

Method: ME-(AU)-IENVIAN403

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Dunlicate	Criteria %	RPD %
SE243061.038	LB271490.024		TRH C10-C36 Total		110	<110	<110	200	0 KPD
E243061.036	LB271490.024			mg/kg	210	<210	<210	200	0
			TRH >C10-C40 Total (F bands)	mg/kg					
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	96	<90	143	6
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E243061.048	LB271491.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	52	139	15
			TRH C29-C36	mg/kg	45	<45	55	144	21
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	91	200	1
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E243061.058	LB271491.025		TRH C10-C14	mg/kg	20	52	26	82	68
			TRH C15-C28	mg/kg	45	1000	790	35	24
			TRH C29-C36	mg/kg	45	1200	1000	34	17
			TRH C37-C40	mg/kg	100	590	530	48	12
			TRH C10-C36 Total	mg/kg	110	2300	1800	35	21
			TRH >C10-C40 Total (F bands)	mg/kg	210	2900	2400	38	19
		TRH F Bands	TRH >C10-C16	mg/kg	25	71	37	76	63
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	71	37	76	63
			TRH >C16-C34 (F3)	mg/kg	90	1800	1500	36	21
			TRH >C34-C40 (F4)	mg/kg	120	980	860	43	13
E243061.061	LB271508.014		TRH C10-C14	mg/kg	20	<20	<20	185	0
2240001.001	EB271000.014		TRH C15-C28	mg/kg	45	150	260	52	54 (
			TRH C29-C36	mg/kg	45	87	110	75	27
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total		110	240	380	66	45
				mg/kg					43
			TRH >C10-C40 Total (F bands)	mg/kg	210	210	340	106	
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	166	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	210	340	63	48
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E243061.072	LB271508.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	73	100	81	35
			TRH C29-C36	mg/kg	45	150	190	56	26
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	220	300	72	29
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	250	127	16
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	190	250	72	29
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	153	0
RH (Total Recove	erable Hydrocarbons) in Water					Meth	od: ME-(AU)-	(ENV)A
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicato	Criteria %	DDD

Original	Duplicate		Parameter	Units	LUK	Original	Duplicate	Critteria %	RPD %
SE243015.013	LB271575.029		TRH C10-C14	μg/L	50	<50	<50	200	0
			TRH C15-C28	μg/L	200	<200	<200	200	0
			TRH C29-C36	μg/L	200	<200	<200	200	0
			TRH C37-C40	μg/L	200	<200	<200	200	0
			TRH C10-C40	μg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	μg/L	500	<500	<500	200	0
SE243174.001	LB271575.028		TRH C10-C14	μg/L	50	<50	<50	200	0
			TRH C15-C28	μg/L	200	<200	<200	200	0
			TRH C29-C36	µg/L	200	<200	<200	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

			d)						
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE243174.001	LB271575.028		TRH C37-C40	µg/L	200	<200	<200	200	0
			TRH C10-C40	µg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	<500	Criteria % 200 200 200 200 200 200 200 200 200 20	0
			TRH >C34-C40 (F4)	μg/L	500	<500	<500	Criteria % 200 200 200 200 200 200 200 200 200 20	0
OC's in Soil							Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original			RPD %
SE243061.010	LB271509.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1		0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1		0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.6	9.9	50	7
			d8-toluene (Surrogate)	mg/kg	-	9.5	8.5	50	11
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	8.6	50	11
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	< 0.3	200	0
SE243061.019	LB271509.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1		0
02210001.010	LB2/1000.021	Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1		0
		riomaio	Ethylbenzene	mg/kg	0.1	<0.1	<0.1		0
			m/p-xylene		0.1	<0.1	<0.1		0
				mg/kg					
			o-xylene	mg/kg	0.1	<0.1	<0.1		0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1		0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.1	10.2		9
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.4	200 200	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	8.8		9
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE243061.029	LB271511.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1		0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1		0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.8	10.5		3
		Sunogales					9.8		0
			d8-toluene (Surrogate)	mg/kg		9.8			
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.9	9.0		0
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6		0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3		0
SE243061.038	LB271511.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1		0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.7	10.5	50	2
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.3	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.2	8.9		3
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6		0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3		0
SE243061.048	LB271512.014	Monocyclic	Benzene		0.3	<0.1	<0.1		0
32243001.040	LD2/1312.014			mg/kg					
		Aromatic		mg/kg	0.1	<0.1	<0.1		0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1		0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2		0
			o-xylene	mg/kg	0.1	<0.1	<0.1		0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	8.7	50	0
			d8-toluene (Surrogate)	mg/kg	_	8.7	8.8	50	1

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD_9
SE243061.048	LB271512.014	Surrogates	Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	7.9	50	2
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
		, otalo	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE243061.058	LB271512.025	Monocyclic	Benzene	mg/kg	0.0	<0.1	<0.1	200	0
02240001.000	LD271012.020	Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		Alomado	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.1	<0.1	200	0
			o-xylene		0.2	<0.2	<0.2	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg		8.4	8.5	50	1
		Surrogates		mg/kg	-				3
			d8-toluene (Surrogate)	mg/kg		8.5	8.7	50	
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	8.0	50	4
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE243061.059	LB271533.015	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	9.1	50	4
			d8-toluene (Surrogate)	mg/kg	-	9.1	10.9	50	18
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	8.2	50	5
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE243061.072	LB271533.032	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.2	7.5	50	4
			d8-toluene (Surrogate)	mg/kg	-	7.9	7.9	50	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	7.3	50	3
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	< 0.3	< 0.3	200	0
OCs in Water							Meth	od: ME-(AU)·	
	Dunligate		Douomotor	Units	LOR	Original		Criteria %	
Original	Duplicate	Manager	Parameter			Original			
SE243061.068	LB271699.021	Monocyc l ic Aromatic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic		μg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	μg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.1	9.3	30	3
			d8-toluene (Surrogate)	μg/L	-	9.6	9.6	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	9.0	9.4	30	4
		Totals	Total BTEX	μg/L	3	<3	<3	200	0
olatile Petroleum	Hydrocarbons in Soi	il					Meth	od: ME-(AU)	(ENV)AN
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD 9
SE243061.010	LB271509.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)			10.6	9.9	30	7
		Junoyates		mg/kg	-	10.0	3.9	50	/

d8-toluene (Surrogate)

Benzene (F0)

TRH C6-C10

TRH C6-C9

VPH F Bands

Surrogates

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

d4-1,2-dichloroethane (Surrogate)

LB271509.024

SE243061.019

11

11

0

0

0

0

30

30

200

200

200

200

30

8.5

8.6

<0.1

<25

<25

<20

10.2

9.5

9.6

<0.1

<25

<25

<20

11.1

-

-

0.1

25

25

20

-

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Volatile Petroleum Hydrocarbons in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE243061.019	LB271509.024	Surrogates	d8-toluene (Surrogate)	mg/kg	-	9.9	9.4	30	4
	EBER 100010E1	ounogatoo	Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	8.8	30	. 9
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
		WITH Ballas	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE243061.029	LB271511.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
02243001.023	20271311.014		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		10.8	10.5	30	3
		Surroyates	d8-toluene (Surrogate)	mg/kg		9.8	9.8	30	0
							9.0	30	0
		VPH F Bands	Bromofluorobenzene (Surrogate)	mg/kg		8.9		200	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1		
05040004 000	10074544.004		TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE243061.038	LB271511.024		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.7	10.5	30	2
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.3	30	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.2	8.9	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE243061.048	LB271512.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	8.7	30	0
			d8-toluene (Surrogate)	mg/kg	-	8.7	8.8	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	7.9	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE243061.058	LB271512.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.5	30	1
			d8-toluene (Surrogate)	mg/kg	-	8.5	8.7	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	8.0	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE243061.059	LB271533.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	9.1	30	4
			d8-toluene (Surrogate)	mg/kg	-	9.1	10.9	30	18
			Bromofluorobenzene (Surrogate)	mg/kg	_	7.8	8.2	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE243061.072	LB271533.032		TRH C6-C10	mg/kg	25	<25	<25	200	0
52240001.072	EB27 1000.002		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	- 20	7.2	7.5	30	4
		Sunogates	d8-toluene (Surrogate)			7.9	7.9	30	0
				mg/kg		7.9	7.9	30	3
			Bromofluorobenzene (Surrogate)	mg/kg					
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
olatile Petroleum	Hydrocarbons in Wa	ater					Meth	od: ME-(AU)-	(ENVJAN
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD 9
E243061.068	LB271699.021		TRH C6-C10	μg/L	50	<50	<50	200	0

TRH C6-C9 40 <40 <40 200 0 ua/L Surrogates d4-1,2-dichloroethane (Surrogate) µg/L 9.1 9.3 30 3 d8-toluene (Surrogate) µg/L 9.6 9.6 30 0 -Bromofluorobenzene (Surrogate) 9.0 9.4 30 4 μg/L -VPH F Bands Benzene (F0) µg/L 0.5 < 0.5 <0.5 200 0 TRH C6-C10 minus BTEX (F1) 50 <50 <50 200 0 μg/L SE243086.001 LB271699.022 TRH C6-C10 50 <50 <50 200 0 µg/L TRH C6-C9 µg/L 40 <50 <40 200 0 Surrogates d4-1,2-dichloroethane (Surrogate) 9.3 9.5 30 2 μg/L -9.7 9.8 30 d8-toluene (Surrogate) 2 μg/L Bromofluorobenzene (Surrogate) µg/L 9.4 9.3 30 1 -

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Volatile Petroleum Hydrocarbons in Water (continued)

Volatile Petroleum	Hydrocarbons in Wat	ter (continued)					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE243086.001	LB271699.022	VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Mercury in Soil						N	/lethod: ME-(A	U)-[ENV]AN
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B271525.002		Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
_B271526.002		Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102
LB271528.002		Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
LB271551.002		Mercury	mg/kg	0.05	0.19	0.2	70 - 130	97
C Pesticides in S	Poll						Anthody ME (A	
							/lethod: ME-(A	
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB271471.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	96
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	95
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	101
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	103
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	101
		p,p'DDT	mg/kg	0.1	0.2	0.2	60 - 140	89
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0.14	0.15	40 - 130	93
_B271490.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	81
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	85
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	81
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	80
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	88
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	76
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	91
B271491.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	95
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	104
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	99
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	98
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	98
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	93
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	103
B271508.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	85
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	90
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	86
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	90
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	88
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	71
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	85
P Pesticides in S	Soil					N	lethod: ME-(A	U)-[ENV]AN
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB271471.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	91
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	95
		Dichlorvos	mg/kg	0.5	1.5	2	60 - 140	77
		Ethion	mg/kg	0.2	1.7	2	60 - 140	83
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	87
	Sanogatos	d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.5	40 - 130	92
_B271490.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	2	60 - 140	81
BEITTIO		Diazinon (Dimpylate)		0.5	1.7	2	60 - 140	85
		Dichlorvos	mg/kg mg/kg	0.5	1.5	2	60 - 140	76
		Ethion	mg/kg	0.2	1.7	2	60 - 140	84
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.5	40 - 130	92
	Gunogates	d14-p-terphenyl (Surrogate)	mg/kg	<u> </u>	0.4	0.5	40 - 130	88
		Chlorpyrifos (Chlorpyrifos Ethyl)		0.2	1.7	2	60 - 140	84
B271491 002			mg/kg	0.2	1.7	2	60 - 140	88
.B271491.002			malka	0.0	1.0	۷		80
B271491.002		Diazinon (Dimpylate)	mg/kg		1.6	2	60 140	00
B271491.002		Diazinon (Dimpylate) Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	
B271491.002	Surroactee	Diazinon (Dimpylate) Dichlorvos Ethion	mg/kg mg/kg	0.5 0.2	1.3	2	60 - 140	65
B271491.002	Surrogates	Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg	0.5 0.2	1.3 0.4	2 0.5	60 - 140 40 - 130	65 90
	Surrogates	Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.5 0.2 -	1.3 0.4 0.4	2 0.5 0.5	60 - 140 40 - 130 40 - 130	65 90 84
	Surrogates	Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 - - 0.2	1.3 0.4 0.4 1.6	2 0.5 0.5 2	60 - 140 40 - 130 40 - 130 60 - 140	65 90 84 81
	Surrogates	Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Chlorpyrifos (Chlorpyrifos Ethyl) Diazinon (Dimpylate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 - 0.2 0.5	1.3 0.4 0.4 1.6 1.7	2 0.5 0.5 2 2	60 - 140 40 - 130 40 - 130 60 - 140 60 - 140	65 90 84 81 87
_B271491.002	Surrogates	Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Chlorpyrifos (Chlorpyrifos Ethyl) Diazinon (Dimpylate) Dichlorvos	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 	1.3 0.4 0.4 1.6 1.7 1.3	2 0.5 0.5 2 2 2 2	60 - 140 40 - 130 40 - 130 60 - 140 60 - 140 60 - 140	65 90 84 81 87 63
		Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Chlorpyrifos (Chlorpyrifos Ethyl) Diazinon (Dimpylate) Dichlorvos Ethion	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 0.2 0.5 0.5 0.5 0.2	1.3 0.4 0.4 1.6 1.7 1.3 1.5	2 0.5 0.5 2 2 2 2 2 2 2 2	60 - 140 40 - 130 40 - 130 60 - 140 60 - 140 60 - 140 60 - 140	65 90 84 81 87 63 73
	Surrogates	Diazinon (Dimpylate) Dichlorvos Ethion 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Chlorpyrifos (Chlorpyrifos Ethyl) Diazinon (Dimpylate) Dichlorvos	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.2 	1.3 0.4 0.4 1.6 1.7 1.3	2 0.5 0.5 2 2 2 2	60 - 140 40 - 130 40 - 130 60 - 140 60 - 140 60 - 140	65 90 84 81 87 63

Sample Number	Aromatic Hydroca	· · · · · · · · · · · · · · · · · · ·	Units	LOR	Peault		Aethod: ME-(AL	
		Parameter			Result	Expected	Criteria %	
LB271471.002		Naphthalene	mg/kg	0.1	4.3	4	60 - 140	107
		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	111
		Acenaphthene	mg/kg	0.1	4.3	4	60 - 140	107
		Phenanthrene	mg/kg	0.1	4.2	4	60 - 140	106
		Anthracene	mg/kg	0.1	4.2	4	60 - 140	106
		Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	112
		Pyrene	mg/kg	0.1	4.5	4	60 - 140	113
	Surragataa	Benzo(a)pyrene	mg/kg	0.1	4.4	4 0.5	60 - 140 40 - 130	<u>111</u> 101
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg					
		2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.5	40 - 130	87 92
L B271400 002		d14-p-terphenyl (Surrogate)	mg/kg	0.1	0.5 4.2	0.5	40 - 130 60 - 140	92 106
LB271490.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	108
		Acenaphthylene	mg/kg			4		
		Acenaphthene	mg/kg	0.1	4.3	4	60 - 140	106
		Phenanthrene	mg/kg		4.1		60 - 140	
		Anthracene	mg/kg	0.1	4.1	4	60 - 140	103
		Fluoranthene	mg/kg	0.1	4.3	4	60 - 140	106
		Pyrene Benzo(2)pyrene	mg/kg	0.1	4.4	4	60 - 140 60 - 140	111
	Surragataa	Benzo(a)pyrene	mg/kg					
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	- -	0.5	0.5	40 - 130 40 - 130	98
		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.5	0.5	40 - 130	88
LB271491.002		Naphthalene		0.1	4.3	4	40 - 130 60 - 140	107
LB271491.002		Acenaphthylene	mg/kg	0.1	4.5	4	60 - 140	113
		Acenaphthyene	mg/kg	0.1	4.3	4	60 - 140	107
		Phenanthrene	mg/kg	0.1	4.1	4	60 - 140	107
		Anthracene	mg/kg	0.1	4.1	4	60 - 140	105
		Fluoranthene	mg/kg	0.1	4.4	4	60 - 140	105
		Pyrene	mg/kg mg/kg	0.1	4.4	4	60 - 140	109
		Benzo(a)pyrene	mg/kg	0.1	4.4	4	60 - 140	110
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.5	0.5	40 - 130	98
	Surroyates	2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	- -	0.4	0.5	40 - 130	84
LB271508.002		Naphthalene	mg/kg	0.1	4.0	4	60 - 140	101
EB271300.002		Acenaphthylene	mg/kg	0.1	4.1	4	60 - 140	101
		Acenaphthene	mg/kg	0.1	4.0	4	60 - 140	99
		Phenanthrene	mg/kg	0.1	3.9	4	60 - 140	99
		Anthracene	mg/kg	0.1	3.9	4	60 - 140	99
		Fluoranthene	mg/kg	0.1	4.2	4	60 - 140	104
		Pyrene	mg/kg	0.1	4.2	4	60 - 140	104
		Benzo(a)pyrene	mg/kg	0.1	4.2	4	60 - 140	104
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.5	0.5	40 - 130	94
		2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	85
CRe in Sell								
PCBs in Soil							Nethod: ME-(AU	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
LB271471.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	126
LB271490.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	93
LB271491.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	125
LB271508.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	95
otal Recoverable	Elements in Soil/	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[ENV	AN040/AN3
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB271520.002		Arsenic, As	mg/kg	1	330	318.22	80 - 120	105
		Cadmium, Cd	mg/kg	0.3	4.3	4.81	70 - 130	89
		Chromium, Cr	mg/kg	0.5	37	38.31	80 - 120	96
		Copper, Cu	mg/kg	0.5	310	290	80 - 120	107
		Nickel, Ni	mg/kg	0.5	180	187	80 - 120	97
			ma/ka	1	90	89.9	80 - 120	100
		Lead, Pb	mg/kg	1	90 260	89.9 273	80 - 120 80 - 120	100 97
_B271521.002			mg/kg mg/kg mg/kg	1 2 1	90 260 340	89.9 273 318.22	80 - 120 80 - 120 80 - 120	100 97 106

Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B271521.002		Cadmium, Cd	mg/kg	0.3	4.3	4.81	70 - 130	90
		Chromium, Cr	mg/kg	0.5	40	38.31	80 - 120	103
		Copper, Cu	mg/kg	0.5	310	290	80 - 120	107
		Nickel, Ni	mg/kg	0.5	180	187	80 - 120	98
		Lead, Pb	mg/kg	1	89	89.9	80 - 120	99
		Zinc, Zn	mg/kg	2	270	273	80 - 120	98
_B271522.002		Arsenic, As	mg/kg	1	340	318.22	80 - 120	107
-D27 1322.002		Cadmium, Cd	mg/kg	0.3	4.5	4.81	70 - 130	93
		Chromium, Cr		0.5	39	38.31	80 - 120	103
			mg/kg	0.5	39	290	80 - 120	103
		Copper, Cu	mg/kg		190			
		Nickel, Ni	mg/kg	0.5		187	80 - 120	100
		Lead, Pb	mg/kg	1	91	89.9	80 - 120	101
		Zinc, Zn	mg/kg	2	270	273	80 - 120	99
B271545.002		Arsenic, As	mg/kg	1	340	318.22	80 - 120	108
		Cadmium, Cd	mg/kg	0.3	4.5	4.81	70 - 130	94
		Chromium, Cr	mg/kg	0.5	40	38.31	80 - 120	105
		Copper, Cu	mg/kg	0.5	310	290	80 - 120	107
		Nickel, Ni	mg/kg	0.5	180	187	80 - 120	98
		Lead, Pb	mg/kg	1	91	89.9	80 - 120	101
		Zinc, Zn	mg/kg	2	270	273	80 - 120	100
ace Metals (Disa	solved) in Water by	ICPMS				1	Method: ME-(AU)-[ENV]A
ample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
B271420.002		Arsenic	µg/L	1	20	20	80 - 120	100
B271420.002		Cadmium		0.1	20	20	80 - 120	102
		Chromium	μg/L	1	20	20	80 - 120	102
			μg/L		20			
		Copper	μg/L	1	21	20	80 - 120	106 101
		Lead	μg/L	1		20	80 - 120	
		Nickel	μg/L	1	21	20	80 - 120	104
		Zinc	μg/L	5	21	20	80 - 120	103
RH (Total Recov	erable Hydrocarbor	is) in Soil					Method: ME-(AU)-[ENV]A
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
B271471.002		TRH C10-C14	mg/kg	20	52	40	60 - 140	130
		TRH C15-C28	mg/kg	45	52	40	60 - 140	131
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	99
	TRH F Bands	TRH >C10-C16	mg/kg	25	52	40	60 - 140	131
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	120
		11111 010 001 (10)				20	60 - 140	93
		TRH >C34-C40 (E4)	ma/ka	120	<120			
B271490 002		TRH >C34-C40 (F4)	mg/kg	120	<120 48			120
B271490.002		TRH C10-C14	mg/kg	20	48	40	60 - 140	120
B271490.002		TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45	48 <45	40 40	60 - 140 60 - 140	104
B271490.002	TOUS Danda	TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg	20 45 45	48 <45 <45	40 40 40	60 - 140 60 - 140 60 - 140	104 95
B271490.002	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg	20 45 45 25	48 <45 <45 49	40 40 40 40	60 - 140 60 - 140 60 - 140 60 - 140	104 95 122
B271490.002	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 25 90	48 <45 <45 49 <90	40 40 40 40 40 40	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 95 122 106
	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 25 90 120	48 <45 <45 49 <90 <120	40 40 40 40 40 40 20	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 95 122 106 84
	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 25 90 120 20	48 <45 <45 49 <90 <120 50	40 40 40 40 40 20 40	60 - 140 60 - 140	104 95 122 106 84 124
	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45	48 <45 <49 <90 <120 50 49	40 40 40 40 40 20 40 40 40	60 - 140 60 - 140	104 95 122 106 84 124 122
		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45 45	48 <45 <45 49 <90 <120 50 49 <45	40 40 40 20 40 40 40 40 40	60 - 140 60 - 140	104 95 122 106 84 124 122 102
	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45 45 25	48 <45 <45 49 <90 <120 50 49 <45 50	40 40 40 20 40 40 40 40 40 40	60 - 140 60 - 140	104 95 122 106 84 124 122 102 102
		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45 45 25 90	48 <45 <45 49 <90 <120 50 49 <45 50 <90	40 40 40 20 40 40 40 40 40 40 40	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116
B271491.002		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45 45 25 90 120	48 <45 <45 49 <90 <120 50 49 <45 50 <90 <120	40 40 40 20 40 40 40 40 40 40 40 40 20	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116 96
B271491.002		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45 45 25 90	48 <45 <45 49 <90 <120 50 49 <45 50 <90	40 40 40 20 40 40 40 40 40 40 40	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116
B271491.002		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 25 90 120 20 45 45 25 90 120	48 <45 <45 49 <90 <120 50 49 <45 50 <90 <120	40 40 40 20 40 40 40 40 40 40 40 40 20	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116 96
B271491.002		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH >C10-C14 TRH >C10-C16 TRH >C10-C14	mg/kg	20 45 25 90 120 20 45 45 25 90 120 20	48 <45 <49 <90 <120 50 49 <45 50 <90 <120 48	40 40 40 20 40 40 40 40 40 40 40 20 20 40	60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116 96 120
B271491.002		TRH C10-C14 TRH C15-C28 TRH 29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C10-C14 TRH >C10-C14 TRH C10-C14 TRH C15-C28	mg/kg	20 45 25 90 120 20 45 45 25 90 120 20 120 20 45	48 <45 <49 <90 <120 50 49 <45 50 <90 <120 48 48	40 40 40 20 40 40 40 40 40 40 40 20 20 40 40	60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116 96 120 119
B271490.002 B271491.002 B271508.002	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C16-C34 (F3) TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg	20 45 45 25 90 120 20 45 45 25 90 120 20 45 45 45 45	48 <45 <49 <90 <120 50 49 <45 50 <50 <50 <120 48 48 48 <45	40 40 40 20 40 40 40 40 40 40 40 20 20 40 40 40 40 40 40	60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116 96 120 119 94
3271491.002	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C20-C16	mg/kg mg/kg	20 45 25 90 120 20 45 45 25 90 120 20 45 45 45 45 45 45 45 25	48 <45 <49 <90 <120 50 49 <45 50 <90 <120 48 48 48 <45 48	40 40 40 20 40 40 40 40 40 40 20 20 40 40 40 40 40 40 40 40	60 - 140 60 - 140	104 95 122 106 84 124 122 102 124 116 96 120 119 94

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Water (continued)

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB271575.002		TRH C10-C14	µg/L	50	1400	1200	60 - 140	113
		TRH C15-C28	µg/L	200	1500	1200	60 - 140	124
		TRH C29-C36	µg/L	200	1500	1200	60 - 140	126
	TRH F Bands	TRH >C10-C16	µg/L	60	1400	1200	60 - 140	120
		TRH >C16-C34 (F3)	µg/L	500	1600	1200	60 - 140	130
		TRH >C34-C40 (F4)	µg/L	500	720	600	60 - 140	120

B27509.02 Aromaic Noncyclic Aromaic Monocyclic Aromaic Monocyclic Aromaic Monocyclic Mono	/OC's in Soil						N	lethod: ME-(A	U)-[ENV]AN433
Ansair Tolone Inspection Inspecifican Inspection Inspection <th>Sample Number</th> <th></th> <th>Parameter</th> <th>Units</th> <th>LOR</th> <th>Result</th> <th>Expected</th> <th>Criteria %</th> <th>Recovery %</th>	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Biblemann mgkg 0.1 4.5 5 0.0 0.0 insysten mgkg 0.2 8.7 0 0.0 <td< td=""><td>LB271509.002</td><td>Monocyclic</td><td>Benzene</td><td>mg/kg</td><td>0.1</td><td>4.4</td><td>5</td><td>60 - 140</td><td>88</td></td<>	LB271509.002	Monocyclic	Benzene	mg/kg	0.1	4.4	5	60 - 140	88
mip-spin		Aromatic	Toluene	mg/kg	0.1	4.7	5	60 - 140	95
sydem indep indep <th< td=""><td></td><td></td><td>Ethylbenzene</td><td>mg/kg</td><td>0.1</td><td>4.5</td><td>5</td><td>60 - 140</td><td>89</td></th<>			Ethylbenzene	mg/kg	0.1	4.5	5	60 - 140	89
Surrogates d4-1.2-dichloroethane (Surrogate) mg/kg . 10.0 70-130 100 Berlouene (Surrogate) mg/kg . 10.2 10 70-130 102 Burlouene (Surrogate) mg/kg . 10.5 10 70-130 105 Burlouene (Surrogate) mg/kg .1 4.3 5 60-140 68 Aromatic Faburene mg/kg 0.1 4.4 5 60-140 68 m/xydne mg/kg 0.1 4.6 5 60-140 69 6unodiorobenzene (Surrogate) mg/kg 0.1 4.6 5 60-140 60 Berlouene (Surrogate) mg/kg 0.1 4.9 5 60-140 60			m/p-xylene	mg/kg	0.2	8.7	10	60 - 140	87
Best Best <th< td=""><td></td><td></td><td>o-xylene</td><td>mg/kg</td><td>0.1</td><td>4.6</td><td>5</td><td>60 - 140</td><td>93</td></th<>			o-xylene	mg/kg	0.1	4.6	5	60 - 140	93
Brondluotobenzene (surrogate)mg/kg-1.0.51.07.0.1301.0.5LB27 511.02MonocyclicBenzenemg/kg0.14.3560.1408.8AromaticToluenemg/kg0.14.6560.1408.8Inp-xylenemg/kg0.14.6560.1408.8Inp-xylenemg/kg0.14.6560.1408.8Aromaticmg/kg0.14.6560.1408.8Aromaticmg/kg0.14.6560.1409.8AromaticMg/kg0.14.6560.1409.8AromaticMg/kg0.14.6560.1409.8Brondluotobenzene (surogate)mg/kg-1.01.07.0.1309.0Brondluotobenzene (surogate)mg/kg0.14.9560.1409.8AromaticMg/kg0.14.9560.1409.89.19.8AromaticMg/kg0.15.060.1409.89.19.89.1 <td< td=""><td></td><td>Surrogates</td><td>d4-1,2-dichloroethane (Surrogate)</td><td>mg/kg</td><td>-</td><td>10.0</td><td>10</td><td>70 - 130</td><td>100</td></td<>		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.0	10	70 - 130	100
B27 151.002 Aromatic Aromatic AromaticBenzeneBenzenemg/kg0.14.3560-14086Aromatic Monocyclic my-syleneTolkienemg/kg0.14.6560-14092Burogates BurogatesMinocyclic my-sylenemg/kg0.28.71060-14092Burogates Buronducrobenzene (Surogate)mg/kg0.14.8560-14092Burogates Buronducrobenzene (Surogate)mg/kg0.14.8560-14092BurogatesBenzenemg/kg0.14.8560-14092BurogatesBenzenemg/kg0.14.8560-14092BurogatesBenzenemg/kg0.14.8560-14095BurogatesBenzenemg/kg0.14.8560-14095BurogatesMonocyclicmg/kg0.14.8560-14095BurogatesMonocyclicmg/kg0.14.8560-14095BurogatesMonocyclicmg/kg0.14.8560-14096BurogatesMonocyclicmg/kg0.14.8560-14096BurogatesMonocyclicmg/kg0.15.060-14096BurogatesMg/kg0.15.2560-14096BurogatesMg/kg0.14.8560-14096BurogatesMg/kg0			d8-toluene (Surrogate)	mg/kg	-	10.2	10	70 - 130	102
Aronalic Toluene mg/kg 0.1 4.6 5 60.140 92 Ethyberzene mg/kg 0.1 4.4 5 60.140 88 mj>xylene mg/kg 0.1 4.4 5 60.140 88 Surogates d41.2-dichbroethane (Surogate) mg/kg 0.1 4.6 5 60.140 87 Burogates d41.2-dichbroethane (Surogate) mg/kg - 9.0 10 70.130 90 d84duene (Surogate) mg/kg - 9.4 10 70.130 90 LB271512.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60.140 95 LB271512.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60.140 95 LB271512.002 Monocyclic Ethybenzene (Surogate) mg/kg 0.1 4.8 5 60.140 95 LB271512.002 Monocyclic Toluene mg/kg 0.1 5.0			Bromofluorobenzene (Surrogate)	mg/kg	-	10.5	10	70 - 130	105
Ehybenzene mg/g 0.1 4.4 5 60.140 88 m/p-xylene mg/g 0.2 8.7 10 60.140 87 oxylene mg/g 0.1 4.6 5 60.140 92 Surogates dickuene(Surogate) mg/g 0.1 4.6 5 60.140 92 Bernonfluorobenzene (Surogate) mg/g 0.1 9.4 10 70.130 94 LB27 1512.00 Monocycle Benzene mg/g 0.1 4.8 5 60.140 95 LB27 1512.00 Monocycle Benzene mg/g 0.1 4.9 5 60.140 97 LB27 1512.00 Monocycle Benzene mg/g 0.1 4.9 5 60.140 97 LB27 152.00 Monocycle Benzene mg/g 0.1 4.9 5 60.140 97 Monocycle Gel-10 70.130 100 70.130 100 70.130 100	LB271511.002	Monocyclic	Benzene	mg/kg	0.1	4.3	5	60 - 140	86
Imp-xylene mp/xylene mg/kg 0.2 8.7 10 60-140 87 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 0.1 4.6 5 60-140 92 d8-toluene (Surrogate) mg/kg 0.2 9.0 10 70-130 90 d8-toluene (Surrogate) mg/kg - 9.0 10 70-130 90 LB271512,002 Monocyclic Benzene mg/kg 0.1 4.8 5 60-140 95 LB271512,002 Monocyclic Benzene mg/kg 0.1 4.8 5 60-140 95 LB271512,002 Monocyclic Benzene mg/kg 0.1 4.9 5 60-140 96 Aromatic Toluene mg/kg 0.1 5.0 5 60-140 96 extylene mg/kg 0.1 5.0 60-140 96 extylene mg/kg 0.1 5.0 60-140 96 Bromofluorobenzene (Suro		Aromatic	Toluene	mg/kg	0.1	4.6	5	60 - 140	92
Image: section of the sectin of the section of the section			Ethylbenzene	mg/kg	0.1	4.4	5	60 - 140	88
Burogates 44.1.2-dichloroethane (Surogate) mg/kg 9.0 10 70.130 90 d8-douene (Surogate) mg/kg 9.4 10 70.130 94 Bromsfluorobenzene (Surogate) mg/kg 0.1 4.8 5 60.140 95 LB271512.002 Monocycle Benzene mg/kg 0.1 4.8 5 60.140 97 LB271512.002 Monocycle Benzene mg/kg 0.1 4.8 5 60.140 97 LB271512.002 Monocycle Benzene mg/kg 0.1 5.0 5 60.140 97 LB27153.002 Monocycle Monocycle mg/kg 0.1 5.2 5 60.140 96 d8-douene (Surogate) mg/kg 0.1 5.2 5 60.140 96 B20000 Mg/kg 0.1 5.2 5 60.140 96 B2010 Benzene mg/kg 0.1 4.8 5 60.140 96			m/p-xylene	mg/kg	0.2	8.7	10	60 - 140	87
d8-toluene (Surrogate) mg/kg 9.4 10 70.130 94 Bromofluorobenzene (Surrogate) mg/kg - 10.0 10 70.130 100 LB271512.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60.140 95 Aromatic Toluene mg/kg 0.1 4.9 5 60.140 97 Ethylbenzene mg/kg 0.1 4.9 5 60.140 97 Ethylbenzene mg/kg 0.1 5.0 5 60.140 100 m/p-xylene mg/kg 0.1 5.0 5 60.140 104 Surrogates d4.1.2-dichloroethane (Surrogate) mg/kg 0.1 5.2 5 60.140 104 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60.140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60.140 97 LB271533.002 </td <td></td> <td></td> <td>o-xylene</td> <td>mg/kg</td> <td>0.1</td> <td>4.6</td> <td>5</td> <td>60 - 140</td> <td>92</td>			o-xylene	mg/kg	0.1	4.6	5	60 - 140	92
Bromofluorobenzene (Surrogate) mg/kg 10.0 10 70-130 100 LB271512.002 Monocyclic Aromatic Benzene mg/kg 0.1 4.8 5 60-140 95 LB271512.002 Aromatic Toluene mg/kg 0.1 4.9 5 60-140 97 LB271512.002 Monocyclic Aromatic Toluene mg/kg 0.1 5.0 5 60-140 97 LB271512.002 mg/kg 0.1 5.0 5 60-140 97 LB271512.002 mg/kg 0.1 5.0 5 60-140 96 in/p-xylene mg/kg 0.1 5.2 5 60-140 96 o-xylene mg/kg 0.1 5.2 5 60-140 96 LB27153.002 d4-1,2-cickoroethane (Surrogate) mg/kg 0.1 4.8 5 60-140 96 LB27153.002 Aromatic Toluene mg/kg 0.1 4.8 5 60-140 97 <		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.0	10	70 - 130	90
B271512.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 - 140 95 Aromatic Toluene mg/kg 0.1 4.9 5 60 - 140 97 Ethylbenzene mg/kg 0.1 5.0 5 60 - 140 96 m/p-xylene mg/kg 0.2 9.6 10 60 - 140 96 o-xylene mg/kg 0.1 5.2 5 60 - 140 96 Burrogates d4-1,2-dichloroethane (Surrogate) mg/kg 0.1 5.2 5 60 - 140 96 Bromofluorobenzene (Surrogate) mg/kg 0.1 5.2 5 60 - 140 96 Bromofluorobenzene (Surrogate) mg/kg 0.1 5.2 5 60 - 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 - 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 - 140 92 <			d8-toluene (Surrogate)	mg/kg	-	9.4	10	70 - 130	94
Aromatic Toluene mg/kg 0.1 4.9 5 60.140 97 Ethybenzene mg/kg 0.1 5.0 5 60.140 100 m/p-xylene mg/kg 0.1 5.0 5 60.140 96 o-xylene mg/kg 0.1 5.2 5 60.140 96 Surrogates d41.2-dichloroethane (Surrogate) mg/kg 0.1 5.2 5 60.140 96 Benzene mg/kg 0.1 5.2 5 60.140 96 LB271533.002 Monocyclic Benzene mg/kg - 9.6 10 70.130 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60.140 96 LB271533.002 Monocyclic Toluene mg/kg 0.1 4.8 5 60.140 96 LB271533.002 Monocyclic Toluene mg/kg 0.1 4.6 5 60.140 96 <			Bromofluorobenzene (Surrogate)	mg/kg	-	10.0	10	70 - 130	100
Ethylbenzene mg/kg 0.1 5.0 5 60 · 140 100 m/xylene mg/kg 0.2 9.6 10 60 · 140 96 o-xylene mg/kg 0.1 5.2 5 60 · 140 104 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 9.6 10 70 · 130 96 Bromofluorobenzene (Surrogate) mg/kg - 9.6 10 70 · 130 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Ehylbenzene mg/kg 0.1 4.6 5 60 · 140 92 Monocyclic ehylbenzene mg/kg 0.1 4.6 5	LB271512.002	Monocyclic	Benzene	mg/kg	0.1	4.8	5	60 - 140	95
mp-xylene mg/kg 0.2 9.6 10 60 · 140 96 o-xylene mg/kg 0.1 5.2 5 60 · 140 104 Surrogates d41,2-dichloroethane (Surrogate) mg/kg - 9.6 10 70 · 130 96 d8-toluene (Surrogate) mg/kg - 10.0 10 70 · 130 90 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.6 5 60 · 140 92 LB271533.002 mg/kg 0.1 4.6		Aromatic	Toluene	mg/kg	0.1	4.9	5	60 - 140	97
Image: section of the sectio			Ethylbenzene	mg/kg	0.1	5.0	5	60 - 140	100
Monocyclic Barzene d4-1,2-dichloroethane (Surrogate) mg/kg - 9.6 10 70 · 130 96 100 45-0luene (Surrogate) mg/kg - 10.0 10 70 · 130 100 100 Bornofluorobenzene (Surrogate) mg/kg - 9.1 10 70 · 130 91 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.6 5 60 · 140 97 LB271533.002 Monocyclic Monocyclic mg/kg 0.2 8.9 10 60 · 140 92 LB271533.002 mg/kg 0.1 4.7 5 60 · 140 93 M			m/p-xylene	mg/kg	0.2	9.6	10	60 - 140	96
d8-oluene (Surrogate) mg/kg - 10.0 10 70 · 130 100 Bromofluorobenzene (Surrogate) mg/kg - 9.1 10 70 · 130 91 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Benzene mg/kg 0.1 4.9 5 60 · 140 97 LB271533.002 Monocyclic Toluene mg/kg 0.1 4.6 5 60 · 140 97 LB271533.002 Monocyclic Monocyclic mg/kg 0.1 4.6 5 60 · 140 97 LB271533.002 Monocyclic Monocyclic mg/kg 0.1 4.6 5 60 · 140 92 LB271533.002 mg/kg 0.1 4.6 5 60 · 140 92 LB271533.002 mg/kg 0.1 4.7 5 60 · 140 93 LB271533.002 mg/kg 0.1 10.1 10 <t< td=""><td></td><td></td><td>o-xylene</td><td>mg/kg</td><td>0.1</td><td>5.2</td><td>5</td><td>60 - 140</td><td>104</td></t<>			o-xylene	mg/kg	0.1	5.2	5	60 - 140	104
Bromofluorobenzene (Surrogate) mg/kg - 9.1 10 70 · 130 91 LB271533.002 Monocyclic Aromatic Benzene mg/kg 0.1 4.8 5 60 · 140 96 LB271533.002 Monocyclic Aromatic Toluene Toluene mg/kg 0.1 4.9 5 60 · 140 97 LB271533.002 Monocyclic Aromatic Toluene mg/kg 0.1 4.6 5 60 · 140 92 LB271533.002 mg/kg 0.1 4.6 5 60 · 140 92 Monocyclic Aromatic mg/kg 0.2 8.9 10 60 · 140 89 m/p-xylene mg/kg 0.1 4.7 5 60 · 140 93 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 10.1 10 70 · 130 101 d8-toluene (Surrogate) mg/kg - 10.5 10 70 · 130 105		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.6	10	70 - 130	96
Benzene mg/kg 0.1 4.8 5 60 · 140 96 Aromatic Toluene Toluene mg/kg 0.1 4.9 5 60 · 140 97 Ethylbenzene mg/kg 0.1 4.6 5 60 · 140 92 m/p-xylene mg/kg 0.1 4.6 5 60 · 140 92 o-xylene mg/kg 0.2 8.9 10 60 · 140 89 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg -1 1.1 10 70 · 130 101 d8-toluene (Surrogate) mg/kg - 10.5 10 70 - 130 105			d8-toluene (Surrogate)	mg/kg	-	10.0	10	70 - 130	100
Aromatic Toluene ng/kg 0.1 4.9 5 60-140 97 Ethylbenzene ng/kg 0.1 4.6 5 60-140 92 m/p-xylene ng/kg 0.2 8.9 10 60-140 89 o-xylene ng/kg 0.1 4.7 5 60-140 93 Surrogates d4-1,2-dichloroethane (Surrogate) ng/kg - 10.1 10 70-130 101			Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
Ethylbenzene mg/kg 0.1 4.6 5 60 · 140 92 m/p-xylene mg/kg 0.2 8.9 10 60 · 140 89 o-xylene mg/kg 0.1 4.7 5 60 · 140 93 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 10.1 10 70 · 130 101 d8-toluene (Surrogate) mg/kg - 10.5 10 70 - 130 105	LB271533.002	Monocyclic	Benzene	mg/kg	0.1	4.8	5	60 - 140	96
mp-xylene mg/kg 0.2 8.9 10 60-140 89 o-xylene mg/kg 0.1 4.7 5 60-140 93 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 10.1 10 70-130 101 d8-toluene (Surrogate) mg/kg - 10.5 10 70-130 105		Aromatic	Toluene	mg/kg	0.1	4.9	5	60 - 140	97
o-xylene mg/kg 0.1 4.7 5 60 - 140 93 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 10.1 10 70 - 130 101 d8-toluene (Surrogate) mg/kg - 10.5 10 70 - 130 105			Ethylbenzene	mg/kg	0.1	4.6	5	60 - 140	92
Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 10.1 10 70 - 130 101 d8-toluene (Surrogate) mg/kg - 10.5 10 70 - 130 105			m/p-xylene	mg/kg	0.2	8.9	10	60 - 140	89
d8-toluene (Surrogate) mg/kg - 10.5 10 70 - 130 105			o-xylene	mg/kg	0.1	4.7	5	60 - 140	93
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
Bromofluorobenzene (Surrogate) mg/kg - 9.1 10 70 - 130 91			d8-toluene (Surrogate)	mg/kg	-	10.5	10	70 - 130	105
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91

VOCs in Water

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB271699.002	Monocyclic	Benzene	μg/L	0.5	48	45.45	60 - 140	105
	Aromatic	Toluene	μg/L	0.5	47	45.45	60 - 140	104
		Ethylbenzene	μg/L	0.5	54	45.45	60 - 140	118
		m/p-xylene	μg/L	1	110	90.9	60 - 140	118
		o-xylene	μg/L	0.5	54	45.45	60 - 140	118
	Surrogates	_d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.3	10	60 - 140	103
		_d8-toluene (Surrogate)	μg/L	-	9.8	10	70 - 130	98
		Bromofluorobenzene (Surrogate)	μg/L	-	10.3	10	70 - 130	103

Volatile Petroleum	Hydrocarbons in \$	Soil							
Sample Number	•	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB271509.002		TRH C6-C10	mg/kg	25	71	92.5	60 - 140	77	
		TRH C6-C9	mg/kg	20	54	80	60 - 140	68	
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.0	10	70 - 130	100	
		Bromofluorobenzene (Surrogate)	mg/kg	-	10.5	10	70 - 130	105	
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	45	62.5	60 - 140	71	
LB271511.002		TRH C6-C10	mg/kg	25	70	92.5	60 - 140	76	
		TRH C6-C9	ma/ka	20	53	80	60 - 140	66	

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB271511.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.0	10	70 - 130	90
EBEITIOTINOE	Ganogatoo	Bromofluorobenzene (Surrogate)	mg/kg		10.0	10	70 - 130	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	44	62.5	60 - 140	70
LB271512.002		TRH C6-C10	mg/kg	25	97	92.5	60 - 140	105
		TRH C6-C9	mg/kg	20	87	80	60 - 140	109
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.6	10	70 - 130	96
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	68	62.5	60 - 140	109
LB271533.002		TRH C6-C10	mg/kg	25	84	92.5	60 - 140	91
		TRH C6-C9	mg/kg	20	77	80	60 - 140	96
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	57	62.5	60 - 140	91
olatile Petroleum I	-lydrocarbons in \	Vater					Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery S
LB271699.002		TRH C6-C10	μg/L	50	920	946.63	60 - 140	97
		TRH C6-C9	µg/L	40	790	818.71	60 - 140	97
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.3	10	60 - 140	103
		d8-toluene (Surrogate)	μg/L	-	9.8	10	70 - 130	98
		Bromofluorobenzene (Surrogate)	μg/L	-	10.3	10	70 - 130	103
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	610	639.67	60 - 140	95

Method: ME-(AU)-[ENV]AN312

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water				Me	thod: ME-(AU)-	[ENV]AN311	I (Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE242526A.002	LB271447.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	91

Mercury in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE243061.001	LB271525.004	Mercury	mg/kg	0.05	0.41	0.25	0.2	83
SE243061.039	LB271528.004	Mercury	mg/kg	0.05	0.20	0.10	0.2	50 ④
SE243187.001	LB271551.004	Mercury	mg/kg	0.05	0.25	<0.05	0.2	114

OC Pesticides in Soil

C Pesticides in			Devenueten		1.00	D			J)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE243061.001	LB271471.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	113
			Heptachlor	mg/kg	0.1	0.3	<0.1	0.2	119
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	114
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	0.4	0.3	-	-
			Gamma Chlordane	mg/kg	0.1	0.2	0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.1	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	120
			Endrin	mg/kg	0.2	0.3	<0.2	0.2	126
			Beta Endosu l fan	mg/kg	0.2	<0.1	<0.2	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	76
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	2	<1	-	-
			Total OC VIC EPA	mg/kg	1	2	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	-	98
SE243061.020	LB271490.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	87
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	90
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	87
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane		0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
				mg/kg				-	-
			Alpha Endosulfan	mg/kg	0.2	<0.1	<0.2		
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	86
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	94
			Beta Endosulfan	mg/kg	0.2	<0.1	<0.2	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-

C Pesucides III	Soil (continued)						Men		J)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE243061.020	LB271490.004		Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	81
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
			Total OC VIC EPA	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.13	-	93
E243061.039	LB271491.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	<u> </u>
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	
			Delta BHC		0.1	0.2	<0.1	0.2	88
				mg/kg					
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	96
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	90
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	89
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	84
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	82
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	
			Total OC VIC EPA		1	1	<1		-
				mg/kg				-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.18	-	92
243092.001	LB271508.025		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	109
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	111
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	108
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.1	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	111
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	108
			Beta Endosulfan		0.2	<0.1	<0.2	-	- 100
				mg/kg					
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-

C Pesticides in	Soil (continued)						Metr	nod: ME-(AU)-[ENV]A
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
E243092.001	LB271508.025		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	81
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
			Total OC VIC EPA	mg/kg	1	1	<1	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	-	1(
Pesticides in	Soil						Meth	nod: ME-(AU)-IENVI
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Reco
243061.001	LB271471.004		Azinphos-methyl (Guthion)		0.2	<0.2		оріке	Neco
243061.001	LD2/14/1.004			mg/kg			<0.2	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2		
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	<0.2	2	g
			Diazinon (Dimpylate)	mg/kg	0.5	1.9	<0.5	2	g
			Dichlorvos	mg/kg	0.5	1.6	<0.5	2	7
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	
			Ethion	mg/kg	0.2	1.9	<0.2	2	g
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	
			Malathion	mg/kg	0.2	<0.2	<0.2	-	
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	
			Total OP Pesticides*	mg/kg	1.7	7.4	<1.7	-	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	9
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	ç
243061.020	LB271490.004		Azinphos-methyl (Guthion)	mg/kg	0.2	2.1	<0.2	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	<0.2	2	
			Diazinon (Dimpylate)	mg/kg	0.5	1.6	<0.5	2	8
			Dichlorvos	mg/kg	0.5	1.5	<0.5	2	
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	
			Ethion		0.2	1.7	<0.2	2	8
				mg/kg		<0.2		-	,
			Fenitrothion	mg/kg	0.2		<0.2		
			Malathion	mg/kg	0.2	<0.2	<0.2	-	
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	
			Total OP Pesticides*	mg/kg	1.7	8.5	<1.7	-	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	6
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	8
243061.039	LB271491.004		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.4	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.4	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	<0.4	2	9
			Diazinon (Dimpylate)	mg/kg	0.5	2.0	<1.0	2	9
			Dichlorvos	mg/kg	0.5	1.9	<1.0	2	9
			Dimethoate	mg/kg	0.5	<0.5	<1.0	-	
			Ethion	mg/kg	0.2	1.9	<0.4	2	ç
			Fenitrothion	mg/kg	0.2	<0.2	<0.4	-	
			Malathion	mg/kg	0.2	<0.2	<0.4	-	
			Methidathion	mg/kg	0.5	<0.5	<1.0	-	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.4	-	
			Total OP Pesticides*	mg/kg	1.7	7.7	<3.4	-	
		Surrogates	2-fluorobiphenyl (Surrogate)			0.5	0.4	-	ç
		Surrogates		mg/kg					
	1007/555 555		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	8
243092.001	LB271508.025		Azinphos-methyl (Guthion)	mg/kg	0.2		<0.2	-	
			Bromophos Ethyl	mg/kg	0.2		<0.2	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2		<0.2	2	ę
			Diazinon (Dimpylate)	mg/kg	0.5		<0.5	2	9
			Dichlorvos	mg/kg	0.5		<0.5	2	7
			Dimethoate	mg/kg	0.5		<0.5	-	

	Soil (continued)						Men	iod: ME-(Al)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE243092.001	LB271508.025		Ethion	mg/kg	0.2		<0.2	2	89
			Fenitrothion	mg/kg	0.2		<0.2	-	-
			Malathion	mg/kg	0.2		<0.2	-	-
			Methidathion	mg/kg	0.5		<0.5	-	-
			Parathion-ethyl (Parathion)	mg/kg	0.2		<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7		<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-		0.4	-	84
			d14-p-terphenyl (Surrogate)	mg/kg	-		0.4	-	86
H (Polynuclea	r Aromatic Hydrocarb	ons) in Soil					Meth	od: ME-(AL	J)-IENVIA
C Sample	Sample Number	,	Parameter	Units	LOR	Result	Original	Spike	Recov
E243061.001	LB271471.004		Naphthalene	mg/kg	0.1	4.3	<0.1	4	10
243001.001	LB2/14/1.004				0.1	<0.1	<0.1	-	- 10
			2-methylnaphthalene	mg/kg				-	
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1		
			Acenaphthylene	mg/kg	0.1	4.5	<0.1	4	11
			Acenaphthene	mg/kg	0.1	4.3	<0.1	4	10
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.6	0.5	4	10
			Anthracene	mg/kg	0.1	4.4	0.2	4	10
			Fluoranthene	mg/kg	0.1	5.3	1.1	4	10
			Pyrene	mg/kg	0.1	5.2	1.1	4	10
			Benzo(a)anthracene	mg/kg	0.1	0.5	0.6	-	-
			Chrysene	mg/kg	0.1	0.4	0.5	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.6	0.7	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	0.2	0.3	-	
			Benzo(a)pyrene	mg/kg	0.1	4.8	0.6	4	10
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	0.4	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	
			Benzo(ghi)perylene	mg/kg	0.1	0.3	0.4	-	
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>5.0</td><td>0.8</td><td>-</td><td></td></lor=0*<>	TEQ (mg/kg)	0.2	5.0	0.8	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>5.0</td><td>0.9</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	5.0	0.9	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>5.1</td><td>0.9</td><td>-</td><td></td></lor=lor*<>	TEQ (mg/kg)	0.3	5.1	0.9	-	
					0.8	40	6.4	-	-
			Total PAH (18)	mg/kg					
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	10
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	9
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	9
E243061.020	LB271490.004		Naphthalene	mg/kg	0.1	4.2	<0.1	4	10
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.3	<0.1	4	10
			Acenaphthene	mg/kg	0.1	4.2	<0.1	4	10
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.2	0.6	4	9
			Anthracene	mg/kg	0.1	4.0	0.1	4	9
			Fluoranthene	mg/kg	0.1	4.6	0.8	4	9
			Pyrene	mg/kg	0.1	4.5	0.7	4	9
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.4	_	
			Chrysene	mg/kg	0.1	0.2	0.4	-	
			Benzo(b&i)fluoranthene	mg/kg	0.1	0.2	0.4	-	
			Benzo(k)fluoranthene	mg/kg	0.1	0.2	0.4	-	
					0.1	4.4	0.2	4	10
			Benzo(a)pyrene	mg/kg					
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	0.1	0.2	-	
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.5</td><td>0.4</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	4.5	0.4	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.5</td><td>0.5</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.5	0.5	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.6</td><td>0.5</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	4.6	0.5	-	-
			Total PAH (18)	mg/kg	0.8	35	4.2	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	9
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	8
			d14-p-terphenyl (Surrogate)				0.4		8

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	r Aromatic Hydrocarb	,							J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
243061.039	LB271491.004		Naphthalene	mg/kg	0.1	4.2	<0.2	4	105
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.2	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.2	-	-
			Acenaphthylene	mg/kg	0.1	4.3	<0.2	4	108
			Acenaphthene	mg/kg	0.1	4.2	<0.2	4	105
			Fluorene	mg/kg	0.1	<0.1	<0.2	-	-
			Phenanthrene	mg/kg	0.1	3.8	<0.2	4	94
			Anthracene	mg/kg	0.1	3.8	<0.2	4	94
			Fluoranthene	mg/kg	0.1	3.9	<0.2	4	97
			Pyrene	mg/kg	0.1	3.7	<0.2	4	91
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.2	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.2	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.2	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.2	-	-
			Benzo(a)pyrene	mg/kg	0.1	2.9	<0.2	4	71
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.2	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.2	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.2	_	
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>2.9</td><td><0.4</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	2.9	<0.4	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>2.9</td><td><0.4</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	2.9	<0.4	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.0</td><td><0.6</td><td>-</td><td></td></lor=lor*<>	TEQ (mg/kg)	0.3	3.0	<0.6	-	
			Total PAH (18)		0.8	31	<1.6	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg mg/kg	-	0.5	0.5	-	106
		Surroyates			-	0.5		-	95
			2-fluorobiphenyl (Surrogate)	mg/kg	-		0.4	-	
			d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.4		86
243092.001	LB271508.025		Naphthalene	mg/kg	0.1	4.1	<0.1	4	102
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.2	<0.1	4	106
			Acenaphthene	mg/kg	0.1	4.0	<0.1	4	101
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.0	<0.1	4	100
			Anthracene	mg/kg	0.1	4.0	<0.1	4	100
			Fluoranthene	mg/kg	0.1	4.3	<0.1	4	105
			Pyrene	mg/kg	0.1	4.2	<0.1	4	104
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.2	<0.1	4	104
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.2</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	4.2	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td>_</td></lor=lor>	TEQ (mg/kg)	0.2	4.3	<0.2	-	_
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	4.3	<0.3	-	-
			Total PAH (18)	mg/kg	0.8	33	<0.8	_	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	100
		Canagatoo	2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.4		84
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	86
			an p terprenyr (ourrogate)	iiig/kg	-	0.4			
is in Soil								iod: ME-(AL	
Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
243061.001	LB271471.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-

mg/kg

mg/kg

mg/kg

0.2

0.2

0.2

<0.2

0.4

<0.2

<0.2

<0.2

<0.2

-

0.4

-

Arochlor 1254

Arochlor 1260

Arochlor 1262

-

105

.

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spiko	Recovery
-	Sample Number LB271471.004		Parameter				-	Spike -	Recovery
E243061.001	LB271471.004		Arochlor 1268	mg/kg	0.2	<0.2	<0.2		
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	105
SE243061.020	LB271490.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	97
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	92
SE243061.039	LB271491.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2		_
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	
			Arochlor 1242			<0.2	<0.2	-	
			Arochlor 1242 Arochlor 1248	mg/kg	0.2			-	
				mg/kg	0.2	<0.2	<0.2		-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	107
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	94
SE243092.001	LB271508.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	112
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	110
otal Recoverab	le Elements in Soil/M	aste Solids/Mate	nals by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN3
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE243061.001	LB271520.004		Arsenic, As	mg/kg	1	52	4	50	96
			Cadmium, Cd	mg/kg	0.3	45	0.5	50	90
			Chromium, Cr	mg/kg	0.5	52	5.4	50	93
			Copper, Cu	mg/kg	0.5	70	23	50	94
			Nickel, Ni	mg/kg	0.5	49	2.9	50	92
			Lead, Pb	mg/kg	1	220	210	50	34 ⑨
			Zinc, Zn		2	210	170	50	80
SE243061.020	LB271521.004		Arsenic, As	mg/kg	1	53	5	50	97
5E243001.020	LB2/1521.004			mg/kg					
			Cadmium, Cd	mg/kg	0.3	46	<0.3	50	91
			Chromium, Cr	mg/kg	0.5	56	11	50	90
			Copper, Cu	mg/kg	0.5	67	27	50	80
			Nickel, Ni	mg/kg	0.5	54	9.7	50	88
			Zinc, Zn	mg/kg	2	140	130	50	22 ⑨
	LB271522.004		Arsenic, As	mg/kg	1	53	5	50	97
SE243061.039			Cadmium, Cd	mg/kg	0.3	47	<0.3	50	93
E243061.039			Chromium, Cr	mg/kg	0.5	51	6.0	50	90
E243061.039			Copper, Cu	mg/kg	0.5	55	12	50	85
SE243061.039					0.5	50	5.9	50	89
SE243061.039			Nickel, Ni	ma/ka					
SE243061.039				mg/kg ma/ka					
SE243061.039			Lead, Pb	mg/kg	1	50	8	50	84
	10274545-004		Lead, Pb Zinc, Zn	mg/kg mg/kg	1	50 100	8 95	50 50	84 10 ④
SE243061.039 SE243187.001	LB271545.004		Lead, Pb	mg/kg	1	50	8	50	84

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recover
E243187.001	LB271545.004		Chromium, Cr	mg/kg	0.5	54	5.9	50	97
			Copper, Cu	mg/kg	0.5	55	6.4	50	98
			Nickel, Ni	mg/kg	0.5	49	3.2	50	91
			Lead, Pb	mg/kg	1	63	16	50	93
			Zinc, Zn	mg/kg	2	65	18	50	95
RH (Total Reco	verable Hydrocarbo	ons) in Soil					Meth	od: ME-(AL	J)-[ENVIAN
C Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recover
E243061.001	LB271471.004		TRH C10-C14	mg/kg	20	64	<20	40	121
			TRH C15-C28	mg/kg	45	120	110	40	25 (5)
			TRH C29-C36	mg/kg	45	100	88	40	31 (5)
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	290	200	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	230	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	67	<25	40	115
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	67	<25	-	-
		Dunus	TRH >C16-C34 (F3)	mg/kg	90	170	170	40	-15 @
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-10 (
243061.020	LB271490.004		TRH C10-C14	mg/kg	20	48	<20	40	108
243001.020	LB2/1450.004		TRH C15-C28		45	63	<45	40	98
			TRH C29-C36	mg/kg	45	<45	<45	40	66
			TRH C29-C30 TRH C37-C40	mg/kg	100	<43	<100	-	
			TRH C10-C36 Total	mg/kg		110	<110	-	
				mg/kg	110			-	
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210		
		TRH F	TRH >C10-C16	mg/kg	25	49	<25	40	111
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	49	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	79
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
243061.039	LB271491.004		TRH C10-C14	mg/kg	20	71	55	40	38 (
			TRH C15-C28	mg/kg	45	340	500	40	-416
			TRH C29-C36	mg/kg	45	620	1000	40	-1028
			TRH C37-C40	mg/kg	100	160	280	-	-
			TRH C10-C36 Total	mg/kg	110	1000	1600	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	1200	1900	-	-
		TRH F	TRH >C10-C16	mg/kg	25	79	67	40	29 (
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	79	67	-	-
			TRH >C16-C34 (F3)	mg/kg	90	780	1300	40	-1205
			TRH >C34-C40 (F4)	mg/kg	120	310	540	-	-
243092.001	LB271508.025		TRH C10-C14	mg/kg	20	63	<20	40	138
			TRH C15-C28	mg/kg	45	140	77	40	166
			TRH C29-C36	mg/kg	45	130	110	40	49 (
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	340	190	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	280	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	61	<25	40	134
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	61	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	220	170	40	117
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
C's in Soil							Meth	od: ME-(AU	J)-[ENV]A
Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original		Recov
2/3061 001	L B271509 004	Monocyclic	P al allieter	ma/ka	0.1	1 2		5	84

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE243061.001	LB271509.004	Monocyclic	Benzene	mg/kg	0.1	4.2	<0.1	5	84
		Aromatic	Toluene	mg/kg	0.1	4.7	<0.1	5	94
			Ethylbenzene	mg/kg	0.1	4.5	<0.1	5	90
			m/p-xylene	mg/kg	0.2	8.8	<0.2	10	88
			o-xylene	mg/kg	0.1	4.7	<0.1	5	94
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.6	10.8	10	96
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.5	10	99
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.5	9.7	10	105
		Totals	Total BTEX*	mg/kg	0.6	27	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	13	<0.3	-	-

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (co						_			J)-[ENV]AN4
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recover
SE243061.020	LB271511.004	Monocyclic	Benzene	mg/kg	0.1	4.1	<0.1	5	82
		Aromatic	Toluene	mg/kg	0.1	4.5	<0.1	5	91
			Ethylbenzene	mg/kg	0.1	4.5	<0.1	5	89
			m/p-xylene	mg/kg	0.2	8.7	<0.2	10	87
			o-xylene	mg/kg	0.1	4.7	<0.1	5	93
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.4	9.1	10	94
			d8-toluene (Surrogate)	mg/kg	-	9.0	7.9	10	90
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.7	7.7	10	97
		Totals	Total BTEX*	mg/kg	0.6	27	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	13	<0.3	-	-
SE243061.039	LB271512.004	Monocyclic	Benzene	mg/kg	0.1	3.4	<0.1	5	68
		Aromatic	Toluene	mg/kg	0.1	3.5	<0.1	5	70
			Ethylbenzene	mg/kg	0.1	3.6	<0.1	5	72
			m/p-xylene	mg/kg	0.2	6.8	<0.2	10	68
			o-xylene	mg/kg	0.1	3.6	<0.1	5	72
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	11.1	10	76
		-	d8-toluene (Surrogate)	mg/kg	-	7.2	10.2	10	72
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.5	10.0	10	65 ①
		Totals	Total BTEX*	mg/kg	0.6	21	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	10	<0.3	-	-
SE243187.001	LB271533.004	Monocyclic	Benzene	mg/kg	0.1	4.7	<0.1	5	94
		Aromatic	Toluene	mg/kg	0.1	6.0	<0.1	5	120
			Ethylbenzene	mg/kg	0.1	4.9	<0.1	5	98
			m/p-xylene	mg/kg	0.2	9.5	<0.2	10	94
			o-xylene	mg/kg	0.1	5.0	<0.1	5	100
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.0	8.5	10	110
		Sanogalos	d8-toluene (Surrogate)	mg/kg		12.3	9.5	10	123
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.0	9.2	10	90
		Totals	Total BTEX*	mg/kg	0.6	30	<0.6	-	
		10000	Total Xylenes*	mg/kg	0.3	14	<0.3	-	
				ing/kg	0.0	ד ו			
attle Petroleu	n Hydrocarbons in	Soll					Met	nod: ME-(AU)-[ENV]A
QC Sample	Sample Numbe	er	Parameter	Units	LOR	Result	Original	Spike	Recove
SE243061.001	LB271509.004		TRH C6-C10	mg/kg	25	72	<25	92.5	77

olatile Petroleur	n Hydrocarbons in S	oil					Meth	iod: ME-(AU)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE243061.001	LB271509.004		TRH C6-C10	mg/kg	25	72	<25	92.5	77
			TRH C6-C9	mg/kg	20	54	<20	80	67
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.6	10.8	10	96
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.5	10	99
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.5	9.7	-	105
		VPH F	Benzene (F0)	mg/kg	0.1	4.2	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	45	<25	62.5	71
SE243061.020	LB271511.004		TRH C6-C10	mg/kg	25	71	<25	92.5	76
			TRH C6-C9	mg/kg	20	53	<20	80	66
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.4	9.1	10	94
			d8-toluene (Surrogate)	mg/kg	-	9.0	7.9	10	90
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.7	7.7	-	97
		VPH F	Benzene (F0)	mg/kg	0.1	4.1	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	44	<25	62.5	71
SE243061.039	LB271512.004		TRH C6-C10	mg/kg	25	68	<25	92.5	73
			TRH C6-C9	mg/kg	20	62	<20	80	77
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	11.1	10	76
			d8-toluene (Surrogate)	mg/kg	-	7.2	10.2	10	72
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.5	10.0	-	65
		VPH F	Benzene (F0)	mg/kg	0.1	3.4	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	47	<25	62.5	74
/olatile Petroleur	n Hydrocarbons in W	/ater					Meth	od: ME-(AU)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR				

	m Hydrocarbons in W						INIGUN)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE243083.001	LB271699.023		TRH C6-C10	µg/L	50	1000	0	946.63	108
			TRH C6-C9	µg/L	40	880	0	818.71	108
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.2	9.37853931259	-	102
			d8-toluene (Surrogate)	µg/L	-	10.9	9.73167388815	-	109
			Bromofluorobenzene (Surrogate)	µg/L	-	11.6	9.59777696557	-	116
		VPH F	Benzene (F0)	µg/L	0.5		0.011551845	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	760	0	639.67	119

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

Volatile Petroleu	m Hydrocarbons in S	oil					Me	thod: ME-(AU)	-[ENV]AN43
QC Sample	Sample Number		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE243187.001	LB271533.004		TRH C6-C10	mg/kg	25	-	85	-	206
			TRH C6-C9	mg/kg	20	-	78	-	205
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	-	11.0	-	200
			d8-toluene (Surrogate)	mg/kg	-	-	12.3	-	200
			Bromofluorobenzene (Surrogate)	mg/kg	-	-	9.0	-	200
		VPH F Bands	Benzene (F0)	mg/kg	0.1	-	4.7	-	-
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	-	55	-	209

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- ⁽⁵⁾ Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- 1 LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Geisiane Torres	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	SE243061 R0
Order Number	E25947	Date Received	09 Feb 2023
Samples	65	Date Reported	21 Feb 2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

TRH/OC/PCB/PAH/OP - The Limit of Reporting (LOR) has been raised due to high moisture factor content of the sample.

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #40: Chrysotile asbestos found in approx 4x3x2mm cement sheet fragment.

Sample #63: Chrysotile asbestos found in approx 10x3x2mm bituminous material.

Sample #72: Chrysotile asbestos found in approx 10x6x3mm bituminous material.

Sample #34-36,60,62,63,71,72: A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures due to large volume. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container. Asbestos analysed by Approved Identifier Ravee Sivasubramaniam and Yusuf Kuthpudin

SIGNATORIES -

9

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

00 www.sgs.com.au 99

Member of the SGS Group

Fibre Identifica	tion in soil				Method AS4964	/AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE243061.001	TP401_0.1-0.2	Soil	135g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.002	TP401_0.5-0.6	Soil	133g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.003	TP401_1.0-1.1	Soil	163g Clay, Sand, Soil	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.004	TP402_0.1-0.2	Soil	136g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.005	TP402_0.5-0.6	Soil	129g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.006	TP402_1.0-1.1	Soil	100g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.007	TP403_0.1-0.2	Soil	135g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.008	TP403_0.5-0.6	Soil	183g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.009	TP403_1.0-1.1	Soil	31g Sand, Soil, Rocks, Plant Matter	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Synthetic Mineral Fibres Detected Organic Fibres Detected	<0.01
SE243061.010	TP404_0.1-0.2	Soil	154g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.011	TP404_0.5-0.6	Soil	167g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.012	TP404_1.0-1.1	Soil	154g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.013	TP405_0.1-0.2	Soil	161g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.014	TP405_0.5-0.6	Soil	121g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.015	TP405_1.0-1.1	Soil	20g Sand, Soil, Rocks, Plant Matter	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.016	TP406_0.1-0.2	Soil	147g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.017	TP406_0.5-0.6	Soil	159g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.018	TP406_1.0-1.1	Soil	132g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.019	TP407_0.1-0.2	Soil	152g Sand, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.020	TP407_0.5-0.6	Soil	128g Sand, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.021	TP407_1.0-1.1	Soil	19g Sand, Soil, Plant Matter	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
E243061.022	TP408_0.1-0.2	Soil	121g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.023	TP408_0.5-0.6	Soil	173g Sand	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.024	TP408_1.0-1.1	Soil	28g Sand, Soil, Plant Matter	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.025	TP409_0.1-0.2	Soil	147g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.026	TP409_0.5-0.6	Soil	139g Sand, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.027	TP409_1.0-1.1	Soil	195g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01

RESULTS -

Fibre Identification in soil

Method AS4964/AN602

Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE243061.028	TP410_0.1-0.2	Soil	117g Sand, Soil, Plant Matter	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.029	TP410_0.5-0.6	Soil	201g Clay, Soil	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.030	TP410_1.0-1.1	Soil	113g Sand, Soil, Rocks	06 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.031	TP411_0.1-0.2	Soil	139g Sand	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.032	TP411_0.5-0.6	Soil	145g Sand	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.033	TP411_1.0-1.1	Soil	143g Clay, Sand, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.034	TP412_0.1-0.2	Soil	182g Sand, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.035	TP412_0.5-0.6	Soil	210g Sand, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.036	TP412_1.0-1.1	Soil	280g Sand, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.037	TP413_0.1-0.2	Soil	121g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.038	TP413_0.5-0.6	Soil	164g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.039	TP413_1.0-1.1	Soil	45g Sand, Soil, Rocks, Plant Matter	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Synthetic Mineral Fibres Detected Organic Fibres Detected	<0.01
SE243061.040	TP414_0.1-0.2	Soil	190g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.041	TP414_0.5-0.6	Soil	182g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.042	TP414_1.0-1.1	Soil	277g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.043	TP415_0.1-0.2	Soil	126g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.044	TP415_0.5-0.6	Soil	151g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.045	TP415_1.0-1.1	Soil	163g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.046	TP416_0.1-0.2	Soil	163g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.047	TP416_0.5-0.6	Soil	157g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.048	TP416_1.0-1.1	Soil	173g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.049	TP417_0.1-0.2	Soil	169g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.050	TP417_0.5-0.6	Soil	214g Sand, Soil, Rocks, Concrete	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.051	TP417_1.0-1.1	Soil	232g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.052	TP418_0.1-0.2	Soil	128g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.053	TP418_0.5-0.6	Soil	209g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.054	TP418_1.0-1.1	Soil	90g Sand, Soil, Plant Matter	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Synthetic Mineral Fibres Detected Organic Fibres Detected	<0.01

Fibre Identifica	ation in soil				Method AS4964/AN6	02
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE243061.055	TP419_0.1-0.2	Soil	135g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.056	TP419_0.5-0.6	Soil	179g Sand, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.057	TP419_1.0-1.1	Soil	191g Sand, Soil, Rocks	07 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.058	BH501M_0.3-0.4 5	Soil	447g Sand, Soil, Rocks	08 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.059	BH501M_1.0-1.1	Soil	322g Sand, Soil, Rocks	08 Feb 2023	No Asbestos Found at RL of 0.1g/kg Synthetic Mineral Fibres Detected Organic Fibres Detected	<0.01
SE243061.060	BH502M_0.4-0.6	Soil	192g Sand, Soil, Rocks	08 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.061	BH502M_1.0-1.1	Soil	301g Sand, Soil, Rocks, Bitumen	08 Feb 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE243061.062	BH503_0.4-0.5	Soil	136g Clay, Sand, Soil, Rocks	08 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.063	BH503_0.9-1.0	Soil	120g Clay, Sand, Rocks	08 Feb 2023	Chrysotile Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	>0.01
SE243061.071	BH501M_1.5-1.6	Soil	100g Clay, Sand, Soil, Rocks	08 Feb 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE243061.072	BH503M_1.5-1.6	Soil	119g Clay, Sand, Soil, Bitumen	08 Feb 2023	Chrysotile Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	>0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Brown Asbestos Not Analysed Amosite NA Chrvsotile White Asbestos INR --Listed. Not Required Crocidolite -Blue Asbestos -NATA accreditation does not cover the performance of this service . ** Amphiboles Amosite and/or Crocidolite -Indicative data, theoretical holding time exceeded. *** Indicates that both * and ** apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

FOOTNOTES -

Matrix Analysis	ie terials)		Я: НЯТ/ НЯТ/ НЯТ/ НЯТ/ //НЯ/ // И рего С 2010 - 9/ш/ - 7/Т - 9/ш/ - 7/Т - 1/2 - 2/2 - 2/2	0ТНЕ НМ [^] НМ [^] НМ [^] ВТЕХ ВТЕХ Альва ЕСИМ 5 Споп Споп Споп Споп Споп	×	×	7	7	×	7	A SGS EHS Sydney COC	X SE243061	7			Investigator: I attest that these samples were collected in accordance with standard El field sampling Report with El Waste Classification Table	procedures.		Print GEISIANE TORGES Print	Signature S. S.
Sample Matrix		d filtered		SOIL TAW											3	Investigat		Sampler's N	Print G	Signature
	Project No:	0499	Sampling	Date Time	A BE BEAD	1								1						Suite 6.01, 55 Miller Street,
	CLIZAGET	SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0499	Container	Type	WZLB GT										>	Processing and finesed and			BB = Bulk Bag	Suite 6

1 o v teet					ŝ	Sample Matrix	Matrix	-								HE	Analysis									Comments
Ecorem	e chi	L'UNALLA L		Project No:										atiu2 (MN3						(543)		(Å)				HM A Arsenic Cadmium Chromium Copper
boratory:	SGS Australia Unit 16, 33 Ma ALEXANDRIA P: 02 8594 040	 SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0499	et, 94 0499				bered	sHA9\X3T8\	sotsedeA\80 eHA9\X3T8\	XƏT6/				uantification latural Material (E	Stockpile discret	Stockpile compo EC / Foreign Mat		əpixo		3educible Sulfur ((ətion exchange)	ectrical conductivi	abinold		НАЯ∖	Lead Mercury Nickel Zinc HM ^B Arsenic
Comolo	I aboratone	Container	San	Sampling		Я	-)d/dC						- ətini	- ətini		oneq H					O \ eti		e MH	Chromium
DI DI	ID	Type	Date	Time	SOIF	IJTAW		AHTO	OCP/(•	хэта	soov	səqs¥		S MN3	S MN3	Dewat	Hq / Hq	sPOC	PFAS			eydins	реәд	тсгь	Lead Mercury Nickel
PUDS-01-0.2	13	SHZ/N	-	AVA	×			/	1																	Dewatering Suite
alo-S-o. Solis	14				_				2																	TDS / TDU Hardness
1.1-01-20hc	12	_			-			1	0				-													Total Cyanide Metals (Al, As, Cd, Cr, Cr, Ph. Her. Ni. 2n)
2000-01-02	16							/	X																	TRH (F1, F2, F3, F4) BTEX
206-05-06	17							X	2																	PAH Total Phenol
2061.0-1.1	18				-			1	1																	LABORATORY
20-1 0 tond	19				_			1	1																	K Standard
PUOT SSOC	20							×																		24 Hours
1-1-0-1-201	2							1	1											3						48 Hours
P408-01-02	22		_		-			1	1																	72 Hours
pros o sohe	23	_			-			/	X																	Other
1.1-01-2014	24	>	Э	>	->		-	T	J																	
antainer Type: = solvent washed, acid rinsed, Tefton sealed glass jar	ed, Tefton sea	ed glass jar				Investig	gator: 1 a	ittest the	at these	sample	were co	e collected i procedures	n accon	Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.	th stant	lard El t	eld sam	pling		Re	Report with El Waste Classification Table	h El Wa	ste Clas	sificatio	n Table	Ż
= solvent washed, acid rinsed glass bolile = natural HDPE plastic bottle	sed glass botile					Sampler	Sampler's Name (EI):	(EI):	1			Received	Received by (SGS):	5):				S	ampler	Sampler's Comments:	nents:					•
C = glass vial, Tefton Septum .B = Zip-Lock Bag	um BB = Bulk Bag	k Bag				Print	B	SCI SING	1	CERES		Print							2	- 4	3	8	2	5		
Ask		Suit	te 6.01, 55	Suite 6.01, 55 Miller Street,	žt,	Signature	of en	1				Signature	e	\$	Å	4	1000		V	07	11		d		·Y	A Da
	;	-	Ph: 951	Ph: 9516 0722	_	Dale *	2	22/21				Date	00	100	10	0	0.0	+k	5	3	5)	2		7	
elaustralia	alla	lab	@eiaustr	lab@eiaustralia.com.au		MPO	IMPORTANT:	NT:			1		>													
Contamination Remediated	n Seotechneal		COC June 2021	COC June 2021 FORM v.5 - SGS	-	please e	H-mail lat	oratory	Please e-mail laboratory results to: lab@eiaustralia.com.au	o: lab(Deiaus	tralia.	com.a	n												

-					ŝ	Sample Matrix	Matrix	-								Ana	Analysis									Comments
30	RED CLI	Clizabeth	Ψ	Project No:										etiu2 (MM						Crs)		(A)				HM ^A Arsenic Cadmium Chromium Copper
iboratory:	SGS Australia SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0499	ddox Street NSW 2015 0 F: 02 8594	4 0499				beretlih t	sHA9\X3T8\	sotsedsA\80 eHAq\X3T8\	X3T8/			noitestion	atural Material (E	Stockpile discrete	Stockpile compos EC / Foreign Mate		əbix)) nutiu2 eldioubes	ation exchange)	etrical conductivit	hloride		HA9 \	Lead Mercury Nickel Zinc HM it Arsenic
Sample	Laboratory	Container	Sam	Sampling		Я		нят∖		няті				N bete	- ətiuš XƏTE	- etius		H bero	SA					-	^e MH	Chromium
		Type	Date	Time	SOIF	JTAW		A MH		^A MH	хэта	AOCs	eedeA	Excava	S MNЭ 3/НЯТ)	S MNB	lewaQ	4q \ Hq	sPOC		2 A Hq			bseJ	TCLP	Lead Mercury Nickel
20-1000	25 M	STZ	_	MANA	×			F														-		-		Dewatering Suite
JOSO POR	26	-		-	1			X	1													-				TDS/TDU Hardness
1.1-0.1.pould	27		_		_		-	r	1.													-				Total Cyanide Metals (AI, As, Cd, Cr,
P410-01-02	28		-		-			T	1				-								-	-	_			UL, PD, HB, MI, ZN) TRH (F1, F2, F3, F4) BTEX
pylouosock	29		-		-			1	- 1							-				-	-	-	-	-		PAH Total Phenol
1.1-0.1 Olh	30		_					7	2		*											-				LABORATORY
20-10-1105	31							T	-											-		-	-			Churchard Charden
Pylic 05-06	32				1			×																		
1.1-0.1-1105	33							1	B																	48 Hours
PU12.01-02	34		_					7	B			-														72 Hours
P412-05-06	35	. /	-	_	-			\times													-	-				Other
1.1-0-1-2149	36)	7	7	7			1	1											-	_]
antainer Type: = solvent washed, acid rinsed, Tefton sealed glass jar = solvent washed acid rinsed olsee holla	d, Tefton sealed	glass jar				Investig	lator: I al	ttest that	these s	amples /	Investigator. I attest that these samples were collected in accordance with standard EI field sampling procedures.	e collected in a procedures.	accorda	nce with	standa	rrd El fi	eld sam	pling		R	Report with El Waste Classification Table	th El Wa	aste Cla	ssificat	ion Tabl	Å.
= natural HDPE plastic bottle	ainon seaig na					Sampler	Sampler's Name (EI):	EI): C	たち		Å	Received by (SGS):	y (SGS):					S	ampler	Sampler's Comments:	ments:					
л – glass viai, тепоп зерил .B = Zip-Lock Bag	n BB = Bulk Bag		_			Print	Print GRISIAN	201	1	10000		Print				-	_		L	. :	S	3	2	I		
AN		Suite	6.01, 55 RMONT /	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	at,	Signature	Ber	RA	-			Signature	V	Y	Z	bonc	J)	V	0	1	-	3	g.	Seile
		-	Ph: 9516 0722	5 0722		Date 1	02120	-6			7	Date	160	120	n d	0	d	5		3	3	5	N N			
elausur	alla	lab(velaustra	lab@elaustralia.com.au		IMPORTANT:	RTAN	:1:																		
		ō	COC June 2021 FORM v.5 - SGS	DRM v.5 - SGS	-	please e-	-mail lab	oratory n	esults to	lab@	Please e-mail laboratory results to: lab@eiaustralia.com.au	alia.co	m.au													

heet <u>U</u> on S.		Sar	Sample Matrix	ıtrix								Analysis	sis								Comments	nents
It GOOLGOO GUIDOCHA ST, REOFERN	Project No:									etiuS (MM	e	site erials)			Crs)			(٨)			HM ≜ Arsenic Cadmium Chromium Copper	
aboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0409	- 66		a filtered		eHAq\X∃T8\ sotsedaA\80	/BTEX/PAHs			ບອນມູນອາຍຸມ	latural Material (E	Stockpile discrete	Stockpile compo: Stockpile compo:		2019	?educible Sulfur ((egnericxe noite	ivitanbroal conductivit	hloride	HA9 \	Lead Mercury Nickel Zinc HM & Arsenic	
Sample Laboratory Container	Sampling				06/60					-	- əfiuð	- etiui			ց տուլ		o) OB	ele) O	te / Cl	8 MM		
ID Type	Date Time	SOIL	97AW	энто	OCP/		XƏT8	NOCa	sedaA		S MN3 (TRH/E	(HW y ENW 2	Dewat	PH / Hq	Chrom	SA79	D / Hq	∃ / Hd	eydins	pead	Mercury	
PHISOLOG 37 MIZLA	PAPER	メ			×								-						1		Dewatering Suite	ulte
PUIS-05-06 38		_	_		X																TDS/TDU Hardness	
					X																Total Cyanide Metals (AI, As, Cd, Cr,	, cd, cr,
PUM OVOS 40					7																TRH (F1, F2, F3, F4) BTEX	, kn) 3, F4)
14 10,005,004 14					7														-		PAH Total Phenol	
					X								-	-						-	LABORATORY	ATORY
PUIS.0-10243					7								-	_						-		
PUIS 05-06 44					X				-				+	-					-	-	The standard	idard
PUIS.1.0-1.1 45					+								-	-	-					-		sino
2					7									1				-	-	-		cince of the second
Pulle-osoc 47					1			-					-							-		
Pulleno-1.1 45 U	7 7	7			4								-	-					-	-		
ontainer Type: = solvent washed, acid rinsed, Tefton sealed glass jar ⇒ solvent washed acid rinsed riase heille		=	vestigato	nr. I attes	Investigator: I attest that these samples were collected in accordance with standard El field sampling procedures.	s sample:	were col	e collected in procedures.	accorda	ance with	i standa	d El field	samplir	6		Repor	t with E	I Waste	Classifi	Report with El Waste Classification Table	•	R
= natural HDPE plate bottle		Sa	Sampler's Name (EI):	ame (EI):	たり	1		Received by (SGS):	by (SGS)	4				Sam	Sampler's Comments:	ommer	its:					-
u = glass viai, i erion septum LB = Zip-Lock Bag BB = Bulk Bag		4	Print GELSIAN	-isia	F	Sector		Print							1	V	3	1	/			-
Suite 6.01 PVRMC	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009		Signature	MAC NO				Signature	M.	r	x	Lara	rad		13) [90	29	11	0	
	Ph: 9516 0722		Date V3Z	2123	0			Date	60	20	22	9	0.0		Ř	D	0	2	¥	B	(1)	
elaustralia	lab@eiaustralia.com.au		IMPORTANT:	TANT			1					1										
Contamination Remarkation Geotechnical COC June 2021 EODM v.K., STS																						

e: Goo -Goo Clik Act A ST Reofeed boratory: SGS Australia Unit 16, 33 Maddox Street ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499 P: 02 8594 0400 F: 02 8594 0499	5	Project No:																					
sample D H.O.H-O.2	-	these									etiu2 (MN3					(5-3)	(0)0)		ity)				HM A Arsenic Cadmium Chromium Copper
Sample Laboratory ID ID	x Street, V 2015 02 8594 0499			Farally (i filtered	eHA9\X3T8\ sotsedsA\8	eHAq\X∃T8\	/BTEX			uantification Iatural Material (I	Stockpile discret	Stockpile compo		ebixe	Reducible Sulfur		(egnarchange)	vitoubnoo leointoe	hloride	and	HA9 \	uead Mercury Nickel Zinc Arsenic
DI D		Sampling										- əjin	- Əlin				1.0000	EC (c	ele) C	O \ 91	H		Cadmium Chromium
120.1-0.2 49	Date Date	Time	SOIL	IETAW	іц сғ.0 ЭНТО			× MH	NOCS	sədsA		S MN3	S MN3	Jewad	Hq \ Hq	SPOC	RAAA	D / Hq	∃ / Hq	enqlu2	- peeq	-	Lead Mercury Nickel
	67	M8/14	ス	-		X						-							-				Dewatering Suite
1 05 20-5-01 He		-	-			X																	TDS / TDU Hardness
IS litertite						7											-						Total Cyanide Metals (Al, As, Cd, Cr, Cr, Dh, He, Ni, 7n)
						7						_				-							TRH (F1, F2, F3, F4) BTEX
PURASSOL J3						7										-							PAH Total Phenol
PUIB 1.0-1.1 54			/	-		7						_			-	-							LABORATORY
PULICA -02 55						4																	M Standard
PURCOSOG 56						4																	24 Hours
Fula Lino -Lin S7						+	-																48 Hours
AS NOCO-NDS#			_			+															-		72 Hours
HSOIN 1.0-11 SG	, 1 1					7:																	Other
ASOMOWING 60	7 7	\geq	7			X]
Antainer Type: solvent washed, acid rinsed, Tefton sealed glass jar	sjar			Investiga	Itor: I atte	investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.	ise samp	les were	e collected in procedures.	in accor s.	dance wi	th stand	ard El f	eld sam	pling		Rep	Report with El Waste Classification Table	El Was	te Class	ification	Table	۲
 solvent washeu, adu miseu glass botte natural HDPE plastic bottle 			1	Sampler's	Sampler's Name (EI):	5	-		Receive	Received by (SGS):	S):				S	ampler's	Sampler's Comments:	ents:					
2 = glass vial, Tefton Septum B = Zip-Lock Bag BB = Bulk Bag				Print	Print CRIS/PLC	WA	9	S	Print							U	1	V.	2	8	1	1	
40	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	pyrmont NSW 2009	et,	Signature	3	he			Signature	ture	R N	R	and	5) V		1 1	5	jé	2 9	1	0
	Ph: 95	Ph: 9516 0722	1	Date 13	121	23			Date	60	100	20	0	0.0	5	2	ð	D	0	2	¥	B	1 A
	lab@eiaustralia.com.au coc June 2021 FORM v5 - SGS	COC June 2021 FORM v5 - SGS		IMPORTANT: Please e-mail laborato	TAN ^T	IMPORTANT: Please e-mail taboratory results to: lab@eiaustralia.com.au	ts to: la	o@eiau	Istralia	.com.a	n												

					5	valiphic iniality	VIND	_								Analysis	VSIS									Comments
10 600-060 EL		GuizaBeth	4 V	Project No:										ejiu2 (MM						(010		(Å)	-			HM A Arsenic Cadmium Chromium Copper
iboratory:	SGS Australia Unit 16, 33 Ma ALEXANDRIA P: 02 8594 040	 SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0499	t, 4 0499			haverig i	bərəfiñ t	sHA9\X3T8\ sotsedsA\80	ehaq\xata\	X3T8/			notteofitineu	3) leineteM lenutel	Stockpile discret	Stockpile compo EC / Foreign Mat	Suite	əbixe	. You aldioubas	3educible Sulfur ((əbnahəxə noita:	(aprisional conductivi	hloride	up	HA91	
Campla	1 aboratory	Containar	Sampling	pling						нят/			D sof	N bett	X=18		6ujuə)			_	140100			17	e WH	
anjine DI	ID	Type	Date	Time	SOIF	IN 24 0	aq c⊭.o ∃HTO			A MH	VOCs BTEX	sedeA	səqsA	Excava	а/нят)		Dewal	Hq / Hq	SPOC	Chrom PFAS				C.	тсгь	Lead Mercury Nickel
1.1-0.1.MOST	51	A/Z/A	-	2014	×			1											-	-		-		1	,	Dewatering Suite
Sortio Bosti		2			-			×													-			1		TDS/TDU Hardness
HSQ3.09-10		>						X																7		Total Cyanide Metals (Al, As, Cd, Cr, Co. Ph. Vo. Wil 7-1
100		2	-	-						×								-						1		TRH (F1, F2, F3, F4) BTEX
3000			-														_	-	-	-	-		-			PAH Total Phenol
SUCE	65		-		-	-				X								-	-	-	-	-		_		LABORATORY
500	66				-					×											-	-				Standard
2002		1					-			1																
000	62	2			->					4																48 Hours
90	68	S, C, Zut	_	-	>	×				×										-	-	-				72 Hours
OCE	4	76.24	>	>	-	×					1													7	4	Other
avt	100	Les Reneer	9		1	+	+	1		T	23					T					-				-	
ontainer Type: = solvent washed, acid rinsed, Tefton sealed glass jar	nsed, Tefton sea	aled glass jar			-	nvestiga	tor: I atte	ist that t	lese sa	nples w	Investigator: I attest that these samples were collected in accordance with standard El field sampling procedures.	ted in at	ccordan	ce with s	standan	d El fie	ld samp	ling	1	Re	port wit	Report with El Waste Classification Table	tste Cla	ssificat	ion Tab	16 · A
= solvent washed, acid rinsed glass botile = natural HDPE plastic bottle	insed glass boli ottle	0			0	ampler's	Sampler's Name (EI):	S ë	r.		Rec	Received by (SGS):	(SGS):					Sa	mpler's	Sampler's Comments:	nents:					
C = glass vial, Tefton Septum B = Zip-Lock Bag		BB = Bulk Bag				Print G	20	Seistane	100	898	Print	int				_			1	N 1	N	9	1	-		
100		Suite	\$ 6.01, 55 'RMONT N	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009		Signature	12	h			S	Signature	A	A	T	Cono	3		3.	j.	ī ;	Y	26	, c	ÍÌ	0
	-		Ph: 9516 0722	6 0722		Date	33	63	<u>s</u>		De	Date	8	02120	22	e	2:4-	V	S	à	Yn	0	2	F	A	2
		lab(Celaustralia.com coc.June 2021 FORM v.5 - SGS	lab@eiaustralia.com.au coc.xme 2021 FORM v.5 - SGS		WPOF ease e-n	IMPORTANT: Please e-mail laborato	T: atory res	ults to:	ab@e	IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au	lia.cor	n.au)											

Sheet 7 of _ O		Sample Matrix	e Matri	-							Analysis	SiS								Comments
Site: Coop God RI	LIZADON Project No:			-	-		-			əti	-			-	-	-			1	HM A Arsenic
Reofers	Hoge Loset				-				24	ns (MN3			(CrS)							Cadmium Chromium Copper
Laboratory:				≥H∀	sot	-	-		uo	l) lehete			Sulfur			-			1	Lead Mercury Nickel
	4		bərətlit b	NBTEX/P/	sedeA\80	X3T8/			uantificati	eM lenutel			eldioubes	ine acite	stion exc	abinold			HA9 \	Zinc HM ^B Arsenic
Sample	Container	Я	leit m		06/60				D sot	-		S∀	a mui	-1 33		_	lstəM		8 WH	Chromium Lasd
		SOIL STAW	n 24.0	анто ^ мн	OCP/	-	VOCs VOCs	səqs∀	sədsA		Dewal	sPOC	толяЭ	2 A Ho			үүвэн	ploh	сгы	Mercury Nickel
1940-1.5-16	MICH BASE ANN	X					-			1	4			-	+	-	4	X		Davraharina Guba
PUC2-1.5-16										-					-			7		pH & EC TDS / TDU
21-51-50hat										-				-	-			X		Hardness Total Cyanide Metals (Al Ac Cil Cr
DI-S. FRONT														-	-			X		CU, Pb, Hg, Ni, Zh) TRH (F1, F2, F3, FA)
70405-15-16														-				X	T	BTEX PAH
7000-1:5-100																		X		LABORATORY
TPUCK-15-1-6														-	-			1	T	
TAYOR IS IC										-	-			-	-			7	T	Standard
7000 -15.16										-								7	T	40 Hours
101101.5-1.C															-			X	1	
TPUILLIG-16														-	-			X		Other
THE STS-16														-	-			7	Τ	
Container Type: J = solvent washed, acid rinsed, Tefton sealed glass jar c = solvent vershed, acid rinsed, here	led glass jar	Ē	vestigati	Investigator: I attest		that these samples were collected in accordance with standard El field sampling procedures.	nples were collected i sampling procedures	ollected i	n accord	ance wit	h standa	d El fielo	-	-	Report	with EI V	Vaste C	Report with El Waste Classification Table	tion Tab	ie . M
P = natural HDPE plastic bottle		Sample	r's Name	Sampler's Name (EI): GT			Rece	Received by (Envirolab)	invirolab):				U.S.	Sampler's Comments	Comme	ants.				
VC = glass vial, Tefton Septum ZLB = Zip-Lock Bag			d	rint Geiste	Print Geisiane Torres		Print	af .					:::		1	(-		
40	Suite 6.01, 55 Miller Street, DVPMONT NSW 2009	Signature	enn,	aller			Sig	Signature	œ	X		1	T		ñ	ž	2010	1	1	
	Ph: 9516 0722	Date	M	121	5		Date		10	10	202	2.01	18	V	FRA	J.	12	2	X	SARA
elaustralia	COC June 2021 FORM V.5 - Enviroled		IMPORTANT: Please e-mail laborate	NT: boratory	results to	IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia com au	iaustra	lia con	TIC .)				
													-							

Market Residue Market Residue Market Residue Market Residue MPN ORTANT. 045 µm field fillered 045 µm field fillered Anabysis Anabysis 045 µm field fillered 045 µm field fillered Anabysis Anabysis 045 µm field fillered 045 µm field fillered Anabysis Anabysis 045 µm field fillered 045 µm field fillered Anabysis Anabysis 045 µm field fillered 045 µm field fillered Anabysis Anabysis 045 µm field fillered 045 µm field fillered 045 µm field fillered Anabysis 045 µm field fillered 045 µm field fillered 045 µm field fillered 045 µm field fillered Anabysis 060 Piceted fillered 045 µm field fillered 045 µm field fillered 045 µm field fillered 045 µm field fillered Anabysis 060 Piceted fillered 070 Piceteres 060 Piceted fillered 070 Piceteres 070 Piceteres Anabysis 060 Piceted fillered 070 Piceteres 070 Piceteres 070 Piceteres 070 Piceteres Date 060 Piceted fillered 070 Piceteres 070 Piceteres<	All Control of Control	Comments	HA9 \	Metal Chromium P HM ^B Chromium	PIOH	X	PH & EC TDS/TDU	Total Cyanide Metals IAL As. Cd. Cr.	Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)	PAH PAH	X		48 Hours	72 Hours	Other	Report with EI Waste Classification Table .	11 1 4	i CARGE	
Sample Matrix Sample Matrix Sample Matrix Ashering Suite Ashering Suite OrtHER Ashering Suite Pervariant Reducible Suite Ashering Suite Prominin Reducible Suite	Project No: Analysis Project No: Sampling Analysis Analysis Source Analysis Analysis Source Analysis Analysis Analysis Analysis Analysis </td <td></td> <td>ictrical conductivity)</td> <td>o) OEC (o ele) OE</td> <td>ydins / Hd / Hd</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Report with El Was</td> <td>ampler's Comments:</td> <td></td> <td></td>		ictrical conductivity)	o) OEC (o ele) OE	ydins / Hd / Hd	-										Report with El Was	ampler's Comments:		
	Date Time Sampling Sa	Analysis	efiu2 ebixi	atering SAS	wed i \ Hq											rdance with standard El field		Ruberres 23 @ 2105	
AMATER Sign Sign Sign Sign Sign Sign Sign Sign	Samp The Sampling Sampli			X sotos	BTE VOC											se samples were collected in accol sampling procedures.	Received by (Envirolai	ature	
	Project No:	Sample Matrix	sHA9\X3T8\ zotsədzA\8C	91/90/9 H위기 ^A 기가 ^A 기가 ^A 가가	VWAT 0.45 0CF							\times	X			Investigator: I attest that the	Sampler's Name (El): GT Print Geisiane Torres	Signature (1)	IMPORTANT:

•

.

SAMPLE RECEIPT ADVICE

Contact	Geisiane Torres	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	Samples Received	Thu 9/2/2023
Order Number	E25947	Report Due	Tue 21/2/2023
Samples	72	SGS Reference	SE243061

This is to confirm that 72 samples were received on Thursday 9/2/2023. Results are expected to be ready by COB Tuesday 21/2/2023. Please quote SGS reference SE243061 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 71 Soil, 1 Water 13/2/2023@5:24pm Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 10.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

21 Soil and 1 Water have been placed on hold as no tests have been assigned for it. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS _

Client EI AUSTRALIA

E25947 600-660 Elizabeth St Redfern Project

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP401_0.1-0.2	30	14	26	11	7	10	11	7
002	TP401_0.5-0.6	30	14	26	11	7	10	11	7
003	TP401_1.0-1.1	30	14	26	11	7	10	11	7
004	TP402_0.1-0.2	30	14	26	11	7	10	11	7
005	TP402_0.5-0.6	30	14	26	11	7	10	11	7
006	TP402_1.0-1.1	30	14	26	11	7	10	11	7
007	TP403_0.1-0.2	30	14	26	11	7	10	11	7
008	TP403_0.5-0.6	30	14	26	11	7	10	11	7
009	TP403_1.0-1.1	30	14	26	11	7	10	11	7
010	TP404_0.1-0.2	30	14	26	11	7	10	11	7
011	TP404_0.5-0.6	30	14	26	11	7	10	11	7
012	TP404_1.0-1.1	30	14	26	11	7	10	11	7
013	TP405_0.1-0.2	30	14	26	11	7	10	11	7
014	TP405_0.5-0.6	30	14	26	11	7	10	11	7
015	TP405_1.0-1.1	30	14	26	11	7	10	11	7
016	TP406_0.1-0.2	30	14	26	11	7	10	11	7
017	TP406_0.5-0.6	30	14	26	11	7	10	11	7
018	TP406_1.0-1.1	30	14	26	11	7	10	11	7
019	TP407_0.1-0.2	30	14	26	11	7	10	11	7
020	TP407_0.5-0.6	30	14	26	11	7	10	11	7
021	TP407_1.0-1.1	30	14	26	11	7	10	11	7
022	TP408_0.1-0.2	30	14	26	11	7	10	11	7
023	TP408_0.5-0.6	30	14	26	11	7	10	11	7
024	TP408_1.0-1.1	30	14	26	11	7	10	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _

Client EI AUSTRALIA

E25947 600-660 Elizabeth St Redfern Project

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	TP409_0.1-0.2	30	14	26	11	7	10	11	7
026	TP409_0.5-0.6	30	14	26	11	7	10	11	7
027	TP409_1.0-1.1	30	14	26	11	7	10	11	7
028	TP410_0.1-0.2	30	14	26	11	7	10	11	7
029	TP410_0.5-0.6	30	14	26	11	7	10	11	7
030	TP410_1.0-1.1	30	14	26	11	7	10	11	7
031	TP411_0.1-0.2	30	14	26	11	7	10	11	7
032	TP411_0.5-0.6	30	14	26	11	7	10	11	7
033	TP411_1.0-1.1	30	14	26	11	7	10	11	7
034	TP412_0.1-0.2	30	14	26	11	7	10	11	7
035	TP412_0.5-0.6	30	14	26	11	7	10	11	7
036	TP412_1.0-1.1	30	14	26	11	7	10	11	7
037	TP413_0.1-0.2	30	14	26	11	7	10	11	7
038	TP413_0.5-0.6	30	14	26	11	7	10	11	7
039	TP413_1.0-1.1	30	14	26	11	7	10	11	7
040	TP414_0.1-0.2	30	14	26	11	7	10	11	7
041	TP414_0.5-0.6	30	14	26	11	7	10	11	7
042	TP414_1.0-1.1	30	14	26	11	7	10	11	7
043	TP415_0.1-0.2	30	14	26	11	7	10	11	7
044	TP415_0.5-0.6	30	14	26	11	7	10	11	7
045	TP415_1.0-1.1	30	14	26	11	7	10	11	7
046	TP416_0.1-0.2	30	14	26	11	7	10	11	7
047	TP416_0.5-0.6	30	14	26	11	7	10	11	7
048	TP416_1.0-1.1	30	14	26	11	7	10	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS _

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
049	TP417_0.1-0.2	30	14	26	11	7	10	11	7
050	TP417_0.5-0.6	30	14	26	11	7	10	11	7
051	TP417_1.0-1.1	30	14	26	11	7	10	11	7
052	TP418_0.1-0.2	30	14	26	11	7	10	11	7
053	TP418_0.5-0.6	30	14	26	11	7	10	11	7
054	TP418_1.0-1.1	30	14	26	11	7	10	11	7
055	TP419_0.1-0.2	30	14	26	11	7	10	11	7
056	TP419_0.5-0.6	30	14	26	11	7	10	11	7
057	TP419_1.0-1.1	30	14	26	11	7	10	11	7
058	BH501M_0.3-0.45	30	14	26	11	7	10	11	7
059	BH501M_1.0-1.1	30	14	26	11	7	10	11	7
060	BH502M_0.4-0.6	30	14	26	11	7	10	11	7
061	BH502M_1.0-1.1	30	14	26	11	7	10	11	7
062	BH503_0.4-0.5	30	14	26	11	7	10	11	7
063	BH503_0.9-1.0	30	14	26	11	7	10	11	7
064	QD1	-	-	-	-	7	10	11	7
065	QD3	-	-	-	-	7	10	11	7
066	QD4	-	-	-	-	7	10	11	7
067	QD6	-	-	-	-	7	10	11	7
069	ТВ	-	-	-	-	-	-	11	-
070	тѕ		-	-	-	-	-	11	-
071	BH501M_1.5-1.6	30	14	26	11	7	10	11	7
072	BH503M_1.5-1.6	30	14	26	11	7	10	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

14/02/2023

CLIENT DETAILS _

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	TP401_0.1-0.2	2	1	1
002	TP401_0.5-0.6	2	1	1
003	TP401_1.0-1.1	2	1	1
004	TP402_0.1-0.2	2	1	1
005	TP402_0.5-0.6	2	1	1
006	TP402_1.0-1.1	2	1	1
007	TP403_0.1-0.2	2	1	1
008	TP403_0.5-0.6	2	1	1
009	TP403_1.0-1.1	2	1	1
010	TP404_0.1-0.2	2	1	1
011	TP404_0.5-0.6	2	1	1
012	TP404_1.0-1.1	2	1	1
013	TP405_0.1-0.2	2	1	1
014	TP405_0.5-0.6	2	1	1
015	TP405_1.0-1.1	2	1	1
016	TP406_0.1-0.2	2	1	1
017	TP406_0.5-0.6	2	1	1
018	TP406_1.0-1.1	2	1	1
019	TP407_0.1-0.2	2	1	1
020	TP407_0.5-0.6	2	1	1
021	TP407_1.0-1.1	2	1	1
022	TP408_0.1-0.2	2	1	1
023	TP408_0.5-0.6	2	1	1
024	TP408_1.0-1.1	2	1	1

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

CLIENT DETAILS __

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

SUMMAR	Y OF ANALYSIS			
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
025	TP409_0.1-0.2	2	1	1
026	TP409_0.5-0.6	2	1	1
027	TP409_1.0-1.1	2	1	1
028	TP410_0.1-0.2	2	1	1
029	TP410_0.5-0.6	2	1	1
030	TP410_1.0-1.1	2	1	1
031	TP411_0.1-0.2	2	1	1
032	TP411_0.5-0.6	2	1	1
033	TP411_1.0-1.1	2	1	1
034	TP412_0.1-0.2	2	1	1
035	TP412_0.5-0.6	2	1	1
036	TP412_1.0-1.1	2	1	1
037	TP413_0.1-0.2	2	1	1
038	TP413_0.5-0.6	2	1	1
039	TP413_1.0-1.1	2	1	1
040	TP414_0.1-0.2	2	1	1
041	TP414_0.5-0.6	2	1	1
042	TP414_1.0-1.1	2	1	1
043	TP415_0.1-0.2	2	1	1
044	TP415_0.5-0.6	2	1	1
045	TP415_1.0-1.1	2	1	1
046	TP416_0.1-0.2	2	1	1
047	TP416_0.5-0.6	2	1	1
048	TP416_1.0-1.1	2	1	1

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS __

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum Hvdrocarbons in Water
049	TP417_0.1-0.2	2	1	1	_	-
050	TP417_0.5-0.6	2	1	1	-	-
051	TP417_1.0-1.1	2	1	1	-	-
052	TP418_0.1-0.2	2	1	1	-	-
053	TP418_0.5-0.6	2	1	1	-	-
054	TP418_1.0-1.1	2	1	1	-	-
055	TP419_0.1-0.2	2	1	1	-	-
056	TP419_0.5-0.6	2	1	1	-	-
057	TP419_1.0-1.1	2	1	1	-	-
058	BH501M_0.3-0.45	2	1	1	-	-
059	BH501M_1.0-1.1	2	1	1	-	-
060	BH502M_0.4-0.6	2	1	1	-	-
061	BH502M_1.0-1.1	2	1	1	-	-
062	BH503_0.4-0.5	2	1	1	-	-
063	BH503_0.9-1.0	2	1	1	-	-
064	QD1	-	1	1	-	-
065	QD3	-	1	1	-	-
066	QD4	-	1	1	-	-
067	QD6	-	1	1	-	-
068	QR	-	-	-	11	7
069	ТВ	-	-	1	-	-
071	BH501M_1.5-1.6	2	1	1	-	-
072	BH503M_1.5-1.6	2	1	1	_	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS __

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID		Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water
068	QR		1	7	9

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25947 600-660 Elizabeth St Redfern

ANALYTICAL REPORT

ontact	Geisiane Torres	Manager	Huong Crawford
ient	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
dress	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
ohone	61 2 95160722	Telephone	+61 2 8594 0400
simile	(Not specified)	Facsimile	+61 2 8594 0499
ail	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
oject	E25947 600-660 Elizabeth St Redfern	SGS Reference	SE243061A R0
der Number	E25947	Date Received	22/2/2023
nples	72	Date Reported	1/3/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

Skinlight

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC [AN006] Tested: 23/2/2023

			TP405_0.1-0.2	TP407_0.1-0.2	TP409_0.5-0.6	TP414_0.5-0.6	BH501M_0.3-0.45
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/2/2023	- 6/2/2023	- 6/2/2023	- 7/2/2023	- 8/2/2023
PARAMETER	UOM	LOR	SE243061A.013	SE243061A.019	SE243061A.026	SE243061A.041	SE243061A.058
pH 1:20	pH Units	-	7.2	7.5	8.4	7.1	8.6
pH 1:20 plus HCL	pH Units	-	2.4	2.2	2.3	2.2	2.3
Extraction Solution Used	No unit	-	1	1	1	1	1
Mass of Sample Used*	g	-	25	25	25	25	25
Volume of ExtractionSolution Used*	mL	-	500	500	500	500	500
pH TCLP after 18 hours	pH Units	-	5.6	5.0	5.1	4.9	5.3

			BH502M_0.4-0.6
PARAMETER	UOM	LOR	SOIL - 8/2/2023 SE243061A.060
рН 1:20	pH Units	-	8.3
pH 1:20 plus HCL	pH Units	-	2.3
Extraction Solution Used	No unit	-	1
Mass of Sample Used*	g	-	25
Volume of ExtractionSolution Used*	mL	-	500
pH TCLP after 18 hours	pH Units	-	5.0

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract [AN420] Tested: 24/2/2023

			TP405_0.1-0.2	TP407_0.1-0.2	TP409_0.5-0.6	TP414_0.5-0.6	BH501M_0.3-0.45
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/2/2023
PARAMETER	UOM	LOR	SE243061A.013	SE243061A.019	SE243061A.026	SE243061A.041	SE243061A.058
Benzo(a)pyrene	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH502M_0.4-0.6
			SOIL
			- 8/2/2023
PARAMETER	UOM	LOR	SE243061A.060
Benzo(a)pyrene	µg/L	0.1	<0.1

TCLP (Toxicity Characteristic Leaching Procedure) for Metals [AN006] Tested: 23/2/2023

			TP401 0.5-0.6	TP403 0.1-0.2	TP408 0.1-0.2	TP417 0.5-0.6	BH503_0.4-0.5
			1P401_0.5=0.6	1P403_0.1-0.2	1P400_0.1-0.2	1P417_0.5=0.6	BH503_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
					-	-	-
			6/2/2023	6/2/2023	6/2/2023	7/2/2023	8/2/2023
PARAMETER	UOM	LOR	SE243061A.002	SE243061A.007	SE243061A.022	SE243061A.050	SE243061A.062
pH 1:20	pH Units	-	8.3	8.2	7.6	8.3	7.8
pH 1:20 plus HCL	pH Units	-	3.2	2.2	2.2	2.4	2.3
Extraction Solution Used	No unit	-	1	1	1	1	1
Mass of Sample Used*	g	-	13	13	13	13	13
Volume of ExtractionSolution Used*	mL	-	250	250	250	250	250
pH TCLP after 18 hours	pH Units	-	6.1	5.6	5.0	5.8	5.6

			BH503_0.9-1.0
			SOIL
			- 8/2/2023
PARAMETER	UOM	LOR	SE243061A.063
pH 1:20	pH Units	-	7.8
pH 1:20 plus HCL	pH Units	-	2.2
Extraction Solution Used	No unit	-	1
Mass of Sample Used*	g	-	13
Volume of ExtractionSolution Used*	mL	-	250
pH TCLP after 18 hours	pH Units	-	5.1

SE243061A R0

Metals in TCLP Extract by ICPOES [AN320] Tested: 27/2/2023

Lead, Pb	mg/L	0.02	0.54	0.17	1.0	0.07	6.5
PARAMETER	UOM	LOR	SE243061A.002	SE243061A.007	SE243061A.019	SE243061A.022	SE243061A.050
							7/2/2023
							-
			SOIL	SOIL	SOIL	SOIL	SOIL
			1P401_0.5=0.6	1P403_0.1=0.2	1P407_0.1=0.2	1P406_0.1=0.2	1P417_0.5-0.6
			TP401 0.5-0.6	TP403 0.1-0.2	TP407 0.1-0.2	TP408 0.1-0.2	TP417 0.5-0.6

			BH502M_0.4-0.6	BH503_0.4-0.5	BH503_0.9-1.0
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE243061A.060	SE243061A.062	SE243061A.063
Lead, Pb	mg/L	0.02	0.07	0.68	0.47

Mercury in TCLP Extract [AN311(Perth) /AN312] Tested: 27/2/2023

			BH502M_0.4-0.6
			SOIL
			- 8/2/2023
PARAMETER	UOM	LOR	SE243061A.060
Mercury	mg/L	0.0001	0.0001

METHOD	METHODOLOGY SUMMARY
AN006	Contaminants of interest in a waste material are leached out of the waste with a selected leaching solution under controlled conditions. The ratio of sample to extraction fluid is 100g to 2L (1 to 20 by mass). The concentration of each contaminant of interest is determined in the leachate by appropriate methods after separation from the sample by filtering. Base on USEPA 1311.
AN006	Extraction Fluid #1: This fluid is made by combining 128.6mL of dilute sodium hydroxide solution and 11.5mL glacial acetic acid with water and diluting to a volume of 2 litres. The pH of this fluid should be 4.93 ± 0.05 .
AN006	Extraction Fluid #2: This fluid is made by diluting 5.7mL glacial acetic acid with water to a volume of 1 litre. The pH of this fluid should be 2.88 ± 0.05.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311(Perth) /AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

vice. NVL holding IS LNR Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.
 UOM
 Unit of Measure.

 LOR
 Limit of Reporting.

 ↑↓
 Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	SE243061A R0
Order Number	E25947	Date Received	22 Feb 2023
Samples	72	Date Reported	01 Mar 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC

6 items

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

12 Soil 22/2/2023@4:39pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

Email Yes 10.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd

Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Mercury in TCLP Extract							Method: ME-(AU)-[ENV]	AN311(Perth) /AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH502M_0.4-0.6	SE243061A.060	LB272442	08 Feb 2023	22 Feb 2023	08 Mar 2023	27 Feb 2023	08 Mar 2023	27 Feb 2023
Metals in TCLP Extract by I	CPOES						Method: I	ME-(AU)-[ENV]AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP401_0.5-0.6	SE243061A.002	LB272445	06 Feb 2023	22 Feb 2023	05 Aug 2023	27 Feb 2023	05 Aug 2023	27 Feb 2023
TP403_0.1-0.2	SE243061A.007	LB272445	06 Feb 2023	22 Feb 2023	05 Aug 2023	27 Feb 2023	05 Aug 2023	27 Feb 2023
TP407_0.1-0.2	SE243061A.019	LB272445	06 Feb 2023	22 Feb 2023	05 Aug 2023	27 Feb 2023	05 Aug 2023	27 Feb 2023
TP408_0.1-0.2	SE243061A.022	LB272445	06 Feb 2023	22 Feb 2023	05 Aug 2023	27 Feb 2023	05 Aug 2023	27 Feb 2023
TP417_0.5-0.6	SE243061A.050	LB272445	07 Feb 2023	22 Feb 2023	06 Aug 2023	27 Feb 2023	06 Aug 2023	27 Feb 2023
BH502M_0.4-0.6	SE243061A.060	LB272445	08 Feb 2023	22 Feb 2023	07 Aug 2023	27 Feb 2023	07 Aug 2023	27 Feb 2023
BH503_0.4-0.5	SE243061A.062	LB272445	08 Feb 2023	22 Feb 2023	07 Aug 2023	27 Feb 2023	07 Aug 2023	27 Feb 2023
BH503_0.9-1.0	SE243061A.063	LB272445	08 Feb 2023	22 Feb 2023	07 Aug 2023	27 Feb 2023	07 Aug 2023	27 Feb 2023
PAH (Polynuclear Aromatic	Hydrocarbons) in TCLP E	xtract					Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP405_0.1-0.2	SE243061A.013	LB272320	06 Feb 2023	22 Feb 2023	27 Feb 2023	24 Feb 2023	05 Apr 2023	01 Mar 2023
TP407_0.1-0.2	SE243061A.019	LB272320	06 Feb 2023	22 Feb 2023	27 Feb 2023	24 Feb 2023	05 Apr 2023	01 Mar 2023
TP409_0.5-0.6	SE243061A.026	LB272320	06 Feb 2023	22 Feb 2023	27 Feb 2023	24 Feb 2023	05 Apr 2023	01 Mar 2023
TP414_0.5-0.6	SE243061A.041	LB272320	07 Feb 2023	22 Feb 2023	28 Feb 2023	24 Feb 2023	05 Apr 2023	01 Mar 2023
BH501M_0.3-0.45	SE243061A.058	LB272320	08 Feb 2023	22 Feb 2023	01 Mar 2023	24 Feb 2023	05 Apr 2023	01 Mar 2023
BH502M_0.4-0.6	SE243061A.060	LB272320	08 Feb 2023	22 Feb 2023	01 Mar 2023	24 Feb 2023	05 Apr 2023	01 Mar 2023
TCLP (Toxicity Characteristi	ic Leaching Procedure) for	Metals					Method: I	ME-(AU)-[ENV]AN006
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP401_0.5-0.6	SE243061A.002	LB272273	06 Feb 2023	22 Feb 2023	05 Aug 2023	23 Feb 2023	27 Feb 2023	27 Feb 2023
TP403_0.1-0.2	SE243061A.007	LB272273	06 Feb 2023	22 Feb 2023	05 Aug 2023	23 Feb 2023	27 Feb 2023	27 Feb 2023
TP408_0.1-0.2	SE243061A.022	LB272273	06 Feb 2023	22 Feb 2023	05 Aug 2023	23 Feb 2023	27 Feb 2023	27 Feb 2023
TP417_0.5-0.6	SE243061A.050	LB272273	07 Feb 2023	22 Feb 2023	06 Aug 2023	23 Feb 2023	27 Feb 2023	27 Feb 2023
BH503_0.4-0.5	SE243061A.062	LB272273	08 Feb 2023	22 Feb 2023	07 Aug 2023	23 Feb 2023	27 Feb 2023	27 Feb 2023
BH503_0.9-1.0	SE243061A.063	LB272273	08 Feb 2023	22 Feb 2023	07 Aug 2023	23 Feb 2023	27 Feb 2023	27 Feb 2023
TCLP (Toxicity Characteristi	ic Leaching Procedure) for	Organics/SVOC					Method: I	ME-(AU)-[ENV]AN006
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP405_0.1-0.2	SE243061A.013	LB272274	06 Feb 2023	22 Feb 2023	20 Feb 2023	23 Feb 2023†	27 Feb 2023	27 Feb 2023
TP407_0.1-0.2	SE243061A.019	LB272274	06 Feb 2023	22 Feb 2023	20 Feb 2023	23 Feb 2023†	27 Feb 2023	27 Feb 2023
TP409_0.5-0.6	SE243061A.026	LB272274	06 Feb 2023	22 Feb 2023	20 Feb 2023	23 Feb 2023†	27 Feb 2023	27 Feb 2023
TP414_0.5-0.6	SE243061A.041	LB272274	07 Feb 2023	22 Feb 2023	21 Feb 2023	23 Feb 2023†	27 Feb 2023	27 Feb 2023
BH501M_0.3-0.45	SE243061A.058	LB272274	08 Feb 2023	22 Feb 2023	22 Feb 2023	23 Feb 2023†	27 Feb 2023	27 Feb 2023
BH502M 0.4-0.6	SE243061A.060	LB272274	08 Feb 2023	22 Feb 2023	22 Feb 2023	23 Feb 2023†	27 Feb 2023	27 Feb 2023

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

AH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP405_0.1-0.2	SE243061A.013	%	40 - 130%	71
	TP407_0.1-0.2	SE243061A.019	%	40 - 130%	73
	TP409_0.5-0.6	SE243061A.026	%	40 - 130%	54
	TP414_0.5-0.6	SE243061A.041	%	40 - 130%	77
	BH501M_0.3-0.45	SE243061A.058	%	40 - 130%	63
	BH502M_0.4-0.6	SE243061A.060	%	40 - 130%	66
d14-p-terphenyl (Surrogate)	TP405_0.1-0.2	SE243061A.013	%	40 - 130%	74
	TP407_0.1-0.2	SE243061A.019	%	40 - 130%	76
	TP409_0.5-0.6	SE243061A.026	%	40 - 130%	65
	TP414_0.5-0.6	SE243061A.041	%	40 - 130%	88
	BH501M_0.3-0.45	SE243061A.058	%	40 - 130%	68
	BH502M_0.4-0.6	SE243061A.060	%	40 - 130%	75
d5-nitrobenzene (Surrogate)	TP405_0.1-0.2	SE243061A.013	%	40 - 130%	71
	TP407_0.1-0.2	SE243061A.019	%	40 - 130%	76
	TP409_0.5-0.6	SE243061A.026	%	40 - 130%	54
	TP414_0.5-0.6	SE243061A.041	%	40 - 130%	77
	BH501M_0.3-0.45	SE243061A.058	%	40 - 130%	58
	BH502M_0.4-0.6	SE243061A.060	%	40 - 130%	65

METHOD BLANKS

SE243061A R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in TCLP Extract Method: ME-(AU)-[ENV] ^A				
Sample Number	Parameter	Units	LOR	Result
LB272442.001	Mercury	mg/L	0.0001	<0.0001

Metals in TCLP Extract by ICPOES

Metals in TCLP Extract by ICPOES				hod: ME-(AU)-[ENV]AN320
Sample Number	Parameter	Units	LOR	Result
LB272445.001	Lead, Pb	mg/L	0.02	<0.02

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

Sample Number		Parameter	Units	LOR	Result
LB272320.001		Benzo(a)pyrene	μg/L	0.1	<0.1
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	84
		d14-p-terphenyl (Surrogate)	%	-	82
		d5-nitrobenzene (Surrogate)	%	-	90

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

PAH (Polynuclear A	Aromatic Hydrocarbo	ons) in TCLP Extra	ct				Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE243061A.060	LB272320.026		Benzo(a)pyrene	μg/L	0.1	<0.1	0.1	142	13
		Surrogates	2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.4	30	10
			d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.4	30	15
			d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.4	30	8

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOE	S				N	lethod: ME-(A	U)-[ENV]AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB272445.002	Lead, Pb	mg/L	0.02	0.49	0.5	80 - 120	98

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB272320.002		Benzo(a)pyrene	µg/L	0.1	31	40	60 - 140	78
	Surrogates	2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	88
		d14-p-terphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	86
		d5-nitrobenzene (Surrogate)	μg/L	-	0.5	0.5	40 - 130	94

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter

Units LOR

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

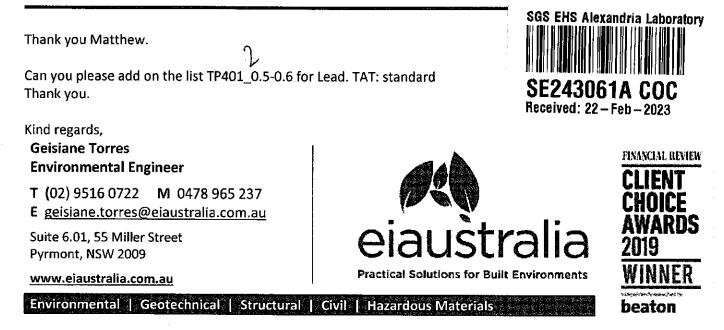
Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- ⁽⁵⁾ Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- 1 LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.


Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Yin, Emily (Sydney)

From:	Geisiane Torres - ElAustralia <geisiane.torres@eiaustralia.com.au></geisiane.torres@eiaustralia.com.au>
Sent:	Wednesday, 22 February 2023 4:51 PM
То:	AU.Environmental.Sydney, AU (Sydney)
Cc:	Sergio Raposeira - ElAustralia; Sharon Li - ElAustralia; AU.SampleReceipt.Sydney, AU (Sydney)
Subject:	RE: [EXTERNAL] RE: SPLIT Report Job SE243061, your reference E25947 600-660 Elizabeth St Redfern, order number E25947

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

From: AU.Environmental.Sydney, AU (Sydney) [mailto:AU.Environmental.Sydney@sgs.com]
Sent: Wednesday, 22 February 2023 4:43 PM
To: Geisiane Torres - EIAustralia
Cc: Sergio Raposeira - EIAustralia; Sharon Li - EIAustralia; AU.Environmental.Sydney, AU (Sydney);
AU.SampleReceipt.Sydney, AU (Sydney)
Subject: RE: [EXTERNAL] RE: SPLIT Report Job SE243061, your reference E25947 600-660 Elizabeth St Redfern, order number E25947

Caution: This email originated from outside your organization and might have suspicious subject or content. PLEASE DO NOT CLICK ANY LINKS AND/OR OPEN ANY ATTACHEMENTS UNLESS YOU CAN CONFIRM THE SENDER. When in doubt, please report suspicious emails to: <u>quarantine@eiaustralia.com.au</u>

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Yin, Emily (Sydney)

From:	AU.Environmental.Sydney, AU (Sydney)
Sent:	Wednesday, 22 February 2023 4:53 PM
То:	AU.SampleReceipt.GBS, AU (Alexandria)
Cc:	AU.Environmental.Sydney, AU (Sydney); AU.SampleReceipt.Sydney, AU (Sydney)
Subject:	FW: [EXTERNAL] RE: SPLIT Report Job SE243061, your reference E25947 600-660
	Elizabeth St Redfern, order number E25947
Attachments:	Fig 1 redfern.png; fig 2 redfern.png

Hi GBS team.

Please book these TCLPs in as an A job, standard TAT.

Pb - 7, 19, 22, 50, 60, 62, 63 B(a)P - 13, 19, 26, 41, 58, 60 Hg - 60

Thanks.

Matthew Tyler Environment, Health & Safety Client Services

SGS Australia Pty Ltd Unit 16, 33 Maddox Street Alexandria NSW 2015

From: Geisiane Torres - ElAustralia <geisiane.torres@eiaustralia.com.au>

Sent: Wednesday, 22 February 2023 4:39 PM To: AU.Environmental.Sydney, AU (Sydney) <AU.Environmental.Sydney@SGS.com>; AU.SampleReceipt.Sydney, AU (Sydney) <AU.SampleReceipt.Sydney@sgs.com> Cc: Sergio Raposeira - ElAustralia <sergio.raposeira@eiaustralia.com.au>; Sharon Li - ElAustralia <sharon.li@eiaustralia.com.au> Subject: [EXTERNAL] RE: SPLIT Report Job SE243061, your reference E25947 600-660 Elizabeth St Redfern, order number E25947

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi SGS team,

Can you please book TCLP for samples highlighted in blue. Please refer to fig 1 and fig 2 attached. TAT: standard Thank you.

Best regards,

Summary of Laboratory Analytical Results for E2594? 600-660 Elizabeth St Redfern

elarrification ir Spacial Warta (Arbortor Warto) Whore detected s R ₩₽ 뛾 °N RN S gg ź £ £ Ϋ́ £ ž ž Asbestos > 2 maika -PCB Warts ⁶ ŝ ŝ ŝ ŝ ≝⊽ 뛷호 Total PCBs £ £ ç Ë ⊽ £⊽ 딹문 ₩. ű 1000 1000 19 EN 15 ЧN θR 250 250 <u>1.</u>7 1.1 OPP= £ ۴ s 2 malka -Schoduled Wæte^s Æ ЩN ű ű Ψ. ŝ g ŝ £ ŝ ŝ £ ⊽ OCPs Ż ÷ 4 ω 40,000 10,000 40,000 80 to 10 to 10,000 56 RF 85 230 NR 190 뛷 C-15 - C-15 똪 £ TRHS 20 NB (20 2,600 2,600 2 H 2 H 2 ¢20 Ŷ29 Ce Ca £ ź 0.3 MA <0.3 NA <0.3 NA <0.3 NA ¢0.3 1,000 1.800 1,000 7,200 Total Xylenes ŝ 200 ¥2 2 10 N 00 N 00 10 AN 40.1 AN 1,0\$0 2,400 4,320 600 Ethylbeazene 8 22 BTEX 5 <u>x</u> 5 AN SO N 00 X 00 1,152 2.073 283 14.4 518 돌 2 Tolvene ¢۵ in 10 N 00 NA 0.1 ₽ 5 ₽ Benzens ş e la 2 6.50 등 법 e E H ۲ ű S E 33 ЧN 200 200 **\$00** \$00 g Total PAHs HE ۳ PAHS ALE PAG **ZOLPHOO** NA Solo 5 90 ź g 6.04 ₽ 0.16 ¢.\$ 2 3 Beazo(0)pyreae NN 0.53 0.34 NA 0.41 0.48 5 Ň ٧N ĝ 5 H ≨ Ŧ 2 ŝ ₽ **0**.8 200 252 I 4 Ň AN AN AN 4,200 3.4 ¥ 1,050 **160** ų. g 顓 \$ N ** -TCLP Req. 450 018 100 Per Mach 210 <u>6</u> 1,500 6.000 ٩N g **Heavy Netals** 4 ŝ w ŝ 2 -13 1,900 1 100 NA 5.4 ¥ 9.9 M 104 4005 4 un. 2 ¢0.3 NA 0.5 NA 4 1 1 3 ₿ 400 ¥ 2 ន + 3 π 2,000 $\mathfrak{C} \overset{\mathsf{V}}{\xrightarrow{}} \mathfrak{C} \overset{\mathsf{V}}{\overset{\mathsf{V}}} \mathfrak{C} \overset{\mathsf{V}} \mathfrak{C} \overset{\mathsf{V}} \mathfrak{C} \overset{\mathsf{V}}{\times} \mathfrak{C} \overset{\mathsf{V}}} \mathfrak{C} \overset{\mathsf{V}}{\mathfrak{C} \overset{\mathsf{$ + y ⊲ ΣĽ Ŷ ĝ 500 ŝ ŝ m Sampling date Special Warte / Scheduled Warte CT2 (m4/k4) ³ 5001 (m4/k4) TCLP2 (=4/L) 5002 (me/ka) TCLP1 (**■**4/L) 6/02/2023 **Vaste Classification** 952 UCL General Salid MSW EPA 2014 Bartricted Salid Marta TP403_0.3-0.2-TCLP TP401_0.1-0.2 TP401_0.1-0.2-TCLP P408_0.1-0.2-TCLP TP409_0.5-0.6-TCLP HSW EPA TP405_0.1-0.2-TCLP Y.C.F. 2014 Sample (D TP409_0.5-0.6 FP403_0.1-0.2 FP405_0.1-0.2 P408_0.1-0.2

Waste Classification Assessment Criteria

Mot Anduced

÷

NA

E2XXXX XX_VCC00

E2XXXX XX_VCC00#

Redfern
ភ័
Elizabeth
60
9-009 /
E25947
ē
Results
nalytical
boratory A
£Ľ,
Summarg o

Control Control Control Control		·····································	·金皮等的 康養 李 大学 ·爱尔兰大学 · 王 李 子 · 金字·田子 · 李 李字· · 李 字字·田子 · 李字·	and the second second		1 St. 1. 1. 1. 1.	1 A. A. D. D. D.				10	a the graders. A frequencies		<u>na da</u> Ng Ap Ngar			Alder N. L. S. C. M. Mar.
CTT (mqths) ⁴ 2014 TCLP1 (mqths) ⁴ 2014 CLP1 (mqths) ¹ 2014 CLP2 (mqths) ¹ 2013 CCLP2 (mqths) ⁴ 2013 SCC2 (mqths) ⁴ 2014 SCC2 (mqths) ⁴	• • 00 00 • 00	100 ¹ 5 400 ¹ 20 20				20(0)pyr28c	stal PARs	Benzae		Ethylbenzene	Total Xylenes		Cia Cia	OCP#	oppe	Total PC8s	ne se un son son son son e parti son son son son e parti son son e parti s
2014 TCLP1 (mell) S001 (melle) ¹ S014 C12 (melle) ¹ S014 S012 (melle) ¹ S022 (melle) ¹ S022 (melle) ¹ S022 (melle) ¹	400 4 50 -	5 1,900 200 ¹ 200 200 7 500	100	40	Ŧ	0.4	200	\$	344	\$00	1,000	¢50 1	10,600	÷50	250	<56	Ť
S001 (mr(ky) ¹ 2014 CT2 (mr(ky) ² Suita TCLP2 (mr(ky) ⁴ Scc22 (mr(ky) ⁴ Scc22 (mr(ky) ⁴ Scc22 (mr(ky) ⁴	00 c	1,900 400 ⁵ 20 7 600	u	N	0.2	0.04	Ŧ	0.5	1d.4	3¢	S.	ця М	¥	ŧ	÷	£	ŧ
CT2 (multer) ¹ Said TCLP2 (multe) Scc2 (multer) ⁴ Scc2 (multer) ⁴ scc2 (multer) ⁴		400 ⁵ 20 7600	1,500	1,050	20	10	200	*	51%	1,080	1,800	650	0,000	5 0	250	ŝ	Ř
Selia Selia Seco (meth.) ⁴ Seco (meth.) ⁴ una 1 Setadula Veru	4 00	20 7 500	400	160	¥	3.2	\$00	÷	1,152	2,400	4,900	2,600	40'400	ŝ	1000	450	Ř
5562 (mether) 4 wint 5 should be we	400	7 600	2		Q.\$	0.16	Ë	~	8	0 <u>2</u>	500	똜	¥	až A	£	en a	ŧ
		-	6,000	4,200	200	8	\$00	72	2,073	4,320	7,200	2,600	40,000		100	05,	æ
													~~ ⁵	sZmatka- Schodulad Warta ⁵	iz, — M	>2matka- >CB <is Warto[€] Wa</is 	Whore detected classification à Special Warte (Arbarter Warte)
	<0.3	2.3	81	1.1	60.0	1. C. 4.	86	¢0.1	£0.1	<0.1 	<0.3	┝	330	₽ ₽	┝	Ŷ	٥N
TP414_0.5-0.6-TCLP NA	ΝA	ΝÁ	ΝΑ	NA N		al P. P. et	ä	A M	NA N	NA NA	٩Y		NR	an An		aN	AN
TP416_1.0-1.1	<0.3	60	ę	0.6		0.2	-	<0.1	40.1	<u>6.1</u>	<0.3		0 1	÷		₽	No No
	9.4			1.8	0.31		2	¢0.1	\$0.	\$0.1	<0.5	<20	ŧ	÷	-+	÷	No
	¥N N			AN .		TCLP Req.	 딸 :	VN -	ž	₹	¥.	+	E e	щ,		Ę,	вN 1
	C.U)	2	h t	0	Т	0.2		.	1 70	5	6:0 2	+	200	; ;	╀	,	on ji
BHS01M 0.3-0.45-TCLP NA	NA U.S	6.3 A M	e a	r₂ ₹0	olib NA		2 <u>9</u>	(U)	1.05 NA	100 AN	(0.3 NA	-	e e	; ¶	un an	; g	g
<u> </u>	¢0.3	9.7	78	7.3		2.6	8	<0.1	1.05	\$0.1	<0.3	\$03	1200	-		₽	No
BH501M_1.0-1.1-TCLP 7/02/2023 NA	٩N	NA	AA	ΝA	NA TO	TCLP Req.	цИ	NA	AA AA	ÅÅ	ΝA		ВN	ц		g	AN
BH502M_0.4-0.6	0.4	õ	03.00	5.9		at a	₽	<0.1	<u>6.</u>	6.1	<0.3	_	870	÷	_	ت	ßo
5-TCLP	٩N		TOTO P. N.	NA NA		CENTRAL	ų	٨A	Ň	MA	٨٨	_	å	đN	\dashv	œ	ЯN
	<0.3		74			2.4	28	¢0.1	\$0.	¢0.1	<u>(0.3</u>		540	÷	-	ت	ŝ
BHS02M_1.0-1.1-TCLP NA	AN S	×۲ ۲	٧N	۲N د	NA TO	TCLP Reg.	EN S	AN 3	AN Y	AN	۷N	EN C	R	RN 2	╉	щ,	AB NB
	t t			2	0.12	- TH	3	-02	100	1	2.07			-	-		2
BH503 0.9-1.0 4	5.5	с с	A DECK	13	0.3	50	44 P C	10	40,	ç Ç	563	20 20	1093		+	4 4	State in the second
TCLP	¥N	Γ	COLOR DATA	NA NA	A M	I N	i a	MA.	NA	MA N	NA NA	a de la de l	a la	g	-	: 2	AD.
	N		NA	٨٨	٩N	NA	щ	NA NA	NA	VN	ΥN	E	g	RN	╞	щV	EN EN
\$52 NCL 7 NC	NC	NC	NC	NC	NC	NC	NC N	NC	NC	NC	NC	NC	NC -	NC		NC	NC

CLIENT DETAILS	3	LABORATORY DETA	ILS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	Samples Received	Wed 22/2/2023
Order Number	E25947	Report Due	Wed 1/3/2023
Samples	72	SGS Reference	SE243061A

SUBMISSION DETAILS

This is to confirm that 72 samples were received on Wednesday 22/2/2023. Results are expected to be ready by COB Wednesday 1/3/2023. Please quote SGS reference SE243061A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 12 Soil 22/2/2023@4:39pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Email Yes 10.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS ·

the its General Conditions of at This document is issued by Company under Service accessible www.sgs.com/en/Terms-and-Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

- SUMMARY	Y OF ANALYSIS	 [
No.	Sample ID	Metals in TCLP Extract by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in TCLP	TCLP (Toxicity Characteristic Leaching	TCLP (Toxicity Characteristic Leaching
002	TP401 0.5-0.6	1	-	6	-
007	TP403 0.1-0.2	1	-	6	-
013	TP405_0.1-0.2	-	4	-	6
019	TP407_0.1-0.2	1	4	-	6
022	TP408 0.1-0.2	1	-	6	-

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

CLIENT DETAILS ____

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

 SUMMARY	OF ANALYSIS			
		0		
No.	Sample ID	PAH (Polynuclear Aromatic Hydrocarbons) in TCLP	TCLP (Toxicity Characteristic Leaching	
026	TP409 0.5-0.6	4	6	
041	TP414 0.5-0.6	4	6	

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

- SUMMAR	Y OF ANALYSIS					
No.	Sample ID	Mercury in TCLP Extract	Metals in TCLP Extract by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in TCLP	TCLP (Toxicity Characteristic Leaching	TCLP (Toxicity Characteristic Leaching
050	TP417 0.5-0.6	-	1	-	6	-
058	BH501M 0.3-0.45	-	-	4	-	6
060	BH502M_0.4-0.6	1	1	4	-	6
062	BH503_0.4-0.5	-	1	-	6	-
063	BH503 0.9-1.0	-	1	-	6	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	PYRMONT NSW 2009 61 2 95160722 (Not specified) Geisiane.Torres @eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E25947 600-660 Elizabeth St Redfern-Add E25947 72	SGS Reference Date Received Date Reported	SE243061B R0 13/3/2023 14/3/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

Shon

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

TCLP (Toxicity Characteristic Leaching Procedure) for Metals [AN006] Tested: 13/3/2023

			TP406_0.1-0.2	TP416_0.1-0.2
PARAMETER	иом	LOR	SOIL - 6/2/2023 SE243061B.016	SOIL - 7/2/2023 SE243061B.046
pH 1:20	pH Units	-	8.2	6.6
pH 1:20 plus HCL	pH Units	-	2.2	2.2
Extraction Solution Used	No unit	-	1	1
Mass of Sample Used*	g	-	13	13
Volume of ExtractionSolution Used*	mL	-	250	250
pH TCLP after 18 hours	pH Units	-	5.1	4.9

Metals in TCLP Extract by ICPOES [AN320] Tested: 14/3/2023

			TP406_0.1-0.2	TP416_0.1-0.2
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	6/2/2023 SE243061B.016	7/2/2023 SE243061B.046
Lead, Pb	mg/L	0.02	0.19	0.14

METHOD	METHODOLOGY SUMMARY
AN006	Contaminants of interest in a waste material are leached out of the waste with a selected leaching solution under controlled conditions. The ratio of sample to extraction fluid is 100g to 2L (1 to 20 by mass). The concentration of each contaminant of interest is determined in the leachate by appropriate methods after separation from the sample by filtering. Base on USEPA 1311.
AN006	Extraction Fluid #1: This fluid is made by combining 128.6mL of dilute sodium hydroxide solution and 11.5mL glacial acetic acid with water and diluting to a volume of 2 litres. The pH of this fluid should be 4.93 ± 0.05.
AN006	Extraction Fluid #2: This fluid is made by diluting 5.7mL glacial acetic acid with water to a volume of 1 litre. The pH of this fluid should be 2.88 ± 0.05.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

-	FOOTNO	TES	
---	--------	-----	--

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern-Add	SGS Reference	SE243061B R0
Order Number	E25947	Date Received	13 Mar 2023
Samples	72	Date Reported	14 Mar 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	2 Soil	Type of documentation received	Email	
Date documentation received	13/3/2023@5:41pm	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	10.3°C	
Sample container provider	SGS	Turnaround time requested	Next Day	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP406_0.1-0.2	SE243061B.016	LB273842	06 Feb 2023	13 Mar 2023	05 Aug 2023	14 Mar 2023	05 Aug 2023	14 Mar 2023
TP416_0.1-0.2	SE243061B.046	LB273842	07 Feb 2023	13 Mar 2023	06 Aug 2023	14 Mar 2023	06 Aug 2023	14 Mar 2023
CLP (Toxicity Character	ristic Leaching Procedure) fo	r Metals					Method: I	VIE-(AU)-[ENV]AN
•	r <mark>istic Leaching Procedure) fo</mark> Sample No.	<mark>r Metals</mark> QC Ref	Sampled	Received	Extraction Due	Extracted	Method: I Analysis Due	ME-(AU)-[ENV]AN Analysed
CLP (Toxicity Character Sample Name TP406_0.1-0.2	• •		Sampled 06 Feb 2023	Received 13 Mar 2023	Extraction Due 05 Aug 2023	Extracted 13 Mar 2023		

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE243061B R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOES	Metals in TCLP Extract by ICPOES				
Sample Number	Parameter	Units	LOR	Result	
LB273842.001	Lead, Pb	mg/L	0.02	<0.02	

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

No duplicates were required for this job.

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOES Method: ME-(AU)-[EN						U)-[ENV]AN320			
Sample Number	Parameter			Units	LOR	Result	Expected	Criteria %	Recovery %
LB273842.002	Lead, Pb			mg/L	0.02	0.50	0.5	80 - 120	99

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- ⁽⁵⁾ Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- 1 LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Yin, Emily (Sydney)

From: Sent:	Sharon Li - ElAustralia <sharon.li@eiaustralia.com.au> Monday, 13 March 2023 5:41 PM</sharon.li@eiaustralia.com.au>
То:	AU.Environmental.Sydney, AU (Sydney); Geisiane Torres - ElAustralia; Sergio Raposeira - ElAustralia; AU.SampleReceipt.Sydney, AU (Sydney)
Subject:	[EXTERNAL] RE: Report Job SE243061, your reference E25947 600-660 Elizabeth St Redfern, order number E25947

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi SGS

Please run TCLP for lead for the following samples on 24 hrs TAT:

• TP406_0.1-0.2

• TP416_0.1-0.2

SGS EHS Alexandria Laboratory SE243061B COC Received: 13 – Mar – 2023

Thanks Sharon **From:** AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.com] **Sent:** Tuesday, 21 February 2023 5:37 PM **To:** Geisiane Torres - EIAustralia; Laboratory Results - EIAustralia; Sergio Raposeira - EIAustralia; Sharon Li -EIAustralia

Subject: Report Job SE243061, your reference E25947 600-660 Elizabeth St Redfern, order number E25947

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Dear Valued Customer,

Please find attached the report for SGS job SE243061, your reference E25947 600-660 Elizabeth St Redfern, order number E25947.

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

Please provide any feedback you have on our service via this link http://bit.ly/3XpzDFe

Best Regards, SGS Alexandria Customer Service Team SGS Australia Pty Ltd Phone: +61 (0)2 8594 0400

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company. Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage caused by any virus transmitted by this email. All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at https://www.sgs.com/en/terms-and-conditions

SAMPLE RECEIPT ADVICE

Contact	Geisiane Torres	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern-Add	Samples Received	Mon 13/3/2023
Order Number	E25947	Report Due	Wed 15/3/2023
Samples	72	SGS Reference	SE243061B

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

2 Soil 13/3/2023@5:41pm Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Email Yes 10.3°C Next Day Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

a t +61 2 8594 0400 a f +61 2 8594 0499 www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

SUMMARY OF ANALYSIS

Project E25947 600-660 Elizabeth St Redfern-Add

Ne	Sample ID	Metals in TCLP Extract by ICPOES	TCLP (Toxicity Characteristic Leaching
No.			

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

SUMMARY OF ANALYSIS

Project E25947 600-660 Elizabeth St Redfern-Add

No.	Sample ID	Metals in TCLP Extract by ICPOES	TCLP (Toxicity Characteristic Leaching
046	TP416_0.1-0.2	1	6

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact	Geisiane Torres	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01	Address	Unit 16, 33 Maddox St
	55 MILLER STREET		Alexandria NSW 2015
	PYRMONT NSW 2009		
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	SE243073 R0
Order Number	E25947	Date Received	9/2/2023
Samples	8	Date Reported	21/2/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SPOCAS and CrS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. Report No. CE164709.

SIGNATORIES -

Un

Huong CRAWFORD Production Manager

Shon

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

SE243073 R0

Field pH for Acid Sulphate Soil [AN104] Tested: 14/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASSA	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
pHf	pH Units	-	6.2	5.6	5.6	5.5	5.8
pHfox	pH Units	-	2.3	2.3	2.6	2.6	3.1
Reaction Rate (pHfox)*	No unit	-	2	3	3	2	2
pH Difference*	pH Units	-10	3.9	3.3	3.0	2.9	2.6

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
			7/2/2023	- 8/2/2023	- 8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
pHf	pH Units	-	5.9	5.5	5.7
pHfox	pH Units	-	3.5	2.8	3.4
Reaction Rate (pHfox)*	No unit	-	2	2	1
pH Difference*	pH Units	-10	2.3	2.7	2.2

Moisture Content [AN002] Tested: 21/2/2023

			TP402_1.9-2.0 ASS4	TP406_1.9-2.0 ASS/	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASS4	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
% Moisture	%w/w	0.5	81	83	40	83	33

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
					-
					8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
% Moisture	%w/w	0.5	83	70	85

TAA (Titratable Actual Acidity) [AN219] Tested: 21/2/2023

TP402_1.9-2.0 ASSA TP406_1.9-2.0 ASSA TP410_1.9-2.0 ASSA TP412_1.9-2.0 ASSA T							TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/2/2023	6/2/2023	6/2/2023	7/2/2023	7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
pH KCI*	pH Units	-	5.3	4.1	4.3	4.2	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	3.9	11	4.7	13	2.6
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	79	225	95	259	52
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.13	0.36	0.15	0.42	0.08
Sulphur (SKCI)	%w/w	0.005	0.017	0.017	<0.005	0.019	<0.005
Calcium (CaKCI)	%w/w	0.005	0.72	0.080	0.048	0.20	0.048
Magnesium (MgKCI)	%w/w	0.005	0.10	0.10	0.079	0.27	0.085

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
PARAMETER	UOM	LOR	SOIL - 7/2/2023 SE243073.006	SOIL - 8/2/2023 SE243073.007	SOIL - 8/2/2023 SE243073.008
pH KCI*	pH Units	-	5.3	4.2	4.8
Titratable Actual Acidity	kg H2SO4/T	0.25	3.3	9.2	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	67	187	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.11	0.30	0.21
Sulphur (SKCI)	%w/w	0.005	0.027	0.006	0.012
Calcium (CaKCI)	%w/w	0.005	0.68	0.068	0.57
Magnesium (MgKCI)	%w/w	0.005	0.27	0.095	0.17

TPA (Titratable Peroxide Acidity) [AN218] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASS/	TP413_1.9-2.0 ASS
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
Peroxide pH (pH Ox)	pH Units	-	1.9	1.8	2.6	1.8	2.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	280	15	210	6.1
TPA as moles H+/tonne	moles H+/T	5	4678	5638	299	4353	125
TPA as S % W/W	%w/w S	0.01	7.50	9.04	0.48	6.98	0.20
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4599	5414	205	4094	72
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	270	10	200	3.6
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.37	8.68	0.33	6.56	0.12
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)*	%w/w	0.005	1.4	1.5	0.20	1.9	0.15
Peroxide Oxidisable Sulphur as moles H+/tonne*	moles H+/T	5	900	965	128	1167	95
Sulphur (Sp)	%w/w	0.005	1.5	1.6	0.21	1.9	0.15
Calcium (Cap)	%w/w	0.005	0.22	0.084	0.046	0.20	0.050
Reacted Calcium (CaA)*	%w/w	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)*	moles H+/T	5	<5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.13	0.094	0.079	0.25	0.090
Reacted Magnesium (MgA)*	%w/w	0.005	0.033	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)*	moles H+/T	5	27	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w*	%w/w	0.005	-	0.071	0.019	0.082	0.014
Net Acid Soluble Sulphur as moles H+/tonne*	moles H+/T	5	-	45	12	51	9

			TP414_1.9-2.0 ASS/	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA	
			SOIL	SOIL	SOIL	
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008	
Peroxide pH (pH Ox)	pH Units	-	2.0	2.1	1.9	
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	58	180	
TPA as moles H+/tonne	moles H+/T	5	4678	1188	3692	
TPA as S % W/W	%w/w S	0.01	7.50	1.90	5.92	
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4610	1000	3563	
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	49	170	
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.39	1.60	5.71	
ANCE as % CaCO₃	% CaCO3	0.01	<0.01	<0.01	<0.01	
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	
Peroxide Oxidisable Sulphur (Spos)*	%w/w	0.005	1.6	0.53	1.6	
Peroxide Oxidisable Sulphur as moles H+/tonne*	moles H+/T	5	967	328	968	
Sulphur (Sp)	%w/w	0.005	1.6	0.53	1.6	
Calcium (Cap)	%w/w	0.005	0.46	0.060	0.13	
Reacted Calcium (CaA)*	%w/w	0.005	<0.005	<0.005	<0.005	
Reacted Calcium (CaA)*	moles H+/T	5	<5	<5	<5	
Magnesium (Mgp)	%w/w	0.005	0.28	0.10	0.16	
Reacted Magnesium (MgA)*	%w/w	0.005	<0.005	<0.005	<0.005	
Reacted Magnesium (MgA)*	moles H+/T	5	<5	<5	<5	
Net Acid Soluble Sulphur as % w/w*	%w/w	0.005	-	0.027	0.086	
Net Acid Soluble Sulphur as moles H+/tonne*	moles H+/T	5	-	17	54	

SPOCAS Net Acidity Calculations [AN220] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASSA	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							- 7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
s-Net Acidity	%w/w S	0.005	1.6	2.0	0.37	2.3	0.25
a-Net Acidity	moles H+/T	5	980	1200	230	1500	150
Liming Rate*	kg CaCO3/T	0.1	73	92	17	110	12
Verification s-Net Acidity*	%w/w S	-20	0.48	0.52	0.07	0.62	0.05
a-Net Acidity without ANCE*	moles H+/T	5	980	1200	230	1500	150
Liming Rate without ANCE*	kg CaCO3/T	0.1	73	92	17	110	12

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
					-
			7/2/2023	8/2/2023	8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
s-Net Acidity	%w/w S	0.005	1.7	0.85	1.8
a-Net Acidity	moles H+/T	5	1000	530	1100
Liming Rate*	kg CaCO3/T	0.1	78	40	85
Verification s-Net Acidity*	%w/w S	-20	0.52	0.18	0.52
a-Net Acidity without ANCE*	moles H+/T	5	1000	530	1100
Liming Rate without ANCE*	kg CaCO3/T	0.1	78	40	85

Chromium Reducible Sulfur (CRS) [AN217] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASSA	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
Chromium Reducible Sulfur (Scr)	%	0.005	0.28	0.13	0.021	0.15	0.008
Chromium Reducible Sulfur (Scr)	moles H+/T	5	173	82	13	94	<5

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
					-
					8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
Chromium Reducible Sulfur (Scr)	%	0.005	0.14	0.038	0.11
Chromium Reducible Sulfur (Scr)	moles H+/T	5	87	24	72

- METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN104	pHF is determined on an extract of approximately 2g of as received sample in approximately 10 mL of deionised water with pH determined after standing 30 minutes.
AN104	pHFox is determined on an extract of approximately 2g of as received sample with a few mLs of 30% hydrogen peroxide (adjusted to pH 4.5 to 5.5) with the extract reaction being rated from slight to extreme, with pH determined after reaction is complete and extract has cooled. Referenced to ASS Laboratory Methods Guidelines, method 23Af-Bf, 2004.
	 No Reaction Slight Reaction Moderate Reaction Strong/High Reaction Extreme/Vigorous Reaction (gas evolution and heat generation)
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCI solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

vice. NVL holding IS LNR Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.
 UOM
 Unit of Measure.

 LOR
 Limit of Reporting.

 ↑↓
 Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	PYRMONT NSW 2009 61 2 95160722 (Not specified) Geisiane.Torres @eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E25947 600-660 Elizabeth St Redfern E25947 8	SGS Reference Date Received Date Reported	SE243073 R0 09 Feb 2023 21 Feb 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

8 Soil 13/2/2023@5:24pm N/A Client Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

coc Yes 10.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd

Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

Method: ME_(ALI)_IENV/AN104

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Field pH for Acid Sulphate Soil

Field pri Tor Acid Sulphate	301						Weulou. I	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP402_1.9-2.0 ASSA	SE243073.001	LB271413	06 Feb 2023	09 Feb 2023	06 Mar 2023	14 Feb 2023	06 Mar 2023	16 Feb 2023
TP406_1.9-2.0 ASSA	SE243073.002	LB271413	06 Feb 2023	09 Feb 2023	06 Mar 2023	14 Feb 2023	06 Mar 2023	16 Feb 2023
TP410_1.9-2.0 ASSA	SE243073.003	LB271413	06 Feb 2023	09 Feb 2023	06 Mar 2023	14 Feb 2023	06 Mar 2023	16 Feb 2023
TP412_1.9-2.0 ASSA	SE243073.004	LB271413	07 Feb 2023	09 Feb 2023	07 Mar 2023	14 Feb 2023	07 Mar 2023	16 Feb 2023
TP413_1.9-2.0 ASSA	SE243073.005	LB271413	07 Feb 2023	09 Feb 2023	07 Mar 2023	14 Feb 2023	07 Mar 2023	16 Feb 2023
TP414_1.9-2.0 ASSA	SE243073.006	LB271413	07 Feb 2023	09 Feb 2023	07 Mar 2023	14 Feb 2023	07 Mar 2023	16 Feb 2023
TP417_1.9-2.0 ASSA	SE243073.007	LB271413	08 Feb 2023	09 Feb 2023	08 Mar 2023	14 Feb 2023	08 Mar 2023	16 Feb 2023
TP419_1.9-2.0 ASSA	SE243073.008	LB271413	08 Feb 2023	09 Feb 2023	08 Mar 2023	14 Feb 2023	08 Mar 2023	16 Feb 2023

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE243073 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Field pH for Acid Sulphate Soil

Field pH for Acid S	Sulphate Soil					Meth	od: ME-(AU)-	ENVJAN104
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE242987.018	LB271413.012	pHf	pH Units	-	6.3	6.2	30	1
		pHfox	pH Units	-	2.2	2.1	30	3
SE243073.008	LB271413.023	pHf	pH Units	-	5.7	5.8	30	3
		pHfox	pH Units	-	3.4	3.5	30	2

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter

Units LOR

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- ⁽⁵⁾ Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- 1 LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CLIENT DETAILS	S	LABORATORY DETAI	LS
Contact	Admin	Manager	Anthony Nilsson
Client	SGS I&E SYDNEY	Laboratory	SGS Cairns Environmental
Address	5058 201 I&E HSE SYDNEY (EX 5258)	Address	Unit 2, 58 Comport St
	UNIT 16		Portsmith QLD 4870
	33 MADDOX STREET		
	ALEXANDRIA NSW 2015		
Telephone	0285940400	Telephone	+61 07 4035 5111
Facsimile	0285940499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	CE164709 R1
Order Number	SE243073	Date Received	14 Feb 2023
Samples	8	Date Reported	28 Feb 2023

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146/19038)

This report cancels and supersedes the report No.CE164709 R0. dated 21/02/2023 issued by SGS Environment, Health and Safety due to addition of extra results on Chromium suite.

SIGNATORIES .

Anthony NILSSON Operations Manager

Jon DICKER Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Unit 2 58 Comport

Portsmith QLD

Australia t +61 7 4035 5111

035 5111 **f** +61 7 4035 5122

www.sgs.com.au

CE164709 R1

	Sample Number Sample Matrix Sample Date Sample Name	Soil 02 Jun 2023	CE164709.002 Soil 02 Jun 2023 SE243073.002	CE164709.003 Soil 02 Jun 2023 SE243073.003	CE164709.004 Soil 02 Jul 2023 SE243073.004
Units	LOR				
%w/w	0.5	81	83	40	83
		Sample Matrix Sample Date Sample Name Units LOR	Sample Matrix Soil Sample Date 02 Jun 2023 Sample Name SE243073.001 Units LOR	Sample Matrix Soil Soil Sample Date 02 Jun 2023 02 Jun 2023 Sample Name SE243073,001 SE243073,002 Units LOR	Sample Matrix Soil Soil Soil Soil Sample Date 02 Jun 2023 02 Jun 2023 02 Jun 2023 Sample Name SE243073.001 SE243073.002 SE243073.003 Units LOR

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

рН КСІ	pH Units	-	5.3	4.1	4.3	4.2
Titratable Actual Acidity	kg H2SO4/T	0.25	3.9	11	4.7	13
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	79	225	95	259
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.13	0.36	0.15	0.42
Sulphur (SKCI)	%w/w	0.005	0.017	0.017	<0.005	0.019
Calcium (CaKCl)	%w/w	0.005	0.72	0.080	0.048	0.20
Magnesium (MgKCI)	%w/w	0.005	0.10	0.10	0.079	0.27

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	1.9	1.8	2.6	1.8
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	280	15	210
TPA as moles H+/tonne	moles H+/T	5	4678	5638	299	4353
TPA as S % W/W	%w/w S	0.01	7.50	9.04	0.48	6.98
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4599	5414	205	4094
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	270	10	200
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.37	8.68	0.33	6.56
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	1.4	1.5	0.20	1.9
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	900	965	128	1167
Sulphur (Sp)	%w/w	0.005	1.5	1.6	0.21	1.9
Calcium (Cap)	%w/w	0.005	0.22	0.084	0.046	0.20
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.13	0.094	0.079	0.25
Reacted Magnesium (MgA)	%w/w	0.005	0.033	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	27	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	0.071	0.019	0.082
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	45	12	51

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	-	0.089	0.021	0.10
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	0.089	0.021	0.10
SPOCAS Net Acidity Calculations Method: AN220	Tested: 21/2/2023					
-Net Acidity	%w/w S	0.005	1.6	2.0	0.37	2.3
-Net Acidity	moles H+/T	5	980	1200	230	1500
iming Rate	kg CaCO3/T	0.1	73	92	17	110
/erification s-Net Acidity	%w/w S	-20	0.48	0.52	0.07	0.62
-Net Acidity without ANCE	moles H+/T	5	980	1200	230	1500
iming Rate without ANCE	kg CaCO3/T	0.1	73	92	17	110

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.28	0.13	0.021	0.15
Chromium Reducible Sulfur (Scr)	moles H+/T	5	173	82	13	94

CE164709 R1

	S	ample Number Sample Matrix Sample Date Sample Name	CE164709.001 Soil 02 Jun 2023 SE243073.001	CE164709.002 Soil 02 Jun 2023 SE243073.002	CE164709.003 Soil 02 Jun 2023 SE243073.003	CE164709.004 Soil 02 Jul 2023 SE243073.004				
Parameter	Units	LOR								
Chromium Suite Net Acidity Calculations Method: AN220 Tested: 28/2/2023										
s-Net Acidity	%w/w S	0.01	0.40	0.55	0.19	0.63				
s-Net Acidity without ANC	%w/w S	0.01	0.40	0.55	0.19	0.63				
a-Net Acidity	moles H+/T	3	250	340	120	390				
Liming Rate	kg CaCO3/T	0.1	19	26	8.8	29				
Verification s-Net Acidity	%w/w S	-20	0.28	0.13	0.02	0.15				
a-Net Acidity without ANCBT	moles H+/T	3	250	340	120	390				
Liming Rate without ANCBT	kg CaCO3/T	0.1	19	26	8.8	29				

CE164709 R1

		Sample Number Sample Matrix Sample Date Sample Name	Soil 02 Jul 2023	CE164709.006 Soil 02 Jul 2023 SE243073.006	CE164709.007 Soil 02 Aug 2023 SE243073,007	CE164709.008 Soil 02 Aug 2023 SE243073.008
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 15/2/2023	1					
% Moisture	%w/w	0.5	33	83	70	85

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

pH KCI	pH Units	-	4.5	5.3	4.2	4.8
Titratable Actual Acidity	kg H2SO4/T	0.25	2.6	3.3	9.2	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	52	67	187	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.11	0.30	0.21
Sulphur (SKCI)	%w/w	0.005	<0.005	0.027	0.006	0.012
Calcium (CaKCl)	%w/w	0.005	0.048	0.68	0.068	0.57
Magnesium (MgKCI)	%w/w	0.005	0.085	0.27	0.095	0.17

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	2.9	2.0	2.1	1.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	6.1	230	58	180
TPA as moles H+/tonne	moles H+/T	5	125	4678	1188	3692
TPA as S % W/W	%w/w S	0.01	0.20	7.50	1.90	5.92
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	72	4610	1000	3563
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	3.6	230	49	170
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.12	7.39	1.60	5.71
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.15	1.6	0.53	1.6
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	95	967	328	968
Sulphur (Sp)	%w/w	0.005	0.15	1.6	0.53	1.6
Calcium (Cap)	%w/w	0.005	0.050	0.46	0.060	0.13
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.090	0.28	0.10	0.16
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	0.014	-	0.027	0.086
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	9	-	17	54

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	0.015	-	0.033	0.098
Acid Soluble Sulfur (SHCI)	%w/w	0.005	0.015	-	0.033	0.098

SPOCAS Net Acidity Calculations Method: AN220 Tested: 21/2/2023

s-Net Acidity	%w/w S	0.005	0.25	1.7	0.85	1.8
a-Net Acidity	moles H+/T	5	150	1000	530	1100
Liming Rate	kg CaCO3/T	0.1	12	78	40	85
Verification s-Net Acidity	%w/w S	-20	0.05	0.52	0.18	0.52
a-Net Acidity without ANCE	moles H+/T	5	150	1000	530	1100
Liming Rate without ANCE	kg CaCO3/T	0.1	12	78	40	85

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.008	0.14	0.038	0.11
Chromium Reducible Sulfur (Scr)	moles H+/T	5	<5	87	24	72

CE164709 R1

		ample Number Sample Matrix Sample Date Sample Name	CE164709.005 Soil 02 Jul 2023 SE243073.005	CE164709.006 Soil 02 Jul 2023 SE243073.006	CE164709.007 Soil 02 Aug 2023 SE243073.007	CE164709.008 Soil 02 Aug 2023 SE243073.008			
Parameter	Units	LOR							
Chromium Suite Net Acidity Calculations Method: AN220 Tested: 28/2/2023									
s-Net Acidity	%w/w S	0.01	0.10	0.25	0.36	0.39			
s-Net Acidity without ANC	%w/w S	0.01	0.10	0.25	0.36	0.39			
a-Net Acidity	moles H+/T	3	64	150	220	240			
Liming Rate	kg CaCO3/T	0.1	4.8	12	17	18			
Verification s-Net Acidity	%w/w S	-20	0.01	0.14	0.04	0.11			
a-Net Acidity without ANCBT	moles H+/T	3	64	150	220	240			
Liming Rate without ANCBT	kg CaCO3/T	0.1	4.8	12	17	18			

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulfur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC	Units	LOR	MB	DUP %RPD
	Reference				
Chromium Reducible Sulfur (Scr)	LB112813	%	0.005	<0.005	0%
Chromium Reducible Sulfur (Scr)	LB112813	moles H+/T	5	<5	

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
рН КСІ	LB112822	pH Units	-	6.4	0%	103%
Titratable Actual Acidity	LB112822	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB112822	moles H+/T	5	<5	0%	96%
Titratable Actual Acidity (TAA) S%w/w	LB112822	%w/w S	0.01	<0.01	0%	97%
Sulphur (SKCI)	LB112822	%w/w	0.005	<0.005	13%	90%
Calcium (CaKCI)	LB112822	%w/w	0.005	<0.005	7%	116%
Magnesium (MgKCI)	LB112822	%w/w	0.005	<0.005	7%	102%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Peroxide pH (pH Ox)	LB112812	pH Units	-	6.2	9%	100%
TPA as kg H ₂ SO ₄ /tonne	LB112812	kg H2SO4/T	0.25	0.37	10%	104%
TPA as moles H+/tonne	LB112812	moles H+/T	5	7	10%	104%
TPA as S % W/W	LB112812	%w/w S	0.01	0.01	10%	104%
ANCE as % CaCO ₃	LB112812	% CaCO3	0.01	<0.01	0%	
ANCE as moles H+/tonne	LB112812	moles H+/T	5	<5	0%	
ANCE as S % W/W	LB112812	%w/w S	0.01	<0.01	0%	
Sulphur (Sp)	LB112812	%w/w	0.005	<0.005	3%	97%
Calcium (Cap)	LB112812	%w/w	0.005	<0.005	3%	114%
Magnesium (Mgp)	LB112812	%w/w	0.005	<0.005	2%	108%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfate as Sulfur is determined by ICP.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCI solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	Chromium Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES

IS	Insufficient sample for analysis.	LOR	Limit of Reporting	
LNR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting	
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance	
	performance of this service.	QFL	QC result is below the lower tolerance	
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte	
***	Indicates that both * and ** apply.	NVL	Not Validated	

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

	1
0	4
	2
Distant.	7
REFACT.	C
	22
	2
IL	63

heet 1 of 2					Sal	Sample Matrix	atrix									Analysis	is									Comments
E 600-660 GUZOBEH	LEDFEN	1205021		Project No:									/	etiuS (MN3)					(CrS)		(1	AIFY)	<u></u>		HM ^A Arsenic Cadmiu Chromiu Copper Lead	HM ⁸ Arsenic Cadmium Chromium Copper
iboratory:	SGS Australia Unit 16, 33 Ma ALEXANDRIA P: 02 8594 040	SGS Australia SGS Australia ALEXANDRIA NSW 2015 P: 02 8594 0499	eet, 15 594 0499			Foreitä h	d filtered	ABTEX/PAHs CB/Asbestos	energy/X3T8/	X318\			noiteofitineut	latural Material	· Stockpile discre	EC / Foreign Ma	Suite Stide		ntiu2 eldioubeЯ		epnerioxe notiso	ectrical conducti	spinold	HAPLO		et mic
Samula	Lahoratoru	Container	Sampling	ling				НЯТ\		нят\			D sota	1 bete	хэта	/ Hd/			min) OBC		D \ ete	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Chromium
di autimo	ID	Type	Date	Time	SOIL	TAW	ul ch.U	v MH		A MH	VOCs BTEX	sedaA	sedaA	Excava	(ТКН/	^A MH)	ewed Iq \ Hq	sPOC	Chron	SA79	D / Hq		euding		-	cury
0154 012-10-10-20nd	-	216	のもころのである	AMPN &	\times												\sim	\times	X						Dewater pH & EC	Dewatering Suite pH & EC
A8405-9-1-2009	đ		-	_																					TDS / TDU Hardness	TDU ness
10001-P-1-2010	2																	7	X						Metal Cu, Pt	Total Lyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
1407-1-4-20 NED																			~			-	_	-	BTEX PAH	TRH (F1, F2, F3, F4) BTEX PAH
PU/05-1-0-1-80/09	a																								Total	Total Phenol
410-1-9-2.0ASSA	M																\wedge	X	X						T LA	LABORATORY TURNAROUND
PULLIA-ZONSO	4 9				_				-		-	_		_			1	7	+							Standard
A2402-P.1-EIN-	S				_				SGS	EHS S	SGS EHS Sydney COC	y co	U				7	\geq	7						9	24 Hours
2414-1.9-2.0 ASSO	9								SE	24	SE243073	ო						$\overline{\checkmark}$	X		_					48 Hours
ASA 0.5-P.1-21HG	0				_																		-			72 Hours
A114-1.9-2.0 ASIA	đ			_																						Other
P412-1.9-2.04550	7	2	>	Ð	9												1	Z	A							
ontainer Type: = solvent washed, acid rinsed, Tetton sealed glass jar = zolvent weeked, acid rinsed, date boilio	nsed, Tefton sea	aled glass jar			-	Investiga	itor: I att	est that	hese sa	mples w	Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.	cted in al	ccordanc	ce with a	standard	El field	samplin	0	-	Report	Report with EI Waste Classification Table	Waste (Classific	cation T	able	ď.
= natural HDPE plastic bottle	ottle	Þ			0)	Sampler's Name (EI):	Name (E	U iii	rn		Re	Received by (SGS):	(SGS):					Sam	Sampler's Comments:	mment	::					
C = glass vial, Tefton Septum LB = Zip-Lock Bag	otum BB = Bulk Bag	ulk Bag				Print	B	Geisiak	r	FREES		Print							Ŭ	1	T	g	3	0	ź	
		N.	PYRMONT NSW 2009	Viiller Stree		Signature	B	B			s c	Signature		A-		oar c1	-			,)	Υ <i>ι</i>	, A	j.	P	3	A Sile
eiaustralia	ralia		Pn: 9010 0/22 lab@eiaustralia.com.au	o ur zz Ilia.com.au		IMPORTANT:	STAN	N II			-		0150	02 2	2	e	50- 2									
	son Geotechnical		COC June 2021 FORM v.5 - SGS	RM v.5 - SGS	<u>d</u>	lease e-r	nail labo	ratory re	sults to:	ab@e	Please e-mail laboratory results to: lab@eiaustralia.com.au	alia.coi	n.au													

heet Z of Z					Sa	Sample Matrix	flatrix									Analysis	<u>is</u>								Comments
16: 600-660 ST, 840	4	ELIZERIA RECU		Project No:															r (CrS)			(ភ្នំរេស)			HM ⁶ Arsenic Cadmium Chromium Copper Lead
iboratory:	SGS Australia Unit 16, 33 Ma ALEXANDRIA P: 02 8594 040	SGS Australia SI Australia ALEXANDRIA NSW 2015 P: 02 8594 0409	eet, 5 594 0499	÷			bered	sHA9/X3T8/	4/BTEX/PAHs	X3T8\H			notisofitinen	leheteM lehuteV	- Stockpile comp /PAHs)	M ngieno I / C3	Suite		utiu2 əldioubəA		ectrical conduct	Chloride		HA9 \ ⁸	Mercury Nickel Zinc HM # Arsenic
Samole	laboratory	Container	San	Sampling				ЧЯТ\		-IRT			D sola		XETEX	/ Hd/			muim					WH a	Chromium
0517.4	QI	Type	Date	Time	SOIF	TAW	4 84.0 3HTO	¥ MH		v МН	VOC ^S	Aspe	edeA	-	(HRH)	^A MH)	eweu	sPOC	ζζμιοι	5A39	_		pead		Mercury Nickel
PUR 1.9-20MB	00	572	2	Per Pr	×												7	1	X						Dewatering Suite pH & EC
																		_				-			TDS / TDU Hardness
																									Total Cyanide Metals (AI, As, Cd, Cr, Cr. Ph. He. Ni 7c)
								-							-		_								TRH (F1, F2, F3, F4) BTEX
												-								-					PAH Total Phenol
																	-								LABORATORY TURNAROUND
																-					_				N Standard
								_															_		24 Hours
																									48 Hours
																					-				72 Hours
								-													-				Other
					_																				
entainer Type: = solvent washed, acid rinsed, Tefton sealed glass jar	nsed, Tefton sea	aled glass jar				Investig	ator: I at	test that	these s	amples w	investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.	cted in a	ccordanc	e with s	tandard	El field	samplin	6		Report	with EI V	Vaste C	lassifica	Report with El Waste Classification Table	Z
= solvent washed, acid rinsed glass bolle = natural HDPE plastic bottle	insed glass bollk ottle	Ð				Sampler	Sampler's Name (EI):	~	FD		Re	Received by (SGS)	(SGS):					Sam	Sampler's Comments:	mments	14				
C = glass vial, Tefton Septum .B = Zip-Lock Bag	ptum BB = Bulk Bag	ulk Bag				Print	3	1310	skisiana	TOPES		Print							5	V -	3	9	2	1	
40		SI	uite 6.01, 5! PYRMONT	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	et,	Signature	In a	h			S	Signature	W}	X	R	and	Ţ		3	, 3	Î I		1	-	Deept-
			Ph: 95	Ph: 9516 0722	. :	Date	13/	212	2		0	Date	0 50	6100	3	02	So.				M	3	b	0	1-1-2
			DCC June 2021	lab@eiaustralia.com.au coc.jum.2021.F0RNv.5-SGS		OdMI Diagon	IMPORTANT Please e-mail labora	IT: vratory r	sente to:	lah@4	IMPORTANT: Plazes e-mail laboration meruits to lab@elaustralia.com au	alia cor	n au												
						A ASPAL		DISTOL N	C20112 10	Iau	nenpi	allaroo	np-11												

CLIENT DETAILS	3	LABORATORY DETA	NILS	
Contact	Geisiane Torres	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25947 600-660 Elizabeth St Redfern	Samples Received	Thu 9/2/2023	
Order Number	E25947	Report Due	Tue 21/2/2023	
Samples	8	SGS Reference	SE243073	,

SUBMISSION DETAILS

This is to confirm that 8 samples were received on Thursday 9/2/2023. Results are expected to be ready by COB Tuesday 21/2/2023. Please quote SGS reference SE243073 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 8 Soil 13/2/2023@5:24pm N/A Client Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 10.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

SPOCAS and CrS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. 5 samples have been placed on hold as no tests have been assigned for it. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

ustralia t +61 2 8594 0400 ustralia f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

SUMMAR'	Y OF ANALYSIS		1	1	1		
No.	Sample ID	Chromium Reducible Sulfur (CRS)	Field pH for Acid Sulphate Soil	Moisture Content	SPOCAS Net Acidity Calculations	TAA (Titratable Actual Acidity)	TPA (Titratable Peroxide Acidity)
001	TP402_1.9-2.0 ASSA	2	4	1	6	7	21
002	TP406_1.9-2.0 ASSA	2	4	1	6	7	21
003	TP410_1.9-2.0 ASSA	2	4	1	6	7	21
004	TP412_1.9-2.0 ASSA	2	4	1	6	7	21
005	TP413_1.9-2.0 ASSA	2	4	1	6	7	21
006	TP414_1.9-2.0 ASSA	2	4	1	6	7	21
007	TP417_1.9-2.0 ASSA	2	4	1	6	7	21
008	TP419_1.9-2.0 ASSA	2	4	1	6	7	21

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS	<u> </u>	LABORATORY DETAI	LS
Contact	Admin	Manager	Anthony Nilsson
Client	SGS I&E SYDNEY	Laboratory	SGS Cairns Environmental
Address	5058 201 I&E HSE SYDNEY (EX 5258)	Address	Unit 2, 58 Comport St
	UNIT 16		Portsmith QLD 4870
	33 MADDOX STREET		
	ALEXANDRIA NSW 2015		
Telephone	0285940400	Telephone	+61 07 4035 5111
Facsimile	0285940499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	CE164709 R0
Order Number	SE243073	Date Received	14 Feb 2023
Samples	8	Date Reported	21 Feb 2023

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146/19038)

SIGNATORIES _

Anthony NILSSON Operations Manager

Jon DICKER Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Unit 2 58 Comport

Portsmith QLD

Australia t +61 7 4035 5111

f +61 7 4035 5122 www.sgs.com.au

ANALYTICAL REPORT

CE164709 R0

		Soil 02 Jun 2023 SE243073,001	Soil 02 Jun 2023 SE243073.002	Soil 02 Jun 2023 SE243073,003	Soil 02 Jul 2023 SE243073,004
Units	LOR				
%w/w	0.5	81	83	40	83
	Units %w/w	Sample Date Sample Name Units LOR	Sample Date 02 Jun 2023 Sample Name SE243073.001 Units LOR	Sample Date 02 Jun 2023 02 Jun 2023 Sample Name SE243073,001 SE243073,002 Units LOR	Sample Date 02 Jun 2023 02 Jun 2023 02 Jun 2023 Sample Name SE243073,001 SE243073,002 SE243073,003 Units LOR

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

pH KCI	pH Units	-	5.3	4.1	4.3	4.2
Titratable Actual Acidity	kg H2SO4/T	0.25	3.9	11	4.7	13
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	79	225	95	259
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.13	0.36	0.15	0.42
Sulphur (SKCI)	%w/w	0.005	0.017	0.017	<0.005	0.019
Calcium (CaKCl)	%w/w	0.005	0.72	0.080	0.048	0.20
Magnesium (MgKCI)	%w/w	0.005	0.10	0.10	0.079	0.27

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	1.9	1.8	2.6	1.8
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	280	15	210
TPA as moles H+/tonne	moles H+/T	5	4678	5638	299	4353
TPA as S % W/W	%w/w S	0.01	7.50	9.04	0.48	6.98
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4599	5414	205	4094
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	270	10	200
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.37	8.68	0.33	6.56
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	1.4	1.5	0.20	1.9
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	900	965	128	1167
Sulphur (Sp)	%w/w	0.005	1.5	1.6	0.21	1.9
Calcium (Cap)	%w/w	0.005	0.22	0.084	0.046	0.20
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.13	0.094	0.079	0.25
Reacted Magnesium (MgA)	%w/w	0.005	0.033	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	27	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	0.071	0.019	0.082
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	45	12	51

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	-	0.089	0.021	0.10
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	0.089	0.021	0.10
SPOCAS Net Acidity Calculations Method: AN220	Tested: 21/2/2023					
-Net Acidity	%w/w S	0.005	1.6	2.0	0.37	2.3
-Net Acidity	moles H+/T	5	980	1200	230	1500
iming Rate	kg CaCO3/T	0.1	73	92	17	110
/erification s-Net Acidity	%w/w S	-20	0.48	0.52	0.07	0.62
a-Net Acidity without ANCE	moles H+/T	5	980	1200	230	1500
iming Rate without ANCE	kg CaCO3/T	0.1	73	92	17	110

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.28	0.13	0.021	0.15
Chromium Reducible Sulfur (Scr)	moles H+/T	5	173	82	13	94

ANALYTICAL REPORT

CE164709 R0

		Sample Number Sample Matrix Sample Date Sample Name	Soil 02 Jul 2023	CE164709.006 Soil 02 Jul 2023 SE243073.006	CE164709.007 Soil 02 Aug 2023 SE243073.007	CE164709.008 Soil 02 Aug 2023 SE243073.008
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 15/2/2023	3					
% Moisture	%w/w	0.5	33	83	70	85

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

pH KCI	pH Units	-	4.5	5.3	4.2	4.8
Titratable Actual Acidity	kg H2SO4/T	0.25	2.6	3.3	9.2	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	52	67	187	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.11	0.30	0.21
Sulphur (SKCI)	%w/w	0.005	<0.005	0.027	0.006	0.012
Calcium (CaKCl)	%w/w	0.005	0.048	0.68	0.068	0.57
Magnesium (MgKCI)	%w/w	0.005	0.085	0.27	0.095	0.17

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	2.9	2.0	2.1	1.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	6.1	230	58	180
TPA as moles H+/tonne	moles H+/T	5	125	4678	1188	3692
TPA as S % W/W	%w/w S	0.01	0.20	7.50	1.90	5.92
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	72	4610	1000	3563
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	3.6	230	49	170
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.12	7.39	1.60	5.71
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.15	1.6	0.53	1.6
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	95	967	328	968
Sulphur (Sp)	%w/w	0.005	0.15	1.6	0.53	1.6
Calcium (Cap)	%w/w	0.005	0.050	0.46	0.060	0.13
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.090	0.28	0.10	0.16
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	0.014	-	0.027	0.086
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	9	-	17	54

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	0.015	-	0.033	0.098
Acid Soluble Sulfur (SHCI)	%w/w	0.005	0.015	-	0.033	0.098

SPOCAS Net Acidity Calculations Method: AN220 Tested: 21/2/2023

s-Net Acidity	%w/w S	0.005	0.25	1.7	0.85	1.8
a-Net Acidity	moles H+/T	5	150	1000	530	1100
Liming Rate	kg CaCO3/T	0.1	12	78	40	85
Verification s-Net Acidity	%w/w S	-20	0.05	0.52	0.18	0.52
a-Net Acidity without ANCE	moles H+/T	5	150	1000	530	1100
Liming Rate without ANCE	kg CaCO3/T	0.1	12	78	40	85

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.008	0.14	0.038	0.11
Chromium Reducible Sulfur (Scr)	moles H+/T	5	<5	87	24	72

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulfur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC Reference	Units	LOR	MB	DUP %RPD
Chromium Reducible Sulfur (Scr)	LB112813	%	0.005	<0.005	0%
Chromium Reducible Sulfur (Scr)	LB112813	moles H+/T	5	<5	

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery
pH KCI	LB112822	pH Units	-	6.4	0%	103%
Titratable Actual Acidity	LB112822	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB112822	moles H+/T	5	<5	0%	96%
Titratable Actual Acidity (TAA) S%w/w	LB112822	%w/w S	0.01	<0.01	0%	97%
Sulphur (SKCI)	LB112822	%w/w	0.005	<0.005	13%	90%
Calcium (CaKCI)	LB112822	%w/w	0.005	<0.005	7%	116%
Magnesium (MgKCI)	LB112822	%w/w	0.005	<0.005	7%	102%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Peroxide pH (pH Ox)	LB112812	pH Units	-	6.2	9%	100%
TPA as kg H ₂ SO ₄ /tonne	LB112812	kg H2SO4/T	0.25	0.37	10%	104%
TPA as moles H+/tonne	LB112812	moles H+/T	5	7	10%	104%
TPA as S % W/W	LB112812	%w/w S	0.01	0.01	10%	104%
ANCE as % CaCO ₃	LB112812	% CaCO3	0.01	<0.01	0%	
ANCE as moles H+/tonne	LB112812	moles H+/T	5	<5	0%	
ANCE as S % W/W	LB112812	%w/w S	0.01	<0.01	0%	
Sulphur (Sp)	LB112812	%w/w	0.005	<0.005	3%	97%
Calcium (Cap)	LB112812	%w/w	0.005	<0.005	3%	114%
Magnesium (Mgp)	LB112812	%w/w	0.005	<0.005	2%	108%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfate as Sulfur is determined by ICP.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCI solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES

IS	Insufficient sample for analysis.	LOR	Limit of Reporting
LNR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte
***	Indicates that both * and ** apply.	NVL	Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Yin, Emily (Sydney)

From:Geisiane Torres - ElAustralia < geisiane.torres@eiaustralia.com.au

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi SGS team,

L

Can you please book Chromium suite for samples below:

i	"當時不當時的時代。" 「當時不是時代時代的意思。 「高高」的「當時」的意思。 「高低的意思」的一個人世紀。	唐唐·御史·皇帝的》并一 梁唐·御堂室》并是帝帝 王子帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝帝		
	Sample ID	TPA (moles	TSA (moles	S _{POS} (as %S)
		H⁺/tonne).	H ⁺ /tonne).	
1	TP402_1.9- 2.0 ASSA	4678	4599	14
1	TP406_1.9- 2.0 ASSA	5638	5414	1.5
3	TP410_1.9- 2.0 ASSA			0.2
Ì	TP412_1.9- 2.0 ASSA	4353	4094	1.9
\ - 1	TP413_1.9- 2.0 ASSA		· · · · · · · ·	0.15
,	TP414_1.9- 2.0 ASSA	4678	4610	1.6
1	TP417_1.9- 2.0 ASSA	1188		0.53
8	TP419_1.9- 2.0 ASSA	3692	3563	1.6

TAT: Standard. Thank you.

Best regards, Geisiane Torres Environmental Engineer

T (02) 9516 0722 M 0478 965 237 E geisiane.torres@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

FINANCIAL REVIEW

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

Yin, Emily (Sydney)

From:	Sharon Li - ElAustralia <sharon.li@eiaustralia.com.au></sharon.li@eiaustralia.com.au>
Sent: To:	Monday, 27 February 2023 3:22 PM AU.SampleReceipt.Sydney, AU (Sydney); Geisiane Torres - ElAustralia
Subject:	RE: [EXTERNAL] E25947_Redfern

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Yes please

Thanks for confirming

From: AU.SampleReceipt.Sydney, AU (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com]
Sent: Monday, 27 February 2023 11:43 AM
To: Geisiane Torres - EIAustralia
Cc: Sharon Li - EIAustralia
Subject: RE: [EXTERNAL] E25947_Redfern

Caution: This email originated from outside your organization and might have suspicious subject or content. PLEASE DO NOT CLICK ANY LINKS AND\OR OPEN ANY ATTACHEMENTS UNLESS YOU CAN CONFIRM THE SENDER.

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Dear All,

Do you want them all analysed for Chromium Suite? Please advise as soon as possible. Thank You.

Regards,

Emily Yin Environment, Health & Safety Sample Receipt

SGS Australia Pty Ltd Unit 16, 33 Maddox Street Alexandria NSW 2015

 Phone:
 +61 (0)2 8594 0400

 Fax:
 +61 (0)2 8594 0499

 E-mail:
 <u>au.samplereceipt.sydney@sgs.com</u>

From: Geisiane Torres - ElAustralia <geisiane.torres@eiaustralia.com.au> Sent: Friday, 24 February 2023 6:10 PM To: AU.Environmental.Sydney, AU (Sydney) <AU.Environmental.Sydney@sgs.com>; AU.SampleReceipt.Sydney, AU (Sydney) <AU.SampleReceipt.Sydney@sgs.com>

CLIENT DETAILS	3	LABORATORY DETA	AILS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern-Add	Samples Received	Fri 24/2/2023
Order Number	E25947	Report Due	Mon 6/3/2023
Samples	8	SGS Reference	SE243073A

SUBMISSION DETAILS

This is to confirm that 8 samples were received on Friday 24/2/2023. Results are expected to be ready by COB Monday 6/3/2023. Please quote SGS reference SE243073A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 8 Soil 24/2/2023@6:29pm N/A Client Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Email Yes 10.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS ·

Chromium Suite subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. Report No. CE164709A.

its General Conditions of This document is issued by the Company under Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

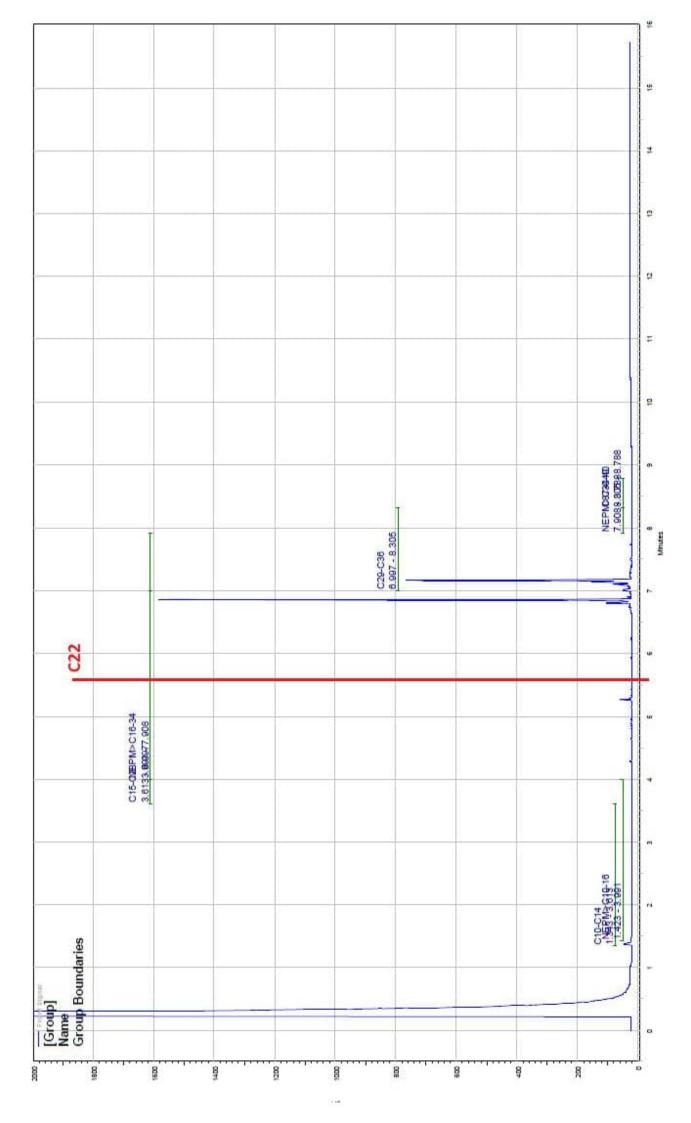
Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

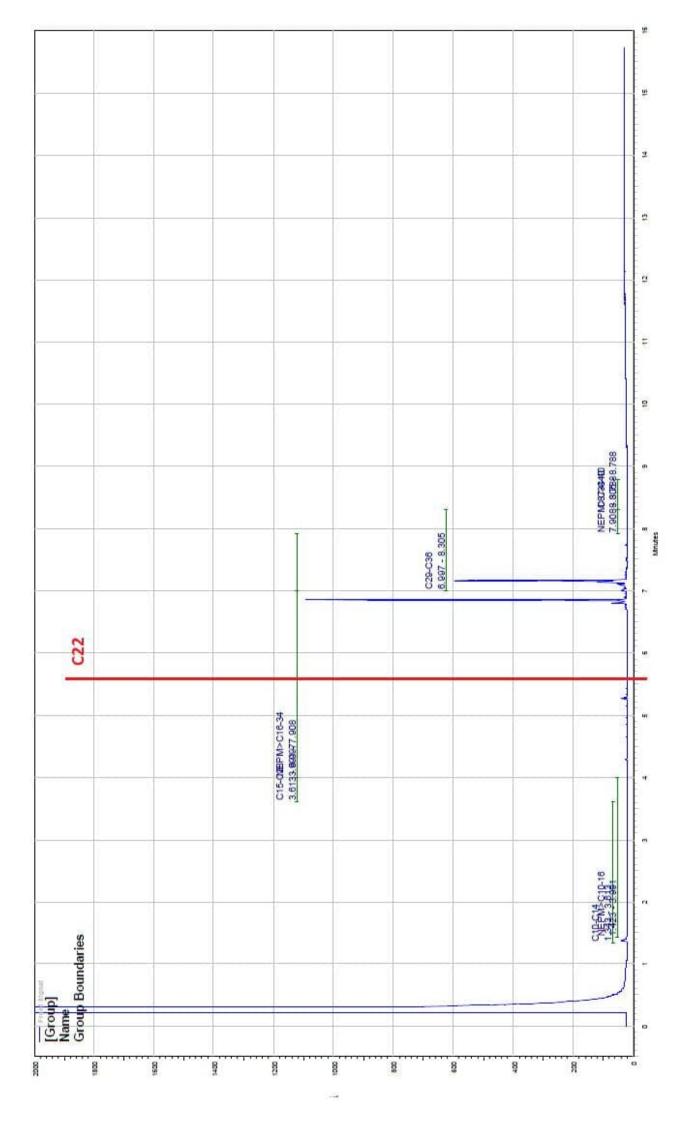
CLIENT DETAILS ____

Client EI AUSTRALIA

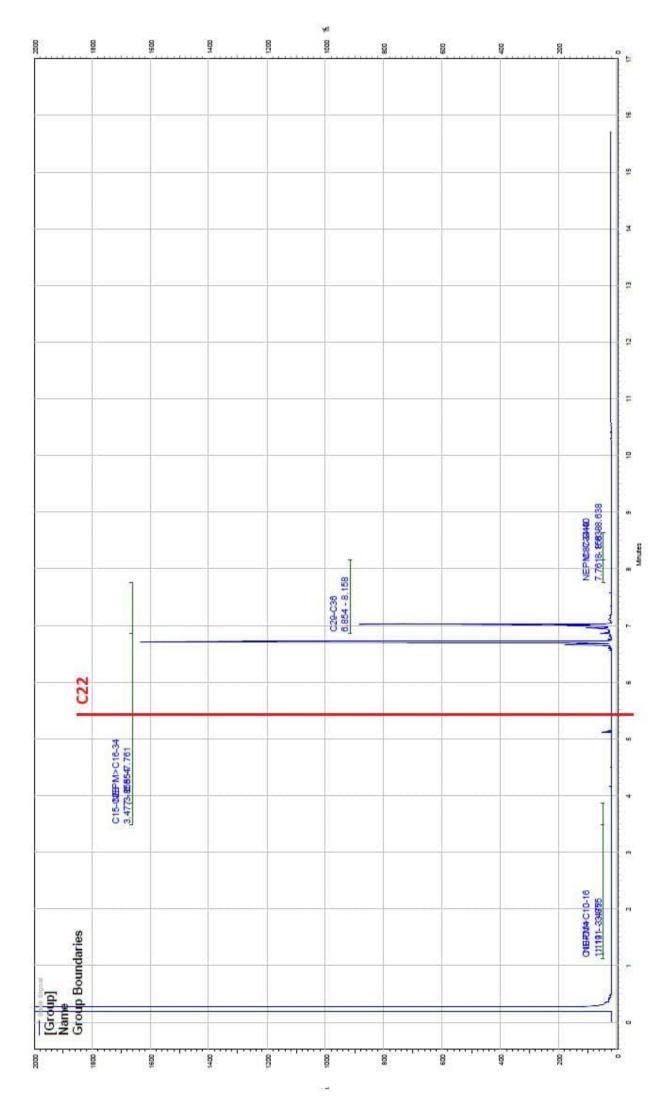
Project E25947 600-660 Elizabeth St Redfern-Add

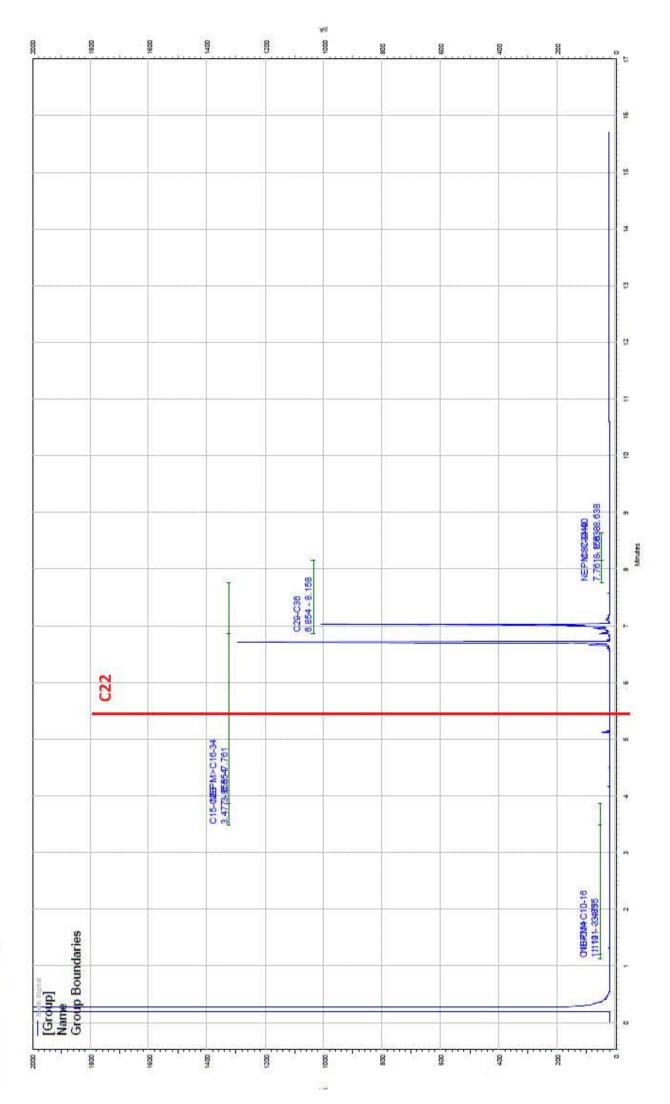

SUMMAR	Y OF ANALYSIS		1				1
No.	Sample ID	Acid Neutralising Capacity (ANC)	Chromium Reducible Sulfur (CRS)	Chromium Suite Net Acidity Calculations	HCI Extractable S, Ca and Mg in Soil/Solids ICP OES	Moisture Content	TAA (Titratable Actual Acidity)
001	TP402 1.9-2.0 ASSA	6	2	7	1	1	5
002	TP406 1.9-2.0 ASSA	6	2	7	1	1	5
003	TP410_1.9-2.0 ASSA	6	2	7	1	1	5
004	TP412_1.9-2.0 ASSA	6	2	7	1	1	5
005	TP413 1.9-2.0 ASSA	6	2	7	1	1	5
006	TP414 1.9-2.0 ASSA	6	2	7	1	1	5
007	TP417 1.9-2.0 ASSA	6	2	7	1	1	5
008	TP419 1.9-2.0 ASSA	6	2	7	1	1	5

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .


Testing as per this table shall commence immediately unless the client intervenes with a correction .

Appendix D - Chromatograms


243060A-4 |SIL


243060A-5 |SIL

243060A-6 |SIL

243060A-9 |SIL

243060A-15 |SIL

a ya	ĝ	₽ ₽	a 8	8 8 *	8	8	ų	R
								T
	_			1				
	_							
	_				-			88
								1000
		-		g	-			NEP.0500000000000000000000000000000000000
		15.70		0.29-038 0.854 - 8.158				
		122		688				3
	C22							
		16.34						
		₽M>0						-
		C15-00日M>C16-34 3.4773-00日4761						Ĩ
		1.00						Ť
								0-16
	8							OfBP2014 C10-16 , 11191- 334(35) . 시
	ndari							종탄 <
Name	Bou							
ame	iroup							
1Z	9 B	, ş	ş <u>ş</u>		8 8	 §		8

. *