

This document has been prepared for **Goodman Property Services (Aust.) Pty Ltd** by:

Northstar Air Quality Pty Ltd

Head Office: Suite 1504, 275 Alfred Street, North Sydney, NSW 2060

Riverina Office: PO Box 483, Albury, NSW 2640

<u>northstar-env.com</u> | Tel: 1300 708 590

Proposed Data Centre (SSD-69223466)

Air Quality Impact Assessment

Addressee(s): Goodman Property Services (Aust.) Pty Ltd

Site Address: 132 McCredie Road, Guildford West NSW 2161

Report Reference: 24.1098.FR1V5

Date: 10 April 2025

Status: Final

Quality Control

Study	Version	Status	Prepared by	Checked by	Authorised by
Proposed Data Centre (SSD-					
69223466)	24.1098.FR1V5	Final	Northstar	DA, MD	MD
- Air Quality Impact Assessment					

Report Status

Northstar Refere	nces	Report Status	Report Reference	Version
Year	Job Number	(Draft: Final)	(R <i>x</i>)	(V <i>x</i>)
2024	1098	Final	R1	V5
Based upon the above, the specific reference for this version of the report is:			24.1098.FR1V5	

Final Authority

This report must by regarded as draft until the above study components have been each marked as final, and the document has been signed and dated below. A draft report is a working document, is issued without prejudice and is subject to change.

MDg.

Martin Doyle

10 April 2025

© Northstar Air Quality Pty Ltd 2025

Copyright in the drawings, information and data recorded in this document (the information) is the property of Northstar Air Quality Pty Ltd. This report has been prepared with the due care and attention of a suitably qualified consultant. Information is obtained from sources believed to be reliable but is in no way guaranteed. No guarantee of any kind is implied or possible where predictions of future conditions are attempted. This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed, or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

Final

EXECUTIVE SUMMARY

This Air Quality Impact Assessment has been prepared by Northstar Air Quality Pty Ltd to accompany a State Significant Development Application for the construction and ongoing operation of a data centre facility at 132 McCredie Road, Guildford West NSW 2161, in the Cumberland Council Local Government Area. The site is legally described as Lot 1 in DP596315.

This report has been prepared to address the Secretary's Environmental Assessment Requirements issued for the Project Pluto Data Centre (SSD-69223466) dated 4 April 2024.

This report concludes that the proposed data centre is suitable and warrants approval subject to the implementation of the following mitigation measures.

- **Construction Phase**: implementation of a range of industry-standard mitigation measures to manage construction-phase air quality risks, which may be implemented through a Construction Environmental Management Plan.
- Operational Phase: during an unplanned power outage event, the operation of the emergency power diesel-fuelled generators would result in air quality impacts. However, the assessment quantifies the probability of this occurrence as very low, based upon the modelled likelihood of impacts, prevailing meteorological conditions and historical probability of power outage events. During operation of the diesel-fuelled generators during routine and planned maintenance testing, the assessment does not predict any exceedances of the relevant impact assessment criteria, and as such no further mitigation is considered to be warranted.

Following the implementation of the above mitigation measures, the remaining impacts are appropriate.

Final

CONTENTS

EXECUT	IVE SUMMARY	III
1.	INTRODUCTION	9
1.1.	Summary of the Proposal	9
1.2.	Purpose of the Report	10
1.3.	Assessment Requirements	10
1.4.	Qualification	13
1.5.	Test Of Adequacy	13
2.	THE PROPOSAL	16
2.1.	The Proposal Site	16
2.2.	Proposal Staging	18
2.3.	Identification of Emissions to Atmosphere	19
2.4.	Alternative Options for Power Generation	23
3.	LEGISLATION, REGULATION AND GUIDANCE	24
3.1.	Protection of the Environment Act	24
3.2.	Protection of the Environment Operations (Clean Air) Regulation	26
3.3.	NSW EPA Approved Methods	28
3.4.	Cumberland Local Environmental Plan 2021	30
3.5.	Cumberland Development Control Plan	30
3.6.	NSW Government Air Quality Planning	31
4.	EXISTING CONDITIONS	32
4.1.	Surrounding Land Use Sensitivity	32
4.2.	Sensitive Receptor Locations	32
4.3.	Meteorology	37
4.4.	Background Air Quality	38
4.5.	Topography	40
4.6.	Potential for Cumulative Impacts	40
5.	METHODOLOGY	45
5.1.	Construction Phase	45
5.2.	Operation Phase	45

6.	CONSTRUCTION AIR QUALITY RISK ASSESSMENT	55
6.1.	Risk (Pre-Mitigation)	
6.2.	Risk (Post Mitigation)	55
7.	OPERATIONAL AIR QUALITY IMPACT ASSESSMENT	56
7.1.	Scenario 1 – Justified Worst-Case	56
7.2.	Scenario 2 – Realistic Operations	75
7.3.	Comparison with POEO (Clean Air) Regulation Standards of Concentrations	95
8.	DISCUSSION AND CONCLUSION	96
8.1.	Construction Phase Risk Assessment	96
8.2.	Operational Phase Impact Assessment	96
8.3.	Conclusion	100
9.	REFERENCES	101
APPENI	DIX A	103
APPENI	DIX B	108
APPENI	DIX C	114
APPENDIX D		129
APPENI	APPENDIX E	
APPENI	APPENDIX F	
ΔΡΟΕΝΙΙ	DIX G	148

FIGURES

Figure 1	Proposal site aerial	17
Figure 2	Local context	17
Figure 3	Sensitive receptors surrounding the Proposal site	36
Figure 4	Identified potential cumulative sources	44
Figure 5	Buildings and discharge points considered in dispersion modelling (Scenario 1)	48
Figure 6	Buildings and discharge points considered in dispersion modelling (Scenario 2)	49
Figure 7	Predicted maximum incremental 24-hour PM ₁₀ impacts – Scenario 1	61
Figure 8	Predicted maximum incremental 1-hour NO ₂ impacts – Scenario 1	64
Figure 9	Predicted maximum incremental 1-hour benzene impacts – Scenario 1	72
Figure 10	Predicted maximum incremental 24-hour PM ₁₀ impacts – Scenario 2	82
Figure 11	Predicted maximum incremental 1-hour NO ₂ impacts – Scenario 2	86
Figure 12	Predicted maximum incremental 1-hour benzene impacts – Scenario 2	94
Figure 13	Endeavour Energy SAIDI Performance Information	98

TABLES

Table 1	Coverage of SEARs relevant to SSD-69223466	11
Table 2	NSW EPA Approved Methods – impact assessment reporting requirements	11
Table 3	Report authorship and contributions	13
Table 4	Test of adequacy comments – SSD-69223466	14
Table 5	Back-up generator maintenance testing schedule	22
Table 6	POEO CAR standards of concentrations for applicable air impurities	27
Table 7	NSW EPA impact assessment criteria	29
Table 8	NSW EPA impact assessment criteria for principal and individual toxic pollutants	29
Table 9	Discrete sensitive receptor locations	34
Table 10	Details of meteorological monitoring surrounding the Proposal site	37
Table 11	Proximate NSW DCCEEW AQMS relative to the Proposal site	38
Table 12	Summary of background air quality used in the AQIA	40
Table 13	Identified potential cumulative sources	42
Table 14	General model parameters for CALPUFF dispersion modelling	46
Table 15	Back-up generator emissions and stack parameters	51
Table 16	Speciated VOC fractions	52
Table 17	Risk of air quality impacts from construction activities	55
Table 18	Predicted maximum incremental 24-hour PM ₁₀ and PM _{2.5} concentrations – Scenario 1	57
Table 19	Summary of contemporaneous 24-hour PM ₁₀ concentrations – Scenario 1	59
Table 20	Summary of contemporaneous 24-hour PM _{2.5} concentrations – Scenario 1	60
Table 21	Predicted 1-hour NO ₂ concentrations – Scenario 1	62
Table 22	Predicted 15-minutes, 1-hour, and 8-hour average CO concentrations – Scenario 1	66
Table 23	Predicted 1-hour and 24-hour SO ₂ concentrations – Scenario 1	68
Table 24 Scenario 1 (F	Predicted maximum incremental 1-hour PAH, benzene, and formaldehyde concentration	
Table 25	Assessment of the number of additional exceedances – Scenario 1	73
Table 26	Predicted annual average TSP, PM ₁₀ and PM _{2.5} concentrations – Scenario 2	76
Table 27	Predicted maximum incremental 24-hour PM ₁₀ and PM ₂₅ concentrations – Scenario 2	79

Table 28	Summary of contemporaneous 24-hour PM ₁₀ concentrations – Scenario 2	31
Table 29	Summary of contemporaneous 24-hour PM _{2.5} concentrations – Scenario 2	31
Table 30	Predicted 1-hour and annual average NO ₂ concentrations – Scenario 2	34
Table 31	Predicted 15-minute, 1-hour, and 8-hour average CO concentrations – Scenario 2	38
Table 32	Predicted 1-hour and 24-hour SO ₂ concentrations – Scenario 2	3 0
Table 33	Predicted maximum incremental 1-hour PAH, benzene, and formaldehyde concentrations	_
Scenario 2 (P	Proposal only))2
Table 34	POEO CAR – Standards of concentrations comparison	} 5
Table 35	Chance of an exceedance during a power outage	98

1. INTRODUCTION

Goodman Property Services (Aust.) Pty Ltd (the Proponent) has commissioned Northstar Air Quality Pty Ltd (Northstar) to perform an air quality impact assessment (AQIA) to accompany a State Significant Development Application (SSDA) for a proposed data centre (the Proposal) at 132 McCredie Road, Guildford West NSW 2161 (the Proposal site).

The AQIA is to be submitted to Cumberland Council and NSW Department of Planning, Housing, and Infrastructure (NSW DPHI) and has been performed in accordance with the NSW Environment Protection Authority (NSW EPA) Approved Methods for the Modelling and Assessment of Air Pollutants in NSW (the Approved Methods) (NSW EPA, 2022).

The AQIA identifies and examines potential air quality impacts associated with the construction and operation of the Proposal, aligning with the industry specific NSW Planning Secretary's Environmental Assessment Requirements (SEARs) for data storage centres, and outlines mitigation and monitoring requirements commensurate with those anticipated impacts to ensure that air quality criteria are achieved at surrounding sensitive receptor locations.

1.1. Summary of the Proposal

An SSDA has been prepared in support of a proposed data centre at the Proposal site. The site is zoned E4 General Industrial pursuant to the Cumberland Local Environmental Plan 2021 (CLEP2021) and has a road frontage to McCredie Road. The developable site area is 71 710 square metres (m²).

The proposed development comprises:

- Site preparation works including bulk excavation and removal of existing hard standing and structures on the site, tree and vegetation clearing, and bulk earthworks;
- Construction, fit out and operation of a data centre with an approximate building height of 25.77 metres (m) and total gross floor area of approximately 29 444 m² comprising:
 - At-grade parking for 53 car parking spaces and 2 accessible car parking spaces
 - Two (2) loading dock spaces.
 - Two (2) levels of technical data hall floor space with incorporating a total of nine (9) data halls.
 - Ancillary office space.
- Provision of required utilities, including:
 - Fuel storage
 - Two (2) Switch-rooms
 - Four (4) industrial water storage tanks

- Vehicle entry and egress driveways located along McCredie Road
- Internal access road
- Associated landscaping and site servicing
- Installation of services and drainage infrastructure.

Layouts of the Proposal site are presented in Appendix B.

The Proposal would operate 24-hours, seven days per week. Standby power would be provided by a total of 68 no. containerised diesel-powered back-up generators at the Proposal site. It is anticipated that the Proposal would install the following (or similar) generators:

- 67 no. 2 500 kW diesel -fuelled generators (model MTU 20V 4000 DS3100); and
- 1 no. 600 kW diesel -fuelled generators (model MTU 16V 2000 DS1100).

It is noted that the back-up generators would only be operated during a power outage event or as required during periodic maintenance testing.

1.2. Purpose of the Report

The purpose of this AQIA is to examine and identify whether the construction and operation of the Proposal may adversely impact on air quality in the surrounding area.

To allow assessment of the level of risk associated with the Proposal in relation to air quality, the AQIA has been performed in accordance with and with due reference to:

- Protection of the Environment Operations Act 1997;
- Protection of the Environment Operations (Clean Air) Regulation 2022;
- Guidance on the Assessment of Dust from Demolition and Construction (IAQM, 2024); and
- Approved Methods for the Modelling and Assessment of Air Pollutants in NSW

Appendix A presents a list of abbreviations, nomenclature and specified units referenced in this AQIA.

1.3. Assessment Requirements

This report has been prepared to address the specific requirements outlined in the NSW Planning Secretary's Environmental Assessment Requirements (SEARs) for data storage centres¹, which have been provided for the Project Pluto Data Centre project (SSD-69223466).

Table 1 details the SEARs coverage and indicates where each requirement has been addressed in this AQIA.

-

¹ https://www.planning.nsw.gov.au/sites/default/files/2023-03/sears-data-storage-centres.pdf

Table 1 Coverage of SEARs relevant to SSD-69223466

ltem	Description of Requirements	Section Reference
	Provide an assessment of air quality impacts, prepared in accordance with	Section 3
	the relevant NSW Environment Protection Authority (EPA) guidelines.	Section 5.2
	the relevant NSW Environment Protection Authority (ELA) guidennes.	Section 7
		Section 5.1
	The assessment must address construction works	Section 6
		Appendix C
Air Quality	and include modelling of emissions and air pollutants from predicted	Section 5.2
	operations (including testing of the back-up power system)	Section 7.2
	and a neak emission and air nellutant scenario	Section 5.2
	and a peak emission and air pollutant scenario	Section 7.1
	and outline the proposed mitigation, management and monitoring	Section 8.2.4
	measures that would be implemented.	Appendix C

In addition to the requirements outlined in Table 1, an accompanying cover letter issued on 4 April 2024 for the Project Pluto Data Centre by NSW DPHI provided additional assessment requirements relating to air quality, which state that:

"The EIS must include an air quality impact assessment, which:

- Includes consideration of potential impacts to nearby commercial and industrial receptors (refer Section 4.2)
- Is prepared in accordance with the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW (EPA, 2022) (this report) "

Section 9 of the Approved Methods outlines the NSW EPA's requirements for the information included in an AQIA. Table 2 summarises each requirement relevant to this type of development proposal and outlines where this information can be located in the AQIA.

Table 2 NSW EPA Approved Methods – impact assessment reporting requirements

Assessment component	Addressed
9.1 Site Plan	
Layout of the site clearly showing all unit operations	Appendix B
	Figure 5,
All emissions sources clearly identified	Figure 6
All ethissions sources clearly identified	Section 5.2.3
	Figure B4
Plant boundary	Figure 1
Sensitive receptors (e.g. nearest residences)	Section 4.2

Assessment component	Addressed
Taranah	Section 4.5
Topography	Section 5.2.1.3
9.2 Description of the activities carried out on the site	
A detailed discussion of all unit operations carried out on the site, including all possible	Section 2.2
operational variability	Section 2.3.2
	Section 2.2
A detailed list of all process inputs and outputs	Section 2.3.2
	Section 8.2.4
Plans, process flow diagrams and descriptions that clearly identify and explain all	Section 8.2.5
pollution control equipment and techniques for all processes on the premises	Appendix G
A description of all aspects of the air emission control system, with particular regard to	Section 8.2.4
any fugitive emission capture systems (e.g. hooding, ducting), treatment systems (e.g.	Section 8.2.5
scrubbers, bag filters) and discharge systems (e.g. stacks)	Appendix G
The operational parameters of all emission sources, including all operational variability,	
i.e. location, release type (stack, volume or area) and release parameters (e.g. stack	Section 5.2.3
height, stack diameter, exhaust velocity, temperature, emission concentration and rate)	
9.3 Emissions Inventory	
A detailed discussion of the methodology used to calculate the expected pollutant	
emission rates for each source	Section 5.2
Detailed calculation of pollutant emission rates for each source	Section 5.2.3
Tables showing all release parameters of stack and fugitive sources (e.g. temperature,	
exit velocity, stack dimensions, and emission concentrations and rates)	Section 5.2.3
and all pollutant emission concentrations with a comparison of the emission	
concentrations against the relevant requirements of the Regulation	Section 7
9.4 Meteorological data	
A detailed discussion of the prevailing dispersion meteorology at the proposed site. The	
report should typically include wind rose diagrams, an analysis of wind speed, wind	Section 4.3,
direction, stability class, ambient temperature and mixing height; and joint frequency	Appendix D
distributions of wind speed and wind direction as a function of stability class	пррепаіл В
Demonstration that the site-representative data adequately describes the expected	
meteorological patterns at the site under investigation (e.g. wind speed, wind direction,	
ambient temperature, atmospheric stability class, inversion conditions and katabatic	Appendix D
drift)	
A description of the techniques used to prepare the meteorological data into a format	Section 5.2.1.2
for use in the dispersion modelling	Appendix D
A quality assurance and quality control analysis of the meteorological data used in the	, тррепал в
dispersion modelling. Provide and discuss any relevant results of this analysis	Appendix D
9.5 Background air quality data	C
A detailed discussion of the methodology used to calculate the background	Section 4.4
concentrations for each pollutant	Appendix E
Tables summarising the ambient monitoring data	Section 4.4

Tiot tilotal	
Assessment component	Addressed
	Appendix E
9.6 Dispersion modelling	
A detailed discussion and justification of all parameters used in the dispersion	
modelling and the manner in which topography, building wake effects and other site-	Section 5.2.1
specific peculiarities that may affect plume dispersion have been treated	
A detailed discussion of the methodology used to account for any atmospheric	Section 5.2.1
pollutant formation and chemistry	3ection 3.2.1
A detailed discussion of air quality impacts for all relevant pollutants, based on	
predicted ground-level concentrations at the plant boundary and beyond, and at all	Section 7
sensitive receptors	
Ground-level concentrations, hazard index and risk isopleths (contours) and tables	
summarising the predicted concentrations of all relevant pollutants at sensitive	Section 7
receptors	

1.4. Qualification

This AQIA has been prepared by Northstar Air Quality Pty Ltd (Northstar) (ABN 52 609 741 728) which is an independent and specialised air quality consultancy. The principal author and contributors to this AQIA are provided in Table 3.

Table 3 Report authorship and contributions

Project Role	Name	Qualification	Role
Principal author	Martin Doyle	BSc(hons), PhD, CAQP	Director
	Declan Alder	BSc(hons), CEnv, CAQP	Principal Air Quality Scientist
Technical inputs,	Maria Laura Nauran Van	DC a MC a CAOD	Senior Air Quality Scientist,
data collation and	Marie-Laure Nguyen-Van	BSc, MSc, CAQP	Technical Lead Modelling Services
processing, GIS	Nick Phillips-Glyde	BComm, BMarBiol	Air Quality Scientist
	Sophie Saunders	BSc	Air Quality Scientist
04/06	ContCrohom	BSc(hons), MSc, CSci,	Director
QA/QC	Gary Graham	CEnv, CAQP	Director

1.5. Test Of Adequacy

As part of the SSDA process, a Test of Adequacy (ToA) has been carried out by NSW DPHI to ensure the draft Environmental Impact Statement (EIS) addresses the SEARs (refer Table 1).

On 1 April 2025, NSW DPHI provided comments on this AQIA for SSD-69223466

Table 4 outlines the ToA comments and associated clarifications. In response, the AQIA has been updated where appropriate, with clarifications provided where no changes were made.

Table 4 Test of adequacy comments – SSD-69223466

NSW DPHI ToA comments	Clarification / response
The air quality impact assessment (AQIA) in Appendix T should be updated to include consideration of potential impacts to nearby public recreational areas including Smithfield Park and Tom Uren Park, commercial buildings including Crown on McCredie Hotel and schools including Guildford West Public School and Children's Centre	The dispersion model has been updated to include those additional receptors identified, such as a school, childcare centre, parks, and a hotel. The spatial locations of all discrete receptor locations considered for this AQIA are provided on Figure 3 and described in Table 9. The corresponding results are reported in Section 7 of this AQIA.
The generator stacks modelled under the standard operating/testing scenarios appear to be located towards the north of the development with no stacks at the southern end of the building modelled. The AQIA should clarify the standard generator testing scenario is reflective of the most conservative model at all receiver locations.	The modelling reflects a representative standard testing scenario in which up to eight generators are operated simultaneously within the same zone or level of the development. While the current configuration focuses on the northern portion of the site, the scenario was selected to represent a conservative case in terms of predicted off-site impacts, including at the most sensitive receptor locations. As outlined in the AQIA, a sensitivity test was conducted to identify generator locations likely to result in the highest off-site impacts. Generators located to the north-west of the Proposal site were subsequently selected for detailed modelling under Scenario 2. It is also clarified that the dispersion modelling for the maintenance testing scenario has assumed 8 no generators operating at 100 % load, to provide confidence that if this quantity of generators can be tested simultaneously, then the proposed 2 no at 100 % load and 6 no at 0 % load, would be easily able to meet the criteria.
The AQIA should be updated to clearly label and identify all emissions source point locations of the development on the pollutant concentration contour diagrams in Section 7 of the AQIA.	Figure 5 and Figure 6 provide a 3D representation of the building configurations and emission stack locations for both assessed scenarios, which have been updated for clearer site location indication. Additionally, Appendix B provides an overview of the stack locations pertinent to the Proposal, which can be cross-referenced with the architectural plans submitted as part of the SSDA. The AQIA focuses on the maximum predicted incremental impacts from the Proposal site boundary. Including detailed generator labels in the contour diagrams would not

NSW DPHI ToA comments	Clarification / response
	add significant value, as the isopleth plots are designed to reflect broader air quality impacts. Emission source points have been added to the contour isopleths to indicate generator locations, but labels have been omitted, as they do not enhance the interpretation.
Appendix T: Appendices are not labelled in contents table	Appendix headers are included in the contents table for completeness.
The predicted incremental pollutant concentration contours do not appear to suitably reflect the corresponding prediction tables in Section 7 of the AQIA. The contour diagrams should be updated accordingly to suitably demonstrate predicted pollutant concentrations or provide clarification/justification.	The contours are based on the same dispersion model outputs used to prepare the tabulated results; however, it is acknowledged that there may be discrepancies in the visual representation due to the chosen contour intervals. The associated contour plots contained in Section 7 have been updated to align with the corresponding results tables.
Section 8.2.2. notes that no exceedances of cumulative concentrations are predicted however cumulative exceedances of PM is identified as a result of elevated background levels. The AQIA should be updated to clarify the exceedance and provide justification accordingly.	Under Scenario 2, no additional exceedances of the cumulative impact assessment criteria are predicted as a result of the proposal. Exceedances of the 24-hour PM _{2.5} criterion identified in Table 29 are attributable to elevated background concentrations, not project-related emissions. The commentary in Section 8.2.2 has been amended for completeness.

THE PROPOSAL 2.

The following provides a description of the context, location and scale of the Proposal, and a description of the processes and development activities on site. It also identifies the potential for emissions to air associated with the Proposal.

2.1. The Proposal Site

The Proposal site is located on Gandangara Land and is in the Smithfield Industrial Area within the Cumberland Local Government Area (LGA). It is bounded by McCredie Road to the north.

The front part of the Proposal site adjoins the Guildford Transmission Substation, which is located immediately to the east and fronts onto McCredie Road. Other industrial uses are located further east, with residential properties beyond.

The Guildford West Sports Ground, which comprises several playing fields, is located to the south of the Guildford Transmission Substation. The playing fields bound the southern part of the Proposal site to the east. The playing fields / public recreation area also abuts the southern boundary of the Proposal site.

Prospect Creek is located to the south of the public recreation area and is zoned C2 Environmental Protection. The area to the south of Prospect Creek is predominately characterised by low density single storey residential housing.

The Proposal site is located in the south eastern corner of the Smithfield Industrial Estate and is within close proximity of the Cumberland Highway (A28) and M4 and M7 motorways, which provide access to Sydney CBD, western Sydney and the south. A range of large format industrial uses are located to the west and north west of the site. The Smithfield Industrial Estate extends across the A28 to Gipps Road (approximately 3km west of the site). It forms part of the broader Smithfield Wetherill Park industrial area, which is one of the largest of its kind in the Southern Hemisphere and makes a significant contribution to the New South Wales and Australian economies.

The Proposal site has a net developable area of 71 710 m² and is currently vacant. It previously operated as a Castrol Lubricants facility. However, the majority of the Proposal site has now been cleared and subject to category 1 remediation works. A single storey office building is located on the northern portion of the Proposal site fronting McCredie Road. The building is vacant.

A map showing an aerial photograph of the Proposal site is provided in Figure 1 and the local context is illustrated in Figure 2. A full description of the sensitivity and uses of the surrounding land, and the identification of discrete receptor locations used in the AQIA, is provided in Section 4.2.

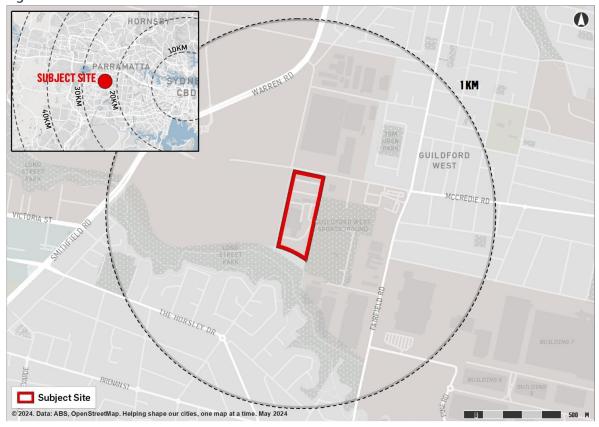


Figure 1 Proposal site aerial

Source: Urbis

Figure 2 Local context

Source: Urbis

2.2. Proposal Staging

The proposal seeks consent for development to be constructed and operated in two phases to reflect the staged availability power supply. The proposed stages involve the following:

- **Stage 1:** Construction of the main data centre building as well as the car park, perimeter access road, site access/exit driveways and landscaping. Stage one will involve the fit-out and operation of five of the 9 proposed data halls at levels 1 and 2 as well as the associated electrical rooms, generators, storage and office rooms.
- **Stage 2:** Completion of the ultimate development scheme involving the extension of the building to the south with an additional four data halls, associated electrical rooms and generators, and associated landscaping and external works. The electrical substations will also be constructed in the north of the site during this phase.

The works are to be completed in four (4) construction stages, as per below:

Stage 1:

- CC1 Site Preparation works (including but not limited to vegetation removal, earthworks & piling, installation of footings, retaining walls)
- CC2 Inground services installation, structural works
- CC3 Façade construction, installation of services, fit out
- CC4 Landscaping and external works

• Stage 2:

- CC1 Site Preparation works (earthworks & piling, installation of footings)
- CC2 Inground services installation, structural works
- CC3 Façade construction, installation of services, fit out
- CC4 Landscaping and external works

Give the staged approach outlined above, this AQIA has been performed to address the construction and operation of the development as a whole. In this regard, the following comments are provided to address and queries relating to the coverage of the AQIA in relation to the staging:

Scenario 1 – Stage 1 construction

Potential impacts during construction of the whole development (Stage 1 and Stage 2) has been performed (refer Section 5.1), with mitigation measures identified to achieve 'negligible' impacts on surrounding receptors. Impacts during Stage 1 construction alone are anticipated to also be negligible, with the implementation of appropriate controls.

- Scenario 2 Stage 1 operation
 - Quantitative modelling has been performed associated with Stage 1 and Stage 2, operating together. Any impacts associated with Stage 1 operations alone would be expected to be lower than those predicted for Stage 1 and Stage 2 operating together.
- Scenario 3 Stage 1 operation during Stage 2 construction
 - Given that the construction phase is anticipated to result in negligible impacts at surrounding receptor locations, the operations during Stage 1 alone, with construction of Stage 2 is anticipated to have been appropriately considered through modelling for both Stage 1 and Stage 2 operations.
- Scenario 4 Stage 1 & 2 operation
 - This has been subject to quantitative modelling for both maintenance activities and emergency (power outage) conditions. It provides the potential 'worst-case' impacts of the development as a whole, operating at maximum capacity.

2.3 **Identification of Emissions to Atmosphere**

Given the nature of the Proposal described above, emissions to air would be likely to be generated as described below.

2.3.1. Construction Phase

Construction of the Proposal would involve bulk earthworks, construction of the data centre development, car parking, associated infrastructure, site access points and landscaping.

An indicative list of plant and equipment that may be used during the construction of the Proposal includes:

- Excavators and front-end loaders (FEL);
- Graders;
- Light -and heavy-duty vehicles;
- Drills and pneumatic hand or power tools; and,
- Cranes and elevated working platforms;

The assessment of the potential impacts upon local air quality, resulting from construction activities, is presented in Section 6, while the full risk assessment is provided in Appendix C.

2.3.2. Operation Phase

Operational emissions from the Proposal on a day-to-day basis would be anticipated to be negligible, with the exception of potential emissions from diesel-fuelled back-up generators during periodic maintenance testing or during a power outage event.

The diesel-fuelled generators anticipated to be installed at the Proposal site are outlined in Section 2.2.

Emissions data for each generator has been calculated based on technical specification documents as provided by the project team for use in this assessment, presented in Appendix F. Dispersion modelling was performed to predict impacts from the operation of the Proposal site on the surrounding area.

During periods when the back-up generators may be required to maintain electrical supply or used for maintenance testing, short-term emissions of combustion related pollutants may be generated. Emissions from diesel-fuelled emergency generators are envisaged to include various air pollutants, as listed in the National Pollutant Inventory (NPI) Emission Estimation Technique Manual (NPI EETM) for combustion engines (NPI, 2008). The pollutants of concern from the operation of the backup generators includes (in no order):

- Particulate matter (PM);
- Oxides of nitrogen (NO_x);
- Carbon monoxide (CO);
- Sulphur dioxide (SO₂);
- Polycyclic aromatic hydrocarbons (PAHs);
- Volatile organic compounds (VOCs), as benzene (C_6H_6), toluene (C_7H_8) and xylene (C_8H_{10}); and
- Formaldehyde (CH₂O).

The anticipated maintenance testing schedule has been provided by the Proponent and is outlined in Table 5 overleaf). This assumes that each generator would be tested for a period of 65 minutes (quarterly) and 90 minutes (annual), with eight generators tested concurrently (two at 100% load, and six at no load). Additional information provided by the Proponent indicates that testing would be performed during daylight hours i.e. between 7:00 am and 6:00 pm (8:00 am to 6:00 pm on Sundays and Public Holidays), although assessment has been performed to assess whether the maintenance testing schedule could be extended to cover a full 24-hour period, with eight generators tested (at 100% load) concurrently. It is important to note that generator testing over a full 24-hour period for eight generators at 100 % load may not be required or may be limited by other environmental factors. The purpose of air quality modelling over the full 24-hour period with eight generators tested at 100 % load concurrently is to provide assurance that should that extent of testing be required, constraints would not be posed by air quality issues to allow that flexibility.

The Proposal includes on-site fuel storage, which may contribute to air emissions through fugitive VOCs during filling and dispensing, as well as from potential spillages and leaks that may occur. The tank design is expected to incorporate adequate containment (e.g. double walled / secondary containment) and automated

leak detection measures in compliance with applicable Australian Standards (AS) such as AS 1940:2017 ("Storage and Handling of Flammable and Combustible Liquids") and AS 1692:2006 ("Steel Tanks for Flammable and Combustible Liquids") with low sulphur content diesel fuel utilised for the standby generators. In addition to containment of tanks, spill containment will be provided around tank fill connections, pumps, and filters, where required.

2.3.3. Odour

Construction phase activities may include the operation of plant and machinery that may pose an insignificant risk of odour in the event of accidental fuel spillage; however, this risk is very minor and can be effectively managed through the provision of spill kits to promptly manage any spillages.

Operational phase activities will not result in any odour emissions, with the exception of the periodic operation of the diesel-fuelled generators for testing and back-up power generation purposes only, as outlined above.

Air emissions of VOCs have been assessed as benzene (C₆H₆) as a principal toxic air pollutant, with anticipated emissions of toluene (C₇H₈) and xylene (C₈H₁₀) assessed and compared against the relevant odour impact assessment criteria.

 Table 5
 Back-up generator maintenance testing schedule

			Duration (minute)		Number of	Gens run	Number of	Total Number of	
Test	Туре	Run	Cooldown	Load (%)	.oad (%) Generators		Tests	Tests	Total Mins
1	Quarterly	65	5	100	68	2	34	34	2 380
2	Quarterly	65	5	100	68	2	34	34	2 380
3	Quarterly	65	5	100	68	2	34	34	2 380
4	MV / transformer maintenance and testing	1 195	5	100	8	2	1	1	1 200
5	Annual	90	5	100	68	2	34	34	3 230
								Total Minutes per Year	11 570

2.4. Alternative Options for Power Generation

Currently, alternatives to diesel generators are not feasible for large-scale data centres, which depend on diesel for reliability, quick startup, and robust power delivery. While emerging technologies² like HVO100 renewable diesel, hydrogen fuel cells, microgrids, and battery storage show promise, they are not yet technologically or financially viable for widespread use.

Due to the high load density and steady load profile, solar panels covering the entire roof would only meet a small portion of the site's power needs, and mechanical equipment further limits available space for solar installations.

While batteries could provide short-term backup, the fuel needed for 24-hour autonomy to maintain critical services during extended outages is significant. Using batteries for the same duration would be prohibitively expensive and space-intensive, also posing similar risks to diesel, such as chemical spills and fire hazards

As a consequence, diesel generators will continue to be essential for the data centre industry until feasible alternatives are commercially available.

https://www.datacenterdynamics.com/en/opinions/is-it-time-to-replace-diesel-backup-generators/

LEGISLATION, REGULATION AND GUIDANCE

The following outlines the legislation and air quality criteria which are applicable to the activities being performed at the Proposal site.

3.1. Protection of the Environment Act

The *Protection of the Environment Operations Act* 1997 (POEO Act) sets the statutory framework for managing air quality in NSW, including establishing the licensing scheme for major industrial premises (scheduled activities) and a range of air pollution offences and penalties.

Schedule 1, Part 1 of the POEO Act provides definitions for scheduled activities, and the associated threshold activity rates. For the Proposal, the thresholds relevant to electricity generation are most relevant, given the use of emergency diesel-fuelled generators at the Proposal site:

- 17 Electricity generation
- (1) This clause applies to the following activities:

...

metropolitan electricity works (internal combustion engines), meaning the generation of electricity by means of electricity plant:

- (a) that is based on, or uses, an internal combustion engine, and
- (b) that is situated in the metropolitan area or in the local government area of Port Stephens, Maitland, Cessnock, Singleton, Wollondilly, or Kiama.
- (1A) However, this clause does not apply to the generation of electricity by means of electricity plant that is emergency stand-by plant operating for less than 200 hours per year.
- (2) Each activity referred to in Column 1 of the Table to this clause is declared to be a scheduled activity if it meets the criteria set out in Column 2 of that Table.

and

- 9 Chemical storage
- (1) This clause applies to the following activities--

"general chemicals storage", meaning the storage or packaging in containers, bulk storage facilities or stockpiles of any chemical substance classified as a dangerous good in the Transport of Dangerous Goods Code, other than the following--

...

"petroleum products storage", meaning the storage or packaging of petroleum or petroleum products in containers, bulk storage facilities or stockpiles.

(2) Each activity referred to in Column 1 of the Table to this clause is declared to be a scheduled activity if it meets the criteria set out in Column 2 of that Table.

Table

Column 1	Column 2
Activity	Criteria
petroleum products storage	capacity to store more than 200 tonnes
	(liquified gases) or 2,000 tonnes (chemicals
	in any other form)

During times of stable external supply of electricity, the back-up generators will only operate during scheduled maintenance events (refer Table 5). On this basis, the Proposal would not exceed the 200-hour limit, for the generation of electricity by means of electricity plant that is emergency stand-by plant.

Further, the Proposal may be deemed to be a scheduled activity due to the quantity of diesel fuel stored at the Proposal site. Should the Proposal have the capacity to store more than 2 000 tonnes (t) of diesel fuel (equivalent to 2 350 kilolitres (kL) assuming a fuel density of 850.8 kg·m⁻³), then the Proposal may be deemed to be a scheduled activity under Schedule 1, Part 1 Clause 9 of the POEO Act.

The diesel consumption rates of the proposed generator models (refer Section 5.2.3) indicate that if the Proposal were to store enough diesel to operate the back-up generators continuously for 24 hours, the stored capacity of diesel fuel would not exceed 2 000 t.

Given the discussion provided above, the Proposal is not considered to be a scheduled activity and correspondingly, an Environmental Protection License (EPL) would not be required.

Part 5.4 of the POEO Act outlines a number of requirements associated with air pollution. These requirements generally relate to the appropriate maintenance of plant and equipment in an efficient condition and dealing with materials in a manner as to not cause air pollution.

3.2. Protection of the Environment Operations (Clean Air) Regulation

The Protection of the Environment Operations (POEO) (Clean Air) Regulation 2022 (POEO CAR) establishes requirements and concentration standards for air emissions from industrial activities in NSW. It regulates air quality issues related to various sources, including burning activities, motor vehicle fuels, fuel usage and transfer, air impurities from activities and plants, and the storage of volatile organic liquids.

Part 5 of the POEO CAR specifically addresses air impurities from activities and plant, referring to Schedule 2 to set concentration standards for both scheduled and non-scheduled premises. The standards are in-stack emission limits and are the maximum emissions permissible.

As previously discussed in Section 3.1, if the Proposal is deemed to be a scheduled activity under the POEO Act, the general standards of concentration for scheduled activities as outlined in the POEO CAR would apply. In any event, the generators would be required to achieve the Schedule 2, Part 3 standard of concentration for non-scheduled activities. Clause 73, Part 5, Division 6 of the POEO CAR provides the following in regard to the regulation of emissions from emergency electricity generation:

73 Exemption relating to emergency electricity generation

Emergency standby plant is exempt from the air impurities standard for nitrogen dioxide and nitric oxide specified in Schedule 2, Part 2, Division 3 for the plant if —

- (a) the plant comprises a stationary reciprocating internal combustion engine for generating electricity, and
- (b) it is used for a total of not more than 200 hours per year.

As outlined in Table 5, the generators would be operated for less than 200 hours per year, and the exemption above would therefore apply to the Proposal.

The standards of concentration, and whether they are applicable to the Proposal, are summarised in Table 6.

Final

Table 6 POEO CAR standards of concentrations for applicable air impurities

Schedule 2, Part 2, Division 2 – Electricity generation (Group 6)							
Not a							
eduled							
vity							
Not a							
eduled							
vity and also							
rates for							
00 hrs∙year ⁻¹ .							
Not a							
eduled							
vity							
Not a							
eduled							
vity							
Not a							
eduled							
vity							
Not a							
eduled							
vity							

Notes

Part 4 Clause 20 of the POEO CAR requires that motor vehicles do not emit excessive air impurities which may be visible for a continuous period of more than 10-seconds when determined in accordance with the relevant standard.

All vehicles, plant and equipment to be used either at the Proposal site or to transport materials to and from the Proposal site will be maintained regularly and in accordance with manufacturers' requirements, where these vehicles are under the operational control of the Proponent.

⁽A) POEO CAR Sch2, Pt 3, Div 1: dry, 273 K, 101.3 kPa, 7 % O₂

⁽B) POEO CAR Sch 2, Pt 2, Div 2: dry, 273 K, 101.3 kPa, 7% O₂

3.3. NSW EPA Approved Methods

State air quality guidelines are prescribed by NSW EPA in the Approved Methods which has been consulted during the preparation of this AQIA (see Section 1.3, Table 2).

The Approved Methods lists the statutory methods that are to be used to assess emissions of criteria air pollutants in NSW. Section 7.1 and Section 7.2 of the Approved Methods clearly outlines the impact assessment criteria for those key pollutants of interest and both individual and principal toxic air pollutants. Principal toxic air pollutants are defined in the Approved Methods on the basis that they are carcinogenic, mutagenic, highly persistent, or highly toxic in the environment.

The criteria listed in the Approved Methods are derived from a range of sources (including National Health and Medical Research Council [NHMRC], National Environment Protection Council [NEPC], and World Health Organisation [WHO]).

The criteria specified in the Approved Methods are the defining ambient air quality criteria for NSW. The standards adopted to protect members of the community from health impacts in NSW for relevant individual air pollutants are presented in Table 7.

To assess the potential impact of emissions of Total Volatile Organic Compounds (VOC) (which is a complex mixture of hydrocarbons), the 1-hour impact assessment criterion for benzene (C_6H_6) of 0.029 mg·m⁻³ (29 μ g·m⁻³) as outlined in table 12 of the Approved Methods has been adopted.

Benzene (C_6H_6) is one of the primary components of TVOC emissions resulting from diesel combustion engines and correspondingly, compliance with the benzene (C_6H_6) criterion (refer Table 7) would generally result in compliance with all VOC components from a health-perspective. Formaldehyde (CH_2O) is assessed as a discrete VOC.

VOC emissions have additionally been assessed against the 1-hour odour impact assessment criteria for toluene (C_7H_8) of 0.36 mg·m⁻³ (360 μ g·m⁻³) and xylene (C_8H_{10}) of 0.19 mg·m⁻³ (190 μ g m⁻³) to address odour.

Table 8 below provides a summary of impact assessment criteria for principal toxic, and both individual odorous and toxic pollutants that are referenced within this AQIA, as outlined in Section 7.2 of the Approved Methods.

Table 7 NSW EPA impact assessment criteria

Pollutant	Averaging	Criterion		Notes		
Pollutalit	period	μg·	m ^{-3 (a)}	Notes		
	1 hour	215				
Sulphur dioxide (SO ₂)	24 hours	57				
	1 year		4			
Nitrogen dioxide (NO ₂)	1 hour	1	164	Numerically equivalent to the		
Nitrogen dioxide (NO ₂)	Annual		31	AAQ NEPM (b) standards and		
Particulates (as PM ₁₀)	24 hours	50		goals		
rafficulates (as Fivi ₁₀)	1 year	25				
Particulator (as DM)	24 hours		25			
Particulates (as PM _{2.5})	1 year		8			
Particulates (as TSP)	1 year		90			
Pollutant	Averaging	Crit	terion	Natas		
Pollutant	period	ppm ^(c)	mg·m ^{-3, (d)}	Notes		
	15 minutes	87	100	Numerically equivalent to the		
Carbon monoxide (CO)	1 hour	25 30		AAQ NEPM (b) standards and		
	8 hours	9	10	goals		

Notes: (a): micrograms per cubic metre of air

(b): National Environment Protection (Ambient Air Quality) Measure

(c): parts per million (10⁶)

(d): milligrams per cubic metre of air

Table 8 NSW EPA impact assessment criteria for principal and individual toxic pollutants

Pollutant	Avoracina mariad	Crite	erion	Notes	
Pollutant	Averaging period	ppm ^(a)	mg·m ^{-3 (b)}	Notes	
Polycyclic Aromatic Hydrocarbon	1 hour	n/a	0.0004		
(PAH) as benzo(a)pyrene	THOU	Tiya	0.0004		
Benzene (C ₆ H ₆)	1 hour	0.009	0.029		
Ethylbenzene (C ₈ H ₁₀)	1 hour	1.8	8.0		
Toluene (C ₇ H ₈)	1 hour	0.06	0.36	Odour	
Xylene (C ₈ H ₁₀)	1 hour	0.04	0.19	Odour	
Formaldehyde (CH ₂ O)	1 hour	0.018	0.02		

Notes: (a): parts per million (10⁶)

(b): milligrams per cubic metre of air

3.4. Cumberland Local Environmental Plan 2021

The Cumberland Local Environmental Plan 2021 (CLEP2021) came into effect on 5 November 2021 and provides the legislative framework for developments and land use within the Cumberland LGA. Specifically, the aims of the CLEP2021 are as follows:

- (aa) to protect and promote the use and development of land for arts and cultural activity, including music and other performance arts,
- (a) to provide a comprehensive planning framework for the sustainable development of land in Cumberland,
- (b) to provide for a range of land uses and development in appropriate locations to meet community needs,
- (c) to facilitate economic growth and employment opportunities within Cumberland,
- (d) to conserve and maintain the natural, built and cultural heritage of Cumberland,
- (e) to provide for community facilities and services in Cumberland to meet the needs of residents, workers and visitors,
- (f) to promote development that is environmentally sustainable.

It is noted that the CLEP2021 does not outline any specific requirements for the development of data centres with regard to air quality and correspondingly, potential air quality impacts would be managed under the requirements of the POEO Act, POEO CAR and the Approved Methods.

3.5. Cumberland Development Control Plan

The Cumberland Development Control Plan (DCP) 2021 provides guidance regarding the operation and design of developments within the Cumberland LGA to achieve the aims and objectives of the CLEP2021.

The objectives of the Cumberland DCP 2021 with reference to air quality include:

- "O1. Any machinery or processes used should not result in air pollution emissions that have a detrimental impact on the environment.
- O2. Potential adverse environmental, public health and amenity impacts from industrial developments must be adequately controlled...
- ...O9. Reduce the amount of greenhouse gas emissions...

Final

...O11. Ensure that satisfactory measures are incorporated to alleviate negative environmental impacts associated with industrial zones."

3.6. NSW Government Air Quality Planning

NSW EPA has formed a comprehensive strategy with the objective of driving improvements in air quality across the State. This comprises several drivers, including:

- **Legislation**: formed principally through the implementation of the POEO Act and the POEO CAR.

 The overall objective of the legislative instruments is to achieve the requirements of the National Environment Protection (Ambient Air Quality) Measure;
- Clean Air for NSW: The 10-year plan for the improvement in air quality;
- Inter-agency Taskforce on Air Quality in NSW: a vehicle to co-ordinate cross-government incentives and action on air quality;
- Managing Particles and Improving Air Quality in NSW; and
- Diesel and Marine Emission Management Strategy.

In regard to the relevance of the NSW Government's drive to maintain and improve air quality across the State and this AQIA, it is imperative that the Proposal would lead to the development of the NSW economy (in terms of activity and employment) and concomitantly not cause a detriment in air quality in achieving its objectives.

EXISTING CONDITIONS

The following information provides context around the location of sensitive receptor locations surrounding the Proposal site, the prevailing meteorology and air quality of the surrounding area and identifies other sources of air pollutants which have the potential to impact cumulatively with the Proposal.

4.1. **Surrounding Land Use Sensitivity**

The Proposal site is zoned as E4 General Industrial, pursuant to the Cumberland Local Environmental Plan 2021 (CLEP2021). The proposed use as a data centre is permissible with consent in the E4 General Industrial zone under CLEP2021.

The surrounding land use is comprised of additional E4 General Industrial zoning while other surrounding land zones include RE1 Public Recreation to the east and south and C2 Environmental Conservation further to the south of the Proposal site.

The closest residential dwelling is located on Hemingway Crescent, Fairfield, approximately 160 m to the south of the Proposal site.

4.2. **Sensitive Receptor Locations**

Air quality assessments typically use a desk-top mapping study to identify 'discrete receptor locations', which are intended to represent a selection of locations that may be susceptible to changes in air quality. In broad terms, the identification of sensitive receptors, refers to places at which humans may be present for a period representative of the averaging period for the pollutant being assessed.

The Approved Methods defines a sensitive receptor location to be:

'A location where people are likely to work or reside; this may include a dwelling, school, hospital, office or public recreational area'.

It is noted that the assessment criteria applied to particulates and sulphur dioxide (SO₂) (refer Table 7) are for a 24-hour averaging period, and as such the predicted impacts need to be interpreted at commercial and industrial receptor locations with care. It is considered to be atypical for a person to be at those locations for a complete 24-hour period and as such, the exposure risks associated with those pollutants at those locations would be over-estimated by adoption of those locations in the modelling assessment.

It is important to note that the selection of discrete receptor locations is not intended to represent a fully inclusive selection of all sensitive receptors across the study area. The location selected should be considered to be representative of its broader location and may be reasonably assumed to be representative of the immediate environs. In some instances, several viable receptor locations may be identified in a small area,

for example a school neighbouring a medical centre. In this instance the receptor closest to the potential sources to be modelled would generally be selected and would be used to assess the risk to other sensitive land uses in the area.

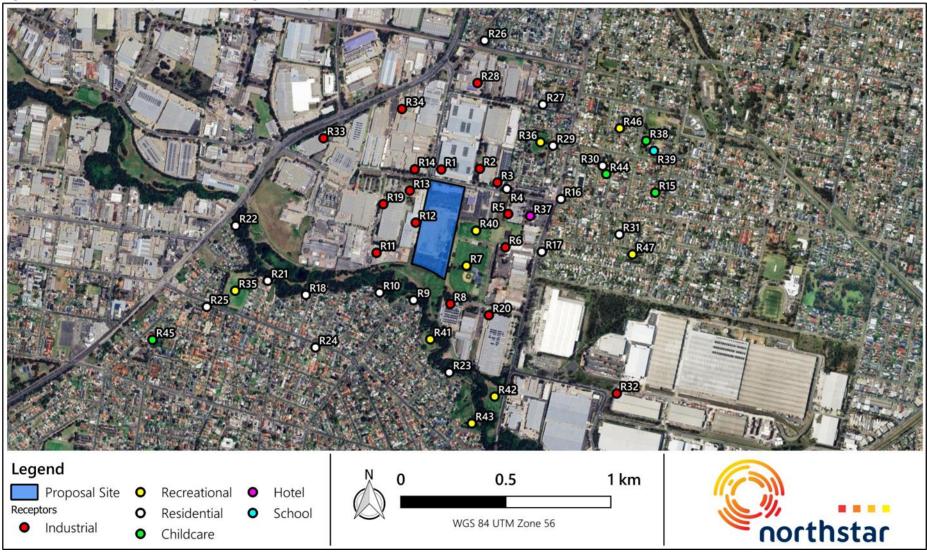
In addition to the identified 'discrete' receptor locations, the entire modelling area is gridded with 'uniform' receptor locations that are used to plot out the predicted impacts, and as such the accidental non-inclusion of a location that is sensitive to changes in air quality does not render the AQIA invalid, or otherwise incapable of assessing those potential risks.

In accordance with the requirements of the Approved Methods, several receptors have been identified and the receptors adopted for use within this AQIA are presented in Table 9 and illustrated in Figure 3.

Table 9 is not intended to represent a definitive list of sensitive land uses, but a cross section of available locations, that are used to characterise larger areas, or selected as they represent more sensitive locations, which may represent people who are more susceptible to changes in air pollution.

 Table 9
 Discrete sensitive receptor locations

Receptor	Discrete sensitive receptor locations	Land use	Coordinates (UTM)		
ID	Location		mE	mS	
R1	McCredie Road, Smithfield	Industrial	310 823	6 252 712	
R2	McCredie Road, Smithfield	Industrial	311 007	6 252 715	
R3	McCredie Road, Smithfield	Industrial	311 090	6 252 650	
R4	McCredie Road, Guildford West	Residential	311 135	6 252 619	
R5	McCredie Road, Guildford West	Industrial	311 142	6 252 500	
R6	Fairfield Road, Guildford West	Industrial	311 129	6 252 342	
R7	Guildford West Sportsground, Guildford West	Recreational	310 943	6 252 254	
R8	Foray Street, Yennora	Industrial	310 866	6 252 072	
R9	Hemingway Crescent, Fairfield	Residential	310 691	6 252 091	
R10	Solo Crescent, Fairfield	Residential	310 529	6 252 126	
R11	McCredie Road, Smithfield	Industrial	310 515	6 252 315	
R12	McCredie Road, Smithfield	Industrial	310 701	6 252 459	
R13	McCredie Road, Smithfield	Industrial	310 673	6 252 611	
R14	McCredie Road, Smithfield	Industrial	310 697	6 252 713	
R15	Palmer Street, Guildford Street	Childcare	311 842	6 252 602	
R16	McCredie Road, Guildford West	Residential	311 393	6 252 571	
R17	Fairfield Road, Guildford West	Residential	311 302	6 252 320	
R18	Chisholm Street, Smithfield	Residential	310 178	6 252 116	
R19	McCredie Road, Smithfield	Industrial	310 547	6 252 547	
R20	Fairfield Road, Yennora	Industrial	311 050	6 252 019	
R21	Vineyard Avenue, Smithfield	Residential	309 996	6 252 182	
R22	Low Street, Smithfield	Residential	309 844	6 252 444	
R23	Crosby Crescent, Fairfield	Residential	310 861	6 251 747	
R24	The Horsley Drive, Smithfield	Residential	310 224	6 251 865	
R25	The Horsley Drive, Smithfield	Residential	309 706	6 252 058	
R26	Warren Road, Woodpark	Residential	311 030	6 253 325	
R27	Pavesi Street, Guildford West	Residential	311 307	6 253 021	
R28	Sturt Street, Smithfield	Industrial	310 996	6 253 123	
R29	Karani Avenue, Guildford West	Residential	311 356	6 252 825	
R30	Queen Street, Guildford West	Residential	311 592	6 252 729	
R31	Phillip Street, Guildford West	Residential	311 671	6 252 403	
R32	Dennistoun Avenue, Yennora	Industrial	311 659	6 251 646	
R33	Herbert Place, Smithfield	Industrial	310 262	6 252 861	
R34	Warren Road, Smithfield	Industrial	310 636	6 253 000	
R35	Smithfield Park, Smithfield	Recreational	309 841	6 252 135	
R36	Tom Uren Park, Guildford West	Recreational	311 296	6 252 842	
R37	Crown On McCredie, Guildford West	Hotel	311 246	6 252 491	
R38	Guildford West Children's Centre, Guildford West	Childcare	311 799	6 252 848	
R39	Guildford West Public School, Guildford West	School	311 836	6 252 801	



Receptor	Location	l and	Coordinates (UTM)	
ID	Location	Land use	mE	mS
R40	Guildford West Sportsground, Guildford West	Recreational	310 989	6 252 421
R41	Bernadette Park, Fairfield	Recreational	310 771	6 251 904
R42	Fairfield Road Park, Yennora	Recreational	311 077	6 251 632
R43	Cawarra Park, Fairfield	Recreational	310 968	6 251 504
R44	Little Lucy's Family Day Care, Guildford West	Childcare	311 609	6 252 690
R45	Smithfield Montessori Academy CCC, Smithfield	Childcare	309 447	6 251 901
R46	Helena St Reserve, Guildford West	Recreational	311 673	6 252 908
R47	Os Young Park, Guildford West	Recreational	311 734	6 252 308

Note: The requirements of this AQIA may vary from the specific requirements of other studies, and as such the selection and naming of receptor locations, may vary between technical reports. This does not affect or reduce the validity of those assumptions.

Figure 3 Sensitive receptors surrounding the Proposal site

Source: Northstar

4.3. Meteorology

The meteorology experienced within an area can govern the generation (in the case of wind-dependent emission sources), dispersion, transport, and eventual fate of pollutants in the atmosphere. The meteorological conditions surrounding the Proposal site have been characterised using data collected from surrounding Automatic Weather Stations (AWS) operated by Australian Government Bureau of Meteorology (BoM).

Three stations have been identified located proximate to the Proposal site. A summary of the identified AWS is provided in Table 10 below (listed by proximity).

Table 10 Details of meteorological monitoring surrounding the Proposal site

Site name	Source	Station #		ximate ation	Approximate distance
			mE	mS	(km)
Bankstown Airport AWS	ВоМ	066137	313 855	6 245 099	7.7
Horsley Park Equestrian Centre AWS	ВоМ	067119	301 708	6 252 298	9.0
Sydney Olympic Park AWS	ВоМ	066195	320 948	6 252 558	10.0

The Bankstown Airport AWS is noted to be the most proximate BoM operated AWS to the Proposal site, located approximately 7.7 km to the southeast of the Proposal site. As such, it is considered that data collected at Bankstown AWS is most likely to represent the conditions at the Proposal site, based upon its proximity.

Correspondingly, data acquired from Bankstown Airport AWS for the period between 2019 and 2023 (the most recent five years of complete data) have been analysed for use in this AQIA. The wind roses presented in Appendix D indicate that from 2019 to 2023, winds at Bankstown AWS show similar wind distribution patterns across the years assessed, with no predominant wind direction.

The majority of wind speeds experienced at Bankstown Airport AWS between 2019 and 2023 are generally in the range 0.5 meters per second (m·s⁻¹) to 8 m·s⁻¹ with the highest wind speeds (greater than 8 m·s⁻¹) occurring generally from south-easterly directions. Winds of this speed are rare and occur during 1.6 % of the observed hours during the years. Calm winds (less than 0.5 m·s⁻¹) are more common and occur during 20.8 % of hours on average across the years between 2019 and 2023.

An analysis of the correlation coefficients between each year for wind speed, wind direction and particulate matter data distribution was performed to select a representative year for the meteorological modelling (refer Appendix D). Following this analysis, the year 2021 was chosen as the most suitable for further assessment.

To provide a characterisation of the meteorology which would be expected at the Proposal site, a meteorological modelling exercise has also been performed. A summary of the inputs and outputs of the meteorological modelling assessment, including validation of those outputs is presented in Appendix D.

4.4. Background Air Quality

The air quality experienced at any location will be a result of emissions generated by natural and anthropogenic sources on a variety of scales (local, regional, and global). The relative contributions of sources at each of these scales to the air quality at a location will vary based on a wide number of factors including the type, location, proximity and strength of the emission source(s), prevailing meteorology, land uses and other factors affecting the emission, dispersion, and fate of those pollutants.

When assessing the impact of any particular source of emissions on the potential air quality at a location, the impact of all other sources of an individual pollutant, should also be assessed. These 'background' (sometimes called 'baseline') air quality conditions will vary depending on the pollutants to be assessed and can often be characterised by using representative air quality monitoring data.

The Proposal site is located proximate to two air quality monitoring stations (AQMS) operated by NSW Department of Climate Change, Energy, the Environment and Water (NSW DCCEEW). These locations (listed by proximity) are summarised in Table 11.

Table 11 Proximate NSW DCCEEW AQMS relative to the Proposal site

AQMS location	Dates of	Distance to			Measu	ırement	ts		
AQIVIS IOCATION	operation	Proposal site (km)	PM ₁₀	PM _{2.5}	TSP	NO ₂	со	SO ₂	O ₃
Parramatta North	2017-present	6.8	✓	✓	×	✓	✓	✓	✓
Prospect	2007-present	7.2	✓	✓	×	✓	✓	✓	✓
Chullora	2002-present	9.5	✓	✓	×	✓	✓	✓	✓
Liverpool	1988-present	9.9	✓	✓	×	✓	✓	×	✓

The closest active AQMS is noted to be located at Parramatta North and is generally considered to be the monitoring location most reflective of the conditions at the Proposal site. Correspondingly, given its proximate distance to the Proposal site and availability of data, air quality monitoring data collected at Parramatta North AQMS for the year 2021 (corresponding with the selected meteorological data [refer Section 4.3]) have been adopted for use in this AQIA.

Appendix E provides a detailed assessment of the background air quality monitoring data used in this AQIA.

Given the wind distributions and PM concentrations across the years examined, data for the year 2021 has been selected as being appropriate for further assessment, as it best represents the general trend across the five-year period studied. Reference should be made to Appendix D for further details.

It is noted that none of the AQMS identified in Table 11 monitor total suspended particulate (TSP) which is of relevance to the expected emissions from the Proposal. Other sources of data have been adopted to allow representation of the TSP environment in the area surrounding the Proposal site, and a full discussion is provided in Appendix E.

It is noted that a number of pollutants assessed as part of this AQIA are not routinely monitored at AQMS locations in NSW as follows:

- PAH;
- Benzene (C₆H₆);
- Formaldehyde (CH₂O);
- Toluene (C₇H₈); and
- Xylene (C₈H₁₀).

For the purposes of this assessment, it has been assumed that background concentrations of the abovementioned pollutants are negligible. In any case, section 7 of the Approved Methods only requires the assessment of the 99.9th percentile incremental impacts for the pollutants outlined above.

It is noted that although impacts of ozone (O_3) have not been considered in this assessment, O_3 data observed at Parramatta North AQMS have been adopted to assist in calculating the conversion of the results of the dispersion modelling assessment (NO_X to NO_2) (refer Section 5.2.6).

It is additionally noted that Parramatta North AQMS recorded PM_{2.5} concentrations above the NEPM AAQ standard on three days in 2021 driven by extensive hazard reduction burning performed north of Sydney (NSW DPE, 2023).

The AQIA has been performed to assess the contribution of the Proposal to the air quality of the surrounding area. A full discussion of how the Proposal impacts upon local air quality is presented in Section 7 and Section 8.

A summary of the air quality monitoring data and assumptions used to produce this AQIA are presented in Table 12 (overleaf).

Table 12 Summary of background air quality used in the AQIA

Pollutant	Averaging period	Units	Measured value	Notes
Particles (as TSP) (derived from PM ₁₀)	Annual	μg·m ⁻³	35.1	Estimated on a TSP:PM ₁₀ ratio of 2.0551:1
Particles (as PM ₁₀)	24-hour	μg·m ⁻³	Daily Varying	The maximum 24-hour PM_{10} concentration in 2021 was 42.5 $\mu g.m^{-3}$
	Annual	μg·m ⁻³	17.1	Annual average in 2021
Particles (as PM _{2.5})	24-hour	μg·m ⁻³	Daily Varying	The maximum 24-hour PM _{2.5} concentration in 2021 was 27.4 μg.m ⁻³
	Annual	μg·m ⁻³	6.6	Annual average in 2021
Nitrogen dioxide	1-hour	μg·m ⁻³	Hourly varying	The maximum 1-hour NO_2 concentration in 2021 was 96.4 μ g ⁻³
(NO ₂)	Annual	μg·m ⁻³	15.2	Annual average in 2021
	15-minute	mg·m⁻³	1.8	Calculated from 1-hr data
Carbon monoxide (CO)	1-hour	mg·m⁻³	1.4	Maximum 1-hr average in 2021
(CO)	8-hour	mg·m⁻³	1.1	Maximum 8-hr average in 2021
Sulphur dioxide	1 hour	µg·m⁻³	42.9	Maximum 1-hr average in 2021
(SO ₂)	24-hour	μg·m ⁻³	8.6	Maximum 24-hr average in 2021

Note: Reference should be made to Appendix E

These data indicate that whilst air quality in the area generally achieved the relevant criteria, exceedances of the short-term PM_{25} criterion were measured in the assessment year of 2021.

4.5. Topography

The elevation at the Proposal site is approximately 20 m Australian Height Datum (AHD) (refer Figure 1).

The topography between the Proposal site and identified sensitive receptor locations is uncomplicated (from an AQIA perspective) and is relatively consistent with elevation variances of less than 15 m within the immediate locality. Nonetheless, the influence of topography has been included in the dispersion modelling assessment as described in Section 5.2.1.3.

4.6. Potential for Cumulative Impacts

Cumulative impacts are required to be considered as part of the guidance provided in the Approved Methods, and may occur when similar air quality impacts may be experienced at receptor locations from different emission sources. The cumulative (additive) impacts of those separate emissions should be assessed in aggregate against the criteria provided in the Approved Methods.

A number of developments have been identified proximate to the Proposal site that may result in cumulative impacts with the Proposal at surrounding land uses as presented in Table 13. It is noted that none of the identified developments are currently operating as they have either only been recently approved or are presently under assessment. Table 13 includes approved facilities as well as developments currently under assessment.

It is noted that given none of the developments identified in Table 13 were operational in the selected assessment year of 2021, potential emissions resulting from those developments are not captured in the background air quality monitoring data (refer Section 4.4). Correspondingly, a review of the documents associated with the application references provided on the NSW Major Projects website³ has been performed to better understand the potential air quality impacts resulting from the identified developments. The review found that air quality assessments have been performed for the following developments:

- Smithfield Recycling Centre (Northstar, 2022);
- Woolworths Distribution Centre (Northstar, 2021); and
- Cobra Waste Solutions (Benbow, 2022).

Given that publicly available air quality assessments could not be found associated with Smithfield Battery Energy Storage or the Waste Transfer Station, a quantitative assessment of potential cumulative impacts with the Proposal at surrounding land uses cannot be performed as part of this AQIA. However, potential cumulative impacts would be anticipated to be minimal, given the likely air emission profile, and magnitude of emissions associated with those developments.

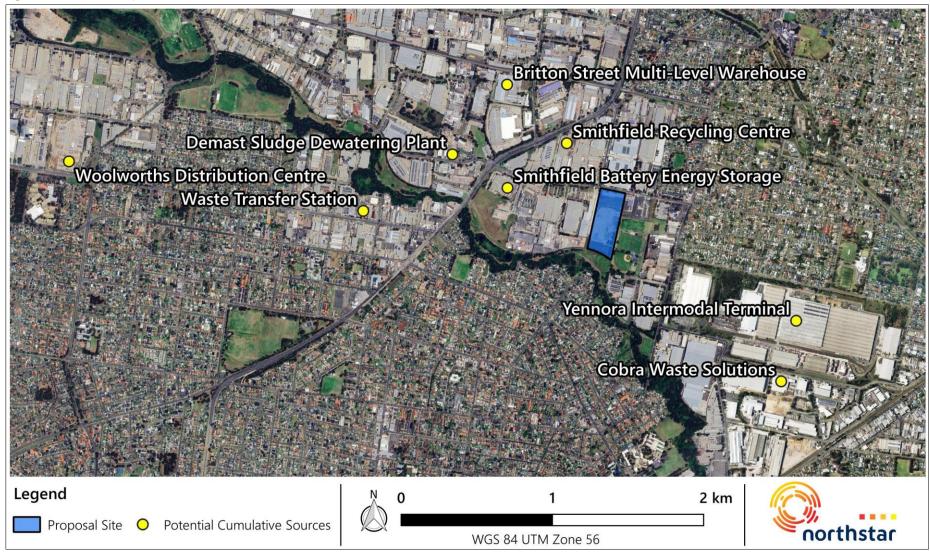
With reference to Woolworths Distribution Centre, it is noted that the development is located approximately 3.5 km to the west of the Proposal site. Based on Northstar's experience in assessing air quality impacts generated from data centres, it is considered highly unlikely that cumulative impacts from the Woolworths Distribution Centre and the Proposal would occur at proximate receptors and as such, an assessment of cumulative impacts has not been performed within this AQIA.

Additionally, it is noted that the air quality assessments performed for Smithfield Recycling Centre (Northstar, 2022) and Cobra Waste Solutions (Benbow, 2022) only assessed emissions of PM at nearby receptor locations. Northstar's experience indicates that the primary pollutant of concern associated with the operation of backup diesel generators is generally NO_x, while air quality impacts relating to PM are typically minor. Correspondingly, it is considered that an assessment of cumulative PM impacts with Smithfield Recycling Centre and Cobra Waste Solutions is not necessary and has not been considered further as part of this AQIA.

Additionally, with regard to the operation of the Proposal, the potential for cumulative impacts would only occur in the event of periodic generator testing and / or power outage. At all other times the air emissions from the operation of the Proposal would be negligible.

³ https://www.planningportal.nsw.gov.au/major-projects

 Table 13
 Identified potential cumulative sources


Site	Development application reference	Development description	Decision	Decision date	Distance to Proposal site (km)
Smithfield Recycling Centre – 132 - 144 Warren Road, Smithfield	SSD-19425495	Use of an existing warehouse (operating 24 hours 7 days a week) to receive up to 150,000 tonnes per annum of domestic and commercial recyclable materials and sort these materials into categories for transportation to dedicated reprocessing facilities	Approved	20/12/24	0.4
Smithfield Battery Energy Storage System – 6 Herbert Place, Smithfield	DA94/165-Mod-3	Removal of disused combined cycle gas turbine infrastructure including the steam turbine generator and four cell cooling towers. Installation and operation of new replacement of cooling system.	Approved	09/04/2024	0.6
250 Victoria Street, Wetherill Park (Woolworths WDC Wetherill Park	SSD-15221509	Construction and operation of a warehouse and distribution facility in Wetherill Park for handling chilled and fresh products	Awaiting determination (response to submissions stage)	NA	3.5
Cobra Waste Solutions Resource Recovery Facility	SSD-9320662	Operation of a Resource Recovery Facility to process up to 150,000 tonnes per annum of general solid waste (non-putrescible) consisting of construction and demolition waste and commercial and Industrial waste.	Approved	17/11/2023	1.4
68 Victoria Street, Smithfield	PPSSWC-390	Waste or resource transfer station	Under Assessment	NA	1.5
81 Byron Road, Yennora	SSD-59076719	The project seeks approval to facilitate the future transformation of the current facility into a modern multistorey warehouse and distribution facility. It is currently at the EIS preparation stage. Through this application, the applicant seeks to amend the existing consent under DA 264-09-01.	Preparation of EIS.	NA	8.0

Site	Development application reference	Development description	Decision	Decision date	Distance to Proposal site (km)
15-21 Britton Street & Amp; 28-54 Percival Road, Smithfield	SSD-67368956	Demolition of on-site structures, construction and 24/7 operation of a multi-level warehouse and distribution centre, comprised of 3 buildings connected by hardstand, 2-3 storeys in height, gross floor area of 108,896 m2, and ancillary offices.	Awaiting Determination (response to submissions stage)	NA	0.7
7 Long Street, Smithfield	SSD-72775222	Upgrade to an existing Sludge Dewatering Plant to increase the processing capacity from 46,720 tpa of drill mud to 300,000 tpa of sludge, groundwater, GSW soils, virgin excavated natural material (VENM) and excavated natural material (ENM).	Preparation of EIS	NA	1.0

Figure 4 Identified potential cumulative sources

Source: Northstar

METHODOLOGY

This report provides a qualitative assessment of dust impacts (soiling and human health) during the construction phase, adapted from (IAQM, 2024), and a quantitative assessment aligned with the Approved Methods for evaluating operational phase air quality impacts.

5.1. Construction Phase

Construction phase activities have the potential to generate short-term emissions of particulates. Generally, these are associated with uncontrolled (or 'fugitive') emissions and are typically experienced by neighbours as amenity impacts, such as dust deposition and visible dust plumes, rather than associated with health-related impacts. Localised engine-exhaust emissions from construction machinery and vehicles may also be experienced but given the scale of the proposed works, fugitive dust emissions would have the greatest potential to give rise to downwind air quality impacts.

Modelling of dust from construction Proposals is generally not considered appropriate as there is a lack of reliable emission factors from construction activities upon which to make predictive assessments, and the rates would vary significantly, depending upon local conditions. In lieu of a modelling assessment, the construction-phase impacts associated with the Proposal have been assessed using a risk-based assessment procedure. The advantage of this approach is that it determines the activities that pose the greatest risk, which allows the Construction Environmental Management Plan (CEMP) to focus controls to manage that risk appropriately and reduce the impact through proactive management.

For this assessment, Northstar has adapted the *Guidance on the Assessment of Dust from Demolition and Construction* published by the Institute of Air Quality Management (IAQM, 2024) in the United Kingdom. The IAQM construction phase assessment approach is commonly used for evaluating fugitive dust and particulate matter emissions from construction activities in development projects across NSW and Australia. Reference should be made to Appendix C for the methodology.

Briefly, the adapted method uses a six-step process for assessing dust impact risks from construction activities, and to identify key activities for control as outlined in Appendix C.

5.2. Operation Phase

5.2.1. Dispersion Modelling Approach

The air emissions assessment for the operational phase of the Proposal has utilised quantitative dispersion modelling techniques. This section outlines the approach taken in the AQIA for the operational phase of the Proposal.

5.2.1.1. Dispersion Model

A dispersion modelling assessment has been performed using the NSW EPA approved CALPUFF Atmospheric Dispersion Model. CALPUFF is a Lagrangian Gaussian (steady-state) plume dispersion model, recognised in the Approved Methods as a widely accepted model for regulatory applications in NSW. It is used to predict pollutant concentrations from various sources typically found at industrial facilities.

The CALPUFF model uses hourly meteorological data to define conditions for plume rise, transport, diffusion, and deposition. It estimates concentrations or deposition values for each source-receptor combination on an hourly basis and calculates user-selected short-term averages. CALPUFF also accounts for local terrain, making it well-suited for modelling complex terrains, including slope flows, valley flows, terrain blocking, and kinematic effects.

Since most air quality standards are based on averages or percentiles, CALPUFF enables further analysis of results for comparison. The CALPUFF-percent post-processing utility calculates the maximum concentration of a pollutant at a specific percentile over a given period, across all receptors. This percentile approach helps omit unusual short-term meteorological events that may cause elevated concentrations, providing a more accurate representation of likely average pollutant concentrations over the averaging period.

Table 14 provides the model input configuration to assess the impact of generator emissions from the Proposal, in consideration of the Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the 'Approved Methods for the Modelling and Assessments of Air Pollutants in NSW, Australia' (Barclay & Scire, 2011).

Table 14 General model parameters for CALPUFF dispersion modelling

Model parameter	Input
Model mode	CALPUFF Refined Mode
Model Mode	CALMET No-Observations (No-Obs) Mode
Meteorological data	Prognostic Data (TAPM)
Terrain topography	SRTM3
Model / Grid domain size	10 km × 10 km × 4 km
Grid resolution / spacing	0.1 km

(Barclay & Scire, 2011) recommend using CALMET No-Obs mode for regulatory screening when good-quality gridded prognostic meteorological data are available, which has been applied in the dispersion modelling process.

Given the variable topography, the terrain radius of influence was set at 1.55 km, with a minimum of 0.1 km. Terrain data with a 3 arc-second resolution (approximately 90 m) were used, in consideration of (Barclay & Scire, 2011). The dispersion model was run over a large grid ($10 \text{ km} \times 10 \text{ km}$) at ground level, encompassing the nearest sensitive receptors (see Section 4.2), covering all potentially impacted nearby land uses.

5.2.1.2. Meteorological Modelling

Section 4 of the Approved Methods requires one-year of site-specific meteorological data or site-representative meteorological data, in the absence of site-specific data, to be used for dispersion modelling.

The 3-D meteorological dataset was derived using gridded prognostic data generated from The Air Pollution Model (TAPM, v 4.0.5) as developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), in conjunction with CALMET (refer Appendix D). Section 4.5 of the Approved Methods further identifies TAPM as a commonly used prognostic meteorological model in NSW.

TAPM predicts wind speed and direction, temperature, pressure, water vapour, cloud, rainwater and turbulence. The program allows the user to generate synthetic observations by referencing databases (covering terrain, vegetation and soil type, sea surface temperature and synoptic scale meteorological analyses) which are subsequently used in the model input to generate site-specific hourly meteorological observations at user-defined levels within the atmosphere.

CALMET is a meteorological model that develops wind and temperature fields on a three-dimensional gridded modelling domain. Associated two-dimensional fields such as mixing height, surface characteristics, and dispersion properties are also included in the file produced by CALMET. The interpolated wind field is then modified within the model to account for the influences of topography, as well as differential heating and surface roughness associated with different land uses across the modelling domain. These modifications are applied to the winds at each grid point to develop a final wind field and thus the final wind field reflects the influences of local topography and current land uses.

Further discussion on the meteorological model configuration and input parameters are provided in Appendix D.

5.2.1.3. Terrain Effects

The CALPUFF model incorporates terrain information with heights being applied to all receptors and sources. In order to account for the potential influence on pollution dispersion and varying receptor elevations across the modelling domain, a gap filled and filtered (vegetation and obstacles removed) topography file with 3 second resolution (approximately 90 m) derived from the Shuttle Radar Topography Mission (SRTM) data was obtained from Geoscience Australia and was processed for use in CALPUFF.

5.2.1.4. Building Downwash

For dispersion modelling assessments, the influence of surrounding buildings on emission transport is a material consideration. Nearby buildings can create turbulence and a building wake that affect pollutant

dispersion, particularly through a phenomenon known as building downwash. The ratio of stack height to building height also impacts this effect; if the stack is significantly taller than the building, downwash is minimal.

Section 5.3 of the Approved Methods outlines the following requirements for determining which buildings to consider within a dispersion modelling assessment:

"The location and dimensions of buildings located within a distance of 5L (where L is the lesser of the height or width of the building) from each release point for buildings with a height greater than 0.4 times the stack height..."

The Building Profile Input Program – Plume Rise Model Enhancements (BPIP-PRIME) uses building heights and corner locations near the stack to simulate effective dimensions. The BPIP-PRIME downwash algorithm computes these dimensions in ten-degree intervals, allowing CALPUFF to assess the impact on plume dispersion and ground-level concentrations. While simplified, this building geometry offers a reasonable estimate of how structures disrupt wind flow nearby.

Therefore, to analyse downwash effects from point sources mimicking air emissions, the buildings surrounding the Proposal site were incorporated into the CALPUFF model.

With reference to the requirements outlined in the Approved Methods, Figure 5 illustrates the locations of the buildings included in the BPIP-PRIME model for downwash calculations, which are subsequently incorporated into the CALPUFF dispersion modelling process. Also shown are the emission discharge points for each scenario modelled (refer Section 5.2.2).

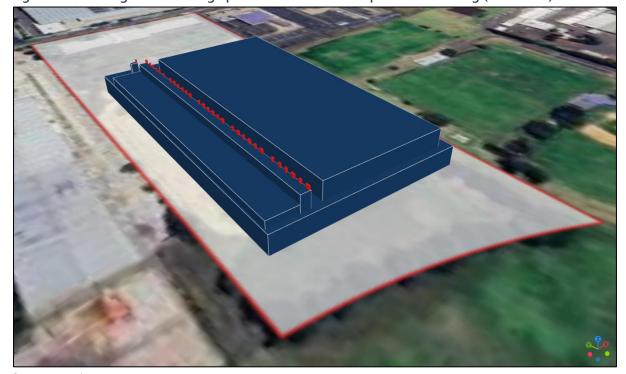
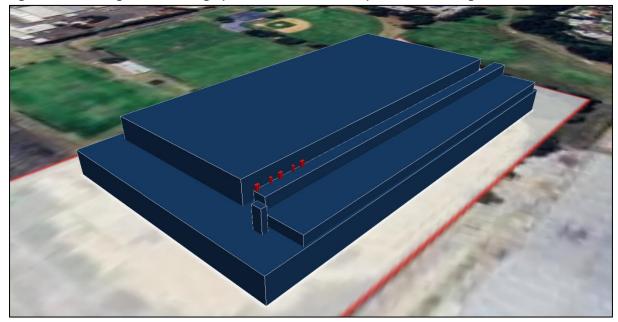



Figure 5 Buildings and discharge points considered in dispersion modelling (Scenario 1)

Source: Northstar

Figure 6 Buildings and discharge points considered in dispersion modelling (Scenario 2)

Source: Northstar

5.2.2. Modelling Scenarios

The following modelling scenarios have been completed to determine the potential impact under the anticipated operational conditions of the emergency standby generators.

- Scenario 1 justified worst case scenario Operating all 68 no. generators at 100 % load at the Proposal site.
 - This is an unlikely scenario which would result from catastrophic failure in the electricity supply system. However, given that the Proposal includes up to 68 no. generators, this AQIA has assessed the potential impact of those generators operating concurrently.
 - Each generator has been modelled as operating for all 8 760 hours of the year. Should such a catastrophic failure in the electricity supply system occur, this is likely to be for a period of 10 to 15 minutes, and therefore the modelling presents a highly conservative assessment of the potential impacts.
 - Given that the likely up-time of the generators would be short-term in nature, only assessment of impacts against short-term criteria has been performed, and no assessment against annual average criteria is presented, as the results would be essentially meaningless.
 - This AQIA provides context around how likely any exceedances of air quality criteria would be, given the likelihood of such catastrophic failure.
- Scenario 2 realistic operations (maintenance testing) The anticipated testing schedule is 2 no. generators operating at 100 % load for each operating hour and 6 no generators operating at 0 % load, as representative of the generator testing regime to be performed at the Proposal site.

To provide flexibility in the operation of the Proposal, modelling has been performed assessing the potential impact of testing eight generators concurrently.

- This is a scenario which would regularly occur, as detailed in Table 5 whereby 2 no. 2.5 MW generators at the Proposal site may be tested at any one time, at 100% load. For the purposes of providing flexibility in the Proposal operation, eight generators have been modelled to be tested at any one time at 100 % load, between the hours of midnight and midnight (24-hours). As previously noted, the testing program is likely to be performed between the hours of 7:00 am and 6:00 pm (8:00 am to 6:00 pm Sundays and Public Holidays), although dispersion modelling results are presented for the full 24-hour period, and for eight generators to provide assurances that air quality impacts are not a constraint to the duration of the testing program.
- The generators assumed to be tested at one time (for the purposes of this AQIA) are shown in Figure 6. A sensitivity test was previously undertaken to identify the general location of generators that would result in the highest impacts at surrounding receptors. Generators located to the north-west of the Proposal site were subsequently selected for detailed assessment based on the outcome of this test. The impacts associated with these generators are considered to provide an appropriate approximation of potential maximum impacts on surrounding sensitive receptors.
- While the generator layout has since been revised, no further sensitivity testing has been undertaken. The selected scenario remains reasonable and suitably conservative, noting that generator testing is expected to occur within a confined area of the development (e.g., within the same level or zone), rather than being distributed across the full site.

5.2.3. Generator Emission Rates and Source Characteristics

A summary of the standby generator stack design components used to model each scenario is provided in Table 15. Details of the technical specifications for the standby generators are provided in Appendix F.

Air pollutant emission concentrations for both MTU 20V 4000 DS3100 and MTU 16V 2000 DS1100 generators are provided in Appendix F and summarised in Table 15.

The locations of the modelled emissions sources at the Proposal site under Scenario 1 and Scenario 2 are illustrated in Figure 5 and Figure 6 (refer Section 5.2.1.4).

Table 15 Back-up generator emissions and stack parameters

Parameter	Units	Scen (Justified v	Scenario 2 (Realistic case)	
		Emergency	Maintenance testing	
Hour start	Hr	00	00:	00:00
Hour end	Hr	23	:00	23:00
% load	%	10	00	100
Emergency generator model		MTU 20V4000DS3100	MTU 16V2000DS1100	MTU 20V4000DS3100
Number of generators active	no.	67	1	8
Diesel consumption rate (per gen)	L∙hr ⁻¹	618	237	618
Power	kW	2 670	979	2 670
Stack height	m AGL	25.7	25.7	25.7
Stack diameter	mm	600	600	600
Stack CSA	m ²	0.283	0.283	0.283
Actual discharge rate	Am³⋅s ⁻¹	8.0	3.35	8.0
Exit temperature	°C	570	530	570
Exit velocity	m·s⁻¹	28.3	11.8	28.3
Generator emission specification				
NO _x	g·kWh ⁻¹	13.46	7.23	13.46
CO	g·kWh ⁻¹	1.06	0.55	1.06
TVOC	g·kWh ⁻¹	0.21	0.14	0.21
PM	g·kWh ⁻¹	0.045	0.046	0.045
Pollutant emission rates				
NO _X ^(a)	g·s ⁻¹	9.98E+00	1.97E+00	9.98E+00
CO (a)	g·s ⁻¹	7.90E-01	1.50E-01	7.90E-01
TVOC ^(a)	g·s ⁻¹	1.56E-01	3.81E-02	1.56E-01
PM (PM ₁₀ and PM _{2.5}) ^{(a)(d)}	g·s ⁻¹	3.34E-02	1.25E-02	3.34E-02
SO ₂ (c)	g·s ⁻¹	7.96E-07	2.80E-07	7.96E-07
Benzene (b)	g·s ⁻¹	1.51E-03	3.69E-04	1.51E-03
Toluene (b)	g·s ⁻¹	5.45E-04	1.33E-04	5.45E-04
Xylene ^(b)	g·s ⁻¹	3.80E-04	9.29E-05	3.80E-04
PAH emission ^(b)	g·s ⁻¹	2.24E-08	5.48E-09	2.24E-08
Formaldehyde emission ^(b)	g·s ⁻¹	1.53E-04	3.75E-05	1.53E-04

Notes:

- (a): Emission rates based on values contained in technical specifications (refer Appendix E).
- (b): Emission rates based on emission factors from Table 43 of (NPI, 2008). Refer Section 5.2.4.
- (c): Based on sulphur content of fuel.
- (d): 100 % of PM is emitted as $PM_{2.5}$, and $PM_{2.5} = PM_{10}$.
- (e) Both assessment scenarios assume that each and every back-up generator assessed within the scenario is operating at 100 % load, consistent with the emission data within the technical specifications presented in Appendix F.

5.2.4. Speciated VOCs

The technical specification documents presented in Appendix F presents data for total VOCs, which includes a range of speciated VOCs. To appropriately factor the emissions for benzene, toluene and xylene, reference has been made to the emission factors (EF) presented in Table 43 of (NPI, 2008) which relate to stationary large (more than 450 kW) diesel engines and fuel consumption rates of between 513.3 L·hr⁻¹ and 256.0 L·hr⁻¹ respectively.

The emission factors for TVOC and the respective speciated VOCs have been factored to calculate the mass fractions of those species within TVOC. Table 16 presents the speciated VOC fraction assumptions that are used for this assessment. The impacts of odorants (toluene (C_7H_8) and xylene (C_8H_{10})) have been similarly assessed on a *pro-rata* basis as a fraction of TVOC as published in the NPI (NPI, 2008) multiplied by the measured source-specific TVOC emission rate.

Table 16 Speciated VOC fractions

Culastanaa	EF % (of TVOC)	EF g⋅s⁻¹			
Substance	(NPI, 2008)	MTU 20V4000G74F	MTU 16V2000DS1100		
TVOC	100 %	1.56E-01	3.81E-02		
Benzene	0.97 %	1.51E-03	3.69E-04		
Toluene (odour)	0.35 %	5.45E-04	1.33E-04		
Xylene (odour)	0.24 %	3.80E-04	9.29E-05		

5.2.5. Particle Size Fractions

In regard to particulates from diesel, virtually 100 % of diesel particles are less than 1 μ m in diameter (i.e. PM₁) and consequently particulates from diesel combustion are assessed as PM_{2.5}. In this AQIA, the emission rate of PM_{2.5} will be the same as PM₁₀, as all of the PM₁₀ particles are assessed as being \leq 2.5 μ m in diameter (PM_{2.5}).

5.2.6. NO₂ to NO₂ Conversion

Emissions of NO_X have been calculated, with subsequent ground-level concentrations predicted using dispersion modelling techniques. Given that NO_X is a mixture of NO_2 and nitric oxide (NO), conversion of NO_X predictions to NO_2 concentrations may be performed.

 NO_X from a combustion process will be emitted as NO and NO_2 . Over time and after the point of discharge, NO in ambient air will be transformed by secondary atmospheric reactions with atmospheric ozone (O_3) to form NO_2 , and this reaction often occurs at a considerable distance downwind from the point of emission,

and by which time the plume will have dispersed and diluted significantly from the concentration at point of discharge.

AQIAs need to account for the conversion of NO to NO₂ to enable a comparison against the air quality criteria for NO2. The Approved Methods outlines various methods of assessment, which range from the simple to the more detailed. The three methods outlined in the Approved Methods are briefly outlined below:

- Method 1 100 % conversion: the most conservative assumption is to assume that 100 % of the total NO_x emitted is discharged as NO₂, and that further reactions do not occur.
- Method 2 Ozone limiting method (OLM): this method uses contemporaneous ozone data to estimate that rate at which NO is oxidised to NO₂ hour-on-hour using an established relationship.
- Method 3 NO to NO₂ conversion using empirical relationship: an empirical relationship between NO and NO₂ may be used to derive 'steady state' relationships. A relationship has been developed by (Janssen, Van Wakeren, Van Duuren, & Elshout, 1988) associated with power plant plumes.

Section 8.1 of the Approved Methods outlines the approach to NO₂ assessment, which clearly indicates that each stage should be performed sequentially. That is, Method 1, Level 1 should be performed first and "if the impact assessment criteria are exceeded, a more refined assessment should be undertaken and/or additional management practices or emission controls applied'

If exceedances are predicted, then Method 1, Level 2 should be performed, with the same assessment of the potential for exceedance of the 1-hour NO₂ criterion applied. The process then continues through Method 2 (Level 1 and Level 2), and Method 3 (Level 1 and Level 2).

This AQIA has used Method 3 to approximate the conversion of NO_x to NO₂, in accordance with the empirical equation described in the Approved Methods:

$$NO_2 / NO_x = A(1 - \exp(-\alpha x))$$

Where:

x = distance (km) from the source

A and α are classified according to O₃ concentration, wind speed and season, with (Janssen, Van Wakeren, Van Duuren, & Elshout, 1988) providing values for A and α .

At each receptor, the hourly varying NO_2 / NO_x relationship has been calculated, based on the season, hourly varying O₃ concentration, and wind speed. Results are presented in Section 7.1.2 and 7.2.2 for the maximum predicted incremental NO_x / NO₂ concentration and the maximum predicted cumulative NO₂ concentration using the relevant NO_x/NO₂ conversion method(s)..

5.2.7. Short Term Pollutant Concentrations

With reference to criteria air pollutants with sub-hourly criteria (CO, refer Section 3.3), hourly dispersion model outputs have been adjusted using the following Power Law adjustment⁴:

$$C_{p,t} = C_{p,60} \left[\frac{60}{t} \right]^{0.2}$$

Where:

 $C_{p,t}$ = concentration of pollutant (p) at averaging time (mins) (t) $C_{p,60}$ = concentration of pollutant (p) at averaging time (60 mins)

t = time (mins)

⁴ http://www.epa.vic.gov.au/~/media/Publications/1551.pdf

CONSTRUCTION AIR QUALITY RISK ASSESSMENT

The methodology adapted by Northstar from the IAQM demolition and construction dust guidance (IAQM, 2024) has been used to assess construction phase risk. This approach utilises a six-step process to assess the risks associated with dust impact from construction activities (refer Appendix C). It considers receptor sensitivity and potential impact magnitude to identify key control measures, as detailed in Section 5.1.

6.1. Risk (Pre-Mitigation)

Given the sensitivity of the identified receptors is classified as low for dust soiling, and medium for health effects (as described in Appendix C), and the dust emission magnitudes for the various construction phase activities as presented in Appendix C, the resulting risk of air quality impacts (without mitigation) is as presented in Table 17.

Table 17 Risk of air quality impacts from construction activities

	Dust emission magnitude				Preliminary risk					
Sensitivity of Area	Demolition	Earthworks	Construction	Track-out	Const. Traffic	Demolition	Earthworks	Construction	Track-out	Const. Traffic
Dust soiling imp	acts									
Med.	N/A	Med.	Large	Large	Large	N/A	Med.	Med.	Med.	Med.
Human health impacts										
Low	N/A	Med.	Large	Large	Large	N/A	Low	Low	Low	Low

Note: Med. = Medium, N/A. = Not applicable

Table 17 summarises the risks, indicating that dust soiling impacts are associated with medium risks for all construction phase activities while human health impacts are associated with low risks for all construction phase activities if no mitigation measures were to be applied to control emissions.

6.2. Risk (Post Mitigation)

The adapted methodology emphasises the aim of preventing significant effects on receptors during construction activities through the implementation of effective mitigation measures. Experience demonstrates that achieving this goal is feasible. Considering the size of the Proposal site, the distance to sensitive receptors, and the nature of activities involved, residual impacts related to fugitive dust emissions from the Proposal are expected to be 'negligible' if the mitigation measures outlined in Appendix C are implemented appropriately.

OPERATIONAL AIR QUALITY IMPACT ASSESSMENT

This section presents the results of the dispersion modelling assessment and uses the following terminology:

- Incremental impact relates to the concentrations predicted as a result of the operation of the Proposal.
- **Cumulative impact** relates to the incremental concentrations predicted as a result of the operation of the Proposal PLUS the background (Bkg) air quality (refer Section 4.4).

The results are presented in this manner to allow examination of the likely impact of the facility in isolation and the contribution to air quality impacts in a broader sense.

In the presentation of results, the tables included shaded cells which represent the following:

Model prediction

Pollutant concentration /

deposition rate less than the
relevant criterion

Pollutant concentration /
deposition rate equal to, or greater
than the relevant criterion

7.1. Scenario 1 – Justified Worst-Case

The following presents the results of the modelling assessment under the assumptions of Scenario 1 (refer Section 4.2.2), with up to 68 no. emergency standby generators operating at 100 % load and consideration of the background pollutant concentrations (refer Section 4.4), where appropriate.

Results are presented in this section for short term criteria only (i.e. \leq 24 hours).

Note: care must be applied when assessing 24-hour average impacts as the likely duration of a power outage event is likely to be significantly less than 24-hours, and as such the assessment should be considered to be highly conservative (i.e. relevant to the operation of back-up generators for an entire 24-hour period).

Note: The assessment against annual average criteria is essentially meaningless, given that the generators would only be operational for a small number of hours, during the justified worst-case scenario. Operation of those generators over an entire year would not occur.

Assessment of potential impacts against annual average criteria is presented under Scenario 2 (realistic operations).

7.1.1. Particulate Matter

Results are presented in this section for the predictions of particulate matter (PM_{10} and $PM_{2.5}$) associated with Scenario 1. The averaging periods associated with the criteria for these pollutants is 24-hour as specified in

Final

Table 7. The emissions adopted for Scenario 1 reflect the operational profile of the Proposal over that averaging period (refer Section 5.2.2).

7.1.1.1. Maximum 24-Hour PM₁₀ and PM_{2.5} Concentrations

Table 18 presents the maximum 24-hour average PM_{10} and $PM_{2.5}$ concentrations predicted to occur at the nearest receptors, as a result of the assumptions under Scenario 1. No background concentrations are included within this table.

Table 18 Predicted maximum incremental 24-hour PM₁₀ and PM_{2.5} concentrations – Scenario 1

December	Maximum 24-hour average concentration (μg·m³)				
Receptor	PM ₁₀	PM _{2.5}			
Criterion	50	25			
Max. % of criterion	103.5	206.9			
R1	16.2	16.2			
R2	18.2	18.2			
R3	16.7	16.7			
R4	19.8	19.8			
R5	21.8	21.8			
R6	17.2	17.2			
R7	44.7	44.7			
R8	24.2	24.2			
R9	16.2	16.2			
R10	12.5	12.5			
R11	7.7	7.7			
R12	25.2	25.2			
R13	15.3	15.3			
R14	13.0	13.0			
R15	10.1	10.1			
R16	14.6	14.6			
R17	13.0	13.0			
R18	7.7	7.7			
R19	12.4	12.4			
R20	12.9	12.9			
R21	5.7	5.7			
R22	5.9	5.9			
R23	13.3	13.3			
R24	7.8	7.8			
R25	4.0	4.0			
R26	5.8	5.8			
R27	9.3	9.3			
R28	7.9	7.9			

-	Maximum 24-hour average concentration (μg·m ⁻³)				
Receptor	PM ₁₀	PM _{2.5}			
Criterion	50	25			
Max. % of criterion	103.5	206.9			
R29	10.9	10.9			
R30	12.2	12.2			
R31	8.0	8.0			
R32	5.2	5.2			
R33	11.8	11.8			
R34	8.7	8.7			
R35	4.7	4.7			
R36	11.6	11.6			
R37	19.2	19.2			
R38	11.0	11.0			
R39	10.5	10.5			
R40	51.7	51.7			
R41	17.2	17.2			
R42	11.7	11.7			
R43	10.3	10.3			
R44	12.3	12.3			
R45	3.4	3.4			
R46	10.8	10.8			
R47	7.1	7.1			

Note: care must be applied when assessing 24-hour average impacts as the likely duration of a power outage event is likely to be significantly less than 24-hours, and as such the assessment should be considered to be highly conservative (i.e. relevant to the operation of all back-up generators for an entire 24-hour period).

Table 18 indicates that the highest 24-hour average PM_{10} and $PM_{2.5}$ incremental concentrations related to the Proposal are predicted at receptor R40 (Guildford West Sportsground).

A contemporaneous analysis of the 24-hour PM_{10} and $PM_{2.5}$ data has been performed where each predicted incremental concentration is added to the corresponding monitored background concentration, in accordance with Section 11.2.3(b) of the Approved Methods.

Table 19 and Table 20 present the predicted maximum 24-hour average PM₁₀ and PM_{2.5} concentrations resulting from the operation of the Proposal through Scenario 1, with the corresponding background included for each day.

Results are presented in Table 19 and Table 20 for those receptors at which the greatest impacts have been predicted (see Table 18).

The left side of the tables show the predicted maximum cumulative impacts (typically the days with the highest regional background), and the right side shows the total predicted concentration on days with the highest predicted incremental concentrations respectively.

Note: care must be applied when assessing 24-hour average impacts as the likely duration of a power outage event is likely to be significantly less than 24-hours, and as such the assessment should be considered to be highly conservative (i.e. relevant to the operation of all back-up generators for an entire 24-hour period).

For PM_{10} , both the maximum cumulative impact (left-hand side of Table 19) and the maximum incremental impact (right-hand side of Table 19) are predicted at receptor R40. For $PM_{2.5}$, the maximum cumulative impact (left-hand side of Table 20) is predicted at receptor R7, while the maximum incremental impact (right-hand side of Table 20) is predicted at receptor R40.

Contour plots of the predicted incremental 24-hour PM_{10} concentrations associated with the Proposal are presented in Figure 7 to allow examination of the distribution of particulate matter in the area surrounding the Proposal.

The number of additional exceedances of the 24-hour PM_{10} and $PM_{2.5}$ criteria predicted at various receptors resulting from emergency generator operation is presented in Section 7.1.4. These values are discussed further in Section 8.2.

Table 19 Summary of contemporaneous 24-hour PM₁₀ concentrations – Scenario 1

	rerage i ivi ₁₀ cc	oncentration		24-hour average PM ₁₀ concentration			
(µg·m⁻³) – Receptor R40			Date	(µg	·m ⁻³) – Recept	or R40	
Incr.	Bkg.	Cumul.		Incr.	Bkg.	Cumul.	
42.0	31.4	73.4	27/05/2021	51.7	12.0	63.7	
46.8	25.8	72.6	6/08/2021	50.5	12.8	63.3	
37.7	33.6	71.3	4/06/2021	50.2	15.6	65.8	
40.5	29.4	69.9	5/07/2021	48.2	10.8	59.0	
30.6	35.3	65.9	5/08/2021	47.4	12.0	59.4	
50.2	15.6	65.8	15/04/2021	46.8	25.8	72.6	
51.7	12.0	63.7	14/05/2021	44.7	14.1	58.8	
50.5	12.8	63.3	10/04/2021	43.5	14.3	57.8	
26.8	34.7	61.5	13/05/2021	42.2	13.8	56.0	
47.4	12.0	59.4	24/04/2021	42.0	31.4	73.4	
	1ncr. 42.0 46.8 37.7 40.5 30.6 50.2 51.7 50.5 26.8	Incr. Bkg. 42.0 31.4 46.8 25.8 37.7 33.6 40.5 29.4 30.6 35.3 50.2 15.6 51.7 12.0 50.5 12.8 26.8 34.7	Incr. Bkg. Cumul. 42.0 31.4 73.4 46.8 25.8 72.6 37.7 33.6 71.3 40.5 29.4 69.9 30.6 35.3 65.9 50.2 15.6 65.8 51.7 12.0 63.7 50.5 12.8 63.3 26.8 34.7 61.5	Incr. Bkg. Cumul. 42.0 31.4 73.4 27/05/2021 46.8 25.8 72.6 6/08/2021 37.7 33.6 71.3 4/06/2021 40.5 29.4 69.9 5/07/2021 30.6 35.3 65.9 5/08/2021 50.2 15.6 65.8 15/04/2021 51.7 12.0 63.7 14/05/2021 50.5 12.8 63.3 10/04/2021 26.8 34.7 61.5 13/05/2021	Incr. Bkg. Cumul. Incr. 42.0 31.4 73.4 27/05/2021 51.7 46.8 25.8 72.6 6/08/2021 50.5 37.7 33.6 71.3 4/06/2021 50.2 40.5 29.4 69.9 5/07/2021 48.2 30.6 35.3 65.9 5/08/2021 47.4 50.2 15.6 65.8 15/04/2021 46.8 51.7 12.0 63.7 14/05/2021 44.7 50.5 12.8 63.3 10/04/2021 43.5 26.8 34.7 61.5 13/05/2021 42.2	Incr. Bkg. Cumul. Incr. Bkg. 42.0 31.4 73.4 27/05/2021 51.7 12.0 46.8 25.8 72.6 6/08/2021 50.5 12.8 37.7 33.6 71.3 4/06/2021 50.2 15.6 40.5 29.4 69.9 5/07/2021 48.2 10.8 30.6 35.3 65.9 5/08/2021 47.4 12.0 50.2 15.6 65.8 15/04/2021 46.8 25.8 51.7 12.0 63.7 14/05/2021 44.7 14.1 50.5 12.8 63.3 10/04/2021 43.5 14.3 26.8 34.7 61.5 13/05/2021 42.2 13.8	

These data represent the highest Cumulative Impact 24-hour PM_{10} predictions (outlined in red) as a result of the operation of the Proposal

These data represent the highest Incremental Impact 24-hour PM₁₀ predictions (outlined in blue) as a result of the operation of the Proposal.

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Table 20 Summary of contemporaneous 24-hour PM_{2.5} concentrations – Scenario 1

	24-hour av	verage PM _{2.5} co	oncentration		24-hour average PM _{2.5} concent				
Date	(μg·m⁻³) – Receptor R7			Date	(μg	or R40			
	Incr.	Bkg.	Cumul.		Incr.	Bkg.	Cumul.		
21/08/2021	37.5	27.4	64.9	27/05/2021	51.7	3.1	54.8		
20/04/2021	44.7	11.9	56.6	6/08/2021	50.5	7.3	57.8		
9/09/2021	44.0	5.6	49.6	4/06/2021	50.2	10.5	60.7		
22/08/2021	23.1	21.2	44.3	5/07/2021	48.2	6.9	55.1		
20/08/2021	28.3	14.3	42.6	5/08/2021	47.4	4.4	51.8		
26/07/2021	37.8	2.6	40.4	15/04/2021	46.8	7.9	54.7		
15/08/2021	22.6	16.9	39.5	14/05/2021	44.7	4.5	49.2		
12/06/2021	32.5	6.8	39.3	10/04/2021	43.5	5.5	49.0		
24/03/2021	37.3	1.2	38.5	13/05/2021	42.2	5.7	47.9		
14/04/2021	33.2	4.6	37.8	24/04/2021	42.0	15.0	57.0		
These data represent the highest Cumulative Impact			These data represent the highest Incremental Impact						
24-hour PM _{2.5}	24-hour PM _{2.5} predictions (outlined in red) as a result of				24-hour PM _{2.5} predictions (outlined in blue) as a result				
th	e operation	of the Proposal		of the operation of the Proposal.					

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Figure 7 Predicted maximum incremental 24-hour PM₁₀ impacts – Scenario 1

Source: Northstar

7.1.2. Nitrogen Dioxide

Results are presented in this section for the predictions of nitrogen dioxide (NO_2) under the assumptions of Scenario 1 (refer Section 5.2.2). The averaging period associated with the criterion for NO_2 is 1-hour as specified in Table 7. Note that impacts have not been compared with the annual average criterion for NO_2 as the generators would not be operating for an entire year, and the results would be meaningless.

Emissions of NO_X have been calculated with subsequent ground-level concentrations predicted using dispersion modelling techniques. Given that NO_X is a mixture of NO_2 and nitric oxide (NO), conversion of NO_X predictions to NO_2 concentrations may be performed. Within this assessment, the Janssen method (Method 3) has been adopted as outlined in Section 5.2.6.

The predicted maximum 1-hour average NO_2 concentrations resulting from the Proposal operations under Scenario 1 are presented in Table 21.

Table 21 Predicted 1-hour NO₂ concentrations – Scenario 1

Table 21 Treateded 1 Hours	Nitrogen dioxide (NO₂) concentration (µg·m⁻³)						
Receptor		1-hour average					
	Incr.	Bkg.	Cumul.				
Criterion		164					
Max % of criterion	512.6	23.8	528.8				
R1	165.4	26.7	192.0				
R2	256.4	10.3	266.6				
R3	283.2	10.3	293.5				
R4	290.9	6.2	297.1				
R5	325.0	26.7	351.6				
R6	335.0	18.5	353.4				
R7	446.5	10.3	456.8				
R8	252.3	10.3	262.5				
R9	185.6	16.4	202.0				
R10	191.6	4.1	195.7				
R11	174.5	6.2	180.6				
R12	82.4	22.6	105.0				
R13	94.6	< 0.1	94.6				
R14	151.2	28.7	179.9				
R15	840.7	26.7	867.3				
R16	424.6	26.7	451.2				
R17	406.1	18.5	424.6				
R18	249.1	6.2	255.3				
R19	137.3	18.5	155.8				
R20	346.6	2.1	348.7				
R21	264.2	8.2	272.4				

	Nitrogen dioxide (NO₂) concentration (μg·m⁻³)						
Receptor		1-hour average					
	Incr.	Bkg.	Cumul.				
R22	364.1	4.1	368.2				
R23	305.1	16.4	321.5				
R24	431.2	10.3	441.4				
R25	336.0	6.2	342.2				
R26	330.3	26.7	357.0				
R27	447.5	2.1	449.6				
R28	298.0	4.1	302.1				
R29	415.7	10.3	426.0				
R30	503.8	22.6	526.3				
R31	767.2	26.7	793.8				
R32	617.0	24.6	641.6				
R33	227.0	14.4	241.4				
R34	281.1	28.7	309.8				
R35	299.1	8.2	307.3				
R36	430.2	10.3	440.4				
R37	424.5	26.7	451.1				
R38	621.1	22.6	643.7				
R39	666.8	22.6	689.3				
R40	435.2	6.2	441.3				
R41	306.9	2.1	308.9				
R42	457.6	10.3	467.9				
R43	421.4	39.0	460.3				
R44	537.6	22.6	560.2				
R45	453.2	6.2	459.3				
R46	575.6	34.9	610.5				
R47	659.0	26.7	685.7				

Notes: Incr. – Incremental, Bkg. – Background, Cumul. – Cumulative.

The results indicate that predicted incremental concentrations of NO₂ under Scenario 1 are above the criteria at all surrounding receptor locations with the exception of receptors R9, R10, R12, R13, R14, and R19.

A contour plot of the predicted maximum 1-hour incremental NO₂ impact is presented in Figure 8.

The number of additional exceedances of the 1-hour NO_2 criterion predicted at each receptor resulting from emergency generator operation is presented in Section 7.1.4. These values are discussed further in Section 8.2.

Figure 8 Predicted maximum incremental 1-hour NO₂ impacts – Scenario 1

Source: Northstar

7.1.3. All Other Pollutants

The following presents the predicted ground level concentrations associated with Scenario 1 for all other pollutants assessed in this AQIA (refer Section 5.2.2).

Presented in Table 22 to Table 24 are the predicted concentrations of CO, SO_2 , PAHs, VOCs and CH_2O at varying averaging periods (\leq 24 hours) at the surrounding receptors.

Note: care must be applied when assessing 24-hour average impacts as the likely duration of a power outage event is likely to be significantly less than 24-hours, and as such the assessment should be considered to be highly conservative (i.e. relevant to the operation of all back-up generators for an entire 24-hour period).

The predicted cumulative concentrations for CO are below the relevant criteria for all averaging periods at all receptors as shown in Table 22.

The results presented in Table 21 indicate that predicted incremental impacts of SO_2 at all receptors are less than 0.1% of the relevant criteria for all averaging periods. The addition of background concentrations does not result in any exceedances at any receptor.

Results presented in Table 24 show no exceedances of the 1-hour criteria for benzene are predicted at any identified receptors. The maximum predicted impact for benzene is experienced at receptor R7 (15.7 % of the relevant criterion).

A contour plot of the predicted maximum 1-hour incremental benzene impact is presented in Figure 9.

Table 22 Predicted 15-minutes, 1-hour, and 8-hour average CO concentrations – Scenario 1

				monoxide		entration	(mg·m⁻³)		
Receptor	15-minute			1-hour			8-hour		
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
Criterion		100			30			10	
Max. % of criterion	3.1	1.8	4.9	7.9	4.7	12.6	19.3	11.0	30.3
R1	1.2	1.8	3.0	0.9	1.4	2.3	0.5	1.1	1.6
R2	1.3	1.8	3.1	1.0	1.4	2.4	0.7	1.1	1.8
R3	1.3	1.8	3.1	1.0	1.4	2.4	0.7	1.1	1.8
R4	1.3	1.8	3.1	0.9	1.4	2.3	0.7	1.1	1.8
R5	1.5	1.8	3.3	1.1	1.4	2.5	0.7	1.1	1.8
R6	1.4	1.8	3.2	1.1	1.4	2.5	0.8	1.1	1.9
R7	3.1	1.8	4.9	2.4	1.4	3.8	1.9	1.1	3.0
R8	1.4	1.8	3.2	1.1	1.4	2.5	0.7	1.1	1.8
R9	0.9	1.8	2.7	0.7	1.4	2.1	0.5	1.1	1.6
R10	0.7	1.8	2.5	0.5	1.4	1.9	0.4	1.1	1.5
R11	0.7	1.8	2.5	0.5	1.4	1.9	0.3	1.1	1.4
R12	1.4	1.8	3.2	1.0	1.4	2.4	0.7	1.1	1.8
R13	0.7	1.8	2.5	0.5	1.4	1.9	0.5	1.1	1.6
R14	1.1	1.8	2.9	0.8	1.4	2.2	0.5	1.1	1.6
R15	1.4	1.8	3.2	1.0	1.4	2.4	0.4	1.1	1.5
R16	1.2	1.8	3.0	0.9	1.4	2.3	0.6	1.1	1.7
R17	1.2	1.8	3.0	0.9	1.4	2.3	0.7	1.1	1.8
R18	0.4	1.8	2.2	0.3	1.4	1.7	0.3	1.1	1.4
R19	0.6	1.8	2.4	0.5	1.4	1.9	0.3	1.1	1.4
R20	1.2	1.8	3.0	0.9	1.4	2.3	0.6	1.1	1.7
R21	0.3	1.8	2.1	0.3	1.4	1.7	0.2	1.1	1.3
R22	0.5	1.8	2.3	0.4	1.4	1.8	0.2	1.1	1.3
R23	0.9	1.8	2.7	0.7	1.4	2.1	0.5	1.1	1.6
R24	0.6	1.8	2.4	0.5	1.4	1.9	0.3	1.1	1.4
R25	0.3	1.8	2.1	0.2	1.4	1.6	0.2	1.1	1.3
R26	0.7	1.8	2.5	0.6	1.4	2.0	0.3	1.1	1.4
R27	0.9	1.8	2.7	0.7	1.4	2.1	0.4	1.1	1.5
R28	0.8	1.8	2.6	0.6	1.4	2.0	0.4	1.1	1.5
R29	1.1	1.8	2.9	0.8	1.4	2.2	0.5	1.1	1.6
R30	1.0	1.8	2.8	0.8	1.4	2.2	0.4	1.1	1.5
R31	1.5	1.8	3.3	1.1	1.4	2.5	0.4	1.1	1.5
R32	0.9	1.8	2.7	0.7	1.4	2.1	0.3	1.1	1.4
R33	0.6	1.8	2.4	0.4	1.4	1.8	0.3	1.1	1.4
R34	1.1	1.8	2.9	0.8	1.4	2.2	0.4	1.1	1.5
R35	0.3	1.8	2.1	0.2	1.4	1.6	0.2	1.1	1.3
R36	1.2	1.8	3.0	0.9	1.4	2.3	0.5	1.1	1.6

	Carbon monoxide (CO) concentration (mg·m ⁻³)								
Receptor		15-minute		1-hour			8-hour		
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
R37	1.5	1.8	3.3	1.2	1.4	2.6	0.6	1.1	1.7
R38	1.0	1.8	2.8	0.8	1.4	2.2	0.4	1.1	1.5
R39	1.0	1.8	2.8	0.8	1.4	2.2	0.4	1.1	1.5
R40	3.2	1.8	5.0	2.4	1.4	3.8	1.8	1.1	2.9
R41	1.0	1.8	2.8	0.8	1.4	2.2	0.6	1.1	1.7
R42	0.9	1.8	2.7	0.7	1.4	2.1	0.4	1.1	1.5
R43	0.9	1.8	2.7	0.7	1.4	2.1	0.4	1.1	1.5
R44	1.1	1.8	2.9	0.8	1.4	2.2	0.5	1.1	1.6
R45	0.3	1.8	2.1	0.2	1.4	1.6	0.2	1.1	1.3
R46	1.0	1.8	2.8	0.8	1.4	2.2	0.4	1.1	1.5
R47	1.2	1.8	3.0	0.9	1.4	2.3	0.4	1.1	1.5

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Table 23 Predicted 1-hour and 24-hour SO_2 concentrations – Scenario 1

Criterion 215 57 Max. % of criterion < 0.1 20.0 20.0 < 0.1 15.1 11 R1 < 0.1 42.9 43.0 < 0.1 8.6 8 R2 < 0.1 42.9 43.0 < 0.1 8.6 8 R3 < 0.1 42.9 43.0 < 0.1 8.6 8 R4 < 0.1 42.9 43.0 < 0.1 8.6 8 R5 < 0.1 42.9 43.0 < 0.1 8.6 8 R6 < 0.1 42.9 43.0 < 0.1 8.6 8 R7 < 0.1 42.9 43.0 < 0.1 8.6 8 R8 < 0.1 42.9 43.0 < 0.1 8.6 8 R9 < 0.1 42.9 43.0 < 0.1 8.6 8 R10 < 0.1 42.9 43.0 < 0.1 8.6 8 R11 < 0.1 42.9	
Criterion 215 57 Max. % of criterion < 0.1 20.0 20.0 < 0.1 15.1 15 R1 < 0.1 42.9 43.0 < 0.1 8.6 8 R2 < 0.1 42.9 43.0 < 0.1 8.6 8 R3 < 0.1 42.9 43.0 < 0.1 8.6 8 R4 < 0.1 42.9 43.0 < 0.1 8.6 8 R5 < 0.1 42.9 43.0 < 0.1 8.6 8 R6 < 0.1 42.9 43.0 < 0.1 8.6 8 R7 < 0.1 42.9 43.0 < 0.1 8.6 8 R8 < 0.1 42.9 43.0 < 0.1 8.6 8 R9 < 0.1 42.9 43.0 < 0.1 8.6 8 R10 < 0.1 42.9 43.0 < 0.1 8.6 8 R11 < 0.1 42.9	
Criterion 215 57 Max. % of criterion < 0.1 20.0 20.0 < 0.1 15.1 15 R1 < 0.1 42.9 43.0 < 0.1 8.6 8 R2 < 0.1 42.9 43.0 < 0.1 8.6 8 R3 < 0.1 42.9 43.0 < 0.1 8.6 8 R4 < 0.1 42.9 43.0 < 0.1 8.6 8 R5 < 0.1 42.9 43.0 < 0.1 8.6 8 R6 < 0.1 42.9 43.0 < 0.1 8.6 8 R7 < 0.1 42.9 43.0 < 0.1 8.6 8 R8 < 0.1 42.9 43.0 < 0.1 8.6 8 R9 < 0.1 42.9 43.0 < 0.1 8.6 8 R10 < 0.1 42.9 43.0 < 0.1 8.6 8 R11 < 0.1 42.9	nul.
R1 < 0.1	
R2 < 0.1	5.2
R3 < 0.1	.7
R4 < 0.1	.7
R5 < 0.1	.7
R6 < 0.1	.7
R7 < 0.1	.7
R8 < 0.1	.7
R9 < 0.1	.7
R10 < 0.1	.7
R11 < 0.1	.7
R12 < 0.1 42.9 43.0 < 0.1 8.6 8 R13 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R13 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
	.7
	.7
R14 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R15 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R16 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R17 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R18 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R19 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R20 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R21 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R22 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R23 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R24 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R25 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R26 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R27 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R28 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R29 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R30 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R31 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R32 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R33 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R34 < 0.1 42.9 43.0 < 0.1 8.6 8	.7
R35 < 0.1 42.9 43.0 < 0.1 8.6 8	.,

	Sulphur dioxide (SO₂) concentration (µg·m⁻³)							
Receptor		1-hour		24-hour				
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.		
R36	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R37	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R38	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R39	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R40	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R41	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R42	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R43	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R44	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R45	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R46	< 0.1	42.9	43.0	< 0.1	8.6	8.7		
R47	< 0.1	42.9	43.0	< 0.1	8.6	8.7		

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Table 24 Predicted maximum incremental 1-hour PAH, benzene, and formaldehyde concentrations – Scenario 1 (Proposal only)

	dions Seeman				
		Maximum 1-ho	ur average concen	tration (mg·m ⁻³)	
Receptor	PAH	Benzene	Toluene (odour)	Xylene (odour)	Formaldehyde
Criterion	0.0004	0.029	0.36	0.19	0.02
Max. % of criterion	< 0.1	15.7	0.5	0.6	2.3
R1	2.67E-08	1.80E-03	6.49E-04	4.53E-04	1.83E-04
R2	2.90E-08	1.95E-03	7.05E-04	4.92E-04	1.98E-04
R3	2.91E-08	1.96E-03	7.08E-04	4.94E-04	1.99E-04
R4	2.71E-08	1.83E-03	6.59E-04	4.59E-04	1.85E-04
R5	3.25E-08	2.19E-03	7.91E-04	5.51E-04	2.23E-04
R6	3.09E-08	2.08E-03	7.52E-04	5.24E-04	2.12E-04
R7	6.76E-08	4.55E-03	1.64E-03	1.15E-03	4.62E-04
R8	3.01E-08	2.03E-03	7.31E-04	5.10E-04	2.06E-04
R9	1.86E-08	1.25E-03	4.51E-04	3.15E-04	1.27E-04
R10	1.55E-08	1.05E-03	3.78E-04	2.63E-04	1.06E-04
R11	1.46E-08	9.82E-04	3.54E-04	2.47E-04	9.97E-05
R12	2.97E-08	2.00E-03	7.22E-04	5.03E-04	2.03E-04
R13	1.50E-08	1.01E-03	3.65E-04	2.54E-04	1.03E-04
R14	2.34E-08	1.58E-03	5.70E-04	3.97E-04	1.60E-04
R15	2.94E-08	1.98E-03	7.15E-04	4.99E-04	2.01E-04
R16	2.51E-08	1.69E-03	6.11E-04	4.26E-04	1.72E-04
R17	2.57E-08	1.73E-03	6.26E-04	4.36E-04	1.76E-04
R18	8.98E-09	6.05E-04	2.18E-04	1.52E-04	6.14E-05
R19	1.40E-08	9.42E-04	3.40E-04	2.37E-04	9.57E-05
R20	2.58E-08	1.74E-03	6.26E-04	4.37E-04	1.76E-04
R21	7.43E-09	5.01E-04	1.81E-04	1.26E-04	5.09E-05
R22	1.11E-08	7.47E-04	2.70E-04	1.88E-04	7.59E-05
R23	1.97E-08	1.33E-03	4.79E-04	3.34E-04	1.35E-04
R24	1.32E-08	8.88E-04	3.21E-04	2.23E-04	9.02E-05
R25	6.91E-09	4.65E-04	1.68E-04	1.17E-04	4.73E-05
R26	1.62E-08	1.09E-03	3.94E-04	2.75E-04	1.11E-04
R27	1.89E-08	1.27E-03	4.60E-04	3.20E-04	1.29E-04
R28	1.74E-08	1.17E-03	4.24E-04	2.95E-04	1.19E-04
R29	2.29E-08	1.54E-03	5.57E-04	3.88E-04	1.57E-04
R30	2.20E-08	1.48E-03	5.35E-04	3.73E-04	1.51E-04
R31	3.18E-08	2.14E-03	7.72E-04	5.38E-04	2.17E-04
R32	2.05E-08	1.38E-03	4.98E-04	3.47E-04	1.40E-04
R33	1.28E-08	8.62E-04	3.11E-04	2.17E-04	8.76E-05
R34	2.35E-08	1.58E-03	5.72E-04	3.98E-04	1.61E-04
R35	7.03E-09	4.74E-04	1.71E-04	1.19E-04	4.81E-05

	Maximum 1-hour average concentration (mg·m⁻³)							
Receptor	PAH	Benzene	Toluene (odour)	Xylene (odour)	Formaldehyde			
R36	2.52E-08	1.70E-03	6.13E-04	4.27E-04	1.72E-04			
R37	3.31E-08	2.23E-03	8.05E-04	5.61E-04	2.26E-04			
R38	2.21E-08	1.49E-03	5.37E-04	3.74E-04	1.51E-04			
R39	2.27E-08	1.53E-03	5.51E-04	3.84E-04	1.55E-04			
R40	6.83E-08	4.60E-03	1.66E-03	1.16E-03	4.67E-04			
R41	2.16E-08	1.45E-03	5.25E-04	3.66E-04	1.48E-04			
R42	1.93E-08	1.30E-03	4.70E-04	3.28E-04	1.32E-04			
R43	1.88E-08	1.27E-03	4.58E-04	3.19E-04	1.29E-04			
R44	2.33E-08	1.57E-03	5.67E-04	3.95E-04	1.60E-04			
R45	6.63E-09	4.47E-04	1.61E-04	1.12E-04	4.54E-05			
R46	2.17E-08	1.46E-03	5.28E-04	3.68E-04	1.49E-04			
R47	2.53E-08	1.70E-03	6.14E-04	4.28E-04	1.73E-04			

Figure 9 Predicted maximum incremental 1-hour benzene impacts – Scenario 1

Source: Northstar

7.1.4. Assessment of Criteria Exceedances

Presented in Table 25 is a summary of the number of additional exceedances of the short-term PM_{10} , $PM_{2.5}$ and NO_2 criteria, and those values presented as a probability (ρ =0 being impossible, ρ =1 being certain). These values are discussed further in Section 8.2.

Table 25 Assessment of the number of additional exceedances – Scenario 1

	Number	of additional exc		Probability (p) that an exceedance is predicted in one year			
Receptor	24-hour PM ₁₀	24-hour PM _{2.5}	1-hour NO₂	24-hour PM ₁₀	24-hour PM _{2.5}	1-hour NO₂	
R1	0	1	1	-	0.0027	0.0001	
R2	0	1	95	-	0.0027	0.0108	
R3	0	7	361	-	0.0192	0.0412	
R4	0	8	444	-	0.0219	0.0507	
R5	0	17	337	-	0.0466	0.0385	
R6	0	4	270	-	0.0110	0.0308	
R7	7	38	302	0.0192	0.1041	0.0345	
R8	0	4	60	-	0.0110	0.0068	
R9	1	1	2	0.0027	0.0027	0.0002	
R10	0	1	11	-	0.0027	0.0013	
R11	0	0	2	-	-	0.0002	
R12	1	4	0	0.0027	0.0110	-	
R13	0	0	0	-	-	-	
R14	0	0	1	-	-	0.0001	
R15	0	1	271	-	0.0027	0.0309	
R16	0	1	348	-	0.0027	0.0397	
R17	0	2	267	-	0.0055	0.0305	
R18	0	0	23	-	-	0.0026	
R19	0	0	0	-	-	-	
R20	0	2	122	-	0.0055	0.0139	
R21	0	0	36	-	-	0.0041	
R22	0	0	34	-	-	0.0039	
R23	0	1	139	-	0.0027	0.0159	
R24	0	1	79	-	0.0027	0.0090	
R25	0	0	69	-	-	0.0079	
R26	0	0	142	-	-	0.0162	
R27	0	1	294	-	0.0027	0.0336	
R28	0	0	132	-	-	0.0151	
R29	0	2	463	-	0.0055	0.0529	
R30	0	1	384	-	0.0027	0.0438	
R31	0	1	261	-	0.0027	0.0298	

	Number (of additional exc of the criterion		Probability (p) that an exceedance is predicted in one year			
Receptor	24-hour PM ₁₀	24-hour PM _{2.5}	1-hour NO₂	24-hour PM₁₀	24-hour PM _{2.5}	1-hour NO ₂	
R32	0	1	146	_	0.0027	0.0167	
R33	0	0	27	_	-	0.0031	
R34	0	0	43	-	-	0.0049	
R35	0	0	52	-	-	0.0059	
R36	0	2	421	-	0.0055	0.0481	
R37	0	7	357	-	0.0192	0.0408	
R38	0	1	394	-	0.0027	0.0450	
R39	0	1	363	0.0000	0.0027	0.0414	
R40	30	87	805	0.0822	0.2384	0.0919	
R41	0	2	72	-	0.0055	0.0082	
R42	0	0	141	-	-	0.0161	
R43	0	0	155	-	-	0.0177	
R44	0	1	346	-	0.0027	0.0395	
R45	0	0	88	-	-	0.0100	
R46	0	1	449	-	0.0027	0.0513	
R47	0	1	241	-	0.0027	0.0275	

Note: care must be applied when assessing 24-hour average impacts as the likely duration of a power outage event is likely to be significantly less than 24-hours, and as such the assessment should be considered to be highly conservative (i.e. relevant to the operation of all back-up generators for an entire 24-hour period).

7.2. Scenario 2 – Realistic Operations

Presented below are the results of the modelling assessment under the assumptions of Scenario 2 (refer Section 5.2.2) with 8 no generators operating at a conservative load of 100 % for each specified testing hour (24-hours). It is noted that the likely maintenance scenario would include 2 generators operating concurrently, and this scenario has been provided to provide confidence that air quality criteria can be achieved at either 2, or 8 generators being tested concurrently.

7.2.1. Particulate Matter

7.2.1.1. Annual Average TSP, PM₁₀ and PM_{2.5} Concentrations

The predicted annual average particulate matter concentrations (as TSP, PM_{10} and $PM_{2.5}$) resulting from Scenario 2 operations are presented in Table 26. Predicted incremental concentrations of TSP, PM_{10} and $PM_{2.5}$ at all receptor locations are low.

The Proposal operation under the testing regime is predicted to not result in any exceedances of the relevant criteria.

Table 26 Predicted annual average TSP, PM_{10} and $PM_{2.5}$ concentrations – Scenario 2

Table 26 Predicted	annaare	average				ration (µg		<i>0 L</i>	
Receptor		TSP	7	au uverug	PM ₁₀	ασ (μ9	··· ,	PM _{2.5}	
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
Criterion		90			25			8	
Max. % of criterion	0.8	39.0	39.8	2.9	68.4	71.3	9.1	82.5	91.6
R1	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R2	0.3	35.1	35.4	0.3	17.1	17.4	0.3	6.6	6.9
R3	0.4	35.1	35.5	0.4	17.1	17.5	0.4	6.6	7.0
R4	0.4	35.1	35.5	0.4	17.1	17.5	0.4	6.6	7.0
R5	0.3	35.1	35.4	0.3	17.1	17.4	0.3	6.6	6.9
R6	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R7	0.7	35.1	35.8	0.7	17.1	17.8	0.7	6.6	7.3
R8	0.3	35.1	35.4	0.3	17.1	17.4	0.3	6.6	6.9
R9	0.3	35.1	35.4	0.3	17.1	17.4	0.3	6.6	6.9
R10	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R11	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R12	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R13	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R14	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R15	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R16	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R17	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R18	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R19	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R20	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R21	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R22	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R23	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R24	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R25	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R26	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R27	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7
R28	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R29	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8
R30 R31	0.2	35.1 35.1	35.3 35.2	0.2	17.1	17.3	0.2	6.6	6.8
R32	< 0.1	35.1	35.2	< 0.1	17.1 17.1	17.2 17.2	< 0.1	6.6	6.7
R33	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R34	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R35	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7
R36	0.2	35.1	35.3	0.2	17.1	17.2	0.2	6.6	6.8
1130	0.2	33.1	33.3	0.2	17.1	17.5	0.2	0.0	0.0

			Annı	ual averag	e concent	ration (μg	·m ⁻³)			
Receptor		TSP			PM ₁₀			PM _{2.5}		
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	
R37	0.3	35.1	35.4	0.3	17.1	17.4	0.3	6.6	6.9	
R38	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7	
R39	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7	
R40	0.5	35.1	35.6	0.5	17.1	17.6	0.5	6.6	7.1	
R41	0.2	35.1	35.3	0.2	17.1	17.3	0.2	6.6	6.8	
R42	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7	
R43	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7	
R44	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7	
R45	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7	
R46	0.1	35.1	35.2	0.1	17.1	17.2	0.1	6.6	6.7	
R47	< 0.1	35.1	35.2	< 0.1	17.1	17.2	< 0.1	6.6	6.7	

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

7.2.1.2. Maximum 24-Hour PM₁₀ and PM_{2.5} Concentrations

Table 27 presents the maximum 24-hour average PM_{10} and $PM_{2.5}$ concentrations predicted to occur at the nearest receptors, as a result of the Proposal operations under Scenario 2. No background concentrations are included within this table.

The predicted incremental concentrations of PM_{10} and $PM_{2.5}$ are demonstrated to be minor at all receptor locations with the Proposal in operation, under the testing regime.

An assessment of the 24-hour PM_{10} and $PM_{2.5}$ concentrations with background included is not presented, as the concentrations are predominantly driven by background conditions. The addition of the predicted increments presented in Table 27 for the Proposal do not result in any additional exceedances of the criteria at any receptor location.

Contour plots of the predicted incremental 24-hour PM_{10} concentrations associated with the Proposal under Scenario 2 are presented in Figure 10 to allow examination of the distribution of particulate matter in the area surrounding the Proposal site.

Table 27 Predicted maximum incremental 24-hour PM_{10} and $PM_{2.5}$ concentrations – Scenario 2

	Maximum 24-hour average concentration (μg·m ⁻³)					
Receptor	PM ₁₀	PM _{2.5}				
Criterion	50	25				
Max. % of criterion	14.9	29.7				
R1	0.7	0.7				
R2	1.6	1.6				
R3	2.4	2.4				
R4	2.4	2.4				
R5	2.2	2.2				
R6	1.9	1.9				
R7	7.4	7.4				
R8	3.4	3.4				
R9	2.5	2.5				
R10	1.8	1.8				
R11	2.1	2.1				
R12	1.3	1.3				
R13	1.1	1.1				
R14	0.7	0.7				
R15	1.1	1.1				
R16	1.8	1.8				
R17	1.3	1.3				
R18	1.1	1.1				
R19	0.7	0.7				
R20	2.0	2.0				
R21	0.8	0.8				
R22	0.6	0.6				
R23	1.9	1.9				
R24	1.1	1.1				
R25	0.6	0.6				
R26	0.5	0.5				
R27	1.0	1.0				
R28	0.7	0.7				
R29	1.5	1.5				
R30	1.4	1.4				
R31	0.9	0.9				
R32	0.7	0.7				
R33	0.9	0.9				
R34	0.8	0.8				
R35	0.6	0.6				
R36	1.2	1.2				
R37	1.8	1.8				

Dozontov	Maximum 24-hour average	concentration (µg·m⁻³)
Receptor	PM ₁₀	PM _{2.5}
R38	1.3	1.3
R39	1.1	1.1
R40	3.8	3.8
R41	2.4	2.4
R42	1.5	1.5
R43	1.4	1.4
R44	1.3	1.3
R45	0.5	0.5
R46	1.4	1.4
R47	0.8	0.8

Note: All PM is assumed to be $< 1 \, \mu g$ in diameter and therefore assessed as PM_{2.5}. In this instance, emissions of PM_{2.5} will be the same as PM_{10} ($PM_{2.5}$ is a subset of PM_{10}) and therefore the results will be consistent between PM_{10} and $PM_{2.5}$ for these two emissions sources.

A contemporaneous analysis of the 24-hour PM₁₀ and PM_{2.5} data has been performed where each predicted incremental concentration is added to the corresponding monitored background concentration, in accordance with Section 11.2.3(b) of the Approved Methods.

Table 28 and Table 29 present the predicted maximum 24-hour average PM₁₀ and PM_{2.5} concentrations resulting from the operation of the Proposal through Scenario 2, with the corresponding background included for each day. Results are presented in Table 28 and Table 29 for those receptors at which the greatest impacts have been predicted (see Table 27).

The left side of the tables show the predicted maximum cumulative impacts (typically the days with the highest regional background), and the right side shows the total predicted concentration on days with the highest predicted incremental concentrations respectively.

For PM₁₀ and PM_{2.5}, the maximum cumulative impacts (the left-hand side of Table 28 and Table 29) and the maximum incremental impact (the right-hand side of Table 28 and Table 29)) are predicted at receptor R7.

Contour plots of the predicted incremental 24-hour PM₁₀ concentrations associated with the Proposal are presented in Figure 7 to allow examination of the distribution of particulate matter in the area surrounding the Proposal.

Table 28 Summary of contemporaneous 24-hour PM₁₀ concentrations – Scenario 2

		verage PM ₁₀ co			24-hour average PM ₁₀ concentration			
Date	(µд	·m ⁻³) – Recept	or R7	Date	(µg·m⁻³) – Receptor R7			
	Incr.	Bkg.	Cumul.		Incr.	Bkg.	Cumul.	
4/05/2021	2.3	42.5	44.8	20/04/2021	7.4	23.8	31.2	
9/10/2021	0.8	39.9	40.7	9/09/2021	7.0	13.7	20.7	
19/01/2021	< 0.1	40.6	40.7	24/03/2021	6.7	8.5	15.2	
23/01/2021	1.8	36.6	38.4	25/06/2021	6.3	8.9	15.2	
29/10/2021	1.4	37.0	38.4	21/08/2021	6.2	32.0	38.2	
2/06/2021	1.3	37.1	38.4	13/07/2021	6.1	10.9	17.0	
27/04/2021	< 0.1	38.3	38.4	24/07/2021	5.6	7.7	13.3	
21/08/2021	6.2	32.0	38.2	28/07/2021	5.6	10.4	16.0	
16/04/2021	< 0.1	38.1	38.2	24/09/2021	5.3	13.7	19.0	
2/03/2021	< 0.1	37.5	37.6	26/07/2021	5.2	8.2	13.4	
These data re	present the I	nighest Cumula	ntive Impact	These data	represent the	highest Incren	nental Impact	
24-hour PM ₁₀ p	oredictions (c	outlined in red)	as a result of	24-hour PM ₁₀ predictions (outlined in blue) as a result				
th	e operation	of the Proposal		of	the operation	n of the Propo	sal.	

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Table 29 Summary of contemporaneous 24-hour PM_{2.5} concentrations – Scenario 2

	•			2.5				
	24-hour av	verage PM _{2.5} co	oncentration		24-hour a	verage PM _{2.5} c	oncentration	
Date	(µg	·m ⁻³) – Recept	or R7	Date	(μg·m⁻³) – Receptor R7			
	Incr.	Bkg.	Cumul.		Incr.	Bkg.	Cumul.	
21/08/2021	6.2	27.4	33.6	20/04/2021	7.4	11.9	19.3	
4/05/2021	2.3	26.8	29.1	9/09/2021	7.0	5.6	12.6	
9/10/2021	0.8	25.8	26.6	24/03/2021	6.7	1.2	7.9	
22/08/2021	3.4	21.2	24.6	25/06/2021	6.3	5.7	12.0	
8/07/2021	0.1	23.0	23.1	21/08/2021	6.2	27.4	33.6	
9/07/2021	< 0.1	22.9	23.0	13/07/2021	6.1	6.9	13.0	
14/08/2021	0.4	19.8	20.2	24/07/2021	5.6	7.1	12.7	
20/04/2021	7.4	11.9	19.3	28/07/2021	5.6	2.8	8.4	
20/08/2021	4.8	14.3	19.1	24/09/2021	5.3	5.4	10.7	
29/08/2021	1.6	17.4	19.0	26/07/2021	5.2	2.6	7.8	
These data re	epresent the I	highest Cumula	ative Impact	These data represent the highest Incremental Impact				
24-hour PM _{2.5}	predictions (outlined in red)	as a result of	24-hour PM _{2.5} predictions (outlined in blue) as a result				
th	e operation	of the Proposal		of the operation of the Proposal.				

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Figure 10 Predicted maximum incremental 24-hour PM₁₀ impacts – Scenario 2

Source: Northstar

7.2.2. Nitrogen Dioxide

Results are presented in this section for the predictions of nitrogen dioxide (NO₂) under Scenario 2. The averaging periods associated with the criteria for these pollutants is 1-hour and an annual average, as specified in Table 7.

The predicted maximum 1-hour and annual average NO_2 concentrations resulting from the assumptions under Scenario 2, are presented in Table 30.

The results indicate that predicted incremental and cumulative hourly NO₂ concentrations are below the criteria at all surrounding receptor locations.

The performance of the Proposal under Scenario 2 does not result in any exceedances of the criteria for NO₂.

A contour plot of the predicted maximum 1-hour incremental NO₂ impact is presented in Figure 11.

Table 30 Predicted 1-hour and annual average NO_2 concentrations – Scenario 2

		Nitroge	n dioxide (NO ₂)) concentration	μg·m ⁻³)	
Receptor		1-hour average			Annual average	e
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
Criterion		164	<u>'</u>		31	
Max. % of criterion	93.1	27.5	94.3	10.4	49.0	59.4
R1	20.3	4.1	24.4	0.5	15.2	15.7
R2	29.6	10.3	39.9	1.5	15.2	16.7
R3	33.8	45.1	78.9	2.1	15.2	17.3
R4	40.2	22.6	62.8	2.2	15.2	17.4
R5	53.7	26.7	80.3	1.9	15.2	17.1
R6	41.2	18.5	59.7	1.5	15.2	16.7
R7	152.6	2.1	154.7	3.2	15.2	18.4
R8	52.8	< 0.1	52.9	2.0	15.2	17.2
R9	49.2	16.4	65.6	2.2	15.2	17.4
R10	46.7	4.1	50.8	2.0	15.2	17.2
R11	49.9	6.2	56.1	1.5	15.2	16.7
R12	23.0	8.2	31.2	0.3	15.2	15.5
R13	19.6	8.2	27.8	0.4	15.2	15.6
R14	17.4	4.1	21.5	0.5	15.2	15.7
R15	125.6	26.7	152.3	1.6	15.2	16.8
R16	69.5	26.7	96.2	1.9	15.2	17.1
R17	53.7	18.5	72.2	1.5	15.2	16.7
R18	79.1	28.7	107.8	1.5	15.2	16.7
R19	29.0	18.5	47.5	0.4	15.2	15.6
R20	66.8	2.1	68.9	1.5	15.2	16.7
R21	72.2	6.2	78.3	1.1	15.2	16.3
R22	37.0	4.1	41.1	0.7	15.2	15.9
R23	55.2	8.2	63.4	1.7	15.2	16.9
R24	63.8	< 0.1	63.9	1.7	15.2	16.9
R25	82.7	6.2	88.8	1.1	15.2	16.3
R26	40.2	30.8	70.9	0.9	15.2	16.1
R27	54.6	10.3	64.8	1.7	15.2	16.9
R28	41.1	30.8	71.9	0.9	15.2	16.1
R29	48.4	10.3	58.6	2.3	15.2	17.5
R30	62.6	26.7	89.3	2.0	15.2	17.2
R31	65.1	26.7	91.7	1.5	15.2	16.7
R32	78.5	24.6	103.1	1.0	15.2	16.2
R33	27.8	2.1	29.9	0.8	15.2	16.0
R34	28.5	28.7	57.2	1.0	15.2	16.2
R35	75.0	6.2	81.1	1.0	15.2	16.2
R36	54.0	10.3	64.2	2.2	15.2	17.4

		Nitroge	n dioxide (NO ₂) concentration	(µg·m⁻³)		
Receptor		1-hour average	:	Annual average			
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	
R37	55.8	26.7	82.4	1.9	15.2	17.1	
R38	79.3	22.6	101.8	2.0	15.2	17.2	
R39	77.7	16.4	94.1	1.9	15.2	17.1	
R40	56.6	28.7	85.3	1.8	15.2	17.0	
R41	74.5	2.1	76.6	2.0	15.2	17.2	
R42	66.7	10.3	77.0	1.4	15.2	16.6	
R43	75.7	14.4	90.0	1.5	15.2	16.7	
R44	77.5	26.7	104.1	1.9	15.2	17.1	
R45	88.5	28.7	117.2	1.0	15.2	16.2	
R46	73.5	45.1	118.6	2.2	15.2	17.4	
R47	80.8	18.5	99.2	1.4	15.2	16.6	

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Figure 11 Predicted maximum incremental 1-hour NO₂ impacts – Scenario 2

7.2.3. All Other Pollutants

The following presents the predicted ground level concentrations associated with Scenario 2 for all other pollutants assessed in this study (refer Section 5.2.2).

Presented in Table 31 to Table 33 are the predicted concentrations of CO, SO_2 , PAHs, VOCs, and CH_2O at varying averaging periods at the surrounding receptors.

A contour plot of the predicted maximum 1-hour incremental benzene impact is presented in Figure 12.

The predicted incremental concentrations for all of the abovementioned pollutants are below the relevant criteria for all averaging periods at all receptors.

Table 31 Predicted 15-minute, 1-hour, and 8-hour average CO concentrations – Scenario 2

			Carbo	n monoxide	e (CO) conc	entration (n	ng·m⁻³)		
Receptor		15-minute			1-hour			8-hour	
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
Criterion		100			30			10	
Max. % of criterion	0.6	1.8	2.4	1.6	4.7	6.2	3.0	11.0	14.0
R1	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R2	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R3	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R4	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R5	0.2	1.8	2.0	0.2	1.4	1.6	< 0.1	1.1	1.2
R6	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R7	0.6	1.8	2.4	0.5	1.4	1.9	0.3	1.1	1.4
R8	0.2	1.8	2.0	0.2	1.4	1.6	0.1	1.1	1.2
R9	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R10	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R11	0.1	1.8	1.9	0.1	1.4	1.5	< 0.1	1.1	1.2
R12	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R13	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R14	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R15	0.2	1.8	2.0	0.2	1.4	1.6	< 0.1	1.1	1.2
R16	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R17	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2
R18	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R19	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R20	0.1	1.8	1.9	0.1	1.4	1.5	< 0.1	1.1	1.2
R21	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R22	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R23	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R24	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R25	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R26	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R27	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R28	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R29	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R30	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R31	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R32	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R33	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R34	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2
R35	<0.1	1.8	1.9	<0.1	1.4	1.5	<0.1	1.1	1.2
R36	0.1	1.8	1.9	0.1	1.4	1.5	<0.1	1.1	1.2
R37	0.2	1.8	2.0	0.2	1.4	1.6	<0.1	1.1	1.2

	Carbon monoxide (CO) concentration (mg·m ⁻³)									
Receptor		15-minute			1-hour			8-hour		
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.	
R38	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2	
R39	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2	
R40	0.4	1.8	2.2	0.3	1.4	1.7	0.1	1.1	1.2	
R41	0.1	1.8	1.9	0.1	1.4	1.5	< 0.1	1.1	1.2	
R42	0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2	
R43	0.1	1.8	1.9	0.1	1.4	1.5	< 0.1	1.1	1.2	
R44	0.2	1.8	2.0	0.1	1.4	1.5	< 0.1	1.1	1.2	
R45	< 0.1	1.8	1.9	< 0.1	1.4	1.5	< 0.1	1.1	1.2	
R46	0.1	1.8	1.9	0.1	1.4	1.5	< 0.1	1.1	1.2	
R47	0.1	1.8	1.9	0.1	1.4	1.5	< 0.1	1.1	1.2	

 $\textbf{Notes:} \hspace{0.5cm} \text{Incr.} \hspace{0.1cm} - \hspace{0.1cm} \text{Incremental, Bkg.} \hspace{0.1cm} - \hspace{0.1cm} \text{Background, - Cumul.} \hspace{0.1cm} - \hspace{0.1cm} \text{Cumulative.}$

Table 32 Predicted 1-hour and 24-hour SO₂ concentrations – Scenario 2

	Sulphur dioxide (SO₂) concentration (µg·m⁻³)					
Receptor		1-hour		24-hour		
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
Criterion		215			57	
Max. % of criterion	< 0.1	20.0	20.0	< 0.1	15.1	15.2
R1	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R2	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R3	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R4	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R5	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R6	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R7	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R8	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R9	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R10	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R11	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R12	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R13	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R14	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R15	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R16	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R17	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R18	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R19	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R20	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R21	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R22	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R23	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R24	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R25	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R26	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R27	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R28	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R29	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R30	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R31	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R32	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R33	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R34	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R35	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R36	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R37	< 0.1	42.9	43.0	< 0.1	8.6	8.7

	Sulphur dioxide (SO₂) concentration (μg·m⁻³)					
Receptor	1-hour			24-hour		
	Incr.	Bkg.	Cumul.	Incr.	Bkg.	Cumul.
R38	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R39	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R40	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R41	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R42	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R43	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R44	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R45	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R46	< 0.1	42.9	43.0	< 0.1	8.6	8.7
R47	< 0.1	42.9	43.0	< 0.1	8.6	8.7

Notes: Incr. – Incremental, Bkg. – Background, - Cumul. – Cumulative.

Table 33 Predicted maximum incremental 1-hour PAH, benzene, and formaldehyde concentrations – Scenario 2 (Proposal only)

concentre	Maximum 1-hour average concentration (mg·m⁻³)				
Receptor	PAH	Benzene	Toluene (odour)	Xylene (odour)	Formaldehyde
Criterion	0.0004	0.029	0.36	0.19	0.02
Max. % of criterion	0.0	3.1	0.1	0.1	0.5
R1	2.80E-09	1.89E-04	6.81E-05	4.74E-05	1.92E-05
R2	3.34E-09	2.25E-04	8.12E-05	5.66E-05	2.28E-05
R3	3.84E-09	2.59E-04	9.34E-05	6.51E-05	2.63E-05
R4	3.89E-09	2.62E-04	9.46E-05	6.60E-05	2.66E-05
R5	5.37E-09	3.62E-04	1.31E-04	9.10E-05	3.67E-05
R6	3.78E-09	2.54E-04	9.18E-05	6.40E-05	2.58E-05
R7	1.35E-08	9.10E-04	3.29E-04	2.29E-04	9.25E-05
R8	4.32E-09	2.91E-04	1.05E-04	7.32E-05	2.96E-05
R9	3.31E-09	2.23E-04	8.04E-05	5.60E-05	2.26E-05
R10	2.56E-09	1.72E-04	6.22E-05	4.34E-05	1.75E-05
R11	3.03E-09	2.04E-04	7.37E-05	5.14E-05	2.07E-05
R12	3.97E-09	2.68E-04	9.66E-05	6.74E-05	2.72E-05
R13	2.56E-09	1.72E-04	6.22E-05	4.34E-05	1.75E-05
R14	1.74E-09	1.17E-04	4.24E-05	2.95E-05	1.19E-05
R15	4.39E-09	2.96E-04	1.07E-04	7.44E-05	3.01E-05
R16	4.11E-09	2.77E-04	1.00E-04	6.97E-05	2.81E-05
R17	3.40E-09	2.29E-04	8.26E-05	5.75E-05	2.32E-05
R18	2.22E-09	1.50E-04	5.40E-05	3.76E-05	1.52E-05
R19	2.09E-09	1.41E-04	5.09E-05	3.55E-05	1.43E-05
R20	2.91E-09	1.96E-04	7.08E-05	4.93E-05	1.99E-05
R21	1.49E-09	1.01E-04	3.63E-05	2.53E-05	1.02E-05
R22	1.03E-09	6.93E-05	2.50E-05	1.74E-05	7.04E-06
R23	2.47E-09	1.66E-04	6.01E-05	4.19E-05	1.69E-05
R24	2.29E-09	1.54E-04	5.56E-05	3.88E-05	1.56E-05
R25	1.55E-09	1.04E-04	3.77E-05	2.62E-05	1.06E-05
R26	1.70E-09	1.15E-04	4.14E-05	2.88E-05	1.16E-05
R27	2.68E-09	1.81E-04	6.52E-05	4.54E-05	1.83E-05
R28	2.25E-09	1.51E-04	5.46E-05	3.81E-05	1.54E-05
R29	2.66E-09	1.79E-04	6.47E-05	4.51E-05	1.82E-05
R30	2.73E-09	1.84E-04	6.65E-05	4.63E-05	1.87E-05
R31	2.69E-09	1.81E-04	6.55E-05	4.56E-05	1.84E-05
R32	2.45E-09	1.65E-04	5.95E-05	4.15E-05	1.67E-05
R33	1.28E-09	8.60E-05	3.10E-05	2.16E-05	8.73E-06
R34	2.44E-09	1.64E-04	5.93E-05	4.13E-05	1.67E-05
R35	1.54E-09	1.04E-04	3.75E-05	2.61E-05	1.06E-05

	Maximum 1-hour average concentration (mg·m⁻³)				
Receptor	РАН	Benzene	Toluene (odour)	Xylene (odour)	Formaldehyde
R36	3.16E-09	2.13E-04	7.68E-05	5.36E-05	2.16E-05
R37	4.35E-09	2.93E-04	1.06E-04	7.36E-05	2.97E-05
R38	2.71E-09	1.83E-04	6.60E-05	4.60E-05	1.86E-05
R39	2.64E-09	1.78E-04	6.42E-05	4.48E-05	1.81E-05
R40	9.33E-09	6.29E-04	2.27E-04	1.58E-04	6.38E-05
R41	3.13E-09	2.11E-04	7.61E-05	5.31E-05	2.14E-05
R42	2.63E-09	1.77E-04	6.38E-05	4.45E-05	1.80E-05
R43	2.87E-09	1.93E-04	6.97E-05	4.86E-05	1.96E-05
R44	3.36E-09	2.26E-04	8.17E-05	5.69E-05	2.30E-05
R45	1.26E-09	8.49E-05	3.06E-05	2.14E-05	8.62E-06
R46	2.88E-09	1.94E-04	6.99E-05	4.87E-05	1.97E-05
R47	2.99E-09	2.01E-04	7.27E-05	5.07E-05	2.05E-05

Figure 12 Predicted maximum incremental 1-hour benzene impacts – Scenario 2

Source: Northstar

7.3. Comparison with POEO (Clean Air) Regulation Standards of Concentrations

Section 3.2 outlines the context of the POEO CAR and the emission standards applicable to activities and plants, categorised as scheduled or non-scheduled under the regulation.

As detailed in Section 2.2, the Proposal is expected to include the following relevant characteristics:

- 67 no. diesel generators, each with a capacity of 2.5 MW;
- 1 no. diesel generator, with a capacity of 0.5 MW;
- A maintenance testing regime totalling 192.83 hours per year; and
- Maximum fuel storage capacity of less than 2 000 t.

Clause 73, Part 5, Division 6 of the POEO CAR exempts emergency electricity generation using stationary reciprocal internal combustion engines from the air impurities standards for nitrogen dioxide (NO₂) and nitric oxide (NO) specified in Schedule 2, Part 2, Division 3, provided the engines operate for no more than 200 hours per year.

Based on the maintenance schedule presented in Table 5 and the anticipated diesel fuel storage capacity (refer Section 3.1) the Proposal site is considered a non-scheduled activity for electricity generation and chemical storage under the POEO Act. Correspondingly, the Proposal must comply with the concentration standards for non-scheduled activities outlined in Schedule 2, Part 3 of the POEO CAR (refer Section 3.2).

Table 34 below compares the emissions from individual data centre generators at the Proposal site against the respective concentration standards.

Table 34 POEO CAR – Standards of concentrations comparison

Air	Standard of	Standby of emissions	generator (mg·m ⁻³) ^(B)
impurity	concentration (mg·m ⁻³) ^(A)	MTU 20V4000G74F	MTU 16V2000DS1100
Solid particles (Total)	100	14.5	14.1

Notes: (A) Standard of emissions concentration under dry, 273 K, 101.3 kPa, 7 % O₂ conditions

(B) The Proposal's generator emissions above are based on the $mg \cdot Nm^{-3}$ generator emission data in Appendix F, assumed as dry, 273 K, 101.3 kPa and 5 % O_2 content, which were then converted into 7 % O_2 content as per the POEO CAR requirements.

Table 34 shows that the respective concentration standards can be met with the use of the standby diesel generators at the Proposal site.

8. DISCUSSION AND CONCLUSION

This AQIA has been prepared by Northstar on behalf of Goodman for the proposed development of a data centre, to be located at 132 McCredie Road, Smithfield NSW.

The assessment evaluates the potential air quality impacts during both construction and operation phases, with a focus on dust soiling and increased ambient PM_{10} (including $PM_{2.5}$) concentrations due to dust arising from construction activities on the Proposal site, and combustion emissions from standby diesel generator engines during operations.

Data provided by the Proponent and publicly available environmental data were used.

8.1. Construction Phase Risk Assessment

The construction phase risk assessment for the Proposal, presented in Section 6 indicates that dust soiling impacts are associated with medium risks of all construction phase activities while human health impacts are associated with low risks of all construction phase activities if no mitigation measures were to be applied to control emissions.

Based upon that assessment, a range of mitigation measures are recommended to ensure that short-term impacts associated with construction phase activities are minimised, as presented in Appendix C. With the implementation of the mitigation measures outlined in Appendix C, the remaining construction-phase risks associated with the Proposal are appropriate and acceptable.

Construction phase activities may include the operation of plant and machinery that may pose an insignificant risk of odour in the event of accidental fuel spillage; however, this risk is very minor and can be effectively managed through the provision of spill kits to promptly manage any spillages.

8.2. Operational Phase Impact Assessment

The predicted impacts of operational phase activities under a worst-case scenario (Scenario 1) and realistic operational scenario (Scenario 2) are presented in Section 7.

8.2.1. Scenario 1 – Justified Worst Case Operations

Under the justified worst-case standby generator operational scenario (Scenario 1), a number of additional exceedances of the short-term air quality criteria for PM_{10} , $PM_{2.5}$ and NO_2 are predicted.

Note: care must be applied when assessing 24-hour average impacts as the likely duration of a power outage event is likely to be significantly less than 24-hours, and as such the assessment should be considered to be highly conservative (i.e. relevant to the operation of all back-up generators for an entire 24-hour period).

That scenario assumes that all 68 no. generators would be operational at one time. The predicted incremental concentrations under Scenario 1 show exceedances of particulate matter and NO_2 at sensitive receptor locations if a power outage occurred, and all 68 no. emergency generators were operating at 100 % load continuously (refer Section 7.1).

An assessment of the probability (ρ) of an exceedance of the relevant short-term PM₁₀, PM_{2.5} and NO₂ criteria has been performed and is presented in Section 7.1.4. As a maximum across all receptors, the probability of an exceedance of the PM₁₀, PM_{2.5} or NO₂ criterion (where ρ =0 is an impossible event, and ρ =1 is a certain event) in any year is as follows:

• PM_{10} : p=0.0822;

• PM_{2.5}: p=0.2384; and

• NO₂: p=0.0919.

To predict the likelihood of exceedances under the worst-case scenario (i.e. all 68 no. generators operating continuously at 100 % load), the reliability of the power network was considered against the latest information supplied in the 2024 Distribution Annual Planning Report (DAPR) from Endeavour Energy (Endeavour Energy, 2024).

Based on the DAPR and associated network reliability statistics, the average unplanned outage duration per year per customer from financial-year 2013 to financial-year 2023 equates to approximately 82.0 minutes, although exact duration of power outages requiring standby generators cannot be determined. Correspondingly, the likelihood of power interruptions occurring is approximately 0.016 % of the time per year (82.0 / (8 760 \times 60)) or have a probability of p=0.00016.

Figure 13 depicts the normalised (i.e. Major Event Days data excluded) system average interruption duration index (SAIDI, in minutes) and unnormalised (i.e. inclusion of all events) SAIDI trends over an eleven financial-year period from 2013 to 2023.

350 303.6 300 250 minutes / customer 200 173.0 156.7 146:2 142.5 142.0 150 120.6 116.0 104.1 96.8 91. 91. 88. 88.3 87.5 100 82. 78. 70740.4 73.**5** 65. 50 0 FY13 FY14 FY15 FY16 FY17 FY19 FY20 FY21 FY22 FY23 Normalised Unnormalised

Figure 13 Endeavour Energy SAIDI Performance Information

Source: (Endeavour Energy, 2024)

The probability of both the interruption to the power supply, and an exceedance of the relevant air quality criteria occurring can be calculated through the multiplication of the probability of each event occurring. Those values are incredibly small and have been placed into context by calculating the percentage chance that the event could occur in a number of years. Table 35 presents the results of those calculations.

The results indicate that the chance of an additional exceedance of the air quality criteria during a power outage is low.

Table 35 Chance of an exceedance during a power outage

Number of	Percentage chance of an a	dditional exceedance of the sh power outage (%)	ort-term criterion during a
years	24-hour PM ₁₀	24-hour PM _{2.5}	1-hour NO ₂
100	0.13	0.37	0.14
200	0.26	0.74	0.29
500	0.64	1.84	0.71
1 000	1.27	3.65	1.42
1 250	1.59	4.54	1.78

8.2.2. Scenario 2 – Realistic Operations

Annual average particulate matter concentrations (as TSP, PM₁₀ and PM_{2.5}) resulting from Scenario 2 are all predicted to comply with the relevant impact assessment criteria, with no exceedances predicted.

Under Scenario 2, no additional exceedances of the cumulative impact assessment criteria for 24-hour PM₁₀ are predicted as a result of the Proposal. While several cumulative exceedances of the 24-hour PM₂₅ criterion are identified in Table 30, these are attributable to elevated background concentrations that already exceed the relevant criterion and are not related to emissions from the Proposal. The Proposal does not contribute to any additional exceedances.

For 1-hour and annual average NO₂, no cumulative exceedances are predicted due to the Proposal. Predicted incremental and cumulative 1-hour NO2 concentrations remain below the relevant criteria at all considered receptor locations.

Predicted concentrations of CO, SO₂ PAHs, VOCs, and formaldehyde (CH₂O) across all assessed averaging periods are also below the relevant impact assessment criteria at all receptor locations under Scenario 2.

Correspondingly, it is anticipated that under operation of the testing schedule as outlined in Table 5, or testing eight (8) generators concurrently at 100 % load, and performed over a 24-hour period, no significant air quality impacts are predicted to be experienced at sensitive receptors.

8.2.3. POEO (Clean Air) Regulation – Standard of Concentrations

Section 7.3 assesses generator emissions against the applicable POEO CAR concentration standards for nonscheduled activities, demonstrating compliance with the total solid particles and VOC standards.

Although the operations may be exempt from the relevant emission limit regulations (i.e. in-stack emission concentrations), the Proponent would not be exempt from ensuring the emissions do not exceed ambient air quality criteria. This is achievable under the proposed maintenance regime, whilst the likelihood of exceedance during the emergency scenario has been shown to be low.

8.2.4. Recommended Mitigation Measures

Based on the findings of the dispersion modelling assessment under Scenario 2, it is considered that the operation of the maintenance testing schedule would not result in exceedances being experienced at sensitive receptor locations surrounding the Proposal site.

To ensure air quality impacts experienced at sensitive receptors resulting from the operation of the Proposal site are minimised, maintenance under the testing schedule must be performed as outlined in Section 2.2. Operation of the emergency generators should be minimised as far as practicably possible.

8.2.5. Additional Mitigation Measures

A number of additional mitigation measures considered to be Best Available Technology (BAT) have been reviewed and discussed in Appendix G.

For clarity, the Proposal is predicted to not result in any exceedances of the relevant air quality criteria under the proposed maintenance testing schedule (refer Section 7.2) and correspondingly, the additional controls discussed in Appendix G have been reviewed to solely provide context for how air quality impacts may be further reduced.

8.2.6. Odour

Operational phase activities will not result in any odour emissions, with the exception of the periodic operation of the diesel-fuelled generators for testing and back-up power generation purposes only, as outlined.

Air emissions of VOCs have been assessed as benzene (C_6H_6) as a principal toxic air pollutant, with anticipated emissions of toluene (C_7H_8) and xylene (C_8H_{10}) assessed and compared against the relevant odour impact assessment criteria. No exceedances of the relevant odour criteria are predicted during either emergency or realistic operations.

8.3. Conclusion

During the construction phase, the potential dust soiling and human health risks are assessed as being manageable through appropriate implementation of the recommended mitigation measures. With the implementation of the mitigation measures as part of a Construction Environmental Management Plan (CEMP) that the remaining construction-phase risks associated with the Proposal are appropriate and acceptable.

During the operational phase, based upon the information presented in this AQIA, the operation of the Proposal is not considered likely to result in additional exceedances of the relevant air quality criteria at any identified receptor location. Scenarios replicating the worst-case and realistic case operations have been considered in the assessment.

The predicted incremental concentrations for all assessed pollutants are shown to be significantly below the relevant criteria under realistic operations where the back-up generators are appropriately operated under the testing schedule.

9. REFERENCES

- Barclay, J., & Scire, J. (2011). *Generic Guidance and Optimum Model Setting for the CALPUFF Modeling System for Inclusion into the 'Approved Methods for the Modeling and Asssessment of Air Pollutants in NSW, Australia'*.
- Barwise, Y., & Kumar, P. (2020). Designing vegetation barriers for urban air pollution abatement: a practical review for appropriate plant species specification. *npj Climate and Atmospheric Science*.
- Benbow. (2022). Air Quality Impact Assessment Prepared for Cobra Waste Solutions Pty Ltd 30 Loftus Road, Yennora NSW 2161.
- Chapman, K. S. (2004). *Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines.*
- Endeavour Energy. (2024). Distribution Annual Planning Report, December 2024.
- IAQM. (2024). Guidance on the assessment of dust from demolition and construction.
- Janssen, Van Wakeren, Van Duuren, & Elshout. (1988). A classification of NO oxidation rates in power plant plumes based on atmospheric conditions. *Atmsopheric Environment, 22*(1), 43-53.
- Kumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T. S., . . . Morawaska, L. (2019). The nexus between air pollution, green infrastructure and human health. *Environment International*.
- Lecomte, T., De La Fuente, J. F., Neuwahl, F., Canova, M., Pinasseau, A., Jankov, I., . . . Sancho, L. D. (2017). Best Available Techniques (BAT) Reference Document for Large Combustion Plants - EUR 28836 EN.
- Northstar. (2021). Distribution Centre, Wetherill Park: Air Quality Impact Assessment.
- Northstar. (2022). Polytrade Material Recycling Facility, Smithfield: Air Quality Impact Assessment.
- NPI. (2008). Emission Estimation Technique Manual for Combustion Engines Version 3.0.
- NPI. (2008). National Pollutant Inventory Emission Estimation Technique Manual for Combustion Engines Version 3.0 - June 2008.
- NSW DPE. (2023). New South Wales Annual Compliance Report 2021.
- NSW EPA. (2014). Reducing Emissions from Non-road Diesel Engines.
- NSW EPA. (2022). Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales.

NSW EPA. (2022). Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales. NSW Environment Protection Authority.

UK Environment Agency. (2018). Data Centre FAQ Headline Approach - Version 10.0.

APPENDIX A

Commonly used Abbreviations and Units

Units used in the Report

Units presented in the report follow the International System of Units (SI) conventions, unless derived from references using non-SI units.

Commonly used SI units

The following units are commonly used in Northstar reports.

Symbol	Name	Quantity
SI base uni	ts	
K	Kelvin	thermodynamic temperature
kg	kilogram	mass
m	metre	length
mol	mole	amount of substance
S	seconds	time
Non-SI uni	ts mentioned in the SI or accepted for use	
٥	degree	plane angle
d	day	time
h	hour	time
ha	hectare	area
J	joule	energy
L	litre	volume
min	minute	time
N	newton	force or weight
t	tonne	mass
V	volt	electrical potential
W	watt	power

Multiples of SI and non-SI units

The following prefixes are added to unit names to produce multiples and sub-multiples of units:

Prefix	Symbol	Factor
Т	tera-	10 ¹²
G	giga-	10 ⁹
М	mega-	10 ⁶
k	kilo-	10 ³
h	hector-	10 ²
da	deca-	10 ¹

Prefix	Symbol	Factor
р	pico-	10 ⁻¹²
n	nano-	10 ⁻⁹
μ	micro-	10 ⁻⁶
m	milli-	10 ⁻³
С	centi-	10 ⁻²
d	deci-	10 ⁻¹

In this report, units formed by the division of SI and non-SI units are expressed as a negative exponent, and do not use the solidus (/) symbol.

For example:

- 50 micrograms per cubic metre would be presented as 50 μg·m⁻³ and not 50 μg/m³; and,
- 0.2 kilograms per hectare per hour would be presented as 0.2 kg·ha⁻¹·hr⁻¹ and not 0.2 kg/ha/hr.

Commonly used SI-derived and non-SI units

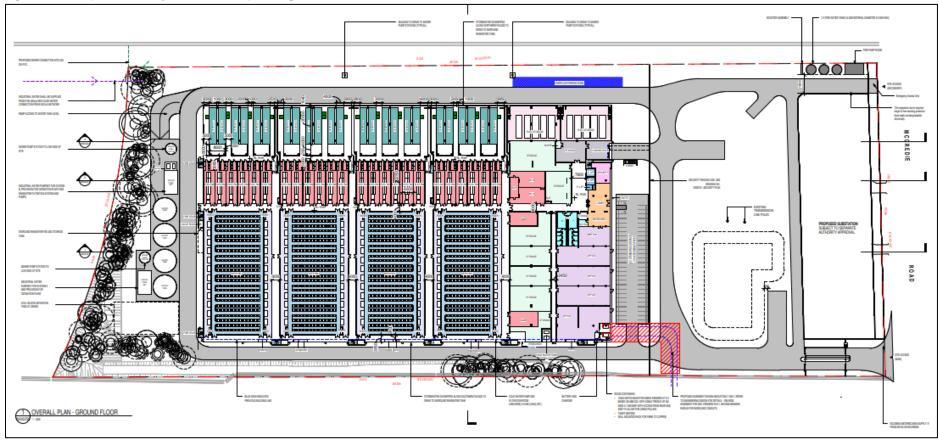
Symbol	Name	Quantity
g·m⁻²·s⁻¹	gram per square metre per second	rate of mass deposition per unit area
g·s ⁻¹	gram per second	rate of mass emission
kg·ha ⁻¹ ·hr ⁻¹	kilogram per hectare per hour	rate of mass deposition per unit area
kg·m⁻³	kilogram per cubic metre	density
L·s ⁻¹	litres per second	volumetric rate
m ²	square metre	area
m ³	cubic metre	volume
m·s⁻¹	metre per second	speed and velocity
mg·m⁻³	milligram per cubic metre	mass concentration per unit volume
mg·Nm ⁻³	milligram per normalised cubic metre (of air)	mass concentration per unit volume
μg⋅m ⁻³	microgram per cubic metre	mass concentration per unit volume
mg·m⁻³	milligram per cubic metre	mass concentration per unit volume
Pa	pascal	pressure
ppb	parts per billion (1x10 ⁻⁹)	volumetric concentration
pphm	parts per hundred million (1×10 ⁻⁵)	volumetric concentration
ppm	parts per million (1x10 ⁻⁶)	volumetric concentration

Commonly used abbreviations

Abbreviation	Term
ABS	Australian Bureau of Statistics
ACT	Australian Commonwealth Territory
AGL	above ground level
AHD	Australian height datum
APC	air pollution control
AQI	air quality index
AQIA	air quality impact assessment
AQMS	air quality monitoring station
AQRA	air quality risk assessment
ARPANSA	Australian Radiation Protection and Nuclear Safety Agency
AS/NZS	Australian Standard / New Zealand Standard
AWS	automatic weather station
BCA	Building Code of Australia
BGL	below ground level
ВОМ	Bureau of Meteorology

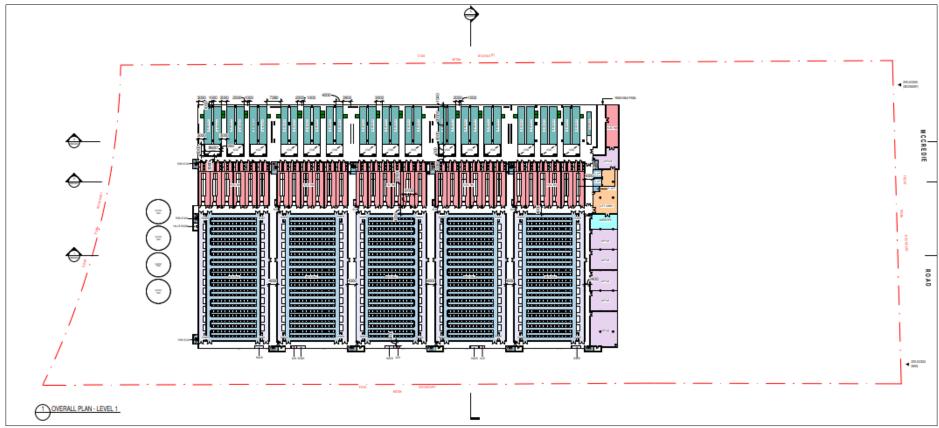
northsta	
Abbreviation	Term
C ₆ H ₆	benzene
C ₇ H ₈	toluene
C ₈ H ₁₀	xylene
CEMP	construction environment management plan
CH ₂ O	formaldehyde
CH ₄	methane
СО	carbon monoxide
CO ₂	carbon dioxide
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DEM	digital elevation model
EETM	emission estimation technique manual
EPA VIC	Environmental Protection Authority Victoria
EPBC	Environment Protection and Biodiversity Conservation Act
FIBC	flexible intermediate bulk container
GIS	geographical information system
IAQM	UK Institute of Air Quality Management
IBC	intermediate bulk container
ID	internal diameter
LLV	low level waste
LoM	life of mine
MSDS	Material Safety Data Sheet
NCAA	National Clean Air Agreement
NEPM	National Environment Protection Measure
NH ₃	ammonia
NO	nitric oxide
NO _X	oxides of nitrogen
NO ₂	nitrogen dioxide
NORM	naturally occurring radioactive material
NSW	New South Wales
NSW DCCEEW	NSW Department of Climate Change, Energy, the Environment and Water
NSW DPHI	NSW Department of Planning, Housing, and Infrastructure
NSW DPE	New South Wales Department of Planning and Environment
NSW EPA	New South Wales Environment Protection Authority
NT	Northern Territory
OEMP	operational environmental management plan
O ₃	ozone
OU	odour unit
OU·m³·s ⁻¹	odour units times metres cubed per second
OU·s ⁻¹	odour units per second
PAH	polycyclic aromatic hydrocarbons
Pb	lead
1.0	

nortnstar	
Abbreviation	Term
PM	particulate matter
PM ₁₀	particulate matter with an aerodynamic diameter of 10 µm or less
PM _{2.5}	particulate matter with an aerodynamic diameter of 2.5 µm or less
ROM	run of mine
SA	South Australia
SEPP	State Environmental Protection Policy
SO _X	oxides of sulphur
SO ₂	sulphur dioxide
SRTM3	Shuttle Radar Topography Mission
SVOC	semi-volatile organic compound
TAPM	The Air Pollution Model
TAS	Tasmania
TEU	twenty-foot equivalent unit
TSP	total suspended particulates
TVOC	total volatile organic compounds
TWA	time weighted average
US EPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
VIC	Victoria
VLLW	very low-level waste
VOC	volatile organic compound

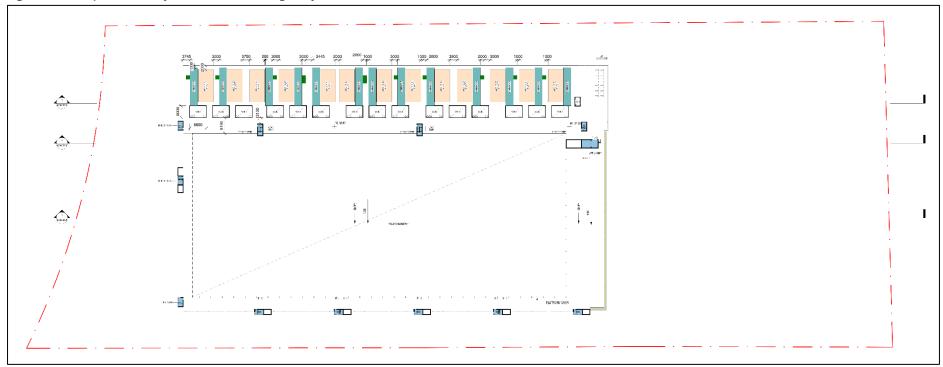


APPENDIX B

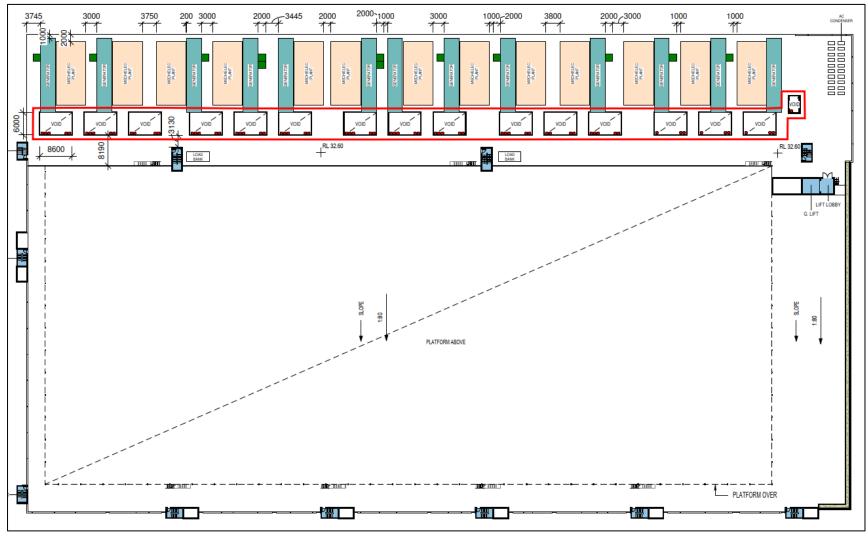
Proposal Site Layouts


Figure B1 Proposal site layout – overall plan – ground level

Source: Greenbox Architecture – Drawing 240028-GBA-XX-DR-AR-0000020 Issue A2 – 04.04-2025

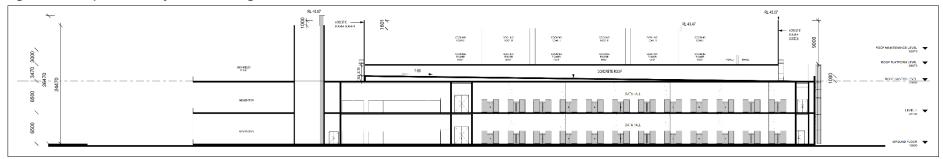

Figure B2 Proposal site layout – overall level 1 floor plan

Source: Greenbox Architecture – Drawing 240028-GBA-XX-DR-AR-0000021 Issue A2 – 04.04-2025


Figure B3 Proposal site layout – overall roof gantry level

Source: Greenbox Architecture – Drawing 240028-GBA-XX-DR-AR-0000022 Issue A1 – 04.04-2025

Figure B4 Proposal site layout – overall roof gantry level (flue location markup)



Source: Adapted from Greenbox Architecture – Drawing 240028-GBA-XX-DR-AR-0000022 Issue A1 – 04.04-2025

Note: Flue locations marked in red

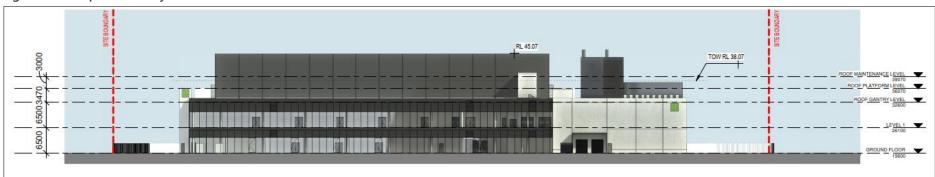


Figure B5 Proposal site layout – building sections – cross section

Source: Greenbox Architecture – Drawing 240028-GBA-XX-DR-AR-0000201 Issue A4 – 04.04-2025

Figure B6 Proposal site layout – site elevations – north elevation

Source: Greenbox Architecture – Drawing 240028-GBA-XX-DR-AR-0000250 Issue A2 – 04.04-2025

APPENDIX C

Construction Phase Air Quality Risk Assessment

Provided below is a summary of the risk assessment methodology used in this assessment. It is based upon IAQM (2024) *Guidance on the assessment of dust from demolition and construction* (version 2.2) and adapted by Northstar.

Adaptions to the Published Methodology Made by Northstar

The adaptions made by Northstar from the IAQM published methodology are:

- **PM**₁₀ **criterion**: an amended criterion representing the annual average PM₁₀ criterion relevant to Australia rather than the UK;
- **Nomenclature**: a change in nomenclature from "receptor sensitivity" to "land use value" to avoid misinterpretation of values attributed to "receptor sensitivity" and "sensitivity of the area" which may be assessed as having different values;
- Construction traffic: the separation of construction vehicle movements as a discrete risk assessment profile from those associated with the 'on-site' activities of demolition, earthworks, and construction. The IAQM methodology considers four risk profiles of: "demolition", "earthworks", "construction" and "trackout". The adaption by Northstar Air Quality introduces a fifth risk assessment profile of "construction traffic" to the existing four risk profiles; and,
- **Tables**: minor adjustments in the visualisation of some tables.

Step 1 – Screening Based on Separation Distance

The Step 1 screening criteria provided by the IAQM guidance suggests screening out any assessment of impacts from construction activities where sensitive receptors are located:

- Beyond a distance of 250 m from the Proposal site boundary; and,
- At a distance greater than 50 m from the route used by construction vehicles on public roads, beginning from the Proposal site entrance and extending past 250 m from the entrance.

This step is noted as having deliberately been chosen to be conservative and would require assessments for most developments.

Table C1 overleaf presents the identified discrete sensitive receptors, with the corresponding estimated screening distances as compared to the screening criteria.

Table C1 Construction phase impact screening criteria distances

			Scre	eening distar	nce (m)
Docomton			Proposal	Proposal	Proposal site
Receptor ID	Location	Land use	site	site	construction
טו			boundary	entrance	route(s)
			(250 m)	(250 m)	(50 m)
R1	McCredie Road, Smithfield	Industrial	59	65	48
R2	McCredie Road, Smithfield	Industrial	112	182	178
R3	McCredie Road, Smithfield	Industrial	156	253	252
R4	McCredie Road, Guildford West	Residential	200	300	299
R5	McCredie Road, Guildford West	Industrial	228	339	339
R6	Fairfield Road, Guildford West	Industrial	249	423	423
R7	Guildford West Sportsground	Recreational	87	409	409
R8	Foray Street, Yennora	Industrial	118	577	577
R9	Hemingway Crescent, Fairfield	Residential	161	577	577
R10	Solo Crescent, Fairfield	Residential	206	606	594
R11	McCredie Road, Smithfield	Industrial	176	464	434
R12	McCredie Road, Smithfield	Industrial	24	233	223
R13	McCredie Road, Smithfield	Industrial	84	168	107
R14	McCredie Road, Smithfield	Industrial	89	154	70
R15	Palmer Street, Guildford Street	Childcare	907	1 006	1 005
R16	McCredie Road, Guildford West	Residential	461	561	561
R17	Fairfield Road, Guildford West	Residential	423	569	569
R18	Chisholm Street, Smithfield	Residential	526	848	807
R19	McCredie Road, Smithfield	Industrial	194	307	248
R20	Fairfield Road, Yennora	Industrial	270	665	665
R21	Vineyard Avenue, Smithfield	Residential	691	961	908
R22	Low Street, Smithfield	Residential	859	1014	944
R23	Crosby Crescent, Fairfield	Residential	442	903	903
R24	The Horsley Drive, Smithfield	Residential	608	995	970
R25	The Horsley Drive, Smithfield	Residential	998	1276	1 220
R26	Warren Road, Woodpark	Residential	702	704	213
R27	Pavesi Street, Guildford West	Residential	540	600	454
R28	Sturt Street, Smithfield	Industrial	497	500	129
R29	Karani Avenue, Guildford West	Residential	463	548	543
R30	Queen Street, Guildford West	Residential	664	759	757
R31	Phillip Street, Guildford West	Residential	767	870	870
R32	Dennistoun Avenue, Yennora	Industrial	982	1 296	1 296
R33	Herbert Place, Smithfield	Industrial	545	613	527
R34	Warren Road, Smithfield	Industrial	363	405	195
R35	Smithfield Park, Smithfield	Recreational	851	1 120	1 064
R36	Tom Uren Park, Guildford West	Recreational	418	497	492
R37	Crown On McCredie, Guildford West	Hotel	333	438	435

			Screening distance (m)			
Receptor		•	Proposal	Proposal	Proposal site	
ID	Location	Land use	site	site	construction	
10			boundary	entrance	route(s)	
			(250 m)	(250 m)	(50 m)	
R38	Guildford West Children's Centre	Childcare	890	982	979	
R39	Guildford West Public School	School	916	1 010	1 007	
R40	Guildford West Sportsground	Recreational	95	274	277	
R41	Bernadette Park, Fairfield	Recreational	291	747	747	
R42	Fairfield Road Park, Yennora	Recreational	604	1 045	1 045	
R43	Cawarra Park, Fairfield	Recreational	695	1 152	1 152	
R44	Little Lucy's Family Day Care	Childcare	676	773	771	
R45	Smithfield Montessori Academy CCC	Childcare	1 287	1 577	1 522	
R46	Helena St Reserve	Recreational	788	875	871	
R47	Os Young Park	Recreational	848	959	960	

With reference to Table C1, sensitive receptors are noted to be within the screening distance thresholds and therefore require further risk assessment as summarised in Table C2.

Table C2 Application of Step 1 screening

Construction impact	Screening criteria	Step 1 screening	Comments
Demolition	250 m from boundary 250 m from site entrance	Screened	No demolition as part of Proposal
Earthworks	250 m from boundary 250 m from site entrance	Not screened	Receptors identified within the screening distance
Construction	250 m from boundary 250 m from site entrance	Not screened	Receptors identified within the screening distance
Trackout	100 m from site entrance	Not screened	Receptors identified within the screening distance
Construction Traffic	50 m from roadside	Not screened	Receptors identified within the screening distance

Step 2 – Risk from Construction Activities

Step 2 of the assessment provides "dust emissions magnitudes" for each of the dust generating activities; demolition, earthworks, construction, and track-out (the movement of site material onto public roads by vehicles) and construction traffic.

The magnitudes are: Small; Medium; or Large, with suggested definitions for each category as follows:

Table C3 Dust emission magnitude activities

Activity Small Medium Large							
	Sman	Wediam	Large				
Demolition							
Total building volume*	< 12 000 m ³	12 000 m³ to 75 000 m³	> 75 000 m ³				
Demolition height	< 6 m AGL	6 m and 12 m AGL	> 12 m AGL				
Onsite crushing	no	no	yes				
Onsite screening	no	no	yes				
Demolition of materials	no	yes	yes				
with high dust potential							
Demolition timing	wet months only	any time of the year	any time of the year				
Earthworks							
Total site area	< 18 000 m ²	18 000 m ² to 110 000 m ²	> 110 000 m ²				
Soil types	soil type with large grain size (e.g. sand	moderately dusty soil type (e.g. silt)	potentially dusty soil type (e.g. clay which would be prone to suspension when dry due to small particle size				
Heavy earth moving vehicles	< 5 heavy earth moving vehicles active at any one time	5 to 10 heavy earth moving vehicles active at any one time	> 10 heavy earth moving vehicles active at any time				
Formation of bunds	< 3 m AGL	3 m to 6 m AGL	> 6 m AGL				
Material moved	< 20 000 t	20 000 t to 100 000 t	> 100 000 t				
Earthworks timing	wet months only	any time of the year	any time of the year				
Construction							
Total building volume	< 12 000 m ³	12 000 m³ to 75 000 m³	75 000 m ³				
Piling	no	yes	yes				
Concrete batching	no	yes	yes				
Sandblasting	no	no	yes				
Materials	metal cladding or timber	concrete	concrete				
Trackout (within 100 m o	f construction site entrance)						
Outward heavy vehicles movements per day	< 20	20 to 50	> 50				
Surface materials	low potential	moderate potential	high potential				
Unpaved road length	< 50 m	50 m to 100 m	> 100 m				
Construction Traffic (from	n construction site entrance	to construction vehicle origi	n)				
Demolition traffic - total building volume	< 12 000 m ³	12 000 m³ to 75 000 m³	> 75 000 m ³				
Earthworks traffic - total site area	< 18 000m ²	18 000 m² to 110 000 m²	> 110 000 m ²				
Earthworks traffic – soil types	soil type with large grain size (e.g. sand)	moderately dusty soil type (e.g. silt)	potentially dusty soil type (e.g. clay which would be				

Activity	Small	Medium	Large	
			prone to suspension when	
			dry due to small particle	
			size	
Earthworks traffic –	< 20 000 ÷	20 000 t to 100 000 t	> 100 000 ±	
material moved	< 20 000 t	20 000 t to 100 000 t	> 100 000 t	
Construction traffic –	< 12 000 m ³	12 000 m³ to 75 000 m³	75 000 m ³	
total building volume	< 12 000 III ^a	12 000 HF to 75 000 HF	/5 000 m²	
Total traffic heavy				
vehicles movements per	< 10 % of heavy vehicle	10 % to 50 % of heavy	> 50 % of heavy vehicle	
day when compared to	movement contribution by	vehicle movement	movement contribution by	
existing heavy vehicle	Proposal	contribution by Proposal	Proposal	
traffic				

The site area of the Proposal site is estimated at 7.2 ha. The Proposal would involve bulk earthworks, construction of the data centre development as outlined in Section 2.2 and associated vehicle movements.

Based on review of the provided layouts of the Proposal (refer Appendix B), the proposed data centre is expected to be greater than 75 000 m³ (threshold for large dust emission magnitude [refer Table C3]). Given the volume of construction to be performed, it is expected that more than 50 vehicle movements would be required to service the Proposal site each day.

Based upon the above assumptions and the assessment criteria presented in Table C3, the dust emission magnitudes are as presented in Table C4.

Table C4 Construction phase impact categorisation of dust emission magnitude

Activity	Dust emission magnitude		
Demolition	N/A		
Earthworks and enabling works	Medium		
Construction	Large		
Track-out	Large		
Construction traffic routes	Large		

Step 3 – Sensitivity of the Area

Step 3 of the assessment process requires defining the area's sensitivity, which considers:

- Sensitivities of identified land use values to dust deposition and health impacts.
- The proximity and number of those receptors locations;
- In the case of PM₁₀, the local background concentration; and
- Other site-specific factors, such as whether there are natural shelters such as trees to reduce the risk of wind-blown dust.

When assessing the area' sensitivity to dust impacts and soiling, human health receptors are evaluated independently.

Land Use Value

Individual receptor locations may be attributed different land use values based on the land use of the land, and may be classified as having high, medium, or low values relative to dust deposition and human health impacts (ecological receptors are not addressed using this approach).

Essentially, land use value is a metric of the level of amenity expectations for that land use.

The IAQM methodology provides guidance on the land use value with regard to dust soiling and human health impacts and is shown in Table C5 below. It is noted that user expectations of amenity levels (dust soiling) are dependent on existing deposition levels.

Table C5 IAQM guidance for categorising land use value

Land use value	Low	Medium	High
Health impacts	Locations where human exposure is transient.	Locations where the people exposed are workers, and exposure is over a time period relevant to the air quality objective for PM ₁₀ (in the case of the 24-hour objectives, a relevant location would be one where individuals may be exposed for eight hours or more in a day).	Locations where the public are exposed over a time period relevant to the air quality objective for PM ₁₀ (in the case of the 24-hour objectives, a relevant location would be one where individuals may be exposed for eight hours or more in a day).
Examples	Public footpaths, playing fields, parks, and shopping street.	Office and shop workers but would generally not include workers occupationally exposed to PM ₁₀ .	Residential properties, hospitals, schools, and residential care homes.

Land use value	Low	Medium	High
Dust soiling	The enjoyment of amenity would not reasonably be expected; or Property would not reasonably be expected to be diminished in appearance, aesthetics, or value by soiling; or There is transient exposure, where the people or property would reasonably be expected to be present only for limited periods of time as part of the normal pattern of use of the land.	Users would expect to enjoy a reasonable level of amenity, but would not reasonably expect to enjoy the same level of amenity as in their home; or The appearance, aesthetics or value of their property could be diminished by soiling; or The people or property wouldn't reasonably be expected to be present here continuously or regularly for extended periods as part of the normal pattern of use of the land.	Users can reasonably expect a high level of amenity; or The appearance, aesthetics or value of their property would be diminished by soiling, and the people or property would reasonably be expected to be present continuously, or at least regularly for extended periods as part of the normal pattern of use of the land.
Examples	Playing fields, farmland (unless commercially- sensitive horticultural), footpaths, short term car parks and roads.	Parks and places of work.	Dwellings, museums, and other culturally important collections, medium- and long-term car parks and car showrooms

Dust Soiling Impacts

To assess dust soiling impacts, the sensitivity of the local area is determined by considering the receptors and their quantity, as detailed in Table C6 below.

IAQM guidance for categorising the sensitivity of an area to dust soiling impacts

			_	_	_			
Land use value	Number of receptors ^(a)	Distance from the source (m) ^(b)						
	Number of receptors.	< 20	< 50	< 100	< 250			
High	> 100	High	High	Medium	Low			
	10 – 100	High	Medium	Low	Low			
	1 – 10	Medium	Low	Low	Low			
Medium	> 1	Medium	Low	Low	Low			
Low	> 1	Low	Low	Low	Low			

- **Notes:** (a) Estimate the total number of receptors within the stated distance. Only the highest level of area sensitivity from the table needs to be considered.
 - (b) With regard to potential 'construction traffic' impacts, the distance criteria of < 20 m and < 50 m from the source (roadside) are used (i.e. the first two columns only). Any locations beyond 50 m may be screened out of the assessment (as per Step 1) and the corresponding sensitivity is negligible'.

Due to construction activities, receptors within 250 m of the site are rated 'medium' for dust soiling sensitivity.

Figure C1 illustrates the extent of works considered for this AQIA, delineating the outer envelope boundary of the anticipated construction works, the IAQM distance bands and the positions of receptors.

The IAQM guidance does not necessitate precise counting of human receptors. Instead, it advises using professional judgment to estimate the approximate number of buildings within each distance band and that only the highest level of area sensitivity from Table C6 needs to be considered.

It is estimated that up to 10 receptors are within 100 m and up to 50 receptors within a distance of 250 m from the Proposal site boundary. Considering both the sensitivity of receptors and their numbers within specified distances from the footprint, the sensitivity to dust soiling impacts is assessed as 'medium'.

Figure C1 Scope of construction activities, buffer distances and surrounding environment

Source: Northstar

Human Health Impacts

The assessed land use value (as described in Table C5) is then used to assess the sensitivity of the area surrounding the active construction area, considering the proximity and number of those receptors, and the local background PM_{10} concentration (in the case of potential health impacts) and other site-specific factors.

Additional factors to consider when determining the sensitivity of the area include:

- Any history of dust generating activities in the area;
- The likelihood of concurrent dust generating activity on nearby sites;
- Any pre-existing screening between the source and the receptors;
- Any conclusions drawn from analysing local meteorological data which accurately represent the area; and if relevant, the season during which the works would take place;
- Any conclusions drawn from local topography;
- duration of the potential impact, as a receptor may become more sensitive over time; and
- Any known specific receptor sensitivities which go beyond the classifications given in (IAQM, 2024).

The IAQM guidance for assessing the sensitivity of an area to human health impacts is shown in Table C7.

The background annual average PM_{10} concentration measured at Parramatta North AQMS in 2021 was 13.2 $\mu g \cdot m^{-3}$. Together with the calculated land use value, this classifies the areas sensitivity as 'low' for dust health impacts.

Table C7 IAQM guidance for categorising the sensitivity of an area of human health impacts

Land use	Annual mean PM ₁₀	Number of	Distance from the source (m) ^(b)				
value	concentration (µg⋅m⁻³)	receptors ^(a)	< 20	< 50	< 100	< 250	
		> 100	High	High	High	Medium	
	> 30	10 – 100	High	High	Medium	Low	
		1 – 10	High	Medium	Low	Low	
		> 100	High	High	Medium	Low	
	26 – 30	10 – 100	High	Medium	Low	Low	
Lliah		1 – 10	High	Medium	Low	Low	
High		> 100	High	Medium	Low	Low	
	22 – 26	10 – 100	High	Medium	Low	Low	
		1 – 10	Medium	Low	Low	Low	
	≤22	> 100	Medium	Low	Low	Low	
		10 – 100	Low	Low	Low	Low	
		1 – 10	Low	Low	Low	Low	
	> 30	> 10	High	Medium	Low	Low	
	> 30	1 – 10	Medium	Low	Low	Low	
	26 – 30	> 10	Medium	Low	Low	Low	
Medium	20 – 30	1 – 10	Low	Low	Low	Low	
Medium	22 – 26	> 10	Low	Low	Low	Low	
	22 – 20	1 – 10	Low	Low	Low	Low	
	≤ 22	> 10	Low	Low	Low	Low	
	≥ ∠∠	1 – 10	Low	Low	Low	Low	
Low	-	≤1	Low	Low	Low	Low	

Notes: (a) Estimate the total within the stated distance (e.g. the total within 250 m and not the number between 100 m and 250 m), noting that only the highest level of area sensitivity from the table needs to be considered. In the case of high sensitivity areas

- with high occupancy (such as schools or hospitals) approximate the number of people likely to be present. In the case of residential dwellings, just include the number of properties.
- (b) With regard to potential 'construction traffic' impacts, the distance criteria of < 20 m and < 50 m from the source (roadside) are used (i.e. the first two columns only). Any locations beyond 50 m may be screened out of the assessment (as per Step 1) and the corresponding sensitivity is negligible'.
- (b) With regard to potential 'construction traffic' impacts, the distance criteria of < 20 m and < 50 m from the source (roadside) are used (i.e. the first two columns only). Any locations beyond 50 m may be screened out of the assessment (as per Step 1) and the corresponding sensitivity is negligible'.

Step 4 - Risk Assessment (Pre-Mitigation)

The matrices are shown in Table C8 for each activity determine the risk category with no mitigation applied.

Table C8 Risk of dust impacts from construction related activities

Compile its of one	Pre-mitigated dust emission magnitude						
Sensitivity of area	Small	Small Medium					
Earthworks, Constru	Earthworks, Construction and Trackout						
Low	Negligible	Low risk	Low risk				
Medium	Low risk	Medium risk	Medium risk				
High	Low risk	Medium risk	High risk				
Construction traffic	(from construction site entrar	nce to origin)					
Low	Negligible	Low risk	Low risk				
Medium	Negligible	Low risk	Medium risk				
High	Low Risk	Medium risk	High risk				

Given the sensitivity of the identified receptors is classified as medium for dust soiling and low health effects, and the dust emission magnitudes for the various construction phase activities as shown in Table C4, the resulting risk of air quality impacts (without mitigation) is as presented in Table C9.

Table C9 Risk of air quality impacts from construction activities

		Dust emission magnitude				Preliminary risk				
Sensitivity of Area	Demolition	Earthworks	Construction	Track-out	Const. Traffic	Demolition	Earthworks	Construction	Track-out	Const. Traffic
Dust soiling imp	acts									
Med.	N/A	Med.	Large	Large	Large	N/A	Med.	Med.	Med.	Med.
Human health impacts										
Low	N/A	Med.	Large	Large	Large	N/A	Low	Low	Low	Low

Note: Med. = Medium, N/A = Not applicable

The risks summarised in Table C9 indicate that dust soiling impacts are associated with medium risks for all construction phase activities while human health impacts are associated with low risks for all construction phase activities if no mitigation measures were to be applied to control emissions.

The risk assessment therefore provides recommendations for construction phase mitigation, commensurate with those identified risks.

Step 5 - Identify Mitigation

Once the risk categories are determined for each of the relevant activities, site-specific management measures can be identified based on whether the site is a low, medium, or high-risk site.

The identified mitigation measures are presented as follows:

- N = not required (although they may be implemented voluntarily)
- D = desirable (to be considered as part of the CEMP, but may be discounted if justification is provided);
- H = highly recommended (to be implemented as part of the CEMP and should only be discounted if site-specific conditions render the requirement invalid or otherwise undesirable).

Table C10 represents a selection of recommended mitigation measures recommended by the IAQM methodology for construction activities commensurate with the risks identified in Table C9.

Step 6 – Risk Assessment (post-mitigation)

Following Step 5, the residual impact is then determined.

The objective of the mitigation is to manage the construction phase risks to an acceptable level, and therefore it is assumed that application of the identified mitigation would result in a low or negligible residual risk (post mitigation).

Given the size of the Proposal site, the distance to sensitive receptors and the activities to be performed, residual impacts associated with fugitive dust emissions from the Proposal would be anticipated to be 'negligible', should the implementation of the mitigation measures outlined above be performed appropriately.

Table C10 Site-specific mitigation measures

	Identified Mitigation	Unmitigated Risk
1	Communications	Medium
1.1	Develop and implement a stakeholder communications plan that includes community engagement before work commences on site.	Н
1.2	Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager.	Н
1.3	Display the head or regional office contact information.	Н
1.4	Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the relevant regulatory bodies.	Н
2	Site Management	Medium
2.1	Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner, and record the measures taken.	Н
2.2	Make the complaints log available to the local authority when asked.	Н
2.3	Record any exceptional incidents that cause dust and/or air emissions, either on- or offsite, and the action taken to resolve the situation in the log book.	Н
2.4	Hold regular liaison meetings with other high-risk construction sites within 250 m of the site boundary, to ensure plans are coordinated and dust and particulate matter emissions are minimised. It is important to understand the interactions of the off-site transport/ deliveries which might be using the same strategic road network routes.	N
3	Monitoring	Medium
3.1	Undertake daily on-site and off-site inspections where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log available to the local authority when asked. This should include regular dust soiling checks of surfaces such as street furniture, cars, and window sills within 100m of site boundary.	D
3.2	Carry out regular site inspections to monitor compliance with the dust management plan / CEMP, record inspection results into a log book, and provide to the local authority when asked.	Н
3.3	Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions.	Н
4	Preparing and Maintaining the Site	Medium
4.1	Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.	Н
4.2	Erect solid screens or barriers around dusty activities or the site boundary that they are at least as high as any stockpiles on site.	Н
4.3	Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extensive period.	Н

	Identified Mitigation	Unmitigated Risk
4.5	Keep site fencing, barriers and scaffolding clean using wet methods.	Н
4.6	Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site. If they are being re-used on-site cover as described below	Н
4.7	Cover, seed or fence stockpiles to prevent wind erosion	Н
5	Operating Vehicle / Machinery and Sustainable Travel	Medium
5.1	Ensure all on-road vehicles comply with relevant vehicle emission standards, where applicable	Н
5.2	Ensure all vehicles switch off engines when stationary - no idling vehicles	Н
5.3	Avoid the use of diesel or petrol-powered generators and use mains electricity or battery powered equipment where practicable	Н
5.4	Impose and signpost a maximum-speed-limit of 25 km·h ⁻¹ on surfaced and 15 km·h ⁻¹ on unsurfaced haul roads and work areas (if long haul routes are required these speeds may be increased with suitable additional control measures provided, subject to the approval of the nominated undertaker and with the agreement of the local authority, where appropriate	D
5.5	Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.	N
5.6	Implement a Travel Plan that supports and encourages sustainable travel (public transport, cycling, walking, and car-sharing)	D
6	Operations	Medium
6.1	Only use cutting, grinding, or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems	н
6.2	Ensure an adequate water supply on the site for effective dust/particulate matter suppression/ mitigation, using non-potable water where possible and appropriate	Н
6.3	Use enclosed chutes and conveyors and covered skips	Н
6.4	Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate	Н
6.5	Ensure equipment is readily available on site to clean any dry spillages and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.	Н
7	Waste Management	Medium
7.1	Avoid bonfires and burning of waste materials.	Н
8	Measures Specific to Earthworks	Medium
8.1	Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable.	D
8.2	Use Hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil, as soon as practicable.	D

	Identified Mitigation	Unmitigated Risk
8.3	Only remove the cover in small areas during work and not all at once	D
9	Measures Specific to Construction	Medium
9.1	Avoid scabbling (roughening of concrete surfaces) if possible	D
9.2	Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place	Н
9.3	Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.	D
9.4	For smaller supplies of fine power materials ensure bags are sealed after use and stored appropriately to prevent dust	D
10	Measures Specific to Track-Out	Medium
10.1	Use water-assisted dust sweeper(s) on the access and local roads to remove, as necessary, any material tracked out of the site.	Н
10.2	Avoid dry sweeping of large areas.	Н
10.3	Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.	Н
10.4	Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.	Н
10.5	Record all inspections of haul routes and any subsequent action in a site log book.	Н
10.6	Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned.	Н
10.7	Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).	Н
10.8	Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permit.	Н
10.9	Access gates to be located at least 10 m from receptors where possible.	Н

APPENDIX D

Meteorology

Meteorological Stations

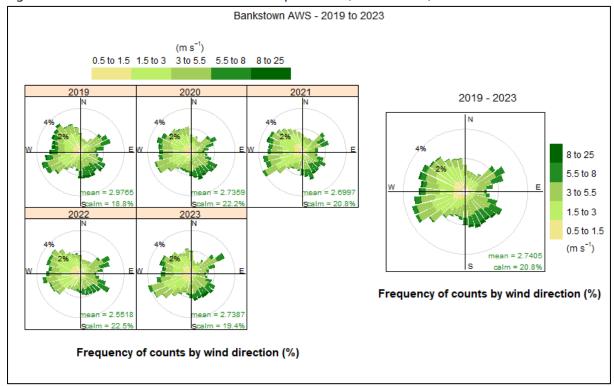
As discussed in Section 4.3, a meteorological modelling exercise has been performed to characterise the meteorology of the Proposal site in the absence of site-specific measurements. The meteorological monitoring has been based on measurements acquired from surrounding automatic weather stations (AWS) operated by the Australian Government Bureau of Meteorology (BoM).

A summary of the relevant monitoring sites is provided in Table D1.

Table D1 Meteorological monitoring stations proximate to the Proposal site

Site name	Source	Station #		ximate ation	Approximate distance	
			mE	mS	(km)	
Bankstown Airport AWS	ВоМ	066137	313 855	6 245 099	7.7	
Horsley Park Equestrian Centre AWS	ВоМ	067119	301 708	6 252 298	9.0	
Sydney Olympic Park AWS	ВоМ	066195	320 948	6 252 558	10.0	

As discussed in Section 4.3, meteorological conditions at Bankstown Airport AWS have been examined to determine a 'typical' or representative dataset for use in dispersion modelling. Annual wind roses for the most recent years of data (2019 to 2023) are presented in Figure D1. The annual wind speed frequency distribution for the five-year period is presented in Figure D2.


The correlation coefficient between each year and the five-year period for the distribution of wind speed, wind direction, PM_{10} and $PM_{2.5}$ are summarised in Table D2. The correlation coefficients were ranked and aggregated to select the representative year for the meteorological modelling. The rankings are also presented in Table D2.

The wind roses indicate that from 2019 to 2023, winds at Bankstown Airport AWS show similar wind distribution patterns across the years assessed, with no predominant wind direction.

The majority of wind speeds experienced at Bankstown Airport AWS between 2019 and 2023 are generally in the range 0.5 meters per second (m·s⁻¹) to 8 m·s⁻¹ with the highest wind speeds (greater than 8 m·s⁻¹) occurring from generally south-easterly directions. Winds of this speed are rare and occur during 1.6 % of the observed hours during the years. Calm winds (less than 0.5 m·s⁻¹) are more common and occur during 20.8 % of hours on average across the years between 2019 and 2023.

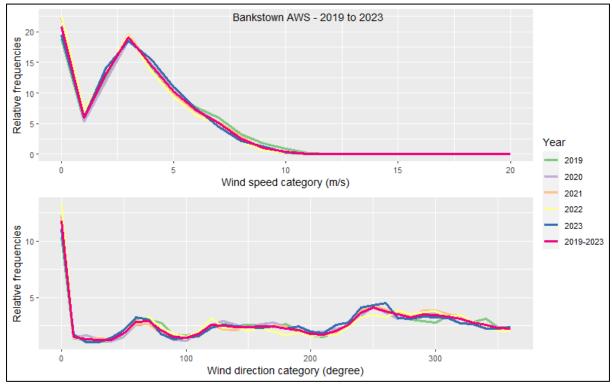


Figure D1 Annual wind roses – Bankstown Airport AWS (2019 to 2023)

Source: Northstar

Figure D2 Annual wind direction and speed distributions – Bankstown Airport AWS (2019 to 2023)

Source: Northstar

Table D2 Correlation coefficient analysis – Bankstown Airport AWS and Parramatta North AQMS (2019 to 2023)

Davamatav	Wind	speed	Wind d	irection	PM ₁₀		PM _{2.5}		Aggregated
Parameter	Corr.	Rank	Corr.	Rank	Corr.	Rank	Corr.	Rank	rank
2019	0.9972	3	0.9843	5	0.9324	5	0.9365	5	5
2020	0.9977	2	0.9922	2	0.9876	3	0.9946	3	2
2021	0.9997	1	0.9952	1	0.9980	1	0.9954	2	1
2022	0.9967	5	0.9865	3	0.9627	4	0.9689	4	4
2023	0.9971	4	0.9862	4	0.9931	2	0.9969	1	3
2019-2023	1	-	1	-	1	-	1	-	-

Note: Corr. = correlation

Wind speed observations for each year correlated well against the wind speed over the five-year period, with each year having a correlation coefficient greater than 0.99. The year 2021 is the highest ranked for correlation against the wind speed over the five-year period.

Wind direction observations for each year are also well correlated against the wind direction over the five-year period, with each year having a correlation coefficient greater than 0.98. The year 2021 is the highest ranked for correlation against the wind direction over the five-year period.

Particulate matter concentrations for each year are also reasonably well correlated against particulate matter concentrations over the five-year period. Each year resulted in having a correlation coefficient greater than 0.93. The year 2021 is the highest rank for PM_{10} while 2023 was the highest ranked year for $PM_{2.5}$.

The correlation coefficient analysis indicates that 2021 is the most representative year for meteorological modelling.

Meteorological Processing

The BoM data adequately covers the issues of data quality assurance; however, it is limited by its location compared to the Proposal site. To address these uncertainties, a multi-phased assessment of the meteorology data has been performed.

In absence of any measured onsite meteorological data, site representative meteorological data for this Proposal was generated using the CALMET meteorological model in a format suitable for using in the CALPUFF dispersion model (refer Section 5.2.1).

CALMET is a meteorological model that develops wind and temperature fields on a three-dimensional gridded modelling domain and is the meteorological pre-processor for the CALPUFF modelling system. Associated two-dimensional fields such as mixing height, surface characteristics, and dispersion properties are also included in the file produced by CALMET. The interpolated wind field is then modified within the model to account for the influences of topography, as well as differential heating and surface roughness associated with different land uses across the modelling domain. These modifications are applied to the winds at each

grid point to develop a final wind field and thus the final wind field reflects the influences of local topography and current land uses.

In this AQIA, CALMET has been run in no-observations (no-obs) mode using gridded prognostic data generated by The Air Pollution Model (TAPM, v 4.0.5), developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). The TAPM model is cited in the 'Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the 'Approved Methods for the Modeling and Assessments of Air Pollutants in NSW, Australia' (Barclay & Scire, 2011) as a suitable prognostic meteorological model for applications involving complex meteorological conditions.

TAPM is a prognostic model which predicts wind speed and direction, temperature, pressure, water vapour, cloud, rainwater, and turbulence. The program allows the user to generate synthetic observations by referencing databases (covering terrain, vegetation and soil type, sea surface temperature and synoptic scale meteorological analyses) which are subsequently used in the model input to generate site-specific hourly meteorological observations at user-defined levels within the atmosphere.

It is noted that the outputs from an initial TAPM modelling run were compared to observed meteorological monitoring data collected at Sydney Olympic Park AWS. These data did not compare well and correspondingly, given the poor validation, that initial TAPM modelling run has not been used in this AQIA. Subsequently, a second TAPM run was performed which used observations at Sydney Olympic Park AWS to 'nudge' model predictions towards those observations, and this has been used in this AQIA.

Given that the adopted TAPM modelling output was performed using observed meteorological data, no validation at surrounding AWS has been performed and the second TAPM run is considered sufficient to represent meteorological parameters at the Proposal site for use in CALMET. Default TAPM databases for terrain, land use and meteorology were also used in the model.

The parameters used in TAPM and CALMET modelling are presented in Table D3.

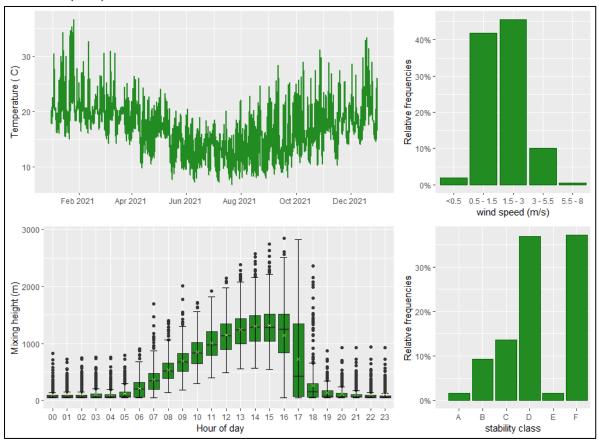
Further, as per (Barclay & Scire, 2011), the seven critical parameters used in the CALMET modelling are presented in Table D4.

Table D3 CALMET and TAPM meteorological parameters

	<u> </u>
TAPM v 4.0.5	
Modelling period	1 January 2021 to 31 December 2021
Centre of analysis	326 566 mE, 6 251 046 mS (UTM Coordinates)
Number of grid points	40 × 40 × 25
Number of grids (spacing)	4 (30 km, 10 km, 3 km, 1 km)
Terrain	AUSLIG 9 second DEM
Data assimilation	Sydney Olympic Park AWS (Archery Centre)
CALMET	
Modelling period	1 January 2021 to 31 December 2021
Southwest corner of analysis	307 000 mE, 6 244 000 mS (UTM Coordinates)
Meteorological grid domain	10 km × 10 km (0.1 km)
(resolution)	10 KH × 10 KH (0.1 KH)
Vertical resolution	10 (0 m, 20 m, 40 m, 80 m, 160 m, 320 m, 640 m, 1 200 m, 2 000 m, 3 000 m,
(cell heights)	4 000 m)
Data assimilation	No-obs approach using TAPM – 3D.DAT file

Table D4 Seven critical meteorological parameters used in CALMET

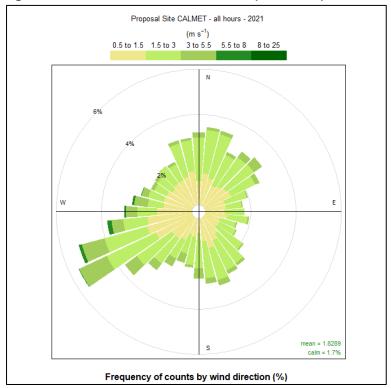
Parameter	Value
TERRAD	1.5
IEXTRP	1
BIAS (NZ)	0 × 10
R1 and R2	0, 0
RMAX1 and RMAX2	0, 0


As generally required by the NSW EPA the following provides a summary of the modelled meteorological dataset. Given the nature of the pollutant emission sources at the Proposal site, detailed discussion of the humidity, evaporation, cloud cover, katabatic air drainage and air recirculation potential of the Proposal site has not been provided. Details of the predictions of wind speed and direction, mixing height and temperature at the Proposal site are provided below.

Diurnal variations in maximum and average mixing heights predicted by CALMET at the Proposal site during 2021 are illustrated in Figure D3.

As expected, an increase in mixing height during the morning is apparent, arising due to the onset of vertical mixing following sunrise. Maximum mixing heights occur in the mid to late afternoon, due to the dissipation of ground-based temperature inversions and growth of the convective mixing layer.

Figure D3 Predicted mixing height, wind speed and stability class frequency at the Proposal site (2021)



Source: Northstar

The modelled wind speed and direction at the Proposal site during 2021 are presented in Figure D4.

Figure D4 Predicted wind direction and speed – Proposal site (2021)

Source: Northstar

APPENDIX E

Background Air Quality

Air quality is not monitored at the Proposal site and therefore air quality monitoring data measured at a representative location has been adopted for the purposes of this assessment. Determination of data to be used as a location representative of the Proposal site and during a representative year can be complicated by factors which include:

- The sources of air pollutant emissions around the Proposal site and representative AQMS; and
- The variability of particulate matter concentrations (often impacted by natural climate variability).

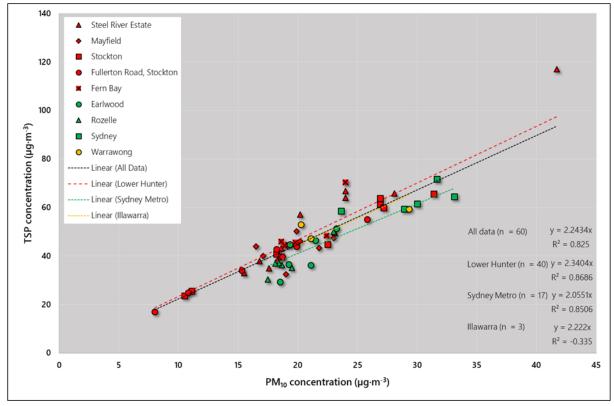
Four AQMS have been identified proximate to the Proposal site, operated by NSW DCCEEW. These locations (listed by proximity) are summarised in Table E5.

Table E5 Details of AQMS proximate to the Proposal site

AQMS location	Dates of	Distance to			Measu	ırement	:s		
AQINIS IOCULION	operation	Proposal site (km)	PM ₁₀	PM _{2.5}	TSP	NO ₂	со	SO ₂	O ₃
Parramatta North	2017-present	6.8	✓	✓	×	✓	✓	×	✓
Prospect	2007-present	7.2	✓	✓	×	✓	✓	✓	✓
Chullora	2002-present	9.5	✓	✓	×	✓	✓	✓	✓
Liverpool	1988-present	9.9	✓	✓	×	✓	✓	×	✓

The closest active AQMS is noted to be located at Parramatta North and is generally considered to be the monitoring location most reflective of the conditions at the Proposal site. Correspondingly, given its proximate distance to the Proposal site and availability of data, air quality monitoring data observed at Parramatta North AQMS for the year 2021 (corresponding with the selected meteorological data [refer Appendix D]) have been adopted for use in this AQIA.

A statistical summary of the monitored concentrations of TSP, PM_{10} , $PM_{2.5}$, CO, SO_2 and O_3 for 2021 adopted in this assessment is presented in Table E6.


Concentrations of TSP are not measured at any AQMS surrounding the Proposal site. An analysis of colocated measurements of TSP and PM_{10} in the Lower Hunter (1999 to 2011), Illawarra (2002 to 2004), and Sydney Metropolitan (1999 to 2004) regions is presented in Figure E1.

The analysis concludes that, on the basis of the measurements collected in all regions between 1999 to 2011, the derivation of a broad TSP: PM_{10} ratio of 2.0551 : 1 (i.e. PM_{10} represents ~49% of TSP) from the Sydney Metropolitan location is appropriate. In the absence of any more specific information, this ratio has been adopted within this AQIA, resulting in a background annual average TSP concentration of 35.1 μ g·m⁻³ being adopted.

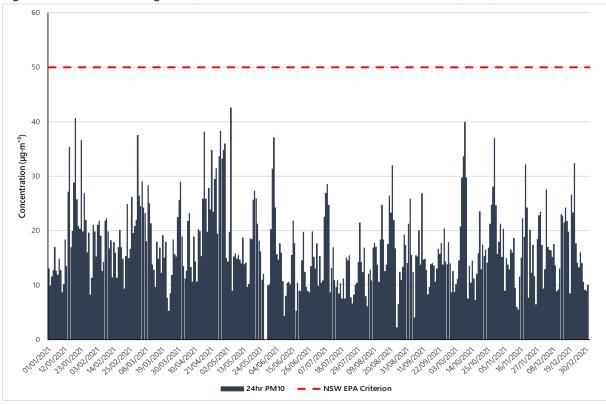
Graphs presenting the daily varying PM_{10} and $PM_{2.5}$ data, and 1-hour average NO_2 , data recorded at Parramatta North AQMS in 2021 are presented in Figure E3, Figure E3 and Figure E4 respectively.

Figure E1 Co-located TSP and PM₁₀ measurements – Lower Hunter, Sydney Metro, and Illawarra

Source: Northstar

Table E6 Background air quality statistics – Parramatta North AQMS (2021)

Pollutant	TSP	PM ₁₀	PM _{2.5}	SO ₂	SO ₂	NO ₂	O₃	СО	СО	СО
Units	μg·m⁻³	μg·m⁻³	μg·m ⁻³	μg·m ⁻³	μg·m ⁻³	μg·m ⁻³	μg·m⁻³	mg·m⁻³	mg·m⁻³	mg·m⁻³
Averaging period	Annual	24-hour	24-hour	24-hour	1-hour	1 hour	1 hour	15-min	1-hour	8-hour (rolling)
Data Points (no.)	363	363	361	360	8309	8293	8344	8192	8192	8685
Mean	35.1	17.1	6.6	1.5	1.4	15.2	34.0	0.4	0.3	0.3
Standard deviation	-	7.2	4.2	1.9	2.7	13.0	26.2	0.2	0.2	0.2
Skew ¹	-	0.9	1.9	1.1	4.7	1.0	0.7	2.0	2.0	1.9
Kurtosis ²	-	0.9	5.1	0.9	42.5	0.4	0.7	5.2	5.2	4.8
Minimum	-	2.2	0.5	0.0	-5.7	-2.1	0.0	0.0	0.0	0.0
Percentiles										
25 th	-	12.0	3.8	0.0	0.0	4.1	8.6	0.2	0.1	0.1
50 th	-	15.5	5.4	0.0	0.0	12.3	34.2	0.3	0.3	0.3
75 th	-	20.9	7.9	2.9	2.9	24.6	51.4	0.3	0.3	0.3
90 th	-	26.8	12.1	2.9	2.9	34.9	66.3	0.7	0.5	0.5
95 th	-	31.9	14.3	5.7	5.7	41.0	77.0	0.8	0.6	0.6
97 th	-	34.9	16.9	5.7	5.7	45.1	85.6	1.0	0.8	0.6
98 th	-	36.9	18.0	5.7	8.6	47.2	94.2	1.2	0.9	0.8
99 th	-	38.2	22.9	6.9	11.4	49.2	107.0	1.3	1.0	0.9
Maximum	-	42.5	27.4	8.6	42.9	96.4	173.3	1.8	1.4	1.1
Data Capture (%)	99.2	99.2	98.6	98.4	94.6	94.4	95.0	93.3	93.3	98.9


24.1098.FR1V5 APPENDIX E Page 140 Final

Notes: 1: Skew represents an expression of the distribution of measured values around the derived mean. Positive skew represents a distribution tending towards values higher than the mean, and negative skew represents a distribution tending towards values lower than the mean. Skew is dimensionless.

^{2:} Kurtosis represents an expression of the value of measured values in relation to a normal distribution. Positive skew represents a more peaked distribution, and negative skew represents a distribution more flattened than a normal distribution. Kurtosis is dimensionless

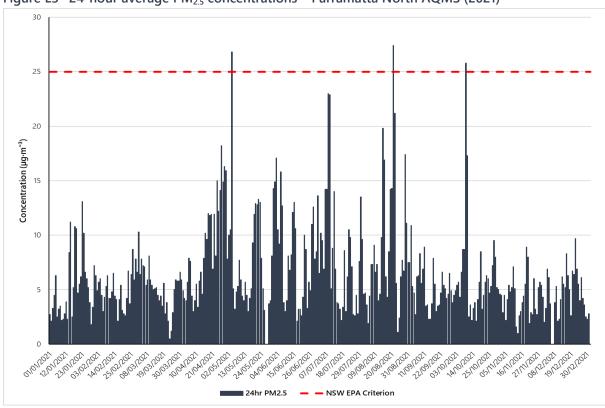
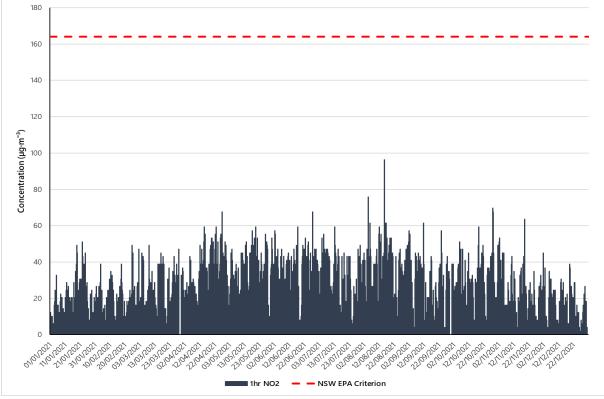


Figure E2 24-hour average PM₁₀ concentrations – Parramatta North AQMS (2021)

Source: Northstar


Figure E3 24-hour average PM_{2.5} concentrations – Parramatta North AQMS (2021)

Source: Northstar

Figure E4 1-hour average NO₂ concentrations – Parramatta North AQMS (2021)

Source: Northstar

APPENDIX F

Generator Technical Specifications

MTU 16V2000 DS1100

Engine data								
			Genset Marin	e 0 & G	Rail	C&I		
	Application Engine model			X				
			16V2000G76F 3D	<u> </u>				
	tion Group		NOx emission	antimized				
Test cv			D2	opumizeu				
	ilphur conte	not [nom]	5					
	³ values ba		0					
			5			1		
residua	ıl oxygen v	alue of [%]						
Not to exceed emissi	on values*							
Cycle point	[-]	n1	n2	n3		n4	n5	
Power	kW	979	734	489		245	98	
Power relative	[-]	11	0.75	0.5		0,25	0.1	
Engine speed	1/min	1500	1500	1500		1500	1500	
Engine speed relative		1	1	1		_1	1	
NOX+HC1 mass flow	kg/h	7.21	5.09	3.4	_	2.32	1.73	
NOX-Emissions specific	g/kWh	7.23	6.7	6.54		8.39	14.87	
CO-Emissions specific	g/kWh	0.55	0.66	1.16		2.67	5.17	
HC1-Emissions specific	g/kWh	0.14	0.24	0.4		1.1	2.82	
NOX+HC1-Emissions specific	g/kWh	7.37	6.94	6.94		9.5	17.69	
PM-Emissions specific (Meas.)	g/kWh	0.046	0.083	0.176		0.118	0.998	
NOX-Emissions (based on 5% O2)	mg/m3N	2604	2376	2244		2569	3655	
NOX+HC1-Emissions (based on 5% O2)	mg/m3N	2655	2459	2381		2906	4347	
CO-Emissions (based mg/m3N 19		199.5	234.2	396.8		818.7	1272	
(based on 5% O2)	mg/m3N	50.3	83.6	137.5		337.6	691.8	
PM-Emissions (based on 5% O2)	mg/m3N	16.7	29.6	60.4		36	245.1	

Application data 1)

	Emissi	on optimized ²	Emission	n optimized²
Engine		-	Combustion air requirements	
Manufacturer		mtu	Combustion air volume: m³/s	1.28
Model	1	6V2000G76F	Max. air Intake restriction: mbar	40
Type		4-cycle		
Arrangement		16V	Cooling/radiator system TB	
Dtsplacement: I		35.7	Coolant flow rate (HT circuit): m3/hr	41.6
Bore: mm		135	Coolant flow rate (LT circuit for TB): m3/hr	17.5
Stroke: mm		156	Heat radiated to charge air cooling (TB): kW (NOx)	240
Compression ratio		17.5	Input pressure customer radiator (TB): bar (rel.)	1.4
Rated speed: rpm		1500	Max. pressure loss customer radiator (TB): bar	0.7
Engine governor		ADEC (ECU 9)	Heat dissipated by engine coolant: kW (NOx)	375
Speed regulation		± 0.25%	Heat radiated to ambient: kW	40
Max power: kWm		979	Air flow required for mech. radiator	
Mean effective pressure: bar		21.9	(40°C) cooled unit: m³/min	1462
Air cleaner		dry	Air flow required for mech. radiator	
			(50°C) cooled unit: m³/min	1462
Fuel system			Engine coolant capacity (without cooling equipment): I	70
Maximum fuel lift: m		5	Radiator coolant capacity (40°C): I	74
Total fuel flow: I/min		30	Radiator coolant capacity (50°C): I	106
			Max. coolant temperature (warning): °C	102
Fuel consumption si	l/hr	g/kwh	Max. coolant temperature (shutdown): °C	105
At 100% of power rating:	237	201		
At 75% of power rating:	180	203	Exhaust system	
At 50% of power rating:	124	210	Exhaust gas temp. (after turbocharger): °C	530
			Exhaust gas volume: m³/s	3.35
Lube oil system			Maximum allowable back pressure: mbar	50
Total oil system capacity: I		102	Minimum allowable back pressure: mbar	30
Max. lube oil temperature (alarm): °C		103		
Max. lube oil temperature (shutdown): °C		105	Generator	
Mtn. lube otl pressure (alarm): bar		4.5	Protection class	IP23
Min. lube oil pressure (shutdown): bar		4	Insulation class	H
			Voltage regulation (steady state)	± 0.25%
			Rado Interference class	N

¹ All data refers only to the engine and is based on ISO standard conditions (ZSYC and 100m above sea level).
2 Emission optimized data refer to NOx emission optimized and NEA (ORDE) optimized/Tier 2 compliant engines.
3 Values referenced are in accordance with ISO 3046-1. Conversion calculated with fuel density of 0.83 g/ml. All fuel consumption values refer to rated engine power.

MTU 20V4000 G74F

Test cycle Fuel sulphu mg/mN³ val residual ox Not to exceed emission v Cycle point Power RW Power relative Engine speed Engine speed relative Fuel sulphu RW Power relative Fuel speed Ry Ry ROX+HC1 mass flow Ry ROX-Emissions Specific CO-Emissions Specific HC1-Emissions Specific ROX+HC1-Emissions Specific RM-Emissions Specific RM-Emissions Specific (Meas.) ROX-Emissions Ry								
Engine mod Application Legislative Test cycle Fuel sulphumg/mN³ val residual oxive Cycle point Power Power relative Engine speed 1/m Engine speed 1/m Engine speed relative NOX+HC1 mass flow kg/r NOX-Emissions specific CO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions g/kV Specific NOX+HC1-Emissions g/kV NOX-Emissions specific NOX+HC1-Emissions g/kV NOX-Emissions g/kV NOX-Emissi		1	Genset	Marine	O&G Ra	il C&I		
Engine mod Application Legislative Test cycle Fuel sulphumg/mN³ val residual oxive Cycle point Power Power relative Engine speed 1/m Engine speed 1/m Engine speed relative NOX+HC1 mass flow kg/r NOX-Emissions specific CO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions g/kV Specific NOX+HC1-Emissions g/kV NOX-Emissions specific NOX+HC1-Emissions g/kV NOX-Emissions g/kV NOX-Emissi			X	Maine	JOGG TIE	<u></u>		
Legislative Test cycle Fuel sulphumg/mN³ val residual ox Not to exceed emission v Cycle point Power RW Power relative Engine speed 1/m Engine speed relative Fuel sulphumg/mN³ val residual ox RW Power relative Fuel sulphumg/mn³ val residual ox RW Power relative Fuel sulphumg/ms RW Power relative Fuel sulphumg/ms RW Power relative Fuel sulphumg/ms RW RW Power relative Fuel sulphumg/ms RW			20V400	0G74F				
Test cycle Fuel sulphu mg/mN³ val residual oxy Not to exceed emission v Cycle point Power Power RW Power relative Engine speed 1/m Engine speed relative Fuel sulphu RW Power relative Fuel speed relative F			3D					
Fuel sulphumg/mN³ val residual oxymg/mN³ val residual oxymg/mn² val	Legislative body				ion optimized			
Mot to exceed emission versidual oxyone point [-] Power kW Power relative [-] Engine speed 1/m Engine speed relative [-] NOX+HC1 mass flow kg/r NOX-Emissions specific GC-Emissions specific HC1-Emissions specific HC1-Emissions specific MOX+HC1-Emissions specific PM-Emissions specific (Meas.) NOX-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)								
Rescription of Revision residual oxy residual oxy Cycle point			5					
Cycle point Power Rower Rower Rower relative Engine speed Engine speed 1/m Engine speed relative I NOX+HC1 mass flow kg/r NOX-Emissions specific CO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions specific PM-Emissions specific (Meas.) NOX-Emissions specific (Meas.) NOX-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX-HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) FM-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas)		I	Measure	ed				
Power kW Power relative [-] Engine speed	alues*							
Power kW Power relative [-] Engine speed 1/m Engine speed relative [-] NOX+HC1 mass flow kg/h NOX-Emissions g/k\ Specific GO-Emissions g/k\ Specific MC1-Emissions g/k\ Specific MC1-Emissions g/k\ NOX+HC1-Emissions g/k\ NOX-Emissions g/k\ NOX-Emissions g/k\ NOX-Emissions g/k\ NOX-Emissions mg/h NOX-Emissions mg		n1	ní	2	n3	n4	n5	
Power relative [-] Engine speed 1/m Engine speed relative [-] NOX+HC1 mass flow kg/r NOX-Emissions specific GO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions specific PM-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)		2670	200		1335	667	267	
Engine speed 1/m Engine speed relative [-] NOX+HC1 mass flow kg/h NOX-Emissions specific CO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions specific PM-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)		1	0.7		0.5	0.25	0.1	
Engine speed relative [-] NOX+HC1 mass flow kg/h NOX-Emissions specific CO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions specific PM-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) FM-Emissions (based on O2 meas)	in	1500	150		1500	1500	1500	
NOX-Emissions specific CO-Emissions specific CO-Emissions specific HC1-Emissions specific NOX+HC1-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)		1	1		1	1	1	
specific g/kV CO-Emissions specific g/kV HC1-Emissions specific NOX+HC1-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas)	1	36.49	30.	61	15.72	6.76	5.91	
specific HC1-Emissions specific NOX+HC1-Emissions specific PM-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas) FM-Emissions (based on O2 meas)	/ /h	13.46	15.	05	11.46	9.47	19.19	
specific NOX+HC1-Emissions specific (Meas.) PM-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) Figure (Bescription of Revision (Bescription of	Λh	1.06	0.5	88	0.75	2.3	7.43	
specific g/kV PM-Emissions specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)	Λh	0.21	0.2	23	0.31	0.67	2.94	
specific (Meas.) NOX-Emissions (based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)	N h	13.67	15.	29	11.77	10.13	22.13	
(based on O2 meas) NOX+HC1-Emissions (based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) PM-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)	Νh	0.045	0.0	49	0.078	0.309	1.806	
(based on O2 meas) CO-Emissions (based on O2 meas) HC1-Emissions (based on O2 meas) PM-Emissions (based on O2 meas)	m3N	4033	435	58	2874	1562	1487	
on O2 meas) mg/ HC1-Emissions (based on O2 meas) mg/ PM-Emissions (based on O2 meas) mg/ mg/ escription of Revision Free reactions of Revision in International Internatio	m3N	4095	442	25	2951	1668	1706	
(based on O2 meas) PM-Emissions (based on O2 meas) mg/ mg/	m3N	311.8	165	5.7	182.4	366.5	552.6	
on O2 meas) IIIg/	m3N	62.5	66	.1	76.7	105.9	218.8	
eta generated by EDS Creator version 1.0 and uniplot	m3N	13.3	13.	.9	19	49.2	134.5	
Data generated by EDS Creator version 1.0 and uniplot				PDF	Namo	Project no. AWS SYD054	Size	
ista generated by EDS Creator version 1.0 and uniplot				Configurator	Theiss, Sandro (TVMG)	Order no.	A4	
ata generated by EDS Creator version 1.0 and uniplot				Approver1	Kneifel, Alexander (TSI.E)	AWS SYD054 EDS-ID		
ata generated by EDS Creator version 1.0 and uniplot		All industrial propert		Approver3 Approver4	Koliwer, Michael (TV)	2203-16.01.2023		
	Description of Revision Frequency				APAC\chenge	コ	∃ .	
	Data generated by EDS Creator version 1.0 and uniplot. Ref-dataset: 420_G_020_bearbeitet.nc.nc2 for 1210 in EDS platfrom,			Engine mode		Title Emission data sh	eet	
		Emissionstage					Sheet	
		Fuel-consumpti	on optimized					
onfiguration-ID 210 Documentation		Emissionstage basis Fuel-consumpti					of	

Application data ⁰

Engine			Liquid capacity (lubrication)	
Manufacturer		mtu	Total oil system capacity: I	390
Model	20	V4000G74F	Engine lacket water capacity: I	205
Type		4-cycle	Intercooler coolant capacity: I	50
Arrangement		20V		
Displacement: I		95.4	Combustion air requirements	
Bore: mm		170	Combustion air volume: m³/s	2.64
Stroke: mm		210	Max. air intake restriction: mbar	50
Compression ratio		16.4		
Rated speed: rpm		1500	Cooling/radiator system	
Engine governor		ECU 9	Coolant flow rate (HT circuit): m3/hr	80
Max power: kWm		2670	Coolant flow rate (LT circuit): m3/hr	32.5
Air cleaner		dry	Heat rejection to coolant: kW	980
			Heat radiated to charge air cooling: kW	430
Fuel system			Heat radiated to ambient: kW	105
Fuel specification	EN 590, Grade No.1-D/2-D (AST)	M D975-00).	Fan power for electr. radiator (40°C): kW	70
	EN 1594	0 (e.g. HVO)		
Maximum fuel lift: m		5	Exhaust system	
Total fuel flow: I/min		27	Exhaust gas temp. (after turbocharger): °C	570
			Exhaust gas volume: m ⁵ /s	8.0
Fuel consumption 2	l/hr	g/kwh	Maximum allowable back pressure: mbar	85
At 100% of power rating	617.6	192	Minimum allowable back pressure: mbar	30
At 75% of power rating:	463.2	192		
At 50% of power rating	321.7	200		

Standard and optional features

System ratings (kW/kVA)

Generator model	Voltage	fuel consumption optimized							
			without radia	tor		with mechanical	radiator		
		kWel	RVA*	AMPS	kWat	kVA*	AMPS		
Leroy Somer LSA53.2 M9	380 V	2520	3150	4786	2480	3100	4710		
(Low voltage	400 V	2520	3150	4547	2480	3100	4474		
Leroy Somer standard)	415 V	2520	3150	4382	2480	3100	4313		
Leroy Somer LSA53,2 7L14 (Medium volt. Leroy Somer)	II kV	2560	3200	168	2496	3120	16-4		

^{*} nos phi + 0.8

APPENDIX G

Additional Mitigation Measures

As outlined in Section 8.2.5, a number of additional mitigation measures considered to be Best Available Technology (BAT) have been reviewed and discussed below. For clarity, the Proposal is predicted to not result in any exceedances of the relevant air quality criteria under the proposed maintenance testing schedule and correspondingly, the following additional controls have been outlined to solely provide context for how air quality impacts may be further reduced.

To prevent or minimise emissions during operation, BAT ensures through proper design, operation, and maintenance, that emission control techniques are utilised at their optimal capacity and availability.

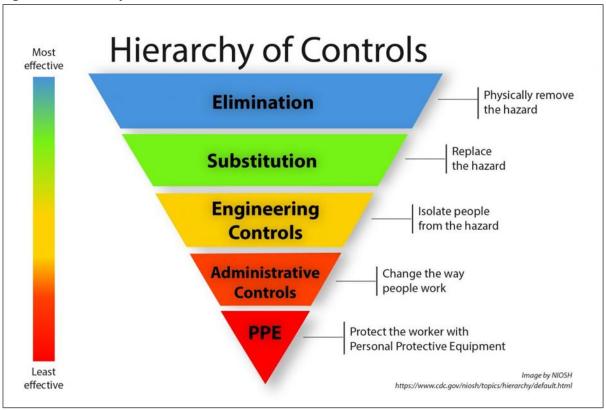
Source - Pathway - Receptor Model

The source-pathway-receptor (SPR) model is useful for understanding the hypothetical relationships between contributing factors to create exposure linkages and also how controls may be applied to manage the risk of exposure from those linkages. Each component of the SPR model is defined below, as relates to the context of this study:

- **Source** the origin of air emissions, which in this case is the discharge points from the back-up generators.
- **Pathway** the route through which pollutants disperse from source to receptor. In this case the pathway assessed in through atmospheric dispersion which can be influenced by various parameters such as meteorological conditions, terrain, and characteristics of the emission source(s).
- **Receptor** The presence of receptors that could be adversely affected by a contaminant. In this case receptors are assessed as the receptor locations identified in Section 4.2.

For air emissions to have an impact on the receiving environment, there needs to be a connection through the SPR model. This means that the source of pollution, the way it travels (pathway), and the affected area (receptor) must all be linked for there to be a potential risk.

Identification of the SPR model allows for targeted management interventions to manage the environmental risks and prevent pollution from reaching sensitive areas.


Hierarchy of Controls

The hierarchy of controls are a well-documented and utilised tool for evaluating the efficacy and reliability for the control of hazards. An example of the hierarchy is presented in Figure G1.

The hierarchy of controls shows 'elimination of the hazard' as the most desirable control, then 'substitution of the hazard' (including engineered controls), to 'administrative controls' (i.e. protection from the hazard) being the least effective.

Figure G1 Hierarchy of controls

Source: Centres for Disease Control and Prevention (CDC) / National Institute for Occupational Safety & Health (NIOSH)

For each identified potential control that is subsequently evaluated below, each control has been given a unique identifier that is [Sx], [Px] or [Rx] relating to how they fit into the SPR model and x being a sequential number (e.g. [S1], [S2], [S3]... for identified controls at source).

It is noted that these references may occur in multiple places in the following sections.

Controls at Source

Air pollution controls at the source may involve the installation of emission control devices and adoption of efficient power generation techniques to minimise pollutant releases from the Proposal site.

Selection of Generators

The capacity, number and configuration of the back-up generators at the Proposal site will have been dependant on the requirements sought by the Proponent during the detailed design phase of the development.

Key factors which may have influenced the selection of generators at the Proposal site include (in no order) fuel efficiency, reliability, capabilities to retrofit air pollution control (APC) techniques, start-up times and compliance with appropriate emissions limit values as specified in legislative and regulatory requirements.

The UK Environment Agency's working draft guide on the approach to the permitting and regulatory aspects for Data Centres (UK Environment Agency, 2018) notes that:

"It is generally accepted that the BAT for data centre back-up generation is presently a set of diesel generators – this allows for an on-site store of fuel for reliability and a scalable provision of MWelec."

Other technologies identified for standby power generation purposes include the Diesel Rotary Uninterruptible Power Supply engine (DRUPS) and natural gas-fuelled back-up generators utilising either combined-cycle or open-cycle gas turbine technologies or employing spark ignition.

In terms of generator selection for the Proposal site:

- Diesel engines can offer a faster response speed relative to the demanded load; making them a
 crucial component for data centre operations which require fast response times. Rapid start-up of
 back-up generators is essential where a near instantaneous supply of electricity is imperative in the
 event of a power outage.
- Diesel engines typically have lower maintenance cost compared to gas-fired generators; and,
- Ensuring a reliable fuel supply, particularly diesel, is essential for maintaining dependability. Use of a natural gas generator for example would necessitate reliance on an off-site supply network.

In terms of pollutants, NO_X is a predominant byproduct obtained from the combustion process. The adoption of low NO_X engine technology would aide in reducing emissions at source. It is acknowledged that gas engines are known to emit lower amounts of NO_X , SOX, and particulate matter (PM) in comparison to diesel fired engines.

As each generator has a unique specification for operating conditions (such as fuel consumption rate, operating temperature, and resultant emission specifications), the selection of generators to account for the different emission specification is a consideration for control **[S1]**.

In Chapter 3 of the BAT Reference Document (BREF) for Large Combustion Plants (LCP BREF) (Lecomte, et al., 2017) low NO_x burners are described as employing a combination of air staging, fuel staging and internal flue-gas recirculation techniques to achieve low NO_x emission from combustion. The control efficiency can vary depending on the specific design of the burner, the combustion technology applied and fuel type, with low NO_x burners generally achieving between 20 % and 70 % of a reduction of NO_x emissions (Lecomte, et al., 2017) **[S2]**.

Emissions Standards

In NSW, standby generators are not required to comply with emissions standards, as long as their operation does not exceed a specific annual hour limit or if maintenance and testing activities are conducted for less than a designated number of hours per year (refer Section 3.1).

Schedule 2, Part 3 of the POEO CAR sets out emission limits relevant to standby electricity generators as a non-scheduled activity. Table G1 outlines the standards of concentration for non-scheduled premises. It is important to note that no reference to other pollutants such as NO_x is within Schedule 2.

Table G1 POEO CAR – Schedule 2, Part 3 – general standards of concentrations for non-scheduled premises

Air impurity	Activity or plant	Group	Concentration
C = 1; =1	A second state of the second state of	Group A	400 mg·m⁻³
Solid	Any activity or plant	Group B	250 mg·m⁻³
particles	(except as listed below)	Group C	100 mg·m ⁻³
Smoke	Any activity or plant in connection with which liquid or gaseous fuel is burnt	Group A, B, C	Ringelmann 1 or 20 % opacity

Standby generators in Australia commonly adhere to either United States (US) emissions standards (Tier 1 to Tier 4) or European Union (EU) emissions standards (Stage I to Stage V) due to the prevalent manufacturing of diesel engines in these regions.

The US non-road emissions standards are categorized by engine horsepower and model year, regulated by the US EPA. Tier 1 standards were phased in from 1996 to 2000, followed by more stringent Tier 2 from 2001 to 2006, and Tier 3 from 2006 to 2008 (applicable to engines from 37 kW to 560 kW).

Current Tier 4 standards, implemented from 2008 to 2015, require around a 90 % reduction in NO_x and PM emissions, achieved through exhaust gas aftertreatment technologies like SCR catalysts. The California Air Resources Board (CARB) is developing Tier 5 standards to be in place between 2028 and 2030, aiming to further reduce NO_x and PM emissions by between 50 %-90 %, which currently under consideration by the US EPA for adoption into their respective non-road engine regulations.

An air information report published by NSW EPA on the reduction of emissions from non-road diesel engines (NSW EPA, 2014) notes that:

Tier 4 emission standards make provision for the following reductions compared to Tier 1 emission standards:

- 95 % reduction in NOx for engines less than 560 kW and 60% reduction for larger engines
- 85 % reduction in HC for engines less than 560 kW and 70% reduction for larger engines, and
- 50–60% reduction in PM during first phase (2008), and 80–95% reduction in second phase (2013–2015).

Table G2 provides details of the corresponding US EPA Tier 1 to Tier 3 emissions standards for engines rated above 560 kW and Table G3 outlines the respective requirements under US EPA Tier 4 emissions standards.

Table G2 US EPA Tier 1 to Tier 3 emissions standards – engines above 560 kW

Rated		Model	Emissions standards									
power	Tier	year	Units	со	HC	NMHC + NO _x	NO _x	PM				
	Tior 1	2000	g·kWh	11.4	1.3	-	9.2	0.54				
≥ 560 kW	Tier 1	2000	g·bhp-hr ⁻¹	8.5	1.0	-	6.9	0.4				
(≥ 750 hp)	T: 2	2000	g·kWh	3.5	-	6.4	-	0.2				
	Tier 2	2006	g·bhp-hr ⁻¹	2.6	-	4.8	-	0.15				

Note: NMHC – non-methane hydrocarbon

Table G3 US EPA Tier 4 emissions standards – engines above 560 kW

Model	Catagoni		Emissions standards							
year	Category	Units	со	NMHC	NO _x	PM				
	Generator sets	g·kWh	3.5	0.40	0.67	0.10				
2011 2014	> 900 kW	g·bhp-hr ⁻¹	2.6	0.30	0.50	0.075				
2011 - 2014	All engines except	g·kWh	3.5	0.40	3.5	0.10				
	gensets > 900 kw	g·bhp-hr ⁻¹	2.6	0.30	2.6	0.075				
	Concreter sets	g·kWh	3.5	0.19	0.67	0.03				
2015	Generator sets	g·bhp-hr ⁻¹	2.6	0.14	0.5	0.022				
2015	All engines except	g·kWh	3.5	0.19	3.5	0.04				
	gensets	g·bhp-hr ⁻¹	2.6	0.14	2.6	0.03				

Note: NMHC – non-methane hydrocarbon

European emissions standards follow a tiered approach, akin to the US, driven by EU parliamentary directives. EU Directive 2015/2193 on Medium Combustion Plant (MCPD) establishes requirements for stationary combustion plants with a thermal rating of equal to or more than 1 MW and less than 50 MW with limits for SO_2 , NO_X , and PM.

According to MCPD Article 6, emergency plants operating less than 500 hours per year, as a five-year rolling average, are exempt from emission limit values. Each generator with its own discharge stack, under MCPD provisions, can operate for testing or emergencies for up to 500 hours per calendar year without emission limit values under the MCPD. If generators share a common discharge stack, the set can be tested and maintained without emissions limit values for up to 500 hours per year.

Other non-road engine emissions in Europe adhere to EU Directive 2016/1628, known as the NRMM Regulation. This regulation sets emission limits for various power ranges and applications, outlining procedures for engine manufacturers to obtain type-approval. European Stage V standards, derived from Directive 2016/1628, mandates stringent limits on PM emissions, necessitating diesel particulate filters (DPFs)

for non-road engines rated between 19 kW and 560 kW. Stage V emissions limits are also established for engines above 560 kW.

Table G4 provides the EU Stage V emissions limits for generators set engines rated above 560 kW.

Table G4 EU Stage V emissions limits by engine category

Engine	Ignition	Net power	Dete	Date Emission limit (g·kWh)				
category	type	(kW)	Date	со	HC	NO _x	PM	
NRG-v-1	A II	D . FC0	2010	2.5	0.10	0.67	0.025	
NRG-c-1	All	P > 560	2019	3.5	0.19	0.67	0.035	

While the standby generators for the Proposal have already been determined, ensuring that the selected generators are compliant with the abovementioned emissions standards has been considered in this review **[S1]**.

Selection of Fuel

The Proposal site utilises diesel for the purposes of standby power generation. Diesel is typically the fuel used for emergency generators, and reciprocating engines fuelled by low-sulfur diesel are the most common choice for other developments of this nature.

Diesel fuel in Australia is subject to specified parameters governing environmental factors like sulfur and hydrocarbons (HC), as well as operational considerations such as carbon residue and sediments, which can impact engine performance.

Part 9 of the POEO CAR specifies limits on sulfur content within liquid fuel, whereby clause 159(2) states:

"A person must not operate fuel burning equipment powered by a reciprocating internal combustion engine using diesel, if the fuel has a sulfur content of more than the sulfur content specified for diesel—

- (a) in a fuel standard determined under the Fuel Quality Standards Act 2000 of the Commonwealth, section 21, or
- (b) in an approval granted under the Fuel Quality Standards Act 2000 of the Commonwealth, section 13."

The Fuel Standard (Automotive Diesel) Determination 2001, as authorised by the Fuel Quality Standard Act 2000 denotes that diesel fuels must not contain more than 10 mg·kg⁻¹ (ppm) from 1 January 2009.

In the US, non-road engine emission regulations allowed higher sulfur content (up to 0.5 %) at Tier 1 to Tier 3 stages. However, to accommodate sulfur-sensitive control technologies in Tier 4 engines, like catalytic particulate filters, the US EPA mandated a reduction in sulfur content to 15 ppm for non-road diesel fuels.

Alternative fuel types identified through the desktop review include natural gas, propane, gasoline, liquefied natural gas (LNG). These fuels may provide gas engines with higher thermal efficiencies when compared to use over diesel generators. However, it is important to note that gas engines may come with relatively higher levels of investment, operating and maintenance costs. Additionally, whilst the use of gas engines may have the potential for lower NO_x emissions compared to diesel engines, there would be a reliance on the national gas grid for an uninterruptable supply, which may not provide the Proponent with fuel security [S3].

Discharge Design

According to (UK Environment Agency, 2018), data centres can have short, below roof level emissions stacks, which can impact on the efficiency of dispersion of emissions. With reference to BAT, the following techniques are noted for the adequate dispersion of exhaust emissions:

- 1. Increased stack height
- 2. Vertical ports
- 3. Increased distances from buildings to be above roof line
- 4. 'Common windshield' combining several individual flues.

Stack Height

By raising the stack height, this can facilitate a higher level of dispersion of exhaust gases as they mix with the surrounding air beyond the stack plume. Although this does not decrease the pollutant concentration at source, this does aide in reducing pollutant concentrations at ground level. Elevating the stack height serves to mitigate the impact of building wake and the entrainment of emissions in the locality of the emission source.

When wind interacts with buildings or structures, turbulent eddies form on the downwind side, potentially forcing a stack plume down to the ground if it's located within approximately five times the height of the nearby structure. This turbulence, known as building downwash, can lead to increased ground-level pollutant concentrations downstream of the building or structure.

Elevating the stack height above the highest point of the building in which it is located (or nearby buildings) will help mitigate building downwash effects and reduce air quality impacts beyond the Proposal site, where feasible [S4].

Discharge Velocity

Decreases in ground-level pollutant concentrations can be accomplished through improved mixing with the surrounding air once the exhaust gas plume terminates from the stack. A higher emission velocity generates increased momentum, increasing the height of the plume in the atmosphere beyond the stack exit point. This increased vertical mixing contributes to lower pollutant concentrations at surrounding receptors.

Any increase in discharge velocity should be considered alongside any improvements to the stack height to optimise plume dispersion conditions.

Increasing discharge velocities associated with the standby generators may be achieved by:

- increasing the air extraction rate from the discharge point; and / or
- decreasing the physical dimensions of the discharge point; and / or
- the addition of dilution air into the exhaust stream prior to discharge.

Exhaust stack restriction devices can regulate the corresponding exhaust flow through adjustment of the cross-sectional area of the stack at point of discharge [S5]

Enhanced discharge velocity may also be gained through the use of dilution fans (for example⁵). They operate by drawing in additional air below the point of discharge to increase volumetric flow and increasing discharge velocity. The effect of this is to significantly increase vertical momentum, which can increase the effective discharge height to conditions that are less affected by turbulent air flows over buildings and enhance dispersion.

They can be configured by multiple inlet manifold and variable speed drive fans to serve multiple discharge points, and as such may offer a practical solution for data centres that are designed with nested discharge points and have highly variable discharge flows.

Such devices have been used on other developments in the Greater Sydney region to good effect [S6].

Discharge Temperature

High stack exhaust temperatures can increase both buoyancy and plume rise dispersion conditions. Plumes tend to rise more rapidly when the associated gases are warmer compared to the atmospheric temperature, which in turn contributes to a higher plume rise which can affect the dispersion pattern.

Combustion modification such as changes to the flame temperature and O_2 content of the air-fuel (stoichiometric) mixture aim to reduce NO_x pollution by ensuring that the fuel is burned completely, or reducing the amount of nitrogen from the air that is burnt in the combustion process. Such approaches include lean burn, water injection, exhaust gas recirculation or low- NO_x boiler designs that reduce the flame temperature.

Secondary abatement technologies such as SCR operated within a narrow temperature range. Operating at lighter loads typically results in emissions at lower temperature, resulting in poorer performance of SCR aftertreatment [S7].

-

https://www.criticalairflow.com/site/assets/files/1080/critical_airflow_tristactech.pdf

Multi-Stack Configuration

By physically bringing together the exhaust streams for multiple engines, it is possible to improve the mixing of flue gases with the surrounding air. This plume aggregation does not decrease the absolute quantities of pollutants being emitted however it can lead to enhanced plume dispersion which results in lower concentration at ground level.

A multi-flue stack configuration pertains to a chimney or exhaust system that contains several flues, where each generator can discharge independently through its own flue but is constrained within that stack. Multiflue stacks are common in facilities with multiple combustion processes. Each flue may lead to a specific emission control system or stack gas treatment unit.

A combined flue stack configuration involves the use of a single exhaust stack system for the collective discharge of combustion byproducts from various power generation sources. This serves as the termination point with each flue feeding into the shared exhaust system [S8].

Air Pollution Control

Air pollution control (APC) encompasses a range of technologies and strategies aimed at eliminating or minimising the release of pollutants into the atmosphere. With regard to standby power generation from diesel combustion, the application of exhaust aftertreatment technologies is common.

Known air pollution control technologies that are available to reduce diesel combustion pollutant emissions include:

- Diesel Oxidisation Catalyst (DOC) use of a catalyst to promote the oxidation of CO and hydrocarbons (HC) contained in the diesel exhaust gas to produce CO₂ and water as byproducts.
- Diesel Particulate Filters (DPF) filters particulate matter (PM) from the exhaust gas and is 'burned off' through either active of passive filter regeneration.
- Selective Catalytic Reduction (SCR) emissions control method that reduces NO_x emissions within exhaust gases by injecting a reducing agent which initiates a chemical reaction that converts NO_x into N_2 , water, and small amounts of CO_2 .
- Non-selective Catalytic Reduction (NSCR) use of a catalyst reaction to simultaneously reduce NOx, CO, and hydrocarbon (HC) to water, CO₂, and N₂.

A diesel oxidisation catalyst (DOC) is an aftertreatment component that is designed specifically for modern diesel engines to convert CO and HC and are commonly used alongside other emission control devices such as DPF and SCR systems. DOCs can achieve a higher level of performance with the use of low sulfur diesel. General information provided by the US Environmental Protection Agency⁶ (US EPA) indicates that DOCs are

https://www.epa.gov/sites/default/files/2016-03/documents/420f10031.pdf

typically effective at reducing emissions of particulate matter (PM) between 20 % to 40 %, HC emissions can be reduced between 40 % and 75 % and CO emissions between 10 % and 60 % **[S9]**.

A Diesel Particulate Filter (DPF) serves as an APC device aimed at minimising particulate matter (PM) emissions linked to diesel engine exhaust. Positioned downstream of the engine, the DPF employs a filtration medium, typically a porous ceramic filter, to capture PM. Subsequently, the accumulated PM undergoes combustion at elevated temperatures to ensure effective removal. This technology can be combined with other emissions controls including SCR and DOC as DPF has a limited effect on other pollutants such as NO_X.

Passive regeneration takes place when the exhaust gas temperatures reach a level that initiates the combustion of collected PM within the DPF without the need for additional fuel, heat, or driver intervention. Conversely, Active regeneration may necessitate external sources of fuel or heat to elevate the DPF temperature to a point where the accumulated PM can be effectively combusted.

The associated control efficiencies for DPF technology, as verified by US EPA⁷ ranges between 85 % and 90 % for PM emissions **[S10]**.

Selective catalytic reduction (SCR) control devices are considered to be one of the most effective abatement techniques for NO_X releases. SCRs induce a chemical reduction via a reducing agent and catalyst to convert NO_X to molecular nitrogen (N_2) and water in the presence of a catalyst. In mobile source applications, an aqueous urea solution is typically preferred as the reductant. The LCP BREF (Lecomte, et al., 2017) notes that, "A higher NO_X reduction is achieved with the use of several layers of catalyst. The technique design can be modular; a special catalyst and / or preheating can be used to cope with low loads or with a wide flue-gas temperature window."

Conversion of NO_X occurs on the catalyst surface with an ideal temperature range of between 300 °C and 450 °C, and less effectively over a wider temperature range of 170 °C and 510 °C depending on the catalyst type and/or configuration employed.

SCR can typically reduce NO_X emissions between 75 % and 90 %, HC emissions by up to 80 %, and PM emissions between 20 % and 30 % 8 . SCR requires the engine and exhaust system to reach operating temperature to be effective, requiring special pre-heaters for NO_X reduction in standby generators, which may reflect a higher cost for implementation [S11].

Selective Non-Catalytic Reduction (SNCR) involves reducing NO_x to N_2 through the reaction with ammonia (NH_3) or urea (CH_4N_2O) at a temperature between 800 °C and 1100 °C for optimal reaction. The LCP BREF (Lecomte, et al., 2017) provides a technical description for SNCR, whereby, "Using ammonia as a reagent, the following chemical reactions take place more or less at the same time. At the lower temperature, both

_

https://www.epa.gov/sites/default/files/2016-03/documents/420f10029.pdf

⁸ https://archive.epa.gov/international/air/web/pdf/default-file_dieselfact_0106.pdf

reactions are too slow; at the higher temperature, the unwanted by-reaction dominates with an increase in NO_x emissions."

In contrast to SCR technology, a catalyst is not required, which lowers investment and maintenance costs, and less space is required to house the SNCR technology at the generator location. The LCP BREF (Lecomte, et al., 2017) notes that SNCR cannot be applied to gas engines or turbines due to the residence time and temperature window required for operation. SNCR processes can typically achieve a NO_X reduction level of between 30 % and 50 % (Lecomte, et al., 2017).

In NSCR technology, the engine exhaust flows through a catalyst bed where NO_x is converted to N_2 . Simultaneously, VOCs and CO undergo oxidation, resulting in the formation of water and CO_2 under optimal conditions.

A technical progress report on reciprocating engine emissions control (Chapman, 2004) notes that, "For an NSCR system to operate optimally (i.e., to minimize NO_x emissions), the inlet exhaust stream must have very low oxygen content, as well as proper concentrations of NO_x , hydrocarbons, and carbon monoxide. This requires initial engine adjustments, followed by careful monitoring of oxygen content in the exhaust."

The catalyst demands exhaust with less than $0.5 \% O_2$ content. Although employing a fuel-rich mixture increases engine fuel consumption due to back pressure, it enables effective NO_X control, typically achieving levels between 90 % and 98 % [S12].

Various standby generator manufacturers have developed retrofit emission control device (RECD) systems¹⁰ based on electrostatic precipitation (ESP) fundamentals for use with diesel generator sets. The RECD is installed after the standby generator exhaust and no modifications to the exhaust are required. However, the RECD would have additional spacing requirements which may be constrained at the Proposal site [S13].

Each air pollution control device identified in this section requires retrofitting to each standby generator (or each discharge point in the event of co-vented discharges), incurring associated costs. Retrofitting involves integrating or adding these devices to existing plant to enhance their emission control capabilities. The costs associated with this process include expenses for purchasing the control devices, installation, and potentially ongoing maintenance [S10-13].

Controls in the Pathway

Enhancing the dilution and dispersion of a pollutant plume during its journey from the source to the receptor will lower the concentration at the receptor, subsequently minimising exposure. For instance, extending the

⁹ https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf

http://www.jnmachineries.com/cummins_retrofit_emission_control_device.php

pathway, such as by emitting emissions from a tall stack, will generally, under constant conditions, increase both dilution and dispersion conditions.

Green Infrastructure

The integration of Green Infrastructure (GI) in the environment has the potential to reduce the effectiveness of the pathway from the emission source to the receptor. Introducing natural elements, like vegetation or green spaces, as contiguous barriers can disrupt the usual flow of pollutants, creating obstacles that impede the direct transmission of emissions. This interference promotes dispersion, dilution, and absorption of pollutants by greenery, which can aide in lowering the concentration of pollutants reaching the receptor.

Strategically placed Vegetative Environment Buffers (VEB) along the perimeter of industrial areas, abutting sensitive areas such as residential, child-care and educational facilities can aide in mitigation human exposure to air pollution.

According to recent research (Barwise & Kumar, 2020), the optimal configuration and plant composition of GI are unclear. Furthermore, the effectiveness of GI depends on factors such as the condition of the built environment, as well as the type, location, and configuration of GI (Kumar, et al., 2019) **[P1]**.

Structural Barriers

Structural barriers such as sound walls or shelterbelts can influence the exposure pathway by obstructing the pollutant plume. These barriers can induce turbulence in the airflow, leading to enhanced dispersion and are used in industrial settings to reduce direct exposure to emissions at receptors. These methods may be more feasible in comparison to GI which would also require additional considerations with regard to establishment and maintenance activities.

The Proposal site is located within a predominately industrial zone with residential land uses located to the south and east.

While the discharges are released at a height, the implementation of structural barriers may be limited to the immediate vicinity of the Proposal site due to the distance to sensitive land uses and the magnitude of the discharge and structural constraints due to the increased loads of such structures [P2].

Stack Height Optimisation

Increasing the stack height can influence the dispersion pattern of pollutants emitted from a stack. A taller stack emits the discharge at greater height and into atmospheric conditions which can enhance more effective dispersion.

Stack heights may be increased through retrofitting, noting that the increased height may have an effect of duct pressure which may affect performance of APC devices.

Often, planning restrictions may also impose limitations on stack heights to limit other environmental effects such as visual impact and design aesthetics [S4, P3].

Controls at Receptors

Air Filtration Systems

Air filtration systems reduce indoor pollutant levels in buildings by extracting contaminants from airflow and commonly feature filters like activated carbon and HEPA filters, which capture airborne pollutants, particularly particulates, effectively.

Research conducted by the Public Health Research & Practice¹¹ assessed the effectiveness of air filtration, particularly those utilising HEPA filtration, in residential settings, focusing on their potential to increase infiltration rates. The research focused on the quantification of HEPA filters in residential settings during smoke events and notes that:

"The percentage reduction of $PM_{2.5}$ attributable to using the HEPA cleaner, which ranged between 30 % and 75 %. Other international studies suggest that HEPA cleaners can provide approximately 52 % – 67% reductions in PM....

The effectiveness of HEPA cleaners depends on several factors, including outdoor smoke concentrations, room size, housing characteristics and building ventilation"

Commercial and industrial buildings in the surrounding environment likely incorporate air handling units (AHU) within their respective building design whilst residential dwellings may also have some uses.

This control is by definition, only of value inside engineered airtight buildings and of limited value in non-airtight buildings (such as residential properties), and of no value in outdoor locations [R1].

Alerts and Alarms

Implementation of air quality monitoring networks and early warning systems can assist in safeguarding sensitive receptors in proximity to the Proposal site. These systems can detect pollutant levels in real-time and can issue timely alerts, which can alert the local community to any potential pollution episodes. Alarm and alert systems that could be potentially implemented include:

- Real-time air quality monitoring stations that detect elevated levels of pollutants.
- Automated warning systems that send alerts via SMS, email, or mobile apps to the local community when pollution levels exceed any impact assessment criterion or predetermined thresholds.

¹¹ https://www.phrp.com.au/issues/online-early/residential-indoor-air-quality-and-hepa-cleaner-use/

- Integration with weather forecasting data to anticipate changes in air quality due to meteorological conditions.
- Online platforms or dashboards providing up-to-date information on air quality advisories for the community.

Increased community engagement, through mediums such as public forums, community advisory boards and meetings can help educate the local community to understand the Proposal site's procedures for standby power generation and the potential implications on air quality. The associated costs of implementing real time air quality monitoring and automated warning systems may not be viable given the likelihood of the Proposal site suffering a catastrophic power outage.

If implemented, each standby generator will feature operational alarms to alert in case of faults and will adhere to maintenance schedules and compliance monitoring programs to ensure emission control equipment functions correctly and complies with regulations. Regular testing and monitoring of the standby generators would incur costs [R2].

Summary

The feasibility of implementing the identified control options in the SPR model have been evaluated by considering the following factors:

- Implementations cost;
- Regulatory requirements;
- Environmental impacts;
- Safety implications; and
- Compatibility with current processes.

This summary assesses the measures that may constrain the implementation of the control measures outlined above. Each measure is provided a risk rating (**low**, **medium**, or **high**) which identifies the constraints which may result in the implementation of the measure not being practical at the Proposal site. Where any of the measures of practicability are rated as high, these measures are not considered further.

It is noted that for the assessment of implementation costs, this review has adopted a relative and qualitative approach as follows:

- Low = \$
- Medium = \$\$
- High = \$\$

Table G5 provides a summary of the additional controls that could be employed at the Proposal site to minimise and reduce air pollution impacts from the standby generator operations.

Table G5 Practicality of implementing control measures at the Proposal site

		Pote	ntial Constr	raints		
Control measure	Implementation costs	Regulatory requirements	Environmental impacts	Safety implications	System compatibility	Conclusion of evaluation
Source						
S1 generator specification	\$\$\$	Low	Low	Low	High	Selecting alternative generator sets would be a high-cost option, and would be very difficult to implement once the facility is operating.
S2 low NO _x burners	\$\$\$	Low	Low	Medium	Low	 Change in designed operational conditions (combustion stability, heat exchange) represents some safety issues that would require due consideration. May offer additional air pollution control however would require extensive retrofitting to each standby generator.
S3 alternative fuels	\$\$	Low	Low	High	High	 Compatibility, storage and handling capabilities and combustion characteristics. Standby generators utilise diesel fuel and would require significant modification, and/or re-specification.
S4 stack height	\$	Low	Low	Medium	Low	 Compatibility with clearance requirements to negate building downwash effects, stability, and structural integrity considerations. May be considered a feasible for implementation.
S5 increased stack velocities	\$	Low	Low	Medium	Low	 Change in designed operational conditions which may then require structural integrity considerations to stack configuration. May be feasible for implementation.
S6 dilution fans	\$\$	Low	Low	Low	Medium	 Higher capital cost but reduced operating cost due to inlet manifolds serving multiple discharges and variable drives. Retrofitting may require load considerations. May be considered a feasible for implementation.

		Pote	ntial Constr	aints		
Control measure	Implementation costs	Regulatory requirements	Environmental impacts	Safety implications	System compatibility	Conclusion of evaluation
S7 stack temperature	\$\$	Low	Low	Low	Low	May be considered a feasible for implementation.
S8 multi-stack configuration	\$\$	Low	Low	Medium	Medium	 Structural and maintenance considerations required from design perspective. Additional works required to combine flues into a multi-stack configuration. Separating exhaust into multiple stacks may aide in optimizes airflow, reducing backpressure, and enhancing generator performance.
S9 diesel oxidisation catalyst	\$\$	Low	Low	Medium	Low	 Require additional design considerations. May offer additional air pollution control, requires retrofitting to each standby generator.
S10 diesel particulate filters	\$\$	Low	Low	Medium	Low	 Require additional design considerations. May offer additional air pollution control, requires retrofitting to each standby generator.
S11 selective catalytic reduction	\$\$	Low	Low	Medium	Medium	 Require additional design considerations. May offer additional air pollution control, requires retrofitting to each standby generator.
S12 non-selective catalytic reduction	\$\$	Low	Low	Medium	Medium	 Require additional design considerations. May offer additional air pollution control, would require retrofitting to each standby generator.
S13 electrostatic precipitation	\$\$	Low	Low	Medium	Medium	 Require additional design considerations. May offer additional air pollution control, would require retrofitting to each standby generator.

		Pote	ntial Constr	aints		
Control measure	Implementation costs	Regulatory requirements	Environmental impacts	Safety implications	System compatibility	Conclusion of evaluation
Pathway						
P1 green infrastructure	\$	Low	Low	Low	Low	May be feasible for implementation
P2 structural barriers	\$\$	Medium	Low	Medium	Low	 Require compliance with building codes, planning policies. Choice, design, and stability capabilities for type of barrier used. Strategic use of barriers may provide airflow restriction from source to receptor.
P3 optimised stack height	\$\$	Low	Low	Medium	Low	Compatibility with clearance requirements to negate building downwash effects, stability, and structural integrity considerations.
Receptor						
R1 air filtration systems	\$\$	Low	Low	Low	Low	May be feasible for implementation
R2 alerts and alarms	\$	Low	Low	Low	Low	May be feasible for implementation

air quality | environment | sustainability

air quality	Northstar specialises in all aspects of air quality, dust, and odour management, covering monitoring, modelling and assessment, due diligence and process specification, licencing and regulatory advice, peer review and expert witness.
environment	Our team has extensive experience in environmental management, covering environmental policy and management plans, licencing, compliance reporting, auditing, data, and spatial analysis.
sustainability	We look beyond compliance to add value and identify opportunities. Our services range from sustainability strategies, ecologically sustainable development reporting and assessment, to bespoke greenhouse gas and energy estimation and reporting.

Head Office

Suite 1504, 275 Alfred Street, North Sydney NSW 2060

Riverina Office

PO Box 483 Albury NSW 2640

Tel: 1300 708 590 | admin@northstar-env.com | northstar-env.com