

HICKORY CONSTRUCTIONS REDFERN PTY LTD AND BRIDGE HOUSING LIMITED

Acid Sulfate Soils Management Plan

600-660 Elizabeth Street, Redfern (Redfern Place)

E25947.E14_Rev4 21 June 2024

Document Control

Report Title: Acid Sulfate Soils Management Plan; 600-660 Elizabeth Street, Redfern (Redfern Place)

Report No:

E25947.E14_Rev4

Copies		Recipient			
1 Soft Copy (PDF – Secured, issued by email)		Hickory Construe	ction Redfern Pty Ltd and		
			Bridge Housing Limited		
		Level 5, 68 Clark	ke Street,		
		Southbank VIC 3	3006		
2 Original (Saved to	Digital Archives)	El Australia			
5 . (3	Suite 6.01, 55 M	iller Street,		
		Pyrmont NSW 2	009		
Author	Project Mana	ıger	Technical Reviewer		
Apr -	Shili		Alap.		
GEISIANE TORRES	SHARON LI		WARWICK HAYES		

OLIOIAIN				,	
Environmental Engineer		Environmental Engineer		Environmental Scientist	
			EIANZ CEnvP 1401		
			Licences Asbestos Asses	sor LAA001080	
Revision	Details		Date	Amended By	
Draft	Draft		9 February 2024		
1	Revision based on clie	ent comments	27 February 2024	GT	
2	Revised version base	d on auditor comments	9 May 2024	GT/SL/WH	
3	Revision version base	d on auditor and client comments	14 June 2024	GT/SL/WH	
4	Revision version base	d on new architectural plans	21 June 2024	GT/SL	

© 2024 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

			Page Number
1.	INTE	RODUCTION	1
	1.1	Background	1
	1.2	Proposed Development	2
	1.3	Project Objective	2
	1.4	Scope	2
	1.5	Definition of Acid Sulfate Soils	3
	1.6	Regulatory Framework	3
2.	SITE	DESCRIPTION	4
	2.1	Property Identification, Location and Physical Setti	ng 4
	2.2	Regional Setting	4
	2.3	Acid Sulfate Soil Risk Mapping	5
	2.4	Geomorphic and Site Characteristics	5
3.	PRE	VIOUS INVESTIGATIONS	6
	3.1	Available Reports	6
	3.2	Occurrence of ASSs	7
4.	MAN	IAGEMENT OF ASS	8
	4.1	Preliminary Considerations	8
	4.2	Potential Environmental Impacts	8
	4.3	Extent of Soil Disturbance During Development	9
	4.4	Excavation of ASS	9
	4.5	Disposal of ASS	11
	4.6	Management of In Situ ASS	12
	4.7	Disposal of Used Limestone Pad and Footprint Val	idation 12
	4.8	Water Management and Disposal	12
		4.8.1 Excavation Dewatering Method	12
		4.8.2 Groundwater Management4.8.3 Leachate Management	13 13
		4.8.3 Leachate Management4.8.4 Groundwater Disposal	13
	4.9	Risk Management	14
	4.10	Contingency Measures	15
5.	CON	ISULTATION AND RECORDS	16
6.	STA	TEMENT OF LIMITATIONS	17
7.	REF	ERENCES	18

Schedule of Tables

Table 1-1	Planning Secretary's Environmental Assessment Requirements	2
Table 2-1	Site Identification, Location and Zoning	4
Table 2-2	Regional Setting Information	4
Table 2-3	Consideration of Geomorphic Indicators for ASS	5
Table 4-1	Predicted Ground Settlement due to Groundwater Drawdown	13
Table 4-2	Contingency Measures	15
Table 2-3 Table 4-1	Consideration of Geomorphic Indicators for ASS Predicted Ground Settlement due to Groundwater Drawdown	1

Appendices

APPENDIX A – FIGURES

APPENDIX B – PROPOSED DEVELOPMENT PLANS

APPENDIX C – SUPPORTING INFORMATION FROM THE INVESTIGATION PHASE

1. Introduction

1.1 Background

El Australia (El) was engaged by Hickory Construction Redfern Pty Ltd & Bridge Housing Limited to prepare an acid sulfate soils management plan for 600-660 Elizabeth Street, Redfern (Redfern Place) in New South Wales (henceforth referred to as 'the site').

The site is located 2.4 kilometres south of the Sydney central business district (CBD), within the local government area (LGA) of City of Sydney Council (**Appendix A**, **Figure 1**). The site was designated for redevelopment. Previous environmental investigations established that acid sulphate soils (ASSs) were present in natural (non-fill) soils from 1.4 metres below ground level (m BGL) onwards. Consequently, an ASS management plan was required, in support of the corresponding development proposal with City of Sydney Council and to comply with Condition 13 *Ground and Water Conditions* of the NSW Government *Planning Secretary's Environmental Assessment Requirements* (SEARs) for Application SSD-51274973 (**Table 1-1**).

This report accompanies a detailed State Significant Development Application (SSDA) that seeks approval for a mixed-use development at 600-660 Elizabeth Street, Redfern (Redfern Place). The development proposes four buildings comprising community facilities, commercial/office, affordable/social/specialist disability housing apartments and new public links and landscaping.

The project site comprises Lot 1 in DP 1249145. It has an area of approximately 10,850m2. Part of the site currently accommodates the existing Police Citizens Youth Club (PCYC) (to be demolished and replaced). The remaining portion of the site is vacant with remnant vegetation.

The SSDA seeks approval for redevelopment of the site, including:

- Demolition of existing buildings.
- Tree removal.
- Bulk earthworks including excavation.
- Construction of a community facility building known as Building S1.
- Construction of two residential flat buildings (known as Buildings S2 and S3) up to 14 and 10 storeys respectively, for social and affordable housing.
- Construction of a five-storey mixed use building (known as Building S4) comprising commercial uses on the ground level and social and specialist disability housing above.
- Construction of one basement level below Buildings S2, S3 and part of S4 with vehicle access from Kettle Street.
- Site-wide landscaping and public domain works including north-south and east-west pedestrian through-site link.

For a detailed project description refer to the Environmental Impact Statement prepared by Ethos Urban.

Table 1-1 Planning Secretary's Environmental Assessment Requirements

SEARS Requirement	Relevant Section of Report
13. Ground and Water Conditions	Management of ASS – Section 4.0
Assesses potential impacts on soil, riparian land and infrastructure on and near the site, including erosion, salinity and acid sulfates; and	-
Provide a Surface and Groundwater Impact Assessment that assesses potential impacts on:	
 surface water resources (quality and quantity) including related infrastructure, hydrology, dependent ecosystems, drainage lines, downstream assets and watercourses; 	
 groundwater resources in accordance with the Groundwater Guidelines. 	

1.2 Proposed Development

Based on the supplied plans (**Appendix B**), the proposed development involves the demolition of all existing structures, followed by the construction of multiple apartment buildings, ranging from two to fourteen storeys, overlying a partial basement, as well as a new community facility.

The basement will cover part of the site footprint, with a finished floor level at 29.00m Australian Height Datum (AHD), requiring soil excavations to depths of 2-3m BGL. Areas of retained soils will be limited to the north, south, east and central portions of the site.

The total amount of soil expected to be disturbed during basement construction is about $9,606m^3$, assuming an area of $4,803m^2$ is excavated to an average depth of 2m BGL (**Appendix A**, **Figure 2**).

Notes:

Locally deeper excavations could be required for footings, lift overrun pits, crane pads and service trenches, creating a greater amount of spoil.

The groundwater table occurs at 1.2-2.1m BGL, indicating that dewatering will be required during the basement construction phase.

1.3 Project Objective

The objective of this plan is to provide the framework for the management and monitoring of ASSs during the proposed development, focusing on the bulk excavation stage.

1.4 Scope

In order to achieve the project objective, the scope of this management plan includes:

- Review of relevant topographic, (hydro)geological and soil landscape information, including the relevant ASS planning and risk maps;
- A review of the previous environmental investigations relating to the site;
- Description of the procedures to treat and dispose ASSs, when encountered on-site, including the minimisation and control of acid leachates;
- Determination of monitoring measures for soils and surface / ground waters; and
- Description of contingency procedures to be implemented in the case of failure of management procedures.

1.5 Definition of Acid Sulfate Soils

Acid sulfate soils are naturally occurring sediments containing iron sulfides, which have been deposited in estuarine conditions. As they comprise natural materials, their occurrence is not related to site boundaries or anthropogenic contamination; rather, they extend across regions suitable for their deposition.

When ASSs are exposed to air (e.g. due to bulk excavation or dewatering), oxygen reacts with the iron sulfides, producing sulfuric acid (and iron oxides). The acid can be produced in large quantities and drain into waterways causing severe short and long term socio-economic and environmental impacts, including damage to manmade structures and natural ecosystems.

ASS can be classified as either:

- Actual acid sulfate soil (AASS), within which are materials that have already reacted with oxygen to produce acid; or
- Potential acid sulfate soil (PASS), within which are materials that contain iron sulfides, but have not been exposed to oxygen (e.g. soils below the water table) and therefore have not produced sulfuric acid (though they have the capacity to do so).

Aquatic organisms are extremely sensitive to acid drainage. The impacts from ASS leachates include:

- Dissolved metals (aluminium in particular) can be toxic to both aquatic life forms;
- Dissolved sulfate salts can increase the salinity of freshwater; and
- Acidic sediment may "fix" phosphates and other nutrients, preventing their uptake by plants.

1.6 Regulatory Framework

The work reported herein was completed with reference to the following documents:

- EPA (1995) Assessing and Managing Acid Sulfate Soils Guidelines for Land Management in NSW Coastal Areas;
- EPA (2014) Waste Classification Guidelines;
- Sullivan et al. (2018) National Acid Sulfate Soils Guidance: National Acid Sulfate Soils Sampling and Identification Methods Manual; and
- Sydney Local Environmental Plan 2012.

2. Site Description

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**. Refer to **Appendices A** and **B** for site plans.

Table 2-1	Site Ident	ification,	Location	and	Zoning

Attribute	Description	
Street Address	600-660 Elizabeth Street, Redfern NSW	
Location and Description	2.4 kilometres south of the Sydney CBD. The site is rectangular in shape and occupied by a grassed reserve over the northern part and a brick building and recreational (sporting) facilities in the south.	
Geographical Coordinates	Northern-eastern corner of the site (datum GDA2020-MGA56): Easting: 334288.581 Northing: 6248056.932 (Source: http://maps.six.nsw.gov.au) 	
Site Area	Approximately 1.085 hectares (10,850 m ²)	
Cadastral Identification	Lot in Deposited Plan 1249145	
LGA	City of Sydney Council	
Current Zoning	R1 – General Residential (Sydney Local Environmental Plan 2012)	
Current Land Use	Northern area – parkland Southern Area – PCYC building and youth sporting facilities	
Surrounding Land Use	North: Kettle Street, followed by residential properties East: Walker Street, followed by residential properties South: Phillip Street, followed by commercial and residential properties West: Elizabeth Street, followed by Redfern Oval	

2.2 Regional Setting

Local topography, (hydro)geology and soil landscape information is summarised in Table 2-2.

Table 2-2	Regional Setting information
Attribute	Description
Topography	Overall the site is flat. Relative elevations range between 31.00m to 32.70m AHD.
Drainage	Likely to be consistent with the general slope of the site, with runoff discharging into pit and pipe systems of the municipal stormwater system in Elizabeth Street.
Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources <i>Sydney 1:100,000 Geological Series Sheet 9130</i> (DMR 1983), indicates the site is underlain by Quaternary-age (Cainozoic Holocene) sedimentary deposits (<i>Qhd</i>), typically comprised of medium to fine-grained "marine" sands with podsols. The dune deposits are likely to be underlain by Hawkesbury Sandstone (<i>Rh</i>), which forms the regional bedrock. Hawkesbury Sandstone comprises "medium to coarse-grained quartz sandstone, with very minor shale and laminite lenses".

Table 2-2 Regional Setting Information

Attribute	Description
Soil Landscape	The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 indicates the site lies within a Tuggerah (<i>tg</i>) aeolian landscape. This landscape type typically comprises gently undulating to rolling coastal dune fields. Soils are generally deep (>2m), with podzols on dunes and humus podzol intergrades on swales, and highly permeable, presenting very high erosion hazard. They are associated with permanently high water tables.
Depth of Filling	Based on observations from the investigation phase (Section 3 and Appendix C), a layer of anthropogenic filling, ranging from 0.1m to 1.4m in thickness, is present across the site, beneath which are organic peat and Botany Sands. The depth to bedrock (sandstone) ranges from 7.5-12.9m BGL.
Nearest Surface Water Feature	Sheas Creek, located approximately 1 kilometre to the south west of the site.
Groundwater Conditions	Based on observations from the investigation phase (Section 3 and Appendix C), the groundwater table is encountered at 1.2-2.1m BGL, within an unconfined sand aquifer. The hydraulic gradient is inferred to be south westerly, towards Sheas Creek. Note: The site is located within Zone 2 of the <i>Botany Groundwater Management Area.</i>

2.3 Acid Sulfate Soil Risk Mapping

In accordance with the Sydney Local Environmental Plan 2012 - Acid Sulfate Soils Map (Sheet ASS_010), the site is situated within Class 5 land. With reference to the Botany Bay Acid Sulfate Soil Risk Map (1:25,000 scale, Murphy, 1997), the site within an area having 'No Known Occurrence.' In such cases, ASSs are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".

2.4 Geomorphic and Site Characteristics

The likelihood of ASS occurrence on-site was considered against various geomorphic criteria given in ASSMAC (1998) *Acid Sulfate Soil Manual*. The considerations are given in **Table 2-3**.

Geomorphic Indicator	Is geomorphic feature present on-site?
Holocene Sediments	Yes Maps indicate site is situated on Quaternary-aged sands / Tuggerah aeolian landscape Borelogs from previous investigations confirmed alluvial soils to 7.5- 12.9m BGL (Appendix C)
Soil horizons less than 5m AHD	No Site elevations 31.00-32.70m AHD Sandstone bedrock intercepted at 7.5-12.9m BGL (≥20m AHD)
Marine / estuarine sediments or tidal lakes	Possible Based on maps and borelogs from previous investigations
Coastal wetland; backwater swamps; waterlogged or scaled areas; inter-dune swales or coastal sand dunes.	No Based on maps and borelogs from previous investigations
Dominant vegetation is mangroves, reeds, rushes and other swamp or marine tolerant species	No
Geologies containing sulfide bearing material	No Based on borelogs from previous investigations
Deep older (Pleistocene) estuarine sediments	No Based on maps and borelogs from previous investigations

 Table 2-3
 Consideration of Geomorphic Indicators for ASS

3. Previous Investigations

3.1 Available Reports

The site investigation phase was documented under the following reports:

- AECOM (2018) Draft Phase 1 Environmental Site Assessment and Geotechnical Desktop Study (AECOM Pty Ltd Reference 60568920_Phase1 ESA & Geotech Desktop_20180522_B, dated 22 May 2018);
- Douglas Partners (2020) Geotechnical Investigation (Douglas Partners Pty Ltd Reference 99510.00, dated January 2020);
- EMM (2020) Stage 2 Contamination Assessment (EMM Pty Ltd Reference J190730 RP1, dated 29 May 2020);
- JBS&G (2022) Material Assessment (JBS&G Pty Ltd Reference 59618/145427, dated 28 June 2022);
- EI (2023a) Additional Geotechnical Investigation; 600-660 Elizabeth Street, Redfern NSW (El Australia Report E25947.G04, dated 15 March 2023);
- EI (2023b) Additional Site Investigation; 600-660 Elizabeth Street, Redfern NSW (El Australia Report E25947.E03_Rev0, dated 31 March 2023);
- EI (2023c) Groundwater Take Assessment; Proposed Residential Development, 600-660 Elizabeth Street, Redfern NSW (EI Australia Report E25947.G12, dated 15 November 2023); and
- EI (2023d) Groundwater Monitoring Report No. 1; 600-660 Elizabeth Street, Redfern NSW (El Australia Report E25947.G11.01, dated 15 November 2023).

A summary of the findings relating to ASSs is provided below. Refer to **Appendix C** for supporting information derived from these reports. **Appendix A** includes site plans with sampling locations.

Subsurface Conditions

Based on the combined borehole logs (thirty seven drilling / sampling locations, in total), the sub-surface conditions of the site are generalised as:

- Concrete pavement (southern portion of the site); overlying/or
- Gravelly sand fill (0.1-1.4m thickness), described as:
 - fine to coarse grained, brown/grey/yellow, with sub-angular to angular gravels, glass, ceramic tiles, brick, metal, concrete, slag, wood fragments, plant roots, dry to moist, no odour; or
 - medium to coarse grained, yellow/grey, with glass, ceramic tile, brick and sandstone fragments, dry to moist, no odour; overlying
- Natural, organic (peaty) clays and sands, described as dark brown, with organic (decomposing plant) material, low plasticity (clay) / fine to medium grained (sand), moist to wet, hydrogen sulphide (H₂S) odour.

The groundwater table is encountered at 1.2-2.1m BGL.

Presence of ASSs

Based on the laboratory analytical results for more than a hundred discrete soil samples:

- pH_f ranged from 5.0-9.0 (indicating variable pH conditions, with some soils being acidic, though not AASSs);
- pH_{fox} ranged from 2.1-6.3 (establishing there is acid generating ability and possibly PASSs in the natural materials, consistent with the presence of organic (peaty) clays and sands); and
- SPOCAS and chromium suite analyses confirmed the presence of PASSs in the dark brown, natural (organic / peaty) clays and sands from 1.4m BGL onwards (consistent with the detection of H₂S odours).

3.2 Occurrence of ASSs

The previous environmental investigations established that the natural (organic / peaty) soils from 1.4m BGL contained unoxidised sulfur compounds (i.e. PASSs). As the proposed development involved bulk excavation to depths of 2-3m BGL, in order to construct the single level basement, an ASS management plan was necessary. The requirement for such a plan was consistent with the *Sydney Local Environmental Plan 2012*, as well as Schedule 3 of the NSW *Environmental Planning and Assessment Regulation 1994*.

Notes:

The total amount of soil expected to be disturbed during basement construction is about 9,214m³, assuming an area of 4,607m² is excavated to an average depth of 2m BGL (although locally deeper excavations could be required for footings, lift overrun pits, crane pads and service trenches, creating a greater amount of spoil).

The amount of PASS requiring management (i.e. lime treatment) is predicted to be approximately 4,607m³, assuming an area of 4,607m² and 1.0m average thickness of dark brown, natural (organic / peaty) clays and sands.

The groundwater table occurs at 1.2-2.1m BGL, indicating that dewatering will also be required during the basement construction phase.

4. Management of ASS

4.1 Preliminary Considerations

Based on the findings of the site investigation phase, PASSs are present in the dark brown, natural (organic / peaty) clays and sands. The aim of this plan, therefore, is to guide the management (treatment and disposal) of such soils during the bulk (basement) excavation stage of the proposed development, including any piling / shoring / retention system works.

The extent of any adverse impacts associated with ASSs will depend on the following factors:

- Amount of excavated soil identified as being ASS;
- Physical characteristics of the ASSs, such as grain size and natural buffering capacity;
- Time that ASSs are exposed to air; and
- Rate of oxidation and transport of the oxidation products (i.e. acidic leachates).

It is assumed that all excavated / piled ASS material will be disposed off-site at an appropriately licensed landfill facility. If material is to be disposed without lime neutralisation treatment, it shall be placed below the water table at the designated landfill. No ASS should be used for structural or general filling above the groundwater table.

The time that ASSs (both excavated and remaining surface materials) are exposed to air is critical in the generation of acid leachates. The shortest possible time of air exposure will be permitted, to minimise the extent of oxidation and transport of reaction products. Ideally, any stockpiled ASSs will be treated on the same day that they are excavated, while remaining surface soils will be lime treated as soon as possible upon exposure (<12-24 hours).

Effective control of acidic leachate generation/release will rely on adequate identification (monitoring) and on-going management.

Note: <u>All</u> soils to be removed from the site, whether they be ASS or not, will require appropriate classification in accordance with the EPA (2014) *Waste Classification Guidelines,* prior to disposal.

4.2 Potential Environmental Impacts

Soils identified as PASS will require appropriate management, to minimise environmental impacts that may be caused by soil and groundwater disturbance during the proposed development. The management options commonly adopted for ASS comprise:

- Avoidance, or minimisation of ASS disturbance;
- Soil neutralisation (typically with lime);
- Strategic reburial under water; and/or
- Off-site treatment and disposal.

All disturbed ASS should be either neutralised and disposed off-site at a licensed waste facility, or placed below the water table at a licensed landfill. No PASS, treated or otherwise, should be used for structural or general filling above the groundwater table.

The following issues need to be considered during construction in a PASS environment:

- Exposure and oxidation of excavated material and the consequent discharge of acidic groundwater and continued acid leachate;
- Release of acidic subsurface water during the excavation; and
- The on-going oxidation of excess ASS generated by excavations and the consequent generation of acidic groundwater.

Effective management of these issues, along with an appropriate monitoring program with specified contingencies, will ensure impacts do not occur and there is no incremental contribution of acid leachates during the proposed development.

4.3 Extent of Soil Disturbance During Development

Site development involves the demolition of all existing structures, followed by the construction of multiple apartment buildings, ranging from two to fourteen storeys, overlying a partial basement facility, as well as a new community facility (**Section 1.2** and **Appendix B**). The basement will cover part of the site footprint, with a finished floor level at 29.00m AHD, requiring soil excavations to depths of 2-3m BGL. Areas of retained soils will be limited to the north, south, east and central portions.

The total amount of soil expected to be disturbed during basement construction is 9,606m³, assuming an area of 4,803m² is excavated to an average depth of 2m BGL (acknowledging locally deeper excavations could be required for footings, lift overrun pits, crane pads and service trenches, creating a greater amount of spoil).

The dark brown, natural (organic / peaty) clays and sands pose the greatest risk for acid leachate generation (i.e. contain PASSs). Hence, all such soils from 1.4m BGL onwards must be segregated and treated. During excavation works, if any signs of potential acid sulfate soils (PASS) or actual acid sulfate soils (AASS) are observed, including hydrogen sulfide odours, shell fragments, and waterlogged soils at shallower depths, the management protocols outlined in **Section 4.4** should be followed.

The amount of PASS requiring management (i.e. lime treatment) is predicted to be approximately 4,803m³, assuming an area of 4,803m² and 1.0m average thickness of natural (organic / peaty) soils.

Note: ASS management may also be required for spoil generated from piling, as well as deeper footings, service trenches and/or lift overrun pits etc that exceed 2-3m depth, in which case the measures described below would be triggered.

4.4 Excavation of ASS

Soil excavation shall proceed as follows:

- Due to access constraints, the excavation works should be performed in stages. At each stage, surface fill shall be stripped and removed, with care taken to ensure no fill material (0.1-1.0m thickness) is mixed with PASS from beneath.
- The site surface shall be stripped and prepared, with existing fill materials (0.1-1.0m thickness) excavated and stored separately in covered stockpiles. Stockpiled material may be screened to minimise the amount of waste to landfill.
- The sides of the excavation shall also be stripped a further 200mm to ensure potential fill soils do not fall into the pit and cross contaminate PASS materials.

In addition, the following management strategies shall also be considered and implemented, as required, to manage risk:

- Installation of a leachate collection and treatment system.
- Construction of supplementary erosion and sediment control structures. Once fill
 material is removed, the surface shall be inspected by a qualified environmental
 consultant and a representative of the receiving landfill facility, prior to excavation of
 PASS.
- When (surface) clearance is granted, PASS materials shall be excavated to the required depth and stockpiled separately, within a designated (treatment) area, or loaded directly onto waiting trucks (if *Alternative Disposal* is to be carried out; refer to Section 4.5 below).

- The application of lime to PASS should be carried out on a treatment pad, with adequate sediment erosion control measures in place.
- The treatment pad should consist of a minimum 300mm thickness of compacted crushed limestone, or other appropriate neutralisation material. The level of compaction used should produce an appropriately low permeability base to prevent infiltration of leachate.
- The treatment pad is to be bunded with a minimum 150mm high perimeter of compacted, crushed limestone to contain potential leachate runoff within the area and prevent infiltration of surface water runoff.
- On-site neutralisation of acidic soils (<pH 6.0) will be carried out using powdered, agricultural lime. In order to facilitate mixing, the soils should be thinly spread (<0.5m) over the pad. Lime should be added by hand and/or excavator bucket, followed by mixing using light-weight rotators and/or shovels. The lime shall be thoroughly mixed with the excavated materials.
- If lime treatment on excavated ASS cannot be performed immediately, plastic sheeting shall be placed over the stockpile to reduce oxidation. For every day a stockpile remains on-site, representative samples will be monitored for pH; where pH_f falls below pH 6.0, (additional) lime will be applied for neutralisation purposes.
- Following treatment, the soil must chemically assessed and waste classified for off-site disposal purposes, in accordance with the EPA (2014a) Waste Classification Guidelines and EPA (2022) Sampling Design Guidelines. The testing program is to include SPOCAS and chromium suite analyses, which shall assist the confirmation (validation) of soil neutralisation.

Determination of Lime Requirement

 Based on the available data (Section 3 and Appendix C), the quantity of lime required to neutralise the theoretical maximum amount of acid that could be generated from the complete oxidation of the PASS is 181 kilograms calcium carbonate (CaCO₃) per tonne of soil (Table 1).

Validation Post Lime Treatment

- Post lime treatment and prior to off-site disposal, in-field (pH_f) and laboratory testing on representative samples will be performed to ensure that sufficient neutralisation of ASS has occurred.
 - In-field pH_f testing shall be performed at the nominal frequency of 1 sample / test per 50m³. Should field pH_f fall below pH 6.0, the corresponding material shall remain on-site and (additional) lime neutralisation shall proceed.
 - The validation program shall include chromium suite (S_{Cr}) analyses. In accordance with Table 8-1 Validation Sampling Design, presented under the EI (2024) Remediation Action Plan; 600-660 Elizabeth Street, Redfern (Redfern Place), NSW (EI Australia Reference E25947.E06_Rev3, dated 12 June 2024), stockpiles of lime-treated soil shall be sampled at a rate of 1 per 25m³ up to 250m³. Thereafter, for larger (>250m³) piles, a minimum of ten samples shall be collected for analysis. Soil neutralisation will be verified when the acid neutralising capacity of the treated soil (in % S w/w) exceeds the net acidity (in % S w/w) and the liming rate is below the contracted laboratory's limit of reporting (LOR).

4.5 Disposal of ASS

Transport of ASS material to the receiving waste facility shall take place as soon as possible after lime treatment and/or waste classification certification. Transportation shall be by licensed tipper trucks. The receiving facility must be licensed with the EPA to accept (treated) ASS.

According to JBS&G (2022), "if the PASS materials be excavated and delivered to the disposal facility within a period of 8 hours, the pH of the soils will likely remain above a pH of 5.5. However, it is noted that this is highly contingent on the appropriate management of soils prior to excavation (e.g. appropriate dewatering activities) as well as during excavation and off-site disposal."

In the case that lime treatment of peaty PASS is warranted, transport of ASS material to the receiving landfill facility shall take place as soon as possible after lime treatment and waste classification certification. Transportation shall be by licensed tipper trucks. The receiving facility must be licensed with the EPA to accept (treated) ASS.

Stockpiled, non-treated PASSs shall be covered if immediate disposal is not possible. Such materials must leave the site within 16 hours of excavation, otherwise lime neutralisation techniques shall proceed as described above.

Alternative Disposal (Non-Lime Treated PASS)

In accordance with the EPA (2014) *Waste Classification Guidelines - Part 4: Acid Sulfate Soils*, PASS may be disposed at a landfill without prior treatment, provided:

- PASS is buried at least 2m below the lowest historical level of the permanent water table;
- Disposal occurs within 24 hours of excavation (disturbance);
- The PASS otherwise meets the definition of *virgin excavated natural material* (VENM) under the *Protection of the Environment Operations Act 1997*, even though it contains sulfidic ores or soils; and
- The landfill facility is licensed by the EPA to accept untreated PASS (below the water table).

The PASS must be kept wet at all times and buried below the permanent water table (≥2m below the lowest historical level of the water table at the disposal site), within 8 hours of their receipt by the landfill.

Documentation

Documentation must be provided to the operator of the landfill for each waste stream and truckload of (treated) PASS received, indicating that the soil classification, treatment and transport have been in accordance with this management plan and ASSMAC (1998) *Acid Sulfate Soil Manual*. Such documentation will include the corresponding waste classification certificate, completed in accordance with the EPA (2014) *Waste Classification Guidelines*.

The occupier of the disposal site must also test the pH of each load of soil received immediately prior to its placement under water, using the test method(s) in ASSMAC (1998) *Acid Sulfate Soil Manual* (Methods 21A and/or 21AF). These details, together with the pH of the soil recorded at the time of its extraction, must be retained by the occupier of the landfill site.

Soil that has dried out, undergone any oxidation of its sulfidic minerals, or which has a pH of less than pH 5.5 must be treated by neutralisation and disposed of at a landfill that can lawfully accept it.

The pH of the water at the landfill into which the potential ASS is placed must not be less than pH 5.5 at any time. Landfill licence conditions require the occupiers of potential ASS disposal sites to regularly monitor the pH of ground and surface waters at their premises.

4.6 Management of *In Situ* ASS

PASS which becomes exposed (oxidised) on an excavation surface may produce acid. For every day that such a surface is in an exposed state, its pH_f shall be monitored, by way of testing representative samples. Sampling for field pH_f testing should be evenly spaced, conducted at a frequency of 1 sample per $250m^2$ (sample depth of 0-0.1m).

Where soil pH_f is below 6.0, lime will be applied to the ASS horizon(s). Plastic sheeting can be placed over the corresponding surface (where possible) to reduce the oxidation rate.

4.7 Disposal of Used Limestone Pad and Footprint Validation

At the completion of ASS treatment and contamination remedial works, the materials forming the limestone treatment pad must be waste classified in accordance with the EPA (2014a) *Waste Classification Guidelines*, prior to for off-site disposal. The testing program is to include pH_f, SPOCAS and chromium suite analyses, to determine whether lime treatment is required for the pad materials.

Upon removal of the pad, validation sampling of the corresponding footprint will occur at a rate of 1 sample per 100m² (with a minimum of three equally spaced samples per footprint). Sampling methodology should adhere to that describe in the EI (2024) RAP.

4.8 Water Management and Disposal

4.8.1 Excavation Dewatering Method

According to the EI (2023c) *Groundwater Take Assessment* (GTA), a sheet pile wall of about 340m total length will be installed along the basement perimeter. In order to evaluate the effects on groundwater take and associated hydraulic impacts, three different shoring scenarios were modelled, as follows:

- sheet pile wall socketed 3m below the bulk excavation level (i.e. to 25.4m AHD);
- sheet pile wall socketed 6m below the bulk excavation level (i.e. to 22.4m AHD); and
- sheet pile wall socketed at least 0.5m into residual clay (i.e. to 16.6m AHD).

Temporary dewatering will achieve a drawdown of the water table to 27.4m AHD, while the design groundwater level (ambient groundwater level) is at 29.5m AHD. For a 3m socket design, the expected water level drawdown would be 0.154m behind the shoring wall. For a 6m socket design, the expected water level drawdown would be 0.122m behind the shoring wall. For a 6m socket pile wall installed 0.5m into the residual clay, the drawdown would be negligible.

Drawdown Induced Settlement

Settlement analysis formed part of the EI (2023c) GTA, using *PLAXIS 2D* to estimate the potential drawdown-induced settlements as a result of the above works. The predicted drawdown over the zone of influence and settlement is shown in **Table 4-1**, noting that the predicted settlement is from <u>drawdown only</u> and does not account for any other factors such as deflection of the shoring wall, surcharge loading and other construction factors.

The predicted ground settlements immediately outside of the shoring wall range between 'negligible' to 15.4mm depending on the shoring wall depth. These settlement values linearly decrease to 'negligible' at a distance of 65m away from the basement. Settlements greater than 10mm and less than 50mm due to dewatering are considered to pose 'slight' risk in regards to potential infrastructure damage (Cashman and Preene, 2021).

Note: Although the *PLAXIS 2D* modelling provides predicted drawdown-induced ground settlement values, it would be prudent for a thorough assessment of potential risks posed on neighbouring structures to be completed by a qualified and experienced structural engineer.

Shoring Syst	em	Distance from Shoring Wall (m)	Drawdown (m)	Ground Settlement (mm)
		0	1.70	15.4
	-	5	1.60	14.8
	- 3m socket below the	10	1.50	13.9
	bulk excavation level	20	1.20	11.8
Sheet pile [−] wall	-	40	0.65	6.9
	-	65	0.00	Negligible
	- - 6m socket below the	0	1.30	12.2
		5	1.20	11.9
		10	1.10	11.4
	bulk excavation level	20	0.90	9.0
	-	40	0.50	5.2
	-	65	0.00	Negligible
	0.5m into residual clay	Negligible drawdown and settlement		ttlement

Table 4-1 Predicted Ground Settlement due to Groundwater Drawdown

4.8.2 Groundwater Management

The removal (pumping) of any groundwater from an excavation area may cause alterations to the existing groundwater table. During the dewatering process, extracted groundwater will be pumped to a holding vessel (tank) for assessment of pH and other quality parameters (see Section 4.8.4).

Extracted water that is acidic (pH<6) will be treated with hydrated lime to display a pH level of pH 6.5-8, prior to off-site disposal. Powdered hydrated lime should be added to the water by hand and/or excavator bucket and mixed. Field pH testing on representative samples should be performed to ensure that sufficient neutralisation has occurred, prior to disposal.

In addition to the above, an appropriately designed (bunded) truck wash area will be required to capture liquids and solids, prior to vehicles exiting the site. Treatment and neutralisation of liquids and solids shall be in accordance with **Sections 4.4** and **4.5**. All wash water shall be transferred to the (or a dedicated) holding vessel.

4.8.3 Leachate Management

The ASS treatment pad shall be bunded, in order to capture any leachate, including runoff. The leachate collection can be integrated into the groundwater management system, described in Section 4.8.2. No leachate shall be permitted to migrate across the site in an uncontrolled manner.

Once pumped to the (or a dedicated) holding vessel, the leachate shall be assessed for pH and other quality parameters (see Section 4.8.4).

Leachate that is acidic (pH<6) will be treated with hydrated lime to display a pH level of pH 6.5-8, prior to off-site disposal. Powdered hydrated lime should be added to the water by hand and/or excavator bucket and mixed. Field pH testing on representative samples should be performed to ensure that sufficient neutralisation has occurred, prior to disposal.

4.8.4 Groundwater Disposal

It is anticipated that extracted groundwater from the dewatering process, as well as (treated) leachate, will be disposed to the municipal stormwater system. Any permits / licences from Council and Water NSW shall be obtained prior to off-site discharge.

Water for disposal will be tested routinely (weekly intervals) for the duration of dewatering activities, to ensure the quality of water entering the stormwater system is compliant with permit and licence conditions. Monitoring results will be available to Council or Water NSW on request.

Should it be found that groundwater quality is not suitable for disposal to the stormwater system, further treatment or a Sydney Water (trade waste) permit to dispose to sewer shall be required.

Water quality monitoring for disposal to the municipal stormwater system shall include the following:

- Daily monitoring of field parameters (volume, pH, TDS/EC, turbidity) using data logging equipment.
- Weekly sampling and laboratory analysis of treated water for dissolved metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, nickel, zinc and mercury), total recoverable hydrocarbons (TRHs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), total nitrogen and total phosphorus. Laboratory results should be compared to trigger values provided in the ANZG (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*, specifically those providing a 95% level of species protection for slightly moderately disturbed ecosystems.
- Weekly sampling shall be performed by a suitably qualified environmental consultant and submitted to a NATA-accredited laboratory for analysis of the above parameters, depending on the time frame required to complete the works.

4.9 Risk Management

This management plan has been based on the assumption that ASSs are present in the dark brown, natural (organic / peaty) clays and sands of this site, with these soils posing the greatest risk for acid leachate generation. Such soils will be disturbed and exposed during the proposed development (basement excavation phase, at least).

Prior to the commencement of any excavation works, the applicant shall nominate an appropriately qualified environmental consultant to supervise the management of ASS. The consultant shall:

- Provide an acceptance in writing to supervise the aforementioned works and ensure compliance with this management plan and conditions of consent. This must be provided to City of Sydney Council prior to works commencing.
- On completion of all ASS management, certify that the aforementioned works were conducted in compliance with the approved plan(s), specifications and conditions of consent. This certification shall be submitted to City of Sydney Council within 30 days of the completion of works.

During the proposed basement excavations, or indeed any soil disturbance that exceeds 1.4m depth, site inspection is to be conducted by the appointed environmental consultant, in order to check that the assumptions made in this plan are consistent with field evidence and practices. The consultant will be responsible for ensuring that:

- Erosion and sediment control structures are installed;
- ASS materials are kept separate from other soils (i.e. stockpiled / loaded separately);
- Suitable groundwater / leachate collection and treatment measures are in place;
- Testing of excavated / exposed ASS is performed;
- Testing of (ground / surface) water seepage and/or leachate is performed.

All contractors must employ best practices in managing any off-site water and soil quality impacts during site redevelopment. All waste materials must be contained and disposed at appropriate waste treatment / landfill facilities, in accordance with the EPA (2014) *Waste*

Classification Guidelines. Any soils to be imported onto the site for the purpose of back-filling or landscaping will require some form of validation, to confirm their suitability for the proposed land use.

During the excavation works, it is expected that PASS horizons will be disturbed and aerated. This suggests that acid-resistant concrete be used for the basement shell (base and walls). It is recommended that the specifications for acid resistant concrete be determined by the appointed structural engineer.

4.10 Contingency Measures

Contingency measures for the site are detailed in **Table 4-2**. This table provides a list of potential events that may arise during bulk excavation, piling and or shoring, and the actions to be undertaken if unexpected conditions occur.

Unexpected Condition	Action
Potential ASS identified at unexpected depths	Stop excavations. Have material assess by an environmental consultant. Follow management procedures adopted in the ASS management plan.
Neutralisation of ASS was not effective	Re-assess liming rates and add additional lime to material. Re-test material to check neutralisation.
Neutralisation of ASS indicates that too much lime has been added and soils are highly alkaline	Remediate soils before use. Remediation comprises mixing additional ASS with the material (i.e. use excess lime to neutralise more ASS). Re-test material to check neutralisation.
Bunded ASS treatment area is damaged	Repair bund as soon as practicable. Clean-up any ASS that escaped the treatment area and place back into the treatment area. Check surrounding area for impact from the ASS or leachate, and undertake remedial action as required.
Groundwater level falls below the top of areas defined as containing ASS	 Stop dewatering. Review ASS exposure by checking the ASS and non-ASS interface in the affected area. Consult GTA. Determine potential causes by reviewing construction practises, weather, baseline groundwater monitoring data, and performing additional groundwater monitoring as necessary on groundwater monitoring present at the site. Review and confirm mitigation measures to be implemented, including: Maintenance of soil moisture levels through targeted groundwater recharge; Adjustment of the construction activities or schedule; and Treatment of additional PASS in treatment area. Sentinel groundwater testing at the monitoring wells outside the basement should be carried out.

5. Consultation and Records

During ASS management, regard must be given to the needs of the following organisations:

- New South Wales Environment Protection Authority (EPA), concerning their requirements with respect to the various contamination control issues associated with the project and the detail required in the ASS management plan;
- EPA accredited site auditor (if required);
- WaterNSW, for dewatering conditions and permit; and
- City of Sydney Council, for Development Application compliance and the handling requirement for ASS situations.

All records associated with ASS investigation, management and monitoring shall be maintained by the appointed environmental consultant for the duration of the project. Such records will comprise, though are not limited to:

- Further ASS assessment results, as determined by any waste classification analysis;
- Field records of ASS monitoring, such as daily field pH screening results on stockpiled materials or truck loads leaving the site, excavation surfaces, application of lime, groundwater level and pH level monitoring;
- Records of ASS transportation, including truck registers, and waste dockets issued by the receiving landfill facility; and
- Environmental incident reports in cases of non-conformance and subsequent mitigation measures adopted.

A file should be established on-site, to store all hard copy records associated with the management and monitoring of PASS for the project. All analysis and monitoring information shall also be stored electronically to permit ease of access and data interpretation.

6. Statement of Limitations

This plan has been prepared for the exclusive use of Hickory Construction Redfern Pty Ltd & Bridge Housing (the client), whom is the only intended beneficiary of El's work. Its scope is limited to that agreed with the client.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

EI has used a degree of care and skill ordinarily exercised for similar plans by reputable members of the environmental industry in Australia, as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this plan must be read in conjunction with the whole of this report, including its appendices.

The findings presented in this report are the result of discrete sampling methodologies, used in accordance with best industry practices. Due to the specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program. Neither EI, nor any other reputable consultant, can provide unqualified warranties, nor does EI assume any liability for site conditions not observed or accessible during the time of the assessment.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

This plan was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This plan does not purport to provide legal advice.

This plan and associated documents remain the property of EI, subject to payment of all fees due for its drafting. The plan shall not be reproduced except in full and with prior written permission by EI.

7. References

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

Cashman and Preene (2021) *Groundwater Lowering in Construction - A Practical Guide to Dewatering* (Third Edition). CRC Press, 2021.

Chapman GA and Murphy CL (1989) *Soil Landscapes of the Sydney 1:100 000 Sheet, Soil Conservation Service of NSW, Sydney, September 1989.*

DMR (1983) *Sydney 1:100,000 Geological Series Sheet 9130*, Geological Survey of New South Wales, Department of Mineral Resources.

EPA (1995) Assessing and Managing Acid Sulfate Soils - Guidelines for Land Management in NSW Coastal Areas, Environment Protection Authority of New South Wales, EPA 95/41, June 1995.

EI (2024) *Remediation Action Plan; 600-660 Elizabeth Street, Redfern (Redfern Place), NSW*, EI Australia Reference E25947.E06_Rev3, 12 June 2024.

EPA (2014a) *Waste Classification Guidelines - Part 1: Classifying Waste*, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.

EPA (2014b) *Waste Classification Guidelines - Part 4: Acid Sulfate Soils*, Environment Protection Authority of New South Wales, EPA 2014/0798, November 2014.

EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (Third Edition), Environment Protection Authority of New South Wales, EPA 2017P0269, October 2017.

EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

EPA (2022a) Sampling Design Part 1 - Application: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3915, August 2022.

EPA (2022b) Sampling Design Part 2 - Interpretation: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3916, August 2022.

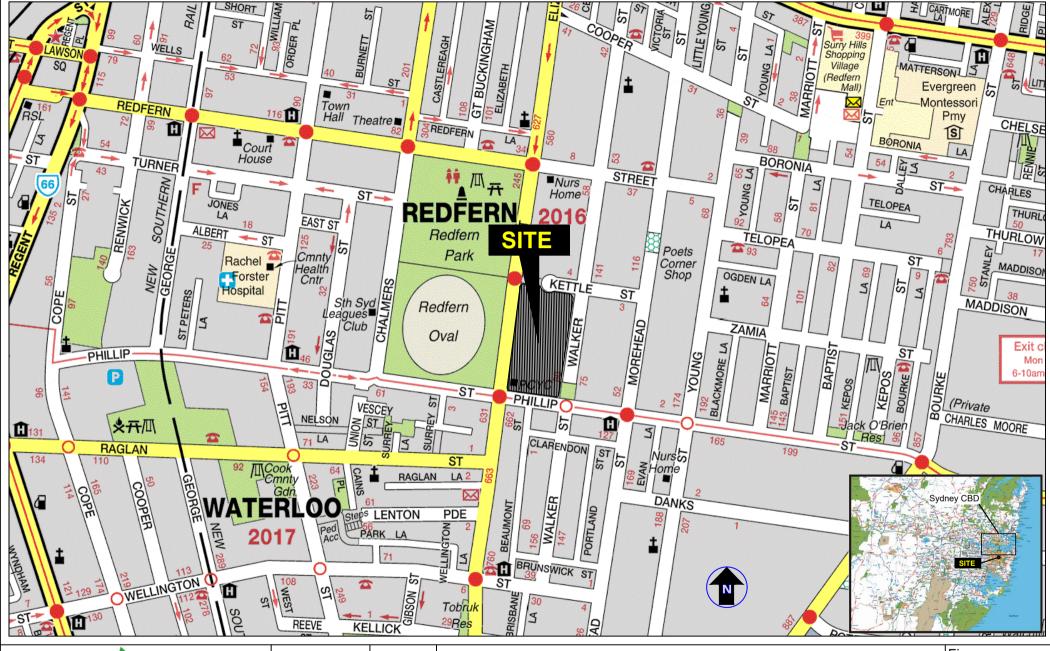
JBS&G (2022) Material Assessment, JBS&G Pty Ltd Reference 59618/145,427, 28 June 2022.

Landcom (2004) *Managing Urban Stormwater: Soils and Construction* (Fourth Edition), Published by the New South Wales Government, March 2004.

Murphy CL (1997) *Acid Sulfate Soil Risk of the Botany Bay Sheet* (Edition 2), Department of Land and Water Conservation, Sydney (supplied by the Sydney South Coast, Geographical Information Systems Unit).

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013, National Environment Protection Council, Document OPC50357-B, 11 April, 2013.

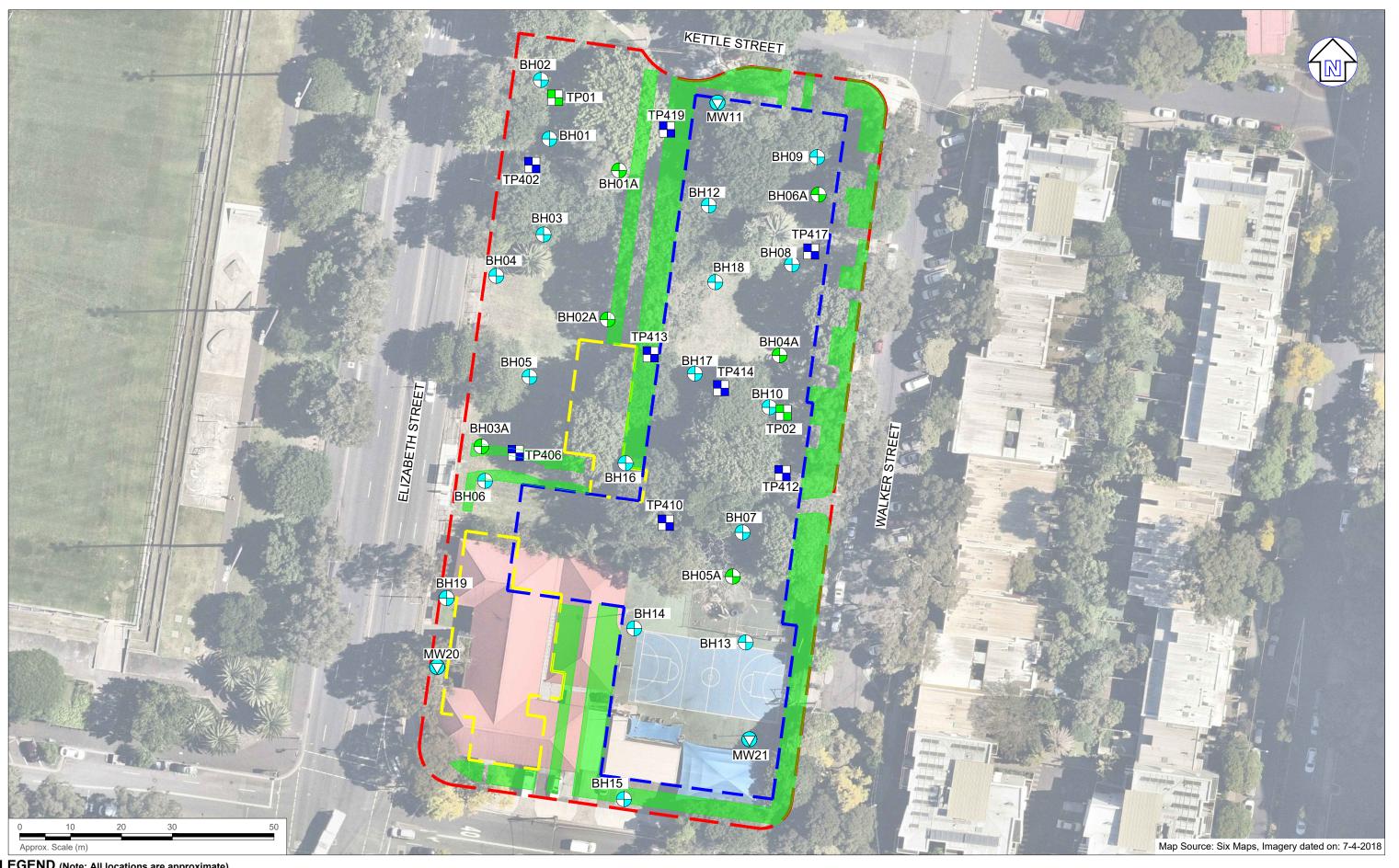
NSW Government (2021) *State Environmental Planning Policy (Resilience and Hazards) 2021,* NSW Government Publication, December 2021.


Standards Australia (2005) Table E1 - Minimum Sampling Points Required for Site Characterisation, in Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia, 2005.

Standards Australia (2009) *Australian Standard AS4969:12-2009 Analysis of Acid Sulfate Soil*, Standards Australia, 2009.

Sullivan L, Ward N, Toppler N and Lancaster G (2018) *National Acid Sulfate Soils Guidance: National Acid Sulfate Soils Sampling and Identification Methods Manual,* Water Quality Australia, Department of Agriculture and Water Resources, Canberra ACT, CC BY 4.0, June 2018.

Appendix A – Figures


Drawn:	A.N.	
Approved:	NK	
Date:	10-3-23	
Scale:	Not To Scale	

Hickory Constructions Pty Ltd Acid Sulfate Soil Management Plan 600-660 Elizabeth Street, Redfern NSW

Site Locality Plan

Figure:

Project: E25947.E14

LEGEND (Note: All locations are approximate)

- Site boundary _ _ _ Proposed basement footprint _ ___ Flood storage and OSD tank excavation area Proposed deep soil area
- Previous borehole location (EMM, 2020)
- Previous monitoring well location (EMM, 2020)
 - Previous borehole location (JBS&G, 2022)
 - Previous test pit location (JBS&G, 2022)
 - Test pit location

Drawn:	C.L.
Approved:	-
Date:	20-6-24

Hickory Constructions Pty Ltd Acid Sulfate Soil Management Plan 600-660 Elizabeth Street, Redfern NSW

Sampling Location Plan

Figure:

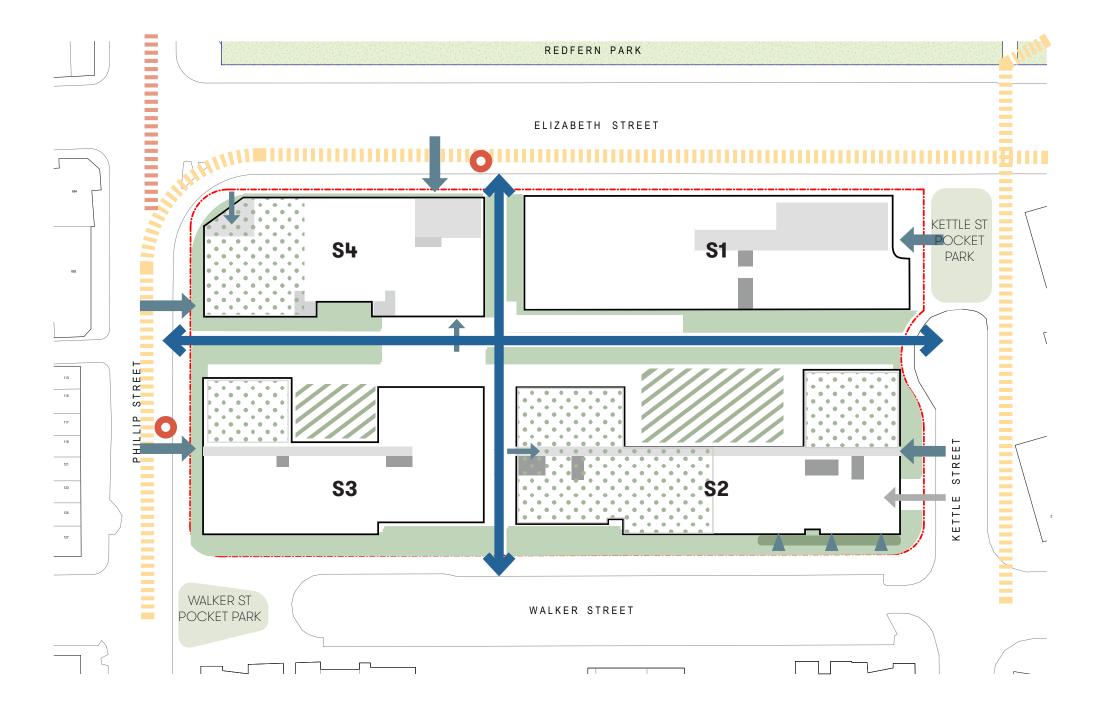
Project: E25947.E14_Rev0

Appendix B – Proposed Development Plans

03 Built Form and Urban Design

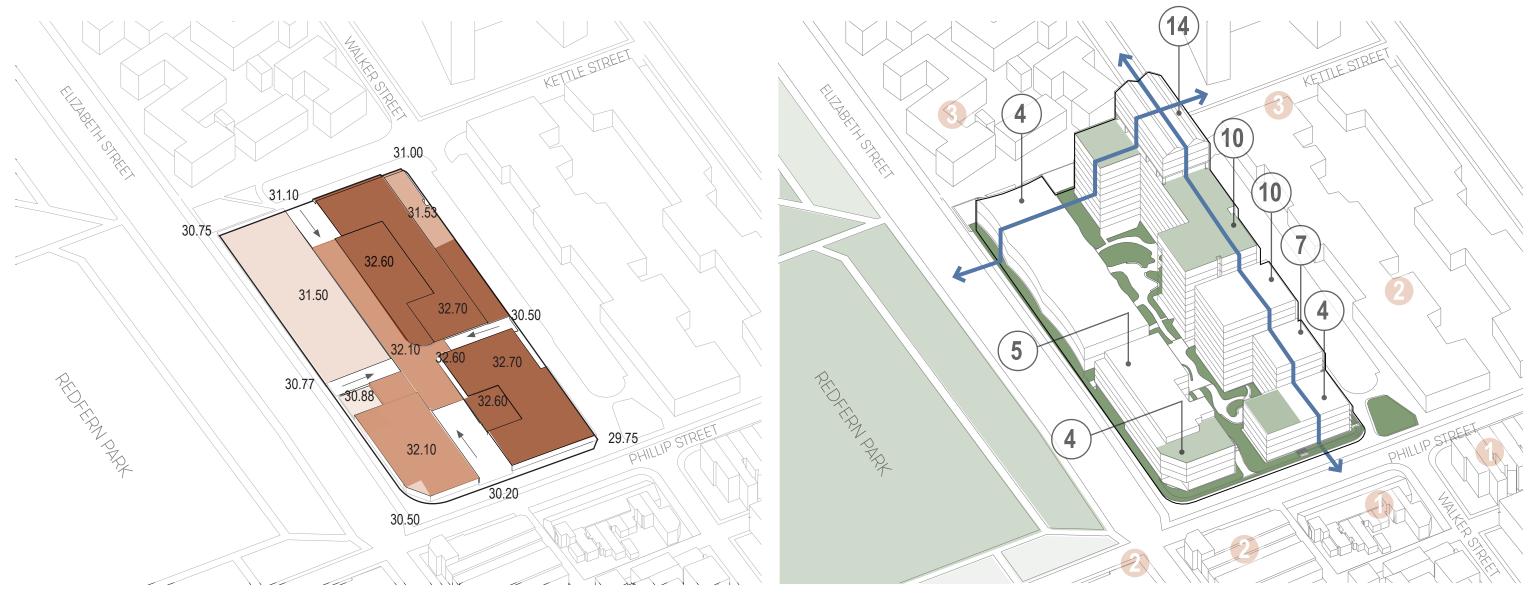
SITE PLAN

THE DIAGRAM SHOWS THE PROPOSED MASTERPLAN AND THE HIERARCHY OF LANDSCAPE SPACES INCLUDING:

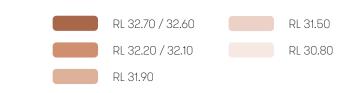

- Site layout which providing throughsite links as recommended in the Design Guide to ensure visual permeability through the site.
- Multiple central courtyard space providing legible landscape spaces for public movement through the site and communal resident use.
- Street facing residential entries for S2, S3 and S4.
- At grade entries into PCYC, Commercial and Community spaces.
- Rooftop communal resident spaces on S2, S3 and S4
- Private terrace entries to S2 Walker St dwelling where required
- Vehicle Entry on Kettle St with basement carparking, waste collection and deliveries.

CoS Cycling Priority Street

CoS Pedestrian & Cycle Network


Public Pedestrian Link

- Primary Entry
- ➡ Secondary Entry
- Private Entry
- Bus Stop
- Vehicle Entry
- Building Core
- Building Circulation
- Communal Open Space
- Private Open Space
- Deep Soil
- • Rooftop Garden


03 Built Form and Urban Design

LEVELS AND MASSING

MOVEMENT LEVELS STUDY

- Ground floor residential areas and all connections to the basement set at the 32.70 PMF FPL.
- Commercial and community uses sit between the 1% AEP and PMF as advised by the flooding engineer.
- Central courtyard level set at 32.1 to allow for ease of movement between building levels and the street interfaces.

MASSING STUDY

- Overall form steps down from north to south towards the residential scale of Phillip Street
- Overall form steps down from east to west to ensure sun access to Redfern Park.
- Consistent height along Elizabeth and Phillip St responds to the adjacent urban context
- Central landscape between buildings provides public and resident space amenity, with additional communal amenity located on rooftops of S2, S3 and S4.

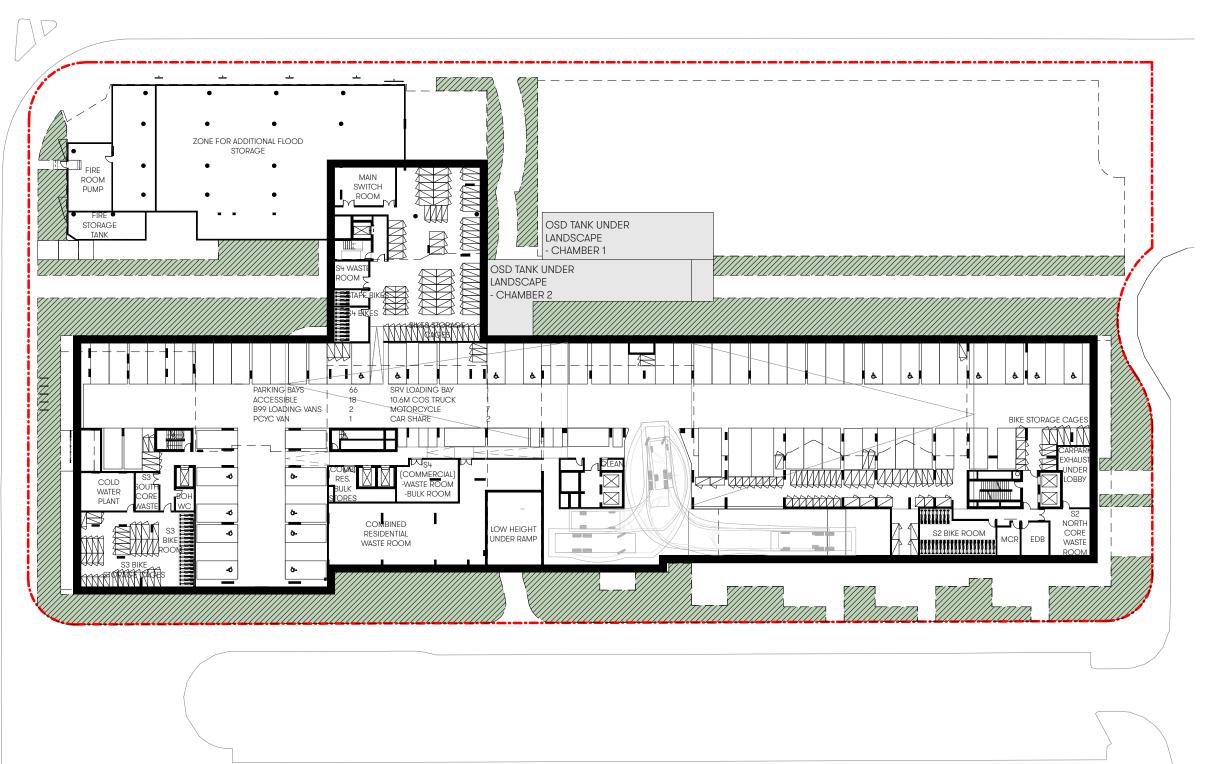
Building Height in Storeys

03 Built Form and Urban Design

GROUND PLAN

KEY ELEMENTS IN THE GROUND PLAN INCLUDE:

- Central landscape space sitting 1-1.6m above street level providing access and activation to the internal facades of the development.
- Ramped through site links provide clear and legible pedestrian movement through the site.
- Clear residential entries on Kettle St and Phillip St, and PCYC entry on Kettle St.
- PCYC Multi courts located at southern end of S1 with large areas of glazing to activate the central courtyard space
- Activate entrances on all corners of S4 to activate the through site links and central courtyard space
- Vehicle entry on Kettle St with a long ramp with peak at PMF to access basement.
- Refer to Aspect's design report for further detail on the landscape response.


ELIZABETH STREET

03 Built Form and Urban Design

BASEMENT PLAN

KEY ELEMENTS IN THE BASEMENT PLAN INCLUDE:

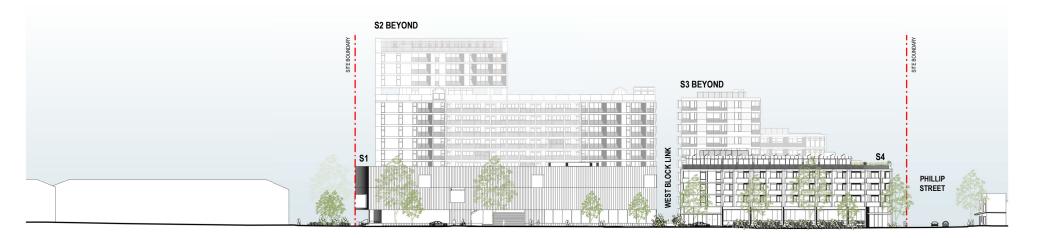
- 66 car parking spaces including 18 for adaptable apartments.
- Vehicle entry on Kettle St with a long ramp with peak at PMF to access basement.
- Loading for two trucks (10.6m CoS Waste and SRV) and 3 vans accommodated in basement
- Waste collection in basement with waste rooms provide adjacent to loading area.
- Bicycle storage and/or storage cages provided for every unit, and S1/S4 staff.
- Services located in basement where possible to provide active ground frontages.
- Flood storage located under S4 to mitigate flood impacts of the development
- OSD and Rainwater tanks located under central landscape zone.
- Deep soil target achieved, refer to Aspect report for calculation.

03 Built Form and Urban Design 3D OVERVIEW

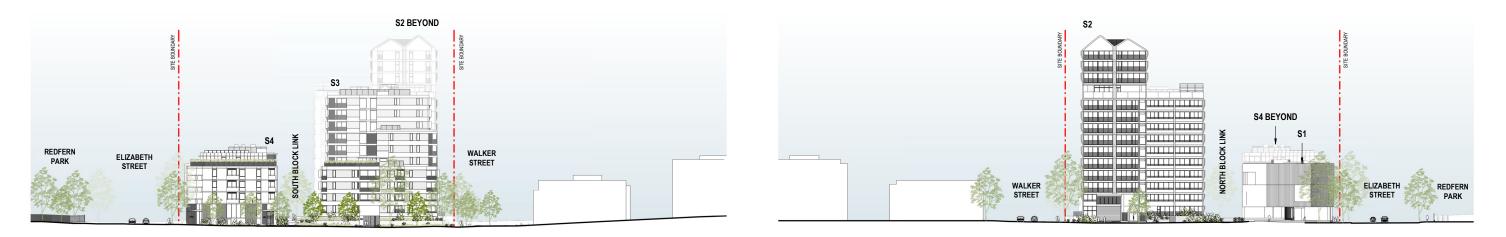
The precinct forms a diverse and cohesive village. A variety of architectural expressions provides variety, whilst a considered material palette and a cohesive ground plane establishes commonality between buildings.

Design of all buildings is responsive to site context including the character, scale and grain of existing surrounding buildings.

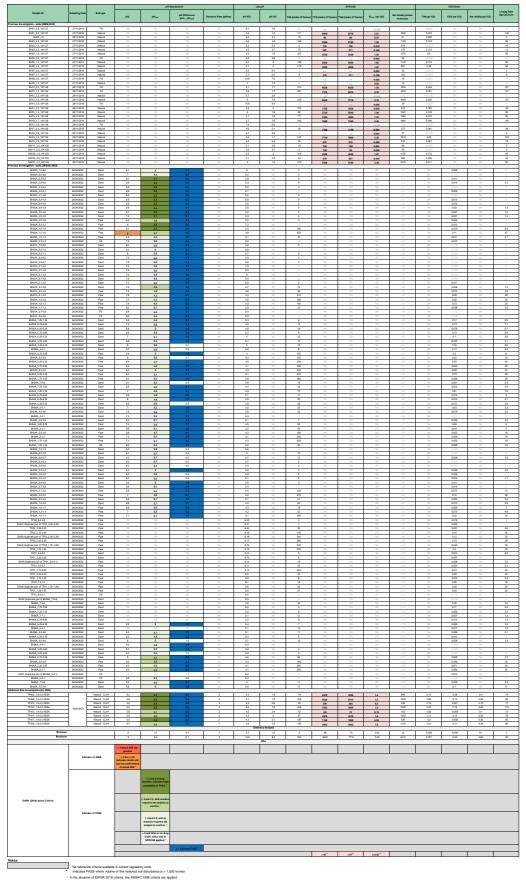
Refer to sections 04, 05, 06 and 07 of the report for detailed descriptions each building.



03 Built Form and Urban Design


ELEVATIONS

WALKER STREET ELEVATION


ELIZABETH STREET ELEVATION

KETTLE STREET ELEVATION

Appendix C – Supporting Information from the Investigation Phase

Reaction Rate: 0 = No Reaction 1 = Sight Reaction 2 = Moderate Reaction 3 = Strong/High Reaction 4 = Strong/High Reaction

TEST PIT: TP402

Project	Additional Site Investigation				
Location	600-660 Elizabeth Street, Redfern NSW			Sheet	1 OF 1
Position	Refer to Figure 2			Date	8/2/23
Job No.	E25947.E03	Contractor	-	Logged	GT
Client	Hickory Constructions Pty Ltd	Machine	Excavator	Checked	NK
		Bucket Size			

	Excavation Sampling Field Material De													
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	Strata Depth	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS		
			0.0	0.10			\boxtimes	-	TOPSOIL; 100 mm thickness.			TOPSOIL		
			-	-	TP402_0.1-0.2		\bigotimes	-	FILL: SAND; fine to medium grained, brown, with glass, brick, ceramic and metal fragments, no odour.			FILL		
			-	0.40			\bigotimes							
			0.5 —		TP402_0.5-0.6		\bigotimes	-	FILL: SAND; medium grained, brown yellow, with sub-angular to angular gravels, with glass, brick, metal and concrete fragments, no odour.					
			-				\bigotimes							
			-	0.80			\bigotimes		From 0.80 m, colour change to brown grey.	- P				
ш	-		1.0 —	-	TP402_1.0-1.1		\bigotimes				-			
			-	1.20			$\langle \rangle \rangle$	Pt				NATURAL		
			-					Γl	PEAT; dark brown, with organic material, with a weak sulfur odour.					
			1.5		TP402_1.5-1.6		<u></u>							
			-	1.70			<u>1, x1,</u>							
			-	-				CL	CLAY; low plasticity, dark brown, with a moderate sulfur odour.	w				
			-2.0	2.00	TP402_1.9-2.0									
			-						Hole Terminated at 2.00 mBGL; Target Depth Reached.					
			-											
			2.5 —	-										
				-										
			-											
									Sketch & Other Observations					
	n. N. N.		• • • • • • •		This boreho	le lo	g shou	ild be	e read in conjunction with EI Australia's accompanying sta	indar	d not	es.		

TEST PIT: TP406

)	Project	Additional Site Investigation				
al	Location	600-660 Elizabeth Street, Redfern NSW			Sheet	1 OF 1
	Position	Refer to Figure 2			Date	8/2/23
	Job No.	E25947.E03	Contractor	-	Logged	GT
	Client	Hickory Constructions Pty Ltd	Machine	Excavator	Checked	NK
			Bucket Size			

	E	Exca	vation		Sampling				Field Material Desc	riptio	on		
D						ERED	<u>u</u>	YMBOL				ST	RUCTURE AND ADDITIONAL
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	Strata Depth	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTU	CONSISTENCY DENSITY	C	BSERVATIONS
			0.0 —	0.10			\boxtimes	-	TOPSOIL; 100 mm thickness.			TOPSOIL	
			-		TP406_0.1-0.2		\bigotimes	-	FILL: SAND; fine grained, brown, with sub-angular to angular gravels, with glass, ceramic tiles, brick, metal and concrete fragments, no odour.				
			- 0.5 — -	0.40	TP406_0.5-0.6 QD3/QT3	3	\bigotimes	-	FILL: SAND; medium to coarse grained, brown/grey, with sub-angular to angular gravels, with glass, ceramic tiles, brick, metal and concrete fragments, no odour.				
Ц	-	GWNE	- - 1.0	0.90	TP406_1.0-1.1		\bigotimes		From 0.90 m, with peat and roots.	D	-		
			- - 1.5 	1.40				Pt	PEAT; dark brown, with organic material, with a trace of low plasticity clay, with a weak sulfur odour.	-		NATURAL	
			-	1.80	TP406_1.5-1.6		<u>1/ \//</u> \ <u>\//</u> \		plasticity clay, with a weak sulfur odour.				
			- 	2.00	TP406_1.9-2.0			CL	CLAY; low plasticity, dark brown, with a weak sulfur odour. Hole Terminated at 2.00 mBGL;				
			-	-					Target Depth Reached.				
			- 2.5 —	-									
			-	-									
			-3.0						Sketch & Other Observations				
					1. 2. 2. 3.		121		Provent of the off	S.	t		
						34	$\langle \rangle \rangle$						
						A STATE	251	he s		4		2 a	
					American P	X			Market Market				
					15			3	and provide the second s		A		
					A Martin and a subject of the				A SALE AND	· Ar	1	A REAL OF	
					NOTE OF ALL				Contraction of the second		14	mer 2	
					Sec. 1		and the		the second second	a series	- 8	The second second	
• •						-	-		A CALL CALL		10		
							and a	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			1 st	AL	
					TRUE	ń				1			
						4				4 10		3576	
					1114		Y.			and the second	L fa (2)		
					1, 1, 1, 2, 3				A CALL AND A		35	all Ton	
							12-	200		1.15	i	44	· · · · · · · · · · · · · · · · · · ·
•••						1	1	1)		-		Contraction of the second	
					2000		1		Charles and the second second second	23	Sec.		
						1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							
					I In	and					and the second	MEL.	
						10-1	NUS.	No.	and the second s	ALC: NO	-te	ALL OF	
					CALIFIC ACTION	50	and the	and a			E	A AURA	
	;							-					
					This horobo	ما ما	n shoi	ıld ba	read in conjunction with EL Australia's accompanying sta	ndar	d not	96	
					This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.	

10.0.000 Datael Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pri: EIA 1.03 2014-07-05

24/02/2023 10:45

<<DrawingFile>>

TP400S.GPJ

S AU RORFHOLE 3 E25947 E03

S

FIA LIR 1 03 GLB

Project

Location

Position

Job No.

Additional Site Investigation

Refer to Figure 2

E25947.E03

600-660 Elizabeth Street, Redfern NSW

Contractor

TEST PIT: TP410

Sheet	1 OF 1
Date	8/2/23
Logged	GT
Checked	NK

Client Hickory Constructions Pty Ltd Machine Excavator Bucket Size Excavation Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL EXCAVATION RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) Strata Depth 0.0 TOPSOIL TOPSOIL; 100 mm thickness. 0.10 FILL FILL: SAND; fine grained, brown, with gravels, with ceramic tiles and brick fragments, no odour. TP410_0.1-0.2 0.40 FILL: SAND; medium to coarse grained, brown/yellow, with sub-angular to angular gravels, with glass and brick fragments, no odour. 0.5 TP410_0.5-0.6 QD4/QT4 0.90 FILL: SAND; medium grained, brown, with roots and peat, no GWNE odour ш 1.0 D TP410_1.0-1.1 1.40 NATURAL Pt PEAT; brown, with organic material, with a weak sulfur odour. $\overline{\prime}$ 1.5 TP410_1.5-1.6 <u>\\</u> $\overline{\prime}$ 1, $\langle 1 \rangle$ 2 <u>\\</u> 1.80 CL CLAY; low plasticity, dark brown, with a moderate sulfur odour. TP410_1.9-2.0 2.00 -2.0-Hole Terminated at 2.00 mBGL; Target Depth Reached. 2.5 3.0 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

TEST PIT: TP412

	Proiect	Additional Site Investigation				
calia	Location	600-660 Elizabeth Street, Redfern NSW			Sheet	1 OF 1
n Geotechnical	Position	Refer to Figure 2			Date	8/2/23
	Job No.	E25947.E03	Contractor	-	Logged	GT
	Client	Hickory Constructions Pty Ltd	Machine	Excavator	Checked	NK
			Bucket Size			

	I	Excavation Sampling Field Material Des													
QO	EXCAVATION RESISTANCE				SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	STURE .	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
METHOD	EXC ^A RESI	WATER	DEPTH (metres)	Strata Depth		REC(GRAI LOG	nscs		MOIS	CON	OBSERVATIONS			
			0.0	0.10			\times	-	TOPSOIL; 100 mm thickness.			TOPSOIL			
			-	0.40	TP412_0.1-0.2		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, brown, with sub-angular to angular gravels, with glass, ceramic tiles, brick fragments, no odour.			FILL			
			- 0.5 — -		TP412_0.5-0.6		X	-	FILL: SAND; medium to coarse grained, brown/yellow, with sub-angular to angular gravels, with glass, ceramic tiles, brick and concrete fragments, with slag, no odour.						
ш	-	GWNE	- 1.0 —	0.90	TP412_1.0-1.1		X	-	FILL: SAND; medium grained, brown, with gravel and clay, with brick, concrete and wood fragments, no odour.	D	-				
			-	1.40			X	Pt	DEAT: dark brown with a trace of fine grained cood, so adour			NATURAL			
			1.5 — -	1.80	TP412_1.5-1.6		<u></u> <u></u> 		PEAT; dark brown, with a trace of fine grained sand, no odour.						
			- - 2.0	2.00	TP412_1.9-2.0			CL	CLAY; low plasticity, dark brown, with a weak sulfur odour.						
			-						Hole Terminated at 2.00 mBGL; Target Depth Reached.						
			2.5												
			-												
			-3.0						Sketch & Other Observations						
					I his boreho	e lo	g shoi	nd pe	e read in conjunction with EI Australia's accompanying sta	ndar	a not	es.			

TEST PIT: TP413

2	Project	Additional Site Investigation				
a	Location	600-660 Elizabeth Street, Redfern NSW			Sheet	1 OF 1
	Position	Refer to Figure 2			Date	8/2/23
	Job No.	E25947.E03	Contractor	-	Logged	GT
	Client	Hickory Constructions Pty Ltd	Machine	Excavator	Checked	NK
			Bucket Size			

Dig View H H Dig View Dig View <thdig <="" th="" view<=""><th></th><th>E</th><th>Exca</th><th>vation</th><th></th><th>Sampling</th><th>-</th><th></th><th></th><th>Field Material Desc</th><th></th><th></th><th></th></thdig>		E	Exca	vation		Sampling	-			Field Material Desc			
u - 0.10 - 0.40 - 0.40 - 0.5 - 0.40 - 1.5 - 0.40 - 0.40 - 0.5 - 0.40 - 0.40 - 0.5 - 0.40 - 0.40 - 0.5 - 0.40 - 0	METHOD	EXCAVATION	WATER			Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
u . u . <td>٦</td> <td></td> <td></td> <td>0.0-</td> <td>0.10</td> <td></td> <td></td> <td>\times</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	٦			0.0-	0.10			\times	-				
u - 0.5 - TP413_0.5-0.6 to angular gravels, no odour. u - 0.90 TP413_1.0-1.1 From 0.90 m, colour change to brown/grey. D - 1.0 1.40 TP413_1.5-1.6 Image: the second colour. D - 1.5 TP413_1.5-1.6 Image: the second colour. D - 1.5 TP413_1.5-1.6 Image: the second colour. D - 1.6 TP413_1.5-1.6 Image: the second colour. D - 1.80 TP413_1.5-1.6 Image: the second colour. D - 1.80 TP413_1.5-1.6 Image: the second colour. D - 2.0 TP413_1.5-2.0 TP413_1.9-2.0 To cl. CLAY; low plasticity, dark brown, with a moderate sulfur colour. D 2.5 Traget Depth Reached. D - D 3.0 Traget Depth Reached. D - D					0.40	TP413_0.1-0.2		\bigotimes	-	FILL: SAND; fine grained, brown, with roots, with glass, ceramic tiles, brick, concrete, wood and plastic fragments, no odour.			FILL
u - W TP413_1.0-1.1 From 0.90 m, colour change to brown/grey. D - 1.5 TP413_1.5-1.6 V/2 Pt PEAT; dark brown, with organic material, with a weak sulfur odour. NATURAL 1.5 TP413_1.5-1.6 V/2 Pt PEAT; dark brown, with organic material, with a weak sulfur odour. NATURAL 2.0 TP413_1.9-2.0 TP413_1.9-2.0 Hole Terminated at 2.00 mBGL; Target Depth Reached. NATURAL				0.5-	-	TP413_0.5-0.6		X	-	FILL: SAND; medium grained, brown/yellow, with sub-angular to angular gravels, no odour.			
1.5 TP413_1.5-1.6 TP413_1.5-1.6 NATURAL 1.80 2.0 TP413_1.9-2.0 CL 2.0 2.5 3.0	L	-	GWNE	1.0 -	- <u>0.90</u> 	TP413_1.0-1.1				From 0.90 m, colour change to brown/grey.	D	-	
1.80 2.0 2.0 2.0 2.0 2.0 2.5 2.5 3.0				1.5 —	<u>1.40</u>	TP413_1.5-1.6			Pt	PEAT; dark brown, with organic material, with a weak sulfur odour.			NATURAL
2.5					_	TP413_1.9-2.0		<u>\\</u>	CL				
				-2.0-	-	\				Hole Terminated at 2.00 mBGL; Target Depth Reached.			
				2.5 -	-								
					-								
Sketch & Other Observations				3.0-	-								
										Sketch & Other Observations			
							:		:				* * * * * * *

TEST PIT: TP414

Geotechnical L F J	Location Position Job No.	Additional Site Investigation 600-660 Elizabeth Street, Redfern NSW Refer to Figure 2 E25947.E03 Hickory Constructions Pty Ltd	Contractor Machine Bucket Size	- Excavator	Sheet Date Logged Checked	1 OF 1 8/2/23 GT NK
--------------------------	---------------------------------	--	--------------------------------------	----------------	------------------------------------	------------------------------

F	Excavation Sampling Field Material Description												
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	Strata Depth	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Ê		-	0.0				$\overline{}$	-	TOPSOIL; 100 mm thickness.			TOPSOIL	
			-	0.10 0.40	TP414_0.1-0.2		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, brown, with concrete fragments, no odour.			FILL	
			0.5		TP414_0.5-0.6 QD1/QT1		\bigotimes	-	FILL: SAND; medium to coarse grained, brown/yellow, with slag, no odour.			-	
ш	-	GWNE	- - 1.0	0.90	TP414_1.0-1.1		X	-	FILL: SAND; medium grained, brown, with gravel and clay, no odour.	D	-	-	
			-	1.40	-		X						
			1.5	1.80	TP414_1.5-1.6		<u>\</u> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pt	PEAT; dark brown, with organic material, no odour.			NATURAL -	
			-		TP414_1.9-2.0			CL	CLAY; low plasticity, dark brown, with a weak sulfur odour.				
			-2.0	2.00	<u> </u>				Hole Terminated at 2.00 mBGL; Target Depth Reached.				
90-70			2.5									-	
-07-05 Pg: EIA 1.03 2014-07-05			-										
4-07-0-4	1		-3.0		I				Sketch & Other Observations				
Log ISAU ISSI PILS 1: 2: 25947, EUS 1: 44005, 647 - <5038009-1682-34022023 10:54 - 10.000 Uagget Lab and In Stu 1 od - Dod Lick ELA 713 2014													
A LIB 1.03.GLB L					This borehole	e log	g shou	ld be	e read in conjunction with El Australia's accompanying star	ndaro	d note	25.	

TEST PIT: TP417

Sheet

Date

Logged

Checked

1 OF 1

8/2/23

GT

NK

Project	Additional Site Investigation		
Location	600-660 Elizabeth Street, Redfern NSW		
Position	Refer to Figure 2		
Job No.	E25947.E03	Contractor	-
Client	Hickory Constructions Pty Ltd	Machine	Excavator
		Bucket Size	

F		E	xcav	ation		Sampling				Field Material Desc				_
METHOD	EXCAVATION	RESISTANCE	WATER	DEPTH (metres)	Strata Depth	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.0 —	0.10			\bigotimes	-	TOPSOIL; 100 mm thickness.			TOPSOIL	
				-		TP417_0.1-0.2			-	FILL: SAND; fine to medium grained, brown, with sub-angular to angular gravels, with glass, ceramic tiles and brick fragments, no odour.			FILL	
				- 0.5 -	0.40	TP417_0.5-0.6			-	FILL: SAND; medium to coarse grained, brown/yellow, with sub-angular to angular gravels, with glass, ceramic tiles and brick fragments, no odour.	-			-
-05 F	-		GWNE	- - 1.0 -	0.90	TP417_1.0-1.1			-	FILL: SAND; medium grained, brown mottled grey/yellow, with ceramic tiles and brick fragments, no odour.	D	-		-
Lab and in Stu Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				- 1.5 —	1.40	TP417_1.5-1.6			Pt	PEAT; dark brown, with organic material, no odour.	-		NATURAL	-
				-2 0	<u>1.80</u> 2.00	TP417_1.9-2.0			CL	CLAY; low plasticity, dark brown, with a moderate sulfur odour.	_			-
awingFile>> 24/02/2023 10:45 10.0.000 Datge				-2.0 - - -						Hole Terminated at 2.00 mBGL; Target Depth Reached.				-
1.03.GLB Log IS AU BOREHOLE 3 E25947 E03 TP400S.GPJ < <draw< td=""><td></td><td></td><td></td><td>2.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></draw<>				2.5										-
EIA LIB 1.03.GLB Log IS AU BC				3.0 —		This borehol	e lo	g shou	ld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	25.	-

TEST PIT: TP419

in	Project	Additional Site Investigation				
ia	Location	600-660 Elizabeth Street, Redfern NSW			Sheet	1 OF 1
echnical	Position	Refer to Figure 2			Date	8/2/23
	Job No.	E25947.E03	Contractor	-	Logged	GT
	Client	Hickory Constructions Pty Ltd	Machine	Excavator	Checked	NK
			Bucket Size			

		I	Exca	vation		Sampling				Field Material Desc			
		EXCAVATION RESISTANCE	WATER	DEPTH (metres)	Strata Depth	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F				0.0	0.10			XX	-	TOPSOIL; 100 mm thickness.			TOPSOIL
				-	0.40	TP419_0.1-0.2		X	-	FILL: SAND; medium grained, brown, with sub-angular to angular gravels, with glass, ceramic tiles, brick and metal fragments, no odour.			FILL
				- 0.5 — -		TP419_0.5-0.6		\bigotimes	-	FILL: SAND; medium to coarse grained, brown grey, with sub-angular gravels, with glass, ceramic tiles, brick and metal fragments, no odour.			-
ı	L	-		- - 1.0	0.90	TP419_1.0-1.1		X		From 0.90 m, colour change to yellow grey.	D	-	
				- - 1.5	1.40	TD410.4546			Pt	PEAT; dark brown, with organic matter, no odour.			NATURAL
				-	1.80	TP419_1.5-1.6			CL	CLAY; low plasticity, dark brown, with a weak sulfur odour.	w		
-					2.00	TP419_1.9-2.0				Hole Terminated at 2.00 mBGL; Target Depth Reached.			· · · · · · · · · · · · · · · · · · ·
				- 2.5									-
.03 2014-07-05 Prj: EIA 1.03 2014-07-05				-									
5 Prj: El				-3.0									
14-07-0										Sketch & Other Observations			
E25947 E03 TP400S.GPJ < <drawingfile>> 24/02/2023 10:54 10.0.000 DargeLtab and In Stru Tool - DGD LIb: EIA 1.03 20</drawingfile>													
OG IS AU TEST PIT 3 E													
EIA LIB 1.03.GLB L			•			This borehol	e lo	g shou	ild be	e read in conjunction with EI Australia's accompanying sta	ndar	d not	es.

PROJECT NUMBER 59618 PROJECT NAME Contamination Advice Redfern DRILLING DATE 28-Apr-22 CLIENT LAHC ADDRESS 600-660 Elizabeth Street, Redfern NSW

DRILLING COMPANY Ken Coles DRILL RIG Excavator DRILLING METHOD Bucket excavation DIMENSIONS 600 mm

EASTING N/A NORTHING N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY MD

COMMENTS

			1	1		1	1
Drilling Method	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
Test Pit	0.2		Fill	Fill - SAND, brown, heterogeneous, damp, fine sand loose, with inclusions of brick, tiles, sandstone, gravel, concrete, and plastic	DP	TP01_0.00-0.60 TP01_0.25-0.35	No odour, staining, or asbestos. 10 L AQ from 0.0-0.6 m
	0.6		Fill	Fill - SAND, grey/brown, heterogeneous, damp, fine sand loose, with inclusions of brick, tiles, sandstone, gravel, concrete, and plastic	DP	TP01_0.50-0.60 TP01_0.60-1.40 TP01_0.75-0.85	No odour, staining, or asbestos.10 L AQ from 0.6-1.4 m.
	- 0.8 					TP01_1.00-1.10	QA/QC08 taken from 1.25-1.35 m.
	- 1.2 - 1.4		PT	Natural - PEAT, black, homogenous, moist, medium	M	TP01_1.25-1.35	No staining or
	- 1.6 - 1.8	ሶ ጥሶ ካ ጥሶ ጥቦ ሶ ጥሶ ካ ጥ ጥ		plasticity, firm, with inclusions of organic material		TP01_1.50-1.60 TP01_1.75-1.85	asbestos, sulfidic odours. QA/QC06 taken from 3.0-3.1 m
	-2	г лг л лг лг г лг л г лг л				TP01_2.00-2.10	
	- 2.2 - 2.4	/// // /// /// /// /// /// /// /// ///				TP01_2.25-2.35	
	2.6 2.8	77.77.77. 77.77.77 77.77. 7.77.77 7.77.7				TP01_2.75-2.85	
		バン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	SW	Notural SAND grou/brown homogonous wet fins	w	TP01_3.00-3.10	
	- 3.4		300	Natural - SAND, grey/brown, homogenous, wet, fine sand medium dense, water in hole to 2.0 m (no sheen, brown colour) Termination Depth at: 3.50 m.		TP01_3.25-3.35 TP01_3.40-3.50	No odour, staining, or asbestos. QA/QC07 taken from 3.4-3.5 m End of hole @ 3.5
	- 3.6 - 3.8						mbgs, programmed depth

GROUNDWATER WELL TP01

PROJECT NU PROJECT NA CLIENT LAHO PERMIT NO. ADDRESS 60 NSW	. ME Cor C N/A	ntamina			DRILLING COMPANY Ken Coles DRILLING DATE 28-Apr-22 DRILL RIG Excavator DRILLING METHOD Bucket excavation TOTAL DEPTH 3.5 m bgl DIAMETER 600 mm	NC EL CC CC	ASTING N/A DRTHING N/A LEVATION N/A DORD SYS GDA94_MG DORD SOURCE DGGED BY MD	GA_zone_56
COMPLETION	1				CASING	so	CREEN INTERVAL - m	bgl
COMMENTS								
Drilling Method Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
Test Pit			\otimes	Fill	Fill - SAND, brown, heterogeneous, damp, fine sand loose, with inclusions of brick, tiles,	DP	TP01 0.00-0.60	No odour, staining, or asbestos. 10 L
		0.5	$\times\!\!\times\!\!\times$		sandstone, gravel, concrete, and plastic		TP01_0.25-0.35	AQ from 0.0-0.6 m
		0.5	$\sim\sim$		Fill - SAND, grey/brown, heterogeneous,	DP	TP01_0.50-0.60	No odour, staining,
		1			damp, fine sand loose, with inclusions of		TP01_0.75-0.85	or asbestos 10 L AQ from 0.6-1.4 m.
		- '			brick, tiles, sandstone, gravel, concrete, and plastic		TP01_1.00-1.10 TP01_1.25-1.35	QA/QC08 taken
Taat		1.5	1 1 1 1	DT	Natural - PEAT, black, homogenous, moist,			from 1.25-1.35 m.
Fest		1.5	$\underline{\mathcal{W}}$	PI	medium plasticity, firm, with inclusions of	M	TP01_1.50-1.60	No staining or asbestos, sulfidic
		2			organic material		TP01_1.75-1.85	odours. QA/QC06 taken from 3.0-3.1
		2	<u> </u>				TP01_2.00-2.10	m
		0.5	$\sqrt{n}\sqrt{n}$				TP01_2.25-2.35	
		2.5	<u> </u>				TP01_2.50-2.60	
		_					TP01_2.75-2.85	No odour, staining,
		3	<u> </u>		Natural - SAND, grey/brown, homogenous,		TP01_3.00-3.10	or asbestos.
Test Test Pit		_		SW	wet, fine sand medium dense, water in hole to 2.0 m (no sheen, brown colour)	W	TP01_3.25-3.35 TP01_3.40-3.50	QA/QC07 taken
		3.5 4 4 4.5 5.5 6 6.5 7 7 7 7 7 8 8 8 8 9			Termination Depth at: 3.50 m.			End of hole @ 3.5 mbgs, programmed depth

PROJECT NUMBER 59618 PROJECT NAME Contamination Advice Redfern DRILLING DATE 28-Apr-22 CLIENT LAHC ADDRESS 600-660 Elizabeth Street, Redfern NSW

DRILLING COMPANY Ken Coles DRILL RIG Excavator DRILLING METHOD Bucket excavation DIMENSIONS 600 mm

EASTING N/A NORTHING N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY JM

COMMENTS

Drilling Method	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
Test Pit	0.2		Fill	Fill - SAND, grey/brown, heterogeneous, damp, fine sand loose, with inclusions of brick, glass, metal, sandstone, concrete, and slag	DP	TP02_0.00-0.90 TP02_0.25-0.35	No odour, staining, or asbestos. 10 L AQ from 0.0-0.9 m
	- 0.4 					TP02_0.50-0.60	_
	- 0.8 1					TP02_0.75-0.85 TP02_0.90-1.60	No odour, staining, or asbestos. 10 L
	- 1.2					TP02_1.00-1.10 TP02_1.25-1.35	AQ from 0.9-1.6 m
	- 1.4 - - 1.6		PT	Natural - PEAT, black, homogenous, moist, medium	м	TP02_1.50-1.60	No staining or
	- 1 <u>.</u> 8	г үү ү үү үү г үү ү үү үү		plasticity, stiff, with inclusions of organic material		TP02_1.75-1.85	asbestos, sulfidic odours. QA/QC04 taken from 1.75-1.85 m
	- 2.2	к ФК И Ф. Ф. Ф. К Ф. Ф. Ф. Ф. Ф.				TP02_2.00-2.10 TP02_2.25-2.35	_
	2.4 2.6		PT	Natural - PEAT, black, homogenous, saturated, high plasticity, very soft, with inclusions of organic	s	TP02_2.50-2.60	No staining or asbestos, sulfidic
	- 2.8	ም ም የ ም ም ም ም የ ም ም		material		TP02_2.75-2.85	odours. QA/QC05 taken from 2.5-2.6 m
	- 3 - - 3.2	ሶ ላጥ ሃ ላጥ ላጥ ሶ ላጥ ሃ				TP02_3.00-3.10	-
	- 3.4	<u>۷</u> ۷ ۷۷ ۱۹۹۹ - ۱۹۹۹ ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱	SW	Natural - SAND, light brown, homogenous, saturated, fine sand loose, with water in based of hole at ~3.0 m (no sheen, brown colour) Termination Depth at: 3.50 m.	S	TP02_3.25-3.35 TP02_3.40-3.50	No odour, staining, or asbestos End of hole @ 3.5
	- 3.6 						mbgs, programmed depth

PROJE CLIENT PERMIT	ст N/ - Lah Г NO.	C N/A	ntamina		Redfern	DRILLING COMPANY Ken Coles DRILLING DATE 28-Apr-22 DRILL RIG Excavator DRILLING METHOD Bucket excavation TOTAL DEPTH 3.5 m bgl DIAMETER 600 mm	NC EL CC	ASTING N/A DRTHING N/A LEVATION N/A DORD SYS GDA94_MG/ DORD SOURCE DGGED BY JM	A_zone_56
COMPL	.etio	N			,	CASING	so	CREEN INTERVAL - m b	ogl
COMME	ENTS								
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
Test Pit			0.5		Fill	Fill - SAND, grey/brown, heterogeneous, damp, fine sand loose, with inclusions of brick, glass, metal, sandstone, concrete, and slag	DP	TP02_0.00-0.90 TP02_0.25-0.35 TP02_0.50-0.60 TP02_0.75-0.85 TP02_1.00-1.10 TP02_1.25-1.35 TP02_1.50-1.60	No odour, staining, or asbestos. 10 L AQ from 0.0-0.9 m No odour, staining, or asbestos. 10 L AQ from 0.9-1.6 m
Test Pit			2	下 下 字 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子	PT	Natural - PEAT, black, homogenous, moist, medium plasticity, stiff, with inclusions of organic material	М	/TP02_1.75-1.85 /TP02_2.00-2.10 /TP02_2.25-2.35	No staining or asbestos, sulfidic odours. QA/QC04 taken from 1.75-1.85 m
Test Pit Test			-3	不 不不 不不不 不不不	PT	Natural - PEAT, black, homogenous, saturated, high plasticity, very soft, with inclusions of organic material	S	TP02_2.50-2.60 TP02_2.75-2.85 /TP02_3.00-3.10 TP02_3.25-3.35	No staining or asbestos, sulfidic odours. QA/QC05 taken from 2.5-2.6 m
[/] Pit					Z _{SW}	Natural - SAND, light brown, homogenous, saturated, fine sand loose, with water in based of hole at ~3.0 m (no sheen, brown colour) Termination Depth at: 3.50 m.	∠ _S ∖	<u>TP02_3.40-3.50</u>	No odour, staining, or asbestos End of hole @ 3.5 mbgs, programmed depth
			- 5						
			5.5						
			6.5						
			7						
			7.5						
			8						
			8.5 9						
			9.5						

PROJE CLIEN ⁻ PERMI	ECTN. TLA⊢ TNO.	łC	ntamina			DRILLING COMPANY Terratest DRILLING DATE 26-Apr-22 DRILL RIG GeoProbe DRILLING METHOD Push Tube TOTAL DEPTH 8 m bgl DIAMETER 100 mm	EASTING N/A NORTHING N/A ELEVATION N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY LR				
СОМРІ	LETIO	N Roadt	хох			CASING Class 18 PVC - 50mm	SCREEN INTERVAL 1.4 - 4.4 m bgl				
сомм	ENTS	;									
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations		
PT			0.2		Fill	Fill - silty SAND, brown/orange, heterogeneous, moist, loose, inclusions of gravel	М	BH01A_0.00-0.60 BH01A_0.30-0.40	No odour, staining, or asbestos		
			_	\bigotimes		/Fill - coarse SAND, red/orange,		BH01A_0.50-0.60	No odour, staining,		
			0.6	畿	Fill Fill	heterogeneous, dry, loose Fill - fine SAND, brown/beige,		BH01A_0.60-1.10	or asbestos No odour, staining,		
			0.8 1			heterogeneous, dry, loose		BH01A_0.70-0.80	or asbestos		
			- 1.2	<u>ም ም</u> የ ም ም (XXX)	PT	Natural - PEAT, black, heterogeneous, moist, medium plasticity, soft, inclusions of organic	м	BH01A_1.10-1.20	No staining, asbestos, or		
			_	1 7 7 7 		matter		BH01A_1.30-1.40	hydrocarbon odours, sulfidic		
	₽		- 1.4 - - 1.6	ፖር ፖር የ ፖር ፓ ፖር ፖር					odours		
			- 1.8	777 777 777 777 777 77				BH01A_1.60-1.70	_		
			- 2	ጥ				BH01A_1.90-2.00	-		
			2.2	77. 77. 7. 77. 7 77. 77.				BH01A_2.10-2.20	_		
			2.4	ጥ ጥ የ ጥ ባ መ መ				BH01A_2.40-2.50	_		
l			2.6		SP	Natural - fine SAND, beige, homogeneous, wet, medium dense	W		No odour, staining, or asbestos		
			2.8					BH01A_2.70-2.80	_		
			- 3					BH01A_2.90-3.00	_		
			- 3.2					BH01A_3.10-3.20	-		
			- 3.4 - 3.6					BH01A_3.40-3.50	-		
			- 3.8					BH01A_3.70-3.80	-		
			4					BH01A_4.00-4.10	-		

Disclaimer This log is intended for environmental not geotechnical purposes.

Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
			4.2					BH01A_4.10-4.20	
PT									
			4.4					BH01A_4.40-4.50	
			4.6						
								BH01A_4.70-4.80	
		2002 2002 2002 2002 2002 2002 2002 200	4.8						
			5					BH01A_5.00-5.10	
		800008 000000 000000000000000000000000	5.2						
								BH01A_5.20-5.30	
			5.4						
			5.6					BH01A_5.50-5.60	
			5.8						
		2000 2000 2000 2000 2000	5.0					BH01A_5.80-5.90	
			6						
		40000000000000000000000000000000000000	6.2					BH01A_6.10-6.20	
			_						
		800008 980008 980008 9000800	6.4					BH01A_6.40-6.50	
		0002000 000000000000000000000000000000	6.6						
			6.8					BH01A_6.70-6.80	
			_						
			7					BH01A_7.00-7.10	
			7.2					BH01A_7.20-7.30	
			7 4					Bhon <u>A_</u> 7.20-7.30	
		40000000000000000000000000000000000000	7.4					BH01A_7.40-7.50	
			7.6						
		500005 9800009 980009	7.8					BH01A_7.70-7.80	
		800000 800000 800000000000000000000000						BH01A_7.90-8.00	
		<u> </u>	8			Termination Depth at: 8.00 m.			
			8.2						
			8.4						
			8.6						
			8.8						

PROJE CLIENT PERMI	СТ N/ Г LAH T NO.	IC N/A	ntamina		ice Redfern Redfern	DRILLING COMPANY Terratest DRILLING DATE 26-Apr-22 DRILL RIG GeoProbe DRILLING METHOD Push Tube TOTAL DEPTH 8 m bgl DIAMETER 100 mm	ASTING N/A DRTHING N/A LEVATION N/A DORD SYS GDA94_MGA_zone_56 DORD SOURCE DGGED BY LR		
COMPI	ETIO	N Roadt	хох			CASING Class 18 PVC - 50mm	so	REEN INTERVAL 1.4	4.4 m bgl
сомм	ENTS								
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
PT			0.2		Fill	Fill - gravelly SAND, brown/grey, heterogeneous, moist, loose, inclusions of bricks and roots	М	BH02A_0.00-0.50 BH02A_0.30-0.40 BH02A_0.40-1.00	No odour, staining, or asbestos
			0.6		Fill	Fill - SAND, brown/beige, heterogeneous, moist, loose	M	BH02A_0.50-1.00 BH02A_0.60-0.70	No odour, staining, or asbestos
					Fill	Fill - coarse SAND, red/orange, heterogeneous, dry, loose	DR		No odour, staining, or asbestos
	Į Į Į Į Į Į Į		1.2 1.4 1.4 1.6 1.8 2 2.2 2.2 2.4		PT	Natural - PEAT, black, heterogeneous, moist, medium plasticity, soft, inclusions of organic matter	W	BH02A_1.20-1.30 BH02A_1.50-1.60 BH02A_1.70-1.80 BH02A_1.80-1.90 BH02A_2.20-2.30 BH02A_2.50-2.60	No staining, asbestos, or hydrocarbon odours, sulfidic odours
			- 2.8 - 3 - 3.2 - 3.4 - 3.6 - 3.8 - 4		5	wet, medium dense	vv	BH02A_2.70-2.80 BH02A_2.90-3.00 BH02A_3.20-3.30 BH02A_3.50-3.60 BH02A_3.80-3.90 BH02A_3.90-4.00	or asbestos

Disclaimer This log is intended for environmental not geotechnical purposes.

Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
			4.2					BH02A_4.10-4.20	
								BH02A_4.30-4.40	
			4.4					BH02A_4.40-4.50	
			4.6						
								BH02A_4.70-4.80	
		500000 50000 50000 500000	4.8						
			5						
								BH02A_5.00-5.10	
			5.2						
		60000 60000 000000	5.4					BH02A_5.30-5.40	
		2000200 200200 200200	5.6						
			0.0					BH02A_5.60-5.70	
		500005 000005 0000000005	5.8						
		60000000000000000000000000000000000000	6					BH02A_5.90-6.00	
			6.2					BH02A_6.20-6.30	
			6.4					BH02A_6.30-6.40	
								BH02A_6.50-6.60	
		99999999 99999999 99999999	6.6						
			6.8					BH02A_6.80-6.90	
		500000 50000 500000 500000 50000000000	7						
			/						Push tube failure, no sample from
			7.2						7.0-7.9 mbgs.
			7.4						
			_						
		4080004 900309 4083094	7.6						
			7.8						
		800008 800008 800008						BH02A_7.90-8.00	
				·····		Termination Depth at: 8.00 m.			
			8.2						
			8.4						
			0.4						
			8.6						
			8.8						
L	<u>ا</u>		0	L			I	I	Baga 2 of 2

PROJE CLIEN PERMI	ECTN. TLA⊢ TNO.	IC	ntamina			DRILLING COMPANY Terratest DRILLING DATE 26-Apr-22 DRILL RIG GeoProbe DRILLING METHOD Push Tube TOTAL DEPTH 8 m bgl DIAMETER 100 mm		EASTING N/A NORTHING N/A ELEVATION N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY LR			
СОМРІ	LETIO	N Roadb	юх			CASING Class 18 PVC - 50mm	so	CREEN INTERVAL 1.4	- 5.4 m bgl		
сомм	ENTS										
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations		
PT			0.2		Fill	Fill - silty SAND, brown, heterogeneous, moist, loose, inclusions of gravel and roots	М	BH03A_0.00-0.50 BH03A_0.30-0.40	No odour, staining, or asbestos		
			0.4			Fill - SAND, bright red, heterogeneous, dry,			No odour, staining,		
			0.6		Fill	loose	DR	BH03A_0.50-1.00	or asbestos		
			0.8		Fill	Fill - SAND, grey/beige, heterogeneous, moist, loose	M	BH03A_0.60-0.70	No odour, staining, or asbestos		
			- 1		PT	Natural - PEAT, black, heterogeneous, moist,	M	BH03A_0.90-1.00 BH03A_1.00-1.10	No staining		
			- 1.2 - 1.4	к /// // /// /// /// /// /// //////////		medium plasticity, soft, inclusions of organic matter		BH03A_1.30-1.40	No staining, asbestos, or hydrocarbon odours, sulfidic odours		
			1.6	۲۰۰۰ ۲۳ ۲۳ ۲۳ ۲۳				BH03A_1.60-1.70	-		
	₽ĵ		- 1.8 - 2 - 2.2		SP	Natural - SAND, grey/beige, heterogeneous, moist, loose	М	BH03A_1.90-2.00	No odour, staining, or asbestos		
								BH03A_2.30-2.40	-		
			2.4 2.6	г үү ү үү үү <u>үү ү</u>	PT	Natural - PEAT, black, heterogeneous, moist, medium plasticity, soft, inclusions of organic matter	М		No staining, asbestos, or hydrocarbon		
			2.8	77 77 7 77 7 77 77				BH03A_2.60-2.70	odours, sulfidic odours		
			- 3	777 77 7777 7 777 77				BH03A_2.90-3.00	-		
			3.2	к л и л и к л и г л и				BH03A_3.10-3.20	-		
	Į∑		- 3.4 - 3.6		SP	Natural - fine SAND, beige, homogeneous, wet, medium dense	w	BH03A_3.40-3.50	 No odour, staining, or asbestos 		
			3.8					BH03A_3.70-3.80	-		
			4					BH03A_3.90-4.00	-		

Disclaimer This log is intended for environmental not geotechnical purposes.

Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
			4.2					BH03A_4.20-4.30	
			_					BH03A_4.30-4.40	
			4.4						
			4.6					BH03A_4.60-4.70	
			4.8						
			5					BH03A_4.90-5.00	
								BH03A_5.00-5.10	
			5.2						
			5.4					BH03A_5.30-5.40	
			5.6					BH03A_5.60-5.70	
			5.8						
			_					BH03A_5.90-6.00	
			6					BH03A_6.00-6.10	
			6.2						
			6.4					BH03A_6.30-6.40	
			6.6						No staining, Jasbestos, or
				77 77 77 77 7	PT	Natural - PEAT, black, heterogeneous, moist, medium plasticity, soft, inclusions of organic matter	М	BH03A_6.60-6.70	hydrocarbon odours, sulfidic odours
			6.8		SP	Natural - fine SAND, beige, homogeneous, moist, medium dense	М		No odour, staining, or asbestos
		638798 1900 1900 1900 1900 1900 1900 1900 19	7					BH03A_6.90-7.00 BH03A_7.00-7.10	
			7.2						
			7.4					BH03A_7.30-7.40	
			_						
			7.6						
		2000 2000 2000 2000 2000 2000 2000 200	7.8						
		9980996 9980996	8			Termination Depth at: 8.00 m.			
			8.2						
			8.4						
			_						
			- 8.6 						
			8.8						
	1		- 0						

PROJE CLIENT PERMI	ECTN. TLA⊢ TNO.	IC	ntamina			DRILLING COMPANY Numac DRILLING DATE 26-Apr-22 DRILL RIG GeoProbe DRILLING METHOD Push Tube TOTAL DEPTH 8 m bgl DIAMETER 100 mm	EASTING N/A NORTHING N/A ELEVATION N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY MD			
COMPL	LETIO	N Road	хос			CASING Class 18 PVC - 50mm	sc	REEN INTERVAL 1.5	- 4.5 m bgl	
сомм	ENTS									
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations	
PT			0.2		Fill	Fill - fine SAND, brown/beige, heterogeneous, damp, loose, inclusions of grass/roots, concrete, bricks, and scrap metal	DP	BH04A_0.00-1.00 BH04A_0.25-0.35	No odour, staining, or asbestos	
			0.4					BH04A_0.50-5.60	-	
			0.8		Fill	Fill - fine SAND, brown, heterogeneous,	DP	BH04A_0.75-0.85	No odour, staining,	
	₽		— 1 — — 1.2		Fill	damp, loose, inclusions of grass/roots, concrete, bricks, and scrap metal Fill - fine SAND, dark brown, heterogeneous,	DP	BH04A_1.00-1.70	or asbestos	
				\bigotimes	1 111	damp, loose, root zone, inclusions of concrete, bricks, and scrap metal		BH04A_1.25-1.35	or asbestos	
			1.4		Fill	Fill - fine SAND, brown, heterogeneous, damp, loose, inclusions of grass/roots, concrete, bricks, and scrap metal	DP	BH04A_1.50-1.60	No odour, staining, or asbestos	
			1.8	文 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PT	Natural - PEAT, dark brown, heterogeneous, moist, medium plasticity, very soft, inclusions of organic matter	м		No staining, asbestos, or hydrocarbon odours, sulfidic	
			2.2	77 77 7 77 7				BH04A_2.00-2.10	odours	
			2.4 2.6	г лт л лт лт г лт л лт лт г лт л				BH04A_2.25-2.35	-	
			2.8	7 77 7 77 77 77 77 7 77 7	PT	Natural - PEAT, dark brown, heterogeneous, wet, high plasticity, very soft, inclusions of organic matter	w	BH04A_2.75-2.85	No staining, asbestos, or hydrocarbon odours, sulfidic	
			- 3 - 3.2	۲ ۲۲ ۲ ۲۲ ۲۲ ۲ ۲۲ ۲				BH04A_3.00-3.10 BH04A_3.25-3.35	odours	
			- 3.4 - 3.6	<u>يد بد</u>	SP	Natural - fine SAND, beige/light brown, homogeneous, wet, medium dense	W	BH04A_3.50-3.60	No odour, staining, or asbestos	
			3.8					BH04A_3.75-3.85	-	
			4					BH04A_4.00-4.10	-	

Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
			4.2					BH04A_4.25-4.35	
			4.4 4.6					BH04A_4.50-4.60	
			4.8					BH04A_4.75-4.85	
			5					BH04A_5.00-5.10	
			5.2		SP	Natural - fine SAND, grey/beige, homogeneous, wet, medium dense	W	BH04A_5.25-5.35	No odour, staining, or asbestos
			5.4 5.6					BH04A_5.50-5.60	
			5.8					BH04A_5.75-5.85	
			6					BH04A_6.00-6.10	
SFA			6.2 6.4		SP	Natural - fine SAND, dark brown, homogeneous, saturated, medium dense	S	BH04A_6.25-6.35	No odour, staining, or asbestos
			6.6					BH04A_6.50-6.60	
			6.8					BH04A_6.75-6.85	
			- 7 - 7.2					BH04A_7.00-7.10	
			7.4					BH04A_7.25-7.35	
			7.6					BH04A_7.50-7.60	
			- 7.8 					BH04A_7.75-7.85 BH04A_7.90-8.00	
			8.2			Termination Depth at: 8.00 m.			
			8.4						
			8.6 8.8						
			0.0						

PROJE CLIEN ⁻ PERMI	ECTN. TLA⊢ TNO.	IC N/A	ntamina		rice Redfern Redfern	DRILLING COMPANY Numac DRILLING DATE 26-Apr-22 DRILL RIG GeoProbe DRILLING METHOD Push Tube TOTAL DEPTH 8 m bgl DIAMETER 100 mm	EASTING N/A NORTHING N/A ELEVATION N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY MD			
СОМРІ	LETIO	N Road	хох			CASING Class 18 PVC - 50mm	so	REEN INTERVAL 2 -	5 m bgl	
сомм	ENTS									
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations	
PT			0.2		Fill	Fill - fine SAND, brown/beige, heterogeneous, damp, medium dense, inclusions of brick fragments, gravel and concrete	DP	BH05A_0.00-1.00 BH05A_0.25-0.35	No odour, staining, or asbestos	
			0.4					BH05A_0.50-0.60	_	
			- 0.6 		Fill		DP	BH05A_0.75-0.85	No odour staising	
			1		FIII	Fill - fine SAND, brown, heterogeneous, damp, medium dense, inclusions of brick fragments, gravel, concrete, ash and slag			 No odour, staining, or asbestos 	
	⊻		- - - 1.2		Fill	Fill - fine SAND, brown, heterogeneous, damp, medium dense, inclusions of brick fragments, gravel and concrete	DP	BH05A_1.00-1.60	No odour, staining, or asbestos	
			- - 		Fill	Fill - fine SAND, beige, heterogeneous, damp, medium dense, inclusions of brick fragments, gravel, concrete, ash and slag	DP	BH05A_1.25-1.35	 No odour, staining, or asbestos 	
			1.6		PT	Natural - PEAT, black/dark brown,	м	BH05A_1.50-1.60	No staining,	
			1.8	ጥ ጥ ኮ ጥ ካ ጥ ጥ		heterogeneous, moist, medium plasticity, very soft, inclusions of organic matter		BH05A_1.75-1.85	asbestos, or hydrocarbon odours, sulfidic odours	
			2	r //r // //r //r /r //r //				BH05A_2.00-2.10	_	
			- 2.2 - 2.4	下 下 字 上 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子				BH05A_2.25-2.35	_	
			2.6	下 子 子 子 子 下 子 子 「 子 子	PT	Natural - PEAT, black/dark brown, heterogeneous, moist, medium plasticity, very soft, inclusions of organic matter and rocks	м	BH05A_2.50-2.60	No staining, asbestos, or hydrocarbon odours, sulfidic	
			2.8	下 不 不 不 不 不 不 了	PT	Natural - PEAT, black/dark brown, heterogeneous, wet, high plasticity, very soft, inclusions of organic matter	w	BH05A_2.75-2.85	odours No staining, asbestos, or hydrocarbon	
			3.2	不 <i>不不</i> 不不不 不不不				BH05A_3.00-3.10	odours, sulfidic odours	
			- 3.4	ም ም ጉ ጥ ጥ				BH05A_3.25-3.35	_	
			- 3.6					BH05A_3.50-3.60		
			3.8		SP	Natural - fine SAND, beige/light brown, homogeneous, wet, medium dense	w	BH05A_3.75-3.85	No odour, staining, or asbestos	
			4		vironmental			BH05A_4.00-4.10	Page 1 of	

Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
			4.2						
			4.4					BH05A_4.25-4.35	
								BH05A_4.50-4.60	
			4.6						
			4.8					BH05A_4.75-4.85	
			5		SP	Natural - fine SAND, grey/brown,	S	BH05A_5.00-5.10	No odour, staining,
			5.2			homogeneous, saturated, dense			or asbestos
			5.4					BH05A_5.25-5.35	
			5.6					BH05A_5.50-5.60	
SFA			5.8					BH05A_5.75-5.85	
			6					BH05A_6.00-6.10	
			6.2						
			6.4		SP	Natural - fine SAND, dark brown, homogeneous, wet, medium dense	W	BH05A_6.25-6.35	No odour, staining, or asbestos
			6.6					BH05A_6.50-6.60	
			6.8					BH05A_6.75-6.85	
			0.0					BH03A_0.75-0.05	
			7					BH05A_7.00-7.10	
			7.2					BH05A_7.25-7.35	
			7.4					<u></u>	
			7.6					BH05A_7.50-7.60	
			7.8					BH05A_7.75-7.85	
								 BH05A_7.90-8.00	
			8			Termination Depth at: 8.00 m.			
			8.2						
			8.4						
			8.6						
			8.8						

PROJE CLIENT PERMI	ECTN. TLA⊢ TNO.	IC	ntamina			DRILLING COMPANY Numac DRILLING DATE 26-Apr-22 DRILL RIG GeoProbe DRILLING METHOD Push Tube TOTAL DEPTH 8 m bgl DIAMETER 100 mm	NC EL CC	EASTING N/A NORTHING N/A ELEVATION N/A COORD SYS GDA94_MGA_zone_56 COORD SOURCE LOGGED BY MD			
COMPI	LETIO	N Road	хос			CASING Class 18 PVC - 50mm	so	REEN INTERVAL 1.4	- 4.9 m bgl		
сомм	ENTS		-			_		-			
Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations		
PT			0.2		Fill	Fill - fine SAND, brown/beige, heterogeneous, damp, loose, inclusions of brick, concrete and roots	DP	BH06A_0.00-1.00 BH06A_0.25-0.35	No odour, staining, or asbestos		
			0.4 0.6					BH06A_0.50-0.60	-		
	⊻		0.8		Fill	Fill - fine SAND, grey, heterogeneous, damp,	DP	BH06A_0.75-0.85	No odour, staining,		
			- 1.2 - 1.4 - 1.6			loose, inclusions of brick, concrete, roots, and slag		BH06A_1.00-1.60	or asbestos		
			- 1.8 - 1.8 2	F 7F 7 7F 7F F 7F 7 7F 7F 7 7F 7F 7		Natural - PEAT, black/dark brown, heterogeneous, moist, medium plasticity, soft, inclusions of organic matter	М	BH06A_1.75-1.85	No staining, asbestos, or hydrocarbon odours, sulfidic odours		
			2.2	ト イト イ イト イト ト イト イト イト イト	PT	Natural - PEAT, black/dark brown, heterogeneous, moist, medium plasticity, soft, inclusions of organic matter and roots	М	BH06A_2.00-2.10 BH06A_2.25-2.35	No staining, asbestos, or hydrocarbon odours, sulfidic odours		
			2.4 2.6 2.8	7 00 7 77 77 77 77 7 77 77 77 77 77 77 77 77		Natural - PEAT, black/dark brown, heterogeneous, wet, high plasticity, soft, inclusions of organic matter	W		No staining, asbestos, or hydrocarbon odours, sulfidic odours		
			- 3.4 - 3.4 - 3.6 - 3.8		SP	Natural - fine SAND, brown/beige, homogeneous, wet, medium dense	W	BH06A_3.00-3.10 BH06A_3.25-3.35 BH06A_3.50-3.60 BH06A_3.75-3.85	No odour, staining, or asbestos		
			4					BH06A_4.00-4.10	1		

Disclaimer This log is intended for environmental not geotechnical purposes.

Drilling Method	Water (m bgl)	Well Details	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	Additional Observations
			4.2					BH06A_4.25-4.35 BH06A_4.50-4.60	
			4.8 5 5.2		SP	Natural - fine SAND, grey/brown, homogeneous, wet, medium dense	W	BH06A_4.75-4.85 BH06A_5.00-5.10	No odour, staining, or asbestos
			5.4		SP	Natural - fine SAND, brown, homogeneous, saturated, dense	S	BH06A_5.25-5.35 BH06A_5.50-5.60	No odour, staining, or asbestos
			5.8 6					BH06A_5.75-5.85 BH06A_6.00-6.10	
SFA			6.2					BH06A_6.25-6.35 BH06A_6.50-6.60	
			6.8 7					BH06A_6.75-6.85 BH06A_7.00-7.10	
			7.2					BH06A_7.25-7.35 BH06A_7.50-7.60	
			7.6 7.8			Termination Depth at: 8.00 m.		BH06A_7.75-7.85 BH06A_7.90-8.00	
			8.2 8.4						
			8.6						

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334226.9 N6248047.6 LOGGED BY L Lewis CHECKED BY A Tennant

СОММ	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	-	0.6	BH01_0.1	Y		SP	FILL: SAND; medium to course grain, light brown, minor organics, trace brick fragments, very loose, very dry, no odour or staining.
	- 0.5 - -	0.2	BH01_0.5	Y			Colour change to light grey
	- - 1 -	0.3	BH01_1.0			Pt	Sandy PEAT; medium to high plasticity, dark grey to black, with organics (20%), medium dense, dry to moist, no odour or staining.
Direct push tube	- 1.5 - - -						
	- 2 - -	2.5	BH01_2.0				
	- 	0.5	BH01_2.5	Y			
	- - 						End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334224.9 N6248059.4 LOGGED BY L Lewis CHECKED BY A Tennant

СОММ	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	-	0	BH02_0.1	Y		SM	FILL: Silty SAND; Fine to course grain, brown, trace roots and mortar fragments, medium dense, dry, no odour or staining.
	— 0.5 	0.2	BH02_0.5	Y			Sandstone fragments from 0.5 to 1.4m.
	1 	0.2				SC	Clayey SAND; fine grain, dark brown, minor roots, dry, dense, no odour or staining.
Direct push tube	- 1.5 - - - - 2	1.0	BH02_1.5	-		Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	- - - - 	6.5	BH02_2.5, QC100	Y			End of investigation at 2.5 m (target depth).
	_ _ _ _ 3						
	-						

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334225.5 N6248029.3 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand	_	0.0	BH03_0.1			SM	FILL: Silty SAND; grey to brown, fine to medium grain, minor organics, trace brick fragments, very loose, dry, no odour or staining.
auger	- - - 0.5 - - - - - 1 -	0.1	BH03_0.5	Y			
Push tube	- - 1.5 - - - - - -	1.1	BH03_1.5	Y		Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	- - - - <u>2.5</u>	1.0	BH03_2.5	Y			End of investigation at 2.5 m (target depth).
	- - - - - - -						

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334216.0 N6248017.4 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	-	0.2	BH04_0.1	Y		SP	FILL: SAND; medium grain, brown, minor brick fragments, loose, dry, no odour or staining.
	- - 0.5 - - - -	0.1	BH04_0.5	Y			
Push tube	- - - 1.5 - -	0.3	BH04_1.5	Y		Pt	Becoming clayey Colour change to dark grey PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	2 	0.1	BH04_2.5	-			End of investigation at 2.5 m (target depth).
	- - 3 						

PROJECT NUMBER J190730 PROJECT NAME DSI

PROJECT NAME DSI **CLIENT** Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334223.0 N6248000.7 LOGGED BY L Lewis CHECKED BY A Tennant

СОММ	ENTS		1				
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	nscs	Material Description
Hand auger	- - - - 0.5	0.4	BH05_0.1 BH05_0.5	Y		SP	FILL: SAND; medium grain, brown to grey, trace ceramic and brick fragments, loose, dry, no odour or staining.
	- - 1	0.1	BH05_0.9	Y			Becoming dense to medium dense Colour change to dark grey to brown Trace shale fragments
Push tube	- - - 1.5 - - - - - - - -	0.2	BH05_1.2	Y		Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	- 2 - - - - - -	0.2	BH05_2.5				End of investigation at 2.5 m (target depth).
	- 3 						

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334214.5 N6247980.2 LOGGED BY L Lewis CHECKED BY A Tennant

СОММ	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger		0.1	BH06_0.1 BH06_0.5	Y		SP	FILL: SAND; fine to medium grain, grey to brown, minor ceramic and stone fragments, very loose, dry, no odour or staining. Minor woodchips from 0-0.5m.
	- - - 1 -	0.3	BH06_1.2	-		Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
Push tube	- - 1.5 - - - - - 2 -						
	- - - <u>2.5</u>	4.0	BH06_2.2	Y			End of investigation at 2.5 m (target depth).
	- - 3 						
	-						

PROJECT NUMBER J190730

PROJECT NAME DSI CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334264.6 N6247970.7 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	- - - - 0.5	0.0	BH07_0.1 BH07_0.5	Y		SP	FILL: SAND; medium grain, brown, minor gravel and brick fragments, loose, dry, no odour or staining.
Push tube	_						Becoming medium dense
	- 1	0.1	BH07_0.9	Y		CL	Sandy CLAY; low plasticity, dark grey and light grey, medium grain sand, stiff, dry, no odour or staining.
	_	0.1	BH07_1.1	Y	<u>/ · · · / ·</u>	SP	SAND; medium grain, light brown to grey
	- - 1.5 - - - - - 2 - - 2 -	0.8	BH07_2.1			Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	- 						
	- - - - - 3 -						End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

PROJECT NAME DSI **CLIENT** Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334274.2 N6248022.8 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	nscs	Material Description
Hand auger	- - - 0.5 -	0.2	BH08_0.1 BH08_0.5	Y		SP	FILL: SAND; medium grain, brown, minor gravel and brick fragments, loose, dry, no odour or staining.
	- - 1	0.8	BH08_0.9			CL	Sandy CLAY; low plasticity, dark grey and light grey, medium grain sand, stiff, dry, no dour or staining.
	-	0.5	BH08_1.1	Y	• • •	SP	SAND; medium grain, light brown to grey
Push tube	- - - 1.5 - - - - - - - 2					Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	2 - - - - -	2.1	BH08_2.0, QC200	Y			Moist
	 3 						End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 27/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334279.1 N6248044.1 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	nscs	Material Description
Hand auger	- - 0.5	0.0	BH09_0.1, QC101 BH09_0.5	Y		SP	FILL: SAND; fine to medium grain, grey to brown, minor gravel, brick and ceramic fragments, very loose, dry, no odour or staining.
	- - - - 1						Loose to medium dense
	-	0.7	BH09_1.0	Y		SP	SAND; fine to medium grain, dark grey, very dense, no odour or staining. Light grey, loose
Push tube	- 1.5 - - - - - 2 - -	1.0	BH09_1.5			Pt	PEAT; medium plasticity, black, organics (50%), firm, moist, no odour or staining.
	- - - - - - - 3 - - -	1.1	BH09_2.5			SP	SAND: fine to medium grain, brown, loose, moist, no staining, slight sulfur odour. End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334269.4 N6247994.4 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	nscs	Material Description
Hand auger	-	0.4	BH10_0.1	Y		SP	FILL: SAND; fine to medium grain, dark brown, trace ceramic and brick fragments, trace organics, loose, dry, no odour or staining.
	0.5 	0.4	BH10_0.5				Light brown
	- 1 - -	0.9	BH10_1.0	Y		SC	FILL: Clayey SAND; fine to medium grain, dark grey to dark brown, medium to high plasticity clay, trace brick fragments, soft, dry, no odour or staining.
Push tube	- 1.5 - - - - 2 -	1.0	BH10_1.5			Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist, no odour or staining.
	- - <u>2.5</u> - - - - 3 - - -	0.6	BH10_2.5	Y			End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334257.7 N6248034.9 LOGGED BY L Lewis CHECKED BY A Tennant

СОММ	ENTS						1
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	- - - - - - - - - - - - - - - - - - -	0.2	BH12_0.1 BH12_0.5			SP	FILL: SAND; fine to medium grain, dark brown, trace ceramic, brick and gravel fragments, trace organics, loose, dry, no odour or staining.
Push tube	- 1.5 - - - - - 2 - -	0.9	BH12_1.5	Y		Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist, no odour or staining.
	- <u>2.5</u> - - - - - - 3 - -	0.9	BH12_2.5	Y	· · · ·	SP	SAND; medium grain, light brown, loose, moist, no odour or staining. End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation ADDRESS 600-660 Elizabeth Street, Redfern DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334265.3 N6247948.8 LOGGED BY L Lewis CHECKED BY A Tennant

СОММ	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	_						Asphalt
	_		BH13_0.3	Y	\bigotimes	SP	FILL: Gravelly SAND; medium grain, grey brown, no odour or staining.
	— 0.5 	0.5	BH13_0.5	Y			Concrete fragments
	- - - -						
Push tube	- 1.5 - -	1.8	BH13_1.5	Y		Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist, no odour or staining.
	- 2 - -						
	- - 2.5 - -	4.1	BH13_2.5	Y			
	3						End of investigation at 3.0 m (target depth).
	-						

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation ADDRESS 600-660 Elizabeth Street, Redfern DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334243.2 N6247951.8 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	nscs	Material Description
Hand auger							Asphalt
	_	0.1	BH14_0.3	Y	\bigotimes	SP	FILL: Gravelly SAND; medium grain, dark grey, no odour or staining.
	- 0.5 - - -						
	- 1	0.3	BH14_1.0	Y			
Push tube	- - 1.5 - -					Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium
							grain), firm, moist to wet, no odour or staining.
	-	0.8	BH14_2.0				
	- 2.5 - - -						
	3	0.6	BH14_3.0	Y			End of investigation at 3.0 m (target depth).
	-						

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334241.3 N6247918.2 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	 0.5 	0.2	BH15_0.2 BH15_0.5	Y		SP	Asphalt FILL: Gravelly SAND; medium to course grain, grey-brown, no odour or staining.
	- - 1 - - 1.5						Minor clay, medium plasticity, red to light grey. Moist to wet
Push tube	- - - - - -	10.4	BH15_1.5, QC201	Y		Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist to wet, no odour or staining.
	- - - - - - - 3 - - -	9.6	BH15_2.5	Y			End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334241.8 N6247983.6 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	uscs	Material Description
Hand auger		0.3	BH16_0.1 BH16_0.5	Y		SP	FILL: SAND; medium grain, grey-brown, very loose, dry, no odour or staining.
	- - - 1 -	1.1	BH16_0.9	Y		SP	FILL: Sandy GRAVEL; sub angular, grey, brick fragments, loose, dry, no odour or staining.
Push tube	- - 1.5	0.5	BH16_1.2			SP	SAND; fine to course grain, brown, minor roots, very dense, dry, no odour or staining.
	- - 2 	1.2	BH16_1.7	Y		Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist to wet, no odour or staining. Moist Wet
	- <u>2.5</u> 	0.9	BH16_2.5				End of investigation at 2.5 m (target depth).

PROJECT NUMBER J190730 PROJECT NAME DSI CLIENT Land and Housing Corporation ADDRESS 600-660 Elizabeth Street, Redfern DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube

COORDINATES LOGGED BY L Lewis CHECKED BY A Tennant

od	(m) r	(mdc	Samples	Analysed?	Graphic Log	~	Material Description
Method	Depth (m)	PID (ppm)		Analy	Grapl	nscs	
Hand auger	-	0.0	BH17_0.1	Y		SP	FILL: SAND; medium grain, brown-grey, trace brick and glass fragments, medium dense, dry, no odour or staining.
	0.5 	0.1	BH17_0.5	Y			
	- - 1 - -	0.1					Becoming very dense, minor roots, trace brick fragments
ush ibe	- 1.5 - - -	0.9	BH17_1.5			Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist to wet, no odour or staining.
	- 2 - - -		DU47.05				Wet
	2.5 - - 	1.0	BH17_2.5	Y			End of investigation at 2.5 m (target depth).
	- 						

ENVIRONMENTAL BOREHOLE BH18

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334259.1 N6248019.4 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	USCS	Material Description
Hand auger	_	0.0	BH18_0.1	Y		SP	FILL: SAND; medium grain, brown-grey, trace brick and glass fragments, loose, dry, no odour or staining.
	0.5 	0.0	BH18_0.5	Y			
	1 						Medium dense with brick fragments
Push tube	- 1.5 - - - 2 -	0.0	BH18_1.8			Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist to wet, no odour or staining.
	- - - 2.5 -						Moist
	_	0.0	BH18_2.8	Y	• <u>+ + / -</u> • • • •	SP	SAND: medium grain, dark brown, loose, medium dense, moist, no odour or staining.
	- 3 						End of investigation at 2.8 m (target depth).

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 07 Feb 2020

ENVIRONMENTAL BOREHOLE BH19

PROJECT NUMBER J190730 PROJECT NAME DSI

CLIENT Land and Housing Corporation

ADDRESS 600-660 Elizabeth Street, Redfern

DRILLING DATE 28/11/2019 DRILLING CONTRACTOR Matrix Drilling DRILLING METHOD Push tube COORDINATES E334204.9 N6247957.7 LOGGED BY L Lewis CHECKED BY A Tennant

сомм	ENTS						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic Log	nscs	Material Description
Hand auger	-	0.0	BH19_0.1			SP	FILL: Silty SAND; dark brown, trace roots, trace brick fragments, medium dense, loose, dry, no odour or staining.
	- - 0.5 - -	0.0	BH19_0.5, QC102	Y			Large brick fragments (70mm)
	- 1 - -		BH19_1.0				Glass fragments Dense
Push tube	- - 1.5 - - -	2.5	BH19_1.5	Y		Pt	PEAT; medium plasticity, black, organics (50%), minor sand (grey, medium grain), firm, moist to wet, no odour or staining.
	2 	0.5	BH19_2.5	Y			Moist
	- - - - 3						End of investigation at 2.5 m (target depth).
	-						

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 07 Feb 2020

PROJECT NUMBER J190730 PROJECT NAME DSI CLIENT Land and Housing Corporation ADDRESS 600-660 Elizabeth Street, Redfern DRILLING DATE 28/11/19-29/11/19 DRILLING METHOD Hollow-stem auger DRILLING CONTRACTOR Matrix Drilling DIAMETER 50 mm CASING uPVC COORDINATES E334259.6 N6248055.4 LOGGED BY L Lewis CHECKED BY A Tennant SCREEN uPVC Factory Slotted, 1.5 to 4.5 m bgs SURFACE LEVEL 30.38 mAHD

(mqq) UIY	Samples	Analysed	Depth (m)	Graphic Log	NSCS	Material Description		v	Vell Di	agram
2	MW11_0.1		_	\otimes	SP	FILL: SAND; fine to medium grain, dark brown, trace		5 k	$\langle \langle \langle $	
			0.2			ceramic and brick fragments, trace organics, loose, dry, no odour or staining.				_concrete cement grout
4	MW11_0.5	Y	0.6							-bentonite
4	MW11_1.2	_	- 1 - 1 - 1.2		SC	FILL: Clayey SAND; fine to medium grain, dark brown and grey, trace ceramic fragments, medium dense, dry, no odour or staining.				
			- 1.4 - 1.6			∑2 Stabilised water level				
5	MW11_2.1		- 1.8		CL	Sandy CLAY; medium plasticity, black, fine to medium				
			- 2.2		<u>UL</u>	grain sand, soft, dry, no odour or staining.				
			- 2.6 - 2.8 - 3							_filter pack (1-2 mm)
			- 3.2							
7	MW11_3.5	Y	3.6		SC	Clayey SAND; fine to medium grain, black, no odour or staining.				
			- 4 - 4.2							
			4.4				2000 2000 2000 2000 2000 2000 2000 200		2000 2000 2000 2000 2000 2000	
1		Y	4.8					0-00 2-0-00 2-0-0-0-0-0-0-0-0-0-0-0-0-0-	2008 2008 2008	-bore collapse
1	MW11_5.0	<u></u> Υ	5	/ /		End of investigation at 5.0 m (target depth).	2003 x	758995	1 <u>7</u> 8022	

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2020

MONITORING WELL MW20

PROJECT NUMBER J190730 PROJECT NAME DSI CLIENT Land and Housing Corporation ADDRESS 600-660 Elizabeth Street, Redfern DRILLING DATE 28/11/19 DRILLING METHOD Hollow stem auger DRILLING CONTRACTOR Matrix drilling DIAMETER 50 mm CASING uPVC COORDINATES E334205.2 N6247944.6 LOGGED BY L Lewis CHECKED BY A Tennant SCREEN uPVC Factory Slotted, 1.5 to 4.5 m bgs SURFACE LEVEL 30.64 mAHD

COMMENTS Location at PCYC entrance. Top of pipe - 30.555 mAHD, flush well head. Graphic Log PID (ppm) Samples Analysed Depth (m) **Material Description** Well Diagram uscs MW20_0.1 SP 0.5 FILL: SAND; fine to medium grain, grey to brown, with ceramic pipe fragments and glass fragments, very 0.2 concrete loose, dry, no odour or staining. cement grout 0.4 MW20_0.5 0.5 Υ 0.6 -bentonite 0.8 1 MW20_1.0 0.6 1.2 1.4 Dense 1.6 PEAT; medium plasticity, black, organics (50%), firm, 1.8 MW20_1.8 Υ Pt 1.0 moist, no odour or staining. <u></u>₹2_ 2 Stabilised water level 2.2 Moist 24 ₽1. Waterstrike, wet 2.6 filter pack (1-2 . mm) 2.8 MW20_2.8 1.6 3 3.2 3.4 Saturated, sticky 3.6 3.8 4 MW20_4.0 1.5 Υ 4.2 4.4 End of investigation at 4.5 m (target depth). 4.6 4.8

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2020

MONITORING WELL MW21

PROJECT NUMBER J190730 PROJECT NAME DSI CLIENT Land and Housing Corporation ADDRESS 600-660 Elizabeth Street, Redfern DRILLING DATE 29/11/19 DRILLING METHOD Hollow stem auger DRILLING CONTRACTOR Matrix drilling DIAMETER 50 mm CASING uPVC COORDINATES E334265.8 N6247929.7 LOGGED BY L Lewis CHECKED BY A Tennant SCREEN uPVC Factory Slotted, 1.5 to 4.5 m bgs SURFACE LEVEL 30.215 mAHD

PID (ppm)	Samples	Analysed	Depth (m)	Graphic Log	USCS	Material Description		Well D	iagram
2.7	/MW21_0.3, QC202	Y	0.2		SP	Asphalt FILL: Gravelly SAND; medium grain, brown, brick and mortar inclusions (30%), angular gravel, dry, loose to medium dense, no odour or staining.			_concrete cement grout
	∫MW21_1.3.		- 0.8			⊻1 Stabilised water level			-bentonite
3.7	QC103, QC203	Y	- 1.4 - 1.6 - 1.8 - 2.2		Pt	PEAT; medium plasticity, black, organics (50%), firm, dry to moist, no odour or staining.			
.8	MW21_2.5	-	2.4			₩aterstrike			_filter pack (1-2 mm)
.9	MW21_4.4	Y	- 4.2 - 4.4 4.6			End of investigation at 4.4 m (target depth).			

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2020

heet 1 of 2						1	Sampl	e Mat	rix										Ana	lysis										Comments
te: 600-6 ST, Rel			th		ect No: SQUZ												(ENM) Suite	ete	composite ign Materials)				Sulfur (CrS)		_	vity)				HM à Arsenic Cadmium Chromium Copper Lead
aboratory:	SGS Austra Unit 16, 33 ALEXANDR P: 02 8594	Maddox St RIA NSW 20	15	99				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification	Excavated Natural Material (ENM)	- Stockpile discre (/PAHs)	ENM Suite - Stockpile composite (HM ^A /pH / EC / Foreign Materia	g Suite	oxide		Reducible Sulfur		(cation exchange)	(electrical conductivity)	Sulphate / Chloride	arp	⁸ / PAH	Mercury Nickel Zinc HM ^B Arsenic Cadmium
Sample	Laboratory	Container		Samplin	ng].	с Ш	μm fie	R	/TRI	A /TRI	A /TRI	×	s	Asbestos	estos (vated	Suite /BTE>	Suite /pH	Dewatering	pH / pH peroxide	spocas	Chromium	S	CEC	U L L	hate /	7	Σ	Chromium Lead
ID	ID	Туре	D	ate	Time	SOIL	WATER	0.45	OTHER	HM ^A OCP/G	WH	MH	BTEX	vocs	Asbe	Asbe	Exca	ENM (TRH	ENM (HM)	Dew	H/ Hd	sPO	Chrc	PFAS	/ Hq	/ Hq	Sulpt		TCLP	Mercury Nickel
EA 0.5-P.1-3049	A 1	ZLB	647	影	ANAM	Х															7	\times	7							Dewatering Suite pH & EC
P405-1-2019	A	1	1		1																									TDS / TDU Hardness Total Cyanide
20105-P.1.0005	2																				X	X	X							Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
20407-1-1-50HS	2																						<u> </u>							TRH (F1, F2, F3, F4) BTEX PAH
R405-P.1.80P9	A																													Total Phenol
210.19-2.0NS	3																				X	X	X							LABORATORY TURNAROUND
2405-19-2015	4																	·			X	X	X							Standard
405-P.1_EIPS	ER 5									-				-	coc	2					X	X	X	-						24 Hours
2414-1-9-2.0 ASSE	6										SE	24	130	73	8						X	X	X							48 Hours
284 Q.S-P.I. 21H9.	A																													72 Hours
2405-P.1-011K	A	1																												Other
F417-1-5149	a 7	0			0	9															X	X	X							
ontainer Type: = solvent washed, acid ri = solvent washed, acid ri	nsed, Tefton se insed glass botl	aled glass jar le					Inve	stigator	: I atte	st that t	hese sa	amples		ollecte		cordan	ce with	n standa	ard El fi	eld san	npling		/			El Was	te Clas	sificatio	on Tabl	• . 🖄
= natural HDPE plastic b C = glass vial, Tefton Sep	nutum						Samp Print	ler's Na			Ta	-00-	~5	Recei	ved by (SGS):							oler's C			1				-
LB = Zip-Lock Bag	BB = Bi		Suite 6 0	1 55 M	iller Stree	ot	-	ature ,	CID ATU	ipa	e r	JK	=>	Sign	aluro	2		ə —	-		ð		C	Z,	2	±2€	×s	R	F	(۱
			PYRM		W 2009			13/	Z	CM ES				Date		410	21	pu 23	bar		-05				-	SE	ls	-	0 1	rapsies
eiaust	ralia				a.com.a	u		ORT						I	0	110	12	25	C	1	-0)									
Contamination Remethat	sion Geotechnical		COC Jun	e 2021 FORM	1 v 5 - SGS		Please	e e-mai	l labor	atory re:	sults to:	lab@)eiau	stralia	a.com	n.au														

heet 2 of 2		1				Samp	le Mat	rix		Analysis													Comments						
te: 600-64 57, 8	io el cofel	N N	2	Project No	:											ENM) Suite	e	site terials)				(CrS)			ity)				HM ⁶ Arsenic Cadmium Chromium Copper
iboratory:	ALEXANDR	alia Maddox Stre IA NSW 201 0400 F: 02 8	5				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification	Excavated Natural Material (ENM) Suite	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	ENM Suite - Stockpile composite (HM ^A /pH / EC / Foreign Materials)	g Suite	oxide		Reducible Sulfur		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Sulphate / Chloride		TCLP HM ⁸ / PAH	Lead Mercury Nickel Zinc HM ^B Arsenic Cadmium
Sample	Laboratory	Container	Sa	ampling	\neg	WATER	µm fie	OTHER	A /TRI		A /TRI	X	Cs	Asbestos	lestos (avated	A Suite H/BTEX	A Suite	Dewatering Suite	pH / pH peroxide	sPOCAS	Chromium	AS	/ CEC	/ EC (e	ohate /	σ	LP HM	Chromium Lead
10-419 PMA-19-20M	ID	Туре	Date	Time	IIOS	WAT	0.45	D	HM	HM ^A	HM ^A	BTEX	VOCs	Ast	Asb	Exc	ENN TRI	ENN (HM	Dev	Hd	sPC	Ë	PFAS	Ha	Hd	Sulp	Lead	10	Mercury Nickel
AOS-P.1_P.M	5e 8	218 		Paryp			-												/	X									Dewatering Suite pH & EC TDS / TOU Hardness Total Cyanide Metals (A, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH Total Phenol LABORATORY TURNAROUND Standard 24 Hours
					-																								48 Hours 48 Hours 72 Hours Other
ontainer Type: = solvent washed, acid r = solvent washed, acid r = natural HDPE plastic t C = glass vial, Tefton Se _B = Zip-Lock Bag	rinsed glass botll bottle	e	1				pler's Na	ame (EI)		57		pr	ocedur	es. ved by (ce with	standa	ard El fi	eld sar	npling		Report with El Waste Classification Table .							
eiaust Gentamination T Remedu	tralia	Su	PYRMON Ph: 99 b@eiaus	55 Miller St T NSW 200 516 0722 stralia.com	.au	Da	nature	ATE SIS	123	>			Sign: Date	0	B Bubanay R 102128 C 2:05 n.au					1 20055-R									

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	3	LABORATORY DETA	NILS
Contact	Geisiane Torres	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	Samples Received	Thu 9/2/2023
Order Number	E25947	Report Due	Tue 21/2/2023
Samples	8	SGS Reference	SE243073

SUBMISSION DETAILS

This is to confirm that 8 samples were received on Thursday 9/2/2023. Results are expected to be ready by COB Tuesday 21/2/2023. Please quote SGS reference SE243073 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 8 Soil 13/2/2023@5:24pm N/A Client Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 10.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

SPOCAS and CrS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. 5 samples have been placed on hold as no tests have been assigned for it. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern

SUMMAR'	Y OF ANALYSIS					1	
No.	Sample ID	Chromium Reducible Sulfur (CRS)	Field pH for Acid Sulphate Soil	Moisture Content	SPOCAS Net Acidity Calculations	TAA (Titratable Actual Acidity)	TPA (Titratable Peroxide Acidity)
001	TP402_1.9-2.0 ASSA	2	4	1	6	7	21
002	TP406_1.9-2.0 ASSA	2	4	1	6	7	21
003	TP410_1.9-2.0 ASSA	2	4	1	6	7	21
004	TP412_1.9-2.0 ASSA	2	4	1	6	7	21
005	TP413_1.9-2.0 ASSA	2	4	1	6	7	21
006	TP414_1.9-2.0 ASSA	2	4	1	6	7	21
007	TP417_1.9-2.0 ASSA	2	4	1	6	7	21
008	TP419_1.9-2.0 ASSA	2	4	1	6	7	21

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Yin, Emily (Sydney)

From:Geisiane Torres - ElAustralia < gei	-
--	---

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi SGS team,

L

Can you please book Chromium suite for samples below:

	2000 - 2000 - 2000 1980 - 200 - 1990 2000 - 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 20000 2000 - 2	唐唐·如唐安之子。 唐唐·柳唐·金子子 《月·明子》:"是一个子子。" "王子子":"你们,你们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们		
	Sample ID	TPA	TSA	S _{POS} (as
		(moles H⁺/tonne)	(moles H⁺/tonne)	%S)
1	TP402_1.9- 2.0 ASSA	4678	4599	1.4
1 2	TP406_1.9- 2.0 ASSA	5638	5414	1.5
3	TP410_1.9- 2.0 ASSA			0.2
Ŧ	TP412_1.9- 2.0 ASSA	4353	4094	1.9
۱ آ	TP413_1.9- 2.0 ASSA			0.15
,	TP414_1.9- 2.0 ASSA	4678	4610	1.6
1	TP417_1.9- 2.0 ASSA	1188		0.53
8	TP419_1.9- 2.0 ASSA	3692	3563	1.6

TAT: Standard. Thank you.

Best regards, Geisiane Torres Environmental Engineer

T (02) 9516 0722 M 0478 965 237 E geisiane.torres@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

FINANCIAL REVIEW

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

Yin, Emily (Sydney)

From:	Sharon Li - ElAustralia <sharon.li@eiaustralia.com.au></sharon.li@eiaustralia.com.au>
Sent:	Monday, 27 February 2023 3:22 PM
То:	AU.SampleReceipt.Sydney, AU (Sydney); Geisiane Torres - ElAustralia
Subject:	RE: [EXTERNAL] E25947_Redfern

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Yes please

Thanks for confirming

From: AU.SampleReceipt.Sydney, AU (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com]
Sent: Monday, 27 February 2023 11:43 AM
To: Geisiane Torres - EIAustralia
Cc: Sharon Li - EIAustralia
Subject: RE: [EXTERNAL] E25947_Redfern

Caution: This email originated from outside your organization and might have suspicious subject or content. PLEASE DO NOT CLICK ANY LINKS AND\OR OPEN ANY ATTACHEMENTS UNLESS YOU CAN CONFIRM THE SENDER.

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Dear All,

Do you want them all analysed for Chromium Suite? Please advise as soon as possible. Thank You.

Regards,

Emily Yin Environment, Health & Safety Sample Receipt

SGS Australia Pty Ltd Unit 16, 33 Maddox Street Alexandria NSW 2015

 Phone:
 +61 (0)2 8594 0400

 Fax:
 +61 (0)2 8594 0499

 E-mail:
 <u>au.samplereceipt.sydney@sgs.com</u>

From: Geisiane Torres - ElAustralia <geisiane.torres@eiaustralia.com.au> Sent: Friday, 24 February 2023 6:10 PM To: AU.Environmental.Sydney, AU (Sydney) <AU.Environmental.Sydney@sgs.com>; AU.SampleReceipt.Sydney, AU (Sydney) <AU.SampleReceipt.Sydney@sgs.com>

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	NLS
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25947 600-660 Elizabeth St Redfern-Add	Samples Received	Fri 24/2/2023
Order Number	E25947	Report Due	Mon 6/3/2023
Samples	8	SGS Reference	SE243073A

- SUBMISSION DETAILS

This is to confirm that 8 samples were received on Friday 24/2/2023. Results are expected to be ready by COB Monday 6/3/2023. Please quote SGS reference SE243073A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 8 Soil 24/2/2023@6:29pm N/A Client Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Email Yes 10.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

Chromium Suite subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. Report No. CE164709A.

This the its General Conditions of Service at document is issued by Company under accessible Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined www.sgs.com/en/Terms-and-Conditions.aspx. therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS -

Client EI AUSTRALIA

Project E25947 600-660 Elizabeth St Redfern-Add

SUMMAR	Y OF ANALYSIS						
No.	Sample ID	Acid Neutralising Capacity (ANC)	Chromium Reducible Sulfur (CRS)	Chromium Suite Net Acidity Calculations	HCI Extractable S, Ca and Mg in Soil/Solids ICP OES	Moisture Content	TAA (Titratable Actual Acidity)
001	TP402_1.9-2.0 ASSA	6	2	7	1	1	5
002	TP406_1.9-2.0 ASSA	6	2	7	1	1	5
003	TP410_1.9-2.0 ASSA	6	2	7	1	1	5
004	TP412_1.9-2.0 ASSA	6	2	7	1	1	5
005	TP413_1.9-2.0 ASSA	6	2	7	1	1	5
006	TP414_1.9-2.0 ASSA	6	2	7	1	1	5
007	TP417 1.9-2.0 ASSA	6	2	7	1	1	5
008	TP419_1.9-2.0 ASSA	6	2	7	1	1	5

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact	Geisiane Torres	Manager	Huong Crawford					
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental					
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	61 2 95160722	Telephone	+61 2 8594 0400					
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499					
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com					
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	SE243073 R0					
Order Number	E25947	Date Received	9/2/2023					
Samples	8	Date Reported	21/2/2023					

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SPOCAS and CrS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. Report No. CE164709.

SIGNATORIES

Huong CRAWFORD Production Manager

Shon

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499 Australia

www.sgs.com.au

Page 1 of 9

SE243073 R0

Field pH for Acid Sulphate Soil [AN104] Tested: 14/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASSA	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
pHf	pH Units	-	6.2	5.6	5.6	5.5	5.8
pHfox	pH Units	-	2.3	2.3	2.6	2.6	3.1
Reaction Rate (pHfox)*	No unit	-	2	3	3	2	2
pH Difference*	pH Units	-10	3.9	3.3	3.0	2.9	2.6

			TP414_1.9-2.0 ASSA TP417_1.9-2.0 ASSA TP419_1.9-2.0 AS				
			SOIL	SOIL	SOIL		
			7/2/2023	8/2/2023	8/2/2023		
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008		
pHf	pH Units	-	5.9	5.5	5.7		
pHfox	pH Units	-	3.5	2.8	3.4		
Reaction Rate (pHfox)*	No unit	-	2	2	1		
pH Difference*	pH Units	-10	2.3	2.7	2.2		

Moisture Content [AN002] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASS4	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
% Moisture	%w/w	0.5	81	83	40	83	33

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
					-
					8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
% Moisture	%w/w	0.5	83	70	85

TAA (Titratable Actual Acidity) [AN219] Tested: 21/2/2023

	TP402_1.9-2.0 ASSA TP406_1.9-2.0 ASSA TP410_1.9-2.0 ASSA TP412_1.9-2.0 ASSA TP413_						
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
pH KCI*	pH Units	-	5.3	4.1	4.3	4.2	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	3.9	11	4.7	13	2.6
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	79	225	95	259	52
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.13	0.36	0.15	0.42	0.08
Sulphur (SKCI)	%w/w	0.005	0.017	0.017	<0.005	0.019	<0.005
Calcium (CaKCI)	%w/w	0.005	0.72	0.080	0.048	0.20	0.048
Magnesium (MgKCI)	%w/w	0.005	0.10	0.10	0.079	0.27	0.085

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
					- 8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
pH KCI*	pH Units	-	5.3	4.2	4.8
Titratable Actual Acidity	kg H2SO4/T	0.25	3.3	9.2	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	67	187	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.11	0.30	0.21
Sulphur (SKCl)	%w/w	0.005	0.027	0.006	0.012
Calcium (CaKCl)	%w/w	0.005	0.68	0.068	0.57
Magnesium (MgKCl)	%w/w	0.005	0.27	0.095	0.17

TPA (Titratable Peroxide Acidity) [AN218] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASSA	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
Peroxide pH (pH Ox)	pH Units	-	1.9	1.8	2.6	1.8	2.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	280	15	210	6.1
TPA as moles H+/tonne	moles H+/T	5	4678	5638	299	4353	125
TPA as S % W/W	%w/w S	0.01	7.50	9.04	0.48	6.98	0.20
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4599	5414	205	4094	72
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	270	10	200	3.6
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.37	8.68	0.33	6.56	0.12
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)*	%w/w	0.005	1.4	1.5	0.20	1.9	0.15
Peroxide Oxidisable Sulphur as moles H+/tonne*	moles H+/T	5	900	965	128	1167	95
Sulphur (Sp)	%w/w	0.005	1.5	1.6	0.21	1.9	0.15
Calcium (Cap)	%w/w	0.005	0.22	0.084	0.046	0.20	0.050
Reacted Calcium (CaA)*	%w/w	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)*	moles H+/T	5	<5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.13	0.094	0.079	0.25	0.090
Reacted Magnesium (MgA)*	%w/w	0.005	0.033	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)*	moles H+/T	5	27	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w*	%w/w	0.005	-	0.071	0.019	0.082	0.014
Net Acid Soluble Sulphur as moles H+/tonne*	moles H+/T	5	-	45	12	51	9

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
					-
					8/2/2023
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
Peroxide pH (pH Ox)	pH Units	-	2.0	2.1	1.9
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	58	180
TPA as moles H+/tonne	moles H+/T	5	4678	1188	3692
TPA as S % W/W	%w/w S	0.01	7.50	1.90	5.92
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4610	1000	3563
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	49	170
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.39	1.60	5.71
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)*	%w/w	0.005	1.6	0.53	1.6
Peroxide Oxidisable Sulphur as moles H+/tonne*	moles H+/T	5	967	328	968
Sulphur (Sp)	%w/w	0.005	1.6	0.53	1.6
Calcium (Cap)	%w/w	0.005	0.46	0.060	0.13
Reacted Calcium (CaA)*	%w/w	0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)*	moles H+/T	5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.28	0.10	0.16
Reacted Magnesium (MgA)*	%w/w	0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)*	moles H+/T	5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w*	%w/w	0.005	-	0.027	0.086
Net Acid Soluble Sulphur as moles H+/tonne*	moles H+/T	5	-	17	54

SPOCAS Net Acidity Calculations [AN220] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA TP406_1.9-2.0 ASSA TP410_1.9-2.0 ASSA TP412_1.9-2.0 ASSA TP413				
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/2/2023	- 6/2/2023	- 6/2/2023	- 7/2/2023	- 7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
s-Net Acidity	%w/w S	0.005	1.6	2.0	0.37	2.3	0.25
a-Net Acidity	moles H+/T	5	980	1200	230	1500	150
Liming Rate*	kg CaCO3/T	0.1	73	92	17	110	12
Verification s-Net Acidity*	%w/w S	-20	0.48	0.52	0.07	0.62	0.05
a-Net Acidity without ANCE*	moles H+/T	5	980	1200	230	1500	150
Liming Rate without ANCE*	kg CaCO3/T	0.1	73	92	17	110	12

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
s-Net Acidity	%w/w S	0.005	1.7	0.85	1.8
a-Net Acidity	moles H+/T	5	1000	530	1100
Liming Rate*	kg CaCO3/T	0.1	78	40	85
Verification s-Net Acidity*	%w/w S	-20	0.52	0.18	0.52
a-Net Acidity without ANCE*	moles H+/T	5	1000	530	1100
Liming Rate without ANCE*	kg CaCO3/T	0.1	78	40	85

Chromium Reducible Sulfur (CRS) [AN217] Tested: 21/2/2023

			TP402_1.9-2.0 ASSA	TP406_1.9-2.0 ASSA	TP410_1.9-2.0 ASSA	TP412_1.9-2.0 ASSA	TP413_1.9-2.0 ASSA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/2/2023
PARAMETER	UOM	LOR	SE243073.001	SE243073.002	SE243073.003	SE243073.004	SE243073.005
Chromium Reducible Sulfur (Scr)	%	0.005	0.28	0.13	0.021	0.15	0.008
Chromium Reducible Sulfur (Scr)	moles H+/T	5	173	82	13	94	<5

			TP414_1.9-2.0 ASSA	TP417_1.9-2.0 ASSA	TP419_1.9-2.0 ASSA
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE243073.006	SE243073.007	SE243073.008
Chromium Reducible Sulfur (Scr)	%	0.005	0.14	0.038	0.11
Chromium Reducible Sulfur (Scr)	moles H+/T	5	87	24	72

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN104	pHF is determined on an extract of approximately 2g of as received sample in approximately 10 mL of deionised water with pH determined after standing 30 minutes.
AN104	pHFox is determined on an extract of approximately 2g of as received sample with a few mLs of 30% hydrogen peroxide (adjusted to pH 4.5 to 5.5) with the extract reaction being rated from slight to extreme, with pH determined after reaction is complete and extract has cooled. Referenced to ASS Laboratory Methods Guidelines, method 23Af-Bf, 2004.
	 No Reaction Slight Reaction Moderate Reaction Strong/High Reaction Extreme/Vigorous Reaction (gas evolution and heat generation)
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply. NVL IS I NR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. Raised/lowered Limit of î↓ Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact Client Address	Geisiane Torres EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	Geisiane.Torres @eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	SE243073 R0	,
Order Number	E25947	Date Received	09 Feb 2023	
Samples	8	Date Reported	21 Feb 2023	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	8 Soil	Type of documentation received	COC	
Date documentation received	13/2/2023@5:24pm	Samples received in good order	Yes	
Samples received without headspace	N/A	Sample temperature upon receipt	10.3°C	
Sample container provider	Client	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

Australia

99 Member of the SGS Group

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Field pH, for Aoid Sulphote Soil

Field pH for Acid Sulphate	eld pH for Acid Sulphate Soll							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP402_1.9-2.0 ASSA	SE243073.001	LB271413	06 Feb 2023	09 Feb 2023	06 Mar 2023	14 Feb 2023	06 Mar 2023	16 Feb 2023
TP406_1.9-2.0 ASSA	SE243073.002	LB271413	06 Feb 2023	09 Feb 2023	06 Mar 2023	14 Feb 2023	06 Mar 2023	16 Feb 2023
TP410_1.9-2.0 ASSA	SE243073.003	LB271413	06 Feb 2023	09 Feb 2023	06 Mar 2023	14 Feb 2023	06 Mar 2023	16 Feb 2023
TP412_1.9-2.0 ASSA	SE243073.004	LB271413	07 Feb 2023	09 Feb 2023	07 Mar 2023	14 Feb 2023	07 Mar 2023	16 Feb 2023
TP413_1.9-2.0 ASSA	SE243073.005	LB271413	07 Feb 2023	09 Feb 2023	07 Mar 2023	14 Feb 2023	07 Mar 2023	16 Feb 2023
TP414_1.9-2.0 ASSA	SE243073.006	LB271413	07 Feb 2023	09 Feb 2023	07 Mar 2023	14 Feb 2023	07 Mar 2023	16 Feb 2023
TP417_1.9-2.0 ASSA	SE243073.007	LB271413	08 Feb 2023	09 Feb 2023	08 Mar 2023	14 Feb 2023	08 Mar 2023	16 Feb 2023
TP419_1.9-2.0 ASSA	SE243073.008	LB271413	08 Feb 2023	09 Feb 2023	08 Mar 2023	14 Feb 2023	08 Mar 2023	16 Feb 2023

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE243073 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

Method: ME-(ALI)-IENVIAN104

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Field pH for Acid Sulphate Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE242987.018	LB271413.012	pHf	pH Units	-	6.3	6.2	30	1
		pHfox	pH Units	-	2.2	2.1	30	3
SE243073.008	LB271413.023	pHf	pH Units	-	5.7	5.8	30	3
		pHfox	pH Units	-	3.4	3.5	30	2

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter

Units LOR

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

	LABORATORY DETAI	LS
Admin	Manager	Anthony Nilsson
SGS I&E SYDNEY	Laboratory	SGS Cairns Environmental
5058 201 I&E HSE SYDNEY (EX 5258)	Address	Unit 2, 58 Comport St
UNIT 16		Portsmith QLD 4870
33 MADDOX STREET		
ALEXANDRIA NSW 2015		
0285940400	Telephone	+61 07 4035 5111
0285940499	Facsimile	+61 07 4035 5122
au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
E25947 600-660 Elizabeth St Redfern	SGS Reference	CE164709 R1
SE243073	Date Received	14 Feb 2023
8	Date Reported	28 Feb 2023
	SGS I&E SYDNEY 5058 201 I&E HSE SYDNEY (EX 5258) UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 0285940400 0285940499 au.environmental.sydney@sgs.com E25947 600-660 Elizabeth St Redfern SE243073	AdminManagerSGS I&E SYDNEYLaboratory5058 201 I&E HSE SYDNEY (EX 5258)AddressUNIT 16

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146/19038)

This report cancels and supersedes the report No.CE164709 R0. dated 21/02/2023 issued by SGS Environment, Health and Safety due to addition of extra results on Chromium suite.

SIGNATORIES _

Anthony NILSSON Operations Manager

Jon DICKER Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Unit 2 58 Comport

Portsmith QLD

Australia t +61 7 4035 5111

www.sgs.com.au

f +61 7 4035 5122

CE164709 R1

		Sample Number Sample Matrix Sample Date Sample Name	Soil 02 Jun 2023	CE164709.002 Soil 02 Jun 2023 SE243073.002	CE164709.003 Soil 02 Jun 2023 SE243073.003	CE164709.004 Soil 02 Jul 2023 SE243073.004
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 15/2/2023	l -					
% Moisture	%w/w	0.5	81	83	40	83

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

рН КСІ	pH Units	-	5.3	4.1	4.3	4.2
Titratable Actual Acidity	kg H2SO4/T	0.25	3.9	11	4.7	13
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	79	225	95	259
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.13	0.36	0.15	0.42
Sulphur (SKCI)	%w/w	0.005	0.017	0.017	<0.005	0.019
Calcium (CaKCl)	%w/w	0.005	0.72	0.080	0.048	0.20
Magnesium (MgKCI)	%w/w	0.005	0.10	0.10	0.079	0.27

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	1.9	1.8	2.6	1.8
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	280	15	210
TPA as moles H+/tonne	moles H+/T	5	4678	5638	299	4353
TPA as S % W/W	%w/w S	0.01	7.50	9.04	0.48	6.98
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4599	5414	205	4094
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	270	10	200
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.37	8.68	0.33	6.56
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	1.4	1.5	0.20	1.9
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	900	965	128	1167
Sulphur (Sp)	%w/w	0.005	1.5	1.6	0.21	1.9
Calcium (Cap)	%w/w	0.005	0.22	0.084	0.046	0.20
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.13	0.094	0.079	0.25
Reacted Magnesium (MgA)	%w/w	0.005	0.033	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	27	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	0.071	0.019	0.082
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	45	12	51

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	-	0.089	0.021	0.10
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	0.089	0.021	0.10

SPOCAS Net Acidity Calculations Method: AN220 Tested: 21/2/2023

s-Net Acidity	%w/w S	0.005	1.6	2.0	0.37	2.3
a-Net Acidity	moles H+/T	5	980	1200	230	1500
Liming Rate	kg CaCO3/T	0.1	73	92	17	110
Verification s-Net Acidity	%w/w S	-20	0.48	0.52	0.07	0.62
a-Net Acidity without ANCE	moles H+/T	5	980	1200	230	1500
Liming Rate without ANCE	kg CaCO3/T	0.1	73	92	17	110

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.28	0.13	0.021	0.15
Chromium Reducible Sulfur (Scr)	moles H+/T	5	173	82	13	94

CE164709 R1

		ample Number Sample Matrix Sample Date Sample Name	CE164709.001 Soil 02 Jun 2023 SE243073.001	CE164709.002 Soil 02 Jun 2023 SE243073.002	CE164709.003 Soil 02 Jun 2023 SE243073.003	CE164709.004 Soil 02 Jul 2023 SE243073.004				
Parameter	Units	LOR								
Chromium Suite Net Acidity Calculations Method: AN220 Tested: 28/2/2023										
s-Net Acidity	%w/w S	0.01	0.40	0.55	0.19	0.63				
s-Net Acidity without ANC	%w/w S	0.01	0.40	0.55	0.19	0.63				
a-Net Acidity	moles H+/T	3	250	340	120	390				
Liming Rate	kg CaCO3/T	0.1	19	26	8.8	29				
Verification s-Net Acidity	%w/w S	-20	0.28	0.13	0.02	0.15				
a-Net Acidity without ANCBT	moles H+/T	3	250	340	120	390				
Liming Rate without ANCBT	kg CaCO3/T	0.1	19	26	8.8	29				

CE164709 R1

	s	mple Number Sample Matrix Sample Date Sample Name	Soil 02 Jul 2023	CE164709.006 Soil 02 Jul 2023 SE243073.006	CE164709.007 Soil 02 Aug 2023 SE243073.007	CE164709.008 Soil 02 Aug 2023 SE243073.008
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 15/2/2023	}					
% Moisture	%w/w	0.5	33	83	70	85

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

pH KCI	pH Units	-	4.5	5.3	4.2	4.8
Titratable Actual Acidity	kg H2SO4/T	0.25	2.6	3.3	9.2	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	52	67	187	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.11	0.30	0.21
Sulphur (SKCI)	%w/w	0.005	<0.005	0.027	0.006	0.012
Calcium (CaKCl)	%w/w	0.005	0.048	0.68	0.068	0.57
Magnesium (MgKCI)	%w/w	0.005	0.085	0.27	0.095	0.17

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	2.9	2.0	2.1	1.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	6.1	230	58	180
TPA as moles H+/tonne	moles H+/T	5	125	4678	1188	3692
TPA as S % W/W	%w/w S	0.01	0.20	7.50	1.90	5.92
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	72	4610	1000	3563
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	3.6	230	49	170
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.12	7.39	1.60	5.71
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.15	1.6	0.53	1.6
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	95	967	328	968
Sulphur (Sp)	%w/w	0.005	0.15	1.6	0.53	1.6
Calcium (Cap)	%w/w	0.005	0.050	0.46	0.060	0.13
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.090	0.28	0.10	0.16
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	0.014	-	0.027	0.086
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	9	-	17	54

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	0.015	-	0.033	0.098
Acid Soluble Sulfur (SHCI)	%w/w	0.005	0.015	-	0.033	0.098

SPOCAS Net Acidity Calculations Method: AN220 Tested: 21/2/2023

s-Net Acidity	%w/w S	0.005	0.25	1.7	0.85	1.8
a-Net Acidity	moles H+/T	5	150	1000	530	1100
Liming Rate	kg CaCO3/T	0.1	12	78	40	85
Verification s-Net Acidity	%w/w S	-20	0.05	0.52	0.18	0.52
a-Net Acidity without ANCE	moles H+/T	5	150	1000	530	1100
Liming Rate without ANCE	kg CaCO3/T	0.1	12	78	40	85

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.008	0.14	0.038	0.11
Chromium Reducible Sulfur (Scr)	moles H+/T	5	<5	87	24	72

CE164709 R1

		Sample Number Sample Matrix Sample Date Sample Name	CE164709.005 Soil 02 Jul 2023 SE243073.005	CE164709.006 Soil 02 Jul 2023 SE243073.006	CE164709.007 Soil 02 Aug 2023 SE243073.007	CE164709.008 Soil 02 Aug 2023 SE243073.008			
Parameter	Units	LOR							
Chromium Suite Net Acidity Calculations Method: AN220 Tested: 28/2/2023									
s-Net Acidity	%w/w S	0.01	0.10	0.25	0.36	0.39			
s-Net Acidity without ANC	%w/w S	0.01	0.10	0.25	0.36	0.39			
a-Net Acidity	moles H+/T	3	64	150	220	240			
Liming Rate	kg CaCO3/T	0.1	4.8	12	17	18			
Verification s-Net Acidity	%w/w S	-20	0.01	0.14	0.04	0.11			
a-Net Acidity without ANCBT	moles H+/T	3	64	150	220	240			
Liming Rate without ANCBT	kg CaCO3/T	0.1	4.8	12	17	18			

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulfur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC Reference	Units	LOR	MB	DUP %RPD
Chromium Reducible Sulfur (Scr)	LB112813	%	0.005	<0.005	0%
Chromium Reducible Sulfur (Scr)	LB112813	moles H+/T	5	<5	

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
рН КСІ	LB112822	pH Units	-	6.4	0%	103%
Titratable Actual Acidity	LB112822	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB112822	moles H+/T	5	<5	0%	96%
Titratable Actual Acidity (TAA) S%w/w	LB112822	%w/w S	0.01	<0.01	0%	97%
Sulphur (SKCI)	LB112822	%w/w	0.005	<0.005	13%	90%
Calcium (CaKCl)	LB112822	%w/w	0.005	<0.005	7%	116%
Magnesium (MgKCI)	LB112822	%w/w	0.005	<0.005	7%	102%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Peroxide pH (pH Ox)	LB112812	pH Units	-	6.2	9%	100%
TPA as kg H₂SO₄/tonne	LB112812	kg H2SO4/T	0.25	0.37	10%	104%
TPA as moles H+/tonne	LB112812	moles H+/T	5	7	10%	104%
TPA as S % W/W	LB112812	%w/w S	0.01	0.01	10%	104%
ANCE as % CaCO ₃	LB112812	% CaCO3	0.01	<0.01	0%	
ANCE as moles H+/tonne	LB112812	moles H+/T	5	<5	0%	
ANCE as S % W/W	LB112812	%w/w S	0.01	<0.01	0%	
Sulphur (Sp)	LB112812	%w/w	0.005	<0.005	3%	97%
Calcium (Cap)	LB112812	%w/w	0.005	<0.005	3%	114%
Magnesium (Mgp)	LB112812	%w/w	0.005	<0.005	2%	108%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfate as Sulfur is determined by ICP.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	Chromium Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting î↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte *** Indicates that both * and ** apply. NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Admin	Manager	Anthony Nilsson
Client	SGS I&E SYDNEY	Laboratory	SGS Cairns Environmental
Address	5058 201 I&E HSE SYDNEY (EX 5258)	Address	Unit 2, 58 Comport St
	UNIT 16		Portsmith QLD 4870
	33 MADDOX STREET		
	ALEXANDRIA NSW 2015		
Telephone	0285940400	Telephone	+61 07 4035 5111
Facsimile	0285940499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E25947 600-660 Elizabeth St Redfern	SGS Reference	CE164709 R0
Order Number	SE243073	Date Received	14 Feb 2023
Samples	8	Date Reported	21 Feb 2023

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146/19038)

SIGNATORIES _

Anthony NILSSON Operations Manager

Jon DICKER Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Unit 2 58 Comport

Portsmith QLD

Australia t +61 7 4035 5111

1 7 4035 5111 **f** +61 7 4035 5122

CE164709 R0

		Sample Number Sample Matrix Sample Date Sample Name	Soil 02 Jun 2023	CE164709.002 Soil 02 Jun 2023 SE243073.002	CE164709.003 Soil 02 Jun 2023 SE243073.003	CE164709.004 Soil 02 Jul 2023 SE243073.004
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 15/2/2023						
% Moisture	%w/w	0.5	81	83	40	83

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

рН КСІ	pH Units	-	5.3	4.1	4.3	4.2
Titratable Actual Acidity	kg H2SO4/T	0.25	3.9	11	4.7	13
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	79	225	95	259
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.13	0.36	0.15	0.42
Sulphur (SKCI)	%w/w	0.005	0.017	0.017	<0.005	0.019
Calcium (CaKCl)	%w/w	0.005	0.72	0.080	0.048	0.20
Magnesium (MgKCI)	%w/w	0.005	0.10	0.10	0.079	0.27

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	1.9	1.8	2.6	1.8
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	230	280	15	210
TPA as moles H+/tonne	moles H+/T	5	4678	5638	299	4353
TPA as S % W/W	%w/w S	0.01	7.50	9.04	0.48	6.98
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	4599	5414	205	4094
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	230	270	10	200
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	7.37	8.68	0.33	6.56
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	1.4	1.5	0.20	1.9
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	900	965	128	1167
Sulphur (Sp)	%w/w	0.005	1.5	1.6	0.21	1.9
Calcium (Cap)	%w/w	0.005	0.22	0.084	0.046	0.20
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.13	0.094	0.079	0.25
Reacted Magnesium (MgA)	%w/w	0.005	0.033	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	27	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	0.071	0.019	0.082
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	45	12	51

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	-	0.089	0.021	0.10
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	0.089	0.021	0.10

SPOCAS Net Acidity Calculations Method: AN220 Tested: 21/2/2023

s-Net Acidity	%w/w S	0.005	1.6	2.0	0.37	2.3
a-Net Acidity	moles H+/T	5	980	1200	230	1500
Liming Rate	kg CaCO3/T	0.1	73	92	17	110
Verification s-Net Acidity	%w/w S	-20	0.48	0.52	0.07	0.62
a-Net Acidity without ANCE	moles H+/T	5	980	1200	230	1500
Liming Rate without ANCE	kg CaCO3/T	0.1	73	92	17	110

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.28	0.13	0.021	0.15
Chromium Reducible Sulfur (Scr)	moles H+/T	5	173	82	13	94

CE164709 R0

		ample Number Sample Matrix Sample Date Sample Name	Soil 02 Jul 2023	CE164709.006 Soil 02 Jul 2023 SE243073.006	CE164709.007 Soil 02 Aug 2023 SE243073.007	CE164709.008 Soil 02 Aug 2023 SE243073.008
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 15/2/2023						
% Moisture	%w/w	0.5	33	83	70	85

TAA (Titratable Actual Acidity) Method: AN219 Tested: 16/2/2023

pH KCI	pH Units	-	4.5	5.3	4.2	4.8
Titratable Actual Acidity	kg H2SO4/T	0.25	2.6	3.3	9.2	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	52	67	187	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.11	0.30	0.21
Sulphur (SKCI)	%w/w	0.005	<0.005	0.027	0.006	0.012
Calcium (CaKCI)	%w/w	0.005	0.048	0.68	0.068	0.57
Magnesium (MgKCI)	%w/w	0.005	0.085	0.27	0.095	0.17

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 16/2/2023

Peroxide pH (pH Ox)	pH Units	-	2.9	2.0	2.1	1.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	6.1	230	58	180
TPA as moles H+/tonne	moles H+/T	5	125	4678	1188	3692
TPA as S % W/W	%w/w S	0.01	0.20	7.50	1.90	5.92
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	72	4610	1000	3563
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	3.6	230	49	170
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.12	7.39	1.60	5.71
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.15	1.6	0.53	1.6
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	95	967	328	968
Sulphur (Sp)	%w/w	0.005	0.15	1.6	0.53	1.6
Calcium (Cap)	%w/w	0.005	0.050	0.46	0.060	0.13
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.090	0.28	0.10	0.16
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	0.014	-	0.027	0.086
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	9	-	17	54

HCI Extractable S, Ca and Mg in Soil/Solids ICP OES Method: AN014 Tested: 21/2/2023

Acid Soluble Sulfate, SO4 as S	%w/w	0.005	0.015	-	0.033	0.098
Acid Soluble Sulfur (SHCI)	%w/w	0.005	0.015	-	0.033	0.098

SPOCAS Net Acidity Calculations Method: AN220 Tested: 21/2/2023

s-Net Acidity	%w/w S	0.005	0.25	1.7	0.85	1.8
a-Net Acidity	moles H+/T	5	150	1000	530	1100
Liming Rate	kg CaCO3/T	0.1	12	78	40	85
Verification s-Net Acidity	%w/w S	-20	0.05	0.52	0.18	0.52
a-Net Acidity without ANCE	moles H+/T	5	150	1000	530	1100
Liming Rate without ANCE	kg CaCO3/T	0.1	12	78	40	85

Chromium Reducible Sulfur (CRS) Method: AN217 Tested: 16/2/2023

Chromium Reducible Sulfur (Scr)	%	0.005	0.008	0.14	0.038	0.11
Chromium Reducible Sulfur (Scr)	moles H+/T	5	<5	87	24	72

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulfur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC Reference	Units	LOR	MB	DUP %RPD
Chromium Reducible Sulfur (Scr)	LB112813	%	0.005	<0.005	0%
Chromium Reducible Sulfur (Scr)	LB112813	moles H+/T	5	<5	

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
рН КСІ	LB112822	pH Units	-	6.4	0%	103%
Titratable Actual Acidity	LB112822	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB112822	moles H+/T	5	<5	0%	96%
Titratable Actual Acidity (TAA) S%w/w	LB112822	%w/w S	0.01	<0.01	0%	97%
Sulphur (SKCI)	LB112822	%w/w	0.005	<0.005	13%	90%
Calcium (CaKCl)	LB112822	%w/w	0.005	<0.005	7%	116%
Magnesium (MgKCI)	LB112822	%w/w	0.005	<0.005	7%	102%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Peroxide pH (pH Ox)	LB112812	pH Units	-	6.2	9%	100%
TPA as kg H₂SO₄/tonne	LB112812	kg H2SO4/T	0.25	0.37	10%	104%
TPA as moles H+/tonne	LB112812	moles H+/T	5	7	10%	104%
TPA as S % W/W	LB112812	%w/w S	0.01	0.01	10%	104%
ANCE as % CaCO ₃	LB112812	% CaCO3	0.01	<0.01	0%	
ANCE as moles H+/tonne	LB112812	moles H+/T	5	<5	0%	
ANCE as S % W/W	LB112812	%w/w S	0.01	<0.01	0%	
Sulphur (Sp)	LB112812	%w/w	0.005	<0.005	3%	97%
Calcium (Cap)	LB112812	%w/w	0.005	<0.005	3%	114%
Magnesium (Mgp)	LB112812	%w/w	0.005	<0.005	2%	108%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfate as Sulfur is determined by ICP.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting î↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte

NVI

Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Solid samples expressed on a dry weight basis.

Indicates that both * and ** apply.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.