PRELIMINARY SITE INVESTIGATION 57 Burgess Lane, Calala, NSW, 2340 Also known as 474 Calala Lane, Calala, NSW, 2340 Job Number: 218049 For: Equis Energy (Australia) Projects (NGUMI4) Pty Ltd as trustee for the Equis Energy (Australia) Ngumi 4 Asset Trust By: **ENV Solutions** Date: 1 August 2023 **ENV Services Pty Ltd** 313 River Street, Ballina NSW 2478 T: 1300 861 325 E: admin@envsolutions.com.au www.envsolutions.com.au #### **DOCUMENT CONTROL** | Job No: | Job Number: 218049 | |-----------|--| | Client: | Equis Energy (Australia) Projects (NGUMI4) Pty Ltd as trustee for the Equis Energy (Australia) Ngumi 4 Asset Trust | | Filename: | 218049_474_Calala_Lane_Calala_23.06.23_V4 | #### **Document History** | Version Number | Name: | Date: | Signature: | |----------------|-----------------|------------|------------| | V1 | Timothy Bischof | 27.06.2023 | TCB | | V2 | Timothy Bischof | 28.06.2023 | TCB | | V3 | Timothy Bischof | 13.07.2023 | TCB | | V4 | Timothy Bischof | 01.08.2023 | TCB | #### **Version 4** | | Name: | Date: | Signature: | |------------------------------|-------|------------|------------| | Prepared By: Timothy Bischof | | 01.08.2023 | TCB | | Reviewed By: Matt Greer | | 01.08.2023 | Hatteson | #### SCOPE OF ENGAGEMENT AND LIMITATIONS This report has been prepared by ENV Services Pty Ltd (ENV) at the request of Equis Energy (Australia) Projects (NGUMI4) Pty Ltd as trustee for the Equis Energy (Australia) Ngumi 4 Asset Trust for the purpose of a Preliminary Site Investigation. The report may be relied upon to address the requirements of SEAR's application SSD-52786213. No other parties may rely on the contents of this report for any purposes except those stated. This report has been prepared based on the information provided to us and from other information obtained as a result of enquiries made by us. ENV accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above. No part of this report may be reproduced, stored, or transmitted in any form without the prior consent of ENV. ENV declares that it does not have, nor expects to have, a beneficial interest in the subject project. To avoid this advice being used inappropriately, it is recommended that you consult with ENV before conveying the information to another who may not fully understand the objectives of the report. This report is meant only for the subject site/project and should not be applied to any other. # **TABLE OF CONTENTS** | 1 | Int | troduction | . 1 | |---|------|--|-----| | | 1.1 | Objective | . 1 | | | 1.2 | Scope of Works | . 1 | | | 1.3 | Technical and Regulatory Framework | . 1 | | 2 | Sit | e Description and Characteristics | . 2 | | | 2.1 | Site Identification Details | . 2 | | | 2.2 | Site Infrastructure | . 2 | | | 2.3 | Zoning and Land Use | . 2 | | | 2.4 | Topography and Drainage | . 3 | | | 2.5 | Geology and Soils | . 3 | | | 2.6 | Surface Water Bodies and Flooding | . 3 | | | 2.7 | Groundwater Resources | . 3 | | | 2.8 | Cultural Heritage | . 3 | | | 2.9 | Surrounding Environment | . 4 | | | 2.10 | Contaminated Land Record and Record of Notices | . 4 | | | 2.11 | POEO Act Public Register Search | . 4 | | | 2.12 | Cattle Dip Sites | . 4 | | | 2.13 | Planning Applications | . 4 | | | 2.14 | Former Mining and Exploration Leases | . 5 | | | 2.15 | Historical Aerial Photographs | . 5 | | | 2.16 | Previous Investigations | . 5 | | 3 | Со | nceptual Site Model | . 6 | | | 3.1 | Contamination Sources | . 6 | | | 3.2 | Chemicals of Potential Concern | . 6 | | | 3.3 | Potentially Affected Environmental Media | . 6 | | | 3.4 | Potential Migration and Exposure Pathways | . 6 | | | 3.5 | Potential Receptors of Contamination | . 7 | | 4 | Da | ita Quality Objectives | . 8 | | | 4.1 | Step 1: State the Problem | . 8 | | | 4.2 | Step 2: Identify the Decision(s) | . 8 | | | 4.3 | Step 3: Inputs into the Decision(s) | . 8 | | | 4.4 | Step 4: Define the Study Boundaries | 8 | |---|-----|---|------| | | 4.5 | Step 5: Develop the Analytical Approach (Decision Rule) | 8 | | | 4.6 | Step 6: Specify the Performance or Acceptance Criteria | 9 | | | 4.7 | Step 7: Optimise the Design for Obtaining Data | . 10 | | 5 | Si | te Investigation Methodology | . 11 | | | 5.1 | Site Inspection Overview | . 11 | | | 5.2 | Soil Sampling and Analysis Plan | . 11 | | | 5.3 | Justification of Sampling Design and Analysis Plan | . 11 | | 6 | R | esults | . 13 | | | 6.1 | Site Inspection | . 13 | | | 6.2 | Laboratory Analysis Results | . 13 | | | 6.3 | QA/QC Results | . 13 | | | 6.4 | Summary of Data Usability | . 14 | | 7 | D | iscussion and Conclusion | . 15 | | 8 | R | eferences | . 16 | # **LIST OF TABLES** | Table 1: Site Details | . 2 | |--|------| | Table 2 - Groundwater Licence Details | . 3 | | Table 3 - Former Mining Titles | . 5 | | Table 4 - Summary of QA Sample Parameters for Assessing Data Reliability | . 9 | | Table 5 - Adopted Assessment Criteria (EILs) | . 10 | | Table 6 - Soil Sampling Methodology | . 11 | | Table 7 - Summary of QA/QC Indicators and Results | . 13 | # **LIST OF APPENDICES** Appendix A Figures Appendix B Proposed Plans Appendix C Photographs Appendix D Laboratory Results and Documentation Appendix E RPD Calculations #### LIST OF ACRONYMS Below is a list of commonly used acronyms in this report: AEC Area of environmental concern AHD Australian height datum COC Chain of custody COPC Chemical of potential concern CSM Conceptual site model EIL Ecological investigation level ESL Ecological screening level ENV Solutions Pty Ltd HIL Health investigation level HSL Health screening level NEPC National Environment Protection Council NEPM National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) NSW EPA New South Wales Environment Protection Authority OCP Organo-chlorine pesticide PID Photo Ionisation Detector PSI Preliminary site investigation RAP Remediation action plan TRH Total recoverable hydrocarbons UCL Upper confidence limit QA/QC Quality assurance and quality control #### **EXECUTIVE SUMMARY** ENV Services Pty Ltd (ENV) has undertaken a Preliminary Site Investigation (PSI) for part of Lot 17 on DP629969, 57 Burgess Lane, Calala, NSW, 2430 (also known as 474 Calala Lane, Calala NSW 2340) (hereafter referred to as the 'site'). ENV understands that the PSI has been requested to support a development application for a proposed battery energy storage facility, in accordance with the requirements under the Planning Secretary Environmental Assessment Requirements (SEAR's). The investigation area comprises approximately 8.87ha of Lot 17 on DP629969 and the proposed transmission line to the substation of approximately 1.6km. The PSI included the following components: - A desktop review of the site conditions, history and surrounding environment; - Identification of past and present potentially contaminating activities and chemicals of potential concern (COPC); - An inspection of the site and adjacent areas of land; - Development of a preliminary conceptual site model (CSM); - Discussion Regarding the potential for contamination to exist on the site; - A site investigation and soil sampling program; and - Assessment of the suitability of the site for the proposed commercial use. The desktop review collated information from historic aerial imagery, online sources of soil, geological and hydrogeological information; and various other types of information available from local and state government websites. From the desktop review, a preliminary CSM was developed. The preliminary CSM identifies potential contamination sources associated with the historic and current land uses; COPC which may be attributable to these sources; potential receptors of contamination on and near the site; and potential exposure pathways linking the contamination sources with the receptors. The desktop study and site history review identified the investigation area comprises of a gently sloping allotment that has been utilised for agricultural purposes such as improved pastures, grazing and cropping. The investigation is improved with two small livestock shelters. No other permanent buildings have been identified, with the historical imagery not identifying any other areas of concern. Considering the site has been used for agricultural purposes, potential sources of contamination primarily include the use of pesticides, fertilisers. On the basis of the desktop PSI findings, the COPC include OCPs, and metals (e.g. arsenic, lead), with the potentially affected environmental media deemed to comprise surface soils potentially exposed to the outlined COPC. A site inspection and soil sampling program were undertaken on 5 July 2023 with soil samples being collected from the upper soil stratum (0 to 0.15 mBGL) of the surface soil at thirty (30) discrete locations throughout the proposed battery energy storage facility and along the proposed transmission line. No olfactory or visual signs of contamination were observed throughout this investigation. Laboratory analysis results reported that concentrations of heavy metals were below the adopted assessment criteria and OCP's were below the limit of reporting. The maximum COPC concentrations at all sample locations were less than the adopted commercial use assessment criteria. The returned COPC results also fall below the more conservative residential HIL-A and Residential EIL assessment criteria. On the basis of the PSI findings, the investigation area is considered suitable for the proposed commercial land use from a chemical perspective. #### 1 INTRODUCTION ENV Services Pty Ltd
(ENV) was engaged by Equis Energy (Australia) Projects (NGUMI4) Pty Ltd as trustee for the Equis Energy (Australia) Ngumi 4 Asset Trust (the Client) to complete a Preliminary Site Investigation (PSI) for part of lot 17 on DP629969, 57 Burgess Lane, Calala, NSW, 2430 (also known as 474 Calala Lane, Calala, NSW 2340) (hereafter referred to as the 'site'). ENV understands that the PSI has been requested to support a development application for a proposed battery energy storage facility, in accordance with the requirements under the Planning Secretary Environmental Assessment Requirements (SEAR's). This PSI has been prepared in general accordance with the requirements of State Environment Planning Policy (Resilience and Hazards) 2021 and the NSW EPA (2020) document entitled *Consultants Reporting on Contaminated Sites (Contaminated Land Guidelines)*. #### 1.1 Objective The objective of the PSI was to assess the potential for contamination to exist at the site as a result of historical or current land uses; and if further investigation and/or remediation is required for the site to be considered suitable for proposed battery energy storage facility (commercial land use), from a chemical perspective. #### 1.2 Scope of Works The PSI included the following components: - A desktop review of the site conditions, history and surrounding environment; - Identification of past and present potentially contaminating activities and chemicals of potential concern (COPC); - An inspection of the site and adjacent areas of land; - Development of a preliminary conceptual site model (CSM); - Discussing the potential for contamination to exist at the site as a result of historical or current land uses; - Site investigation and soil sampling program; and - Assessment of the suitability of the site for the proposed commercial use. #### 1.3 Technical and Regulatory Framework The following technical and regulatory framework has been considered in preparing this PSI: - Contaminated Land Management Act 1997 (CLM Act); - Environmental Planning and Assessment Act 1979; - State Environment Planning Policy (Resilience and Hazards) 2021 (under the Environmental Planning and Assessment Act 1979) - Sampling Design Guidelines (NSW EPA, 2022); - National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, as amended 2013 (NEPC, 2013); - Consultants Reporting on Contaminated Land (Contaminated Land Guidelines) (NSW EPA, 2020); #### 2 SITE DESCRIPTION AND CHARACTERISTICS #### 2.1 Site Identification Details Table 1 provides an overview of relevant identification details for the site. The site location is depicted in Figure 1 and Figure 2, Appendix A. **Table 1: Site Details** | Site Address | 57 Burgess Lane, Calala, NSW, 2430 (also known as 474 Calala Lane, Calala, NSW 2340) | |--|--| | Real Property Description Lot 17 DP629969 | | | Site Area | Approximately 36.3ha | | Investigation Area | Approximately 8.87ha for the proposed battery energy storage facility and approximately 1.6km linear for the proposed transmission line. | | Local Government Area | Tamworth Regional Council | | Existing Land Use | Agriculture (Grazing/Cropping) | | Proposed Land Use Battery Energy Storage Facility (Commercial) | | #### 2.2 Site Infrastructure The property is improved with a dwelling and a shed in the northern portion of the allotment, and a pump shed adjacent the dam, outside of the investigation area. The investigation area appears to be improved with two basic livestock shelters only. The area of the proposed transmission comprises grass (pasture). #### 2.3 Zoning and Land Use The site is zoned RU4 – Primary Production Small Lots under the Tamworth Regional Council Local Environmental Plan (LEP) (2010). The following land uses are permitted without consent within an RU4 zone: Agricultural produce industries; Aquaculture; Cellar door premises; Dual occupancies (attached); Dwelling houses; Farm buildings; Intensive plant agriculture; Kiosks; Landscaping material supplies; Light industries; Markets; Plant nurseries; Roadside stalls; Rural workers' dwellings. The site is currently used for Rural activities improved grazing/cropping. See the Tamworth LEP Zoning Map in Figure 3, Appendix A. #### 2.4 Topography and Drainage The investigation area has an approximate elevation of 400m Australia Height Datum (AHD) and gently slopes towards the northern boundary. The northern paddock is developed with contour banks and the investigation area generally drains to an earthen dam outside the investigation area to the west. # 2.5 Geology and Soils The NSW Department of Planning, Industry and Environment's eSPADE v2.2 webapp maps the site is situated within the Duri soil landscape. The soil landscape is summarised as follows: Extremely complex due to rapid changes in underlying lithology. Generally dominated by duplex soils such as moderately deep, moderately well-drained Red and Brown Chromosols (Noncalcic Brown Soils; Red-brown Earths) with minor occurrences of shallow, very well-drained Rudosols (Lithosols) around rock outcrops. Deep, imperfectly drained Red Vertosols (Red Clays) and deep to very deep, imperfectly drained Red and Brown Chromosols (Non-calcic Brown Soils) and possibly some Sodosols (Solodic Soils) occur along drainage lines and on sodic bedrock. The site investigation revealed the surface soils generally comprised brown to red clays being homogenous, medium stiffness, medium plasticity and moist (due to rainfall). No inclusions, asbestos, staining or odours were identified. ### 2.6 Surface Water Bodies and Flooding The investigation area has no surface water bodies, with the Tamworth Flood Mapping indicating the site is free from flooding, however, during high rainfall events, overland flow is likely to traverse the property and flow against the contour banks to the neighboring dam. No hydrological flood assessments have been conducted to confirm the flood risk at the site. The Tamworth Flood mapping has been included within Figure 4, Appendix A. #### 2.7 Groundwater Resources A search of the WaterNSW Realtime groundwater database was completed on 26 June 2023. The search identified two (2) bores within 500m and are summarised in Table 2. **Table 2 - Groundwater Licence Details** | GW Licence Number Authorised Purpose | | Depth of Well | Depth to Water | |--------------------------------------|------------------|---------------|----------------| | GW064001 | Domestic | 18.20m | 8.20m | | GW901433 | Stock & Domestic | 25.90m | 4.00m | Both bores are located outside the investigation area and are unlikely to be used for drinking water. ## 2.8 Cultural Heritage A search of the Tamworth LEP Heritage Mapping indicates the site is not Heritage Listed. See the Tamworth Heritage Map in Figure 6, Appendix A. #### 2.9 Surrounding Environment The site is located approximately 9km southeast of the regional town of Tamworth. Land use immediately surrounding the site can be summarised as rural and rural residential including grazing and cropping. Notable land uses greater than 500m from the subject property include; - An electrical substation located approximately 960m to the south west; - A NSW DPI Agricultural Institute located approximately 1.4km to the east; and - A former chicken farm approximately 900m to west. No potentially contaminating land uses were identified up-gradient from the investigation area. #### 2.10 Contaminated Land Record and Record of Notices The NSW EPA Contaminated Land Record (EPA Notifications) contains a list of sites which have been notified to the NSW EPA under the Contaminated Land Management Act 1997 (CLM Act). Upon receiving the notification, the EPA then assesses the contamination status of the site and decides whether the contamination is significant enough to warrant formal regulation by the EPA in accordance with the provisions of the CLM Act. The NSW EPA Record of Notices contains selected information about sites which have been issued with a Regulatory Notice by the NSW EPA under the CLM Act. The NSW EPA Contaminated Land Record and Record of Notices were searched on 26 June 2023. No records for the area of Calala were listed in the databases (NSW EPA, 2023). #### 2.11 POEO Act Public Register Search The Protection of the Environment Operations Act 1997 (POEO Act) Public Register contains information about environment protection licences, licence applications, notices issued under the POEO Act, and pollution studies and reduction programs. The POEO Act Public Register was searched on 26 June 2023 for the suburb of Calala, with no records identified. #### 2.12 Cattle Dip Sites The NSW DPI's cattle dip site locator was searched on 26 June 2023. No dip sites were identified in the suburb of Calala. #### 2.13 Planning Applications The Tamworth Development Applications website was searched on the 26 June 2023 and no planning applications were listed for 57 Burgess Lane, Calala or 474 Calala Lane, Calala, NSW. #### 2.14 Former Mining and Exploration Leases The investigation area is located within 2 former mining leases summarised in Table 3 below. **Table 3 - Former Mining Titles** | Title ID | Holder | Resource | Year | |----------|---------------|-----------|---------------------------| | ELI701 | Shell Mineral | Minerals | 01/09/1981-
01/01/1982 | | PEL84 | Unknown | Petroleum | 1955 | Due to the historical nature of the mining leases, it is unknown if mining occurred at the site. However, no mining activities were evident in the review of historical aerial photographs (refer Section 2.15). A copy of the Mine Title Map is provided in Figure 5, Appendix A. #### 2.15 Historical Aerial Photographs A review of seven (7) aerial photographs (dated 1971, 1989, 1993, 1998, 2004, 2013 & 2022) was undertaken to assess
changes in land use at the site and immediate surrounds. Aerial photographs were accessed through the NSW Historical Imagery Viewer, Google Earth and IntraMaps. The review of historical aerial photographs indicates that the site has been used for agricultural activities such as grazing, improved pastures and cropping. The review did not identify any other structures in the investigation area. The historical land use of nearby properties includes similar agricultural activities within 500m of the site. Former chicken sheds are located approximately 900m west of the investigation area and were demolished between 2004-2013 and are not considered to impact the subject site. The area for the proposed transmission line has been previously grazed and cropped throughout the historical aerials. No previous structures or other contaminating uses have been identified. Copies of the historical aerial photographs are provided as Figures 7 to 13, Appendix A. #### 2.16 Previous Investigations ENV has not been made aware of any previous environmental investigations at the subject site. #### 3 CONCEPTUAL SITE MODEL The information presented in the previous sections pertaining to the site characteristics, history and surrounding environment, has been used to identify potential contamination sources from historic and current activities on the subject site; COPC associated with these sources, plausible receptors of contamination at the site and in off-site areas, and exposure pathways linking the contamination sources and receptors. This information is brought together in what is known as a conceptual site model, which is presented in the following sub-sections. #### 3.1 Contamination Sources Historical and current land use of the site comprises rural use includes improved pastures & cropping. The most recent aerial imagery of the subject reveals the southern paddock has been ploughed, indicating it may have been farmed, cropped and harvested recently. Considering that the site appears to have been used for cropping, potential sources of contamination include the use of pesticides and fertilisers that may have been applied to these crops. No other off-site sources of contamination, likely to have affected the environmental condition of the subject site, have been identified. #### 3.2 Chemicals of Potential Concern The COPC associated with the identified contamination sources include: - Heavy Metals including Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn); and - Organo-chlorine pesticides (OCPs). #### 3.3 Potentially Affected Environmental Media Potentially affected environmental media include surface soils. While other environmental media may be affected by the contamination sources described above, surface soils are considered the most likely media to be directly impacted by the presence of potential contamination sources. If the surface soils at the site are contaminated, it is possible that also other environmental media have been impacted, which will then require further investigation. #### 3.4 Potential Migration and Exposure Pathways Potential migration pathways depend on a number of factors including the chemical properties of the contaminant, soil texture, topography, hydraulic gradient of shallow groundwater, and the presence of preferential pathways etc. The significance of different exposure pathways depends on the chemical properties of the contaminant. In consideration of the above, potential migration pathways for identified COPC include: - Volatilisation; - Generation of dust; - Stormwater run-off; and - Plant uptake and bioaccumulation. Subsequently, potential exposure pathways include: - Direct contact (ingestion or dermal) with contaminated environmental media; - Inhalation of dust; - Ingestion of food grown in contaminated soils; and - Direct toxicity for plants and terrestrial/aquatic ecosystems. #### 3.5 Potential Receptors of Contamination Potential receptors of contamination have been identified as: - Residents and visitors on-site; - Future construction and ongoing workers; and - Terrestrial ecosystems on-site. It is noted that the potential for off-site receptors to be exposed to contamination originating from the site depends on the nature and extent of the contamination, soil properties, local surface water and groundwater hydrology, and distance to the receptors. If contamination is identified on-site, additional investigations may be required to identify and assess the risk to potential off-site receptors. # **4 DATA QUALITY OBJECTIVES** #### 4.1 Step 1: State the Problem The purpose of the Preliminary Site Investigation is to assess the potential for contamination to exist as a result of current or previous land use. # 4.2 Step 2: Identify the Decision(s) The principal decisions (questions) for this investigation are: - What are the current and previous land uses at the site and is there a potential for contamination to exist as a result of associated land use activities? - What are the COPC associated with current and historical land uses? - Do the concentrations of COPC exceed relevant assessment criteria for the protection of potential receptors? - Is the investigation area suitable for proposed residential land use from a contamination perspective, or is further investigation and/or remediation required? #### 4.3 Step 3: Inputs into the Decision(s) To address the decisions in Step 2, the following activities were completed: - A desktop review of relevant and available information, to gain an understanding of site characteristics, history and potential receptors, as well as to identify gaps in the existing data; - An inspection of the site and surrounding areas; and - Soil sampling and laboratory analysis of COPC. #### 4.4 Step 4: Define the Study Boundaries The study boundaries covered the extent of the battery energy storage facility and the transmission line to the substation. The extent of the soil sampling program is referred to as the 'investigation area', and is depicted in Figures 14 and 15, Appendix A. In terms of temporal boundaries, the site inspection and soil sampling program were undertaken over the course of one day, and therefore provides a snapshot only of the current soil conditions. #### 4.5 Step 5: Develop the Analytical Approach (Decision Rule) The number of discrete soil sampling locations required for site characterisation was determined in consideration of the NSW EPA Sampling Design Part 1 – Application (2022) and with reference to the size of the investigation area. Samples were collected using a systematic sampling pattern and involved the collection of soil samples from thirty (30) discrete locations, with twenty-four (24) located within the battery energy storage facility and six (6) located along the proposed transmission line. Soil samples were collected from the upper soil stratum (0-0.15m below ground level [BGL]) and laboratory analysis results compared to generic (Tier 1) investigation levels presented in the *NEPM* (NEPC, 2013). To characterise the site, the following statistical measures were adopted, with the results compared to the adopted assessment criteria: Maximum observed contaminant concentration of each COPC The precision (reproducibility), accuracy, representativeness and overall reliability of the data sets were assessed using the indicators presented in Table 2. This included the collection of appropriate Quality Assurance (QA) samples during soil sampling activities, and internal QA testing conducted by the analytical laboratories. The QA sampling regime was adopted in accordance with the *NEPM* (NEPC, 2013) and Australian Standard (1999 and 2005). Table 4 - Summary of QA Sample Parameters for Assessing Data Reliability | QA Sample Type | Media | Frequency | Acceptable Range of Results | | | |----------------------------|---------------|-----------------------------------|--|--|--| | Field Samples | Field Samples | | | | | | Intra-laboratory duplicate | Soil | 1 per 20 primary samples | Relative percent difference (RPD) ≤50% | | | | Inter-laboratory duplicate | Soil | 1 per 20 primary samples | RPD ≤50% | | | | Laboratory Samples | | | | | | | Internal duplicate | Soil | 1 per 10 primary samples | Laboratory specified | | | | Matrix Spike | Soil | 1 per sampling batch (20 samples) | Laboratory specified | | | | Surrogate Spike | Soil | 1 per sampling batch (20 samples) | Laboratory specified | | | | Control Sample | Soil | 1 per sampling batch (20 samples) | Laboratory specified | | | | Laboratory Blank | Soil | 1 per sampling batch (20 samples) | Results <lor< td=""></lor<> | | | # 4.6 Step 6: Specify the Performance or Acceptance Criteria Assessment criteria were adopted from the Tier 1 investigation levels outlined in *Schedule B(1) Guideline on Investigation Levels For Soil and Groundwater* (NEPC, 2013) and included: - Health investigation levels (HILs) and Health Screening Levels (HSLs) exposure setting D – commercial/industrial. The HIL-D levels were selected based on the proposed use of the site. - Ecological investigation levels (EILs) for commercial and industrial. Site-specific EILs were calculated for selected metals (considered to be 'aged' contamination (≥2 years)) using the NEPM toolbox/EIL calculator. For these calculations, reasonably expected default values were adopted for pH, cation exchange capacity (CEC), clay content and total organic carbon (TOC), based on modelled soil properties in eSPADE¹ (Environment, Energy and Science, 2021). Generic EILs presented in the NEPM (2013) were also adopted for selected chemicals. Tier 1 investigation levels adopted for this PSI are summarised in Table 3. Furthermore, the investigation and screening levels contained in NEPC (2013) have been established through toxicity tests and field and laboratory experiments. In some cases, insufficient data currently exist to provide ENV Solutions 1/08/2023
Page 9 ¹ Soil properties used for EIL calculations: CEC of 15 cmolc/kg dwt, pH of 4.5, clay content of 60%, and organic carbon content (OC) of 2%. thresholds. In these cases, the laboratory analysis data is simply used as an indicator of the presence and extent of contamination. Table 5 - Adopted Assessment Criteria (EILs) | Chemical | Unit | EIL | |---------------|-------|----------------| | Arsenic (As) | mg/kg | 160 | | Chromium (Cr) | mg/kg | 770 | | Copper (Cu) | mg/kg | 110 | | Lead (Pb) | mg/kg | 1,800 | | Nickel (Ni) | mg/kg | 380 | | Zinc (Zn) | mg/kg | 270 | | DDT+DDE+DDD | mg/kg | 180 (DDT only) | # 4.7 Step 7: Optimise the Design for Obtaining Data The sampling regime was designed to collect soil data from surface soils within the investigation area and with reference to the proposed land use and environmental setting of the site. The design incorporated guidance and requirements presented in NEPC (2013) and Australian Standard (2005), as well as other current industry standards relating to the objectives of the assessment. To optimise the design of the investigation, the sampling and analytical program was devised to specifically target information required to meet the PSI objectives. #### 5 SITE INVESTIGATION METHODOLOGY #### 5.1 Site Inspection Overview A site inspection was completed concurrently with the soil sampling program on 5 July 2023. The aim of the site inspection was to assess the current condition of the site and identify any visible signs of contamination and potential contamination sources not detected by the desktop review. #### 5.2 Soil Sampling and Analysis Plan The soil sampling program comprised the collection of soil samples from the upper soil stratum (0 – 0.15 mBGL) at thirty (30) discrete locations within the investigation area. Sampling locations are depicted in Figures 14 and 15, Appendix A. The soil sampling methodology is summarised in Table 6. **Table 6 - Soil Sampling Methodology** | Activity | Details | |--|---| | Sampling | Soil samples were collected from thirty (30) discrete locations established based on a systematic sampling pattern across the investigation area. At each discrete sampling location, soil was loosened with a shovel and samples collected using a fresh pair of disposable nitrile gloves. Organic matter such as leaves and twigs were removed from the sample as much as practically possible prior to collection. Samples were collected by an appropriately qualified Environmental Scientist (Timothy Bischof) from ENV. | | Field QA Samples | Field duplicates were collected and analysed in accordance with NEPC (2013) and Australian Standard (2005). Four (4) field duplicates were collected, including an intra and inter-laboratory duplicate samples. | | Laboratory Analysis | All primary and duplicate samples were analysed for identified COPC. | | Sample Preservation and Transport Sample was labelled with the project number, sampling day sample identifier, and immediately placed into a chilled esky with dispatch to the laboratory. Samples were transported to a laboratory accredited by the National Association of Testing Authorities (NATA) for the required analyst accompanying chain of custody (COC) documentation. | | | Decontamination
Procedure | Any reusable equipment was cleaned between sampling locations using a triple
wash procedure. This involved preliminary washing with potable water, further
washing with phosphate-free detergent (Decon 90), and final rinsing with
clean, potable water. | ## 5.3 Justification of Sampling Design and Analysis Plan Justification for the sampling design and analysis plan is as follows: The number of discrete sampling locations was established in consultation with the Sampling Design Guidelines (NSW EPA, 2022). The sampling density was considered appropriate in consideration of the adopted COPC and targeted potential sources of contamination (cropping areas). - Field-based sampling locations, including stratum and depth, were based on the results of the site history review and identified COPC. - COPC include contaminants that are persistent in the environment; and are recognised as having been used historically in the Tamworth region for the following purposes: - Application of pesticides and fertilisers for agriculture (i.e., OCPs, and metals). #### 6 RESULTS #### 6.1 Site Inspection The investigation area is currently comprised of cleared grassed paddocks improved with two (2) basic livestock shelters. The site inspection noted clay soils being brown to red in colour, medium plasticity, medium stiffness being moist and homogenous. The transmission line comprised similar cleared and sparsely timbered grassed paddocks utilised for grazing with similar brown/red clays. No discolouration, unnatural odours or vegetation stress was observed. Photographs taken during the site inspection and soil sampling activities are provided in Appendix C. ### 6.2 Laboratory Analysis Results Laboratory analysis results for soil samples are tabulated and provided in Appendix D, along with the laboratory issued reports and certificates. Concentrations of heavy metals were below the assessment criteria and OCP's were below the limit of reporting. The maximum COPC concentrations at all sample locations were less than the adopted (commercial) assessment criteria which incorporated HILs and EILs presented in the NEPM (NEPC, 2013) and the site specific EIL's presented in Table 5. The returned COPC results also fall below the more conservative residential HIL-A & Residential/Open Space EIL assessment criteria. # 6.3 QA/QC Results Quality assurance and quality control (QA/QC) involved an assessment of the completeness, comparability, representativeness, precision and accuracy of the investigation and collected data. QA/QC indicators and results are presented in Table 7. Table 7 - Summary of QA/QC Indicators and Results | QA/QC Indicator | Compliance | Details | |------------------------------|------------|---| | Details of Sampling
Team | Yes | Field sampling was undertaken by an ENV appropriately qualified
Environmental Scientist, Timothy Bischof. | | Sampling Plan
Adhered To | Yes | All planned samples were collected and hence a complete dataset
obtained. | | Decontamination of Equipment | Yes | Reusable equipment was cleaned between sampling locations using
a triple wash procedure. This involved preliminary washing with
potable water, further washing with phosphate-free detergent
(Decon 90), and final rinsing in clean, potable water. | | Sample Collection | Yes | Laboratory supplied jars used (no headspace). Collected samples placed in cooler box with ice. Each sample labelled with a unique sample ID. Samples collected in accordance with the methodology detailed in Section 5.2. | | Chain of Custody | Yes | COC was completed with full and demonstrable delivery of samples. COC documentation is presented in Appendix D. | | Holding Times | Yes | Samples analysed within the laboratory specified holding times. | | QA/QC Indicator | Compliance | Details | |---|------------|---| | Sufficient
Duplicates
Analysed | Yes | ■ Field duplicates (inter- and intra-laboratory) collected in accordance with NEPC (2013) and Australian Standard (2005), with a ratio exceeding 2 duplicates per 20 primary samples. As such, four duplicate samples were taken. | | | | Field duplicates were collected at sampling location S-01 & S-18. | | Field Duplicate
Results – Relative
Percentage
Difference (RPD) | Yes | RPD calculated between the primary sample and each of the
corresponding duplicates. The calculated RPDs are tabulated and
presented in Appendix D. | | | | • All calculated RPDs were below the acceptable threshold of ≤ 50% except for chromium, copper, mercury, nickel and zinc for QC1A and chromium and zinc for QC2A. This is due to the natural heterogeneity of soil and the soil comprising stiff clays which are difficult to mix and distribute evenly in sampling jars. Data is considered to be suitable for analysis. | | Analyses NATA accredited | Yes | Samples analysed by Eurofins in Brisbane, which is NATA accredited
for
the analyses required. | | | | Intra-laboratory sample analysed by the NATA accredited
laboratory Envirolab. | | Laboratory Internal
QC | Yes | Satisfactory internal quality control data reported. Analytical methods used are presented in the Laboratory Reports,
Appendix E. | # 6.4 Summary of Data Usability On the basis of the calculated RPDs and other internal quality control data reported by the laboratories (Envirolab and Eurofins), the reproducibility, accuracy and representativeness of the analytical results is considered suitable to meet the objectives of this assessment, and to provide sufficient confidence in the primary dataset for interpretative purposes. N.B. no data has been excluded from the soil data sets for interpretation. ### 7 DISCUSSION AND CONCLUSION The investigation area comprises a predominantly cleared, gently undulating area that is broken by contour banks and is improved with two livestock shelters. The desktop study review identified the investigation area has been used for grazing and cropping (agricultural uses). Historical imagery did not identify any other areas of previous, potentially contaminating activities. Considering the site has been used for agricultural purposes, potential sources of contamination primarily include the use of pesticides and fertilisers. As such, identified COPC included OCPs and heavy metals. Potentially affected environmental media are deemed to primarily comprise surface soils (0-150mm). A site inspection and soil sampling program were undertaken on 5 July 2023 with soil samples being collected from the upper soil stratum (0 to 0.15 mBGL) of the surface soil at 30 discrete locations throughout the proposed battery energy storage facility and along the proposed transmission line. No olfactory or visual signs of contamination were observed throughout this investigation. Laboratory analysis results reported concentrations of heavy metals were below the assessment criteria and OCP's were below the limit of reporting. The maximum COPC concentrations at all sample locations were less than the adopted (commercial) assessment criteria which incorporated HILs and EILs presented in the NEPM (NEPC, 2013) and the site specific EIL's presented in Table 5. The returned COPC results also fall below the more conservative residential HIL-A & Residential EIL assessment criteria. On the basis of the PSI findings, the investigation area is considered suitable for the proposed commercial land use, from a chemical perspective. #### 8 REFERENCES Tamworth Regional Council, 2010. *Tamworth Regional Local Environmental Plan (LEP) 2010*. Tamworth Regional Council: https://legislation.nsw.gov.au/view/whole/html/inforce/current/epi-2011-0027 National Environment Protection Council (NEPC), 2013. *National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999* (as amended 2013). Commonwealth of Australia: http://nepc.gov.au/nepms/assessment-site-contamination Anzlic Committee on Surveying and Mapping, n.d. Elvis. https://elevation.fsdf.org.au/ NSW Environment Protection Authority (EPA), 2020. *Consultants Reporting on Contaminated Land (Contaminated Land Guidelines)*. NSW Government: https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/contaminated-land/20p2233-consultants-reporting-on-contaminated-land-guidelines.pdf?la=en&hash=EBB6758A2DE448534B6FDD5057D280523E423CC7 NSW Department of Primary Industries (DPI), n.d. *Cattle dip site locator*. NSW Government: https://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/health-and-disease/parasitic-and-protozoal-diseases/ticks/cattle-dip-site-locator NSW Historical Imagery Viewer, n.d. *Historical Imagery, Search and Discovery*. NSW Government: https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bcc ddda8075238cb Office of Planning Industry & Environment. (2022). ESPADE v2.2. Environment and Heritage | NSW Environment and Heritage. https://www.environment.nsw.gov.au/eSpade2Webapp # **APPENDIX A** Figures **BESS Site Boundary (Approximate)** Figure 1 – Site Location 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy BESS Site Boundary (Approximate) Investigation Area (Approximate) **Figure 2 – Site Plan** 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy **Figure 3 – Zoning Map** 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy **Figure 4 – Flood Map** 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy Figure 5 – Mine Title Map 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy **Figure 6 – Heritage Map** 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy Figure 7 – Historical Imagery – 1971 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy ENV Project Number: 218049 Proposed Transmission Line (approximate) Figure 8 – Historical Imagery – 1989 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy ENV Project Number: 218049 Figure 9 – Historical Imagery – 1993 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy ENV Project Number: 218049 Figure 10 – Historical Imagery – 1998 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation **Client:** Equis Energy Figure 11 – Historical Imagery – 2004 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation **Client:** Equis Energy **ENV Project Number:** 218049 Figure 12 – Historical Imagery – 2013 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation **Client:** Equis Energy **ENV Project Number:** 218049 Figure 13 – Historical Imagery – 2022 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy ENV Project Number: 218049 **Proposed Transmission Line (approximate)** Sampling Location (approximate) Figure 14 – Sampling Plan S-01 – S-24 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation Client: Equis Energy ENV Project Number: 218049 Investigation Area (Approximate) Sampling Location (approximate) Figure 15 – Sampling Plan S-25 – S-30 474 Calala Lane, Calala, NSW, 2340 **Project:** Preliminary Site Investigation **Client:** Equis Energy ENV Project Number: 218049 # **APPENDIX B** **Proposed Plans** # Calala BESS 300MW - 1200MWh Concept plan Part of Lot: 17/DP629969 Calala BESS extent Existing electricity substation Development footprint Subject site Transmission line alignment Property parcel Existing substation ## **Existing transmission line - Capacity (kV)** --- 66 **----** 132 Scale: 1:6,500 @ A3 Spatial Reference: GDA2020 MGA Zone 56 # **APPENDIX C** Photographs # PHOTOGRAPHIC LOG | Client Name | Site Location | Project | |--------------|------------------------------|---------| | Equis Energy | 474 Calala Lane, Calala, NSW | PSI | | Photo No. | Date | | |--------------------|-------------|--| | 1 | 5 July 2023 | | | Description | | | | Soil profile at S- | 01. | EN CONTRACTOR | | | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | | | | | | | Photo No. Date 2 5 July 2023 # Description S-01, QA1A & QC1A being mixed and collected. # PHOTOGRAPHIC LOG | Client Name | Site Location | Project | |--------------|------------------------------|---------| | Equis Energy | 474 Calala Lane, Calala, NSW | PSI | | Photo No. | Date | |------------|-------------| | 3 | 5 July 2023 | | escription | | Site overview. | Photo No. | Date | | |-----------------------------------|-------------|--| | 4 | 5 July 2023 | | | Description Site overview. | | | | | | | # **PHOTOGRAPHIC LOG** | Client Name | Site Location | Project | |--------------|------------------------------|---------| | Equis Energy | 474 Calala Lane, Calala, NSW | PSI | | Photo No. | Date | The Market of the Control Con | |--------------------------------|-------------
--| | 5 | 5 July 2023 | | | Description
Proposed transr | | | | | | | Photo No. Date 6 5 July 2023 Description Proposed transmission line. # **APPENDIX D Laboratory Results and Documentation** | | | | 1 |-------------------------------------|-------------------------------|----------------------|---|----------------------------------|------------|------------------|----------|-----------------|---------------------|--------------|-----------------|---------------------------------------|---------------------------|----------------------|------------------|----------------|-----------------|----------------------------|----------------|--------------------|---------------| | | | Halogenated Benzenes | Inor | ganics | | | | Me | tals | T | T | | | 1 | 1 | Organ | ochlorine Pes | sticides | 1 | | | | | | Hexachlorobenzene | % Moisture Content | Moisture Content (dried @ 103°C) | Arsenic | Cadmium
Mg/kg | mg/kg | copper
mg/kg | pea
Tea
mg/kg | Mercury | Nickel
mg/kg | Zinc
mg/kg | Organochlorine pesticides | Other organochlorine | mg/kg
4,4-DDE | a-BHC
mg/kg | Aldrin
Mg/kg | mg/kg
Aldrin + Dieldrin | P-BHC
mg/kg | Chlordane
Mg/kg | ga/gane (cis) | | EQL | | 0.05 | 0.1 | 1 1 | 2 | 0.4 | 1 | 1 | 1 | 0.1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.1 | 0.1 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.1 | 0.1 | | | (5) Generic EIL - Comm/Ind | | | | 160 | | | | | | | | | | | | | | | | | | NEPM 2013 Table 1A | (1) HILs Comm/Ind D Soil | 80 | | | 3,000 | 900 | | 240,000 | 1,500 | 730 | 6,000 | 400,000 | | | | | | 45 | | 530 | | | Field ID | Date | S-01 | 07 Jul 2023 | <0.05 | | 17 | 7.3 | <0.5 | 41 | 40 | 15 | <0.1 | 22 | 76 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | QA1A | 07 Jul 2023 | <0.05 | | 17 | 4.5 | <0.5 | 28 | 25 | 9.2 | <0.1 | 13 | 47 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | QC1A | 07 Jul 2023 | <0.1 | 17 | | <4 | <0.4 | 21 | 23 | 8 | 1.5 | 12 | 39 | | | <0.1 | <0.1 | <0.1 | | <0.1 | | <0.1 | | S-02 | 07 Jul 2023 | <0.05 | | 19 | 6.6 | <0.5 | 29 | 38 | 12 | <0.1 | 21 | 86
82 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-03
S-04 | 07 Jul 2023
07 Jul 2023 | <0.05
<0.05 | | 23
39 | 6.2
7.0 | <0.5
<0.5 | 28
36 | 33
35 | 12
17 | <0.1
<0.1 | 18
20 | 82
75 | <0.1
<0.1 | <0.1
<0.1 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.1
<0.1 | | | S-05 | 07 Jul 2023 | <0.05 | | 21 | 6.2 | <0.5 | 33 | 34 | 15 | <0.1 | 19 | 76 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-06 | 07 Jul 2023 | <0.05 | | 19 | 6.1 | <0.5 | 31 | 34 | 13 | <0.1 | 20 | 84 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-07 | 07 Jul 2023 | <0.05 | | 21 | 5.2 | <0.5 | 29 | 29 | 12 | <0.1 | 18 | 72 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-08 | 07 Jul 2023 | <0.05 | | 19 | 6.4 | <0.5 | 33 | 26 | 11 | <0.1 | 13 | 41 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-09 | 07 Jul 2023 | <0.05 | | 22 | 8.0 | <0.5 | 39 | 34 | 15 | <0.1 | 20 | 57 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-10 | 07 Jul 2023 | <0.05 | | 23 | 8.6 | <0.5 | 39 | 33 | 15 | <0.1 | 19 | 56 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-11 | 07 Jul 2023 | <0.05 | | 23 | 7.7 | <0.5 | 36 | 30 | 13 | <0.1 | 17 | 50 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-12
S-13 | 07 Jul 2023
07 Jul 2023 | <0.05
<0.05 | | 21
25 | 6.9
7.0 | <0.5
<0.5 | 38
31 | 30
30 | 13
12 | <0.1
<0.1 | 18
17 | 55
59 | <0.1
<0.1 | <0.1
<0.1 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.1
<0.1 | | | S-14 | 07 Jul 2023 | <0.05 | | 25 | 6.6 | <0.5 | 30 | 28 | 12 | <0.1 | 15 | 49 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-15 | 07 Jul 2023 | <0.05 | | 23 | 7.5 | <0.5 | 36 | 31 | 14 | <0.1 | 17 | 51 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-16 | 07 Jul 2023 | <0.05 | | 27 | 7.6 | <0.5 | 39 | 33 | 14 | <0.1 | 20 | 58 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-17 | 07 Jul 2023 | <0.05 | | 28 | 6.1 | <0.5 | 32 | 28 | 13 | <0.1 | 13 | 40 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-18 | 07 Jul 2023 | <0.05 | | 27 | 8.0 | <0.5 | 37 | 30 | 14 | <0.1 | 17 | 56 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | QA2A | 07 Jul 2023 | <0.05 | | 26 | 6.5 | <0.5 | 33 | 26 | 12 | <0.1 | 14 | 50 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | QC2A | 07 Jul 2023 | <0.1 | 27 | | 4 | <0.4 | 19 | 18 | 8 | <0.1 | 9 | 26 | | | <0.1 | <0.1 | <0.1 | 2.25 | <0.1 | 0.1 | <0.1 | | S-19 | 07 Jul 2023
07 Jul 2023 | <0.05 | | 30 | 6.5 | <0.5 | 30 | 25 | 12 | <0.1 | 14 | 50 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-20
S-21 | 07 Jul 2023
07 Jul 2023 | <0.05
<0.05 | | 25
28 | 5.8
6.0 | <0.5
<0.5 | 28
33 | 26
26 | 11
12 | <0.1
<0.1 | 12
16 | 44
51 | <0.1
<0.1 | <0.1
<0.1 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.1
<0.1 | | | S-22 | 07 Jul 2023 | <0.05 | | 27 | 7.1 | <0.5 | 23 | 26 | 11 | <0.1 | 14 | 55 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-23 | 07 Jul 2023 | <0.05 | | 27 | 6.4 | <0.5 | 28 | 27 | 12 | <0.1 | 14 | 54 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-24 | 07 Jul 2023 | <0.05 | | 28 | 5.6 | <0.5 | 27 | 23 | 9.8 | <0.1 | 14 | 49 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-25 | 07 Jul 2023 | <0.05 | | 16 | 5.0 | <0.5 | 18 | 32 | 10 | <0.1 | 16 | 73 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-26 | 07 Jul 2023 | <0.05 | | 17 | 6.1 | <0.5 | 24 | 29 | 13 | <0.1 | 16 | 58 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-27 | 07 Jul 2023 | <0.05 | | 16 | 4.5 | <0.5 | 22 | 22 | 7.9 | <0.1 | 13 | 75
50 | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | S-28
S-29 | 07 Jul 2023
07 Jul 2023 | <0.05
<0.05 | | 23 | 2.5
2.7 | <0.5
<0.5 | 38
36 | 29
46 | <5
5.1 | <0.1
<0.1 | 17
17 | 58
58 | <0.1 | <0.1 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.1
<0.1 | | | S-30 | 07 Jul 2023
07 Jul 2023 | <0.05 | | 25 | 4.7 | <0.5 | 24 | 46 | 5.1
7.5 | <0.1 | 13 | 82 | <0.1
<0.1 | <0.1
<0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | | 100 000 000 | н 3100 | <u> 11 </u> | | п | | | | | | | <u> </u> | | | | | | | | -012 | | | Statistics | | | 1 - | 1 | 1 | | | | 1 | 1 | | | | | | T == | | 1 | | | | | Number of Results | | 34 | 2 | 32 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 32 | 32 | 34 | 34 | 34 | 32 | 34 | 32 | 2 | | Number of Detects Minimum Concentra | tion | 0
<0.05 | 2
17 | 32
16 | 33
2.5 | 0
<0.4 | 34
18 | 34
18 | 33
<5 | <0.1 | 34
9 | 34
26 | 0
<0.1 | 0
<0.1 | 0
<0.05 | 0
<0.05 | 0
<0.05 | 0
<0.05 | 0
<0.05 | 0
<0.1 | 0
<0.1 | | Minimum Detect | uon | | 17 | 16 | 2.5 | ND | 18 | 18 | 5.1 | 1.5 | 9 | 26 | ND | ND | ND | <0.05
ND | <0.05
ND | \\ ND | <0.05
ND | ND | ND | | Maximum Concentra | ation | <0.1 | 27 | 39 | 8.6 | <0.5 | 41 | 49 | 17 | 1.5 | 22 | 86 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | <0.1 | <0.1 | <0.1 | | Maximum Detect | | ND | 27 | 39 | 8.6 | ND | 41 | 49 | 17 | 1.5 | 22 | 86 | ND | Average Concentration | | 0.026 | 22 | 23 | 6 | 0.25 | 31 | 30 | 12 | 0.093 | 16 | 59 | 0.05 | 0.05 | 0.026 | 0.026 | 0.026 | 0.025 | 0.026 | 0.05 | 0.05 | | Median Concentration | | 0.025 | 22 | 23 | 6.3 | 0.25 | 31 | 29.5 | 12 |
0.05 | 16.5 | 56 | 0.05 | 0.05 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.05 | 0.05 | | Standard Deviation * | | 0.006 | 7.1 | 4.9 | 1.6 | 0.012 | 6.2 | 6.4 | 3 | 0.25 | 3.1 | 15 | 0 | 0 | 0.006 | 0.006 | 0.006 | 0 | 0.006 | 0 | 0 | | 95% UCL (Student's-t | <u>"</u> | 0.0282 | 53.57 | 24.92 | 6.481 | 0.251 | 32.65 | 32.08 | 12.43 | 0.165 | 17 | 62.83 | 0.05 | 0.05 | 0.0282 | 0.0282 | 0.0282 | 0.025 | 0.0282 | 0.05 | 0.05 | | % of Detects % of Non-Detects | | 0
100 | 100 | 100 | 97
3 | 100 | 100 | 100 | 97 | 97 | 100 | 100
0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | nlier of 0.5 has been applied | 100 | <u>, </u> | 1 0 | <u> </u> | 100 | U | | | <u> </u> | ı u | U | 100 | T 100 | 100 | T 100 | 100 | 1 100 | 100 | 100 | 100 | [%] of Non-Detects * A Non Detect Multiplier of 0.5 has been applied. **Environmental Standards** 2013, NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil | | | | | | | | | | Organochlori | ine Pesticides | ; | | | | | | | |--------------------------------------|----------------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------|----------------|-----------------|----------------|-----------------|----------------|--------------------|----------------| | | | | | | | | | | <u> </u> | | | | | | | | | | | | Chlordane (trans) | д-внс | QQQ | DDT | DDT+DDE+DDD | Dieldrin | Endosulfan I | Endosulfan II | Endosulfan sulphate | Endrin | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Methoxychlor | | | | mg/kg | EQL | | 0.1 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | NEPM 2013 Table 1B(5) (| | | | | 640 | 2.600 | | | | | 100 | | | | F0 | | 2.500 | | NEPM 2013 Table 1A(1) H | HILS COMM/ING D SOII | | | | | 3,600 | | | | | 100 | | | | 50 | | 2,500 | | Field ID | Date | | | | | | | | | | | | | | | | | | S-01 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | QA1A | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | QC1A | 07 Jul 2023 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.07 | <0.1 | <0.1 | <0.1 | <0.1 | | S-02 | 07 Jul 2023
07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-03
S-04 | 07 Jul 2023
07 Jul 2023 | | <0.05
<0.05 | S-05 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-06 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-07 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-08 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-09 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-10 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-11 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-12 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-13 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05
<0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-14
S-15 | 07 Jul 2023
07 Jul 2023 | | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05
<0.05 | <0.05 | <0.05
<0.05 | S-15 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-17 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-18 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | QA2A | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | QC2A | 07 Jul 2023 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | <0.1 | <0.1 | <0.1 | <0.1 | | S-19 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-20 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-21 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-22 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-23 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-24
S-25 | 07 Jul 2023
07 Jul 2023 | 1 | <0.05
<0.05 | S-26 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-27 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-28 | 07 Jul 2023 | 1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-29 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | S-30 | 07 Jul 2023 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | Statistics | | • | | | | | | | | | | | | | | | | | Number of Results | | 2 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 32 | 34 | 34 | 34 | 34 | | Number of Detects | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Minimum Concentration Minimum Detect | <u> </u> | <0.1
ND | <0.05
ND | Maximum Concentration | 1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | <0.1 | <0.1 | <0.1 | <0.1 | | Maximum Detect | | ND | Average Concentration * | • | 0.05 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.025 | 0.026 | 0.026 | 0.026 | 0.026 | | Median Concentration * | | 0.05 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | | Standard Deviation * | | 0 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0 | 0.006 | 0.006 | 0.006 | 0.006 | | 95% UCL (Student's-t) * | | 0.05 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | 0.025 | 0.0282 | 0.0282 | 0.0282 | 0.0282 | | % of Detects | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | % of Non-Detects | | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ^{*} A Non Detect Multiplier of 0.5 has been applied. ENV Services Pty Ltd Level 1, 2247 Gold Coast Highway Nobby Beach QLD 4218 NATA Accredited Accreditation Number 1261 Site Number 20794 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Tim Bischof Report 1006014-S Project name CALALA SOIL SAMPLING Project ID 218049 Received Date Jul 07, 2023 | Client Sample ID | | | S-01 | S-02 | S-03 | S-04 | |-------------------------------------|------|-------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014386 | B23-JI0014387 | B23-JI0014388 | B23-JI0014389 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | 00.101, 2020 | 00.1 01, 2020 | | Organochlorine Pesticides | LOIC | Onit | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05
 | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 67 | 71 | 74 | 64 | | Tetrachloro-m-xylene (surr.) | 1 | % | 136 | 134 | 131 | 130 | | Heavy Metals | • | | | | | | | Arsenic | 2 | mg/kg | 7.3 | 6.6 | 6.2 | 7.0 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 41 | 29 | 28 | 36 | | Copper | 5 | mg/kg | 40 | 38 | 33 | 35 | | Lead | 5 | mg/kg | 15 | 12 | 12 | 17 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 22 | 21 | 18 | 20 | | Zinc | 5 | mg/kg | 76 | 86 | 82 | 75 | | Client Sample ID | | | S-01 | S-02 | S-03 | S-04 | |---------------------|-----|------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014386 | B23-JI0014387 | B23-JI0014388 | B23-JI0014389 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Sample Properties | | | | | | | | % Moisture | 1 | % | 17 | 19 | 23 | 39 | | Client Sample ID | | | S-05 | S-06 | S-07 | S-08 | |-------------------------------------|------|-------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014390 | B23-JI0014391 | B23-JI0014392 | B23-JI0014393 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | • | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 74 | 95 | 70 | 71 | | Tetrachloro-m-xylene (surr.) | 1 | % | 130 | 145 | 129 | 80 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 6.2 | 6.1 | 5.2 | 6.4 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 33 | 31 | 29 | 33 | | Copper | 5 | mg/kg | 34 | 34 | 29 | 26 | | Lead | 5 | mg/kg | 15 | 13 | 12 | 11 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 19 | 20 | 18 | 13 | | Zinc | 5 | mg/kg | 76 | 84 | 72 | 41 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 21 | 19 | 21 | 19 | | Client Sample ID | | | S-09 | S-10 | S-11 | S-12 | |-------------------------------------|------|-------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014394 | B23-JI0014395 | B23-JI0014396 | B23-JI0014397 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 75 | 61 | 65 | 70 | | Tetrachloro-m-xylene (surr.) | 1 | % | 85 | 129 | 112 | 132 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 8.0 | 8.6 | 7.7 | 6.9 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 39 | 39 | 36 | 38 | | Copper | 5 | mg/kg | 34 | 33 | 30 | 30 | | Lead | 5 | mg/kg | 15 | 15 | 13 | 13 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 20 | 19 | 17 | 18 | | Zinc | 5 | mg/kg | 57 | 56 | 50 | 55 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 22 | 23 | 23 | 21 | | Client Sample ID | | | S-13 | S-14 | S-15 | S-16 | |-------------------------------------|------|-------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014398 | B23-JI0014399 | B23-JI0014400 | B23-JI0014401 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | ' | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 60 | 74 | 74 | 72 | | Tetrachloro-m-xylene (surr.) | 1 | % | 77 | 82 | 89 | 92 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 7.0 | 6.6 | 7.5 | 7.6 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 31 | 30 | 36 | 39 | | Copper | 5 | mg/kg | 30 | 28 | 31 | 33 | | Lead | 5 | mg/kg | 12 | 12 | 14 | 14 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 17 | 15 | 17 | 20 | | Zinc | 5 | mg/kg | 59 | 49 | 51 | 58 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 25 | 25 | 23 | 27 | | Client Sample ID | | | S-17 | S-18 | S-19 | S-20 | |-------------------------------------|------|----------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | |
B23-JI0014402 | B23-JI0014403 | B23-JI0014404 | B23-JI0014405 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | <u>'</u> | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 74 | 75 | 72 | 72 | | Tetrachloro-m-xylene (surr.) | 1 | % | 87 | 90 | 107 | 88 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 6.1 | 8.0 | 6.5 | 5.8 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 32 | 37 | 30 | 28 | | Copper | 5 | mg/kg | 28 | 30 | 25 | 26 | | Lead | 5 | mg/kg | 13 | 14 | 12 | 11 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 13 | 17 | 14 | 12 | | Zinc | 5 | mg/kg | 40 | 56 | 50 | 44 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 28 | 27 | 30 | 25 | Report Number: 1006014-S | Client Sample ID | | | S-21 | S-22 | S-23 | S-24 | |-------------------------------------|------|-------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014406 | B23-JI0014407 | B23-JI0014408 | B23-JI0014409 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 71 | 79 | 71 | 73 | | Tetrachloro-m-xylene (surr.) | 1 | % | 99 | 138 | 96 | 131 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 6.0 | 7.1 | 6.4 | 5.6 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 33 | 23 | 28 | 27 | | Copper | 5 | mg/kg | 26 | 26 | 27 | 23 | | Lead | 5 | mg/kg | 12 | 11 | 12 | 9.8 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 16 | 14 | 14 | 14 | | Zinc | 5 | mg/kg | 51 | 55 | 54 | 49 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 28 | 27 | 27 | 28 | | Client Sample ID | | | S-25 | S-26 | S-27 | S-28 | |-------------------------------------|------|-------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014410 | B23-JI0014411 | B23-JI0014412 | B23-JI0014413 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 73 | 72 | 99 | 74 | | Tetrachloro-m-xylene (surr.) | 1 | % | 91 | 87 | 115 | 87 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 5.0 | 6.1 | 4.5 | 2.5 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 18 | 24 | 22 | 38 | | Copper | 5 | mg/kg | 32 | 29 | 22 | 29 | | Lead | 5 | mg/kg | 10 | 13 | 7.9 | < 5 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 16 | 16 | 13 | 17 | | Zinc | 5 | mg/kg | 73 | 58 | 75 | 58 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 16 | 17 | 16 | 23 | Report Number: 1006014-S | Client Sample ID | | | S-29 | S-30 | QA1A | QA2A | |-------------------------------------|------|----------|---------------|---------------|---------------|---------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | B23-JI0014414 | B23-JI0014415 | B23-JI0014416 | B23-JI0014417 | | Date Sampled | | | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | Jul 07, 2023 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | <u>'</u> | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 |
mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 67 | 72 | 74 | 74 | | Tetrachloro-m-xylene (surr.) | 1 | % | 87 | 86 | 91 | 90 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 2.7 | 4.7 | 4.5 | 6.5 | | Cadmium | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chromium | 5 | mg/kg | 36 | 24 | 28 | 33 | | Copper | 5 | mg/kg | 46 | 49 | 25 | 26 | | Lead | 5 | mg/kg | 5.1 | 7.5 | 9.2 | 12 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Nickel | 5 | mg/kg | 17 | 13 | 13 | 14 | | Zinc | 5 | mg/kg | 58 | 82 | 47 | 50 | | Sample Properties | | | | | | | | % Moisture | 1 | % | 24 | 25 | 17 | 26 | ### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | Organochlorine Pesticides | Brisbane | Jul 10, 2023 | 14 Days | | - Method: LTM-ORG-2220 OCP and PCB in Soil and Water (USEPA 8270) | | | | | Metals M8 | Brisbane | Jul 10, 2023 | 28 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | % Moisture | Brisbane | Jul 07, 2023 | 14 Days | - Method: LTM-GEN-7080 Moisture Report Number: 1006014-S web: www.eurofins.com.au email: EnviroSales@eurofins.com ### **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Sydney Canberra 179 Magowar Road Unit 1.2 Dacre Street Girraween Mitchell NSW 2145 ACT 2911 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 Tel: +61 7 3902 4600 NATA# 1261 Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370 **Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd** NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 Tel: +64 3 343 5201 IANZ# 1327 IANZ# 1290 **Company Name:** **ENV Services Pty Ltd** old Coast Highway Nobby Beach QLD 4218 Order No.: Report #: 1006014 Phone: Fax: Received: Jul 7, 2023 7:15 AM Due: Jul 14, 2023 Priority: 5 Day **Contact Name:** Tim Bischof ABN: 91 05 0159 898 46-48 Banksia Road Perth **Eurofins Analytical Services Manager: Peter Brand** | Address: | Level 1, 2247 Go | |----------|------------------| | | | **Project Name:** Project ID: CALALA SOIL SAMPLING 218049 | Sample Detail Brisbane Laboratory - NATA # 1261 Site # 20794 External Laboratory | | | | | | | Metals M8 X | Moisture Set X | |--|-----------|--------------|------------------|--------|---------------|---|-------------|----------------| | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | 1 | S-01 | Jul 07, 2023 | | Soil | B23-JI0014386 | Х | Х | Х | | 2 | S-02 | Jul 07, 2023 | | Soil | B23-JI0014387 | Х | Х | Х | | 3 | S-03 | Jul 07, 2023 | | Soil | B23-JI0014388 | Х | Х | Х | | 4 | S-04 | Jul 07, 2023 | | Soil | B23-JI0014389 | Х | Х | Х | | 5 | S-05 | Jul 07, 2023 | | Soil | B23-JI0014390 | Х | Х | Х | | 6 | S-06 | Jul 07, 2023 | | Soil | B23-JI0014391 | Х | Х | Х | | 7 | S-07 | Jul 07, 2023 | | Soil | B23-JI0014392 | Х | Х | Х | | 8 | S-08 | Jul 07, 2023 | | Soil | B23-JI0014393 | Х | Х | Х | | 9 | S-09 | Jul 07, 2023 | | Soil | B23-JI0014394 | Х | Х | Х | | 10 | S-10 | Jul 07, 2023 | | Soil | B23-JI0014395 | Х | Х | Х | | 11 | S-11 | Jul 07, 2023 | | Soil | B23-JI0014396 | Х | Х | Х | | 12 | S-12 | Jul 07, 2023 | | Soil | B23-JI0014397 | Х | Х | Х | | 13 | S-13 | Jul 07, 2023 | | Soil | B23-JI0014398 | Х | Х | Х | web: www.eurofins.com.au email: EnviroSales@eurofins.com ### **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 6113 8091 Phone: Fax: Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 NATA# 2377 Site# 2370 IANZ# 1327 **Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd** NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290 **Company Name:** **ENV Services Pty Ltd** Address: Level 1, 2247 Gold Coast Highway > Nobby Beach QLD 4218 CALALA SOIL SAMPLING **Project Name:** Project ID: 218049 Order No.: Received: Jul 7, 2023 7:15 AM Report #: 1006014 Due: Jul 14, 2023 **Priority:** 5 Day **Contact Name:** Tim Bischof ABN: 91 05 0159 898 46-48 Banksia Road Tel: +61 8 6253 4444 Perth Welshpool WA 6106 **Eurofins Analytical Services Manager: Peter Brand** | | | Sample Detai | I | | Organochlorine Pesticides | Metals M8 | Moisture Set | |------|----------------|----------------------------|------|---------------|---------------------------|-----------|--------------| | Bris | bane Laborator | y - NATA # 1261 Site # 207 | 94 | | Х | Х | Х | | 14 | S-14 | Jul 07, 2023 | Soil | B23-JI0014399 | Х | Х | Х | | 15 | S-15 | Jul 07, 2023 | Soil | B23-JI0014400 | Х | Х | Х | | 16 | S-16 | Jul 07, 2023 | Soil | B23-JI0014401 | Х | Χ | Х | | 17 | S-17 | Jul 07, 2023 | Soil | B23-JI0014402 | Х | Х | Х | | 18 | S-18 | Jul 07, 2023 | Soil | B23-JI0014403 | Х | Х | Х | | 19 | S-19 | Jul 07, 2023 | Soil | B23-Jl0014404 | Х | Χ | Х | | 20 | S-20 | Jul 07, 2023 | Soil | B23-Jl0014405 | Х | Χ | Х | | 21 | S-21 | Jul 07, 2023 | Soil | B23-JI0014406 | Х | Χ | Х | | 22 | S-22 | Jul 07, 2023 | Soil | B23-Jl0014407 | Х | Χ | Х | | 23 | S-23 | Jul 07, 2023 | Soil | B23-JI0014408 | Х | Χ | Х | | 24 | S-24 | Jul 07, 2023 | Soil | B23-JI0014409 | Х | Χ | Х | | 25 | S-25 | Jul 07, 2023 | Soil | B23-JI0014410 | Х | Х | Х | | 26 | S-26 | Jul 07, 2023 | Soil | B23-JI0014411 | Х | Х | Х | | 27 | S-27 | Jul 07, 2023 | Soil | B23-JI0014412 | Х | Х | Х | | 28 | S-28 | Jul 07, 2023 | Soil | B23-JI0014413 | Х | Χ | Х | | 29 | S-29 | Jul 07, 2023 | Soil | B23-JI0014414 | Х | Χ | Χ | web: www.eurofins.com.au email: EnviroSales@eurofins.com ### **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Phone: Fax: Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 6113 8091 Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370 ABN: 91 05 0159 898 Perth NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290 **Company Name:** **ENV Services Pty Ltd** Address: Level 1, 2247 Gold Coast Highway Nobby Beach QLD 4218 **Project Name:** CALALA SOIL SAMPLING Project ID: 218049 Order No.: Received: Jul 7, 2023 7:15 AM Report #: 1006014 Due: Jul 14, 2023 **Priority:** 5 Day **Contact Name:** Tim Bischof **Eurofins Analytical Services Manager: Peter Brand** **Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd** 35 O'Rorke Road Tel: +64 9 526 4551 Auckland 1061 IANZ# 1327 Auckland Penrose, | | | Sa | ımple Detail | | | | Organochlorine Pesticides | Metals M8 | Moisture Set | |
--|--------|--------------|--------------|------|--|---------------|---------------------------|-----------|--------------|---| | Bris | | | | | | | | | | | | 30 | S-30 | Jul 07, 2023 | | Soil | | B23-JI0014415 | Χ | Χ | Χ | l | | 31 | QA1A | Jul 07, 2023 | | Soil | | B23-JI0014416 | Х | Х | Х | l | | Sample Detail Detai | | | | | | | Х | l | | | | Test | Counts | | | | | | 32 | 32 | 32 | | ### **Internal Quality Control Review and Glossary** ### General - 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds. - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results. - 9. This report replaces any interim results previously issued. ### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. ### Units mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre **ppm**: parts per million **ppb**: parts per billion %: Percentage org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres CFU: Colony forming unit ### **Terms** APHA American Public Health Association COC Chain of Custody CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery. Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. LOR Limit of Reporting. LCS Laboratory Control Sample - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. RPD Relative Percent Difference between two Duplicate pieces of analysis. SPIKE Addition of the analyte to the sample and reported as percentage recovery SRA Sample Receipt Advice **Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery. TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TCLP Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence QSM US Department of Defense Quality Systems Manual Version 5.4 US EPA United States Environmental Protection Agency WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA ### QC - Acceptance Criteria The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150% PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected. ### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte - 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample. - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. Report Number: 1006014-S ### **Quality Control Results** | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |------------------------------|---------|---------------------------------------|----------------------|----------------|--------------------| | Method Blank | | | | | | | Organochlorine Pesticides | | | | | | | Chlordanes - Total | mg/kg | < 0.1 | 0.1 | Pass | | | 4.4'-DDD | mg/kg | < 0.05 | 0.05 | Pass | | | 4.4'-DDE | mg/kg | < 0.05 | 0.05 | Pass | | | 4.4'-DDT | mg/kg | < 0.05 | 0.05 | Pass | | | a-HCH | mg/kg | < 0.05 | 0.05 | Pass | | | Aldrin | mg/kg | < 0.05 | 0.05 | Pass | | | b-HCH | mg/kg | < 0.05 | 0.05 | Pass | | | d-HCH | mg/kg | < 0.05 | 0.05 | Pass | | | Dieldrin | mg/kg | < 0.05 | 0.05 | Pass | | | Endosulfan I | mg/kg | < 0.05 | 0.05 | Pass | | | Endosulfan II | mg/kg | < 0.05 | 0.05 | Pass | | | Endosulfan sulphate | mg/kg | < 0.05 | 0.05 | Pass | | | Endrin | mg/kg | < 0.05 | 0.05 | Pass | | | Endrin aldehyde | mg/kg | < 0.05 | 0.05 | Pass | | | Endrin ketone | mg/kg | < 0.05 | 0.05 | Pass | | | g-HCH (Lindane) | mg/kg | < 0.05 | 0.05 | Pass | | | Heptachlor | mg/kg | < 0.05 | 0.05 | Pass | | | Heptachlor epoxide | mg/kg | < 0.05 | 0.05 | Pass | | | Hexachlorobenzene | mg/kg | < 0.05 | 0.05 | Pass | | | Methoxychlor | mg/kg | < 0.05 | 0.05 | Pass | | | Aldrin and Dieldrin (Total)* | mg/kg | < 0.05 | 0.05 | Pass | | | DDT + DDE + DDD (Total)* | mg/kg | < 0.05 |
0.05 | Pass | | | Method Blank | IIIg/kg | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0.03 | 1 033 | | | Heavy Metals | | | | | | | Arsenic | mg/kg | < 2 | 2 | Pass | | | Cadmium | mg/kg | < 0.5 | 0.5 | Pass | | | Chromium | mg/kg | < 5 | 5 | Pass | | | Copper | mg/kg | < 5 | 5 | Pass | | | Lead | mg/kg | < 5 | 5 | Pass | | | Mercury | mg/kg | < 0.1 | 0.1 | Pass | | | Nickel | mg/kg | < 5 | 5 | Pass | | | Zinc | mg/kg | < 5 | 5 | Pass | | | LCS - % Recovery | IIIg/kg | _ | | 1 033 | | | Organochlorine Pesticides | | | | | | | Chlordanes - Total | % | 90 | 70-130 | Pass | | | 4.4'-DDD | % | 88 | 70-130 | Pass | | | 4.4'-DDE | % | 92 | 70-130 | Pass | | | 4.4'-DDT | % | 120 | 70-130 | Pass | | | | | 1 | | | | | a-HCH | % | 92 | 70-130 | Pass | | | Aldrin | % | 96 | 70-130 | Pass | | | b-HCH | % | 93 | 70-130 | Pass | | | d-HCH | % | 90 | 70-130 | Pass | | | Dieldrin | % | 86 | 70-130 | Pass | | | Endosulfan I | % | 88 | 70-130 | Pass | | | Endosulfan II | % | 89 | 70-130 | Pass | | | Endosulfan sulphate | % | 97 | 70-130 | Pass | | | Endrin | % | 83 | 70-130 | Pass | | | Endrin aldehyde | % | 77 | 70-130 | Pass | | | Endrin ketone | % | 89 | 70-130 | Pass | | | g-HCH (Lindane) | % | 90 | 70-130 | Pass | | | | Test | | Units | Result 1 | Acceptan
Limits | Pass
Limits | Qualifying
Code | |---------------------------|---------------|--------------|-------|----------|--------------------|------------------|--------------------| | Heptachlor | | | % | 81 | 70-130 | Pass | | | Heptachlor epoxide | | | % | 87 | 70-130 | Pass | | | Hexachlorobenzene | | | % | 94 | 70-130 | Pass | | | Methoxychlor | | | % | 82 | 70-130 | Pass | | | LCS - % Recovery | | | | | | | | | Heavy Metals | | | | | | | | | Arsenic | | | % | 99 | 80-120 | Pass | | | Cadmium | | | % | 96 | 80-120 | Pass | | | Chromium | | | % | 99 | 80-120 | Pass | | | Copper | | | % | 95 | 80-120 | Pass | | | Lead | | | % | 93 | 80-120 | Pass | | | Mercury | | | % | 93 | 80-120 | Pass | | | Nickel | | | % | 91 | 80-120 | Pass | | | Zinc | | | % | 95 | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | Acceptan
Limits | e Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | | | | | Organochlorine Pesticides | | | | Result 1 | | | | | Chlordanes - Total | B23-JI0014386 | CP | % | 90 | 70-130 | Pass | | | 4.4'-DDD | B23-JI0014386 | СР | % | 86 | 70-130 | Pass | | | 4.4'-DDE | B23-JI0014386 | СР | % | 91 | 70-130 | Pass | | | a-HCH | B23-JI0014386 | СР | % | 91 | 70-130 | Pass | | | Aldrin | B23-JI0014386 | СР | % | 96 | 70-130 | Pass | | | b-HCH | B23-JI0014386 | СР | % | 88 | 70-130 | Pass | | | d-HCH | B23-JI0014386 | СР | % | 87 | 70-130 | Pass | | | Dieldrin | B23-JI0014386 | СР | % | 90 | 70-130 | Pass | | | Endosulfan I | B23-JI0014386 | CP | % | 89 | 70-130 | Pass | | | Endosulfan II | B23-JI0014386 | СР | % | 88 | 70-130 | Pass | | | Endosulfan sulphate | B23-JI0014386 | СР | % | 96 | 70-130 | Pass | | | Endrin | B23-JI0014386 | СР | % | 87 | 70-130 | Pass | | | Endrin ketone | B23-JI0014386 | СР | % | 90 | 70-130 | Pass | | | g-HCH (Lindane) | B23-JI0014386 | СР | % | 89 | 70-130 | Pass | | | Heptachlor | B23-JI0014386 | СР | % | 82 | 70-130 | Pass | | | Heptachlor epoxide | B23-JI0014386 | СР | % | 85 | 70-130 | Pass | | | Hexachlorobenzene | B23-JI0014386 | СР | % | 92 | 70-130 | Pass | | | Methoxychlor | B23-JI0014386 | СР | % | 81 | 70-130 | Pass | | | Spike - % Recovery | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | Arsenic | B23-JI0014386 | СР | % | 111 | 75-125 | Pass | | | Cadmium | B23-JI0014386 | СР | % | 118 | 75-125 | Pass | | | Chromium | B23-JI0014386 | СР | % | 111 | 75-125 | Pass | | | Copper | B23-JI0014386 | СР | % | 113 | 75-125 | Pass | | | Lead | B23-JI0014386 | СР | % | 111 | 75-125 | Pass | | | Mercury | B23-JI0014386 | СР | % | 116 | 75-125 | Pass | | | Nickel | B23-JI0014386 | СР | % | 102 | 75-125 | Pass | | | Zinc | B23-JI0014386 | CP | % | 98 | 75-125 | Pass | | | Spike - % Recovery | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | Arsenic | B23-JI0014396 | СР | % | 99 | 75-125 | Pass | | | Cadmium | B23-JI0014396 | CP | % | 103 | 75-125 | Pass | | | Chromium | B23-JI0014396 | CP | % | 104 | 75-125 | Pass | | | Copper | B23-JI0014396 | CP | % | 101 | 75-125 | Pass | | | Lead | B23-JI0014396 | CP | % | 96 | 75-125 | Pass | | | Mercury | B23-JI0014396 | CP | % | 113 | 75-125 | Pass | | | Nickel | B23-JI0014396 | CP | % | 92 | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---------------------------|---------------|--------------|-------|----------|-----|--|----------------|--------------------| | Zinc | B23-Jl0014396 | CP | % | 102 | | 75-125 | Pass | | | Spike - % Recovery | | | | T | | | | | | Organochlorine Pesticides | | | | Result 1 | | | | | | Chlordanes - Total | B23-Jl0014406 | CP | % | 110 | | 70-130 | Pass | | | 4.4'-DDE | B23-Jl0014406 | CP | % | 107 | | 70-130 | Pass | | | 4.4'-DDT | B23-Jl0014406 | CP | % | 123 | | 70-130 | Pass | | | a-HCH | B23-Jl0014406 | CP | % | 116 | | 70-130 | Pass | | | Aldrin | B23-Jl0014406 | CP | % | 112 | | 70-130 | Pass | | | b-HCH | B23-Jl0014406 | CP | % | 109 | | 70-130 | Pass | | | d-HCH | B23-Jl0014406 | CP | % | 109 | | 70-130 | Pass | | | Dieldrin | B23-Jl0014406 | CP | % | 127 | | 70-130 | Pass | | | Endosulfan I | B23-Jl0014406 | CP | % | 112 | | 70-130 | Pass | | | Endosulfan II | B23-Jl0014406 | CP | % | 111 | | 70-130 | Pass | | | Endosulfan sulphate | B23-Jl0014406 | CP | % | 100 | | 70-130 | Pass | | | Endrin | B23-Jl0014406 | CP | % | 111 | | 70-130 | Pass | | | Endrin aldehyde | B23-Jl0014406 | CP | % | 73 | | 70-130 | Pass | | | g-HCH (Lindane) | B23-Jl0014406 | CP | % | 101 | | 70-130 | Pass | | | Heptachlor | B23-Jl0014406 | CP | % | 103 | | 70-130 | Pass | | | Heptachlor epoxide | B23-Jl0014406 | CP | % | 108 | | 70-130 | Pass | | | Hexachlorobenzene | B23-Jl0014406 | CP | % | 111 | | 70-130 | Pass | | | Methoxychlor | B23-Jl0014406 | CP | % | 127 | | 70-130 | Pass | | | Spike - % Recovery | | | | | T T | | | | | Heavy Metals | | | | Result 1 | | | | | | Arsenic | B23-Jl0014406 | CP | % | 79 | | 75-125 | Pass | | | Cadmium | B23-Jl0014406 | CP | % | 82 | | 75-125 | Pass | | | Chromium | B23-Jl0014406 | CP | % | 81 | | 75-125 | Pass | | | Copper | B23-Jl0014406 | CP | % | 78 | | 75-125 | Pass | | | Lead | B23-Jl0014406 | CP | % | 78 | | 75-125 | Pass | | | Mercury | B23-Jl0014406 | CP | % | 88 | | 75-125 | Pass | | | Zinc | B23-Jl0014406 | CP | % | 76 | | 75-125 | Pass | | | Spike - % Recovery | | | | T | l I | | | | | Organochlorine Pesticides | | 1 1 | | Result 1 | | | | | | Chlordanes - Total | B23-Jl0014417 | CP | % | 108 | | 70-130 | Pass | | | 4.4'-DDE | B23-Jl0014417 | CP | % | 108 | | 70-130 | Pass | | | 4.4'-DDT | B23-Jl0014417 | CP | % | 120 | | 70-130 | Pass | | | a-HCH | B23-Jl0014417 | CP | % | 119 | | 70-130 | Pass | | | Aldrin | B23-Jl0014417 | CP | % | 107 | | 70-130 | Pass | | | b-HCH | B23-Jl0014417 | CP | % | 109 | | 70-130 | Pass | | | d-HCH | B23-Jl0014417 | CP | % | 111 | | 70-130 | Pass | | | Dieldrin | B23-Jl0014417 | CP | % | 129 | | 70-130 | Pass | | | Endosulfan I | B23-Jl0014417 | CP | % | 121 | | 70-130 | Pass | | | Endosulfan II | B23-Jl0014417 | CP | % | 115 | | 70-130 | Pass | | | Endosulfan sulphate | B23-Jl0014417 | CP | % | 100 | | 70-130 | Pass | | | Endrin | B23-Jl0014417 | CP | % | 100 | | 70-130 | Pass | | | Endrin aldehyde | B23-JI0014417 | CP | % | 71 | | 70-130 | Pass | | | g-HCH (Lindane) | B23-JI0014417 | CP | % | 108 | | 70-130 | Pass | | | Heptachlor | B23-JI0014417 | CP | % | 105 | | 70-130 | Pass | | | Heptachlor epoxide | B23-JI0014417 | CP | % | 107 | | 70-130 | Pass | | | Hexachlorobenzene | B23-JI0014417 | CP | % | 110 | | 70-130 | Pass | | | Methoxychlor | B23-Jl0014417 | CP | % | 115 | | 70-130 | Pass | | | Spike - % Recovery | | | | T | | | | | | Heavy Metals | | | | Result 1 | | | | | | Arsenic | B23-Jl0014417 | CP | % | 88 | | 75-125 | Pass | | | Cadmium | B23-Jl0014417 | CP | % | 91 | | 75-125 | Pass | 1 | Page 16 of 20 Report Number: 1006014-S | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Chromium | B23-Jl0014417 | CP | % | 93 | | | 75-125 | Pass | | | Copper | B23-Jl0014417 | CP | % | 88 | | | 75-125 | Pass | | | Lead | B23-Jl0014417 | CP | % | 87 | | | 75-125 | Pass | | | Mercury | B23-Jl0014417 | CP | % | 90 | | | 75-125 | Pass | | | Nickel | B23-Jl0014417 | CP | % | 83 | | | 75-125 | Pass | | | Zinc | B23-Jl0014417 | CP | % | 89 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | I | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | 2001 | _ | | | Arsenic | B23-JI0014390 | CP | mg/kg | 6.2 | 7.2 | 13 | 30% | Pass | | | Chromium | B23-JI0014390 | CP | mg/kg | 33 | 33 | <1 | 30% | Pass | | | Copper | B23-Jl0014390 | CP | mg/kg | 34 | 36 | 6.0 | 30% | Pass | | | Lead | B23-Jl0014390 | CP | mg/kg | 15 | 18 | 14 | 30% | Pass | | | Mercury | B23-Jl0014390 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Nickel | B23-Jl0014390 | CP | mg/kg | 19 | 20 | 4.5 | 30% | Pass | | | Zinc | B23-Jl0014390 | CP | mg/kg | 76 | 75 | 1.4 | 30% | Pass | | | Duplicate | | | | 1 | 1 | | • | | | | Organochlorine Pesticides | | | | Result 1 | Result 2 | RPD | | | | | Chlordanes - Total | B23-JI0014391 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | 4.4'-DDD | B23-Jl0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDE | B23-Jl0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDT | B23-JI0014391 | CP |
mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | a-HCH | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Aldrin | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | b-HCH | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | d-HCH | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Dieldrin | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan I | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan II | B23-JI0014391 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan sulphate | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin aldehyde | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin ketone | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | g-HCH (Lindane) | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor epoxide | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Hexachlorobenzene | B23-JI0014391 | CP | | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Methoxychlor | B23-JI0014391 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | B23-310014391 | _ CF | mg/kg | _ < 0.05 | < 0.03 | | 30 /6 | r ass | | | Organochlorine Pesticides | | | | Result 1 | Result 2 | RPD | T | | | | Chlordanes - Total | B23-JI0014395 | СР | ma/ka | < 0.1 | < 0.1 | | 30% | Pass | | | | | 1 | mg/kg | | | <1 | | | | | 4.4'-DDD | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDE | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDT | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | a-HCH | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Aldrin | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | b-HCH | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | d-HCH | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Dieldrin | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan I | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan II | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan sulphate | B23-Jl0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin | B23-Jl0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin aldehyde | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | Report Number: 1006014-S | Dog Hood too | | | T | | | | | | |--------------------------------|---|--|--|-------------------------------------|--|--|--|---| | Dog #004 1005 | | | Result 1 | Result 2 | RPD | | | | | - 1 15.7.3 11リリオオラロモ | СР | mg/kg | < 0.05 | < 0.05 | <1 <1 | 30% | Pass | | | B23-JI0014395
B23-JI0014395 | CP
CP | mg/kg | < 0.05 | < 0.05 | <1
<1 | 30% | Pass | | | B23-JI0014395 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | | | | | | | | 1 1 | | | | | | | | | | 1 1 | | | | | | | | | | 1 1 | | | B23-310014393 | CF | l llig/kg | < 0.05 | < 0.05 | < 1 | 30% | Fass | | | | | | Result 1 | Result 2 | RPD | | | | | B23- II0014395 | CP | ma/ka | | | | 30% | Pass | 1 1 | | | | | | | | | | 1 1 | | | | | | | | | | 1 1 | | | | | | | | | | 1 1 | | | B23-310014393 | Ci | l ilig/kg |] 30 | J 31] | 0.0 | 30 /0 | 1 033 | | | | | | Result 1 | Result 2 | RPD | | | | | B23II0014395 | CP | % | | | | 30% | Pass | | | D20-0100 14090 | OI. | /0 | | | 5.5 | JU /0 | 1 033 | | | | | | Result 1 | Result 2 | RPD | | | | | B23-II0014405 | CP | % | | | | 30% | Pass | | | B23 310014403 | <u> </u> | 70 | 20 | 20 | 1.0 | 3070 | 1 433 | | | | | | Result 1 | Result 2 | RPD | | Т | | | B23- II0014414 | CP | ma/ka | | | | 30% | Pass | | | | | | | 1 | | | | | | | | | | † | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | t t | | | 1 1 | | | | | | | | | | 1 1 | B23-JI0014414 | | | | | | | | | | B23-Jl0014414 | СР | | < 0.05 | < 0.05 | <1 | 30% | Pass | | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | B23-JI0014414 | СР | mg/kg | 2.7 | 2.3 | 14 | 30% | Pass | | | B23-Jl0014414 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | B23-Jl0014414 | СР | mg/kg | 36 | 34 | 7.4 | 30% | Pass | | | B23-Jl0014414 | СР | mg/kg | 46 | 40 | 15 | 30% | Pass | | | B23-Jl0014414 | СР | mg/kg | 5.1 | < 5 | 4.9 | 30% | Pass | | | B23-Jl0014414 | СР | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | B23-Jl0014414 | CP | mg/kg | 17 | 15 | 13 | 30% | Pass | | | B23-Jl0014414 | CP | mg/kg | 58 | 56 | 4.1 | 30% | Pass | | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | | | | 1 | T | | i | _ | | | | B23-JI0014395 B23-JI0014495 B23-JI0014414 | B23-JI0014395 CP B23-JI0014495 CP B23-JI0014495 CP B23-JI0014495 CP B23-JI0014495 CP B23-JI0014494 CP B23-JI0014414 | B23-JI0014395 CP mg/kg B23-JI00144395 CP mg/kg B23-JI00144395 CP mg/kg B23-JI0014414 </td <td> B23-JI0014395 CP mg/kg < 0.05 </td> <td> B23-JI0014395 CP mg/kg < 0.05 < 0.05 </td> <td> B23-JI0014395 CP mg/kg < 0.05 < 0.05 < 1 </td> <td> B23_JI0014395 CP mg/kg < 0.05 < 0.05 < 1 30% </td> <td> B23-JI0014395 CP mg/kg < 0.05 < 0.05 < 1 30% Pass </td> | B23-JI0014395 CP mg/kg < 0.05 | B23-JI0014395 CP mg/kg < 0.05 < 0.05 | B23-JI0014395 CP mg/kg < 0.05 < 0.05 < 1 | B23_JI0014395 CP mg/kg < 0.05 < 0.05 < 1 30% | B23-JI0014395 CP mg/kg < 0.05 < 0.05 < 1 30% Pass | | Duplicate | | | | | | | | | | |---------------------------|---------------|----|-------|----------|----------|-----|-----|------|--| | Organochlorine Pesticides | | | | Result 1 | Result 2 | RPD | | | | | Chlordanes - Total | B23-Jl0014416 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | 4.4'-DDD | B23-JI0014416 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDE | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDT | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | a-HCH | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Aldrin | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | b-HCH |
B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | d-HCH | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Dieldrin | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan I | B23-JI0014416 | СР | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan II | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan sulphate | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin aldehyde | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin ketone | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | g-HCH (Lindane) | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor epoxide | B23-JI0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Hexachlorobenzene | B23-Jl0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Methoxychlor | B23-Jl0014416 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Sample Properties | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | B23-JI0014416 | CP | % | 17 | 17 | <1 | 30% | Pass | | Page 19 of 20 Report Number: 1006014-S ### Comments ### Sample Integrity Custody Seals Intact (if used) Attempt to Chill was evident Yes Sample correctly preserved Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No ### Authorised by: Paige Howarth Analytical Services Manager Jonathon Angell Senior Analyst-Metal Jonathon Angell Senior Analyst-Organic Jonathon Angell Senior Analyst-Sample Properties Sarah McCallion Senior Analyst-Organic Glenn Jackson Managing Director Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 1006014-S **Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au ### **CERTIFICATE OF ANALYSIS 327714** | Client Details | | |----------------|----------------------------------| | Client | ENV Services Pty Ltd | | Attention | Timothy Bischof | | Address | 313 River St, Ballina, NSW, 2478 | | Sample Details | | |--------------------------------------|-----------------------------| | Your Reference | 218049 Calala Soil Sampling | | Number of Samples | 2 Soil | | Date samples received | 12/07/2023 | | Date completed instructions received | 12/07/2023 | ### **Analysis Details** Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. | Report Details | | | | | |--|------------|--|--|--| | Date results requested by | 17/07/2023 | | | | | Date of Issue | 17/07/2023 | | | | | NATA Accreditation Number 2901. This document shall not be reproduced except in full. | | | | | | Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * | | | | | **Results Approved By** Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor **Authorised By** Nancy Zhang, Laboratory Manager | Organochlorine Pesticides in soil | | | | |-----------------------------------|-------|------------|------------| | Our Reference | | 327714-1 | 327714-2 | | Your Reference | UNITS | QC1A | QC2A | | Date Sampled | | 07/07/2023 | 07/07/2023 | | Type of sample | | Soil | Soil | | Date extracted | - | 13/07/2023 | 13/07/2023 | | Date analysed | - | 14/07/2023 | 14/07/2023 | | alpha-BHC | mg/kg | <0.1 | <0.1 | | нсв | mg/kg | <0.1 | <0.1 | | beta-BHC | mg/kg | <0.1 | <0.1 | | gamma-BHC | mg/kg | <0.1 | <0.1 | | Heptachlor | mg/kg | <0.1 | <0.1 | | delta-BHC | mg/kg | <0.1 | <0.1 | | Aldrin | mg/kg | <0.1 | <0.1 | | Heptachlor Epoxide | mg/kg | <0.1 | <0.1 | | gamma-Chlordane | mg/kg | <0.1 | <0.1 | | alpha-chlordane | mg/kg | <0.1 | <0.1 | | Endosulfan I | mg/kg | <0.1 | <0.1 | | pp-DDE | mg/kg | <0.1 | <0.1 | | Dieldrin | mg/kg | <0.1 | <0.1 | | Endrin | mg/kg | <0.1 | <0.1 | | Endosulfan II | mg/kg | <0.1 | <0.1 | | pp-DDD | mg/kg | <0.1 | <0.1 | | Endrin Aldehyde | mg/kg | <0.1 | <0.1 | | pp-DDT | mg/kg | <0.1 | <0.1 | | Endosulfan Sulphate | mg/kg | <0.1 | <0.1 | | Methoxychlor | mg/kg | <0.1 | <0.1 | | Total +ve DDT+DDD+DDE | mg/kg | <0.1 | <0.1 | | Surrogate TCMX | % | 92 | 96 | | Acid Extractable metals in soil | | | | |---------------------------------|-------|------------|------------| | Our Reference | | 327714-1 | 327714-2 | | Your Reference | UNITS | QC1A | QC2A | | Date Sampled | | 07/07/2023 | 07/07/2023 | | Type of sample | | Soil | Soil | | Date prepared | - | 13/07/2023 | 13/07/2023 | | Date analysed | - | 14/07/2023 | 14/07/2023 | | Arsenic | mg/kg | <4 | 4 | | Cadmium | mg/kg | <0.4 | <0.4 | | Chromium | mg/kg | 21 | 19 | | Copper | mg/kg | 23 | 18 | | Lead | mg/kg | 8 | 8 | | Mercury | mg/kg | 1.5 | <0.1 | | Nickel | mg/kg | 12 | 9 | | Zinc | mg/kg | 39 | 26 | | Moisture | | | | |----------------|-------|------------|------------| | Our Reference | | 327714-1 | 327714-2 | | Your Reference | UNITS | QC1A | QC2A | | Date Sampled | | 07/07/2023 | 07/07/2023 | | Type of sample | | Soil | Soil | | Date prepared | - | 13/07/2023 | 13/07/2023 | | Date analysed | - | 14/07/2023 | 14/07/2023 | | Moisture | % | 17 | 27 | | Method ID | Methodology Summary | |-------------|--| | Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. | | Metals-020 | Determination of various metals by ICP-AES. | | Metals-021 | Determination of Mercury by Cold Vapour AAS. | | Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. | | Org-022/025 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS. | | | Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT. | Envirolab Reference: 327714 Page | 5 of 9 Revision No: R00 | QUALITY C | ONTROL: Organo | Du | plicate | | Spike Recovery % | | | | | | |---------------------|----------------|-----|-------------|------------|------------------|------|------|------|------------|------| | Test Description | Units | PQL | Method | Blank | # | Base | Dup. | RPD | LCS-3 | [NT] | | Date extracted | - | | | 13/07/2023 | [NT] | | [NT] | [NT] | 13/07/2023 | | | Date analysed | - | | | 14/07/2023 | [NT] | | [NT] | [NT] | 14/07/2023 | | | alpha-BHC | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 100 | | | НСВ | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | beta-BHC | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 104 | | | gamma-BHC | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | Heptachlor | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 104 | | | delta-BHC | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | Aldrin | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 97 | | | Heptachlor Epoxide | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 94 | | | gamma-Chlordane | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | alpha-chlordane | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | Endosulfan I | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | pp-DDE | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 102 | | | Dieldrin | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 110 | | | Endrin | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 86 | | | Endosulfan II | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | pp-DDD | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 94 | | | Endrin Aldehyde | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | pp-DDT | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | Endosulfan Sulphate | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | 95 | | | Methoxychlor | mg/kg | 0.1 | Org-022/025 | <0.1 | [NT] | | [NT] | [NT] | [NT] | | | Surrogate TCMX | % | | Org-022/025 | 94 | [NT] | | [NT] | [NT] | 106 | | | QUALITY CONT | ROL: Acid E | xtractable | | Du | | Spike Recovery % | | | | | |------------------|-------------|------------|------------|------------|------|------------------|------|------|------------|------| | Test Description | Units | PQL | Method | Blank | # | Base | Dup. | RPD | LCS-1 | [NT] | | Date prepared | - | | | 13/07/2023
| [NT] | | [NT] | [NT] | 13/07/2023 | | | Date analysed | - | | | 14/07/2023 | [NT] | | [NT] | [NT] | 14/07/2023 | | | Arsenic | mg/kg | 4 | Metals-020 | <4 | [NT] | | [NT] | [NT] | 94 | | | Cadmium | mg/kg | 0.4 | Metals-020 | <0.4 | [NT] | | [NT] | [NT] | 87 | | | Chromium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 90 | | | Copper | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 91 | | | Lead | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 89 | | | Mercury | mg/kg | 0.1 | Metals-021 | <0.1 | [NT] | | [NT] | [NT] | 111 | | | Nickel | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 85 | | | Zinc | mg/kg | 1 | Metals-020 | <1 | [NT] | [NT] | [NT] | [NT] | 89 | [NT] | | Result Definiti | ons | | | | | | | | | |-----------------|---|--|--|--|--|--|--|--|--| | NT | Not tested | | | | | | | | | | NA | Test not required | | | | | | | | | | INS | ufficient sample for this test | | | | | | | | | | PQL | actical Quantitation Limit | | | | | | | | | | < | Less than | | | | | | | | | | > | Greater than | | | | | | | | | | RPD | Relative Percent Difference | | | | | | | | | | LCS | Laboratory Control Sample | | | | | | | | | | NS | Not specified | | | | | | | | | | NEPM | National Environmental Protection Measure | | | | | | | | | | NR | Not Reported | | | | | | | | | Envirolab Reference: 327714 Revision No: R00 | Quality Control | ol Definitions | |------------------------------------|--| | Blank | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. | | Duplicate | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. | | Matrix Spike | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. | | LCS (Laboratory
Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. | | Surrogate Spike | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples. | Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011. The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016 Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2 ### **Laboratory Acceptance Criteria** Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis. Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable. In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols. When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable. Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low. Measurement Uncertainty estimates are available for most tests upon request. Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default. Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012. Envirolab Reference: 327714 Page | 9 of 9 R00 # **APPENDIX E RPD Calculations** | | | | | Halogenated Benzenes Inorganics | | | Metals | | | | | | | | | | | | |-------------------|----------|-------------|-------------|---------------------------------|------------------|-------------------------------------|---------|---------|-------------------|--------|-------|---------|--------|-------|--|--|--|--| | | | | | Hexachlorobenzene | Moisture Content | Moisture Content (dried
@ 103°C) | Arsenic | Cadmium | Chromium (III+VI) | Copper | Lead | Mercury | Nickel | Zinc | | | | | | | | | | mg/kg | % | % | mg/kg | | | | | EQL | | | | 0.05 | 0.1 | 1 | 2 | 0.4 | 1 | 1 | 1 | 0.1 | 1 | 1 | | | | | | Lab Report Number | Field ID | Date | Matrix Type | | | | | | | | | | | | | | | | | 1006014 | S-01 | 07 Jul 2023 | Soil | <0.05 | | 17 | 7.3 | <0.5 | 41 | 40 | 15 | <0.1 | 22 | 76 | | | | | | 1006014 | QA1A | 07 Jul 2023 | Soil | <0.05 | | 17 | 4.5 | <0.5 | 28 | 25 | 9.2 | <0.1 | 13 | 47 | | | | | | RPD | | | | 0 | | 0 | 47 | 0 | 38 | 46 | 48 | 0 | 51 | 47 | | | | | | 1006014 | S-01 | 07 Jul 2023 | Soil | <0.05 | | 17 | 7.3 | <0.5 | 41 | 40 | 15 | <0.1 | 22 | 76 | | | | | | 327714 | QC1A | 07 Jul 2023 | Soil | <0.1 | 17 | | <4 | <0.4 | 21 | 23 | 8 | 1.5 | 12 | 39 | | | | | | RPD | | | | 0 | | | 58 | 0 | 65 | 54 | 61 | 175 | 59 | 64 | | | | | | 1006014 | S-18 | 07 Jul 2023 | Soil | <0.05 | | 27 | 8.0 | <0.5 | 37 | 30 | 14 | <0.1 | 17 | 56 | | | | | | 1006014 | QA2A | 07 Jul 2023 | Soil | <0.05 | | 26 | 6.5 | <0.5 | 33 | 26 | 12 | <0.1 | 14 | 50 | | | | | | RPD | | • | | 0 | | 4 | 21 | 0 | 11 | 14 | 15 | 0 | 19 | 11 | | | | | | 1006014 | S-18 | 07 Jul 2023 | Soil | <0.05 | | 27 | 8.0 | <0.5 | 37 | 30 | 14 | <0.1 | 17 | 56 | | | | | | 327714 | QC2A | 07 Jul 2023 | Soil | <0.1 | 27 | | 4 | <0.4 | 19 | 18 | 8 | <0.1 | 9 | 26 | | | | | | RPD | - | • | · | 0 | | | 67 | 0 | 64 | 50 | 55 | 0 | 62 | 73 | | | | | ^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL. ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) ^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory | | | | | Organochlorine Pesticides | | | | | | | | | | | | | | | | | | |-------------------|----------|--------------|-------------|-------------------------------------|---|---------|-------|--------|-------------------|--------------|-----------|-----------------|-------------------|--------------|-------|-------|-------------|----------|--------------|---------------|---------------------| | | | | | Organochlorine pesticides
EPAVic | Other organochlorine
pesticides EPAVic | 4,4-DDE | а-ВНС | Aldrin | Aldrin + Dieldrin | b-ВНС | Chlordane | Chlordane (cis) | Chlordane (trans) | d-ВНС | даа | рот | οοτ+οοε+οοο | Dieldrin | Endosulfan I | Endosulfan II | Endosulfan sulphate | | | | | | mg/kg mg/kį | | EQL | | | | 0.1 | 0.1 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.1 | 0.1 | 0.1 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | Lab Report Number | Field ID | Date | Matrix Type | 1006014 | S-01 | 07 Jul 2023 | Soil | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 1006014 | QA1A | 07 Jul 2023 | Soil | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 |
<0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | RPD | | • | · | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1006014 | S-01 | 07 Jul 2023 | Soil | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 327714 | QC1A | 07 Jul 2023 | Soil | | | <0.1 | <0.1 | <0.1 | | <0.1 | | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | • | • | · | | | 0 | 0 | 0 | | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1006014 | S-18 | 07 Jul 2023 | Soil | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 1006014 | QA2A | 07 Jul 2023 | Soil | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | RPD | | , | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1006014 | S-18 | 07 Jul 2023 | Soil | <0.1 | <0.1 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 327714 | QC2A | 07 Jul 2023 | Soil | | | <0.1 | <0.1 | <0.1 | | <0.1 | | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | - | • | • | | | 0 | 0 | 0 | | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL. ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range ^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any | | Organochlorine Pesticides | | | | | | | | | | |----|---------------------------|------------------------------|--------------------------------|--------------------|-------------------------|------------------|--------------|--|--|--| | | mg/kg | a
8/ Endrin aldehyde
8 | a
8/
8a
Endrin ketone | ച്ച
%
ജ
ജ | B
%/ Heptachlor
ه | ವ
೫
೫
೫ | Methoxychlor | | | | | QL | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | | | Lab Report Number | Field ID | Date | Matrix Type | | | | | | | | |-------------------|----------|-------------|-------------|-------|-------|-------|-------|-------|-------|-------| | 1006014 | S-01 | 07 Jul 2023 | Soil | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 1006014 | QA1A | 07 Jul 2023 | Soil | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | RPD | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1006014 | S-01 | 07 Jul 2023 | Soil | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 327714 | QC1A | 07 Jul 2023 | Soil | <0.1 | <0.1 | | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | RPD | | | | | | 0 | 0 | 0 | 0 | | 1006014 | S-18 | 07 Jul 2023 | Soil | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 1006014 | QA2A | 07 Jul 2023 | Soil | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | RPD | | · | · | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1006014 | S-18 | 07 Jul 2023 | Soil | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | 327714 | QC2A | 07 Jul 2023 | Soil | <0.1 | <0.1 | | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | _ | | | 0 | 0 | | 0 | 0 | 0 | 0 | ^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL. ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range ^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any