Appendices

| GHD | Report for SITA Australia - Lucas Heights Resource Recovery Park Project, 21/23482

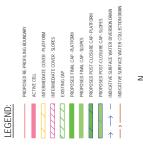
Appendix A – Landfill reprofiling staging

Ploned by: Alson Harlyck Cad FleNo: G121/23462/CAD D/Drawings/21-22396-90011

Plot Date: 5 March 2015 - 5:03 PM Ploted b

2

E


"tol PM Ploned by: Alson Holyck Cad FleNo: G121/23482/C4D/D/Drawings/21-22596-5K01

Plot Date: 5 March 2015 - 5:04 PM

ck Gad FleNo: G:121/234821CADD/Drawings/21-23396-SK01

Plot Date: 5 March 2015 - 5:04 PM Plotted by: Alson Hotyck

₹RY	05.03.15	17.12.14	date		(1)			other it was	23482		016
PRELIMINARY			app'd				Australia	s dient (and any suppose for which other purpose.	job no. 21-23482	0. B	SK016
					PROF		y NSW 2000	a used by GHD sument) for the p enson or for any	job n	rev no.	
РК		SUE	_	IA TS RRP	D REI		Street, Sydne 3239 7199 vw.ghd.com	ent may only b an use this doo 1 by any otherp	for A1	5	
	REVISED	INITIAL ISSUE	description	SITA AUSTRALIA LUCAS HEIGHTS RRP	PROPOSED REPROFILING DEVELOPMENT PLAN		Level 15, 133 Castlereagh Street, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com	Condisions of Uses : This document may only be used by GHD's dient (and any other person who GHD has agreed can use this document) for the purpose for which it was propared and must not be used by, any other person of for any other purpose.	:5000	date MAR 2015	approved (PD)
	8	A	rev	SITA A LUCAS	PROI	(H)	Level 15, 13 T 61 2 9239 E sydmail@g	Conditions of I person who Git prepared and r	scale 1:5000	date	approve

FINAL POST-CLOSURE

Appendix B – Sample Ausplume output file

Terrain effects Smooth stabilit Other stability Ignore building Decay coefficie Anemometer heig Roughness heigh	hits i ts i factor bund concentration / class changes? class adjustments ("urb wake effects? it (unless overridden by		Concentration OUV/second Odour_Units 1.00E+00 0.00E None No None No 0.000 10 m 0.300 m No	E+00
Vertical dispe Horizontal dispe Vertical dispe Enhance horizonn Enhance vertic Adjust horizont Adjust vertica Roughness heigh	DI SPERSION CURVES ersion curves for source rsion curves for source rsion curves for source sion curves for source al plume spreads for buil plume spreads for buil p-G formulae for roug P-G formulae for roug	es <100m hiğh es >100m high es >100m high uoyancy? uoyancy? ghness height?		
Partial penetra Disregard temp. and in the abse	included?	e lapse rates ons? / met. file? otential tempe	No No rature gradient	.s
(in K/m) is use Wind Speed Category			F	
1 2 3 4 5 6		0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020	0. 035 0. 035 0. 035 0. 035 0. 035 0. 035 0. 035	
WIND SPEED CATE Boundaries betw	GORIES een categories (in m/s)	are: 1.54,	3.09, 5.14, 8	3. 23 <i>.</i> 10. 80
	PONENTS: "Irwin Rural" \			
AVERAGING TIMES 1 hour				
1				
L	icas Heights Odour Asses SOURCE CHAR	ssment - Scena RACTERISTICS	rio 7 FUTURE	
	STACK SOURCE: BLO			

Lucas Heights Odour Assessment - Phase 6 - Scenario 3

STACK SOURCE: BIO

X(m) 311966 Y(m) 6231135 Stack Height Diameter Temperature Speed 20m 2.00m 35C 27.4m/s Ground Elev. 27.4m/s Om

 _____Effective building dimensions (in metres)
 ______0°
 30°
 40°
 50°
 60°

 ng width
 130
 137
 141
 140
 135
 140

 ng height
 15
 15
 15
 15
 15
 15
 15

 ing length
 120
 105
 87
 66
 44
 64

 nce from stack
 -107
 -108
 -107
 -103
 -95
 -106

 ance from stack
 58
 49
 39
 27
 15
 2

 Flow direction Effective building width Effective building height Along-flow building length Along-flow distance from stack Across-flow distance from stack 80° 138 15 103 -122 -24 90° 131 15 118 -124 -36 100° 120 15 130 -123 -47 70° 142 15 85 110° 120° 110° 105 15 137 -118 0 0 0 0 0 -116 -11 -56

1

			P6 R1	NoGo	re tx	t						
Flow direction	130°	140°	150°	160°	170°	180°	190°	200°	210°	220°	230°	240°
Effective building width	0	0	0	0	0	118	130	137	141	0	0	0
Effective building height	0	0	0	0	0	15	15	15	15	0	0	0
Along-flow building length	0	0	0	0	0	131	120	105	87	0	0	0
Along-flow distance from stack	0	0	0	0	0	-30	-14	4	20	0	0	0
Across-flow distance from stack		0	0	0	0	-65	-58	-49	-39	0	0	0
Flow direction	250°	260°	270°	280°	290°	300°	310°	320°	330°	340°	350°	360°
Effective building width	0	138	131	120	105	0	0	0	0	0	0	118
Effective building height	0	15	15	15	15	0	0	0	0	0	0	15
Along-flow building length		103	118	130	137	0	0	0	0	0	0	131
Along-flow distance from stack	0	19	6	-7	-20	0	0	0	0	0	0	-101
Across-flow distance from stack	0	24	36	46	56	0	0	0	0	0	0	65

(Constant) emission rate = 1.98E+05 OUV/second No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: MAT

XO(m) YO(m) Ground El No. Vertices Ver. spread Height 311885 6230712 Om 6 2m 4m

Integrated Polygon Area Source Vertice Locations (in metres) No. X Y No. X Y

	· · ·					
1	311885 6230712		2 311821	6230859		
3	311860 6230877	2	4 311903	6230779		
5	311881 6230770	6	5 311903	6230720		
Emission rates	by stability a	nd wind sp	peed, in (OUV/second	per square	metre:

Wind speeds (m/s Stability A: Stability B: Stability C: Stability D: Stability E: Stability E:	7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 5. 87E-01	7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 5. 87E-01	7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 5. 87E-01	7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 5. 87E-01	7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 5. 87E-01	7. 11E-01 7. 11E-01 7. 11E-01 7. 11E-01 5. 87E-01
Stability F:						

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: FINCOM

XO(m) YO(m) 311898 6230693	Ground El Om	No. Vertices 6	Ver. spread 3m	Height 6m	
	No. 1 3118 3 3120 5 3119	X Y 98 6230693 09 6230773 31 6230737	2 31198 4 31194 6 31190	X Y 7 6230673 2 6230788 8 6230742	tres) per square metre:
Wind speeds (m/s Stability A: Stability B: Stability C: Stability D: Stability E: Stability F:	5. 42E-01 5 5. 42E-01 5 5. 42E-01 5 5. 42E-01 5 5. 42E-01 5 4. 48E-01 4	. 42E-01 5. 42 . 48E-01 4. 48	E-01 5.42E-01 E-01 5.42E-01 E-01 5.42E-01 E-01 5.42E-01	5. 42E-01 5. 42E-01 5. 42E-01 5. 42E-01 4. 48E-01	>10.8 5.42E-01 5.42E-01 5.42E-01 5.42E-01 4.48E-01 4.48E-01

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: LEACHG

	YO(m) 6230611	Ground	IEI No Om	o. Vei	rti ces 4	Ver. sp	read 1m	Hei gł	nt Om	
	Integ					Vertice			(in metro	es)

0	No.	X	Y	No.	Х	Ý	-		
	1	311956	6230611	2	311904	6230687			
	3	311992	6230666	4	311992	6230616			
Emission	rates	by stab	bility and	wind spee	ed, in ()UV/second	per	square	metre:

Stability D: 3.34E-01	3. 34E-01	3. 34E-01	3.34E-01	3. 34E-01	3.34E-01
	3. 34E-01	3. 34E-01	3.34E-01	3. 34E-01	3.34E-01
	3. 34E-01	3. 34E-01	3.34E-01	3. 34E-01	3.34E-01
	3. 34E-01	3. 34E-01	3.34E-01	3. 34E-01	3.34E-01
	3. 34E-01	3. 34E-01	3.34E-01	3. 34E-01	3.34E-01
	2.76E-01	2.76E-01	2.76E-01	2.76E-01	2.76E-01

P6_R1_NoGore.txt No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: TIPFAC

XO(m) YO(m) Ground El No. Vertices Ver. spread Height 312747 6231455 Om 4 1m Om

> > No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: LEACHL

XO(m) YO(m) Ground El No. Vertices Ver. spread Height 312041 6231700 0m 5 1m 0m

> Integrated Polygon Area Source Vertice Locations (in metres) No. X Y No. X Y 1 312041 6231700 2 312049 6231781 3 312087 6231776 4 312105 6231751 5 312086 6231713

Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s):	< 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8
Stability A: 5	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01
Stability B: 5	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01
Stability C: 5	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01
Stability D: 5	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01	5.98E-01
Stability E: 4	4.94E-01	4.94E-01	4.94E-01	4.94E-01	4.94E-01	4.94E-01
Stability F: 4	4.94E-01	4.94E-01	4.94E-01	4.94E-01	4.94E-01	4.94E-01

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: MATTUR

XO(m) YO(m) Ground El No. Vertices Ver. spread Height 311845 6230867 Om 4 2m 4m

> > No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: IN1

XO(m)	YO(m)	Ground El	No.	Vertices	Ver.	spread	Height
312054	6231594	Om		17		1m	Om

Integrated Polygon Area Source Vertice Locations (in metres)

٧O.	Λ	Ŷ	NO.	Λ	ř	
1	312054	6231594	2	312193	6231551	
3	312318	6231518	4	312582	6231476	
5	312630	6231537	6	312763	6231527	
7	312802	6231613	8	312755	6231642	
9	312735	6231668	10	312413	6231718	
11	312427	6231878	12	312237	6231906	
13	312221	6231899	14	312160	6231749	
15	312136	6231727	16	312136	6231642	
17	312124	6231617				

Page 3

P6_R1_NoGore.txt Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s)): < 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8
Stability A:	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02
Stability B:	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02
Stability C:	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02
Stability D:	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02	5.55E-02
Stability E:	4.59E-02	4.59E-02	4.59E-02	4.59E-02	4.59E-02	4.59E-02
Stability F:	4.59E-02	4.59E-02	4.59E-02	4.59E-02	4.59E-02	4.59E-02

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: IN2

YO(m) 6231371	Ground El Om	No.	Vertices 14	Ver.	spread 1m	Height Om	

Integrated Polygon Area Source Vertice Locations (in metres)

NO.	Х	Y N	IO. X	Y	
1	312357 62	231371	2 312286	6231302	
3	312130 62	231042	4 312074	6230923	
5	312054 62	231010	6 312169	6231229	
7	312169 62	231261	8 312127	6231288	
9	311988 62	231432	10 311995	6231514	
11	312017 62	231579	12 312053	6231593	
13	312324 62	231515	14 312396	6231505	
Emission rates	s by stabil	ity and wind	speed, in	0UV/second	per square metre:
Wind speeds $(m/s) \cdot < 1$	5 1 5 3	1 3 1 5 1	5182	8 2 10 8	>10.8

-). < 1.5	1.5_3.1	3. 1_ 3. 1	0. I_ 0. Z	0. 2_10. 0	>10.0	
5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	
5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	
5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	
5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	5.29E-02	
4.37E-02	4.37E-02	4.37E-02	4.37E-02	4.37E-02	4.37E-02	
4.37E-02	4.37E-02	4.37E-02	4.37E-02	4.37E-02	4.37E-02	
	5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 4. 37E-02	5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 4. 37E-02 4. 37E-02	5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 4. 37E-02 4. 37E-02 4. 37E-02 4. 37E-02	5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 4. 37E-02 4. 37E-02 4. 37E-02 4. 37E-02	5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 5. 29E-02 4. 37E-02 4. 37E-02 4. 37E-02 4. 37E-02 4. 37E-02	1. 5 1.5

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: IN3

XO(m)	YO(m)	Ground El	No.	Verti ces	Ver.	spread	Hei ght
312802 6	231613	Om		13		1m	Om

Integrated Polygon Area Source Vertice Locations (in metres)

	NO.	X	Y	r	NO.	X	Ŷ			
	1	312802	6231613		2	312816	6231594			
	3	312824	6231564		4	312817	6231496			
	5	312696	6231478		6	312651	6231415			
	7	312619	6231326		8	312484	6231345			
	9	312357	6231370		10	312397	6231505			
	11	312582	6231476		12	312630	6231537			
	13	312763	6231527							
Fmission	rates	by stat	hility and	wind	snee	d in ()IIV/second	ner	square	metr

Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s) Stability A: Stability B:	5. 29E-02 5. 29E-02	5. 29E-02 5. 29E-02	5. 29E-02 5. 29E-02	5. 29E-02 5. 29E-02	5. 29E-02 5. 29E-02	5.29E-02 5.29E-02
Stability C: Stability D:	5. 29E-02 5. 29E-02 4. 37E-02	5.29E-02 5.29E-02 4.37E-02	5. 29E-02 5. 29E-02 4. 37E-02	5. 29E-02 5. 29E-02 4. 37E-02	5. 29E-02 5. 29E-02 4. 37E-02	5.29E-02 5.29E-02 4.37E-02

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: IN4

XO(m)	YO(m)	Ground El	No.	Vertices	Ver.	spread	Height
	6231109	Om		13		1m	Om

Integrated Polygon Area Source Vertice Locations (in metres) No. X Y No

INO.	X	Y	INO.	X Y	
1	312745	6231109	2	312737 6231144	
3	312737	6231156	4	312770 6231183	
5	312792	6231215	6	312780 6231275	
7	312664	6231302	8	312707 6231479	
9	312696	6231478	10	312651 6231414	
11	312580	6231217	12	312556 6231109	
13	312544	6231039			

Emission rates by stability and wind speed, in OUV/second per square metre:

Page 4

		P6_R1	_NoGore.tx	t	
Wind speeds (m/s): < 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8
Stability A: 1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01
Stability B: 1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01
Stability C: 1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01
Stability D: 1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01
Stability E: 8.72E-02	8.72E-02	8.72E-02	8.72E-02	8.72E-02	8.72E-02
Stability F: 8.72E-02	8.72E-02	8.72E-02	8.72E-02	8.72E-02	8.72E-02

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: IN5

XO(m)	YO(m)	Ground El	No.	Verti ces	Ver.	spread	Height
312084 6	5230829	Om		19		1m	Om

Integrated	Polygon Are	a Source	Vertice	Locati ons	(in metres)
U	, , , , , , , , , , , , , , , , , , ,	v		v	· v	

NO.	Х	Y	N	10.	Х	Y	
1	312084	6230829		2	312074	6230922	
3	312134	6231049		4	312285	6231301	
5	312356	6231371		6	312485	6231344	
7	312619	6231326		8	312581	6231218	
9	312543	6231040		10	312744	6231108	
11	312757	6231060		12	312480	6230963	
13	312507	6231120		14	312532	6231231	
15	312551	6231284		16	312360	6231303	
17	312325	6231269		18	312189	6231044	
19	312175	6231020					
 	In a second second		d and an of			111//	

Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s):					>10.8
Stability A: 5.5					5.55E-02 5.55E-02
Stability B: 5.5 Stability C: 5.5	55E-02 5.55E-02				
	55E-02 5.55E-02				
	59E-02 4.59E-02	4.59E-02	4.59E-02	4.59E-02	4.59E-02
Stability F: 4.5	59E-02 4.59E-02	4.59E-02	4.59E-02	4.59E-02	4.59E-02

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: STRIP

XO(m)	YO(m)	Ground El	No.	Vertices	Ver.	spread	Height
312781	6231276	Om		7		1 m	Om

Integrated Polygon Area Source Vertice Locations (in metres)

NO.	Λ	ř	NO.	~ ~	Ŷ	
1	312781	6231276	2	312663	6231302	
3	312707	6231480	4	312758	6231487	
5	312747	6231455	6	312806	6231443	
7	312797	6231399				

Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s	s): < 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8
Stability A:	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01
Stability B:	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01
Stability C:	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01
Stability D:	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01	3.14E-01
Stability E:	2.59E-01	2.59E-01	2.59E-01	2.59E-01	2.59E-01	2.59E-01
Stabilitý F:	2.59E-01	2.59E-01	2.59E-01	2.59E-01	2.59E-01	2.59E-01

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: RAWG

XO(m) YO(m)	Ground El	No.	Vertices	Ver.	spread	Height
311905 6230812	Om		4		2m	4m

Integrated Polygon Area Source Vertice Locations (in metres) No. 1

Х	Y	No.	Х	Y	
311905 6230	1812	2	311956 62	30835	

 1
 311905
 6230812
 2
 311956
 6230835

 3
 311972
 6230804
 4
 311919
 6230781

 Emission rates by stability and wind speed, in OUV/second per square metre:

 1 5 2 1 F 1 5 1 8 2 8 2 10 8 <u>, 10 0</u>

P6_R1_NoGore.txt

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: LECHL2

Ground El No. Vertices Ver. spread Height Om 5 1m Or XO(m) YO(m) 312076 6231632 Om Integrated Polygon Area Source Vertice Locations (in metres) No. X Y No. X Y 1 312076 6231632 2 312062 6231681 3 312087 6231695 4 312104 6231660 5 312103 6231639 Emission rates by stability and wind speed, in OUV/second per square metre: Wind speeds (m/s): < 1.5 1.5_3.1 3.1_5.1 5.1_8.2 8.2_10.8 >10.8 Stability A: 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 Stability B: 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 Stability C: 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 Stability D: 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 5.98E-01 Stability E: 4.94E-01 4.94E-01 4.94E-01 4.94E-01 4.94E-01 4.94E-01 Stability F: 4.94E-01 4.94E-01 4.94E-01 4.94E-01 4.94E-01 4.94E-01 No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: LECHG2

XO(m) YO(m) Ground El No. Vertices Ver. spread Height 311961 6231243 Om 1m Om

Integrated Polygon Area Source Vertice Locations (in metres)

	NO.	Х	Y	ľ	NO.	Х	Y		
	1	311961	6231243		2 3	311945	6231260		
	3	311940	6231287		4 3	311922	6231282		
	5	311918	6231238		6 3	311915	6231208		
	7	311967	6231196		8 3	311968	6231203		
Emi ssi on	rates	by stal	oility a	nd wind	speed	d, in (OUV/second	per square	metre:
Wind speeds (m/s):	< 1.5	5 1.5	313	1 5 1	51	82	8 2 10 8	>10.8	

williu speeus (III/s	$J_{-} < 1.5$	1.5_ 3.1	3.1_ 3.1	0. I_ 0. Z	0. Z_10. 0	210.0	
Stability A:	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	
Stability B:	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	
Stability C:	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	
Stability D:	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	3.34E-01	
Stability E:	2.76E-01	2.76E-01	2.76E-01	2.76E-01	2.76E-01	2.76E-01	
Stability F:	2.76E-01	2.76E-01	2.76E-01	2.76E-01	2.76E-01	2.76E-01	

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ACTCO1

XO(m) YO(m)	Ground El	No.	Vertices	Ver.	spread	Height
311886 6230853	Om		4		2m	4m

Integrated Polygon Area Source Vertice Locations (in metres) No. X Y No. X Y 1 311886 6230853 2 311932 6230873 3 311920 6230901 4 311874 6230881 Emission rates by stability and wind speed, in OUV/second per square metre: . _ . . .

Wind speeds (m/s):	: < 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8	
Stability A: (3	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	
Stability B: 3	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	
Stability C: 3	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	
Stability D: 🕻	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	3. 17E+00	3.17E+00	
Stability E: 2	2.62E+00	2.62E+00	2.62E+00	2.62E+00	2.62E+00	2.62E+00	
Stability F: 2	2.62E+00	2.62E+00	2.62E+00	2.62E+00	2.62E+00	2.62E+00	

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ACTCO2

XO(m)	YO(m)	Ground El	No.	Verti ces	Ver.	spread	Height
311932	6230873	Om		4		2m	4m

Integrated Polygon Area Source Vertice Locations (in metres) No. X 1 311932 623 3 311967 623

I	NO.	~	1	
0873	2	311978	6230893	
0921	4	311921	6230901	
	Page	e 6		

P6_R1_NoGore.txt

Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s)): < 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8
Stability A:	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00
Stability B:	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00
Stability C:	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00
Stability D:	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00	1.63E+00
Stability E:	1.35E+00	1.35E+00	1.35E+00	1.35E+00	1.35E+00	1.35E+00
Stability F:	1.35E+00	1.35E+00	1.35E+00	1.35E+00	1.35E+00	1.35E+00

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ACTCO3

XO(m)	YO(m)	Ground El	No.	Verti ces	Ver.	spread	Height
	6230817			4		2m	4m

Integrated Polygon Area Source Vertice Locations (in metres) No. X Y No. X Y 1 311903 6230817 2 311949 6230836 3 311937 6230864 4 311891 6230844

Emission rates by stability and wind speed, in OUV/second per square metre:

Wind speeds (m/s	5): < 1.5	1.5_3.1	3.1_5.1	5.1_8.2	8. 2_10. 8	>10. 8
Stability A:	1. 19E+00	1.1 9 E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00
Stability B:	1. 19E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00
Stability C:	1. 19E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00
Stability D:	1.19E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00	1.19E+00
Stability E:						
Stability F:	9.87E-01	9.87E-01	9.87E-01	9.87E-01	9.87E-01	9.87E-01

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ACTCO4

XO(m) YO(m) 311949 6230837 Ground El No. Vertices Ver. spread Height Om 4 2m 4m

 $\begin{array}{c|cccc} \mbox{Integrated Polygon Area Source Vertice Locations (in metres)} & No. & X & Y & No. & X & Y \\ & 1 & 311949 & 6230837 & 2 & 311995 & 6230858 \\ & 3 & 311982 & 6230885 & 4 & 311937 & 6230865 \\ \mbox{Emission rates by stability and wind speed, in OUV/second per square metre:} \end{array}$ Wind speeds (m/s): < 1.5 1.5_3.1 3.1_5.1 Stability A: 1.10E+00 1.10E+00 1.10E+00 Stability B: 1.10E+00 1.10E+00 1.10E+00 Stability C: 1.10E+00 1.10E+00 1.10E+00 Stability D: 1.10E+00 1.10E+00 1.10E+00 Stability E: 9.07E-01 9.07E-01 9.07E-01 Stability E: 9.07E-01 9.07E-01 9.07E-01 >10. 8 1. 10E+00 1. 10E+00 1. 10E+00 5.1_8.2 1.10E+00 8. 2_10. 8 1. 10E+00 1. 10E+00 1. 10E+00 1. 10E+00 1. 10E+00

1. 10E+00 9. 07E-01

9.07E-01

1. 10E+00 9. 07E-01

9.07E-01

1. 10E+00 9. 07E-01

9.07E-01

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ALECHG

XO(m)	YO(m)	Ground El	No.	Verti ces	Ver.	spread	Height
311956	6230611	Om		4		1m	Om

9.07E-01 9.07E-01 9.07E-01

Stability D: Stability E: Stability F:

Integrated Polygon Area Source Vertice Locations (in metres)

X Y	No. X	Y
311956 6230611	2 311904	6230687
311992 6230666	4 311992	6230616
2 0. 00E+00	3 0.00E+00	4 0.00E+00
6 0.00E+00	7 0.00E+00	8 0.00E+00
10 0.00E+00	11 0.00E+00 1	2 2.30E+00
14 0.00E+00	15 0.00E+00 1	6 0.00E+00
18 0.00E+00	19 0.00E+00 2	0 0.00E+00
22 0.00E+00	23 0.00E+00 2	4 0.00E+00
	311956 6230611 311992 6230666 rates by hour of 2 0.00E+00 6 0.00E+00 10 0.00E+00 14 0.00E+00 18 0.00E+00	X Y No. X 311956 6230611 2 311904 311992 6230666 4 311992 rates by hour of day in OUV/secon 2 0.00E+00 3 0.00E+00 2 0.00E+00 7 0.00E+00 1 0.00E+00 10 0.00E+00 11 0.00E+00 1 1 1 0.00E+00 1 14 0.00E+00 15 0.00E+00 1 1 0.00E+00 2 2 0.00E+00 2 3 0.00E+00 2 2 0.00E+00 2 3 0.00E+00 3 0.

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ALCHG2

XO(m)	YO(m)	Ground El	No.	Vertices	Ver.	spread	Height
311961	6231243	Om		8		1m	Om

	P6_R1_NoGore.txt						
Integrated I	Polygon Area Sour	ce Vertice Loca	ations (in	metres)			
- No.	X Y	No.	Х	Y			
1	311961 6231243	2 3119	945 623126	0			
3	311940 6231287	4 3119	922 623128	2			
5	311918 6231238	6 3119	915 623120	8			
7	311967 6231196	8 3119	968 623120	3			
Emission	rates by hour of	day in OUV/see	cond per s	quare metre:			
1 0.00E+00	2 0. 00E+00	3 0.00E+00	4 0.00E	+00			
5 0.00E+00	6 0.00E+00	7 0.00E+00	8 O.OOE	+00			
9 0.00E+00	10 0.00E+00	11 0.00E+00	12 2.30E	+00			
13 2.30E+00	14 0.00E+00	15 0.00E+00	16 0.00E	+00			
17 0.00E+00	18 0.00E+00	19 0.00E+00	20 0.00E	+00			
21 0.00E+00	22 0.00E+00	23 0.00E+00	24 O.OOE	+00			

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ALCHL2

XO(m)	YO(m)	Ground El	No.	Verti ces	Ver.	spread	Height
312076	6231632	Om		5		1 m	Om

Integrated I	Polygon Area Sour	ce Vertice Locatio	ns (in metres)
No.	X Y	No. X	Y
1	312076 6231632	2 312062	6231681
3	312087 6231695	4 312104	6231660
5	312103 6231639		
Emission	rates by hour of	day in OUV/second	per square metre:
1 0.00E+00	2 0. 00E+00	3 0.00E+00 4	0.00E+00
5 0.00E+00	6 0.00E+00	7 0.00E+00 8	0.00E+00
9 0.00E+00	10 0.00E+00	11 0.00E+00 12	4.10E+00
13 4.10E+00	14 0.00E+00	15 0.00E+00 16	0.00E+00
17 0.00E+00	18 0.00E+00	19 0.00E+00 20	0.00E+00
21 0.00E+00	22 0.00E+00	23 0.00E+00 24	0.00E+00

No gravitational settling or scavenging.

INTEGRATED POLYGON AREA SOURCE: ALECHL

XO(m) YO(m) Ground El No. Vertices Ver. spread Height 312041 6231700 Om 5 1m Om

Integrated	Polygon Area So	ource Vertice	Locati ons	(in metres)
No.	X	Y No.	Х	Y
1	312041 623170	00 2	312049 623	31781
3	312087 623177	76 4	312105 623	31751
5	312086 623171	13		
Emission	rates by hour	of day in OU\	//second pe	er square metre:
1 0.00E+00	2 0. ÕOE+00	3 0.00E+0)0 4Ö.	00E+00
5 0.00E+00	6 0.00E+00	7 0.00E+0	0 80.	00E+00
9 0.00E+00	10 0.00E+00	11 0.00E+0	00 12 4.	10E+00
13 4.10E+00	14 0.00E+00	15 0.00E+0	00 16 0.	00E+00
17 0.00E+00	18 0.00E+00	19 0.00E+0	0 20 0.	00E+00
21 0.00E+00	22 0.00E+00	23 0.00E+0	0 24 0.	00E+00

No gravitational settling or scavenging.

VOLUME SOURCE: SCREEN

X(m) 312003	Y(m) 6230791	Ground Elevation Om	Height 5m	Hor.	spread 2m	Vert.	spread 1m
	1 0.00E+	04 14 1.14E+04 00 18 0.00E+00	3 [°] 0.00E+ 7 [°] 1.14E+	00 04 04 04 04 00	4 O.OOE	+04 +04 +04 +00	

No gravitational settling or scavenging.

VOLUME SOURCE: SHRED

X(m) 311977	Y(m) 6230820	Ground Elevation Om	Height 4m	Hor.	spread 2m	Vert.	spread 1m	
	1 0.00E+ 5 0.00E+	ion rates by hour of 00 2 0.00E+00 00 6 0.00E+00 04 10 1.32E+04	3 [°] 0.00E+ 7 1.32E+ 11 1.32E+	-00 -04	4 O.OOE	+04		

	13 1.32 17 0.00 21 0.00	E+00 18 0.00 E+00 22 0.00	2E+04 15 1.3 DE+00 19 0.0	0E+00 2 0E+00 2	16 1.3 20 0.0 24 0.0	32E+04 DOE+00 DOE+00	
	Luc	as Heights Odou RE	IF Assessment -		7 FU1	rure	
No.	TE RECEPTOR X Y 5291 623047		GHT No.	x	Y	ELEVN	HEI GHT
		METEOROLOGI CAL	DATA : LucasH	eights201°	1		
	Peak v	alues for the 1 Averaging time	00 worst cases e = 1 hour	(in Odou	ur_Uni	ts)	
Rank	Val ue	Time Recorded hour,date	Coordi (* denote				
1234567890112345678901123456789012234567890123345678901123456789012222456789012333533334442444444445678901	4. 59E+00 3. 54E+00 2. 85E+00 2. 69E+00 2. 69E+00 2. 64E+00 2. 64E+00 2. 06E+00 2. 05E+00 2. 05E+00 2. 05E+00 2. 05E+00 1. 75E+00 1. 56E+00 1. 56E+00 1. 56E+00 1. 56E+00 1. 56E+00 1. 48E+00 1. 44E+00 1. 44E+00 1. 44E+00 1. 44E+00 1. 44E+00 1. 43E+00 1. 37E+00 1. 37E+00	07, 01/05/12 15, 12/07/12 07, 23/05/12 05, 21/12/11 24, 12/09/12 10, 26/07/12 22, 17/09/12 07, 29/06/12 05, 11/12/11 07, 04/08/12 07, 03/08/12 09, 30/06/12 09, 30/06/12 09, 30/06/12 09, 30/06/12 01, 02/06/12 05, 16/09/12 08, 03/08/12 05, 16/09/12 08, 03/08/12 07, 21/06/12 08, 03/08/12 07, 21/06/12 08, 03/08/12 07, 21/06/12 08, 03/08/12 07, 21/06/12 08, 03/08/12 07, 21/06/12 08, 03/08/12 07, 21/06/12 08, 02/05/12 08, 29/08/12 09, 22/11/11 01, 22/08/12 08, 09/03/12 07, 09/03/12 08, 09/03/12 07, 09/03/12 08, 09/03/12 07, 09/03/12 08, 09/03/12 07, 09/03/12 08, 09/03/12 07, 09/03/12 08, 09/03/12 07, 09/03/12 08, 15/07/12 08, 15/07/12 08, 08/02/12 08, 15/07/12 08, 08/03/12 07, 05/09/12 08, 08/03/12 07, 05/09/12 08, 08/03/12 07, 05/09/12 08, 08/03/12 07, 05/09/12 08, 15/07/12 08, 08/03/12 07, 05/09/12 08, 08/03/12 07, 05/09/12 08, 15/07/12 03, 15/08/12 11, 10/05/12	(315291, 6230 (315291, 6230) (315291, 6230 (315291, 6230 (315291, 6230) (315291, 6230 (315291, 6230) (315291, 6230 (315291, 6230) (315291, 6230) (315291	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000000000000000000000000000000000000		

				D/ D1 N-0-	
52	1. 20E+00	04,22/04/12	(315291,	P6_R1_NoGo 6230476,	0.0)
53	1.20E+00	06, 16/06/12	(315291)	6230476,	0.0)
54	1. 20E+00	02,28/02/12	(315291,	6230476,	0.0)
55	1.19E+00	09,29/06/12	(315291,	6230476,	0.0)
56 57	1. 18E+00 1. 17E+00	04,25/07/12 19,11/07/12	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
58	1. 15E+00	10,04/09/12	(315291,	6230476,	0.0)
59	1.15E+00	04, 24/10/11	(315291,	6230476,	0.0)
60	1.14E+00	02, 15/08/12	(315291,	6230476,	0.0)
61	1.13E+00	23, 19/12/11	(315291,	6230476,	0.0)
62 63	1. 13E+00 1. 13E+00	12, 10/06/12 07, 07/11/11	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
64	1. 13E+00	08, 22/11/11	(315291,	6230476,	0.0)
65	1. 11E+00	05,22/08/12	(315291,	6230476,	0.0)
66	1.11E+00	24,04/08/12	(315291,	6230476,	0.0)
67 68	1. 09E+00 1. 07E+00	09,22/04/12 08,13/03/12	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
69	1.06E+00	10,03/09/12	(315291,	6230476,	0.0)
70	1.04E+00	04,09/03/12	(315291,	6230476,	0.0)
71	1.04E+00	05,01/01/12	(315291,	6230476,	0.0)
72 73	1.02E+00	09, 13/07/12	(315291,	6230476,	0.0)
73	1. 01E+00 1. 01E+00	13,26/07/12 05,18/01/12	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
75	1.01E+00	10,02/05/12	(315291,	6230476,	0.0)
76	1.01E+00	09, 19/06/12	(315291,	6230476,	0.0)
77	9.95E-01	07, 16/09/12	(315291,	6230476,	0.0)
78 79	9. 93E-01 9. 89E-01	07,09/05/12 22,10/07/12	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
80	9.83E-01	09,01/05/12	(315291,	6230476,	0.0)
81	9.83E-01	10,08/06/12	(315291,	6230476,	0.0)
82	9.74E-01	01, 18/07/12	(315291,	6230476,	0.0)
83 84	9.62E-01 9.60E-01	08, 15/08/12 10, 21/06/12	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
85	9.50E-01	03, 26/09/12	(315291,	6230476,	0.0)
86	9.48E-01	24,11/07/12	(315291,	6230476,	0.0)
87	9.46E-01	01, 10/03/12	(315291,	6230476,	0.0)
88 89	9.46E-01 9.40E-01	09, 24/04/12 07, 18/11/11	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
89 90	9. 31E-01	04, 28/11/11	(315291,	6230476,	0.0)
91	9.21E-01	16, 12/07/12	(315291,	6230476,	0.0)
92	9.13E-01	05,24/10/11	(315291,	6230476,	0.0)
93	9.12E-01	10, 11/05/12	(315291,	6230476,	0.0)
94 95	8. 95E-01 8. 92E-01	06,22/08/12 09,02/05/12	(315291, (315291,	6230476, 6230476,	0.0) 0.0)
96	8.82E-01	09,04/08/12	(315291,	6230476,	0.0)
97	8.80E-01	05, 18/07/12	(315291,	6230476,	0.0)
98 99	8.75E-01	07, 12/09/12	(315291, (315291,	6230476,	0.0)
100	8. 72E-01 8. 45E-01	05,30/09/12 07,29/08/12	(315291,	6230476, 6230476,	0.0) 0.0)
100	5. 40L UI	0,,2,,00,12	(010271,	02004707	0.0)

Appendix C – Odour emission rates justification memo

12 May 2015

То	SITA Australia				
Copy to	Greg Marshall, David Gamble, and Anna Montgomery				
From	Evan Smith, Anthony Dixon	Tel	92397695		
Subject	Odour Emission Rates Justification - Lucas Heights Resource Recovery Park Air Quality Assessment	Job no.	2123482		

1. Introduction

GHD reviewed the specific odour emission rates (SOERs) proposed to be used for the air quality assessment at the Lucas Heights Resource Recovery Park (LHRRP). The SOER is then multiplied by the appropriate area of the source to determine the odour emission rate (OER).

This memorandum provides a summary of the odour emission rate for each odour source, including:

- the landfill (section 2)
- the existing and proposed garden organics (GO) facility (section 3)
- proposed advanced resource recovery technology (ARRT) facility (section 4)

This memorandum provides an assessment and justification of the emission rates' appropriateness which underpins the odour prediction modelling used in the air quality assessment.

2. LHRRP landfill - site specific sampling

With the approval of SITA, GHD engaged Ektimo to collect samples of gaseous emissions from the existing landfill operations at the LHRRP. A total of 62 odour samples were collected between May and June 2014. The odour analysis of the samples was conducted by The Odour Unit in their NATA registered laboratory in Sydney. All samples were analysed on the day the samples were collected and well within the recommended 24 hour window from the time of sample collection.

The odour sampling program was developed based on feedback from a meeting with the EPA on 1 May 2014 where the EPA advised that odour variability across the site would need to be considered. The sampling program was therefore designed to address potential variability in the odour emission rates from each of the odour emission sources at the landfill. Odour sampling was conducted over approximately a three week period in order to obtain site data for all significant odour sources. Experienced staff from Ektimo repeatedly traversed the LHRRP landfill to identify odour emission variability to enable targeting for sample collection. The details of the odour sampling and analysis program are provided in the attached report from Ektimo.

In the summary, two sampling techniques were used:

- SOER determination using an Isolation Flux chamber (IFC)
- OER determination using downwind transects of odour, the local wind conditions and a backcalculation procedure. The OER obtained can then be divided by the estimated source area to determine the mean SOER for that source

The IFC method is more sensitive (it can measure to much lower SOERs due to the low sweep rate used) however the area sampled is small (~0.13 m²) so that many sub-samples are required if spatial variation in SOER is suspected.

1 | GHD | Report for SITA Australia - Lucas Heights Resource Recovery Park Project, 21/23482

The transect method can sample the complete odour plume, but its resolution is dependent on the upwind odour level being less than the odour levels in the downwind transect. This method requires light winds to get maximum sensitivity. This method is measured directly downwind of the source – this is an advantage for sources with mechanical activity such as a landfill active tipping face. Were IFCs to be used then the machinery on the tipping face (swamp dozers, compactors) must be stopped for safety reasons during the IFC sampling. The IFC result then does not reflect the full emission from the source.

The majority of the landfill odour emissions to be used in the assessment have been based on the results of this recent odour sampling conducted onsite and the results are summarised in Table 2-1 which outlines the odour source, the odour release mechanism, the sample collection technique and the number of samples. A map showing an overview of the odour sampling locations is presented in the Ektimo report.

Odour Source	Odour release mechanism	Collection technique	Number of samples taken*
Final capped area and	Gas diffusion through surface	IFC	7
background not over waste	Gas leakage via fissures (localised emission points)	IFC	3
Intermediate covered	Gas diffusion through surface	IFC	7
area south of excavated void (and therefore south	Gas leakage via fissures	IFC	5
of the landfill batters) and background not over waste	(localised emission points and localised emission areas)	upwind & downwind transect	4
Test pits of the intermediate covered, final capped and background area. The test pits were south of Stage 5 (the excavation void) and the background area was not over landfilled waste	Direct odour emissions from exposed surface	IFC	11
Active tipping face & daily	Direct odour emissions from	IFC	3
and intermediate cover (within Stage 5)	exposed waste material	upwind & downwind transect	4
Leachate pond	Quiescent surface	IFC	2
	Aeration of leachate	upwind & downwind transect	2
Stage 4 Batter** (the	Gas diffusion through surface	IFC	3
western portion of the batter into the excavation	Gas leakage via fissures	IFC	3
void)	(localised emission points)	upwind & downwind transect	4
SITA Batter** (the eastern portion of the batter into the excavation void)	Gas leakage via fissures (localised emission points)	upwind & downwind transect	4
Total			62

Table 2-1 Summary of odour sampling program at the LHRRP landfill

*Additional samples were collected by Ektimo however these results were discarded as they were considered to be nonrepresentative of the site's odour emission profile. For example an upwind odour sample was influenced by an elevated odour source on the upwind transect, resulting in an elevated upwind odour concentration compared to the downwind concentration. Such results were unrepresentative and the upwind sampling transects were readjusted and the samples were redone.

**Due to the steepness and elevation of the batter leading into the excavation void, it not was not possible to obtain representative upwind and downwind measurements from this area of the landfill.

Odour emission rates for the landfill batters were estimated from the work previously undertaken by Homes Air Sciences (reference 14). This work measured the odour emission from the batter at the LHRRP. GHD has adopted a conservative approach for the proposal and applied an increased odour emission rate compared to Homes Air Sciences to the current batter area.

Two different emission rates were adopted for the intermediate cover areas:

• Emission rate for the intermediate cover from areas with active gas extraction. GHD modelled the median value of the intermediate cover grid measurements on all old intermediate cover areas in the existing and future scenarios. In the case of the future scenarios SITA has commenced progressively upgrading the landfill gas capture system at the v section and rectangular area south of the excavation stockpile to reduce their odour contribution.

It is important to note that the majority of the grid measurements were of the same character reported for the background measurements which are of areas not on waste. Where the one sample identified in the grid measurements was an odour of waste character, its location was part of the rectangular section south of the excavation stockpile.

The intact intermediate cover area is not a contributor of odour from landfill waste. These results demonstrate the overall effectiveness of the active landfill gas extraction system for the intact intermediate cover area to prevent the emission of odour.

Nevertheless a conservative approach was applied and an odour contribution was applied to this area (taking into account for the future scenarios the rectification of the v section and rectangular area south of the excavation stockpile).

Three additional localised emission points were identified outside of the v section and rectangular area south of the excavation stockpile. SITA has since rectified these emissions.

• Emission rate for the intermediate cover from areas without active gas extraction. GHD modelled this value on all new intermediate cover areas in the existing and future scenarios to represent emission from areas of relatively newly placed waste where gas extraction has not yet been commenced.

2.1 Upwind and downwind odour transects,

A summary of the upwind and downwind odour transects, as well as the weather conditions at the time of the measurement are provided in Table 2-2. This information was used in the back calculations to determine the specific odour emission rate of the variable emission sources. The tipping face material is not homogeneous in nature and machinery is constantly moving around giving rise to significant spatial variation in odour emission rates. The leachate pond also undergoes times of varying emissions due to aeration whereby surface disturbance will be uneven. Sampling included odour measurements along a transect placed up and downwind of these variable sources. This enabled the source odour emission rates to be back calculated using the AUSPLUME model and the meteorological conditions at the time of the monitoring.

The landfill batters were also found to have significant variation of odour from localised odour emission points and cracks (however it was not possible to utilise the transect method for these areas due to their steep and elevated geometry).

Location	Time	Upwind (OU)	Downwind (OU)	Contribution (OU)	WS m/s	Wind direction	Pasquill- Gifford Stability class	SOER OUm/s
Intermediate cover v section	12th June 0825 - 0845	38	70	32	1.3	SSW-SW	F	11
Intermediate excavation area south of the excavation stockpile	12th June 0958 - 1015	32	152	120	1.8	SWW-W	D	5.5
Leachate pond	13th June 1230 - 1245	16	41	25	1.2	W	D	1.8
Tip face morning	16th June 940 - 1000	19	91	72	1.6	W	С	26
Tip face afternoon	16th June 1310- 1330	19	41	22	2.5	SWW	С	40

Table 2-2 Summary of upwind and downwind odour samples and weather conditions

3. GO facility - Australian data for similar operations

The following odour emission data is proposed to be used for the existing eastern GO facility and the proposed western GO facility:

• Existing GO facility – it is proposed to use measurements at the ANL site at Coldstream which had similar large static stockpiles for the pasteurisation stage and from the Veolia Bangholme site for maturation stockpiles and matured product. The latter measurements were taken using a total enclosure of two maturation windrows at different elapsed times since formation (0, 1, 2, 3 and 4 weeks). These results will be more accurate than that obtained from IFCs.

Odour sampling was conducted of LHRRP greenwaste compost operations in 2006 as part of the landfill odour audit (Holmes Air Sciences, 2006). The results reported as part of this assessment are very low (nearly 20 times less) than the data GHD are using in this assessment for the existing GO facility and over 8 times lower than the data GHD are using for the proposed western GO facility. The measured odour levels from 2006 are also many times lower than the SOERs used in other greenwaste composting odour studies and therefore GHD has chosen not to use this site measured data in this assessment.

• **Proposed western GO facility** - it is proposed to use conservative odour emission data from another SITA (SITA Brooklyn) windrow garden / green waste composting site that had a similar 12 week process (4 weeks pasteurisation and 8 weeks maturation). SITA Brooklyn did not cover the windrows

during pasteurisation and usage of this data for assessment purposes would therefore be considered conservative as the GO facility proposed at the LHRRP includes covered windrows.

Other sites were also considered but the selected sites above were considered to be representative of existing and future proposed operations.

Proposed western GO facility with Gore covers – the use of Gore[®] or similar covers during the active composting stage (weeks 1 to 4) will substantially reduce odour emissions from this process. GHD do not have access to New South Wales odour sampling data for composting windrows with Gore[®] or similar covers but we are aware that such data exists and demonstrates that covers are very effective in reducing the emission of odour from compost. We have undertaken a literature review of publically available data to confirm this finding and to justify a suitable odour emission reduction which would be achieved by their application.

4. ARRT facility

The ARRT facility will be operated under negative pressure and this will prevent any uncontrolled odour emissions from the facility. All air from the operation of the ARRT will be emitted via a biofilter ventilation air discharge portal. The proposed odour emission rate applied to the biofilter is based on an odour emission which in GHD's experience would be suitably representative and readily achievable. The Victorian EPA have accepted 250 OU x Flowrate (OER) whilst in NSW a range of values have been accepted by the regulators based on the performance of well-maintained and operated bioliters.

GHD undertook a review of similar approved alternative waste treatment projects in NSW. Table 4-1 provides a summary of the OERs applied for modelling biofilters for two approved alternative waste technology projects in NSW.

The adopted OER for the SAWT-Biowise facility's biofilter was acknowledged in the project's impact assessment to be likely conservatively high. The evidence for this view is backed up by GHD's recent work on behalf of the New South Wales Department of Planning and Infrastructure. GHD was engaged by the Department in 2013 to undertake a peer review of the performance of biofilters and odour modelling for the Bedminster Waste Facility at Raymond Terrace.

Project	Adopted OER	Report reference	Prepared by	Approval
SAWT–Biowise facility Elizabeth Drive, Kemps Creek	300 OU	10	Holmes Air Sciences	16 April 2008
Woy Woy Waste Facility	250 OU	13	URS	22 November 2009

Table 4-1	Comparison of OERs used to model biofilter
Table 4-1	Comparison of OERS used to model biolitter

The monitoring of odour levels from the two Bedminster biofilters was conducted by The Odour Unit. The odour emissions from the biofilters were measured on 5 separate occasions between April 2009 and April 2011. The measurements resulted in a mean value of 185 OU (with a lower value if the medium of the results was applied). This demonstrates that a well operated biofilter does achieve odour levels of less than 250 OU.

5. Summary

Table 5-1 provides a list of the SOER data for the different odour sources in the proposed odour assessment including the landfill, the existing the proposed GO facility and the ARRT facility. This table also provides further justification for applying this data.

	-			
Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill Daily cover	7	Tipping face under daily cover – SOER of 0.03 OUm/s.	IFC	Refer Ektimo samples 115
Landfill Intermediate cover (old), south of the excavated void which includes active gas extraction With gas extraction	7	0.023	IFC	Site specific measured emissions. This is the median of the intermediate cover grid. GHD modelled this value (0.023) on all old intermediate cover areas in the existing and future scenarios. This is considered to be very conservative as the majority of the area was of the same odour character as the character reported for the background measurements which are of areas not on waste. Where the one sample identified in the grid measurements was an odour of waste character, its location was part of the rectangular section south of the excavation stockpile. Refer Ektimo samples 45, 14, 172, 25 and 58.
Landfill Intermediate cover (new) Without gas extraction was assumed to be conservative	7	0.05	IFC	IFC sample taken from 300mm cover over waste north of active tip face. This area of relatively newly placed waste had no gas extraction. Refer Ektimo sample 117

Table 5-1 Lucas Heights Landfill, Garden Organics (uncovered) and ARRT Facilities SOER's proposed to be used in the Air Quality Assessment

21/23482/204292

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill Intermediate cover Larger emission point termed the 'v section'.	7	11	Transect	Site specific measured emissions. This area (50 m ²) displayed signs of staining and cracks. The odour sample was undertaken at 8.25 am. The OER was determined by back calculation of up and downwind measurements. GHD has modelled this source in the existing scenario. Refer Ektimo samples 60 and 98.
Landfill Intermediate cover Larger emission point 2 – rectangular area south of excavation stockpile.	7	5.5	Transect	Site specific measured emissions. This area (7,000 m ²) displayed signs of staining and cracks. The odour sample was undertaken at 10 am. The OER was determined by back calculation of up and downwind measurements. GHD has modelled this source in the existing scenario. Refer Ektimo samples 56 and 150.
Landfill Final cap localised emission point 1	7	0.17	IFC	Site specific measured emissions. This was included in the scenario 1 model Refer Ektimo sample 47
Landfill Final cap localised emission point 2	7	0.73	IFC	Site specific measured emissions. This was included in the scenario 1 model Refer Ektimo sample 180

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill Final cap localised emission point 3	7	0.02	IFC	Site specific measured emissions. This was included in the scenario 1 model Refer Ektimo sample 117
Landfill Intermediate cover localised emission point 1	7	18.3	IFC	Site specific measured emissions. This was included in the scenario 1 model in addition to the intermediate cover (old) emission rate and is considered conservative. These were not included in the other scenarios as SITA has rectified these emission points. Refer Ektimo sample 76
Landfill Intermediate cover localised emission point 3	7	56.7	IFC	Site specific measured emissions. This was included in the scenario 1 model in addition to the intermediate cover (old) emission rate and is considered conservative. These were not included in the other scenarios as SITA has rectified these emission points. Refer Ektimo sample 27
Landfill Intermediate cover localised emission point 4	7	10.7	IFC	Site specific measured emissions. This was included in the scenario 1 model in addition to the intermediate cover (old) emission rate and is considered conservative. These were not included in the other scenarios as SITA has rectified these emission points. Refer Ektimo sample 70
Landfill Final Capped Area	7	0	IFC	Site specific measured emissions. Odour sampling shows that the median of the grid measurements on the final cap is in fact lower than the background measurements not on the landfill area. The odour character was also defined as

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
				the same as the background (musty) with no ammonia or waste related odours detected with these measurements. Therefore an SOER of 0 is applied.
				Refer Ektimo samples 132, 115, 16, 60, 57. For background measurements, refer Ektimo samples 3, and 176.
Landfill batter "Stage 4 batter west"	7 & 14	1.8	IFC	This area (approx. 2,000 m ²) displayed signs of staining and cracks. The odour sample was undertaken at 13.10 pm. Ektimo advised that there were areas where landfill gas was seeping out however was variable across the batter.
				The OER was determined by applying approximately 2 times the odour emission rate (to be conservative) measured at eight locations on the batter by The Odour Unit and adopted by Homes Air Science for the odour audit conducted at the LHRRP in 2006.
				This batter was modelled for the existing scenario (1). Future scenarios modelled this batter with an emission rate equivalent to intermediate cover with gas extraction.

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill batter "SITA batter north"	7 & 14	1.4	IFC	This area (approx. 3,600 m ²) displayed signs of staining and cracks. The odour sample was undertaken at 12.30 pm. Ektimo advised that there were areas where landfill gas was seeping out however was variable across the batter. Ektimo advised that odour from this batter may have been a little lower than the other batters on the site.
				The OER was determined by applying approximately 1.5 times the odour emission rate (to be conservative) measured at eight locations on the batter by The Odour Unit and adopted by Homes Air Science for the odour audit conducted at the LHRRP in 2006.
				This batter was modelled for the existing scenario (1). Future scenarios modelled this batter with an emission rate equivalent to intermediate cover with gas extraction.
Landfill Landfill batters	7	0.1	IFC	Site specific measured emissions. Median of the batter grid IFC measurements. This value was not utilised in the modelling as it is not representative of the variability in odour on the batters. Refer Ektimo samples 47, 73 and 140 (2/6/2014).
Landfill Intermediate test pits depth 150 mm	7	0	IFC	Site specific measured emissions. For intermediate cover measurements the character of the odour from the samples differed at the two depths. At 150 mm the character of the odour was described as grass, dirt and mould, while at 450 mm there was a notable ammonia odour. Given that there was no ammonia odour detected at 150 mm these measurements have not been included in the model for all future scraped back works. Therefore an SOER of 0 is applied. Refer Ektimo samples 150 and 43.

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill Intermediate test pits depth 450 mm	7	1.0	IFC	Site specific measured emissions. For intermediate cover measurements the character of the odour from the samples differed at the two depths. At 150 mm the character of the odour was described as grass, dirt and mould, while at 450 mm there was a notable ammonia odour. An average of the 2 odour samples at 450 mm have been used in the modelling for scraped back areas. Refer Ektimo samples 89 and 38.
Landfill Final cap test pits 500 mm	7	0	IFC	Site specific measured emissions. For final cover odour samples at all depths the character of the odour from all samples were described as grass, dirt and mould. Given that there was no ammonia or waste related odour detected these have not been included in the model. Refer Ektimo samples 98 and 73
Landfill Final cap test pits 1000 mm	7	0	IFC	Site specific measured emissions. For final cover odour samples at all depths the character of the odour from all samples were described as grass, dirt and mould. Given that there was no ammonia or waste related odour detected these have not been included in the model. Refer Ektimo samples 55 and 123

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill	7	0	IFC	Site specific measured emissions.
Final cap test pits 1300 mm				For final cover odour samples at all depths the character of the odour from all samples were described as grass, dirt and mould. Given that there was no ammonia or waste related odour detected these have not been included in the model. Refer Ektimo samples 15 and 56
Strip back area (over existing intermediate cover (old))	7	1		The strip back area that will potentially increase odour levels will likely only be undertaken over an area of approximately 2,500 m. A larger area of this will be pre-prepared however will only initially be excavated to a depth where the odour emissions are not elevated and in accordance with the VPA odour complaints process (should it be triggered). Refer the 450 mm intermediate cover test pit.

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Landfill Active tip face	7	6am0.037am138am139am2010am2611am2612pm331pm402pm403pm405pm0.03	Transect	Site specific measured emissions. Variable level depending on time of day with size of 2,500 m ² . Measured values of 26 OUm/s in the morning at 9.40 am and 40 OUm/s In the afternoon at 1310 pm. The others were interpolated. The OER was determined by back calculation of up and downwind measurements. The tip face was modelled in all scenarios.
Landfill Leachate pond	7	1.8 (aerated) 0.26 (quiescent)	Transect IFC	Site specific measured emissions. Odour samples of this area (2,750 m ²) were undertaken at 1230 pm. The OER was determined by IFC and back calculation of up and downwind measurements. This leachate pond was modelled for all scenarios applying the 2 hours of aeration in the day time period each day. Refer Ektimo samples 32 and 132

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Existing garden organics Raw green waste	2	ANL Lilydale (URS Report 17 July 2007) 4	IFC	Measured ANL Coldstream data was used. A value of 4 OU/m/s was used based on pro rataing 1 day old and 1 week old green waste to give a 2 day old SOER.).
Existing garden organics Shredder	3	ANL (URS Report 28/8/2008) 5740 OUm³/s (OER)	UW / DW	This value is considered to be representative of the existing green waste shredding operations at Lucas Heights.
Existing garden organics Loading	2	ANL (URS Report 17 July 2007) Mobile source assuming break apart source emission 8	-	The 8 OUm/s is an assumption based on doubling the value of 4 OUv/m ² /s for raw green waste.
Existing garden organics Static windrows 1 month	9	ANL, (Sustainable Infrastructure Australia, 29 March 2007) 4.4	IFC	 Based on measured data from ANL Coldstream Site which had static stockpiles similar to the existing eastern GO. A correction factor of 2.1 has been applied to make up for the under estimation of IFC and is considered conservative. Have modelled each month in the assessment. Areas have been modelled as per the site plan.
Existing garden organics Static windrows 2 month	9	ANL, (Sustainable Infrastructure Australia, 29 March 2007) 2.9	IFC	Based on measured data from ANL Coldstream Site which had static stockpiles similar to the existing eastern GO. A correction factor of 2.1 has been applied to make up for the potential under estimation of IFC and is considered conservative. Have modelled each month in the assessment. Areas have been modelled as per the site plan.
Existing garden organics	9	ANL, (Sustainable Infrastructure Australia, 29 March 2007)	IFC	Based on measured data from ANL Coldstream Site which had static stockpiles similar to the existing eastern GO. A correction

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Static windrows 3 - 4 month		1.7		factor of 2.1 has been applied to make up for the potential under estimation of IFC and is considered conservative.Have modelled each month in the assessment.Areas have been modelled as per the site plan.
Existing garden organics Maturation windrows	10	Veolia Bulla In-Vessel Composting Facility (GHD, 2011) 1.7	Draped tunnel	Based on measured data from Veolia Bulla Site. Tests undertaken at different times during a 4 week maturation process so the combined OER from the windrow array could be quantified. Measurements were undertaken using a greenhouse enclosure method with odour samples taken at the inlet and outlet and are considered to be more accurate than IFC measurements at other sites. Areas have been modelled as per the site plan.
Existing garden organics Matured stockpile	10	Veolia Bulla In-Vessel Composting Facility (GHD, 2011) 0.6	Draped tunnel	Based on measured data from Veolia Bulla Site. Tests undertaken at different times during a 4 week maturation process so the combined OER from the windrow array could be quantified. Measurements were undertaken using a greenhouse enclosure method with odour samples taken at the inlet and outlet. Areas have been modelled as per the site plan.
Existing garden organics Leachate pond	7	1.8 (aerated) 0.26 (quiescent)	IFC	This leachate pond was modelled for all scenarios applying the 2 hours of aeration in the day time period each day. Note the landfill leachate odour pond emission rate was applied in this case and is conservatively high.
Proposed garden organics Raw	2	ANL Lilydale (URS Report 17 July 2007) 4	IFC	Measured ANL Coldstream data was used. A value of 4 OU/m/s was used based on pro rataing 1 day old and 1 week old green waste to give a 2 day old SOER.).

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Proposed garden organics Shredder	3	ANL (URS Report 28/8/2008) 5740 OUm³/s (OER)	UW / DW	This value is considered that it would be representative of the proposed green waste shredding operations at Lucas Heights.
Proposed garden organics Loading	2	ANL (URS Report 17 July 2007) Mobile source assuming break apart source emission 8 OU/m/s	-	The 8 OU/m/s is an assumption based on doubling the value of 4 OU/m/s for raw green waste.
Proposed garden organics Fermentation (weeks 1 -4)	4,9	Week 1 – 1.95 Week 2 - 1.12 Week 3 – 0.97 Week 4 – 0.89 With gore or similar cover: Week 1 - 0.20 Week 2 – 0.11 Week 3 - 0.10 Week 4 – 0.09	Draped tunnel	 Based on measured data from SITA Brooklyn Site. Refer to Section 7.5 of the Air Quality Impact Assessment Report. Have modelled each week in the assessment. Areas have been modelled as per the GHD Air Quality Assessment Report (GHD 2015). OER measurements of windrows including greasetrap and those of just green waste were taken, from the results it was concluded that the removal of greasetrap waste from the windrows lead to a substantial ~ eight-fold reduction in windrow OER. Odour sampling was undertaken at 4 points in time (windrow ages 1 day, 1 week, 4 weeks and 12 weeks) to determine the mean windrow OER of the windrow array at Brooklyn. These measurements when plotted enable an approximate OER at every week in the process to be interpolated. The adopted OERs before scaling and applying gore are: Week 1 – 16.55

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
				Week 2 - 8.5 Week 3 - 7.4 Week 4 - 6.8
Proposed garden organics Turning (weeks 1 -4)	4,9	20.5	Plume	Based on measured data from SITA Brooklyn Site. Refer to Section 7.4 of the GHD Air Quality Impact Assessment Report (GHD 2015). Assumed turning once every week with a duration of 5 hours. So for a 80 m windrow time to break apart is 5 hours Time to turn with a top turn @10 m/min is 8 mins (Brooklyn SITA) So SOER breakapart / SOER quiescent =100 x (8/(5 x 60)) = 2.7 : 1 Factor of 2.7 applied to the average value from weeks 2 to 4 = 2.7 x 7.6 = 20.5
Proposed garden organics Maturation (weeks 5 - 8)	4,9	Week 5 – 6.1 Week 6 – 5.6 Week 7 – 5.1 Week 8 – 4.6	Draped tunnel	Based on measured data from SITA Brooklyn Site. Refer to Section 7.4 of the Air Quality Impact Assessment Report. Have modelled the average of week 5, 6 ,7 and 8 (5.3 OU/m/s)

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Proposed garden organics Turning 2 (weeks 5 -8)	4,9	14.3	Plume	 Based on measured data from SITA Brooklyn Site. Refer to Section 7.4 of the Air Quality Impact Assessment Report. Assumed weekly turning with a duration of 5 hours So for a 80 m windrow time to break apart is 5 hours Time to turn with a top turn @10 m/min is 8 mins (Brooklyn SITA) So SOER breakapart / SOER quiescent =100 x (8/5 x 60) = 2.7 : 1 Factor of 2.7 applied to the average value from weeks 5 to 8= 2.7 x 5.3= 14.3
Proposed garden organics Maturation (weeks 9 - 12)	4,9	Week 9 – 4.3 Week 10 – 3.9 Week 11 – 3.3 Week 12 – 2.9	Draped tunnel	Based on measured data from SITA Brooklyn Site. Refer to Section 7.4 of the Air Quality Impact Assessment Report. Have modelled average of week 9, 10 ,11 and 12 (3.6 OU/m/s)
Proposed garden organics Turning 3 (weeks 9 - 12)	4,9	9.7	Plume	Based on measured data from SITA Brooklyn Site. Refer to Section 7.4 of the Air Quality Impact Assessment Report. Assumed weekly turning with a duration of 5 hours So for a 80 m windrow time to break apart is 5 hours Time to turn with a top turn @10 m/min is 8 mins (Brooklyn SITA) So SOER breakapart / SOER quiescent =100 x (8/5 x 60) = 2.7 : 1 Factor of 2.7 applied to the average value from weeks 9 to 12 = 2.7 x 3.6 = 9.7
Proposed garden organics	4,9	2.6	Draped tunnel	Based on measured data from SITA Brooklyn Site. Refer to Section 7.4 of the GHD Air Quality Impact Assessment Report (GHD 2015).

Process/ Odour Source	Report reference	Applied SOER OUm/s	Method	Justification for modelled OER
Matured product				
Proposed garden organics Screening	1	GHD Study for ANL Coldstream March 2008 1600 OUm ³ /s (OER)	UW / DW	This assumes screening of matured green waste. The ANL data is 1600 Ouv/s based entirely on matured product.
Proposed garden organics Leachate	14	1.00 (aerated) 0.145 (quiescent)	IFC	The leachate dams were modelled for all scenarios assuming 2 hours of aeration in the day time period each day. The SOER was selected from the compost pond IFC measurements taken from the composting leachate pond at the LHRRP in 2006 and the aerated rate was derived by apply the same increased factor measured for the landfill leachate pond (see above).
Proposed garden organics Pre-composted Turkey Manure Stockpile	8	867	Draped tunnel	GHD has adopted dried chicken manure values in lieu of pre- composted turkey manure data. This is considered to be appropriate.
Proposed ARRT Receival area	6	0 as enclosed		This process is enclosed and has not been modelled as a separate source of odour as the building will be under negative pressure.
Proposed ARRT Biofilters	-	VIC EPA accepted level and experience 250 OU x Flowrate (OER)	Various	See Section 4 above.
Proposed ARRT Leachate pond	N/A	0		No pond is proposed.

21/23482/204292

6. References

Reference reports of odour measurements considered in this memorandum are summarised in .

Table 6-1	Odour	reference	reports
-----------	-------	-----------	---------

Ref	Report	Author	Waste Types Accepted
1	Odour Impact from Composting Operations – ANL Coldstream Green Waste Composting Facility. Report #131899. March 2008	GHD with ETC odour measurements	100% garden organics
2	Odour Assessment of the ANL Composting Facility, Lilydale. 17 July 2007	URS with EML odour measurements	100% garden organics
3	Odour assessment of proposed composting process at the ANL Premise, Lillydale. 28 August 2008	URS with EML odour measurements	100% garden organics
4	Odour Impact Survey for SITA Brooklyn – Greenwaste composting facility. February 2009	GHD with ETC odour measurements	Separate measurements were conducted on different windrows. (i) 100% garden organics (ii) Mixture of Greenwaste plus greasetrap and food wastes
5	Lucas Heights Alternative Waste Technology Facility Air Quality Impact Assessment. 27 July 2009	PAE Holmes	Municipal solid waste
6	ETC report No. 140107r 2014 (Lucas Heights). Back Calculations by GHD.	Ektimo with Back Calculations by GHD	Municipal solid waste
7	Odour Impact Assessment – Casaccio Egg Farm for Lendlease and Wyndham City Council. September 2012	GHD with ETC odour measurements	Dried chicken manure from Egg layer farm
8	Report on Odour Survey and Improvement Plan, ANL, Sustainable Infrastructure Australia. 29 March 2007	ETC odour measurements	100% garden organics
9	Report for Bulla In-Vessel Composting Facility Air Quality Assessment. July 2011	GHD with EML odour measurements	Green (garden) organics with 3-4% grease trap waste
10	Appendix D: Air Quality Assessment Proposed SAWT–BIOWISE facility Elizabeth Drive, Kemps Creek. June 2007	Holmes Air Sciences	Municipal waste and garden organics (with tunnel composting)
11	Appendix F: Air Quality Modelling Report Jacks Gully Alternative Waste Technology Facility, March 2006	Holmes Air Sciences	Municipal waste
12	Technical Report No. 4 Air Quality Assessment, June 2011 Remondis Integrated Recycling Park	PAE Homes	Source separated food and green waste

Ref	Report	Author	Waste Types Accepted
13	Appendix D: Woy Woy Waste Management Facility Air Quality Impact Assessment August 2007	URS	Municipal waste
14	Odour audit: Lucas Heights Waste & Recycling Centre 2006	Holmes Air Sciences	Municipal waste

Regards

ismo

Evan Smith Senior Environmental Engineer