

CONSULTING Earth Scientists

PERCHED GROUNDWATER AND SURFACE WATER ASSESSMENT THE NEXT GENERATION (TNG), ENERGY FROM WASTE FACILITY, HONEYCOMB DRIVE, EASTERN CREEK, NEW SOUTH WALES CES DOCUMENT REFERENCE: CES160707-ECS-AD

Written by: E. Millar Reviewed by: M. Challoner

Authorised by: D. Lowe

NE lave

Client: Dial a Dump Industries Pty Ltd 84-88 Burrows Road Alexandria NSW 2015 Date: 23 October 2017

Suite 3, Level 1 • 55-65 Grandview Street • Pymble, NSW 2073 • Australia Telephone: 02 8569 2200 • Fax: 02 9983 0582 0 • ABN 67 151 524 757 © Consulting Earth Scientists Pty Ltd ALL RIGHTS RESERVED UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

Document Control

PERCHED GROUNDWATER AND SURFACE WATER ASSESSMENT THE NEXT GENERATION (TNG), ENERGY FROM WASTE FACILITY, HONEYCOMB DRIVE, EASTERN CREEK, NEW SOUTH WALES DIAL-A-DUMP INDUSTRIES PTY LTD

CES DOCUMENT REFERENCE: CES160707-ECS-AD

Distribution Register

Hard Copy	Digital copy	Recipient	Location
	1	Katie McCallum	Dial A Dump Industries Pty Ltd
	1	CES Library	CES Pty Ltd

The Distribution Register identifies the recipients of issued copies of this report.

Revision Register

Revision	Revision	Description
Number	Date	
0.0	20/10/2017	Draft Report: CES160707-ECS Perched Groundwater and Surface Water Report

The revision register tracks changes to the document.

The latest revision of this document supersedes all previous revisions. It is the responsibility of the recipient to ensure that superseded revisions of this document are removed from circulation.

Documents are only valid if they are signed, original documents issued by CES Pty Ltd. CES Pty Ltd does not accept any liability for actions taken based upon incomplete copies of this document.

EXECUTIVE SUMMARY

Consulting Earth Scientists Pty Ltd (CES) was commissioned by Dial A Dump Industries Pty Ltd (DADI) (the Client) to carry out a perched groundwater and surface water assessment for the Energy from Waste Project located at The Next Generation (NSW) (TNG) energy from waste electricity generation facility, Honeycomb Drive, Eastern Creek, New South Wales.

The objective of the assessment is to assess the perched groundwater quality and surface water quality of Ropes Creek and from this assessment determine whether former or current use of the site or off-site has generated mobile contamination.

Fieldwork was carried out 9 October 2017 following the locating and development of the existing groundwater wells undertaken on 29 September 2017. Four of the five groundwater wells were found to be in a suitable condition for the perched groundwater assessment, with groundwater monitoring well MW4 found damaged and thus unsuitable for the inclusion in this assessment.

The four nominated surface water sampling locations along Ropes Creek were found to be dry at the time of sampling, therefore surface water data taken from the 2014 ADE Consulting Phase 2 investigation was considered and included within this assessment.

Groundwater

Hydrocarbon (total recoverable and polycyclic aromatic) results for perched groundwater samples were all below the laboratory limit of reporting and therefore were below the guideline criteria.

Calcium carbonate concentrations in groundwater samples ranged between 510 mg/L and 770 mg/L and indicate extremely hard (as defined in Table 3.4.4 ANZECC 2000) water beneath the site. Dissolved heavy metal concentrations in groundwater samples were below the guideline criteria, with the exception of copper that was marginally elevated at the following locations:

• MW1 (3 μ g/L), MW2 (3 μ g/L) and MW3 (2 μ g/L) and exceed the groundwater investigation level for fresh water of 1.4 μ g/L (uncorrected for hardness as requested by the NSW EPA).

Surface Water (Ropes Creek)

Hydrocarbon concentrations of the four surface water samples (locations SS-01 to SS-04 inclusive) were all less than the limit of reporting and therefore less than the guideline criteria. Heavy metal (Ar, Cd, Cr (total), Cu, Pb, Hg, Ni and Zn) concentrations were all below the guideline criteria, with the exception of the marginal exceedance of copper in three sampling locations.

Overall Water Quality

The results of this perched groundwater and surface water assessment indicate that the groundwater beneath the site and the adjacent surface waters of Ropes Creek are not currently impacted by former and current activities at the site or adjoining sites. The copper exceedances noted in the perched groundwater and surface water samples are likely to be due to background concentrations within the geology of the site.

PERCHED GROUNDWATER AND SURFACE WATER ASSESSMENT THE NEXT GENERATION (TNG), ENERGY FROM WASTE FACILITY, HONEYCOMB DRIVE, EASTERN CREEK, NEW SOUTH WALES DIAL-A-DUMP INDUSTRIES PTY LTD

CES DOCUMENT REFERENCE: CES160707-ECS-AD

TABLE OF CONTENTS

1	INTRODUCTION	8
1.1	BACKGROUND	8
1.2	OBJECTIVES	8
1.3	SCOPE OF WORK	9
2	SITE INFORMATION	10
2.1	SITE IDENTIFICATION	10
2.2	PREVIOUS ENVIRONMENTAL REPORTS	10
3	SAMPLING AND ANALYTICAL PROGRAMME	13
3.1	DEVELOPMENT OF EXISTING GROUNDWATER WELLS	13
3.2	METHOD OF SAMPLING COLLECTION	13
3.3	DECONTAMINATION PROCEDURES	13
	3.3.1 Sample Containers	13
3.4	METHOD OF SAMPLE STORAGE AND HANDLING	14
3.5	DOCUMENTATION	14
3.6	ANALYTICAL PROGRAMME	14
	3.6.1 Groundwater	14
3.7	LABORATORY	15
4	SITE ASSESSMENT CRITERIA	16
4.1	INVESTIGATION AND SCREENING LEVELS	16
5	QAQC DATA EVALUATION	16
5.1	DATA ACCEPTANCE CRITERIA	16
5.2	FIELD QA/QC PROGRAMME	16
5.3	BLIND SAMPLES	17
5.4	SPLIT SAMPLES	17
5.5	TRIP BLANK SAMPLES	17
5.6	LABORATORY QA/QC PROGRAMME	17
5.7	LABORATORY DUPLICATE SAMPLES	18
5.8	LABORATORY CONTROL SAMPLES	18
5.9	SURROGATES	18
5.10	MATRIX SPIKE	18
5.11	METHOD BLANKS	18
5.12	QAQC ASSESSMENT SUMMARY	19

6	INVESTIGATION RESULTS	20
6.1	PERCHED GROUNDWATER QUALITY FIELD PARAMETERS	20
6.2	PERCHED GROUNDWATER LABORATORY RESULTS	20
	6.2.1 TRH and BTEX	21
	6.2.2 PAH	21
	6.2.3 Heavy Metals	21
	6.2.4 pH	21
	6.2.5 Electrical Conductivity	21
	6.2.6 Calcium Carbonate (CaCO3)	21
6.3	SURFACE WATER LABORATORY RESULTS (ADE, 2014)	21
7	DISCUSSION	22
7.1	GENERAL WATER QUALITY	22
7.2	PERCHED GROUNDWATER	22
7.3	SURFACE WATER	22
8	SUMMARY AND RECOMMENDATION	23
9	LIMITATIONS OF THIS REPORT	24
10	REFERENCES	25

LIST OF FIGURES

Figure 2: Sampling Location Plan

LIST OF TABLES

- Table 1: Site Assessment Criteria (SAC)
- Table 2: Data Acceptance Criteria (DAC)
- Table 3: Groundwater Analytical Results
- Table 4: QA/QC Results Groundwater
- Table 5: ADE (2014) Surface Water Results

LIST OF APPENDICES

Appendix A: Laboratory Certificates

Appendix B: Field Data Sheets and Calibration Certificates

LIST OF ABBREVIATIONS

ACM	Asbestos Containing Material
AHD	Australian Height Datum
ASS	Acid Sulfate Soil
BTEX	Benzene, Toluene, Ethylbenzene and Total Xylenes
CES	Consulting Earth Scientists Pty Ltd
CLM	Contaminated Land Management
COPC	Contaminants of Potential Concern
DECCW	Department of Environment and Climate Change and Water
DLWC	Department of Land and Water Conservation
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
km	Kilometre
LGA	Local Government Area
LPI	Land and Property Information Division
LEP	Local Environmental Plan
m	Metre
mbgl	metres Below Ground Level
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticide
PAH	Polycyclic Aromatic Hydrocarbon
PSP	Project Safety Plan
TRH	Total Recoverable Hydrocarbons
UST	Underground Storage Tank
VOC	Volatile Organic Compounds

PERCHED GROUNDWATER AND SURFACE WATER ASSESSMENT THE NEXT GENERATION (TNG), ENERGY FROM WASTE FACILITY, HONEYCOMB DRIVE, EASTERN CREEK, NEW SOUTH WALES DIAL-A-DUMP INDUSTRIES PTY LTD

CES DOCUMENT REFERENCE: CES160707-ECS-AD

1 INTRODUCTION

1.1 BACKGROUND

Consulting Earth Scientists Pty Ltd (CES) was commissioned by Dial A Dump Industries Pty Ltd (DADI) (the Client) to carry out a perched groundwater and surface water assessment for the Energy from Waste Project located at The Next Generation (NSW) (TNG) energy from waste electricity generation facility, Honeycomb Drive, Eastern Creek, New South Wales (NSW) (the site) (**Figure 1**).

This report has been prepared in accordance with the CES proposal dated 21 September 2017. CES understands previous investigations by consultants have been undertaken at the site to determine the site's suitability for the construction of the Next Generation Energy from Waste Facility.

This investigation addresses the concerns of potential on-site groundwater contamination as stated in comment 11 of Appendix G – NSW EPA - Soil and Water Assessment of the NSW Environment Protection Authority (EPA) letter (reference DOC17/178599, dated 24 March 2017), commenting on the ADE Consulting Group, *Targeted Phase II Detailed Site Investigation, Honeycomb Drive, Eastern Creek, NSW*. Document Reference: 7773-TDSI1, dated 6 August 2014).

Comment 11 states:

"The detailed site investigation only investigated levels of the soils, sediments and surface waters. While the groundwater level is generally deep at the site, there are areas with perched groundwater. Generally, groundwater analysis is a good indicator of any site contamination (that can be missed by targeted soil sampling) and mobilisation of such contamination."

The findings of this report are based on an initial site visit conducted on 29 September 2017 and groundwater sampling and analysis conducted on the 9 October 2017.

1.2 *OBJECTIVES*

The objective of the assessment is to assess the perched groundwater quality the surface water quality of Ropes Creek and from the assessment confirm the site's suitability for use.

1.3 SCOPE OF WORK

CES has completed the following scope of works:

- 1. Reviewed the following previous reports:
 - ADI Services, March 1995, Stage 2 Environmental Assessment of Areas 1 and 3 Wallgrove Quarry;
 - Ian Grey Groundwater Consulting, June 2014, Environmental Impact Assessment, Proposed Energy from Waste Facility, Eastern Creek, Soil and Water;
 - ADE Consulting Group, August 2014, Targeted Phase II Detailed Site Investigation, Honeycomb Drive Eastern Creek NSW; and
 - Edison Environmental & Engineering Pty Ltd, April 2015, Assessment of Soil and Water Impacts: Proposed Energy from Waste Facility, Eastern Creek;
- 2. Site visit to locate the existing network of wells on the subject site. The wells were located with reference to Figure 2 of the Targeted Phase II Detailed Site Investigation (DSI) report (ADE, 2014);
- 3. Development of the located wells to remove stagnant water and check that the hydraulic connection between the formation and the well remained operational;
- 4. Allowed a period of stabilisation between the development and sampling of the wells for at least 5 days;
- 5. Purged and sampled the wells in accordance with standard groundwater practices using bladder pumps and concurrent water quality parameter measurement (such as EC, DO and pH);
- 6. Sampled Ropes Creek at the same four locations (SW01-SW04) as presented in Figure 2 of the Targeted Phase II DSI (ADE, 2014);
- 7. Implemented a Quality Assurance and Quality Control (QA/QC) program for groundwater to verify that the data collected during fieldwork was robust and could be relied upon for future assessments of the site. The QA/QC program consisted of a combination of duplicate, triplicate and blank samples;
- 8. Submitted and scheduled the groundwater samples to a NATA Accredited laboratory for the same analytical suite as previously scheduled by third parties (ADE, 2014), that is to say, Total Recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAH), eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), Electrical conductivity, pH and hardness (Ca CO₃); and
- 9. Prepared a brief Perched Groundwater and Surface Water Assessment Report comprising methodology, QA/QC sampling, sampling location plan, tabulated analytical results in comparison to the guideline criteria, laboratory certificates, calibration certificates and summary and recommendations.

2 SITE INFORMATION

2.1 SITE IDENTIFICATION

The site is located off Honeycomb Drive, Eastern Creek, New South Wales (NSW), within the Local Government Area (LGA) of Blacktown. The investigation site covers an area of approximately 15 hectares, and is legally identified as Lots 2 and 3 in Deposited Plan (DP) 1145808 (**Figure 1**).

2.2 PREVIOUS ENVIRONMENTAL REPORTS

CES has been provided reports of investigations previously undertaken. A summary of information pertaining to the site from each of the reports is provided below.

ADI Services, March 1995, Stage 2 Environmental Assessment of Areas 1 and 3 Wallgrove Quarry

The Stage 2 Environmental Assessment (EA) completed by ADI Services was conducted prior to the surrender of a lease held on the land by Pioneer Concrete (NSW) Pty Ltd. The previous site use of the investigation site appears to be rural open space, however it is not confirmed in the report supplied to CES.

The report was compiled to address the potential contamination issues identified in the Stage 1 Assessment, *Stage 1 Environmental Assessment of Pioneer Concrete (NSW) Wallgrove Quarry,* previously undertaken by ADI. The assessment was undertaken to address potential contamination issues identified in the Stage 1 assessment, that may have occurred due to the quarry and asphalt plant operations conducted on adjacent land to the north and east. The Stage 2 assessment involved the collection and analysis of soil/sediment, groundwater and surface water samples.

Heavy metal concentrations were elevated with respect to background concentrations and exceeded guideline values across the soil and sediment sampling locations. It was found that the concentrations were likely attributed to runoff from spoil stockpiles located on the adjacent Area 1 (north of investigation site).

Groundwater was measured between 2.72 metres below ground level (mbgl) to 6.05 mbgl and flowed in a south-westerly direction. Concentrations of manganese and total PAH above guidelines levels were detected in three of the four groundwater sampling locations. It was also found that the geochemistry of the groundwater at sampling location MW2 was saline in nature and typical of waters associated with shale formations, reflecting regional groundwater. This differed from the remaining three locations, MW3, MW4 and MW5, which was determined to be fresh in nature and influenced by rainfall recharge.

Ian Grey Groundwater Consulting, June 2014, Environmental Impact Assessment, Proposed Energy from Waste Facility, Eastern Creek, Soil and Water

Ian Grey Groundwater Consulting (IGGC) undertook an environmental impact assessment (EIA) of conditions on the site relating to soils, contamination, groundwater, salinity, and surface water, and any of the impacts from the development and operation of the facility relating to groundwater and salinity, including suitability of the site and mitigation measures required.

The geology underlain the site was identified as strata of the Wianamatta Group comprising claystone, siltstone, and minor sandstone. The site area was also classified as moderate salinity potential with high potential along the tributary of Ropes Creek.

The proposed Energy from Waste Facility (EfWF) is estimated to contribute 63 ML/a to flow in the tributary of Ropes Creek through run-off and minor shallow groundwater discharge. Additionally, highly erodible soils and sediments are present on site and may contribute to run-off water quality and volume entering the Ropes Creek tributary and will require mitigation measures and controls during the construction phase of the development. Storm water run-off risks include discharge of excessively high peak flows potentially increasing erosion and flood risk, changes to flow and water level regime in the watercourse due to insufficient discharge volumes between rain events and inadequate treatment potentially discharging water of unacceptable quality.

Furthermore, there is potential for the development to pose a risk to groundwater quality due to leaching of contaminant from waste and storage/handling areas, combustion systems, flue gas treatment or residue of handling and treatment areas. The development will comprise of relatively impermeable surface areas which will lead to a decrease in rainfall recharge impacting groundwater flow and levels.

Additionally, the proposed development could result in a localised increase in groundwater recharge from the storm water retention basin and increase down gradient salinity due to reduction in shallow groundwater through-flow.

ADE Consulting Group, August 2014, Targeted Phase II Detailed Site Investigation, Honeycomb Drive Eastern Creek NSW

ADE undertook a Targeted Phase II Detailed Site Contamination Investigation (DSI) to assess the current level of contamination of the site prior to TNG taking possession of the site for the 'Energy from Waste' Facility.

Samples from boreholes, stockpiles, creek beds and surface water were collected and analysed. Concentrations of heavy metals, PAH and TRH in surface water samples tested were below the threshold criteria. Concentrations of heavy metals, PAHs, TRHs, OPPs,

OCPs, PCBs, Phenols and BTEX were below the human health threshold criteria for commercial/ industrial land use in soil samples collected. Soil samples tested for TRH, Naphthalene, Arsenic and DDT were below the ecological screening/investigation levels for commercial / industrial land-use. Additionally, no asbestos was detected in samples submitted for analysis.

Concentrations of TRH and PAH in sediment samples were below ecological threshold levels, however, elevated concentrations of arsenic and nickel were found in sediment samples which maybe be attributed to the creek conditions at the time of sampling which may contribute to precipitation of heavy metals in water during periods of low flow. Based on the findings of the DSI, ADE considered that the site was suitable for the commercial/ industrial land use and the proposed development.

Edison Environmental & Engineering Pty Ltd, April 2015, Assessment of Soil and Water Impacts: Proposed Energy from Waste Facility, Eastern Creek.

Edison completed an assessment of soil and water impacts at the proposed Energy from Waste Facility to contribute to the Environmental Impact Statement of the project and to address the requirements of the Director General of Planning NSW.

The scope of works for the assessment of soil and water impacts included an assessment of potential existing soil contamination including potential presence of acid sulphate soils (ASS), assess potential surface and groundwater impacts associated with the development including impact mitigation, management and monitoring measures, and specific requirements for monitoring of water quality and run-off volumes and recommendations for post-construction rehabilitation of disturbed areas.

The Edison assessment of soil and groundwater concluded no contamination of the site from potential contamination practices undertaken both on and off site has occurred and that the proposed development does not include activities that pose a particular risk to groundwater quality. It was noted that area available for groundwater recharge will be substantially reduced due to the extensive structures and pavements built on the site and little or no impact is expected on the resources value of the local groundwater system.

Edison recommended further investigation of salinity conditions of soils and any present shallow groundwater to ensure suitability of materials used for construction of hardstand, buildings, roadways and the drainage system. Furthermore, Edison concluded that potential soil and water impacts can be adequately managed during the construction and operational phase.

3 SAMPLING AND ANALYTICAL PROGRAMME

The following sampling programme has been carried out based on the CES Fee Proposal (CES Document Reference: CES170303-SD-AC) dated 21 September 2017, knowledge of the outcomes of previous ESA's, potential contamination issues resulting from past activities undertaken at the site and takes into consideration the objectives of the environmental investigation. The sampling and analysis programme is limited to the contamination status of perched groundwater and surface water.

Perched groundwater samples were collected from an existing network of groundwater wells previously identified within the EIA (IGCC, June 2014).

Surface water samples of Ropes Creek were also collected and scheduled for analysis. The location of the boreholes and proposed surface water sampling points is presented in Figure 2, in response to comment number 5 of Appendix G of the *NSW EPA Review of the Soil and Water Assessment* (Reference: DOC17/178599, dated 24 March 2017, requesting provision of diagrammatic locations of the sampling points.

3.1 DEVELOPMENT OF EXISTING GROUNDWATER WELLS

Each of the five existing groundwater wells were inspected for suitability for use for the perched groundwater assessment. Those wells that were found to be suitable were developed to remove stagnant water using dedicated LDPE tubing and foot valves and allowed to stabilise for a minimum of five days between development and sampling to ensure hydraulic connection between the groundwater formation and the monitoring well.

3.2 *METHOD OF SAMPLING COLLECTION*

Standing water levels were measured prior to sampling. The groundwater samples were collected using low-flow purge and sampling techniques utilising a bladder pump. Field parameters, including pH, electrical conductivity, dissolved oxygen, redox potential and temperature, and observations of the colour, turbidity and odour of the samples were recorded and monitored until field parameters stabilised within 10%. Samples were collected following stabilisation of field parameters.

3.3 DECONTAMINATION PROCEDURES

The bladder pump was decontaminated using Decon90 detergent and rinsed with de-ionised water between each sampling location. New nitrile gloves, in addition to dedicated bladders and tubing, were used at each sample location.

3.3.1 Sample Containers

Groundwater samples were collected in laboratory supplied containers. The containers were supplied by the laboratory with the appropriate sample preservatives for the proposed analysis.

3.4 *METHOD OF SAMPLE STORAGE AND HANDLING*

The sample containers were immediately placed in a cool box in which ice had been added in an effort to keep the samples cool. Samples were then transported directly to the laboratory.

3.5 DOCUMENTATION

For each sampling location, the CES Environmental Scientist filled out a copy of CES "field data sheet", which documented:

- Time of purging and sample collection;
- Standing water levels at time of purging and sampling;
- Well condition;
- Weather conditions;
- Unique sample identification number;
- Field parameters; and
- Observations of groundwater.

All samples, including QA/QC samples, were transported to the primary and check laboratories under Chain-of Custody (COC) procedures and maintained in an ice-filled cooler. The COC details the following information:

- Site identification;
- The sampler's name;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s).

3.6 ANALYTICAL PROGRAMME

3.6.1 Groundwater

A total of four (4) environmental groundwater samples were scheduled for analysis. The analytical programme is summarised below:

- Four (4) groundwater samples for TRH, BTEX, PAHs, filtered heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn), EC, pH, and CaCO₃; and
- Quality control one blind replicate and one split replicate samples analysed for TRH, BTEX, PAHs, filtered heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn), EC, pH, and CaCO₃, and one trip blank sample analysed for TRH and BTEX.

3.7 LABORATORY

CES used Envirolab Services Pty Ltd (Envirolab) as the primary lab and Australian Laboratory Services Pty Ltd (ALS) as the secondary or 'check' laboratory for all chemical testing. Both laboratories are NATA registered for the scheduled chemical testing.

4 SITE ASSESSMENT CRITERIA

The selection of the most appropriate investigation levels for use with a site specific environmental setting and land use scenario should consider factors including the protection of ecosystems.

4.1 INVESTIGATION AND SCREENING LEVELS

ANZECC (2000) trigger values have been developed to assess toxicants at alternative levels of species protection in aquatic ecosystems. Alternative levels of species protection are dependent on the ecosystem conditions being high conservation/ecological value systems, slightly to moderately disturbed systems, and highly disturbed systems.

To address the data gap of perched groundwater characterisation at the site and to assess the surface water quality of Ropes Creek, CES compared results of samples of groundwater and surface water to the ANZECC (2000) trigger values for Fresh Waters for 95% level of species protection. Due to the calcium carbonate concentration of the submitted groundwater samples indicating 'extremely hard' water, harness-modified trigger values (HMTV) have been calculated using the algorithm displayed in Table 3.4.3 of ANZECC (2000) and has been adopted in addition to the standard ANZECC (2000) trigger values for Fresh Water for a select number of heavy metal analytes (Cd, Pb, Ni and Zn). It should be noted that the HMTV's for copper have not been adopted as per the recommendation in Comment 12 of Attachment G of the NSW EPA Soil and Water Assessment response, in which states:

"...the hardness correction of copper is not recommended as it has been clearly shown that hardness corrected values of copper is not protective of all aquatic species and this may be removed in the reviewed ANZECC guidelines..."

5 QAQC DATA EVALUATION

Field and laboratory QA/QC requirements compliant with National Environmental Protection Council (1999 updated 2013) requirements are outlined below. Laboratory certificates of analysis are attached as **Appendix A**.

5.1 DATA ACCEPTANCE CRITERIA

The QA/QC Data was assessed against the Data Acceptance Criteria (DAC) provided in Table 2.

5.2 FIELD QA/QC PROGRAMME

Groundwater samples were collected by an experienced Environmental Scientist, under established CES protocols. CES personnel have been trained in sample collection and handling techniques.

For the purpose of assessing the quality of data presented in this report, CES collected and analysed Quality Control (QC) samples, while the laboratory completed their own QC. Tabulated QC data

for groundwater are provided in **Table 4**. The current section of this report is focused on the presentation of results of these QC samples and discussion of deviations from the Data Acceptance Criteria (DAC) displayed in **Table 2**.

5.3 BLIND SAMPLES

One blind replicate groundwater sample was collected from MW5 (QAQC 1). The replicate sample was preserved, stored, transported, prepared and analysed in an identical manner to the primary sample. As a minimum, the results of analyses on the blind replicate sample pair are assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD is calculated as the difference between the results divided by their mean value and expressed as a percentage.

The RPD were all within the DAC listed in **Table 2.**

In summary, it is considered that the blind replicate samples confirm that the primary laboratory (Envirolab) analyses of the soil and groundwater samples are repeatable and accurate.

5.4 SPLIT SAMPLES

One split sample was collected from MW5 (QAQC 2), otherwise known as 'inter-laboratory duplicates', which provide a check on the analytical proficiency of the laboratories. Split samples are taken from the same location as the blind replicate, thus becoming a triplicate sample.

The results of the split sample analysis confirm the reliability of the laboratory analysis from Envirolab, since the all the RPD were compliant with the DAC. The results of the RPD analysis indicates the analytical proficiency of the laboratories.

5.5 TRIP BLANK SAMPLES

Trip blank sample are prepared and supplied by the laboratory and carried through all stages of sample transport and analysis. Analyte concentrations in blanks should be less than the stated limit of reporting (LOR). One trip blank sample was submitted to the primary laboratory for analysis. The results of the analysis indicated results to be less than the laboratory LOR. As such, it can be stated that no additional contaminants have been added to the samples as a result of transportation of the samples or laboratory handling.

5.6 LABORATORY QA/QC PROGRAMME

The reliability of test results from the analytical laboratories was monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by Envirolab Services (Envirolab) (the primary laboratory) specified holding times, extraction dates, method descriptions, Chain of Custody (COC) requirements, analysis, EQLs and acceptance

criteria for the results. Laboratory QA/QC requirements undertaken by Australian Laboratory Services (ALS) are based on NEPM requirements and are outlined below (NEPC, 1999).

5.7 *LABORATORY DUPLICATE SAMPLES*

Laboratory duplicates provide data on analytical precision for each batch of samples. Where required and in order to provide sufficient sample for analysis of laboratory duplicates, two batches of samples are collected at the first site listed on the Chain of Custody form. This is done in order to ensure that sufficient sample is collected.

All laboratory duplicate samples' RPDs conformed to the DAC.

5.8 LABORATORY CONTROL SAMPLES

Laboratory control samples consist of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitor method recovery in clean samples and can also be used to evaluate matrix interference by comparison with matrix spikes. Laboratory control samples may be certified reference materials.

All laboratory control samples conformed the laboratory assessment criteria and therefore the DAC.

5.9 SURROGATES

A surrogate is added at the extraction stage in order to verify method effectiveness. The surrogate is then analysed with the batch of samples. Percent recovery is calculated.

All laboratory surrogate samples conformed to the laboratory assessment criteria and therefore the DAC.

5.10 MATRIX SPIKE

A matrix spikes consist of samples spiked with a known concentration of the analyte measured, in order to identify properties of the matrix that may hinder method effectiveness. Samples are spiked with concentrations equivalent to 5 to 10 times the LOR. Percent recovery is calculated.

All matrix spikes conformed to the laboratory assessment criteria and therefore to the DAC.

5.11 METHOD BLANKS

Method blanks are carried through all stages of sample preparation and analysis. Analyte concentrations in blanks should be less than the stated LOR. Reagent blanks are run if the method blank exceeds the EQL. The purpose of method blanks is to detect laboratory contamination.

All method blanks conformed to the laboratory assessment criteria and therefore to the DAC.

5.12 QAQC ASSESSMENT SUMMARY

CES has a high degree of confidence in the quality of the field data (that is to say that the groundwater samples were representative of the water sampled, the samples were collected by an experienced sampler and that the chain of custody documentation was accurate) and the laboratory data (that is to say that Envirolab and ALS are NATA accredited laboratories, and undertake strict internal QA/QC of the results issued, uses appropriate methodology and LOR to analyse soil samples and has completed sample documentation).

In consideration of the QAQC assessment, it is the opinion of CES that the data collected is suitable for the assessment of the site.

6 INVESTIGATION RESULTS

Fieldwork was carried out 9 October 2017 following the locating and development of the existing groundwater wells undertaken on 29 September 2017. Four of the five groundwater wells were found to be in a suitable condition for the perched groundwater assessment, with groundwater monitoring well MW4 found damaged and thus unsuitable for the inclusion in this assessment.

The four nominated surface water sampling locations along Ropes Creek were found to be dry at the time of sampling, therefore surface water data taken from the Phase 2 DSI (ADE, 2014) has been re-assessed and included within this assessment. The surface water results are presented in **Table 5**.

6.1 PERCHED GROUNDWATER QUALITY FIELD PARAMETERS

During purging of the groundwater wells, groundwater quality field parameters were measured using a multi-parameter water quality meter which measured; temperature, pH, conductivity (EC), dissolved oxygen (DO) and oxidation-reduction potential (ORP). This equipment was calibrated by the equipment supplier prior to use on-site and did not require adjusting for redox measurements. Groundwater field data sheets and calibration certificates for the water quality meter is presented in **Appendix B**. Groundwater quality field parameters are presented in **Table 6.1.1**.

	Depth to					
	Water (metres		Electrical		Dissolved	Redox
	below top of	Temperature	Conductivity		Oxygen	Potential
Well ID	casing)	(Degrees Celsius)	(uS/cm)	pН	(ppm)	(mV)
MW1	12.22	26.5	1,205	6.88	3.69	93
MW2	2.59	18.3	14,800	6.04	1.41	129
MW3	2.90	18.6	1,189	6.02	2.80	208
MW5	5.58	18.9	1,422	6.52	2.20	226

 Table 6.1.1: Stabilised Field Measured Groundwater Parameters

Depth to groundwater appeared to reduce approaching Ropes Creek, indicating hydraulic continuity with the tributary. At the time of groundwater sampling the perched groundwater was described as generally brown coloured, ranging from slightly turbid to turbid and odourless.

Groundwater field parameters recorded indicate that perched groundwater beneath the site is generally fresh water, with the exception of sampling location MW2 which indicated saline water.

6.2 PERCHED GROUNDWATER LABORATORY RESULTS

Groundwater analytical results are presented as **Table 3**. The laboratory Certificates of Analysis are presented in **Appendix A**.

6.2.1 *TRH and BTEX*

TRH and BTEX results for perched groundwater samples were all below laboratory LOR and therefore were below the groundwater investigation level (GIL).

6.2.2 PAH

PAH results in perched groundwater samples were below laboratory LOR and therefore below the GIL.

6.2.3 *Heavy Metals*

Dissolved heavy metal concentrations in groundwater samples were below the GIL, with the following exceptions:

• Copper concentrations in monitoring well MW1 (3 μ g/L), MW2 (3 μ g/L) and MW3 (2 μ g/L) exceeded the GIL Fresh Water GIL of 1.4 μ g/L.

6.2.4 *pH*

pH concentrations for the samples collected ranged from 6.0 pH to 7.5 pH and indicated neutral pH.

6.2.5 *Electrical Conductivity*

Electrical conductivity concentrations in groundwater samples ranged from 1,200 μ S/cm to 1,400 μ S/cm indicated fresh water beneath the site, with the exception of sampling location MW2 of which electrical conductivity concentrations are 14,000 μ S/cm, thus indicating saline water at that location.

6.2.6 *Calcium Carbonate (CaCO3)*

Calcium carbonate concentrations in groundwater samples ranged between 510 mg/L and 770 mg/L and indicate extremely hard (as defined by Table 3.4.4, ANZECC 2000) water beneath the site.

6.3 SURFACE WATER LABORATORY RESULTS (ADE, 2014)

The ADE (2014) Surface Water results have been included for reference in **Table 5**.

TPH and PAH concentrations of the four surface water samples (locations SS-01 to SS-04 inclusive) were all less than LOR and therefore less than the GIL. Unfiltered heavy metal (Ar, Cd, Cr (total), Cu, Pb, Hg, Ni and Zn) concentrations were all below the GIL, with the exception of copper in sample locations SS-02 to SS-04 inclusive which marginally exceeded the ANZECC (2000) Fresh Water GIL of $1.4 \mu g/L$.

7 DISCUSSION

The analytical data collected as part of the CES groundwater sampling and, in the absence of surface water in Ropes Creek at the time of sampling, the Targeted Phase II DSI data (ADE, 2014) has been used to characterise the water quality around the future TNG development site. This data is used to augment the existing soil and sediment data presented already as part of the previous investigations.

Depth to groundwater ranged from 12.22 metres below top of casing (mBTOC) in the north of the investigation site to 2.59 mBTOC in the south of the investigation site. The perched groundwater appears to flow in a southerly direction towards Ropes Creek and suggests hydraulic continuity.

7.1 GENERAL WATER QUALITY

Analytical results of the concentration of calcium carbonate in perched groundwater sampling indicate the perched groundwater characterised as 'extremely hard' water

The water quality parameters of the perched groundwater samples indicated water of neutral pH levels and electrical conductivity measurements indicating generally fresh groundwater, with the exception of monitoring location MW2 which indicated saline water. Furthermore, the dissolved oxygen and redox potential measurements of the samples indicated water quality that is unlikely to be adversely impacted by previous and current site use.

7.2 PERCHED GROUNDWATER

In general, the perched water quality underlying the site is good. The marginal exceedance of a conservative (given the location and environmental setting of the site) groundwater investigation levels for copper (alone) is considered to indicate that the previous use of the site (or hydraulically up-gradient sites in the basin) has not generated mobile/leachable contamination that is not significantly adversely impacting the groundwater quality.

It is likely that the copper concentrations detected reflect background concentrations influenced by the geology of the site and as such would be unlikely to pose a risk to aquatic receptors.

7.3 SURFACE WATER

The results of the surface water assessment undertaken by ADE in 2014 indicated surface water that marginally exceeded freshwater GILs for copper concentrations. This is not considered to be a significant impact to the aquatic ecosystem and is not considered a result of impact from the site but more likely a result of background concentrations.

8 SUMMARY AND RECOMMENDATION

The results of this perched groundwater and surface water assessment indicate that the groundwater beneath the site and the adjacent surface waters of Ropes Creek are not currently impacted by the site (or adjacent sites). Furthermore, this assessment indicated that the perched

groundwater is extremely hard which, being within hydraulic continuity of the receiving water body of Ropes Creek, suggests that Ropes Creek is likely to also be characterised as extremely hard water. The hardness of the water suggests the probability of heavy metal toxicity to aquatic species is greatly reduced and therefore the marginal exceedance of copper unlikely to adversely impact the receiving water bodies.

9 LIMITATIONS OF THIS REPORT

This report has been prepared for use by the client who commissioned the works in accordance with the project brief and based on information provided by the client. The advice contained in this report relates only to the current project and all results, conclusions and recommendations should be reviewed by a competent person with experience in environmental investigations before being used for any other purpose. CES accepts no liability for use or interpretation by any person or body other than the client. This report must not be reproduced except in full and must not be amended in any way without prior approval by the client and CES.

This report does not provide a complete assessment of the environmental status of the site and is limited to the scope defined therein. Should information become available regarding conditions at the site including previously unknown sources of contamination, CES reserves the right to review the report in the context of the additional information.

10 REFERENCES

A. D. Envirotech Consulting Group (2014). *Targeted Phase II Detailed Site Investigation*, *Honeycomb Drive, Eastern Creek, NSW.* 7773/TDSI1/v1final.

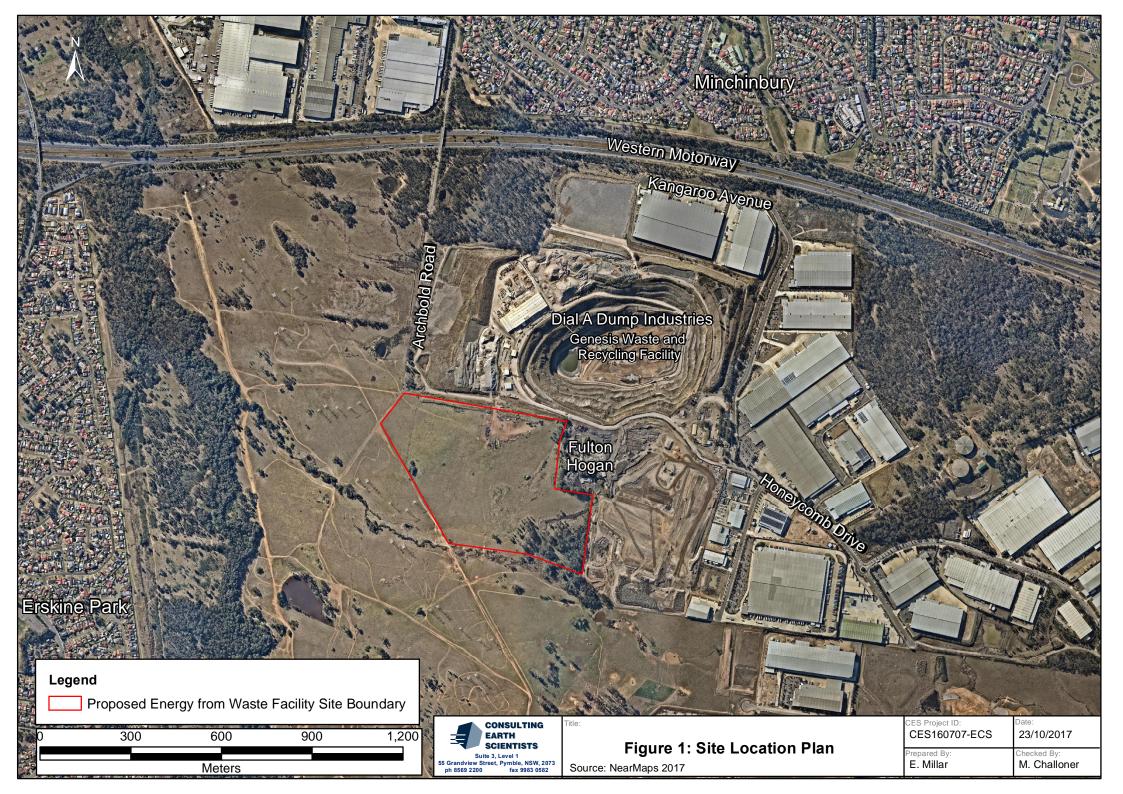
ADI Services (1995). *Stage 2 Environmental Assessment of Areas 1 and 3 Wallgrove Quarry*. PIO 100991.

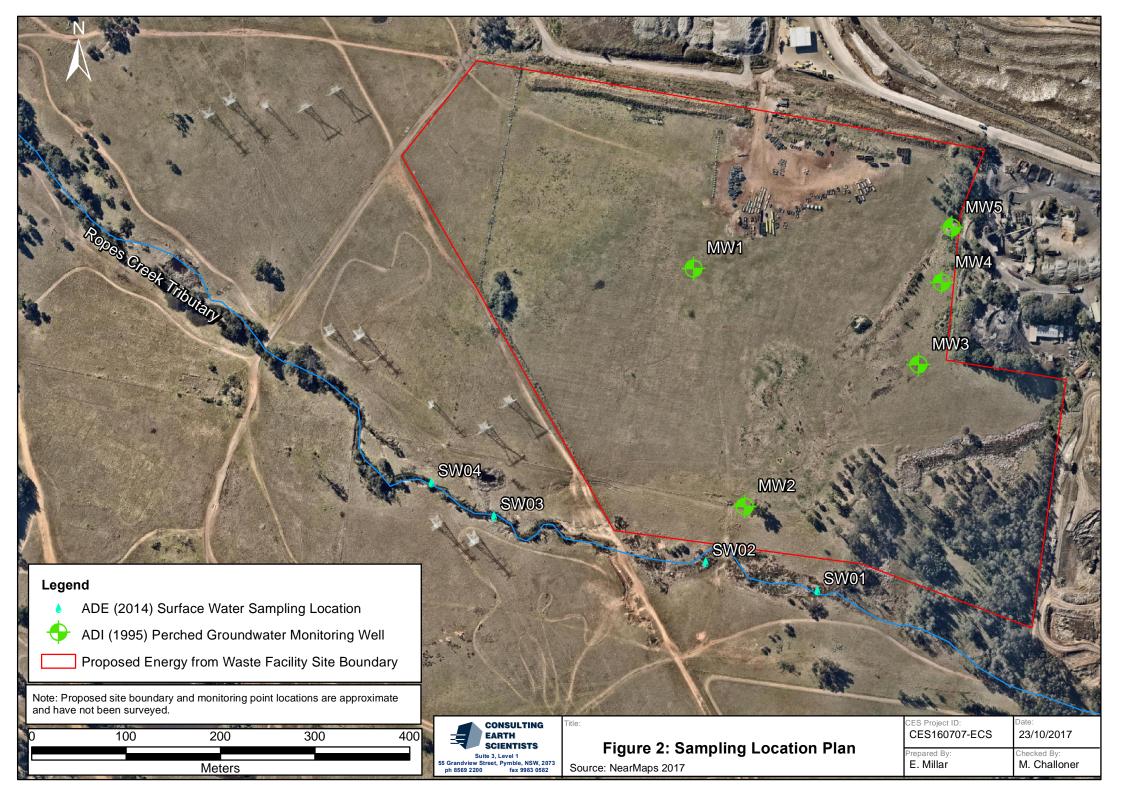
ANZECC, 2000: Australian and New Zealand Environment and Conservation Council (2000). National Water Quality Management Strategy. *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*.

Edison Environmental & Engineering (2015). Assessment of Soil and Water Impacts: Proposed Energy from Waste Facility, Eastern Creek. E15002 DADI 001.

Environment Protection Authority NSW (2011): *Guidelines for Consultants Reporting on Contaminated Sites*. EPA 97/104, Environment Protection Authority of New South Wales.

Ian Grey Groundwater Consulting (2014). *Environmental Impact Assessment, Proposed Energy From Waste Facility, Eastern Creek – Soil and Water.* BJ07/Rp061 Rev C.


NEPC, 2013: National Environment Protection Council (2013). National Environment Protection (Assessment of Site Contamination) Measure. *Schedule B*(1) *Guideline on Investigation Levels For Soil and Groundwater*.


NEPC, 2013: National Environment Protection Council (2013). National Environment Protection (Assessment of Site Contamination) Measure. *Schedule B*(2) *Guideline on Site Characterisation*.

Pells Sullivan Meynink Pty Ltd (2005). *Eastern Creek Precinct Salinity Assessment*. PSM918.R1 Rev 1.

Figures

Tables

Table 1: Site Assessment Criteria - Groundwater

Table 1: Site Assessment Crite	ina Ground	ANZECC (2000) -	NEPM (2013) GIL -	NEPM (2013) GIL -
		HMTV Fresh Waters ^a	Fresh Waters ¹	Marine Waters ²
Parameters	Unit	Thirt v Hesh waters	TTESH Waters	Warnie waters
TRH C6 - C9	μg/L	-	-	-
TRH C6 - C10	μg/L μg/L	_	-	-
FRACTION 1	μg/L μg/L	-		
TRH C10 - C14	μg/L μg/L	-	-	-
TRH C15 - C28	μg/L	-	-	-
TRH C29 - C36	μ <u>g</u> /L	-	-	-
TRH total C10 - C36	μg/L	_	-	_
TRH >C10-C16	μg/L	_	-	_
FRACTION 2	μg/L	_	-	_
TRH >C16-C34	μg/L	_	-	-
TRH >C34-C40	μg/L	-	-	-
TRH total >C10-C40	μg/L	-	-	-
Benzene	μg/L	-	950	500
Toluene	μg/L	-	-	-
Ethylbenzene	μg/L	-	-	-
m+p-xylene	μg/L	-	-	-
p-Xylene	μg/L	-	350	-
Xylenes	μg/L	-	-	-
Naphthalene	μg/L	-	16	50
Acenaphthylene	μg/L	-	-	_
Acenaphthene	μg/L	-	-	-
Fluorene		-	-	
	μg/L			-
Phenanthrene	μg/L	-	-	-
Anthracene	μg/L	-	-	-
Fluoranthene	μg/L	-	-	-
Pyrene Benzo(a)anthracene	μg/L	-	-	-
	μg/L	-	-	-
Chrysene Benzo(b+k)fluoranthene	μg/L	-	-	-
Benzo(a)pyrene	μg/L uα/L	-	-	-
Indeno(1,2,3-c,d)pyrene	μg/L μg/L	-	-	-
Dibenzo(a,h)anthracene	μg/L μg/L	-	-	-
Benzo(g,h,i)perylene	μg/L μg/L	-	-	-
Benzo(a)pyrene TEQ	μg/L μg/L	-	-	-
Total +ve	μg/L μg/L	-	-	-
Arsenic			13 ^b	-
	μg/L	-		-
Cadmium	μg/L	2.49 ^a	0.2	5.5
Chromium	μg/L	-	1 ^b	4.4
Copper	μg/L	15.56 ^a	1.4	1.3
Lead	μg/L	124.21 ^a	3.4	4.4
Mercury	μg/L μg/L	-	0.06	0.4
Nickel	μg/L	122.26 ^a	11	70
Zinc	μg/L	88.91 ^a	8	15
pH	pH units	-	-	-
Electrical Conductivity	µS/cm	-	-	-
Calcium Carbonate (CaCO3)	mg/L	-	-	-

¹Groundwater investigation levels for Fresh Waters (Schedule B1, NEPM)

²Groundwater investigation levels for Marine Waters (Schedule B1, NEPM)

^a Hardness-modified trigger values (HMTV) as determined by the algorithm tabulated in Table 3.4.3 (ANZECC, 20000)

^b The most conservative trigger values of the analyte has been selected due to analyte not being speciated.

Table 2: QC Sample Data Acceptance Criteria

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Replicates and Split Samples	The assessment of split replicate is undertaken by calculating the Relative Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as: $\frac{ X_1 - X_2 }{Average}$	• $0 - 100\%$ RPD (When the average
	Where: X_1 and X_2 are the concentration of the original and replicate samples.	
Blanks (Rinsate and Trip	Each blank is analysed as per the original	Analytical Result < LOR/EQL
Blanks)	samples.	
Laboratory-prepared Trip Spike	The trip spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70% - 130%
	Laboratory QC	
Laboratory Duplicates	Assessment as per Blind Replicates and Split Samples.	 The acceptable range depends upon the levels detected: 0 - 100% RPD (When the average concentration is < 4 times the LOR/EQL) 0 - 50% RPD (When the average concentration is 4 to 10 times the LOR/EQL) 0 - 30% RPD (When the average concentration is > 10 times the LOR/EQL)
Surrogates	Assessment is undertaken by determining the percent recovery of the known spike or addition to the sample.	
Matrix Spikes	C - A	50% - 130% (Phenols)
Laboratory Control Samples		60% - 130% (OP Pesticides)
	B Where: $A = Concentration of analyte$ determined in the original sample; $B = Added$ Concentration; $C = Calculated$ Concentration.	If the result is outside the above ranges, the result must be < 3x Standard Deviation of the Historical Mean (calculated over past 12 months)
Method Blanks	Each blank is analysed as per the original samples.	Analytical Result < LOR/EQL
Note: EQL = Laboratory Estimated (r a particular analyte. LOR = Limit of Reporting or the minimum

Table 3: Groundwater Analytical Results

	Sample L	ocation	MW1	M	W2	M	W3	MW5	ANZECC	ANZECC (2000)
	Sai	nple ID	TNG-MW1	TNG-	MW2	TNG-	MW3	TNG-MW5	(2000) -	95% Species
	Date Sampled		9-Oct-17	9-Oct-17	9-Oct-17	9-Oct-17	9-Oct-17	9-Oct-17	HMTV Fresh	1
	Laboratory report		177281	177281	177281	177281	177281	177281	Waters ^a	Fresh Waters ¹
	Samp	le Type	Ν	Ν	REP	Ν	REP	Ν	waters	Fresh waters
Parameters	Unit	PQL								
TRH C6 - C9	μg/L	10	<10	<10	nt	<10	nt	<10	-	-
TRH C6 - C10	μg/L	10	<10	<10	nt	<10	nt	<10	-	-
FRACTION 1	μg/L	10	<10	<10	nt	<10	nt	<10	-	-
TRH C10 - C14	μg/L	50	<50	<50	nt	<50	nt	<50	-	-
TRH C15 - C28	μg/L	100	<100	<100	nt	<100	nt	<100	-	-
TRH C29 - C36	μg/L	100	<100	<100	nt	<100	nt	<100	-	-
TRH total C10 - C36	μg/L	100	<100	<100	nt	<100	nt	<100	-	-
TRH >C10-C16	μg/L	50	<50	<50	nt	<50	nt	<50	-	-
FRACTION 2	μg/L	50	<50	<50	nt	<50	nt	<50	-	-
TRH >C16-C34	μg/L	100	<100	<100	nt	<100	nt	<100	-	-
TRH >C34-C40	μg/L	100	<100	<100	nt	<100	nt	<100	-	-
TRH total >C10-C40	μg/L	100	<100	<100	nt	<100	nt	<100	-	-
Benzene	μg/L	1	<1	<1	nt	<1	nt	<1	-	950
Toluene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Ethylbenzene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
m+p-xylene	μg/L	2	<2	<2	nt	<2	nt	<2	-	-
o-Xylene	μg/L	1	<1	<1	nt	<1	nt	<1	-	350
Xylenes	μg/L	2	<2	<2	nt	<2	nt	<2	-	-
Naphthalene	μg/L	1	<1	<1	nt	<1	nt	<1	-	16
Acenaphthylene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Acenaphthene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Fluorene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Phenanthrene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Anthracene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Fluoranthene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Pyrene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-
Benzo(a)anthracene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-

Table 10: Groundwater Analytical Results - Continued

	Sample L	Sample Location		MV	W2	MV	W3	MW5	ANZECC	ANZECC (2000)	
	Sample ID Date Sampled		TNG-MW1	TNG-	MW2	TNG-	MW3	TNG-MW5 (2000) -		95% Species	
			9-Oct-17	9-Oct-17	9-Oct-17	9-Oct-17	9-Oct-17	9-Oct-17	HMTV Fresh	Protection -	
	Laboratory report			177281	177281	177281	177281	177281	Waters ^a	Fresh Waters ¹	
Sample Type		Ν	Ν	REP	Ν	REP	Ν	waters	Flesh waters		
Chrysene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-	
Benzo(b+k)fluoranthene	μg/L	2	<2	<2	nt	<2	nt	<2	-	-	
Benzo(a)pyrene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-	
Indeno(1,2,3-c,d)pyrene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-	
Dibenzo(a,h)anthracene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-	
Benzo(g,h,i)perylene	μg/L	1	<1	<1	nt	<1	nt	<1	-	-	
Benzo(a)pyrene TEQ	μg/L	5	<5	<5	nt	<5	nt	<5	-	-	
Total +ve	μg/L	1	NIL (+)VE	NIL (+)VE	nt	NIL (+)VE	nt	NIL (+)VE	-	-	
Arsenic	μg/L	1	<1	<1	nt	<1	nt	<1	-	13 ^b	
Cadmium	μg/L	0.1	< 0.1	0.2	nt	< 0.1	nt	0.1	2.49 ^a	0.2	
Chromium	μg/L	1	<1	<1	nt	<1	nt	1	-	1 ^b	
Copper	μg/L	1	3	3	nt	2	nt	1	-	1.4	
Lead	μg/L	1	<1	<1	nt	<1	nt	<1	124.21 ^a	3.4	
Mercury	μg/L	0.05	< 0.05	< 0.05	nt	< 0.05	nt	< 0.05	-	0.06	
Nickel	μg/L	1	6	21	nt	7	nt	7	122.26 ^a	11	
Zinc	μg/L	1	3	26	nt	28	nt	3	88.91 ^a	8	
рН	pH units	0.01	7.4	6	nt	6.7	nt	7.5	-	-	
Electrical Conductivity	µS/cm	1	1200	14000	nt	1200	nt	1400	-	-	
Calcium Carbonate (CaCO3)	mg/L	5	630	770	nt	510	nt	620	-	-	

Notes:

BOLD - exceedance of trigger value

nt- not tested

* indicates moderate reliability ESL trigger values

¹Groundwater investigation levels for Fresh Waters (Schedule B1, NEPM)

²Groundwater investigation levels for Marine Waters (Schedule B1, NEPM)

^a Hardness-modified trigger values (HMTV) as determined by the algorithm tabulated in Table 3.4.3 (ANZECC, 20000)

^b The most conservative trigger values of the analyte has been selected due to analyte not being speciated.

Table 4a: Groundwater RPD tabulated results

				Sample ID	TNG-MW5	QAQC1	QAQC2				
	Sample Type		Original Blind replicate		Split replicate	Average	Blind RPD	Average	Split RPD		
				tory report	ELS 177281	ELS 177281	ALS ES1725319			5	<u> </u>
		Primary	Blind	Split				μg/L	%	μg/L	
Parameters	Unit	PQL	PQL	PQL				µg/L	70	μg/L	%
FRH C6 - C9	μg/L	10	10	20	<10	<10	<10	N/A	N/A	N/A	N/A
ГRH C6 - C10	μg/L	10	10	20	<10	<10	<10	N/A	N/A	N/A	N/A
FRACTION 1	μg/L	10	10	20	<10	<10	<10	N/A	N/A	N/A	N/A
ΓRH C10 - C14	μg/L	50	50	50	<50	<50	<50	N/A	N/A	N/A	N/A
FRH C15 - C28	μg/L	100	100	100	<100	<100	<100	N/A	N/A	N/A	N/A
FRH C29 - C36	μg/L	100	100	50	<100	<100	<100	N/A	N/A	N/A	N/A
ΓRH >C10-C16	μg/L	50	50	50	<50	<50	<50	N/A	N/A	N/A	N/A
FRACTION 2	μg/L	50	50	100	<50	<50	<50	N/A	N/A	N/A	N/A
ГRH >C16-C34	μg/L	100	100	100	<100	<100	<100	N/A	N/A	N/A	N/A
ГRH >C34-C40	μg/L	100	100	100	<100	<100	<100	N/A	N/A	N/A	N/A
Benzene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Foluene	μg/L	1	1	2	<1	<1	<2	N/A	N/A	N/A	N/A
Ethylbenzene	µg/L	1	1	2	<1	<1	<2	N/A	N/A	N/A	N/A
n+p-xylene	μg/L	2	2	2	<2	<2	<2	N/A	N/A	N/A	N/A
o-Xylene	μg/L	1	1	2	<1	<1	<2	N/A	N/A	N/A	N/A
	10	-	_								4
Naphthalene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Acenaphthylene	μg/L μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Acenaphthene	μg/L μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Fluorene	μg/L μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Phenanthrene	μg/L μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Anthracene	μg/L μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Fluoranthene	μg/L μg/L	1	1	1	<1	<1	<1	N/A N/A	N/A N/A	N/A	N/A N/A
Pyrene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Benzo(a)anthracene	μg/L μg/L	1	1	1	<1	<1	<1	N/A N/A	N/A N/A	N/A	N/A N/A
Chrysene	μg/L μg/L	1	1	1	<1	<1	<1	N/A N/A	N/A N/A	N/A	N/A N/A
Benzo(b+k)fluoranthene	μg/L μg/L	2	2	1	<2	<2	<1	N/A N/A	N/A N/A	N/A	N/A N/A
Benzo(a)pyrene	μg/L μg/L	1	1	0.5	<1	<1	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
indeno(1,2,3-c,d)pyrene	μg/L μg/L	1	1	1	<1	<1	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Dibenzo(a,h)anthracene	μg/L μg/L	1	1	1	<1	<1	<1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Benzo(g,h,i)perylene		1	1	1	<1	<1	<1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	µg/L	5	5	5		<1				N/A N/A	N/A N/A
Benzo(a)pyrene TEQ	µg/L	5	5	0.5	<5 NIL (+)VE	<5 NIL (+)VE	<5 <0.5	N/A	N/A		
Γotal +ve	µg/L	1	1	0.5	NIL (+)VE	NIL (+)VE	<0.5	N/A	N/A	N/A	N/A
	a				4	4	~	4	0.00/	1.5	22.2%
Arsenic	µg/L	1	1	1		4 0.7	5	4	0.0%	4.5	22.2%
Cadmium	μg/L	0.1	0.1	0.1	0.7		0.7	0.7	0.0%	0.7	0.0%
Chromium	µg/L	1	1	1	8	8	10	8	0.0%	9.0	22.2%
Copper	µg/L	1	1	1	12	12	14		0.0%	13.0	15.4%
lead	µg/L	1	1	1	3	3	4	3	0.0%	3.5	28.6%
Mercury	μg/L	0.05	0.05	0.1	<0.05	<0.05	<0.1	N/A	N/A	N/A	N/A
Nickel	μg/L	1	1	1	15	16	18	15.5	6.5%	16.5	18.2%
Zinc	μg/L	1	1	1	34	34	45	34	0.0%	39.5	27.8%
ъH	pH units	0.01	0.01	0.01	7.5	7.5	7.8	7.5	0.0%	7.7	3.9%
Electrical Conductivity	uS/cm	1	1	1	1400	1400	1400	1400	0.0%	1400	0.0%
Calcium Carbonate	mg/L	5	5	1	620	610	391	615	1.6%	505.5	45.3%

Table 4b: Groundwater QA/QC tabulated results

	TB		
	Trip Blank		
]	ELS 177281	
Parameters	Unit	Primary PQL	
TRH C6 - C9	μg/L	10	<10
TRH C6 - C10	μg/L	10	<10
FRACTION 1	μg/L	10	nt
TRH C10 - C14	μg/L	50	nt
TRH C15 - C28	μg/L	100	nt
TRH C29 - C36	μg/L	100	nt
TRH >C10-C16	μg/L	50	nt
FRACTION 2	μg/L	50	nt
TRH >C16-C34	μg/L	100	nt
TRH >C34-C40	μg/L	100	nt
Benzene	μg/L	1	<1
Toluene	μg/L	1	<2
Ethylbenzene	μg/L	1	<2
m+p-xylene	μg/L	2	<2
o-Xylene	μg/L	1	<2

Table 5: Surface Water Results (ADE, 2014)

Sample ID Sample Location Date of Sampling	SS-01 SS	7773-C23 SS-02	7773-C24 SS-03	SS-04	ANZECC 95% Species Protection ¹ µg/L	values (ANZECC (2000) 95% Species Protection)
		Metals				
Arsenic	<1	<1	<1	<1	13 ^e	-
Cadmium	0.10	0.10	0.10	0.10	0.2	2.49 ^a
Chromium (total)	<1	<1	<1	<1	1^{f}	-
Copper	1	2	3	3	1.4	-
Lead	<1	<1	<1	<1	3.4	124.21 ^a
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	0.06 ^b	-
Nickel	1	2	1	2	11	122.26 ^a
Zinc	<5	<5	<5	<5	8	88.91 ^a
ΓRH						
FRH C10-C16	<50	<50	<50	<50	-	-
TRH C16-C34	<100	<100	<100	<100	-	-
ГRH C34-C40	<100	<100	<100	<100	-	-
РАН						
Napthalene	< 0.1	< 0.1	< 0.1	< 0.1	16	-
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	0.01 ^{a, b}	-
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1	0.6 ^{a, b}	-
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	1.0 ^{a, b}	-
Benzo(a)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	0.1 ^{a, b}	-

Notes:

- No Investigation Level Assigned

Indicates contaminant above ANZECC Guidelines (trigger level)

1 Trigger values adopted (level of protection: 95% of species for slightly-moderately disturbed systems), Australian and New Zealand Guidelines for Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000

2 Maximum of 600 µg/l for sum of TRH>C10-C40 (adapted from Netherlands Intervention Values).

3 Adjusted trigger value for 'Extremely Hard' water (>400 mg/L CaCo3)

a.In the absence of a high reliability concentration, the moderate or low reliability guideline concentration has been adopted.

b.Due to the potential for the chemical to bioaccumulate, a 99% percent protection level has been adopted.

c.Figure may not protect key species from chronic toxicity, ANZECC 2000.

d.As total concentration was reported for the analyte, the most stringent valence threshold was adopted.

e.As total Arsenic is provided in analytical results, the most stringent criteria of As III and As V has been adopted.

f.As total chromium is provided in analytical results, the most stringent criteria of Cr III and Cr VI has been adopted.

Appendix A Laboratory Certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 177281

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES160707-ECS</u>
Number of Samples	6 Water
Date samples received	09/10/2017
Date completed instructions received	09/10/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	16/10/2017	
Date of Issue	16/10/2017	
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Senior Chemist Priya Samarawickrama, Senior Chemist Steven Luong, Chemist

Authorised By

کھ

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference		177281-1	177281-2	177281-3	177281-4	177281-5
Your Reference	UNITS	TNG-MW1	TNG-MW2	TNG-MW3	TNG-MW5	QAQC1
Date Sampled		09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
Date analysed	-	11/10/2017	11/10/2017	11/10/2017	11/10/2017	11/10/2017
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C6 - C10	µg/L	<10	<10	<10	<10	<10
TRH C6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	101	99	101	105	101
Surrogate toluene-d8	%	101	95	100	102	102
Surrogate 4-BFB	%	94	94	93	79	95

vTRH(C6-C10)/BTEXN in Water		
Our Reference		177281-6
Your Reference	UNITS	ТВ
Date Sampled		04/10/2017
Type of sample		Water
Date extracted	-	10/10/2017
Date analysed	-	11/10/2017
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	99
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	98

svTRH (C10-C40) in Water						
Our Reference		177281-1	177281-2	177281-3	177281-4	177281-5
Your Reference	UNITS	TNG-MW1	TNG-MW2	TNG-MW3	TNG-MW5	QAQC1
Date Sampled		09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
Date analysed	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	104	90	98	104	109

PAHs in Water						
Our Reference		177281-1	177281-2	177281-3	177281-4	177281-5
Your Reference	UNITS	TNG-MW1	TNG-MW2	TNG-MW3	TNG-MW5	QAQC1
Date Sampled		09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
Date analysed	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
Naphthalene	µg/L	<1	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL (+)VE				
Surrogate p-Terphenyl-d14	%	78	74	77	79	84

HM in water - total						
Our Reference		177281-1	177281-2	177281-3	177281-4	177281-5
Your Reference	UNITS	TNG-MW1	TNG-MW2	TNG-MW3	TNG-MW5	QAQC1
Date Sampled		09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
Date analysed	-	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017
Arsenic-Total	µg/L	9	9	<1	4	4
Cadmium-Total	µg/L	0.1	0.1	<0.1	0.7	0.7
Chromium-Total	µg/L	41	41 5		8	8
Copper-Total	µg/L	66	19	6	12	12
Lead-Total	µg/L	27	5	2	3	3
Mercury-Total	µg/L	0.30	<0.05	<0.05	<0.05	<0.05
Nickel-Total	µg/L	61	27	9	15	16
Zinc-Total	µg/L	130	54	33	34	34

Miscellaneous Inorganics						
Our Reference		177281-1	177281-2	177281-3	177281-4	177281-5
Your Reference	UNITS	TNG-MW1	TNG-MW2	TNG-MW3	TNG-MW5	QAQC1
Date Sampled		09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
Date analysed	-	09/10/2017	09/10/2017	09/10/2017	09/10/2017	09/10/2017
рН	pH Units	7.4	6.0	6.7	7.5	7.5
Electrical Conductivity	µS/cm	1,200	14,000	1,200	1,400	1,400
Total Alkalinity as CaCO ₃	mg/L	630	770	510	620	610

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			10/10/2017	5	10/10/2017	10/10/2017		10/10/2017	
Date analysed	-			11/10/2017	5	11/10/2017	11/10/2017		11/10/2017	
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	5	<10	<10	0	116	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	5	<10	<10	0	116	
Benzene	μg/L	1	Org-016	<1	5	<1	<1	0	107	
Toluene	μg/L	1	Org-016	<1	5	<1	<1	0	120	
Ethylbenzene	μg/L	1	Org-016	<1	5	<1	<1	0	113	
m+p-xylene	μg/L	2	Org-016	<2	5	<2	<2	0	119	
o-xylene	μg/L	1	Org-016	<1	5	<1	<1	0	112	
Naphthalene	μg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	103	5	101	105	4	100	
Surrogate toluene-d8	%		Org-016	96	5	102	95	7	112	
Surrogate 4-BFB	%		Org-016	94	5	95	95	0	109	

QUALITY CONTROL: svTRH (C10-C40) in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			10/10/2017	5	10/10/2017	10/10/2017		10/10/2017	[NT]
Date analysed	-			10/10/2017	5	10/10/2017	10/10/2017		10/10/2017	[NT]
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	5	<50	<50	0	94	[NT]
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	5	<100	<100	0	95	[NT]
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	5	<100	<100	0	86	[NT]
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	5	<50	<50	0	94	[NT]
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	5	<100	<100	0	95	[NT]
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	5	<100	<100	0	86	[NT]
Surrogate o-Terphenyl	%		Org-003	87	5	109	104	5	77	[NT]

QUALIT	Y CONTROL	: PAHs ir	n Water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			10/10/2017	5	10/10/2017	10/10/2017		10/10/2017	
Date analysed	-			10/10/2017	5	10/10/2017	10/10/2017		10/10/2017	
Naphthalene	µg/L	1	Org-012	<1	5	<1	<1	0	70	
Acenaphthylene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Acenaphthene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Fluorene	µg/L	1	Org-012	<1	5	<1	<1	0	85	
Phenanthrene	µg/L	1	Org-012	<1	5	<1	<1	0	86	
Anthracene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Fluoranthene	µg/L	1	Org-012	<1	5	<1	<1	0	73	
Pyrene	µg/L	1	Org-012	<1	5	<1	<1	0	72	
Benzo(a)anthracene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Chrysene	µg/L	1	Org-012	<1	5	<1	<1	0	82	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2	5	<2	<2	0	[NT]	
Benzo(a)pyrene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
3enzo(g,h,i)perylene	µg/L	1	Org-012	<1	5	<1	<1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	73	5	84	72	15	82	

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	177281-4
Date prepared	-			10/10/2017	3	10/10/2017	10/10/2017		10/10/2017	10/10/2017
Date analysed	-			10/10/2017	3	10/10/2017	10/10/2017		10/10/2017	10/10/2017
Arsenic-Total	µg/L	1	Metals-022	<1	3	<1	<1	0	100	109
Cadmium-Total	µg/L	0.1	Metals-022	<0.1	3	<0.1	<0.1	0	105	112
Chromium-Total	µg/L	1	Metals-022	<1	3	5	5	0	99	107
Copper-Total	µg/L	1	Metals-022	<1	3	6	6	0	96	98
Lead-Total	µg/L	1	Metals-022	<1	3	2	2	0	100	106
Mercury-Total	µg/L	0.05	Metals-021	<0.05	3	<0.05	[NT]		111	
Nickel-Total	µg/L	1	Metals-022	<1	3	9	9	0	99	104
Zinc-Total	µg/L	1	Metals-022	<1	3	33	34	3	101	109

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	177281-3
Date prepared	-			[NT]	2	10/10/2017	10/10/2017			10/10/2017
Date analysed	-			[NT]	2	10/10/2017	10/10/2017			10/10/2017
Arsenic-Total	µg/L	1	Metals-022	[NT]	2	9	[NT]			[NT]
Cadmium-Total	µg/L	0.1	Metals-022	[NT]	2	0.1	[NT]			[NT]
Chromium-Total	µg/L	1	Metals-022	[NT]	2	5	[NT]			[NT]
Copper-Total	µg/L	1	Metals-022	[NT]	2	19	[NT]			[NT]
Lead-Total	µg/L	1	Metals-022	[NT]	2	5	[NT]			[NT]
Mercury-Total	µg/L	0.05	Metals-021	[NT]	2	<0.05	<0.05	0		90
Nickel-Total	µg/L	1	Metals-022	[NT]	2	27	[NT]			[NT]
Zinc-Total	µg/L	1	Metals-022	[NT]	2	54	[NT]		[NT]	[NT]

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			09/10/2017	[NT]	[NT]		[NT]	09/10/2017	
Date analysed	-			09/10/2017	[NT]	[NT]		[NT]	09/10/2017	
рН	pH Units		Inorg-001	[NT]	[NT]	[NT]		[NT]	104	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]		[NT]	100	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]		[NT]	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Enviroura Enviroura Enviroura		CHAI	N OF	CHAIN OF CUSTODY - Client	ODY - Client	Clier	It			Ph: Ph:	<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph: 02 9910 6200 / sydney@envirolab.com.au <u>Perth Lab</u> - MPL Laboratories	b Services ood, NSW 206 /dney@envirc ratories	57 olab.com.au
		NATANIE	ILAD G	KOUP - Nation	al phone	number	1300 42	4 344		16-1	8 Hayden Crt My	aree, WA 615	14
Client: Consulting Earth Scientists					Client Proj	ect Name	Number /	Client Project Name / Number / Site etc (ie report title):	oort title):		Pn: 08 9317 2505 / Tab@mpi.com.au Melbourne I ah - Envirolah Services	ib@mpi.com.	au
Contact Person: Erin Millar					- ON OO		CES160	CES160/0/-ECS		IAL	1A Dalmore Drive Scoresby VIC 3179	bresby VIC 317	79
Cambor Frin Millar					Envirolah Ouota No -	. unte No					rn: 03 9/63 2500 / melbourne@envirolab.com.au	ielbourne@er	nvirolab.com.au
	Level 1. Suite 3. 55-65 Grandview Street. Pymble NSW 2073	t. Pymble NS	N 2073		Date results required: Or choose: Standa	s required	rd / sam	curringer <u>vence</u> no. : Date results required: Or choose: Standard / same dav / 1 dav / 2 dav / 3 dav	2 dav / 3 dav		<u>Adelaide Office</u> - Envirolab Services 7a The Parade, Norwood, SA 5067 Ph: 08 7087 6800 / adelaide@envirolab.com.au	rolab Services ood, SA 5067 delaide@envi	s irolab.com.au
					Note: Inform lab surcharges apply	i lab in adva pply	nce if urger	Note: Inform lab in advance if urgent turnaround is required - surcharges apply	equired -		<u>Brisbane Office</u> - Envirolab Services 20a. 10-20 Depot St. Banvo. OLD 4014	rolab Services Banvo. OLD 40	s 014
Phone:		Mob:	0439 261 637	7	Additional	report for	Additional report format: esdat / equis	/ equis /		Ph:	Ph: 07 3266 9532 / brisbane@envirolab.com.au	risbane@envi	irolab.com.au
Email:	erin.millar@consultingearth.com.au mark.challoner@consultingearth.com.au	erin. millar@consultingearth. com. au ark. challoner@consultingearth. com.	earth.com.au	- iau	Lab Comments:	ents:				Ph:	<u>Darwin Office</u> - Envirolab Services Unit 7, 17 Willes Rd, Berrimah, NT 0820 Ph: 08 8967 1201 / darwin@envirolab.com.au	olab Services Berrimah, NT (Irwin@enviro	0820 Diab.com.au
	Sample information	-						Tests	Tests Required	_			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	EC Compo 3	Hq	TRH/RIX						Provide as much information about the sample as you can
~	TNG-MW1		9-Oct	Water	×	×	×		+			2	Not enough water to fill all sample bottles
)	TNG-MW2		9-Oct	Water	++		×						supplied for sample 'TNG-MW1'. Please
1~	TNG-MW3		9-Oct	Water	-	+	××						contact if not all requested tests can be
4	TNG-MW5	-	9-Oct	Water	×	×	×						conducted.
2	QAQCI		9-Oct	Water	-	-	×						
6	QAQC2	•	9-Oct	Water	Please forward	prward t	to ALS fc	ALS for above analytes (Combo	alytes (Col	mbo 3, EC,	, pH &CaCO3	03)	
0	TB		4/10	Water			×						
	X									-			
	pereired	1 ot 16	DIN CON								-		
		A12											
Relinquished by (Company):	CES			Received by (Com	Company):	STS.					Lat	Lab Use Only	
Print Name:	Erin Millar				And 2	Zhanel		Job number:	nber: / 73	184	Cooling:	Ice / Ice	Cooling: Ice / Ice pack / None
Date & Time:	9/10/2017 at 1:45 pm			Date & Time: 9	1001	13.est		Temperature:	ature:	4	Security	seal: Inta	Security seal: Intact / Broken / None
Signature.	Erin Millar			Signature: A2				TAT Re	TAT Req - SAME day /	lay / 1 /	2/3/4	STD	<i>y</i>

Issue date: 27 April 2017

Page 1 of 1

Form 302_V002

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 177281-A

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES160707-ECS</u>
Number of Samples	6 Water
Date samples received	09/10/2017
Date completed instructions received	16/10/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	23/10/2017	
Date of Issue	17/10/2017	
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.	
Accredited for compliance with	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Long Pham, Team Leader, Metals

Authorised By

کھ

David Springer, General Manager

HM in water - dissolved					
Our Reference		177281-A-1	177281-A-2	177281-A-3	177281-A-4
Your Reference	UNITS	TNG-MW1	TNG-MW2	TNG-MW3	TNG-MW5
Date Sampled		09/10/2017	09/10/2017	09/10/2017	09/10/2017
Type of sample		Water	Water	Water	Water
Date prepared	-	17/10/2017	17/10/2017	17/10/2017	17/10/2017
Date analysed	-	17/10/2017	17/10/2017	17/10/2017	17/10/2017
Arsenic-Dissolved	µg/L	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	0.2	<0.1	0.1
Chromium-Dissolved	µg/L	<1	<1	<1	1
Copper-Dissolved	µg/L	3	3	2	1
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	6	21	7	7
Zinc-Dissolved	µg/L	3	26	28	3

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: HM in water - dissolved							plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			17/10/2017	[NT]		[NT]	[NT]	17/10/2017	
Date analysed	-			17/10/2017	[NT]		[NT]	[NT]	17/10/2017	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	104	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	104	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

CERTIFICATE OF ANALYSIS

Work Order	ES1725319	Page	: 1 of 6
Client	: CONSULTING EARTH SCIENTISTS	Laboratory	: Environmental Division Sydney
Contact	: ERIN MILLAR	Contact	: Customer Services ES
Address	Suite 3, Level 1 55-65 Grandview Street PYMBLE NSW, AUSTRALIA 2073	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	+61 02 8569 2200	Telephone	: +61-2-8784 8555
Project	: CES160707-ECS	Date Samples Received	: 10-Oct-2017 16:50
Order number	:	Date Analysis Commenced	: 10-Oct-2017
C-O-C number	:	Issue Date	: 17-Oct-2017 14:19
Sampler	:		Iac-MRA NATA
Site	:		
Quote number	: SYBQ/521/16		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 6 Work Order : ES1725319 Client : CONSULTING EARTH SCIENTISTS Project : CES160707-ECS

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC2	 	
	Cl	lient sampli	ng date / time	09-Oct-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1725319-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.80	 	
EA010P: Conductivity by PC Titrat	for		-			
Electrical Conductivity @ 25°C		1	µS/cm	1400	 	
EA065: Total Hardness as CaCO3						
Total Hardness as CaCO3		1	mg/L	391	 	
EG020T: Total Metals by ICP-MS			3			
Arsenic	7440-38-2	0.001	mg/L	0.005	 	
Cadmium	7440-38-2		mg/L	0.0007	 	
Chromium	7440-43-3	0.001	mg/L	0.010	 	
Copper	7440-50-8		mg/L	0.014	 	
Lead	7439-92-1	0.001	mg/L	0.004	 	
Nickel	7440-02-0	0.001	mg/L	0.018	 	
Zinc	7440-66-6		mg/L	0.045	 	
EG035T: Total Recoverable Mercu			3			
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP075(SIM)B: Polynuclear Aromat			3			
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocar		0.5	μg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	

Page : 4 of 6 Work Order : ES1725319 Client : CONSULTING EARTH SCIENTISTS Project : CES160707-ECS

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC2	 	
	Cl	ient sampli	ng date / time	09-Oct-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1725319-001	 	
				Result	 	
EP080/071: Total Petroleum Hydrocarl	bons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
[^] C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	20	μg/L	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	μg/L	<100	 	
>C16 - C34 Fraction		100	μg/L	<100	 	
>C34 - C40 Fraction		100	μg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes	1330-20-7	2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP075(SIM)S: Phenolic Compound Su	rrogates					
Phenol-d6	13127-88-3	1.0	%	25.4	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	58.7	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	87.7	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	61.4	 	
Anthracene-d10	1719-06-8	1.0	%	85.4	 	
4-Terphenyl-d14	1718-51-0	1.0	%	82.7	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	89.5	 	

Page	5 of 6
Work Order	: ES1725319
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES160707-ECS

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			QAQC2				
Client sampling date / time			09-Oct-2017 00:00					
Compound	CAS Number	LOR	Unit	ES1725319-001				
				Result				
EP080S: TPH(V)/BTEX Surrogates - Co	EP080S: TPH(V)/BTEX Surrogates - Continued							
Toluene-D8	2037-26-5	2	%	91.9				
4-Bromofluorobenzene	460-00-4	2	%	91.6				

(ALS)

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Su	urrogates			
Phenol-d6	13127-88-3	10	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27	113	
4-Terphenyl-d14	1718-51-0	32	112	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	71	137	
Toluene-D8	2037-26-5	79	131	
4-Bromofluorobenzene	460-00-4	70	128	

Appendix B Field Data Sheets and Equipment Calibration Certificates

Client: Dial A Dump Industries	CES Project Code: CES160707-ECS
Project: TNG - Perched Gorundwater Assessment	Location: TNG Energy from Waste Facility
Sampler (s): E.MULAR Signature(s): EM	Project Manager: M. Challoner
BHID: HIM	Sample ID: TNG - MNI
Purging Date: 29 3 77	Sampling Date: 9 10 17

Well Status				
Well damaged:	YESNO	Well locke	ed:	YES/NO
Cement footing damaged:	YES/NO	Cap on PV	C casing:	YES/NO
Internal obstructions in casing:	YES/NO	Well ID vi	sible:	YES/NO
Standing water, vegetation around monument:	YES/NO	Monument	t damaged:	YES/NO
Water between PVC and protective casing:	YES/NO	Odours fro	om groundwater	: YES/NO
Comments: Brown, pubrid salouts	YES/NO			
at time of deelest	Weather (Conditions		
Standing Water Level (SWL):	(mBTOC)	Temperatu	ire:	°C
Well volume:	(L)			
F 8 8	(mBTOC)	Clear	Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)			
Volume of water purged:	(L)	Calm	Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging /	Windy		
	Bailer (Foot Valve)	2		
Sampling equipment:	Pump / Bailer	Fine	Showers	Rain

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments
		3.69	1205	6.88	933	26.5	Pale bram, tubrd,
				1			

* Grab sample due to insufficient volume à well to sample via micro-punging.

Client: Dial A Dump Industries		CES Project Code: CES160707-ECS
Project: TNG - Perched Groundwater Asses	sment	Location: TNG Energy From Waste Facility
	nature(s): مری	Project Manager: M. Challoner
BHID: MW2		Sample ID: TNG - MW2
Purging Date: 29/9/12		Sampling Date: 9/10/17

Well Status			
Well damaged:	YES	Well locked: YES/NO	
Cement footing damaged:	YESINO	Cap on PVC casing:	
Internal obstructions in casing:	YES/NO	Well ID visible: YES/NO	
Standing water, vegetation around mon	ument: YES NO	Monument damaged: YES	
Water between PVC and protective cash	ing: YES/NO	Odours from groundwater YES/NO	
Comments: Brown triberal a or	We We	eather Conditions	
XAnts	2 42 (mBTOC)	Temperature: °C	
Well volume:	22 (L)		
Water level after purging:	(mBTOC)	Clear Partly Cloudy Overcast	
Water level at time of sampling:	ે -ઽ૧(mBTOC)		
Volume of water purged:	(L)	Calm Slight breeze Moderate Breeze	3
Purging equipment:	Pump/ micro-Purging /	Windy	/
Sampling equipment:	Bailer / Foot Valve Pump / Bailer	Fine Showers Rain	

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
10:37	~	4.54	11590	6-244	167	24.6	Brown, tubrd, odour bas
3	1.0	A.76	15660	6.17	143	19.0	X _X
4	1.5	2 37	15790	6.14	139	18.6	Ŋ
6	Q	1.87	15440	6.09	133	18.3	**
8	ζ	1.53	14970	6.05	130	18.3	15
10	Ц	1.41	14800	6.04	129	18-3	1
					4		

Client:	Dial A Dump Industri	es	CES Project Code:	CES160707-ECS
Project:	TNG - Perched Groun	ndwater Assessment	Location: TNG Energ	gy From Waste Facility
Sampler (s):	EMILLAR	Signature(s): EM	Project Manager:	M. Challoner
BH ID: MV	v3		Sample ID: TNG -	MW3
Purging Date	e: 29/9/12		Sampling Date: 9/1	

Well Status Well damaged: YES/NO Well locked: YESNO YES/NO Cement footing damaged: YES/NO Cap on PVC casing: YES/NO YES/NO Internal obstructions in casing: Well ID visible: Standing water, vegetation around monument: YES/NO Monument damaged: YESINO Water between PVC and protective casing: Odours from groundwater YES/NO YES/NO Comments: Brown Introl. octorless denny development Standing Water Level (SWL): 2.60 YES/NO Weather Conditions 2 60 (mBTOC) °C Temperature: 23 (L) Well volume: Water level after purging: Clear Partly Cloudy Overcast Die (mBTOC) 240 (mBTOC) Water level at time of sampling: Volume of water purged: (L) Calm Slight breeze Moderate Breeze Purging equipment: Pump / micro-Purging / Windy Bailer / Foot Valve Pump / Bailer Sampling equipment: Fine Showers Rain

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments
10:05	1	7-21	1145	6.87	202	22.8	Pale brown, signly tub
2	6.5	6.07	1215	6.51	206	19.5	w
14	1.0	5.32	1220	6.28	208	18.9	
6	1.5	4.32	1205	6.19	209	18.7	AX
8	2.0	368	1200	6.10	209	18.6	Ns.
10	2.5	3.09	1187	6.07	209	18.6	X.
12	3.0	z.80	1189	6.02	208	18.6	(L

Client: Dial A Dump Industri	es	CES Project Code:	CES160707-ECS
Project: TNG - Perched Ground		Location: TNG Energy	From Waste Facility
Sampler (s): E-MLLAK	Signature(s): 😋	Project Manager:	M. Challoner
BH ID: MW4		Sample ID:	
Purging Date: 29 9 17		Sampling Date:	

Well Status				
Well damaged:	YES/NO	Well locke	d:	YES/NO
Cement footing damaged:	YES/NO	Cap on PV		YES/NO
Internal obstructions in casing:	YES/NO	Well ID vi	sible:	YE\$/NO
Standing water, vegetation around monument:	YES/NO	Monument	t damaged: (YESINO
Water between PVC and protective casing:	YESNO	Odours fro	m groundwater	YES/NO
Comments: required a well	YES/NO			
Comments: monument & well deneged, Bischool @ 0.72mb	Weather C	Conditions		
Standing Water Level (SWL):	(mBTOC)	Temperatu	re:	°C
Well volume:	(L)			
Water level after purging:	(mBTOC)	Clear	Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)			
Volume of water purged:	(L)	Calm	Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging /	Windy		
	Bailer / Foot Valve			
Sampling equipment:	Pump / Bailer	Fine	Showers	Rain

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
							-

Client: Dial A Dump Industries	CES Project Code: CES160707-ECS
Project: TNG - Perched Groundwater Assessment	Location: TNG Energy From Waste Facility
Sampler (s): E. MILLAR Signature(s): EM	Project Manager: M. Challoner
BHID: MWS	Sample ID: THE-MWS OAOCI DARC
Purging Date: 29 9 17	Sampling Date: 9 10 17

I	Well Status			
I	Well damaged:	YESINO	Well locked:	YES/NO
I	Cement footing damaged:	YESINO	Cap on PVC casing:	KESINO
I	Internal obstructions in casing:	YESINO	Well ID visible:	YES/NO
I	Standing water, vegetation around monument:	YES/NO	Monument damaged:	YES/NO
	Water between PVC and protective casing:	YES/NO	Odours from groundwater	YESNO
I	Comments: One, tobad oclarless at now of development.	YES/NO		
I	at these of development.	Weather G	Conditions	
I	Standing Water Level (SWL): 5.36	(mBTOC)	Temperature:	°C
I	Well volume:	(L) ·		
I	Water level after purging:	(mBTOC)	Clear Partly Cloudy	Overcast
I	Water level at time of sampling: 5.58	(mBTOC)	$(\cap $	
I	Volume of water purged: \-5	(L)	Calm Slight breeze	Moderate Breeze
I	Purging equipment:	Pump / micro-Purging /	Windy	
I		Bailer / Foot Valve		
	Sampling equipment:	Pumpy Bailer	Fine Showers	Rain
I				

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
9:27	-	4.39	1413	645	214	20.7	Brown, Stynfy Friord
g	6.5	3.12	1416	6.45	217	19.1	×4
4	1.0	2.49	1422	6.47	222	18.8	Χ¢
Ś	1.5	2.20	1422	6.52	226	18.9	XI
						ά.	
				*			

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span 1	Span 2	Traceability Lot #	Pass?
рН	pH 7.00 / pH 4.00	7.00 рн	4.01 pH	295212 /303496	
Conductivity	12.88mS/cm	<i>O, O</i> mS/cm	12.88 mS/cm	306044	
TDS	36 ppk	ppk	check only ppk	306264	D
Dissolved Oxygen	Sodium Sulphite / Air	0.0 ppm in Sodium Sulphite	Saturation in Air	5253 300125	
Check only			<u></u>		
Redox (ORP) *	Electrode operability test	240mV +/- 10%238	<i>736</i> mV	305342 306359	2
* This meter us mV reading. Battery Stat	\$ 3	trode. To convert readin (min 7.2V)	gs to SHE (Standard Hydr	rogen Electrode), add 199m	nV to the

Elect	trical Safety Tag attached (AS/NZS 3760)	
	Tag No: <u>0009</u> 23	
	Valid to: 30/11/2017	
Date:	06/10/2017	
Signed:	Mileto	

Mila

Electrodes Cleaned and checked

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	ltem V Z
1		90FLMV Unit. Ops check/Battery status:
		pH sensor with wetting cap, 5m Conductivity/TDS/Temperature K=10 sensor, 5m
		Dissolved oxygen YSI5739 sensor with wetting cap. 5m
	H	Redox (ORP) sensor with wetting cap, 5m Power supply 240V to 12V DC 200mA
		Instruction Manual
		Quick Guide
	님	Syringe with storage solution for pH and ORP sensors
	H	Carry Case Check to confirm electrical safety (tag must be valid)
	mr	

Date:

Signed:

TFS Reference	CS007618	Return Date: / /
Customer Reference		Return Time:
Equipment ID	90FLMV -2	Condition on return:
Equipment Serial No.	W 4488	

"We do more than give you great equipment... We give you great solutions!"

Melbourne Branch		Fax: (Free Call) 1800 675 123	Ema	il: RentalsAU@Thermofisher.com
5 Caribbean Drive, L	iydney Branch	Adelaide Branch	Brisbane Branch	Perth Branch
	evel 1, 4 Talavera Road,	27 Beulah Road, Norwood,	Unit 2/5 Ross St	121 Beringarra Ave
	lorth Ryde 2113	South Australia 5067	Newstead 4006	Malana WA 6090

Equipment Report – Micropurge Kit (MP15)

This system has been performance checked as follows:

Sample Pro Pump				
Components Cleaned / checked	Ops check			
MP15 Controller	Included in kit	Not included in kit		
Components Cleaned / checked	Ops check			
Battery check – On/Off	E Flow response			

Date: 06/10/2017 Checked by: MILENKO h Signed:

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item
.D	□ ·		MP15 Control & Power Pack
G			CO2 cylinder (installed in MP15 backpack)
B			Gas regulator
			Tube cutter
			Quick Start Guide
G			MP15 Users Guide + Pump operating instructions $GP = G$
		ū	Sample Pro Stainless Steel Pump ID: 05P67-6
			Bladder
Ģ			Flow cell ID: EFC 500SR 7
			Stainless Steel Hanger Cable, Clamp & Bracket6m
P			Spare CO2 Cylinders, quantity:/
D			Gas Cylinder CO2 - Size C ID: 9203215627, 9201274377
			Maintenance kit (O rings, fittings, SS check ball, collect & screen if applicable)

Processors Signature/ Initials

MS

EE Quote Reference	CS007818	Condition on return	
Customer Ref			
Equipment ID	QMP1556		
Equipment serial no.			
Return Date	1 1		
Return Time			

"We do more than give you great equipment ... We give you great solutions!"

	e Call) 1300 735 295	Fax: (Free Call) 1800 675	123	Email: RentalsAU@Thermofisher.com
Melbourne Branch 5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4006	Perth Branch 121 Beringarra Ave Malaca WA 6090
Issue 3		Oct 09		G0554

RENTALS

Equipment Report - Solinst Model 122 Interface Meter

This Meter has been performance checked / calibrated* as follows:

Cleaned/Tested	Pass? Yes	□No
Probe		
Tape/Reel	8.31	
Performance Test & Batter	<u> </u>	3.0v minimum
Date: 06/10/20	Checke	ked by: Jerry
Signed:		

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item
Ø			Operations check OK
B			Plastic Box / Bag /
			Spare 9V Battery Qty
			Probe Cleaning Brush
			Decon
Ø			Instruction leaflet
			Tape Guide
Processors Signature/ Initials		e/ Initials	MS

Quote Reference	C5007618	Condition on return
Customer Ref		
Equipment ID	SOL122-11	
Equipment serial no.	236572	
Return Date	1 1	
Return Time		

"We do more than give you great equipment... We give you great solutions!"

Melbourne Branch	e Call) 1300 735 295	Fax: (Free Call) 1800 675 123		Email: RentalsAU@Thermofisher.com
5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4006	Perth Branch 121 Beringarra Ave
Issue 5		Sep 11	Intervstead 4000	Malaga WA 6090