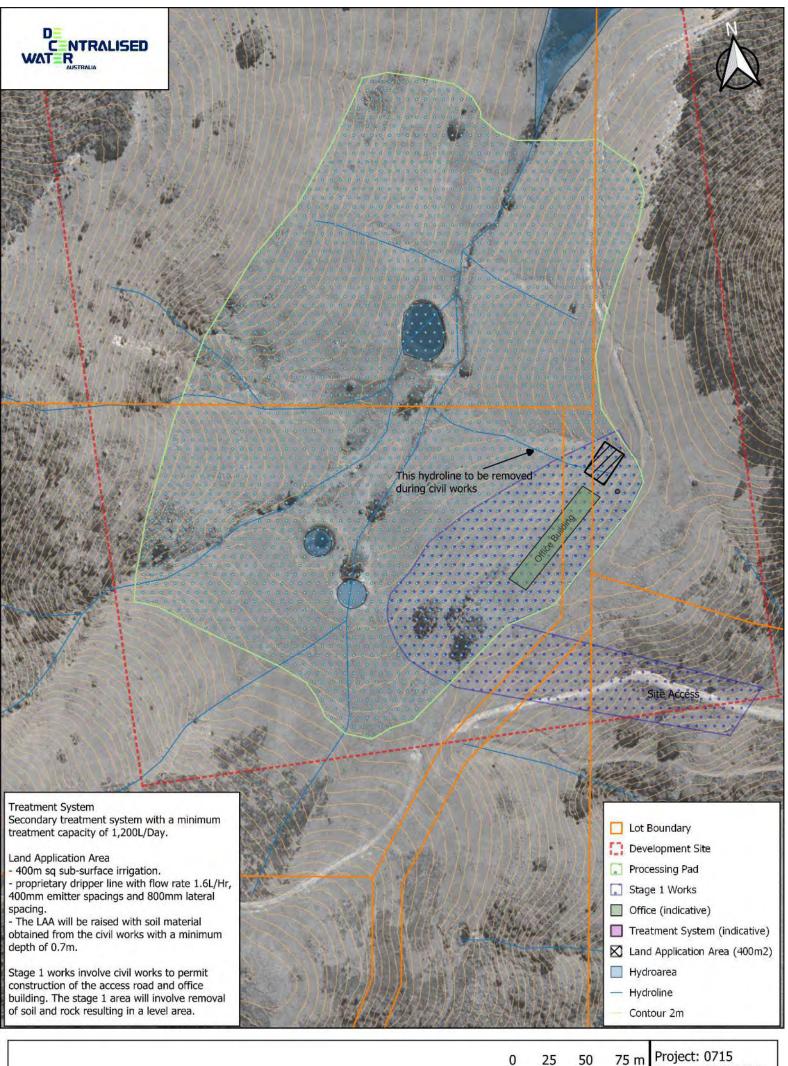
Where this is the case, a water balance can be used to inform a risk-based approach to sizing the LAA through measures such as a reduction in the DLR based on professional judgment by a suitability qualified practitioner or alternatively, other design elements may be altered to manage risk (e.g., increased setbacks). For this project, the size of the LAA for both development types have been informed by all calculation methods. The resulting sizes of both LAA's are considered appropriate having regard to the contained LAA method, site and soil assessment outcomes, selection of setback distances and selection of effluent quality and treatment system type.

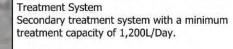
4.4 Treatment System Design Outcomes

A treatment system has been selected based on the outcomes from LAA selection process, site and soil assessment, site location and environmental considerations. The selected treatment system and associated features is presented in Table 13.

Table 13 Adopted Treatment System Design

System Feature	Outcome						
Effluent Quality	Secondary						
Disinfection	Yes						
Treatment system Type	Secondary treatment system						
Treatment Tank Capacity	Per manufacturers specifications						
Pump or Collection Well Capacity	Per manufacturers specifications						
Description/Comments:	The treatment system is to have a minimum treatment capacity of 1,200L/Day.						




Figure 4 On-site Wastewater Management Plan

25 50 0

Project: 0715 Drawn: 7/11/2023 Revision: 00

This hydroline to be removed during civil works

Land Application Area

20

- 400m sq sub-surface irrigation with dimensions 25m (L) x 16m (W).

 proprietary dripper line with flow rate 1.6L/Hr, 400mm emitter spacings and 800mm lateral spacing.

 The LAA will be raised with soil material obtained from the civil works with a minimum depth of 0.7m.

Stage 1 works involve civil works to permit construction of the access road and office building. The stage 1 area will involve removal of soil and rock resulting in a level area.

Land Application Area (400m2)Contour 2m

Figure 5 On-site Wastewater Management Plan (detailed)

10

0

30 m Project: 0715 Drawn: 7/11/2023 Revision: 00

5 Operation and Maintenance

The wastewater management concept described above has been developed as a relatively low maintenance option. Notwithstanding, AS1547 (T5) provides advice on several operational and maintenance concepts for treatment systems and land application areas that should be considered by owners and occupiers.

5.1 Operation – Treatment System

Reduce the potential for sludge build up and impacts in the treatment tank by:

- Using sink drainers and scraping plates before washing to reduce food scraps entering the system,
- Minimising disposal of oils and fats down the sink, and
- Disposing of hygiene products appropriately.

Reduce impacts on the biological processes within the treatment system and LAA by:

- Using soaps and detergents that are biodegradable, low-phosphorus and low in sodium,
- Avoiding the use of bleaches, whiteners, disinfectants, and nappy soakers,
- Not putting chemicals down the drain,
- Installing water conservations fixtures in the bathroom and laundry,
- Reducing the volume of water used in the house,
- Using water conserving washing machines, shower heads, toilets and dishwashers, and
- Avoiding excess washing on one day.

5.2 Maintenance – Treatment System

- Engage the services of a reputable company to periodically service the secondary treatment system on a frequency specified in the NSW Health accreditation for the system.
- Monitor the alarm panel for problems with the aeration blower or irrigation pump and contact the service technician if it activates.
- Monitor the treatment system for unusual sounds, smells or vibration and contact the service technician if it a problem is detected, and
- Periodically clean the irrigation filter if advised by the service technician.

5.3 Maintenance – Land Application Area

- Periodically mow the irrigation area and remove the grass clippings,
- Monitor the irrigation equipment for signs of damage or failure. Replace or repair as required or discuss with the service technician,
- Monitor the condition of the LAA for surface ponding and wet spots and discuss with the service technician if observed,
- Ensure that the appropriate effluent warning signs remain in place and visible to persons entering the LAA,
- Avoid the placement of children's play equipment within the LAA, and
- Restrict access to the LAA from vehicles and livestock.

6 References

- Department of Environment and Conservation. (2006). Using the ANZECC Guidelines and Water Quality Objectives. Department of Environment and Conservation.
- Department of Environment and Conservation NSW. (2006). *Local Planning for Healthy Waterways using NSW Water Quality Objectives*. Department of Environment and Conservation.
- Department of Primary Industries. (2021). *NSW Oyster Industry Sustainable Aquaculture Strategy.* Department of Regional NSW.
- Hazelton, P. &. (2016). Interpreting soil test results: What do all the numbers mean? CSIRO Publishing.
- NSW Department of Land and Water Conservation. (1997). *The NSW State Groundwater Policy Framework Document*. NSW Government.
- NSW Department of Local Government. (1998). Environment & Health Protection Guidelines: On-site Sewage Management for Single Households.
- NSW Department of Planning and Environment. (2022, May). *Coastal Management SEPP*. Retrieved from State Environmental Planning Policy (Resilience and Hazards) 2021: https://www.planning.nsw.gov.au/Policy-and-Legislation/Coastal-and-marinemanagement/Coastal-management/Coastal-Management-SEPP
- Rayment, G. E., & J, L. D. (2010). *Soil Chemical Methods Australasia*. Collingwood: CSIRO Publishing.
- Standards Australia. (2012). *AS/NZS1546:2012 On-site domestic wastewater treatment units*. Standards Australia.
- Standards Australia. (2012). *AS/NZS1547:2012 On-site domestic wastewater management.* Standards Australia.

Appendix 1 Site and Soil Assessment Information

Site Address	Sample Name	Sample Depth (mm)	Texture Class	EAT ^[1]	Rating ^[2]	pH _f ^[3]	pH _{1:5} [4]	Rating	EC _{1:5} (dS/m)	ECe (dS/m) ^[5]	Rating	Other analysis [6]
Maytoms Lane Booral	Composite TP1	-	L	-	-		6.39	Slightly acid	0.02	0.19	Non-saline	
[2] [3] [4] [5]	The modified Emerson Aggregate Test (EAT) provides an indication of soil susceptibility to dispersion. Ratings describe the likely hazard associated with land application of treated wastewater. pH measured in the field using Raupac Indicator. pH and EC are measured on 1:5 soil:water suspensions using a calibrated hand-held pH/EC/temp meter. Electrical conductivity of the saturated extract (Ece) = EC _{1:5} (µS/cm) x MF / 1000. Units are dS/m. MF is a soil texture multiplication factor.											
[6]	 Factor. External laboratories used for the following analyses, if indicated: CEC (Cation exchange capacity) Psorb (Phosphorus sorption capacity) Bray Phosphorus Organic carbon Total nitrogen 											

Interpretation Sheet 1 - pH, EC & Emerson Aggregate Class

Inte	erp	retatio	n of Soil pH (1:5 Soil:Water)
	(rati	ng base	d on Hazelton & Murphy (2016))
	pН		Rating
0.00	to	4.50	Extremely acid
4.51	to	5.00	Very strongly acid
5.01	to	5.50	Strongly acid
5.51	to	6.00	Moderately acid
6.01	to	6.50	Slightly acid
6.51	to	7.30	Neutral
7.31	to	7.80	Mildly alkaline
7.81	to	8.40	Moderately alkaline
8.41	to	9.00	Strongly alkaline
9.01	to	14.00	Very strongly alkaline

-										
Interpretation of ECe (1:5 Soil:Water)										
(rating base	(rating based on Hazelton & Murphy (2016))									
Ece (dS/m)	Rating									
0.00 to 2.00	Non-saline									
2.01 to 4.00	Slightly saline									
4.01 to 8.00	Moderately saline									
8.01 to 16.00	Highly saline									
16.00 up	Extremely saline									

preferred range

	Multiplier Factors for Calculating ECe (taken from Hazelton & Murphy (2016))									
Texture Class	Applicable Soil Textures	MF								
S	Sand, loamy sand, clayey sand	23								
SL	sandy loam, fine sandy loam	14								
L	loam, loam fine sandy, silty loam	9.5								
CL	clay loam, sandy clay loam	8.6								
LC	light clay	8.6								
MC	medium clay	7.5								
HC	heavy clay	5.8								

increasing hazard

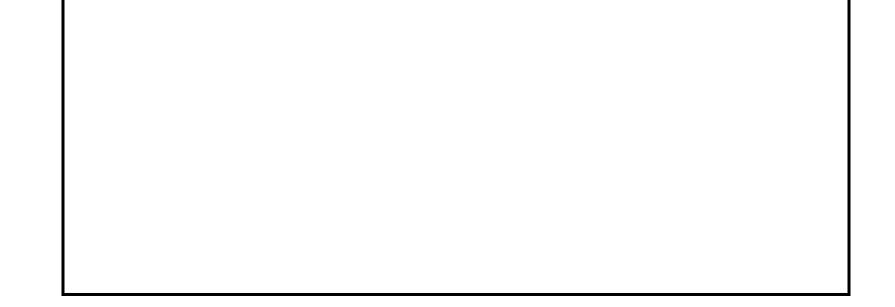
Interpretation	of Emerson Aggregate Class								
(rating des	(rating describes likelihood of dispersion)								
EAT Class	Rating								
1	High								
2(1)	Mod								
2(2)	Mod								
2(3)	High								
2(4)	High								
3(1)	Low								
3(2)	Low								
3(3)	Mod								
3(4)	Mod								
4	Low								
5	Low								
6	Low								
7	Low								
8	Low								

	Results of External Laboratory Analysis																					
Site Name	Sample	Name	CEC (cmol/kg))	Rating	Ca (mg/kg)	Rating	Mg (mg/kg)	Rating	Na (mg/kg)	Rating	K (mg/kg)	Rating	ESP (%)	Rating	P-sorp. (mg/kg)	Rating	Bray P (mg/kg)	Rating	Total Nitrogen	Rating	Organic Carbon	Rating
	TP Com	posite	6.3	L	736	L	254	М	32	L	133	Μ	2.2	NS	360	MH	-	n/a	-	n/a	-	n/a
Maytoms Lane																						
Booral																						

Interpretation Sheet 2 - CEC, P-Sorption, Bray P, Organic carbon, Total nitrogen

	Interpretation of CEC (rating based on Hazelton & Murphy (1992))													
Rating	Rating CEC (me/100g) Ca (mg/kg) Mg (mg/kg) Na (mg/kg) K (mg/kg)													
VL	0.00 to	6.00	0.00	to	400.00	0.00	to	36.50	0.00	to	23.00	0.00	to	78.20
L	6.01 to	12.00	400.01	to	1000.00	36.51	to	121.50	23.01	to	69.00	78.21	to	117.00
М	12.01 to	25.00	1000.01	to	2000.00	121.51	to	365.00	69.01	to	161.00	117.01	to	274.00
Н	H 25.01 to 40.00 2000.01 to 4000.00 365.01 to 972.00 161.01 to 460.00 274.01 to 782.00													
VH	VH 40.01 up 4000.01 up 972.01 up 460.01 up 782.01 up													
			VL=very I	low, L	=low, M=m	edium, H=	higl	n, VH=very	/ high					

	Interpretation of ESP (rating based on Hazelton & Murphy (1992))									
Rating	ESP (9									
NS	0.00 to	6.00	Description Non-sodic	1						
S	6.01 to	15.00	Sodic	increasing hazard						
SS	15.01 to	25.00	Strongly sodic							
VSS	25.01 up		Very strongly sodic	×						

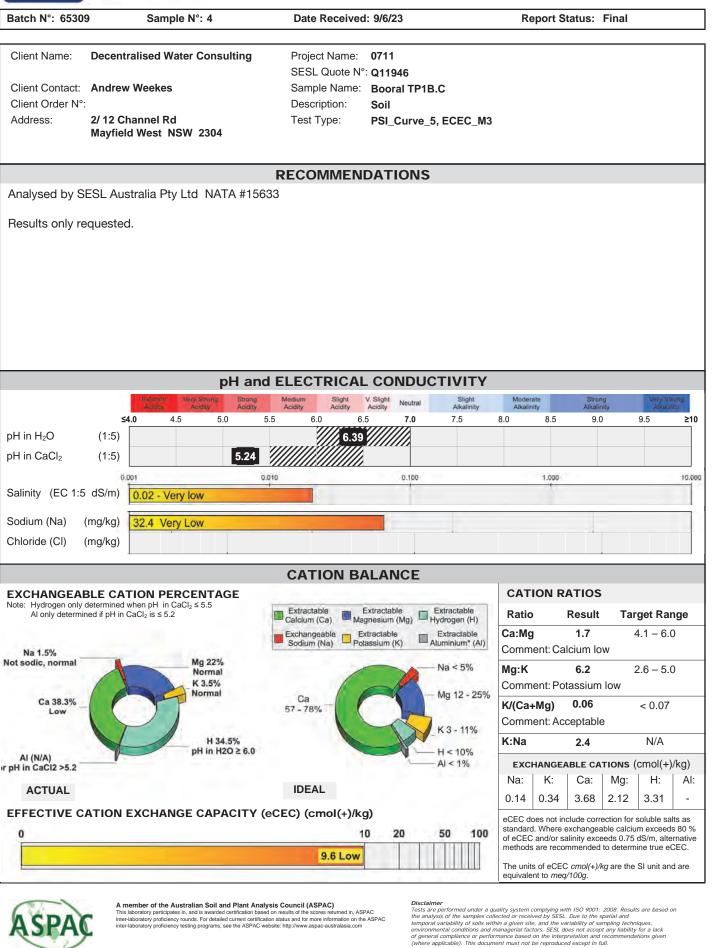

Inte	Interpretation of Phosphorus Sorption Capacity (rating based on Hazelton & Murphy (1992))								
Rating	P-sorption (mg/kg)	Description							
L	0.00 to 125.00	Low							
М	125.01 to 250.00	Medium	I↑						
MH	250.01 to 400.00	Medium-High	increasing hazard						
н	400.01 to 600.00	High							
VH	600.01 up	Very high							

	Interpretation of Bray Phosphorus (rating based on Hazelton & Murphy (1992))									
Rating	Bray P (mg/kg)	Description								
VL	0.00 to 5.00	Very Low								
L	5.01 to 10.00	Low								
М	10.01 to 17.00	Moderate								
н	17.01 to 25.00	High								
VH	25.01 up	Very high								

	Interpretation of Soil Nitrogen (TN) (rating based on Hazelton & Murphy (1992))										
Rating	Rating TN (%) Description										
VL	0.000 to	0.050	Very Low								
L	0.051 to	0.150	Low								
М	0.151 to	0.250	Medium								
н	0.251 to	0.500	High								
VH	0.501 up	1	Very high								

Interpretation of Soil Organic Carbon (OC) (rating based on Hazelton & Murphy (1992))										
Rating	()))	6)	Description						
VL	0.00	to	1.50	Very Low						
L	1.51	to	2.00	Low						
М	2.01	to	3.00	Medium						
н	3.01	to	5.00	High						
VH	5.01	up		Very high						

	Soil Bore Log							D C WAT	NTRALIS R AUSTRALIA	ED			
Clie	ent			Na	me		Test	Pit No		1			
LO	BA			Mid C	Coast		Topography						
Site Ac	ddress			Maytoms L	ane Booral		Geology						
Logg	ed by			S	J		Soil Type						
Da	ite			11/05	/2023		Slope	11 - 15	11 - 15 Aspect				
Pro	ject			07	15		Drainage	Poorly drained	Exposure	High			
Excav met			ŀ	land Auge	r and shovel		Surface condition	Undisturbed	Surface	Grass			
					F	PROFILE D	ESCRIPTIC	DN					
Depth (m)	Graphic Log	Sampling depth/name	Horizon	Texture	Structural Grade	Colour	Mottles	Coarse Fragments	Moisture Condition	Comments			
0.1 0.2		250mm		L	Moderate	Brown	-	-	D				
0.3		330mm		L	Moderate	Brown	-	10%	D				
0.4													
0.5													
0.6													
0.8													
0.9													
1.0													
1.1													
1.2													
1.3													
1.4 1.5													
1.6													
1.7													
1.8													
1.9													
2.0													


v				
	Ke	y to	Soil Bo	relogs
			Symbols	
W	Watertable depth	٠	Sample collected	
Х	Depth of refusal			
		Ν	loisture conditions	
D	Dry	VM	Very moist	
SM	Slightly moist	w	Wet / saturated	
М	Moist			
			Coarse Fragments	
VF	Very few <2%	М	Many 20 - 50%	
F	Few 2 - 10%	Α	Abundant 50 - 90%	
С	Common 10 - 20%	Р	Profuse >90%	
		Gra	phic Log and Textu	res
	S - Sand LS - Loamy sand CS - Clayey sand		CL - Clay loam SCL - Sandy clay loam SiCL - Silty clay loam	Gravel (G)
	SL - Sandy loam		LC - Light clay SC - Sandy clay	Parent material (stiff)
	L - Loam LFS - Loam fine sandy SiL - Silty loam		MC - Medium clay HC - Heavy clay	Willing Weathered)

Soil Chemistry Profile

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off:	16 Chilvers Road Thornleigh NSW 2120	1300 30 40 80 1300 64 46 89
Mailing Address:	PO Box 357 Pennant Hills NSW 1715	info@sesl.com.au www.sesl.com.au

Soil Chemistry Profile

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road

Mailing Address:

Thornleigh NSW 2120 PO Box 357

Pennant Hills NSW 1715

Tel: 1300 30 40 80 1300 64 46 89 Fax: info@sesl.com.au Em: Web: www.sesl.com.au

Batch N°: 65309

Sample N°: 4

Date Received: 9/6/23

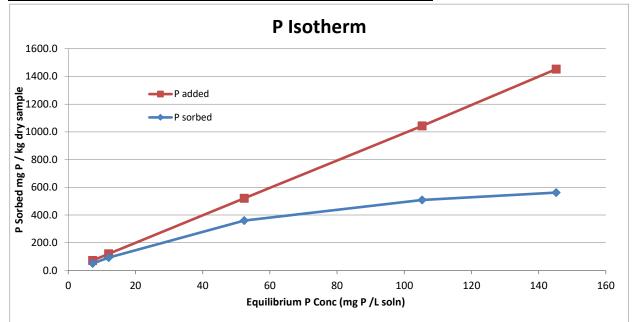
Report Status: Final

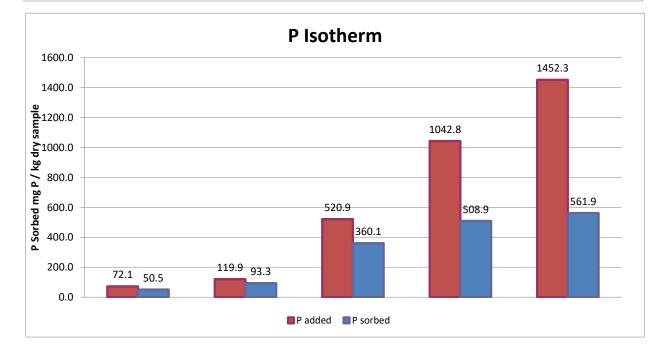
PLANT AVAILABLE NUTRIENTS DESIRED FERTILITY CLASS: O Low O Moderate O High Result Desirable Adjustment **Major Nutrients** Unit Result Very Low 📃 Low 🧧 Marginal 💋 Adequate High (g/sqm) (g/sqm) (g/sqm) 4 Did not test Nitrate-N (NO₃) mg N/kg 8.4 Did not test mg P/kg --Phosphorus (P) 133 17.729.3 11.6 mg/kg Potassium (K) --9 9 mg S/kg Sulfur (S) 208.3 110.1 738 98.2 mg/kg Calcium (Ca) 257 34.2 21.7 Drawdown Magnesium (Mg) mg/kg 73.4 Did not test mg/kg Iron (Fe) mg/kg 59 Did not test --Manganese (Mn) mg/kg 0.7 Did not test Zinc (Zn) . mg/kg 0.8 Did not test Copper (Cu) -mg/kg 0.4Did not test Boron (B) --Explanation of graph ranges: NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the Adequate band, which maximises growthyield, and economic efficiency, and minimises impact on the environment. High Very Low Marginal Low Adequate Growth is likely to be severely depressed and deficiency symptoms present. Large applications or soil building purposes are usually recommended. Potential response to nutrient addition is >90 %. Potential "hidden hunger", or sub-clinical deficiency. Potential response to nutrient addition is 60 to 90 %. Supply of this nutrient is barely adequate for the plant, and build-up is still recommended. Potential response to nutrient addition is 30 to 60 %. Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to nutrient addition is 5 to 30 %. The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended. Potential response to nutrient addition is <2 %. Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed Adequate. g/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and effective amelioration depth. **Phosphorus Saturation Index Exchangeable Acidity** Lime Application Rate (g/sqm) - to achieve pH 6.0: Adams-Evans Buffer pH (BpH): 7.5 0 0.15 - to neutralise Al: Sum of Base Cations (cmol(+)/kg): 0.11 6.3 High Eff. Cation Exch. Capacity (eCEC): 9.6 0.06 Excessive Calculated Gypsum Application Rate (CGAR) Base Saturation (%): 65.63 Adequate (g/sqm) to achieve 67.5 % exch. Ca: 321 Exchangeable Acidity (cmol(+)/kg): -0 ≥0.4 mmol/kg Exchangeable Acidity (%): The CGAR is corrected for the selected <0.01 effective amelioration depth (100 mm) and any Low. Plant response to applied P is likely Lime addition to achieve pH 6.0. PHYSICAL DESCRIPTION Texture: Munsell Colour: Organic Carbon (OC %): Estimated clay content: _ Structure Size: Organic Matter (OM %): _ Tactually gravelly: Structural Organisation: Est. Field Capacity (% water): -_ Tactually organic: Structural Unit: _ Est. Permanent Wilting Point (% water): Calculated EC_{SE} (dS/m): Potential infiltration rate: Est. Plant Available Water (% water): _ **Requires EC and Soil Texture result.** Est. Permeability Class (mm/hr): Est. Plant Available Water (mm/m): _ Additional comments: Date Report Generated 27/06/2023 METHOD REFERENCES: Authorised Signatory: Chantal Milner Consultant: Neena Goundar pH (1:5 H20) - SESL CM0002; Rayment & Lyons 4A1-2011 pH (1:5 CaCl₂) - SESL CM0002; Rayment & Lyons 4B4-2011 EC (1:5) - SESL CM0001; Rayment & Lyons 3A1-2011 Chloride - Rayment & Lyons 5A2a-2011 When Character & Lyons 7D2 Cold Handa

Itale - Rayment & Lyons 781a-2011 uminium - SESL KOM007; Rayment & Lyons 15A1-2011 K, S, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - SESL CM0007; Rayment & Lyons 18F1-2011 Iffer JH and Hydrogen - SSSA Methods of Soli Analysis 2007, Pt 3, Ch 17, Adams-Evans (1962) oktine/Structure(Colour) - HM0003 (Texture-horbote' (1992), Suructure' - Muthyrby' (1991), Colour- 'Munsell' (2000))

- *Structure analysed in the laboratory is conducted on a disturbed sample, therefore is only a representation of the macro-structures that may be present in the field, which provide an indic the soil physical characteristics and behavious that may exist.

A member of the Australian Soil and Plant Analysis Council (ASPAC) This laboratory participates in, and is awarded certification based on results of the scores returned in, ASPAC A lifetimetrio of participates in, and is awarded certification based on results of the scores returned in, ASPAC inter-laboratory proficiency rounds. For detailed current certification status and for more information on the ASPAC inter-laboratory proficiency testing programs, see the ASPAC website: http://www.aspac-australasia.com


P Isotherm


Method as per: R&L 9J (mod ICP-OES analysis) Report as per: Patterson, R.A (2001) Phosphorus Sorption for On-site Wastewater Assessments

Sample ID	65309-4
Sample Description	Booral TP1B.C

Amount of P for soil to sorb (requested)	mg P / kg & 1:10 ratio	50	100	500	1000	1500
Amount of P for soil to sorb (measured)	mg P / kg dry sample	72	120	521	1043	1452

Equilibrium P Conc, EPC	ug P / kg dry sample	13731
P Buffer Capacity, PBC	(mg P / kg dry sample) /	
	log(ug P / L soln)	318

Appendix 2 Design Calculations

				Water	Baland	e & St	orage	Calcula	ations							
Project	715															
Address	Hillview (Quarry Booral					Water Balance							DE		
Date	26/03/24					200						900		W		LISED
	INPU	Γ DATA				180 (두 160			\wedge			800 700			AUSTRALIA	
Design Wastewater Flow	Q	720	L/day			(H160 140 120 100 100						600				
Daily Percolation Rate		3.00	mm/day			120 E 100						500	Rainfall			
Nominated Land Application Area	L	400	m sq	Input	t Cells	<u>د</u> 100 ج 80						400	Evaporation			
Crop Factor	С	0	unitless	Calcu	Ilation	Intensity 0 8 0 8						300	 Effluent Application 	n		
Void Space Ratio		1		Out	tput	91 40						200	Selected Area (m2)			
Retained Rainfall		0.78	untiless			20						100 0				
Rainfall Data (Station #)		SILO (-32.50, 151				0	Jan Feb	Mar Apr Ma	ay Jun Jul	Aug Sep Oct	t Nov Dec	0				
Evaporation Data (Station #)	1	SILO (-32.50, 151							Month							
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in month	D	/	days	31	28	31	30	31	30	31	31	30	31	30	31	365
Rainfall	R	\	mm/month	123	124	145	105	103	112	63	55	59	75	103	102	1170
Evaporation	E	\	mm/month	183	144	126	93	69	57	65	91	121	149	160	186	1443
Crop Factor	С			0.70	0.70	0.70	0.60	0.50	0.45	0.40	0.45	0.55	0.65	0.70	0.70	-
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	128	101	88	56	34	25	26	41	66	97	112	130	905
Percolation	В	(DPR/7)xD	mm/month	93	84	93	90	93	90	93	93	90	93	90	93	1095
Outputs		ET+B	mm/month	221	185	181	146	127	115	119	134	156	190	202	223	2000
INPUTS																
Retained Rainfall	RR	R*0.75	mm/month	96	97	113	82	80	88	49	43	46	59	81	79	912
Effluent Application	W	(QxD)/L	mm/month	56	50	56	54	56	54	56	56	54	56	54	56	657
Inputs		RR+W	mm/month	152	147	169	136	136	142	105	98	100	115	135	135	1569
STORAGE CALCULATION																
Storage remaining from previous month			mm/month	0.0	0.0	0.0	0.0	0.0	9.0	35.0	20.6	0.0	0.0	0.0	0.0	
Storage for the month	S	(RR+W)-(ET+B)	mm/month	-68.9	-37.5	-12.5	-9.7	9.0	26.1	-14.4	-35.6	-56.4	-75.4	-67.2	-88.2	-75
Cumulative Storage	М		mm	0.0	0.0	0.0	0.0	9.0	35.0	20.6	0.0	0.0	0.0	0.0	0.0	65
Maximum Storage for Nominated Area	Ν		mm	35.03						-	-	-			-	-
	V	NxL	L	14012												
			ML	0.01												
LAND AREA REQU	IRED FOR	ZERO STORAGE	m ² m ²	179	229	327	339	476	774	318	244	196	170	178	155	

			N	utrient Balance)					
Project	715									
Address	Hillview Qu	uarry Booral					14/07			
Date	26/03/24						VUL	AUSTRALIA		
	CATION AREA	REQUIRED	BASED ON TH	IE MOST LIMITING OF PHO	SPHORUS	OR NITROGEN		380 m ²		
				INPUT DATA				•		
Waste	water Loading]				Nutrient Crop Up	take			
Hydraulic Load		720	L/Day	Crop N Uptake	250	kg/ha/yr	which equals	68 mg/m²/da		
Effluent N Concentration		35	mg/L	Crop P Uptake	30	kg/ha/yr	which equals	<mark>8</mark> mg/m²/da		
% Lost to Soil Processes (Geary & C	ardner 1996)	0.2	Decimal			Phosphorus Sorp	tion			
Total N Loss to Soil		5040	mg/day	P-sorption result	360	mg/kg	which equals	<mark>3528</mark> kg/ha		
Remaining N Load after so	il loss	20160	mg/day	Bulk Density	1.4	g/cm ²				
Effluent P Concentration	n	12	mg/L	Depth of Soil	0.7	m	Fill to be impor	ted to achieve this		
Design Life of System		50	yrs % of Predicted P-sorp. 0.75 Decimal							
Minimum Area required	with zero buff	er		BASED ON ANNUAL CRO Determination of Buffer Nominated LAA Size				Area (LAA)		
Phosphorus	380	m ²	Nominated LAA Width			25	m	-		
	.		F	redicted N Export from LAA		-2.6	kg/year			
			F	Predicted P Export from LAA		-0.2	kg/year			
			P	nosphorus Longevity for LAA	Ą	54	Years			
			Minimum	Duffer Dequired for evenes	m ²					
				Buffer Required for excess	nutrient	0	m-			
				e buffer length (based on LA		-	m			
			Downslop			-				
STEP 1: Using the nominated LAA Size		m ²	Downslop	e buffer length (based on LA		-				
Nominated LAA Size	400	m² kg/day	Downslop	e buffer length (based on LA PHOSPHORUS BALANCE	AA width)	0	m	ka		
Nominated LAA Size Daily P Load	400 0.00864	kg/day	Downslop	e buffer length (based on LA PHOSPHORUS BALANCE → Phosphorus generated c	AA width) over life of s	o	m 157.7	kg ka/m ²		
lominated LAA Size Daily P Load Daily Uptake	400 0.00864 0.0033	kg/day kg/day	Downslop	e buffer length (based on LA PHOSPHORUS BALANCE	AA width) over life of s	o	m	kg kg/m ²		
Nominated LAA Size Daily P Load Daily Uptake Measured p-sorption capacity	400 0.00864 0.0033 0.3528	kg/day kg/day kg/m²	Downslop	e buffer length (based on LA PHOSPHORUS BALANCE Phosphorus generated of Phosphorus vegetative u	AA width) over life of s uptake for l	o	m 157.7 0.150	kg/m ²		
lominated LAA Size Daily P Load Daily Uptake Measured p-sorption capacity Assumed p-sorption capacity	400 0.00864 0.0033 0.3528 0.265	kg/day kg/day kg/m ² kg/m ²	Downslop	e buffer length (based on LA PHOSPHORUS BALANCE Phosphorus generated of Phosphorus vegetative u Phosphorus adsorbed in	AA width) over life of s uptake for l 50 years	o	m 157.7 0.150 0.265	kg/m ²		
lominated LAA Size Daily P Load Daily Uptake Measured p-sorption capacity	400 0.00864 0.0033 0.3528 0.265	kg/day kg/day kg/m²	Downslop	e buffer length (based on LA PHOSPHORUS BALANCE Phosphorus generated of Phosphorus vegetative u	AA width) over life of s uptake for l 50 years	o	m 157.7 0.150	kg/m ²		

SMARTER ADAPTIVE SOLUTIONS

enquiries@decentralisedwater.com.au

(02) 4962 2067

www.decentralisedwater.com.au