

Proposed Development at 4 -6 Bligh Street Sydney

Geotechnical Investigation Report

Holdmark

Reference: 754-SYDGE308795AC-R2

02 December 2022

PROPOSED DEVELOPMENT AT 4 -6 BLIGH STREET SYDNEY

Geotechnical Investigation Report

Report reference number: 754-SYDGE308795AC-R2

2 December 2022

PREPARED FOR

Macquarie Park NSW 2113

Holdmark Suite 2/2-4 Giffnock Avenue PREPARED BY

Tetra Tech Coffey Level 19, Tower B, Citadel Tower, 799 Pacific Highway Chatswood NSW 2067 Australia p: +61 2 9406 1000 f: +61 2 9415 1678 ABN 55 139 460 521

QUALITY INFORMATION

Revision history

Revision	Description	Date	Author	Reviewer	Approver
00	Final	16/11/2018	Rob Turner	Rolf Rohleder	Leon Cho
01	Updated Issue for SSDA	02/12/2022	Helen Chow/Leon Cho	Ching Dai	Ching Dai

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Final	1	<pdf></pdf>	Holdmark	02/12/2022

Restriction on Disclosure and Use of Data

Insert disclaimer here. If disclaimer statement is long, or if there are multiple disclaimers, text will flow to second page.

Template #

EXECUTIVE SUMMARY¹

The geotechnical investigation report has been prepared by Tetra Tech Coffey (Coffey) to accompany a detailed State Significant Development Application **(SSDA)** for the mixed-use redevelopment proposal at 4 - 6 Bligh Street, Sydney. The site is legally described as Lot 1 in Deposited Plan 1244245.

This report has been prepared to address item 13 (Ground and Water Conditions) of the Secretary's Environmental Assessment Requirements **(SEARs)** issued for the project (SSD-48674209) and the issues in geotechnical perspective as required by Sydney Metro Underground Corridor Protection Technical Guidelines (Sections 6.2 and 7).

Geotechnical investigation was carried out in November 2018 including the drilling of three boreholes BH101, BH102 and BH 103 to inform the ground conditions. This geotechnical investigation report presents the results of the investigation include the following:

- A general overview of the existing site condition and proposed development.
- Geotechnical factual data from the geotechnical investigation.
- Interpreted rock properties and critical geological features and assess likely in-situ stress conditions within the rock mass.
- Interpreted geological sections, including areas around the interface of the proposed development and the Sydney Metro underground tunnels.
- Interpret groundwater conditions and groundwater inflow assessment.
- Location of underground services in vicinity of the development site.
- Recommendations for footing design, concept solution of shoring and excavation.

Based on the findings of the geotechnical investigation, the interpreted ground conditions of the proposed development site consisted of fill underlying by Sandstone and Shale. The groundwater inflow assessment indicated that the basement inflow is assessed to be less than 3 ML/year, thus application of groundwater licence and water supply is not required as per groundwater guidelines from DPI Water. However, approval for pumping of water to the stormwater system will need to be secured from the City of Sydney.

¹ This executive summary must be read in the context of the full report and the attached limitations.

CONTENTS

1.	INTR	ODUCTION	1
2.	THE	SITE	3
	2.1	Site Information	3
	2.2	Local Geology	5
	2.3	Location of Sydney Metro Tunnels	6
3.	GEO	TECHNICAL INVESTIGATION	7
4.	GEO	FECHNICAL MODEL	8
	4.1	Rock conditions Encountered in Boreholes	8
	4.2	Geotechnical Model	9
5.	HYDF	ROGEOLOGICAL CONDITIONS	.10
	5.1	Local Groundwater Regime	.10
	5.2	Groundwater Levels	.11
		5.2.1 Observation during Investigation in 2018	.11
		5.2.2 Observation in 2022	.12
6.	GEO	FECHNICAL CONSIDERATIONS	.14
	6.1	Excavatability	.14
	6.2	Groundwater Conditions	.15
	6.3	Groundwater Inflow	.15
	6.4	Rock Parameters	.18
		6.4.1 Rock Mass Design Parameters	.18
		6.4.2 Defect parameters	.18
	6.5	Location of existing utilities around development	.19
7.	REGI	ONAL ROCK STRESSES	.20
	7.1	Stress Directions	.20
	7.2	Stress Magnitudes	.20
	7.3	Recommended Design Values	.21
8.	EXCA	VATION AND RETENTION	.24
	8.1	Concept Excavation Support Requirements	.24
	8.2	Retaining walls for Unit 0	.24
	8.3	Support for Rock	.25
	8.4	Rock aNCHORS	.25
	8.5	Excavation Induced Ground Movements & Heritage Buildings	.25
9.	FOUM	NDATION DESIGN	.26

10.	27 CES
10.	JES

LIST OF TABLES

Table 1: Geotechnical Model	10
Table 2: Piezometer completion details	11
Table 3: Measured groundwater levels from manual readings	11
Table 4: Groundwater levels observed on 13 October 2022.	12
Table 5: Guidelines for excavation	14
Table 6: Ground vibration limits for various types of structures	15
Table 7: Hydraulic conductivity of rock material	16
Table 8: Recommended rock mass parameters for Units 1 to 3	18
Table 9: Shear strength for defects in Sandstone	19
Table 10: Summary of services in close proximity of the proposed development site	19
Table 11: Concept support options	24
Table 12: Parameters for retaining wall design	24
Table 13: Recommended bond stresses for ground anchors and soil nails	25
Table 14: Preliminary geotechnical foundation design parameters	26

LIST OF FIGURES

Figure 1: Site Identification Plan	4
Figure 2: Heritage Buildings Surrounding 4 – 6 Bligh Street	5
Figure 3: Geological Structural Features in Sydney CBD (Pells, Braybrooke & Och - 2004)	6
Figure 4: Indicative Location of Future Sydney Metro Rail Corridor	7
Figure 5: Approximate borehole locations	8
Figure 6: Nature of Unit 2 rock	9
Figure 7: Groundwater levels (m AHD) and interpreted flow direction (based on 12 Nov 2018 records)	12
Figure 8: Piezometer locations	13
Figure 9: Australian rainfall deciles for 1 Jan 2022 to 30 September 2022	14
Figure 10: Location of section for SEEPW analysis	16
Figure 11: SEEPW mesh for inflow assessment	17
Figure 12: Direction of inflow into excavation	17
Figure 13: Major horizontal stress (o1) vs depth	22
Figure 14: Minor horizontal stress (σ ₃) vs depth	23

APPENDICES

APPENDIX A: LIMITATIONS

APPENDIX B: SITE PLAN AND GEOLOGICAL SECTION

APPENDIX C: BOREHOLE LOGS, CORE PHOTOGRAPHS AND SOIL AND ROCK LOGGING EXPLANATION SHEETS

APPENDIX D: GROUNDWATER MONITORING GRAPHS

APPENDIX E: PROPOSED DEVELOPMENT DRAWINGS APPENDIX F: TRANSPORT FOR NSW ACQUISITION SURVEY PLANS APPENDIX G: GROUNDWATER INFLOW ASSESSMENT

1. INTRODUCTION

This report has been prepared to accompany an SSDA for the mixed-use redevelopment proposal at 4 - 6 Bligh Street, Sydney.

The Council of the City of Sydney, as delegate for the Minister for Planning and Public Spaces (the Minister), is the Consent Authority for the SSDA under an Instrument of Delegation issued by the Minister on 3 October 2019.

The application seeks consent for the construction of a 59-storey mixed-use hotel and commercial development. The purpose of the project is to revitalise the site and deliver new commercial floorspace and public realm improvements consistent with the City's vision to strengthen the role of Central Sydney as an international tourism and commercial destination.

A separate development consent (D/2018/892) relating to early works for the proposed application was granted for the site on 31 January 2020. Consent was granted for the demolition of the existing site structures, excavation and shoring of the site for three basement levels (to a depth of RL9.38m) to accommodate the proposed mixed-use hotel and commercial development. As such, this application does not seek consent for these components and instead seeks to rely upon and activate D/2018/892 for early works.

Specifically, development consent is sought for:

- Site establishment, including removal of two existing trees along the Bligh Street frontage and decommissioning and removal of an existing substation (s2041) on the site.
- Construction of a 59-storey hotel and commercial office tower. The tower will have a maximum building height of RL225.88 (205m) and a total gross floor area (GFA) provision of 26,796sqm, and will include the following elements:
 - Five basement levels accommodating a substation, rainwater tank, hotel back of house, plant and services. A porte cochere and four service bays will be provided on basement level 1, in addition to 137 bicycle spaces and end of trip facilities on basement level 2.
 - A 12-storey podium accommodating hotel concierge and arrival at ground level, conference facilities, eight levels of commercial floor space and co-working facilities, and hotel amenities including a pool and gymnasium at level 12.
 - 42 tower levels of hotel facilities including 417 hotel keys comprising standard rooms, suites and a penthouse.
 - Two tower levels accommodating restaurant, bar, back of house and a landscaped terrace at level 57.
 - Plant, servicing and BMU at level 59 and rooftop.
- Increase to the width of the existing Bligh Street vehicular crossover to 4.25m and provision of an
 additional 4m vehicular crossover on Bligh Street to provide one-way access to the porte cochere and
 service bays on basement level 1.
- Landscaping and public domain improvements including:
 - o Replacement planting of three street trees in the Bligh Street frontage,
 - Construction of a landscape pergola structure on the vertical façade of the north-eastern and south- eastern podium elevations,
 - o Awning and podium planters, and
 - Provision of a feature tree at the level 57 terrace.

- Identification of two top of awning building identification signage zones with a maximum dimension of 1200mm x 300mm. Consent for detailed signage installation will form part of a separate development application.
- Utilities and service provision.
- Installation of public art on the site, indicatively located at ground level.

This report has been prepared in response to the requirements contained within the following documents:

- Secretary's Environmental Assessment Requirements (SEARs) dated 1 October 2022 and issued for the SSDA.
- Sydney Metro Underground Corridor Protection Technical Guidelines Version 2 (SM-Tech) dated April 2021

Specifically, this report has been prepared to respond to the SEARs and requirement issued below.

Document	ltem	Description of requirement	Section reference (this report)
SEARs	13	 Ground and Water Conditions Provide a Surface and Groundwater Impact Assessment that assesses potential impacts on: Groundwater resources in accordance with the Groundwater Guidelines 	Section 3 onwards
SM-Tech	6.2 and 7	 Development Application Lodgement Geotechnical Investigation Report in accordance with Section 7.1 - Geotechnical Investigation of the guideline 	

This report presents our findings from a geotechnical investigation conducted for the proposed redevelopment of 4-6 Bligh Street in November 2018. The purpose of this report is to:

- Present a general overview of the existing site condition and proposed development.
- Document geotechnical factual data from the geotechnical investigation.
- Interpret rock properties and critical geological features and assess likely in-situ stress conditions within the rock mass.
- Present interpreted geological sections, including areas around the interface of the proposed development and the Sydney Metro underground tunnel.
- Interpret groundwater conditions.
- Prepare recommendations for footing design, methods of shoring and excavation.

2. THE SITE

2.1 SITE INFORMATION

The site for the purposes of this SSDA is a single allotment identified as 4-6 Bligh Street, Sydney and known as Lot 1 in Deposited Plan 1244245. The site has an area of 1,218sqm, and is identified in Figure 1.

The site is relatively flat, with a slight slope ranging from 21m AHD in the north-western corner to 19.5m AHD in the south-western corner.

The site is located within the north-eastern part of Central Sydney in a block bound by Bligh Street to the west, Hunter Street to the south, Chifley Square/Phillip Street to the east, and Bent Street to the north. The surrounding buildings are generally characterised by a mix of commercial office and hotel uses with ground level retail, restaurant and café uses and are of varying heights, ages and styles, including a number of State and local listed heritage buildings.

The site is also located in proximity to a number of Sydney Metro City & Southwest (opening 2024) and Sydney Metro West (opening 2030) station sites.

Specifically, the site is located to the immediate east of the Sydney Metro Hunter Street station (east site), which is located on the corner of Hunter Street and Bligh Street, and approximately 350m east of the Sydney Metro Hunter Street station (west site). The Hunter Street station sites are part of the Sydney Metro West project. SEARs for the preparation of Concept SSDAs for the sites were issued in August 2022.

Approximately 150m to the south of the site is Sydney Metro Martin Place Station site, located to the south of Hunter Street between Castlereagh Street and Elizabeth Street. The Martin Place Station site is currently under construction and forms part of the Sydney Metro City & Southwest project.

The site is occupied by a vacant commercial office building with ground floor retail and basement car parking known as "Bligh House". Completed in 1964, Bligh House is a 17-storey tower inclusive of a three-storey podium with the podium levels built to the Bligh Street alignment and the tower setback from the street frontage. The building was designed by Peddle Thorp and Walker and was constructed as part of the post-World War II development boom in the Sydney CBD. The podium overhang along the footpath provides continuous pedestrian protection. Vehicle access to the site is off Bligh Street via a single 2.6m wide driveway that is restricted by a security gate under one-lane, two-way access arrangements. The driveway provides access to the basement car park, containing 21 car parking spaces.

The site contains no vegetation; however, two existing street trees are located adjacent to the site boundary on Bligh Street.

Development consent for the demolition of the existing site structures, excavation and shoring of the site for three basement levels (to a depth of RL9.38m) was granted by City of Sydney on 31 January 2022 (D/2018/892).

It is understood that Holdmark is proposing to extend the excavation to five basement levels (to RL 3.38 m AHD).

The drawings for the proposed development is included in Appendix E.

Source: Urbis

Figure 1: Site Identification Plan

Figure 2 shows the proposed development is bounded on three sides by heritage buildings: the Sofitel Wentworth Building to the northeast, Qantas House to the southeast, and 61-101 Phillip Street to the southwest.

Figure 2: Heritage Buildings Surrounding 4 – 6 Bligh Street

2.2 LOCAL GEOLOGY

The Sydney 1:100,000 Geological Sheet indicates that the site locality is underlain by Hawkesbury Sandstone that is typically medium to coarse grained quartzose sandstone with beds 1 m to 3 m thick. Major joint sets trending north-south and east-west in an orthogonal pattern, with a subordinate northwest-southeast trending set. The north-south (trending about 10° to 15° east of north) joint set is more dominant set, with a subvertical dip and typical spacing of 1m to 5m. The east-west trending joints tend to be spaced at 5 m to 15 m intervals.

Figure 3 shows the mapped delineation of near vertical structural features in Sydney CBD (Pells, Braybrooke & Och – 2004). The known geological features near the proposed development are:

- The Pittman LIV dyke running east west across the CBD, located to the north of the site.
- The GPO Fault Zone orientated in a NNE SSW direction, located to the west of the site. From Energy Australia Cable Tunnel investigation along Bridge Street it is expected that the GPO Fault Zone may be up to 60m wide. There are two distinct sections of faulted rock forming the edges of the fault zone, each approximately 20 m wide, with relatively intact rock in between.
- Martin Place Swarm Joint running in a NNE SSW direction sub-parallel to the GPO Fault Zone. The Martin Place Swarm Joint is located to the east of the site. This zone comprises closely spaced jointing with minor normal and reverse faulting.

Figure 3: Geological Structural Features in Sydney CBD (Pells, Braybrooke & Och – 2004)

2.3 LOCATION OF SYDNEY METRO TUNNELS

Figure 4 shows indicative locations of the Sydney Metro tunnel alignments as follows:

- Sydney Metro West tunnels are running from west to east underneath the proposed development. The Eastbound tunnel is located underneath the central core of the development and the Westbound tunnel is located underneath the southern corner of the development
- Sydney Metro City & Southwest tunnels are running from north to south. The eastern tunnel is located adjacent to the eastern corner and the western tunnel is located at approximately 14 m from the western corner of the development.

These are shown more precisely in the attached surveyor's drawing (from Transport for NSW) in Appendix F.

Figure 4: Indicative Location of Future Sydney Metro Rail Corridor

The tunnel will be about 7 m diameter with the crown at about -1 m AHD, which is anticipated to be approximately 10 m vertical distance below the lowest basement floor level of 3.3 m AHD. The eastern corner of the basement has a triangular area about 14 m² that encroaches into the acquisition zone but does not overlap the tunnel structure.

Figure 4 also shows a potential underground structure running adjacent to the south-western boundaries of the site, which connects the Martin Place Station to Bligh Street. Information regarding this underground structure will be required during detailed design stage for to assess the interactions with the proposed development.

3. GEOTECHNICAL INVESTIGATION

The site is currently significantly access-restricted. On a site visit on 26 September 2018, Coffey identified three locations at which boreholes could be drilled in the existing basements at night when the basement was vacant. These locations are shown on Figure 5.

BH101 and BH102 were located in the upper level basement carpark at elevation 17.925 m AHD and were drilled with a specialist small track-mounted equipment. Target depth for these boreholes was 30 m but was restricted to what could be drilled in a single shift. The achieved depths of boreholes were 29.3 m (-11.375 m AHD) and 22.38 m (-4.45 m AHD) respectively.

BH103 was located in the pump room in the lower basement at elevation 12.8 m AHD. BH103 was not accessible by vehicle mounted rig and was drilled with portable equipment. The target depth for BH103 was 15 m and actual depth achieved was 15.3 m (-2.5m AHD).

The boreholes were drilled by specialist geotechnical drilling subcontractor BG Drilling. Boreholes were initially advanced through the concrete floor slabs and sub-base by diatube, and then cored through rock to

final depth. Rock core was boxed, logged, photographed then transported to our core storage facility for Point Load Strength Index (Is50) testing at approximately 1 m depth intervals.

A Coffey geotechnical engineer was present throughout the field work to locate the boreholes, collect samples and interpret/log the rock core. The borehole logs are presented in Appendix B.

Figure 5: Approximate borehole locations

On completion, groundwater monitoring wells were installed in the boreholes to allow future monitoring of groundwater levels and collection of groundwater samples for contamination assessment. The screened lengths of the geotechnical monitoring wells are shown in the well construction logs also in Appendix C. Data loggers were installed in each well to record groundwater level for a planned monitoring period of four weeks.

4. GEOTECHNICAL MODEL

4.1 ROCK CONDITIONS ENCOUNTERED IN BOREHOLES

The geotechnical investigation conducted provides information on rock conditions below current basement levels. The rock conditions encountered are described in the borehole logs and core photographs. The following is a broad characterisation of the results.

Unit 1: Rock above proposed lower basement level of 3.3 m AHD

BH101 and BH102 drilled from upper basement level of about 17.9 m AHD encountered mainly fresh or slightly weathered, medium strength sandstone to11.5 m and 10.5 m AHD respectively, then mainly high strength sandstone to about 5.1 m AHD in BH101 and 6.2 m AHD in BH102.

BH103 which commenced at about 12.8 m AHD also encountered mainly fresh or slightly weathered, mainly medium strength sandstone, but with some high strength, more fractured zones. This unit extended to about 5 m AHD.

Unit 2: Rock near proposed lower basement level of 3.3 m AHD

Near and immediately below the proposed lower basement level for the new development, all three boreholes encountered distinctly or slightly weathered, interbedded sandstone, shale and brecciated shale, with variable strength and defect patterns. The specific conditions varied in each borehole. Figure 6 show the nature of the Unit 2 rock.

Figure 6: Nature of Unit 2 rock

Unit 3: Rock below proposed basement level.

Below Unit 2, all three boreholes encountered predominantly high strength sandstone to termination depths, which were below tunnel crown level.

4.2 GEOTECHNICAL MODEL

Based on the information from the boreholes and previous desk study, a geotechnical model has been developed and is presented in Table 1. The layer thicknesses shown are in a downward progression starting from ground surface level. Interpreted geological sections have been developed based on the review of the geotechnical information and are presented in Appendix B.

Table 1: Geotechnical Model

Geotechnical Unit	Materials	Rock classification	Base of Unit
Unit 0	Unobserved ground. Likely to comprise fill including surface concrete, pavements & asphalt overlying residual soil grading to sandstone	Not applicable for soil strength materials. Sandstone could vary from Class V to Class II	Above 17.9m AHD in BH101 and BH102. Unknown in BH103
Unit 1	Moderately weathered to fresh, medium and high strength sandstone	Class II and Class I Sandstone	5.1m AHD in BH101 6.2m AHD in BH102 5m AHD in BH103
Unit 2	Interbedded sandstone, shale and shale breccia, varies from highly to slightly weathered, and from low to high strength, fractured	Class III Shale based on defect patterns and variable strength	2.7m AHD in BH101 2.3m AHD in BH102 3.2m AHD in BH103
Unit 3	Fresh medium and high strength sandstone	Class II and Class I Sandstone	Below -11.4m AHD in BH101 Below -4.5m AHD in BH102 Below -2.5m AHD in BH103

Notes to Table 1

• Rock classification is based on the system presented in Pells P.J.N., Mostyn, G. and Walker, B.F., (1998), "Foundations on Sandstone and Shale in the Sydney Region", Australian Geomechanics, December 1998, pages 17-29.

5. HYDROGEOLOGICAL CONDITIONS

5.1 LOCAL GROUNDWATER REGIME

The closest identified surface water body is Sydney Harbour which is located approximately 500 m to the north of the site.

Groundwater seepage would typically be present at the soil/rock interface and in bedrock joints and bedding partings. Bedrock seepage in sandstone bedrock could be assumed as typically flowing downwards toward local drainage features (such as drained basements and infrastructure) or the regional water table, along horizontal bedding planes and sub-vertical joints. Groundwater levels may vary in response to rainfall and as a result of development in the area.

The rock mass permeability will be governed by the joints, faults and bedding planes. Due to the expected variability in rock conditions across the site it is anticipated that the permeability will also vary widely from a higher permeability in zones of "broken" rock or open defects (such as the defects observed in Unit 2) to relatively low permeability in areas of relatively intact bedrock with tight defects.

5.2 GROUNDWATER LEVELS

5.2.1 Observation during Investigation in 2018

Standpipe piezometers were installed in BH101, BH102 and BH103 to enable groundwater level monitoring. Piezometer completion details are summarised in Table 2, and also presented on the borehole logs in Appendix D.

Table 2: Piezometer compl	etion	details
---------------------------	-------	---------

Borehole	Eastings (m)	Northings (m)	Depth (m)	Ground Surface RL (m AHD)	Screen Level Interval (m AHD)	Screen Lithology
BH101	334465.60	6251284.97	29.33	17.93	12.10 to -7.40	Sandstone
BH102	334477.59	6251298.59	22.38	17.93	16.55 to -4.45	Sandstone
BH103	334491.89	6251287.55	15.31	12.79	9.49 to -2.51	Sandstone

Manual groundwater measurements were undertaken in the three wells during the following the completion of borehole drilling and installation of the piezometer. Continuous data loggers have been installed in the boreholes on the 6 November 2018. We were able to obtain hourly groundwater reading at BH102 and BH103 between the period of 6 November 2018 to 12 November 2018 (no continuous data from BH101 was recorded due to technical difficulties).

The available groundwater monitoring data (both manual readings and measurements from data loggers), together with the daily rainfall records (from the Bureau of Meteorology Station at Sydney Observatory (station no. 66002)), is provided in Appendix D. Groundwater level between 7.21 and 7.74 m AHD was recorded during our investigation. Table 3 presents the measured groundwater level from our manual readings.

Table 3: Measured groundwater levels from manual readings

Borehole	Date of measurement	Recorded groundwater level (m AHD)
	2 November 2018	7.80
BH101	4 November 2018	7.36
БПИ	5 November 2018	7.33
	12 November 2018	7.27
	2 November 2018	7.58
BU402	4 November 2018	7.74
впій	5 November 2018	7.72
	12 November 2018	7.52
RH102	5 November 2018	8.19
BHIUS	12 November 2018	7.21

Figure 7 below presents groundwater level contours and flow directions at the site based on groundwater level measurements on 12 November 2018. As shown on Figure 7, the groundwater appears to flow in a south, south-south east direction. This flow direction is potentially due to drainage to existing drained basements and infrastructure (such as the Eastern Suburbs Railway tunnel) south of the development.

Figure 7: Groundwater levels (m AHD) and interpreted flow direction (based on 12 Nov 2018 records)

Groundwater level fluctuations due to tidal water level changes was not noticeable from our monitoring.

The minor groundwater raise observed at BH102 and BH103 on the 9 and 10 of November 2018 may be in response to the rainfall event on 8 November 2018, where 21.8 mm of rain was recorded. However, further monitoring of the groundwater levels will be required to assess the influence of groundwater level at the site due to significant rain events.

5.2.2 Observation in 2022

A Coffey engineer visited site on 13 October 2022 and measured groundwater levels at three existing piezometers, BH101, BH102 and BH103. The results are shown in Table 4 and the piezometer locations are shown in Figure 8.

Piezometer location	Surface elevation (m AHD)	Casing stickup (m above ground)	Depth to water (m below top of casing)	Date and time	Groundwater level (m AHD)
BH101	17.9	-0.11	11.45	13 Oct 22 9:55am	6.3
BH102	17.9	-0.08	10.69	13 Oct 22 9:45am	7.1
BH103	12.8	-0.08	5.47	13 Oct 22 10:00am	7.3

Table 4: Groundwater levels observed on 13 October 2022

Figure 8: Piezometer locations

It is noteworthy that these levels were observed following nine months of "very much above average" rainfall in the Sydney region (source: Bureau of Meteorology), refer to Figure 9, and can therefore be assumed to represent groundwater levels higher than the long term average.

The current two-level basement does not penetrate the groundwater table. An extension of the basement at the site to provide five levels is expected to intersect approximately the top metre of the groundwater table.

Figure 9: Australian rainfall deciles for 1 Jan 2022 to 30 September 2022

6. GEOTECHNICAL CONSIDERATIONS

6.1 EXCAVATABILITY

A summary of the excavatability of the encountered soil and rock is contained in Table 5, and is suggested as a guide only. Excavation contractors should inspect the rock core, engineering logs and core photographs to make their own judgement as to likely productivity and specific plant.

Table 5: Guidelines for excavation

Material	Likely Plant Requirements
Unit 0 Fill, Residual to extremely weathered, very low to low strength sandstone	Bulldozer blade, excavator bucket
Unit 0 Highly weathered to moderately weathered, low strength sandstone	Bulldozer with ripper, excavator bucket. Higher strength zones may require a rock breaker
Unit 1 to 3 Moderately weathered to fresh, medium and high strength sandstone	Cat D10 or equivalent. Higher Strength bands may require a rock breaker or rock saw.

Contractors should form their own assessment for selection of excavation equipment and estimation of production rates. Alternative excavation methods (such as saw cutting or rock grinding of sandstone) is

recommended at property boundaries to avoid over-breaking and to reduce vibrations caused by mechanical excavation.

The use of hydraulic impact hammers for bulk excavation, trimming the sides of excavations, and detailed excavation, will cause vibrations that could affect vibration sensitive structures and services. Assessment of the potential impacts of excavation induced vibrations should be considered as part of detailed design and excavation planning. The vibration limits in Table 6 below are commonly recommended to reduce the risk of vibration damage to sensitive receptors.

Table 6: Ground vibration limits for various types of structures

Type of Structure	Peak Particle Velocity (mm/s)
Historic buildings or monuments	2
Residential or low-rise buildings in good condition	10
Reinforced concrete commercial/industrial buildings in good condition	25

It is recommended that a limit is selected considering the structure of concern. It should be noted that limits set by the relevant authorities may override these recommendations.

As-built information of the surrounding buildings will be required for the impact assessment, and to ensure any proposed wall reinforcements (such as ground anchors, if required) do not impact on the basement and foundations of adjoining buildings. It is recommended that condition surveys, and background settlement surveys of the surrounding buildings be undertaken prior to, during, and after excavation.

6.2 GROUNDWATER CONDITIONS

Based on the observed groundwater levels (between 7.1 and 7.74 m AHD), we anticipate the bulk excavation level (underside of footings) will be approximately 7 m below the existing groundwater table, this level takes into account deeper excavations occurring at footings and lift cores. Further monitoring will be required to assess variability in groundwater levels.

Coffey considers a drained basement design will be feasible. However, it is possible that the fractured Unit 2 sandstone (around the base of the excavation) may act as a conduit for groundwater flow, and higher seepages during excavation may occur through this material. If predicted inflow rates (not undertaken as part of this report) exceed the current water allocation for the site, purchasing of additional water shares should be considered. If measured inflow rates at the completion of the excavation exceed expectations, grouting of fractured zones of higher groundwater seepage should be considered.

For a drained excavation structure, permanent floor and wall drainage will need to be maintained throughout the life of the structure. It is expected that such a drainage system would include a sub-floor drainage blanket with slotted drainage pipes and sump and pump system with the ability to effectively back flush the system for long-term maintenance.

It is recommended that the drainage design be reviewed by an experienced groundwater professional.

It is anticipated that the groundwater will be pumped to the stormwater system where it will flow to Sydney Harbour. Approval for pumping of water to the stormwater system will need to be secured from the City of Sydney. Application for a groundwater licence and water supply works is not required based on groundwater inflow assessment provided in Section 6.3.

6.3 GROUNDWATER INFLOW

Groundwater inflow assessment was carried out using commercial software Geostudio SEEPW 2018 R2. The analysis considered the transient groundwater inflow into the basement with a footprint dimensions of 37 m x

32 m and a bulk excavation level at approximately RL 0.3 m AHD (underside of foundation level). The design groundwater level is assumed at RL 7.2 m.

With reference to Bertuzzi (2014) and Tammetta and Hewitt (2004), the adopted hydraulic conductivity of the rock material is summarised in Table 7.

Table 7: Hydraulic conductivity of rock material

Rock Material	Hydraulic Conductivity (m/s)
Sandstone - Class II or Better	1 x 10 ⁻⁸
Shale – Class III	1 x 10 ⁻⁷

A plane strain analysis has been undertaken considered a section from East to West (Chifley Square to Bligh Street) as shown in Figure 10.

Figure 10: Location of section for SEEPW analysis

Figure 11 illustrated the mesh used for the SEEPW analysis for the inflow assessment and Figure 12 illustrated the direction of flow into the excavation. The analysis indicated that the long term groundwater inflow rate is assessed to be 6 x 10^{-5} m/s equivalent to 1.85 megalitres (ML) / year. Inflow assessment by analytical approach was also conducted which indicated the inflow rate is approximately 2.5 ML / year. Inflow assessment by SEEPW and analytical solution are provided in Appendix G.

Figure 11: SEEPW mesh for inflow assessment

Figure 12: Direction of inflow into excavation

Water NSW provides for a water access licence exemption for aquifer interference activities taking 3ML or less of groundwater per year. Under the exemption, a person can take up to 3 ML of groundwater through an aquifer interference activity per authorised project per water year without needing to obtain a water access licence, provided:

a) the water is not taken primarily for consumption or supply; and

b) the person claiming the exemption keeps a record of the water taken under the exemption and provides this to the Minister within 28 days of the end of the water year; and

c) the records are kept for 5 years.

In relation to the potential for groundwater induced settlement impacts, basement excavation to RL 0.3 m AHD would lead to around 7 m of groundwater drawdown in the bedrock at the excavation (assuming a design groundwater level of 7.2 m AHD, a bulk excavation level of 0.3 m AHD) and lesser drawdowns away from the excavation. A consideration of typical compressibility parameters for Sydney sandstone / shale indicates that this amount of drawdown in bedrock would result in negligible groundwater induced settlement.

The future basement is proposed for car parking and certain services which are considered to pose no unacceptable impact to groundwater quality.

Given the above discussion and considering groundwater resources in the context of the site's location in the northern part of the Sydney CBD, Coffey concludes that impact to groundwater resources for inclusion of a five-level basement would have negligible groundwater related impacts and that a water access licence would not be required.

6.4 ROCK PARAMETERS

6.4.1 Rock Mass Design Parameters

The site-specified rock mass parameter was assessed based on available gINT borehole data obtained from the site and drill hole database in CBD.

The recommended geotechnical characteristic parameters are presented in Table 8 for Units 1 and 3 (Class II and Class I Sandstone) and Unit 2 (Class III Shale). The equivalent Mohr-Coulomb parameters were referred from the vertical stress ranges and the recommended UCS, GSI and mi.

Table 8: Recommended rock mass parameters for Units 1 to 3

Design Approach	Parameter		Unit 1 and 3 (Sandstone-II/I)	Unit 2 (Shale-III)
(0	UCS (MPa)	Typical Range	12 – 50	2-20
eters he cale		Design	28	7.5
rame on t ry s	Modulus Ei (M	1Pa)	6,500	2,000
t pal sed rato	Poisson's rati	0 ν	0.2	0.25
ntac ba: labo	Tensile streng	gth σt (MPa)	3	0.5
	mi		12	8
	Unit weight γ (kN/m³)		24	23
alent	GSI		74	50
luiva	Hoek –	m _b	4.8	1.34
u ec	Brown	S	0.05	0.0039
ed o nuu		а	0.501	0.506
basi		c′ (kPa)	1,000	360
ck mass c		ϕ' (degrees)	53	30
		σ _t (kPa)	300	25
R	Elastic modulus (MPa)	Em	2,500	300

6.4.2 Defect parameters

For the spot rock bolt and its kinematic analysis in Units 1 and 3 (Sandstone II/I), the geological structure (defects) conditions are assessed.

The site gINT available boreholes indicate that the rock mass in situ is governed by bedding parting (the BP). The dip angle of the BP varies from 0° to 20° horizontally.

From BHs, it would not be easy to assess the BP dip direction. It is suggested that the detailed design analysis carry out for two cases: The BP direction toward the excavation face and the BP adverse direction

towards the excavation face. The support requirements should be identified during excavation, and Coffey recommends regular face mapping by a geotechnical professional at vertical intervals of not greater than 2 m.

The BP mean spacing from the borehole's observation is about 1m.

No apparent inclined defect was observed at the available boreholes in Units 1 and 3 (Class II/I Sandstone).

The following shear strength in Table 9 for defects in Units 1 and 3 are recommended. Unit 2 (Shale Class III) should be a homogenous model in the pattern rock bolt analysis.

Table 9: Shear strength for defects in Sandstone

Condition Type	Defect	Friction Cohe	Cohesion	Stiffness (MPa/m)		
Condition Type	Decomption	ппп туре	φ' (°)	c' (kPa)	Normal, k _N	Shear, ks
1	Tight rough surface	Clean or hard mineral	38	5	4,000	400
2	1 - 5mm infill	Firm clay	30	5	3,000	300
3	5 - 10mm infill	Firm/Soft clay	25	5	2,000	100

Three types of spot rock bolt designs are recommended for the above three defects.

6.5 LOCATION OF EXISTING UTILITIES AROUND DEVELOPMENT

For the design of the retention system, it is essential to identity the location of existing underground utilities in close vicinity of the proposed excavation site to avoid any adverse impact induce on existing services. A Dialbefore-you-dig (DYBD) has been conducted to locate the existing services and summarised in Table 10.

Prior to the commencement of excavation, the asset owners / authorities have to be informed about the construction activities and minimum clearance distances from the utilities (refer to the asset owner requirements) are required to be maintained at all times during the construction activities to avoid any damage to the services.

Service locating will be required Shoring detailed design phase

Impact assessment should be conducted to assess the impact of the proposed development on the services at the detailed shoring design phase.

Service	Authority	Location	Approximate Distance from Site Boundary (m)
Stormwater	City of Sydney	Along Bligh Street	6 - 9
		Along Hunter Street	> 30
		Along Philip St	> 20
Water Main Sydney Water	Along Bligh Street	3	
	Along Hunter Street	> 30	
		Along Philip St	> 20
Electricity Ausgrid		Along Bligh Street	-
	4 – 6 Bligh Street	-	

Table 10: Summary of services in close proximity of the proposed development site

Gas	Jemena Gas	Along Bligh Street	2.5 to 6
		Along Hunter Street	30
	Along Philip St	20	
Substation Chamber	Ausgrid	At boundary between 4 - 6 Bligh Street and 10 Bligh Street	-
	Ausgrid	68 Hunter Street	
Telecom	Vocus	Blight Street	> 10
	Primus	Blight Street	> 10
		Hunter Street	> 30
	AARNet (Fibre Optic)	Blight Street	> 10
	Optus	Along site boundary at Bligh Street	-
		Along Hunter Street	-
		Along Philip St	-
	NBN	Along boundary at Bligh Street	-
		Pits at 4 – 6 Bligh Street	-
		Along Hunter Street	-
	Along Philip St	-	
	Uecomm	Along Philip St	>10 m
		Along Hunter Street	> 30 m
		Along Philip St	> 30 m

7. REGIONAL ROCK STRESSES

7.1 STRESS DIRECTIONS

This section presents the results of an assessment of the regional stress regime within the Hawkesbury Sandstone, which is known to have significant horizontal virgin stress fields. The direction of the principal horizontal stress is described in Enever *et al.* (1990) in Sydney as being north-northeast direction with stress magnitudes for rocks down to 200m depth described as follows:

- Major horizontal stress (σ_1) = 2.5 x overburden pressure; orientation 28° magnetic
- Minor horizontal stress (σ_2) = 1.5 x overburden pressure; orientation 118° magnetic
- Vertical stress (σv) = overburden pressure; orientated vertically

7.2 STRESS MAGNITUDES

Pells (2002) suggests the following stress magnitudes within Hawkesbury Sandstone to depths up to 150 m:

- Major horizontal stress $(\sigma_1) = 1.5 + 1.2\sigma_v$ to $2.0\sigma_v$ (MPa)
- Minor horizontal stress (σ_2) = 0.5 σ_1 to 0.7 σ_1 (MPa)
- Vertical stress (σ_v) = 0.024H (MPa) where H = depth below ground surface

These stress magnitudes and directions may be influenced by topographic features, such as deeply incised watercourses or basement excavations, which can concentrate horizontal stress fields beneath the feature. Parker et al. (1999) also describes possible sites in Sydney where horizontal stress can be locally higher due to local structural features (i.e. faults and dykes) influencing the stress field.

7.3 RECOMMENDED DESIGN VALUES

Available stress data for Hawkesbury Sandstone in the Sydney CBD, North West Rail Link and CBD Metro projects are presented in Figure 13 and Figure 14 for the major and minor stress fields respectively.

Based on that test data available, the following design horizontal stress regime is recommended for Sandstone at this site:

 $\sigma_1 = \sigma_{h(N-S)} = 1.5MPa + 2\sigma_v$ $\sigma_2 = \sigma_{h(E-W)} = 1.0MPa + 1.2\sigma_v$

The vertical pressure (σ_3) will be the overburden pressure plus the surcharge of adjacent buildings.

Figure 13 and Figure 14 also present a range of design values that may be used to assess the sensitivity of the various in-ground design elements. The following high and low stress regimes are recommended for Sandstone:

High stress:	$\sigma_1 = \sigma_{h(N-S)} = 2.5 MPa + 2\sigma_v$	$\sigma_2 = \sigma_{h(E-W)} = 1.5MPa + 1.2\sigma_v$
Low stress:	$\sigma_1 = \sigma_{h(N-S)} = 0.5MPa + 2\sigma_v$	$\sigma_2 = \sigma_{h(E-W)} = 0.5MPa + 1.2\sigma_v$

Figure 13: Major horizontal stress (σ_1) vs depth

Figure 14: Minor horizontal stress (σ_3) vs depth

8. EXCAVATION AND RETENTION

8.1 CONCEPT EXCAVATION SUPPORT REQUIREMENTS

Permanent excavation support is typically controlled by site constraints, tolerable ground movements and requirements to restrain poor quality rock. Table 11 contains a concept assessment of support options for the geotechnical units.

Table 11: Concept support options

Material	Support Options
 Unit 0 May contain Fill, Residual soil and extremely weathered sandstone Class IV Sandstone Class III Sandstone 	 Unsupported excavation at suitable batter slopes Retaining walls Soil nails Mesh and shotcrete (minimum 75 mm thick), with adequate drainage for the Class IV sandstone. Pattern rock bolting in low strength sandstone and in fractured zones within the better rock Mesh support by doweling and shotcrete (minimum 75 mm thick) or fibre reinforced shotcrete, with drainage.
Unit 1 and Unit 3 Class II and Class I sandstone	Spot bolting and localised shotcretePossible localised pattern bolting and shotcrete
Unit 2 (if encountered) Class III Shale	Fractured areas: Shotcrete & pattern bolting (allow 2m grid)Unfractured areas: Spot bolting as needed

The detailed shoring design should be conducted for State Significant Development Application for the mixeduse redevelopment at 4-6 Bligh Street, Sydney.

8.2 RETAINING WALLS FOR UNIT 0

Where excavations cannot be battered, soil and more weathered sandstone could be supported using shoring walls such as conventional soldier pile wall. Use of the existing basement walls could be considered subject to suitable support during demolition of the existing building.

Temporary anchor installation would require the permission of adjacent property owners where anchors cross boundaries or easements.

It is recommended that a detailed analysis be undertaken, including assessment of surcharge loads, to develop a suitable retention support system. As a guide, Table 12 below presents typical design parameters for retaining wall design. These parameters should be reviewed following geotechnical investigation of the site.

Material	Bulk unit Weight γ (kN/m3)	'Active' Earth Pressure Coefficient, Ka	'At Rest' Earth Pressure Coefficient, K₀	'Passive' Earth Pressure Coefficient, K _₽	C' (kPa)	φ' (deg)
Unit 0 Fill	20	0.4	0.5	2.5	0	25
Unit 0 Residual Soil & very low strength sandstone	20	0.27	0.5	3.7	30	35

Table 12: Parameters for retaining wall design

Active earth pressure coefficients may be adopted where wall movements of about 1% of the wall height can be tolerated. Movements of this magnitude may not be tolerable for excavations beside heritage structures or other assets. At rest pressure coefficients should be adopted where less movement can be tolerated, but a well-constructed wall will still undergo movements of the order of 0.1% to 0.3% of the wall height where at rest pressures are adopted.

Applicable surcharge loads should be added to earth pressures.

Where subsequent rock excavation exposes the toes of the retention system piles, rock bolts may need to be installed above the toe of the pile to provide restraint and local shotcrete and mesh may be required to support and protect the foundation of the piles.

8.3 SUPPORT FOR ROCK

Vertical cuts are generally feasible in Class II or better Hawkesbury Sandstone with spot bolt support from a retaining wall. Rock bolt support, possibly with shotcrete and mesh, is necessary in sections of the excavated rock faces below any existing shoring walls to retain fractured zones of rock.

It is noted that the detailed rock shoring design should be conducted. To identify the final shoring requirement, an experienced geotechnical engineer or engineering geologist should carry out regular inspections as the excavation progresses. To assess the need for bolting and rock face support (for short and long-term safety) it is recommended that the rock faces be assessed at not more than 2 m depth intervals on all excavated faces.

Where long-term support is required below the site retention system rock bolts must be provided with a high level of corrosion protection if they cannot be maintained (i.e. inspected and replaced, if necessary). Stainless steel bolts or multiple layers of corrosion protection such as encapsulating plain or galvanised bolts in both grout and PVC sheaths may be required.

8.4 ROCK ANCHORS

Rock anchors should be inclined downwards to anchor into Unit 1 Sandstone. The actual design load capacity of anchors should be based on a performance specification, verified by proof-testing. For preliminary design of anchors, the following allowable and ultimate bond stresses are recommended:

Unit	Allowable (Working) Bond Stress (kPa) ⁽¹⁾	Ultimate Bond Stress (kPa) ⁽¹⁾
1	1000	2000
2	500	1000

Table 13: Recommended bond stresses	s for ground anchors and soil nails
-------------------------------------	-------------------------------------

Notes

1) For bond lengths not less than 3m and not more than 7m (except for a single bore multianchor system)

The recommended values are given on the provision that each anchor is proof loaded to 1.3 times maximum working load (temporary anchors) and to 1.5 times maximum working load (permanent anchors) prior to locking off at the required working load.

8.5 EXCAVATION INDUCED GROUND MOVEMENTS & HERITAGE BUILDINGS

The proposed excavation will cause ground movements on the adjacent sites. It is important to undertake a study on the potential impact of these ground movements on the heritage buildings and other surrounding structures due to the proposed basement excavation.

Many factors can influence the size of these movements, such as ground conditions, design and construction quality.

For excavation in soils (fill, residual soil and extremely weathered rock), documented data has shown that for well-designed and constructed shoring, vertical and lateral movements can be about 0.1% to 0.3% of the retained thickness of soil. Likely ground movements should be assessed during design of the shoring system.

In rock excavation, lateral movement occurs due to relief of *in situ* locked-in horizontal stresses. There are relatively high natural horizontal stresses within Sydney sandstone. From our experience of deep basements in Sydney, typical lateral movements range from 0.5 mm to 2 mm per metre depth of excavation, depending on rock quality and presence of bedding seams.

Lateral ground movements due to stress relief have been measured at distances of up to 1.5 to 2 times the basement depth from the edge of excavations. These typically show that movements can be up to 30% of the displacement around the excavation perimeter at a distance approximately equal to the excavation depth. Stress relief ground movements are unlikely to be significant at distances greater than twice the excavation depth. However, these approximations will be affected by local geological structures and should only be used as a rough guide. A detailed analysis of induced ground movement on the surface and around heritage buildings should be conducted in the shoring design under different proposals.

9. FOUNDATION DESIGN

The borehole investigation suggests that, whilst the bulk excavation may terminate in Unit 1 Sandstone, the poorer Unit 2 will be at shallow depth below the floor and may be encountered in footing excavations for pad or strip footings.

The presence of the Unit 2 rock in the zone of influence of pad or strip footings would reduce the bearing capacity at bulk excavation floor level. Unit 2 rock is expected to be variable in strength and defects, and may not be suitable as a foundation for a high rise structure.

Table 14 below presents serviceability and Limit State geotechnical design parameters that may be used for design of pad footings and bored piles into the different classes of sandstone. For temporary works and demolition, it may be necessary to found structures or cranes on Unit 1 rock. The parameters in Table 14 may be adopted for Unit 1 provided footings are founded at an elevation equivalent to at least 2 footing widths above Unit 2 rock.

Table 14: Preliminary geotechnical foundation design parameters

Unit	Serviceability End Bearing Pressure (MPa)	Ultimate End Bearing Capacity (MPa)	Ultimate Shaft Adhesion (kPa)	Young's Modulus (MPa)
Unit 1 Sandstone Note A	8	80	2,000	1,500
Unit 2 Shale & Sandstone	3	25	600 ^a	600
Unit 3 Sandstone	8	80	2,000 ª	1,500

Notes to Table 8

A. These parameters may only be adopted where the footing is founded at a height above Unit 2 rock equivalent to more than 2 footing widths, e.g. if the footing is 2m wide, it must found at 4m AHD higher than the elevation of the top of Unit 2 rock.

- B. For piles, shaft adhesion should only be assumed where piles have a minimum socket of at least 1 pile diameter and a clean socket of roughness category R2 or better is achieved. Values may have to be reduced if wall smear or polish is present.
- C. The design values assume that all footings are proved by core drilling or spoon testing. Design values may need to be reduced if less field testing is conducted.
- D. If foundations are to resist uplift, the ultimate shaft adhesion should be reduced by a factor of 0.7. Uplift piles should also be checked for an inverted cone pull-out mechanism.
- E. Serviceability bearing pressures are intended to achieve settlements of less than 1% of the least footing dimension, which may not within tolerance of the structures.

Limit state design methods are recommended to comply with AS2159-2009 "Piling – Design and installation". In accordance with AS2159-2009, the geotechnical strength reduction factor, Φg , is dependent on assignment of an Average Risk Rating (ARR) which takes into account various geotechnical uncertainties, redundancy of the foundation system, construction supervision, and the quantity and type of pile testing. The assessment of Φg therefore depends on the structural design of the foundation system as well as the design and construction method, and testing (if any) to be employed by the designer and piling contractor.

To assist you with preliminary design we recommend Φg of 0.6 be adopted for footings on sandstone. The final selection of Φg should be reviewed by Coffey at the detailed design stage.

The descriptions of subsurface conditions described in this report are based on experience in the vicinity of the site. Ground conditions can change over relatively short distances. The recommendations of this report should be reviewed following a geotechnical investigation comprising drilling and groundwater measurements. In addition, assessment during construction with appropriate input from an experienced geotechnical engineer is also recommended.

The document entitled "Important Information about Your Coffey Report" presents additional information on the uses and limitations of this report.

10. REFERENCES

- 1. Enever, J.R., Walton, R.J., & Windsor, C.R. (1990). Stress regime in the Sydney basin and its implications for excavation design and construction. Inst. Of Eng. Aust. VII Tunnelling Conf. Sydney pp49-59.
- 2. Enever, J.R., (1999). Near surface in situ stress and its counterpart at depth in the Sydney metropolitan area. Proc. 8th ANZ Conf. on Geomechanics, Hobart pp591-597.
- Parker, C.J., Whiteley, R.J., and Gee, B. (1999). Innovative investigation techniques used for geotechnical modelling of the Northside Storage Tunnel Project. Sydney 10th Aust Tunnelling Conf. pp193-205.
- 4. Pells et al. (1998) "Foundations on Sandstone and Shale in the Sydney Region" Aust. Geomech. Jnl. Dec 1998.
- 5. Pells, P. J. N. (1999) "State of Practice for the Design on Socketed Piles in Rock" Proceedings 8th Australia New Zealand Conference on Geomechanics, Hobart.
- 6. Bertuzzi, R. (2014) "Sydney Sandstone and Shale Parameters for Tunnel Design", Australian Geomechanics Vol. 49 No. 2, June 2014, pp 95 104.
- 7. Tameetta, P. and Hewitt, P. (2004), "Hydrogeological Properties of Hawkesbury Sandstone in the Sydney Region", Australian Geomechanics Vol. 39 No. 3, September 2004, pp 91 107.

APPENDIX A: LIMITATIONS

IMPORTANT INFORMATION ABOUT YOUR TETRA TECH COFFEY REPORT

As a client of Tetra Tech Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Tetra Tech Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Tetra Tech Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Tetra Tech Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Tetra Tech Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Tetra Tech Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Tetra Tech Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Tetra Tech Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Tetra Tech Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Tetra Tech Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Tetra Tech Coffey to work with other project design professionals who are affected by the report. Have Tetra Tech Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Tetra Tech Coffey for information relating to geoenvironmental issues.

Rely on Tetra Tech Coffey for additional assistance

Tetra Tech Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Tetra Tech Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Tetra Tech Coffey to other parties but are included to identify where Tetra Tech Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Tetra Tech Coffey closely and do not hesitate to ask any questions you may have.
APPENDIX B: SITE PLAN AND GEOLOGICAL SECTION

REC	AP MANAGEMENT	
SITE GEI	4 - 6 BLIGH ST NERAL ARRANGEMENT	
/DGE205019	DRG No: FIGURE A1	REV:

BORE HOLE INFORMATION EASTING NORTHING ELEVATION 334465.60 17.93 6251284.97 334477.59 6251298.59 17.93 6251287.55 12.79 334491.89

TRUE	

Ν

•		
l)	
-	'	

)										
	UNIT 0 -	UNOBSERVED GROUND, LIKELY FILL, RESIDUAL SOIL TO SANDSTONE (CLASS V 1	ΓΟ II)							
	UNIT 1 -	MODERATELY WEATHERED TO FRESH CLASS II AND CLASS I SANDSTONE								
	UNIT 2 -	CLASS III SHALE								
	UNIT 3 - FRESH CLASS II AND CLASS I SANDSTONE									
	INFERRED GEOLOGICAL BOUNDARY									
		RECAP MANAGEMENT								
	GEOT	4 - 6 BLIGH ST ECHNICAL CROSS SECTIONS								

	DRG No:	REV:
YDGE205019	FIGURE A2	A

APPENDIX C: BOREHOLE LOGS, CORE PHOTOGRAPHS AND SOIL AND ROCK LOGGING EXPLANATION SHEETS

Rock Description Explanation Sheet (1 of 2)

The descriptive terr	ns used b	y Coffey are given below. They are broadly cons	istent with Australian	Standard AS1726	6:2017.			
DEFINITIONS:	Rock m	aterial, defect, structure and rock mass are define	ed as follows:					
Rock material Defect Structure Rock mass	In engin disaggre which ca Disconti Nature a It is the not effect	eering terms rock material is any naturally occurr agated by hand in air or water without prior soakir an be disaggregated or remoulded should be des nuity, fracture, break or void in the material or ma and configuration of the different defects within the entirety of the system formed by all of the rock ma tively homogeneous.	ing aggregate of minung. Rock material is in cribed as a soil. tterials across which e rock mass and thei aterial and all of the o	erals and/or orgar htact rock that is b there is little or no r relationship with defects. That is, it	nic materials that cannot be bounded by defects. Material o tensile strength. each other. is a body of material which is			
MATERIAL DES	SCRIPTI	VE TERMS:	ROCK MATER	IAL STRENGTI	HTERMS			
Rock name	Simple i geologic	ock names are used rather than precise al classification.	Term (Abbreviation)	Gu Point Load	ide to Strength Field Assessment			
Particle size	Grain si	ze terms for sandstone are:		Strength Index, I _{s(50)}				
Coarse grained	Mainly ().6mm to 2mm		(MPa)				
Medium grained	Mainly (0.2mm to 0.6mm	Very Low	0.03 - 0.1	Material crumbles under firm blows with sharp end			
Fine grained	When g orientati for sedir metamo	rains show an alignment, a preferred on or a layering (e.g. bedding or lamination mentary rocks, and foliation or cleavage for rphic rocks) the terms used are:	()		of pick; can be peeled with a knife; too hard to cut a triaxial sample by hand; pieces up to 30mm thick can be broken by finger pressure.			
Indistinct	Lavering	ning of penetrative fabric.	Low	01-03	Easily scored with a knife:			
Distinct	strength Layering more ea	properties. g or fabric is easily visible. Rock may break sily parallel to the fabric.	(L)	0.1 0.0	Easily scored with a knife; indentations 1mm to 3mm show with firm bows of a pick point; has a dull sound under hammer. A			
CLASSIFICATI	ON OF N	IATERIAL WEATHERING			piece of core 150mm long by 50mm diameter may be			
Term Abb	reviation	Definition			broken by hand. Sharp			
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible. Soil has not been	Medium	0.3 to 1.0	friable and break during handling. Readily scored with a			
Extremely Weathered	xw	significantly transported. Material is weathered to such an extent that it has soil properties, i.e. it either disaggregates or can be remoulded in water. Mass structure	(M)		knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
Highly Weathered ¹	нw	and material texture and fabric of original rock are still visible. The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary	High (H)	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
		minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to the deposition of weathering products in pores	Very High (VH)	3 to 10	Hand specimen breaks after more than one blow; rock rings under hammer.			
Moderately Weathered ¹	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is no longer recognisable. Little or no change of strength from fresh rock.	Extremely High (EH)	More than 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			
Slightly Weathered	SW	Rock is partially discoloured with staining or bleaching adjacent to defects, but shows little or no change of strength from fresh rock.	Notes on Rock N	laterial Strength:	: an 'Verv I ow' should be			
Fresh	FR	Rock shows no sign of decomposition of individual minerals or colour changes.	2. The method	of measuring the	ristics. $I_{S(50)}$ should be in			
Notes on Weathe	ring:		3. The rock str	ength should be c	letermined perpendicular to			
 The term 'Di practicable (a distinction) 'Moderately 'Rock streng highly discol increased by weathering p Where physic caused by h term 'altered' 	stinctly W or it is jud to disting Weathere th usually oured, us leaching oroducts in cal and co ot gases o ' may be	eathered' (DW) may be used where it is not ged that there is no advantage in making such juish between 'Highly Weathered' and d'. 'Distinctly Weathered' is defined as follows: changed by weathering. The rock may be ually by iron staining. Porosity may be , or may be decreased due to deposition of n pores'. hemical changes of the rock material are por liquids at depth (process called alteration) the substituted for 'weathering' to give the	any anisotro may readily 4. Although AS terms based the ratio bet 10 to over 3 strength. Th determined 5. The rock str be consider in accordam	y anisotropy in the rock. High strength anisotropic rocks by readily break parallel to the planar anisotropy. hough AS1726:2017 provides a basis for rock strength ms based on Unconfined Compressive Strength (UCS), a ratio between UCS and I _{S(50)} may vary from less than to over 30 depending on the rock type and overall ength. The UCS/I _{S(50)} strength ratio should be termined for each rock material. e rock strength classification using I _{S(50)} above should considered indicative only. The rock strength classified accordance with AS1726:2017 may be higher or lower if 20 strength is a strength in the rock strength classified				

Rock Description Explanation Sheet (2 of 2)

COMMON ROCK DEFECT TYPES									
Term	Definition	Diagram	Map Symbol	Graphic Log (Note 1)					
Parting	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (e.g. cleavage). May be open or closed.		20 Bedding 20 Cleavage	(Note 2)					
Joint	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or to planar anisotropy in the rock material. May be open or closed.		×60	(Note 2)					
Sheared Zone/Seam (Note 3)	Zone of rock material with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.		35						
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.		40	1976					
Crushed Seam (Note 3)	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.	(8) (8) (8)	50 						
Infilled Seam	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams up to 1mm thick may be described as veneer or coating on a joint surface.	THE PARTY OF	65 1						
Extremely Weathered Seam	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.	Seam	32 TUTTET						

1. Usually borehole logs show the true dip of defects, and face sketches and sections show the

2. Partings and joints are not usually shown on the graphic log unless considered significant.

3. Sheared zones/seams, sheared surfaces and crushed seams are generally faults in geological

Notes on Defects:

apparent dip.

terms.

DEFECT SHAPE TERMS

Planar	T in	he defect does not vary orientation							
Curved	T cl	he defect has a gradual nange in orientation							
Undulatin	g T si	The defect has a wavy surface							
Stepped	T	he defect has one or hore well defined steps							
Irregular	T sl	he defect has many narp changes of rientation							
Note: The partly influe observatio	Note: The assessment of defect shape is partly influenced by the scale of the observation.								
DEFECT	ROU	GHNESS TERMS							
Very Roug	gh	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.							
Rough		Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.							
Smooth		Smooth to touch. Few or no surface irregularities.							
Polished		Shiny smooth surface.							
Slickensid	led	Grooved or striated surface, usually polished.							
DEFECT	COA	TING TERMS							
Clean	No vis	ible coating.							
Stained	No vis are dis	ible coating but surfaces scoloured.							
Veneer	A visible coating of soil or mineral, too thin to measure; may be patchy.								
Coating	ble coating up to 1mm Thicker soil material d be described using priate defect terms (e g. l seam). Thicker rock th material should be bed as a vein.								
DIMENSION OF DEFECTS									

Spacing, length, openness and thickness

The spacing, length, aperture (openness), and seam thickness should generally be described directly in millimetres or metres.

Block Shape

Where it is considered significant, block shape (e.g. tabular, prismatic, columnar) should be described using the terms in Table 23 of AS 1726:2017.

20.02.2018

ATET	RAT	ECH (COMF	PANY								Boreł	nole	ID.		BH1	01
E	n	nir	00	orin	а I		N _	Ro	reholo			sheet				1 of 5	
	ų	yn		CIIII	<u>y</u>	-0(<u>J</u> -		renoie			projec	ct no).		754-S	YDGE205019
clier	nt:		Re	сар Ма	nage	emer	nt					date s	start	ed:		01 No	ov 2018
prin	cipa	al:										date o	com	plete	ed:	03 No	ov 2018
proj	ect:		4-6	Bligh	Stree	et						logge	d by	<i>I</i> :		YA	
loca	ation	n:	4-6	Bligh	Stree	e <i>t,</i> Sj	/dne	y, NS	SW .			check	ed	by:		AJB	
posit	tion:	E: 3	34,46	65.60; N: 6,2	251,284	I.97 (MC	GA94)		surface elevation: 17.90 m (AHD)	a	angle	from ho	rizon	ital: 9	90°		
drill r	mod	el:,⊺	Frack	mounted					drilling fluid:	ł	nole d	iameter	:				
dril	ling	info	rmati	on			mate	erial sub ⊊	bstance			₽	h	and			
nethod & support		penetratio	vater	samples & field tests	sL (m)	lepth (m)	jraphic log	classificatio	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noieture	condition	onsistency / elative dens	per m	netro- eter (Pa)		addition	al observations
<u> </u>	-	3 6	>			0	نې. ک	0 0	CONCRETE SLAB: angular, no voids, 20-40mm		_ 0	02	1		co	VCRETE	
						-	<u>`````</u> ``		aggregate, separate at two layers 150mm rubber. BALLAST: 70-80mm coarse aggregate, angular, well						BAI	LAST	
						-			\ compacted	-1					BEL	ROCK	
					-17	- 1.0-	-		Borehole BH101 continued as cored hole								
					-16	2.0-	-										
					-15	3.0-	-										
					-14	4.0-	- - -										
					-13	- - 5.0 -	•										
					-12	- - 6.0 <i>—</i> -											
					-11	7.0-											
- i 2					-10	-	-			oloc	sifics	tion star					
meti AD AS HA W DT * e.g. B T	hod au ha w di bi Al bl TC	uger o uger s and au ashbo atube t show D/T ank b C bit	Irilling crew uger ore wn by	9* ing* r suffix	sup M C pen wat	port mud casing etration ■ ∞ er ■ 10- Iev wat wat wat wat wat	N no res rangin refusa Oct-12 w el on date ter inflow ter outflov	isistance ig to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered VC SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	moistur D dr M m W w Wp pla WI liq	sinca soil de ased ssifica re y oist et astic l quid lin	limit mit	ed stem	ε 	C S S S S S S S S S S S S S S S S S S S	onsistency 'S 'S 'St 'St 'L MD O /D	/ relative density very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense

ATET	ra te	ECH CC	MPANY								Boreho	le ID.	BH101	
-				~		d Devek					sheet:		2 of 5	
	<u>nę</u>	JIN	ee	rin	g Log - Core	a Borer	1016				project	no.	754-SYDGE2	05019
clie	nt:	F	Reca	o Ma	nagement						date sta	arted:	01 Nov 2018	
prin	cipa	ll:									date co	mpleted:	03 Nov 2018	
project: 4-6 Bliah Street										logged	by:	YA		
loca	ation	. 4	-6 B	liah S	Street. Svdnev. NSW						checke	d by:	A.IB	
posi	tion:	E: 334	.465.60): N: 6.2	251.284.97 (MGA94) su	rface elevation: 17.	90 m (Al-	HD)		angle	e from horiz	ontal: 90°		
drill	mode	el:, Tra	ack mo	unted	dr	illing fluid:	,	,		hole	diameter :		vane id.:	
dril	ling i	inform	ation	mate	erial substance			a atima ata d	aammina	rock	mass defe	ects	ditional cheer ations on	له
nethod & support	vater	SL (m)	depth (m)	jraphic log	ROCK TYPE: grain chara colour, structure, minor co	n cterisics, mponents	veathering 8 alteration	strength & Is50 X= axial; O= diametral	field tests & Is(50) (MPa) a = axial; d = diametral	sore run & RQD	spacing (mm)	(type, inclina	defect descriptions an defect descriptions ation, planarity, roughnes thickness, other)	ss, coating, general
<u> </u>	>		0	- 0,			> 00			0	3 7 3 7 3	paraoaiai		general
		F	-											
	-				start coring at 0.63m NO CORE: 0.21 m									
		-17	1.0-		SANDSTONE: medium grained, p	ale grey and	MW		a=0.41 d=0.35		┝┿┪╵╎╵╵		PL, VR, SN, iron oxide	-
			-		moist, massive.	uueu, ironstainis,								
		F	-					 	a=1.13	86%	 	_		
		10	-						d=1.36					
			2.0 —											-
		Ļ	-											
			-		2.46 to 2.85 m: vertical joint, 2-3m iron oxide	m wide, filled with						ΡΊ, 15°,	PL, RO, CN, iron oxide	
		-15	-						a=1.01	100%	╵┝┿┩┧╎	JT, 90°,	UN, RO, SN, iron oxide	vide
			3.0-						a=0.85			1 1, 0 , 1	2, 10, 00 oldy, ion o	
		+	-											-
o			-						a=1.21 d=0.88					, CN, O
		-14	4.0-								╎╎┢┦╎	— РТ, 5°, F	PL, RO, CN	PL, RC Jescrit
			-						0-0.05					, 0°, F wise o
		Γ	-		4.40 to 4.60 m: becomes grey, bro 1mm cracks, moist, 5°-10° to bedo	wn, hairline to ling			d=0.95 d=1.26	100%	╎╎┫╎╵	— SZ, 0°, F	PL, RO, CO - Clay	rre: PT other
		-13	-		,,,,,,		SW							ects a inless
			5.0-									PT, 5°, F	PL, RO, CN PL RO, CN	
		F	-						a=0.49 d=0.87			PT, 0°, U	JN, RO, CN	-
			-											
		-12	6.0-							100%				-
			-					 	9=1 11					
		F	-		6.40 to 6.75 m: hairline to 1mm cra	icks, moist, 0°			d=0.74			PT, 5°, F	PL, SO, SN, black	
		_11	-		6.50 to 6.60 m: shale, moist						l i Figi i	- F1, Z, F	-L, 30, 3N	
			7.0-											-
		Ļ	-						a=1.03 d=1.19	100%				
			-									PT, 2°, F	PL, SO, SN, black	
		-10	-			<u>.</u>						F 1, 0 , F	-2, 30, 3N	-
me AS	thod au	& supp	ort ewing	_	water	graphic log / cor	e recovei	ſy	RS resid XW extreme	y & altera ual soil melv we	ation*	PT partin JT ioint	e planarity Ig PL plana CU curve	ar ed
AD auger drilling CB claw or blade bit W washbore				Core re (graphic syr	covered mbols indicate	material)	HW highl DW distin	y weathe octly wea	ered athered	SZ shear SS shear	zone UN undu surface ST step	ulating ped		
NM NQ	MLONLC core (51.9 mm) NQ wireline core (47.6mm)					SW slight FR fresh	erately w tly weath	eathered	CO conta CS crush SM seam	ici IR Irreg ied seam	ular			
PQ wireline core (85.0mm) Image: Solution of the so						s coatina								
DT	tes dia	st atube			water pressure test result		vithdrawr)	L low M mediu	ım		SL slick POL polis	ensided CN clear shed SN stain	n 1
					niterval shown	RUD = KOCK Q	uality De	signation (%	VH very hi EH extrem	igh 1elv hiah	1	RO roug VR very	h CO coat rough	ing

A TETRA TECH COMPANY										Borehole	e ID.	BH101			
Engineering Log Cored Perebala											sheet:		3 of 5		
										project r	10.	754-SYDGE2	0501	19	
clier	nt:	t: Recap Management									date sta	rted:	01 Nov 2018		
principal:									date cor	npleted:	03 Nov 2018				
project: 4-6 Bligh Street									logged b	y:	YA				
loca	tion:	4	-6 B	ligh S	Street, Sydney, NS	SW					checked	l by:	AJB		
positi	ion:	E: 334	4,465.60); N: 6,2	251,284.97 (MGA94)	surface elevation: 17.	90 m (A	HD)		angle	e from horizo	ntal: 90°			
drill r	node	l:, Tra	ack mou	unted		drilling fluid:				hole	hole diameter : vane id.:				
drill	ing i	nform	ation	mate	rial substance					rock	mass defec	ts			
method & support	water	RL (m)	depth (m)	graphic log	material de ROCK TYPE: grai colour, structure, m	escription n characterisics, ninor components	weathering & alteration	estimated strength & Is50 X=axial; o=diametral ⇒ ⊻ ⊥ 듯	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	ad (type, inclina particular	lditional observations ar defect descriptions ation, planarity, roughne thickness, other)	nd ss, coa gen	ting, ieral
			-	· · · · · ·	SANDSTONE: medium gra orange-brown, 5°-10° distir	ained, pale grey and nctly bedded, ironstains,	SW					PT, 2°, F	PL, RO, SN		

moist, massive, (continued) a=1.13 d=1.17 8.05 to 8.15 m: hairline cracks CS, 5°, CU, SO, SN 8.25 to 8.32 m: shale layer and having cracks, moist PT, 2°, PL, RO, CN 8 65 to 8 68 m⁻ cracks -9 100% 11 PT. 5°, PL. RO, CN 90 ||SM, 5°, PL, RO, CN 11 a=1.60 d=0.92 11 PT, 2°, PL, RO, CN CS, 5°, PL, RO, CO - Clay 11 SANDSTONE: medium grained, orange, red 11 brown, dry, indistinctly bedded. 11 -8 10.0 11 PT. 2°. CU. RO. CN a=1.32 d=1.22 PL, RO, CN, described 11 11 PT. 1°. PL. RO. CN 100% וה 11 11 15/11/2018 16:45 are: PT, 0°, F ss otherwise d 11 I. -7 11.0 11 a=1.34 d=1.95 11 Г Defects ar unless o PT, 5°, PL, RO, CN 11 11 PT, 2°, CU, RO, CO - Clay <<Draw 11 -6 12.0 754-SYDGE205019.GPJ a=1.83 d=1.36 11 11 11 100% PT, 2°, PL, RO, CN 11 PT, 0°, CU, RO, CN 11 -5 SANDSTONE: medium to coarse grained, yellow 11 13.0 CORED brown, indistinctly bedded, high guartz content. 11 a=2.61 d=1.22 × 1 SHALE: fine to medium grained, pale grey, moist, XW COF BOREHOLE: sheared zone (fault). sw - JT. 90°. IR. RO. CN 13.33 to 13.39 m: clay seam, extremely weathered, PL, RO, CO very low strength -4 PT, 5°, CU, RO, CN 14 0 SANDSTONE: medium grained, dark grey and 100% grey, indistinctly bedded with irregular shale 0_9_06_LIBRARY.GLB rev:AR Log SZ. IR. RO. CN inclusions. BRECCIATED SHALE: fine grained, grey, PT, 5°, ST, SO, CN efects are: CS, 0°, unless otherwise indistinctly bedded, moderately weathered, medium ġ a=2.47 d=0.63 1 strength. SANDSTONE: medium grained, grey brown, indistinctly bedded, slightly weathered, medium to -3 CS, CN 15.0 100% high strength. CS, 10°, UN, RO, CO - Clay SHALE: fine grained, grey to dark grey, indistinctly bedded, slightly weathered, medium to high Т strength. E E E 1 a=0.84 d=0.82 Т 100% weathering & alteration planarity PL planar CU curved UN undulating defect type graphic log / core recovery method & support water parting joint shear zone RS residual soil PT auger screwing auger drilling claw or blade bit AS extremely weathered highly weathered distinctly weathered moderately weathered XW ĴТ 10/10/12, water level on date shown AD CB core recovered HW SZ SS CO CS SM shear surface ST stepped Ŵ washbore water inflow IR Irregular MW contact NMLONMLC core (51.9 mm) NQ wireline core (47.6mm) HQ wireline core (63.5mm) MW moderately weather SW slightly weathered FR fresh "W replaced with A for alteration strength VL very low L low M medium H biob crushed seam seam complete drilling fluid loss no core recovered partial drilling fluid loss HQ PQ core run & RQD wireline core (85.0mm coating CN clean SN stain VN venee SPT standard penetration roughness slickensided barrel withdrawn SI DT diatube POL polished SO smooth water pressure test result 25uL (lugeons) for depth RQD = Rock Quality Designation (% high very high H VH veneer rough very rough CO coating interval shown RO VR extremely high EΗ

A TETRA TECH	COMPANY	Borehole ID.	BH101	
Enai	nearing Lag Cared Parabala	sheet:	4 of 5	
Engi	neering Log - Cored Borenole	project no.	754-SYDGE205019	
client:	Recap Management	date started:	01 Nov 2018	
principal:		date completed:	03 Nov 2018	
project:	4-6 Bligh Street	logged by:	YA	
location:	4-6 Bligh Street, Sydney, NSW	checked by:	AJB	

po	ositio	ition: E: 334,465.60; N: 6,251,284.97 (MGA94) surface elevation: 17.90 m (AHD) model: , Track mounted drilling fluid:									angle from horizontal: 90°			
dr	ill m	model:, Track mounted drilling fluid:								hole	diameter :	V	ane id.:	
d	rilli	ng ir	nform	ation	mate	rial substance					rock	mass defe	ts	
method &	support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain charact colour, structure, minor con	n terisics, nponents	weathering & alteration	estimated strength & Is50 X=axial; O=diametral ⊃ _ ∞ ⊥ 듯 丗	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	additional obse defect desc (type, inclination, planarit thickness particular	rvations and criptions y, roughness, coating, , other) general
			-	- - - 17 0 —		SANDSTONE: fine to coarse graine grey, 5°-10° distinctly bedded, comr laminae throughout. (continued)	d, pale grey to non shale	SW		a=0.68 d=0.63	100%		-	-
			-	-				FR		a=1.24 d=1.01			← PT, 0°, PL, RO, VN - 0 ← PT, 0°, PL, RO, CO - 1	Clay - Clay -
			-0	- 18.0 — -		17.65 m: 3mm thick clay band (shal 17.90 m: 10mm thick clay bands, sh clay bands between 18.2-18.4m	e) Iale occassional			a=0.88 d=0.86	100%		— PT, 0°, PL, RO, CO -	Clay -
gFile>> 15/11/2018 16:45			1	- 19.0 — -		18.60 m: trace of clay bands, and tra feature, 2mm size 19.00 m: 20-40mm clay coating on s	ace of basaltic surface only			a=0.73 d=0.20			E 	Clay 02
E205019.GPJ < <drawin< td=""><td></td><td></td><td>2</td><td>- 20.0 — -</td><td></td><td></td><td></td><td></td><td></td><td>a=0.77 d=1.04</td><td>100%</td><td></td><td>— PT, 3°, CU, RO, CU -</td><td>Cta are: PT, 0°, PL, F tess otherwise desc</td></drawin<>			2	- 20.0 — -						a=0.77 d=1.04	100%		— PT, 3°, CU, RO, CU -	Cta are: PT, 0°, PL, F tess otherwise desc
DLE: CORED 754-SYDG			3	- - 21.0 — - -		21.00 to 21.40 m: hairline cracks				a=1.44 d=0.84	100%		— PT, 2°, CU, RO, SN	- nu - Defe
AR Log COF BOREHC			4	- - 22.0 -									-	-
06_LIBRARY.GLB rev			5	- 23.0 —		22.60 to 23.15 m: hairline cracks				a=1.63 d=1.22 a=1.15	100%		— PT, 2°, PL, RO, CN — PT, 0°, PL, SO, CN	-
CDF_0_9			6	-						d=0.85	100%		PT, 0°, PL, SO, SN	-
	method & support AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLONMLC core (51.9 mm) NQ wireline core (47.6mm HQ wireline core (63.5mm PQ wireline core (65.0mm			ort rewing lling lade bit e re (51.9 core (47 core (63 core (85	9 mm) 16mm) 1.5mm) 1.5mm)	water graphic log / cc graphic log / cc graphic log / cc core r graphic log / cc graphic log / cc core r graphic log / cc core r graphic log / cc graphic log / cc core r graphic log / cc graphic log / cc core r graphic log / cc		covered abols indicate	ry [,] material) ed	weathering RS residu XW extrer HW highly DW distin MW mode SW slight FR fresh *W replaced wi strength	& altera ual soil nely we weathe ctly wea rately w ly weath th A for alt	athered ered thered eathered ered eration	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam	planarity PL planar CU curved UN undulating ST stepped IR Irregular
	HQ wireline core (63.5mm PQ wireline core (85.0mm SPT standard penetration test DT diatube		ation	water pressure test result (lugeons) for depth interval shown	RQD = Rock Qu	rithdrawn uality De	W replaced with A for alterat strength VL very low Wn L low M medium Designation (%) H high VH very high EH evtramely high				roughness SL slickensided POL polished SO smooth RO rough VR very rough	coating CN clean SN stain VN veneer CO coating		

A TETRA TEC	H COMPANY	Borehole ID.	BH101
Eng	incoving Log Coved Perchala	sheet:	5 of 5
Eng	ineering Log - Cored Borenole	project no.	754-SYDGE205019
client:	Recap Management	date started:	01 Nov 2018
principal:		date completed:	03 Nov 2018
project:	4-6 Bligh Street	logged by:	YA
location:	4-6 Bligh Street, Sydney, NSW	checked by:	AJB

	posit	on:	E: 33	4,465.60); N: 6,2	251,284.97 (MGA94) su	angle from horizontal: 90°							
L	drill r	model:, Track mounted drilling fluid:									hole	diameter :	v	ane id.:
Ļ	drill	ing i	nform	ation	mate	rial substance			1	1	rock	mass defe	cts	
•	nethod & upport	/ater	(m)	epth (m)	raphic log	material descriptio ROCK TYPE: grain charao colour, structure, minor co	n cterisics, mponents	/eathering & Iteration	estimated strength & Is50 X= axial; O= diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	ore run & RQD	defect spacing (mm)	additional obse defect des (type, inclination, planarit thickness	rvations and criptions y, roughness, coating, , other)
ŀ	ະທ	3	~	Ŭ	 	SANDSTONE: fine to coarse grain	ed pale grev to	≥ α FR	<u> </u>	d = diametrai	٥w	<u> </u>		general
			_	-		grey, 5°-10° distinctly bedded, com laminae throughout. (continued)	imon shale			a=1.30 d=0.93	100%			
			7	25.0 — - -		25.05 to 25.50 m: hairline to 1mm,	shale laminae			a=0.64 d=0.57	100%			-
			8	- 26.0 — -						a=1.19			— PT, 2°, PL, SO, SN	RO, CN, cribed -
/2018 16:45			9			26.50 to 26.65 m: hairline shale lan	ninae			u=U.88			PT, 2°, CU, SO, SN	are: PT, 0°, PL, s otherwise des
awingFile>> 15/11,										a=1.10 d=0.98	100%			Defects : unless : -
205019.GPJ < <dra< th=""><td></td><td colspan="3">10 28.0</td><td></td><td></td><td></td><td></td><td></td><td>a=1.18 d=0.82</td><td></td><td></td><td>-</td><td>-</td></dra<>		10 28.0								a=1.18 d=0.82			-	-
RED 754-SYDGE			11	- - 29.0 —							100%		— PT, 2°, PL, RO, CN	-
BOREHOLE: CC			-	-		Borehole BH101 terminated at 29.3	30 m			a=0.84 d=0.84				¥
3 rev:AR Log COF	12											-		
CDF_0_9_06_LIBRARY.GLE			13	- 31.0 — - - -										
	method & support water AS auger screwing 10/10/12, water AD auger drilling 10/10/12, water CB claw or blade bit washbore W washbore 10/10/12, water NMLONMLC core (51.9 mm) water inflow NQ wireline core (47.6mm) complete drilling fluid loss PQ wireline core (85.0mm) partial drilling fluid loss					water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	example core recovery and the symbols indicate material in the strength of the symbols indicate material in the strength of the symbols indicate material in the strength of t			weathering RS residu XW extrer HW highly DW distin MW mode SW slight FR fresh [*] W replaced w strength	ering & alteration* residual soil extremely weathered highly weathered distinctly weathered slightly weathered fresh aced with A for alteration gth		defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam	planarity PL planar CU curved UN undulating ST stepped IR Irregular
	PQ wireline core (85.0mm SPT standard penetration test DT diatube					water pressure test result נו עם גם וugeons) for depth interval shown				W replaced with A for alteration strength VL very low L low M medium 6) H high VH very high			SL slickensided POL polished SO smooth RO rough	CN clean SN stain VN veneer CO coating

coffev

A TETRA TECH COMPANY

title:

date

scale

original size

16/11/2018

N.T.S.

A4

original size

A4

754-SYDGE205019

FIGURE 4

A TETR	A TEC	CH CON	/PANY						Hole ID.	BH101
Di	07	vor	no	tor	Installatio				sheet:	1 of 1
	σZ	.01			Instanatio				project no.	754-SYDGE205019
client	t:	R	ecap	o Mai	nagement				date started:	01 Nov 2018
princ	ipal:								date completed:	03 Nov 2018
proje	ct:	4-	6 Bl	igh S	Street				logged by:	YA
locati	ion:	4-	6 Bl	igh S	Street, Sydney, NS	W			checked by:	AJB
positio	on: E	E: 334,	465.60	; N: 6,2	51,284.97 (MGA94)	surface elev	ration: 17.90 m (AHD)	angle	from horizontal: 90°	
equipr drillin	nent g inf	ormat	ion	mount	rial substance	ariiing fiula:	piezometer construction	details	alameter :	
.*	<u> </u>		_	БĊ	material name				bore construction	license:
method 8 support	water	RL (m)	depth (m	graphic lo				BH101	driller: driller's permit no.	:
			-	·		/			Concrete	-
		-16	-		BEDROCK				Sand	-
			-				0.00 m			-
		-	4-				<u>3.60 m</u>		Bentonite	-
			-				4.55 m			-
		-12	-				5.83 m			
			-							-
		[-8							-
		-8	-							-
			-							-
		-	- 12 —							-
			-							-
		-4	-	••••						-
			-						Sand	-
			16							-
		-0	-							-
			-							-
		-	20-							-
			-							-
		4	-							-
		Ļ	24							-
							25.38 m			-
		8	-							-
			-							-
		F	28-							-
		12	-	1						
		-12	-							-
			_							-
methe	od & s eng	suppoi ineerin	t g log fo	or detail	s graphic log / core recover	ery ID	type	installation sticl date (m	(up tip water leve) depth (m) (m)	el Relative Levels (AHD) stickup tip water level
	10- lev - wa cor pai	-Oct-12 el on d ter infl mplete rtial dri	2, water ate sho ow drilling lling flu	r own fluid Ic id Ioss	core recovered (graphic symbols indicate material) no core recover	BH101 ed	standpipe piezo.		29.30 m	-11.40
25	wate (luge inter\	r press ons) fo <i>r</i> al sho	ure tes or depth wn	t result 1						

CDF_0_9_06_LIBRARY_GLB rev.AR_Log_COF PIEZOMETER ONE PAGE SUMMARY_754-SYDGE205019.GPJ_<CDRevingFile>> 15/11/2018 16:46

ATETF	RA TEC	H CON	PANY							Boreh	nole	ID.		BH102
F	na	ind	orir	na I		a _	Ro	rehole		sheet				1 of 4
	''9			<u>'9</u>	;	9_				projec	ct n	0.		754-SYDGE2050
clien	nt:	Re	есар Ма	anago	emer	nt				date s	star	ted:		29 Oct 2018
prino	cipal:									date o	com	plete	ed:	31 Oct 2018
proje	ect:	4-	6 Bligh	Stree	et					logge	d by	y:		YA
locat	tion:	4-	6 Bligh	Stree	e <i>t,</i> Sj	ydne	y, NS	SW		check	ed	by:		AJB
positi	ion: E	: 334,4	77.59; N: 6	,251,298	3.59 (M	GA94)		surface elevation: 17.90 m (AHD)	angle	from ho	rizor	ntal: 9	90°	
drill n	nodel:	, Trac	k mounted					drilling fluid:	hole d	liameter	: 21	5 mm	ı	
drill	ling in	forma	tion			mate	erial sub ⊊	ostance		≥	h	and		
% pd to	etratio		samples field test	& s _	ε.	ic log	ficatio	SOIL TYPE: plasticity or particle characteristic,	ure	tency /	pe m	netro- neter	-	additional observations
metho	ben	water		RL (m	depth	graph	classi symb	colour, secondary and minor components	moist	consis) 8	kPa) 8 8 8		
<u> </u>						<u>.</u>		CONCRETE : 5-20mm coarse aggregate, angular, no /,		0.2			BASE	MENT SLAB
- DT -		!		_	-			CONCRETE: 20-40mm coarse aggregate, angular, no	-		ļ.		BASE	COURSE
.	+++	 		_	-			voids/ BALLAST: 60-90mm coarse aggregate, angular, well /				 	BEDF	ROCK
		!		-17	10			compacted.						
	1ii	i			- 1.0			iron stains, visible, fresh, very high strength.			ļ	i i i		
		-		-	-	-		Borehole BH102 continued as cored hole						
					-									
		!		-16	2.0-									
		i			-						ļ			
				-	-									
	lii	i		-15	3.0-	4					ļ.	i i i		
		¦			-									
,		¦		-	-									
	11	i									ļ.	İİİ		
		!		-14	4.0-	-					l			
		:			-									
		!		Γ										
	lii	i		12	-						ļ.	i i i		
				-13	5.0-						Ì			
		!				1								
	!!	i I			-						ļ	i i i		
		:		-12	-									
					6.0-									
		i									Ì	İİİ		
		; _			-						Ì			
				-11								$\left \right $		
		!			7.0-									
		!		-	-						ļ.	i i i		
1		:			-									
				-10	-			<u> </u>						
meth AD	nod auge	er drillin	ng*	sup M	port mud			samples & field tests B bulk disturbed sample	lassifica soil de	tion sym escriptio	bol 8 n	8	co VS	nsistency / relative density
AS HA	auge hanc	er screv I auger	ving*	C	casing			D disturbed sample E environmental sample	based Classific:	on Unifie ation Sys	ed stem	1	S F	soft
W DT	wasl diatu	nbore ibe		pen Rec	etration - ∾ ∞	1 7– nore∘	sistance	SS split spoon sample U## undisturbed sample ##mm diameter mai	sture				St VS	stiff St very stiff
						rangir refus	ng to al	HP hand penetrometer (kPa) D N standard penetration test (SPT) M	dry moist				H Fb	hard friable
* e.a	bit sl AD/1	hown t	y suffix	wat	.er ▼ ¹⁰⁻ lev	-Oct-12 w el on date	ater shown	N* SPT - sample recovered W Nc SPT with solid cone Wp	wet plastic	limit mit			VL L	very loose loose
B T	blan TC h	k bit it			wa	ter inflow		VS vane shear; peak/remouded (kPa) WI R refusal	iiquid li	mu			ME D) medium dense dense
v	V bit				- wa	uer outflo	N	HB hammer bouncing					VD	very dense

ATET	'RA TE	ECH CC	MPAN								Borehol	e ID.	BH102
E	n /	Nin	~~~	rin	alaa Cara	Dorok		•			sheet:		2 of 4
	<u> </u>	JIII	ee	m	g Log - Corec			9			project r	າວ.	754-SYDGE205019
clie	nt:	F	Reca	р Ма	nagement						date sta	rted:	29 Oct 2018
prin	ncipa	ıl:									date cor	npleted:	31 Oct 2018
pro	ject:	4	-6 B	liah S	Street						logged b	DV:	YA
	, ation	· 4	-6 R	liah S	Street Sydney NSW						checker	l by:	AIR
noci	tion	. ¬	1 477 5			rface elevation: 17	90 m (Al	יח-		angle	from horizo	ntal: 90°	AJD
drill	drill model: , Track mounted drilling fluid:								hole	diameter : 2	15 mm	vane id.:	
dril	ling i	inform	ation	mate	erial substance					rock	mass defe	cts	
∞ŏ			Ē	bo	material descriptio ROCK TYPE: grain charac	n sterisics.	ng &	estimated strength	samples, field tests		defect spacing	ac	dditional observations and defect descriptions
ethod	ter	E.	pth (n	aphic	colour, structure, minor co	mponents	eratio	& IS50 X=axial; O=diametral	(MPa)	re run RQD	(mm) 。。	(type, inclina	thickness, other)
ns Su	Ň	RL	de	gra			alt	루그호프루프	d = diametral	S ∞	30 300 300	particular	general
			-										
		-			start coring at 0.65m								
		47	-		SANDSTONE: medium grained, pa	ale pinkish grey,	SW		a=0.67		╺╘╧╪╧┪╵┼╴	<u>SM, 0°, 1</u> PT, 0°, F	ir, so, co pl, ro, cn
		-17	1.0 -		0.99 m: trace pyrite, some quartz g	9. rains upto 15mm,			d=0.92	100%			-
			-		glassy				1.00				
			-						d=0.49		╎╘┽┫╵╎	PT, 5 - 1	0°, PL, RO, CN PL, RO, CN
		-16	-										
			2.0-										-
		-			2 35 to 3 32 m· interhedded arev a	nd red bands			a=0.38	100%	i i i i i i i i i i i i i i i i i i i	PT, 10°,	PL, RO, CN
345			-		bedding angle 10°-15°, very closely	/ spaced			d=0.86				
2018 16		-15	3.0-										
15/11/2								i ii					-
6		-			3.32 to 4.50 m: interbedded grey sl	nale laminae			a=0.90				PL, RO, CN
awingF			-						d=0.97				
Š.		-14	40-							100%			-
19.GPJ			-										
E2050		F	-				a=0.89		╵┢┽┩╎	PT, 2°, F	PL, RO, CN		
-SYDG			-		4.55 to 5.05 m: occasional shale la	minae			d=1.44			SM, 0°, I	PL, SO, VN, 5 mm, clay infill
D 754		-13	5.0 -									PT, 0°, F	PL, RO, CN
CORE			-							1000/			
HOLE		F							a=0.99 d=0.92	100%		PT, 2°, F	PL, RO, CN
BORE		10	-										
g COF		1 2	6.0-										-
AR Lo		L							a=0.84			— от о° г	PL RO V/N 2 mm clovinfil
B rev:			-						d=0.58			F 1, Z , F	L, NO, VIN, Z IIIII, Cidy IIIIII
KRY.GL		-11	-		6 99 to 7 40 mi sholo laminan bla	k	R A \A/			100%		CS, 0°, 0	CU, SO, CO, black
LIBR			7.0-	1	0.00 to 7.40 m: snale laminae, blac	n						[~] PT, 0°, F PT, 0°, F	PL, RO, CO, black - PL, RO, CO, black
90		F	-				CIM		a=0.90 d=0.86		i h ii	PT, 0°, F	PL, RO, CO, black
CDF_0			-				500					PT, 0°, F	PL, SO, VN, clay infill
		-10	-							100%		PT, 0°, F	PL, RO, CN, black
me AS	thod au	& supp Iger sci	ort rewing		water	graphic log / cor	e recove	ry	RS residu	altera	ation*	PT partin	e planarity lg PL planar
AD CB	AD auger drilling CB claw or blade bit							material)	HW highly DW distin	v weather of the weat	ered ithered	SZ shear SS shear	zone UN undulating surface ST stepped
	wa ALONN wi	ASNDOR MLC co reline o	e re (51.9 ore (47	9 mm) 7.6mm)	water inflow complete drilling fluid loss	no core	recover	ed	MW mode SW slight	erately w	y weathered CO contact IR Irregula weathered CS crushed seam		ict IR Irregular ied seam
HC	Q wi Q wi Q wi	reline o reline o	ore (63	5.0mm)	partial drilling fluid loss	Core run & RQD			FR fresh *W replaced w strength	ith A for alt	eration	SM seam	
SP	SPT standard penetration test DT diatube VL very L low M mode							VL very lo	w		SL slick	s coating tensided CN clean	
	ui	atube			(lugeons) for depth interval shown	RQD = Rock Q	Rock Quality Designation (%)				SO smo	oth VN veneer h CO coating	
1						1			EH extrem	iely high	I	VR very	rough

ATET	RA TE	ECH CC	MPANY						Boreho	le ID.	BH102
	~	~in		rin	alaa Carad Baral	hali	~		sheet:		3 of 4
	<u>n</u>	<u> </u>	ee	<u> </u>	g Log - Coleu Dolei	101	3		project	no.	754-SYDGE205019
clier	nt:	R	leca	р Ма	nagement				date sta	arted:	29 Oct 2018
prin	cipa	J:							date co	mpleted:	31 Oct 2018
proj	ect:	4	-6 B	ligh S	Street				logged	by:	YA
loca	ation	: 4	-6 B	ligh {	Street, Sydney, NSW				checke	d by:	AJB
posit	tion:	E: 334	1,477.5	9; N: 6,2	251,298.59 (MGA94) surface elevation: 17	.90 m (Al	HD)		angle from horiz	ontal: 90°	
drill ı	mode	∦:, Tra	ack mor	unted	drilling fluid:				hole diameter : 2	215 mm	vane id.:
drin	illing information material substance at the samples, material description of estimated samples,								defect	ad	Iditional observations and
nethod & support	vater	sL (m)	lepth (m)	Jraphic log	ROCK TYPE : grain characterisics, colour, structure, minor components	veathering	strength & Is50 X= axial; O= diametral	field tests & Is(50) (MPa) a = axial; d = diametral	Spacing (mm) end end end end end end end end end end	(type, inclina	defect descriptions ation, planarity, roughness, coating, thickness, other) general
£υ	>		σ		SANDSTONE: medium grained, pale grey, 0°,	SW		1 0. man	m → m → m 	paraoata	
		-9	9.0-		planar isotropic, indistinctly bedded, alternative clay bands visible. SANDSTONE: medium grained, reddish-brown,	FR		a=1.14 d=1.20 a=1.66 d=1.23	100%	- PT, 5°, P SM, 0°, F	'L, SO, CO, black
2		-8	- - 10.0 — - -		becoming massive.			a=1.52	100% 	— РТ, 0°, Р	۲, RO, CO
		-7 - -6	- 11.0 — - - 12.0 —		SANDSTONE : fine to medium grained, pale grey, distinctly bedded. 11.74 to 12.68 m: occasional thin shale beds	MW		a=0.70 d=1.44		PT, 0°, P PT, 2°, C SM, 0°, F	2L, RO, CO, black 2L, RO, CO, black 2U, RO, CN PL, SO, VN, 2 mm, clay infill 20 PL, SO, VN, 5 mm, clay infill
			-	 	12.30 to 12.36 m: shale bed	/ sw		a=1.34 d=1.12		→ SM, 0°, I → PT, 10°, →	R, RO, CO PL, SO, CN, dark grey
· · · · · · · · · · · · · · · · · · ·		-5	- 13.0 — -		SANDSTONE: fine to medium grained, pale grey, distinctly bedded.			a=1.54 d=1.39	95%		-
	-4 -4 14.0 - - -				SHALE: fine grained, pale grey, indistinctly bedded, inclusions of basaltic fill. 13.89 to 14.00 m: brecciated shale 14.18 to 14.30 m: brecciated shale	DW		a=0.38 d=0.27		UT, 20°, I UT, 20°, I UT, 20°, I UT, 20°, I UT, 10°, I UT, 10°, I	PL, SO, VN
	-3 15.0					FR		a=0.35 d=0.86		─ PT, 0°, P ─ PT, 0°, P ─ PT, 0°, P ─ PT, 2°, P ─ PT, 20°,	۲L, SO, CN
method & support water AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLONMLC core (51.9 mm) NQ wireline core (47.6mm) PQ wireline core (85.0mm) SPT standard penetration Lest uster pressure test result DT diatube) mm) .6mm) .5mm) .0mm) ation	water graphic log / con 10/10/12, water core rei level on date shown core rei water inflow core rei complete drilling fluid loss no core partial drilling fluid loss core run & RQI uater pressure test result barrel (lugeons) for depth nterval shown	re recover mbols indicate e recover) withdraw Quality De	ry material) ed n essignation (%	weathering RS residu XW extrer HW highly DW distinn MW mode SW slighti FR fresh W replaced w strength VL very lo L low M mediuu 6) H high	& alteration* ial soil nely weathered viweathered ctly weathered ith A for alteration w m gh	defect type PT parting JT joint SZ shear SS shear CS crusht SM seam roughness SL slick POL polis SO smor RO rougi	g Planarity G PL planar CU curved zone UN undulating surface ST stepped ct IR Irregular ed seam s coating ensided CN clean hed SN stain oth VN veneer h CO coating

ATE	ETRA	TECH	COMPAN	IY							Borehol	e ID.	BH102	2	
E	In	ai	nna	rin	a Loa - Corod	Boroh		`			sheet:		4 of 4		
	_ ! !	y		71111	y Log - Coreu	DOICI		-			project ı	10.	754-SY	DGE20	5019
cli	ent:		Reca	ар Ма	nagement						date sta	rted:	29 Oct	2018	
pr	incij	pal:									date cor	mpleted:	31 Oct	2018	
pr	ojec	ct:	4-6 E	Bligh .	Street						logged b	by:	YA		
lo	catio	on:	4-6 E	Bligh .	Street, Sydney, NSW						checked	l by:	AJB		
ро	sitior	n: E::	34,477.	59; N: 6,:	251,298.59 (MGA94) surf	ace elevation: 17.9	90 m (Ał	HD)		angle	e from horizo	ontal: 90°			
dri	ill mo	odel:,	Track m	ounted	drill	ing fluid:				hole	diameter : 2	15 mm	va	ne id.:	
dı	rillin	g info	mation	mate	erial substance material description		ంర	estimated	samples,	rock	mass defe defect	cts adv	ditional obser	vations and	
method &	support	water RI (m)	depth (m)	graphic log	ROCK TYPE: grain charact colour, structure, minor com	erisics, ponents	weathering alteration	strength & Is50 X=axial; o=diametral ⇒ _ ≆ ∓ ∄ ⊞	field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm) 0000 0000 0000 0000	(type, inclina particular	defect descr tion, planarity thickness,	riptions , roughness, other)	coating, general
					SANDSTONE: medium grained, pal basaltic inclusions. (continued)	e grey, trace of	FR			100%					-
		- -1 -	17.0		16.73 to 17.55 m: alternative shale la broken parallel to bedding			a=0.42 d=0.60 a=1.13 d=1.10	100%		PT, 0°, P PT, 0°, P -	L, SO, CN L, SO, CN		-	
	-0 18.0 - 17.85 m: 10mm, dark grey, shale laminae 18.28 to 18.40 m: 3-10mm, dark grey, shale band								a=1.05 d=0.45	070/		PT, 2°, U	N, RO, CN		- - - - - - - - - - - - - - - - -
		1 19.0								97%		☐— SZ, 0°, U ── PT, 5°, C ── SM, 0°, F	N, RO, VN, cl U, RO, VN - C PL, RO, VN - C	ay infill Clay Clay	: PT, 0°, PL, RO, therwise describe
ours.GFJ ~~DrawingFin		2	20.0		19.25 m: clay infill SANDSTONE : medium grained, pail shale laminae. 19.30 m: becoming massive, occasil laminae	le grey, trace of onal shale			a=1.27 d=1.28	100%		— РТ, 0°, С	U, RO, CN		Defects are unless o
IOLE: CORED 794-STUGEZU		3	21.0						a=1.26 d=1.61 a=1.45			— PT, 0°, P	L, RO, SN, bla	ack	-
		4	22.0						d=1.17	100%					-
HK I	Porobolo PH402 terminated at 22.29 m								a=0.90 d=0.85						<u> </u>
		5	23.0												
	method & support AS auger screwing As auger screwing auger drilling core recovert CB claw or blade bit 10/10/12, water core recovert W washbore 10/10/12, water core recovert NALCOMLC core (51.9 mm) motion date shown water inflow core recovert NQ wireline core (47.6mm) partial drilling fluid loss no core recovert PQ wireline core (63.5mm) partial drilling fluid loss core run & RQD DT test water pressure test result barrel withdr. RQD = Rock Quality RQD = Rock Quality RQD = Rock Quality					e recove covered nbols indicate recover vithdrawi uality De	ry material) ed n ssignation (%)	weathering RS residi XW extret HW highly DW distin MW mode SW slight FR fresh W replaced w strength VL very lo L low M mediu H high VH very high	J & altera ual soil mely we y weather cetly weather erately w ly weath with A for alt w m m	athered athered athered ered eeathered eered eration	defect type PT parting JT joint SZ shear CO contac CS crushe SM seam roughness SL slicke POL polist SO smoo RO rougt VR verv	2 zone surface t ad seam ensided ned oth ough	planarity PL planar CU curved UN undulai ST stepper IR Irregula Coating CN clean SN stain VN veneer CO coating	ting d ar	

BH102 0.65 - 5.00 m

drawn	YA		client:	Recap Ma	anageme	nt	
approved	AJB		project:	4-6 Blig 4-6 Bligh Stree	h Street	/. NSW	
date	16/11/2018	coney •	title:		-, -, -, -,	-	
scale	N.T.S.	A TETRA TECH COMPANY		CORE PHO BH	DTOGRA	N PH	
original size	A4		project no:	754-SYDGE205019	fig no:	FIGURE 1	rev:

A TETRA TECH COMPANY

project no:

BH102 fig no:

754-SYDGE205019

rev:

FIGURE 2

scale

original size

N.T.S.

A4

BH102 10.00 - 15.00 m

drawn	YA		client:	Recap Ma	inageme	nt	
approved	AJB		project:	4-6 Blig 4-6 Bligh Stree	h Street	/ NSW	
date	16/11/2018	сопеу	title:	r o Bigir otroo	t, cyancy	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
scale	N.T.S.	A TETRA TECH COMPANY		CORE PHC BH	DTOGRA 102	N PH	
original size	A4		project no:	754-SYDGE205019	fig no:	FIGURE 3	rev:

ATETR	A TECH CO	MPANY						Hole ID.	BH102
Di	070	mo	tor	Installation				sheet:	1 of 1
	ezu	me	lei	Installation	LUY			project no.	754-SYDGE205019
clien	t: F	Recap	o Mana	gement				date started:	29 Oct 2018
princ	cipal:							date completed:	31 Oct 2018
proje	ect: 4	-6 Bl	igh Str	reet				logged by:	YA
locat	ion: 4	-6 Bl	igh Str	reet, Sydney, NSW				checked by:	AJB
positio	on: E: 334	1,477.59	; N: 6,251,	298.59 (MGA94) si	urface elev	vation: 17.90 m (AHD)		angle from horizontal: 90°	
equip	ment type:	, Track	mounted	d	rilling fluid			hole diameter : 215 mm	
drillin	ig informa	tion	materia	substance		piezometer constructio	n details	bore construction	license:
ethod & pport	ter (m)	pth (m)	aphic log				1102	drilling company: driller: driller's permit po	
na su su	RI &	de	5 	ASEMENT SLAB		0.15 m	<u> </u>	Concrete	
<u> </u>				BASE COURSE		0.88 m		Bentonite	
	16			BALLAST		1.38 m			
	- 10			BEDROCK]				
		4-							
		·							
	-12								
		8-							
	-8								
	-	12-						Sand	
									
	-4								
		16-							
	-0	.							
	[20-							
		.							
1	4					22.28			
1		+ .	+ • • • +			22.30 111			
			1						
meth se	od & suppo e engineeri	ort ng log fe	or details	graphic log / core recovery	ID	type	installation date	stickup tip water leve (m) depth (m)	el Relative Levels (AHD)
wate	r 10-Oct-1	2, wate	r	core recovered	BH102	standnine		(m)	stickup tip water level
↓	level on water in	date sh flow	own	(graphic symbols indicate material)	0.1102	standpipe		22.00 m	טד.ד-
	complet	e drilling	l fluid loss		1				
_		innig iit			1				
25	water pres (lugeons) f interval sh	sure tes for depth own	at result						

A TETRA	TECH (COMP	ANY							Boreh	nole ID.	BH103
۲w	~		orio	~	~		Da	rahala		sheet	:	1 of 3
	Igi	ne	erin	<u>g I</u>	<u>-0(</u>	<u>J</u> -	в0	prenoie		projec	ct no.	754-SYDGE205019
client	:	Re	cap Mar	nage	men	nt				date s	started:	04 Nov 2018
princi	pal:									date o	complete	d: 06 Nov 2018
proje	ct:	4-6	Bligh S	tree	et					logge	d by:	YA
locati	on:	4-6	Bligh S	tree	et, Sy	/dne	y, NS	SW		check	ed by:	AJB
positio	n: E:3	34,49	1.89; N: 6,2	51,287	.55 (MC	GA94)	-	surface elevation: 12.80 m (AHD)	angle	from ho	rizontal: 90)°
drill m	odel:,	Track	mounted					drilling fluid:	hole di	iameter	:	
drilli	ng info ⊊	rmati	on			mate	erial sub	bstance		ty	bond	atmusture and
method & support	penetratio	vater	samples & field tests	3L (m)	depth (m)	graphic log	classificatio symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	consistency / elative densi	penetro- meter (kPa) 8 8 8 8	additional observations
2 00	3 6 7	-				Ą Ą		CONCRETE BASEMENT SLAB: 5-20mm aggregate,	20	02	4 3 5 7	CONCRETE -
				-	-							BALLAST
				10	-			CONCRETE: 10-20mm aggregate, 2% voids, (no				
				-12	1.0-			BALLAST: 50-80mm coarse, ballast, angular, medium // to dense compacted.				-
				Ļ	-			SANDSTONE.				-
				-11	-							
					2.0-							-
				-	-							-
				10								-
				- 10	3.0-							-
				Ļ	-							-
,												-
				-9	-							-
					4.0-							
				-	-							-
												-
				^{-°}	5.0 -							-
				Ļ	-							-
												-
				-7	-							
b					6.0							-
				-	-							-
				-6								-
					7.0-							-
1				F								-
1												-
				-5	-							-
AD	d auger d	drilling	*	sup M	port mud	- N	nil	samples & field tests cl	lassificat soil de	tion sym	bol &	consistency / relative density
AS HA	auger s hand a	screwi uger	ng*	C (casing	. IN		D disturbed sample E environmental sample	based o Classifica	on Unification Sys	ed stem	S soft F firm
W DT	washbo diatube	ore e		pen Ister		no res	sistance	SS split spoon sample U## undisturbed sample ##mm diameter mois	sture			St stiff VSt very stiff
				wat	er er	rangir refusa	ng to al	HP hand penetrometer (kPa) D N standard penetration test (SPT) M N* SPT complet recovered	dry moist wet			H hard Fb friable
* e.g.	bit show	wn by	suffix	-		Oct-12 w el on date	ater shown	Nc SPT with solid cone Wp VS vane shear; peak/remouded (kPa) Wi	plastic I liquid lir	imit nit		L loose MD medium dense
В Т V	TC bit	חנ			wat	er inflow	v	R refusal HB hammer bouncing				D dense VD very dense

CDF 0 9 06 LIBRARY.GLB rev: AR Log COF BOREHOLE: NON CORED 754-SYDGE205019.GPJ <<DrawingFile>> 15/11/2018 16:44

ATET	A TETRA TECH COMPANY							Borehole ID.			BH103				
E	Engineering Log - Corod Borobolo									2 of 3					
	Engineering Log - Corea Borenole									project	no. 754-SYDGE205019				
clie	client: Recap Management								date started:			04 Nov 2018			
prir	principal:								date co	mpleted:	06 No	/ 2018			
pro	project: 4-6 Bligh Street								logged l	oy:	YA				
loca	location: 4-6 Bligh Street, Sydney, NSW									checked by: AJB					
posi	ition:	E: 334	1,491.8	9; N: 6,2	251,287.55 (MGA94) sur	face elevation: 12.8	30 m (Ał	HD)		angle	e from horize	ontal: 90°			
drill	mode	el:, Tra	ack mo	unted	drill	ling fluid:				hole	diameter :		٧	ane id.:	
dril	ling	inform	ation	mate	erial substance material description	ntion of estimated sampl			samples	rock	mass defe	cts ac	ts		
ਲ ਸੁਦ			<u> </u>		ROCK TYPE: grain charact	terisics,	ering	strength & Is50	field tests & Is(50)	50	spacing (mm)	(type, inclina	defect des ation, planari	criptions ty, roughness	, coating
metho suppo	water	RL (m	depth	graphi		ponenta	weath	X=axial; O=diametral	(MPa) a = axial; d = diametral	sore n & RQ	30 300 3000 3000	particular	thickness	s, other)	general
				0,					-						
		-	-												
			-		start coring at 0.79m										
		-12	1.0-		SANDSTONE: fine to medium grain	ned, pale grey,	SW		a=1.08 d=0.92			PT. 3°. F	PL. RO. CN		A -
			-		1 20 to 1 32 m. laminated shale hai	rline to 2mm				100%		PT. 0°. F	PL. SO. CN		
			-		extremely closely laminated					100 /0		PT, 20°,	PL, RO, CN		
	-11							li 🛛 i i	d=0.89 d=0.90			PT, 5°, F	PL, RO, CN		
			2.0-									- PT, 2°, F	PL, SO, SN, b	black	-
											PT, 2°, F PT, 2°, F	≥L, SO, SN, black PL, SO, SN, black			
ę							a=0.72	100%		PT, 2°, F	PL, RO, CN				
		-10	-		2.80 to 3.70 m: becoming pale grey	2.80 to 3.70 m: becoming pale grey, massive, high						CS, 0°, I PT, 0°, I	R, RO, SN R, RO, CN		
0			3.0-		quartz content							PT, 1°, 0	CU, RO, CN		-
			-									PT, 2°, U	JN, RO, CN		
awiigr			-		2 70 to 5 64 m; palo raddich to brow	1 2			a=1.39 d=1.60			PT, 1°, F	PL, RO, CN R, RO, SN, d	ark grey	л Хот
5		-9	4.0-		3.70 to 5.64 m: pale reddish to brow	: pale reddish to brown								SN clay	RO, 6
0			-							100%		PT, 2°, F	PL, RO, CO - PL, RO, CN PL, RO, CN	SN, Clay)°, PL, se des
			-						- 1 10			[►] PT, 20°,	IR, RO, CN		: PT, 0 herwis
		-8	-						d=1.12 d=1.58					ts are ess ot	
			5.0 —												Defec unlo
5		-	-									P P1, 20°,	IR, RO, CN		
	-7		-			aa ahala lawinaa			a=1.25 d=1.31	100%	╎╓┛╷╷	- CS, 10 -	30°, IR, RO,	SN	
2			-		and clay seams (up to 8mm thick)	ce snale laminae		lii				- cs, 0 - 2	20°, PL - CU,	RO, CO - Cla	ау
5 2			0.0		6 17 to 7 25 m ⁻ nale reddish to brow	'n					l i la i i				
		[-						a=0.74 d=1.21			-			
0.00		-6	-												
			7.0-							100%		PT, 1°, F	PL, RO, CN		-
8		-	-		7.25 to 7.70 m: pale vellow grev				a=1.47 d=0.36			PT, 0°, F	PL, RO, SN		
			-					li 🔛 i				PT, 1°, F	PL, RO, SN		
5		-5	-							100%		PT, 0°, F PT, 0°, F	PL, SO, CN PL, SO, CN		
me	thod	& supp	ort		water	graphic log / cor	e recove	ry	weathering RS resid	y & altera	ation*	PT partin	e g	planarity PL planar	
AS AD CE	, au) au 3 cla	iger sci iger dril aw or b	ewing ling lade bit		10/10/12, water level on date shown	core recovered			XW extreme HW highly	mely we y weathe	athered ered	JT joint SZ shear	zone	CU curved UN undula	l ating
W NN		ashbore MLC co	e re (51.9) mm)	 water inflow complete drilling fluid loss 	no core	recover	ed	MW mode SW slight	erately weath	reathered nered	CO conta CS crush	ct ed seam	IR Irregul	ar
HC	x wi Q wi Q wi	reline o reline o	ore (47 ore (63 ore (85	.5mm) .0mm)	partial drilling fluid loss	core run & RQD			FR fresh *W replaced w strength	ith A for all	eration	SM seam			
SF	PT sta	andard st	penetra	ation	water pressure test result	barrel w	vithdraw	n	VL very lo	w		SL slick	ensided	coating CN clean	
	uli	alabe			(lugeons) for depth interval shown	RQD = Rock Q	uality De	signation (%) H high VH verv hi	igh		SO smo RO roua	oth h	VN venee CO coatin	r g
					<u> </u>						<u> </u>	VR very	rough		

A TETRA TECH COMPANY										Borehol	e ID.	BH103		
Engineering Log - Cored Borehole										sheet:		3 of 3		
Engineering Log - Corea Borenole									project i	10.	754-SYDGE205019			
clier	nt:	F	leca	р Ма	nagement						date sta	rted:	04 Nov 2018	
prin	principal:										date cor	mpleted:	06 Nov 2018	
proj	project: 4-6 Bligh Street										logged b	by:	YA	
loca	location: 4-6 Bligh Street, Sydney, NSW checked by: AJB													
position: E: 334,491.89; N: 6,251,287.55 (MGA94) surface elevation: 12.80 m (AHD) angle from horizontal: 90°														
drilling fluid: hole diameter : vane id.:														
drilling information material substance rock mass defects material description 								ditional observations ar	nd					
method & support	water	RL (m)	depth (m)	graphic log	ROCK TYPE : grain characterisics, colour, structure, minor components		weathering alteration	strength & Is50 X= axial; O= diametral	field tests & Is(50) (MPa) a = axial; d = diametral	sore run & RQD	spacing (mm)	(type, inclina	defect descriptions ation, planarity, roughne thickness, other)	ss, coating, <u>g</u> eneral
	Ē	-			SANDSTONE: fine to medium grained, pale g	grey,	FR		a=1.15	<u> </u>		- PT, 20°, PT, 20°	IR, RO, CN	
			-		Indistrictly bedded, dry. (continued)	-	HW		u 0.00	100%	ſ	PT, 0°, F	PL, SO, CO - Clay	-
				:::: 							i ili i i	PT, 20°, CS, 0 - 2	IR, RO, CO - Clay 20°, IR, SO, CO - Clay	-
		-4	9.0 -	[==]	to high strength.	Jium			a=0.68	100%	╘╧┛╎╎	PT, 10°,	IR, VR, CN	_
			_		BRECCIATED SHALE: slightly weathered, m strength.	nedium						PT, 0°, C	CU, RO, CN	-
			-	<u> </u> !	CLALE: find grained clightly weathered med				u-0.50			PT, 10°,	IR, RO, CN	-
		-3	-		to high strength.		FR					PT, 5°, C	U, RO, CN	-
			10.0 -	Image: Sandstone Sandstone medium to coarse grained, pale medium to coarse grained, pale		le						ΓΙ, Ο, Ι	L, RU, UN	-
		-		 ::::!					a=1.11		 	 -		-
2			-						d=1.27	100%				-
		-2]											_ 7
			11.0								i i r i i	-		- ch bed
		-	-						a=0.71			 -		PL, R descr
n]		11.50 to 11.90 m: band of shale and shale lam	ninae	SW		u-0.00		 			T, 0°, rwise
		-1	120-			ŀ	FR					-		are: P ⁻
5			-							100%				fects a unless
		Γ I	_						a=0.91 d=0.95			- CS, 0°, l	JN, RO, SN, black	- Dei
		-0	1											-
2 2			13.0 —											-
		- '	-		SANDSTONE: fine to coarse grained, pale grained, bigh quartz content, slightly weathered, mediu	ey,	-		a=2.14			PT, 0°, PL, RO, CO - Clay PT, 2°, CU, RO, CO - CL	²L, RO, CO - Clay CU, RO, CO - CL Clay	
			7		high strength.			d=0.32	100%	╎┢┥╎]— PT, 2°, C	CU, RO, CO - Clay	-	
		1	_!	::::	SANDSTONE: medium to coarse grained, gre indistinct bedding, fresh.	ey,						-		-
) ກ		ľ	14.0 —											-
ŝ		-	7						a=1.57			-		-
2		ľ	_	::::					u=1.92					-
		2	15.0-							100%	╔╤┱╎╎	PT, 0°, F	²L, RO, CO - Clay ²L, RO, CN	-
		l	- 15.0	::::								,_,.	_,,	-
				[· · · ·]	Borehole BH103 terminated at 15.31 m									
j		3												-
met AS AD CB W NM NQ HQ PQ SP	method & support AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm) NQ wireline core (47.6mm) HQ wireline core (63.5mm) PQ wireline core (85.0mm) SPT standard penetration test				water graphic ↓ 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss core run water pressure test result	graphic log / core recovery core recovered (graphic symbols indicate material) no core recovered core run & RQD barrel withdrawn			weathering & alteration* defect RS residual soil PT XW extremely weathered JT HW highly weathered SZ DW distinctly weathered SZ MW moderately weathered SS WW stempth SM Wreplaced with A for alteration SM s Strength rough VL very low L low M medium			defect type PT partin JT joint SZ shear SS shear CO conta CS crush SM seam roughness SL slick POL polis	g Planarity g PL plan CU curv zone UN undi surface ST step ct IR Irreg ed seam s coating ensided CN clea shed SN stai	ar ed ulating iyed jular an n

water pressure test result (lugeons) for depth interval shown

25uL

RQD = Rock Quality Designation (%

coating CN clean SN stain VN veneer CO coating

BH103 0.76 - 5.00 m

drawn	YA		client: Recap Management							
approved	AJB		project: 4-6 Bligh Street 4-6 Bligh Street, Sydney, NSW							
date	16/11/2018	coney -	title:							
scale	N.T.S.	A TETRA TECH COMPANY		CORE PHOTOGRAPH BH103						
original size	A4		project no:	754-SYDGE205019	fig no:	FIGURE 1	rev:			

A TETRA TECH COMPANY

title:

project no:

CORE PHOTOGRAPH

BH103 fig no:

754-SYDGE205019

rev:

FIGURE 3

date

scale

original size

16/11/2018

N.T.S.

A4

ATETR	A TECH	COMPAN	Y					Hole ID.	BH103
Di	07/	-m	tor	Installation				sheet:	1 of 1
	EZ			instanation				project no.	754-SYDGE205019
clien	t:	Reca	p Mana	agement				date started:	04 Nov 2018
princ	ipal:							date completed:	06 Nov 2018
proje	project: 4-6 Bligh Street							logged by:	YA
locat	ocation: 4-6 Bligh Street, Sydney, NSW								AJB
positio	on: E:	334,491.8	9; N: 6,251	,287.55 (MGA94)	surface elev	vation: 12.80 m (AHD)	1	angle from horizontal: 90°	
equipment type:, Track mounted drilling fluid: h								hole diameter :	
Irillin	g infor	mation	materia	Il substance material name		piezometer construction	details	bore construction	license:
method & support	water	RL (m) depth (m)	graphic log				3H103	drilling company: driller: driller's permit no.:	
			-2:2					Concrete	
	-	2] 	BALLAST BEDROCK		0.80 m		Sand	
		'							
	-	2						Bentonite	
						2.50 m			
	-'	3							
						3.30 m			
		4							
	-8	3							
		5							
		6							
	-6	³ 7							
		8							
		9						Sand	
	-								
		10							
	-2	2 11							
		12	1						
	[, 13 13							
		14							
	-	2							
		- 10	<u>_:::: </u>			15.31 m			
neth	od & su	pport	-	graphic log / core recover	/ ID	type	installation	stickup tip water leve	Relative Levels
see	engine	ering log	bg for details		, <u> </u>		date	(m) depth (m) (m)	(AHD) stickup tip water level
-	level	ct-12, wai on date s	er hown	(graphic symbols indicate material)	BH103	standpipe piezo.		15.31 m	-2.51
	comp	intlow	ng fluid loss	no core recovered	ł				
< 	J ∣partia	I drilling 1	luid loss						
25	water p (lugeor interval	ressure to s) for dep shown	est result th						

APPENDIX D: GROUNDWATER MONITORING GRAPHS

APPENDIX E: PROPOSED DEVELOPMENT DRAWINGS

4-6 Bligh Street Holdmark

Contacts

lan Lomas lan.Lomas@woodsbagot.com

Tim Davies Tim.Davies@woodsbagot.com

John Norman

John.Norman@woodsbagot.com

Woods Bagot acknowledges the Traditional Owners of the land, sky and waters. We pay our respects to Elders past, present, and to the future leaders of our community.

We honour the ongoing deep spiritual connection that the Traditional Owners have with this country. With respect, we tread gently to help reconcile and pave the way for a united and harmonious future for all people. Image above: 4-6 Bligh St Hotel Lobby Sydney, Australia Cover image: 4-6 Bligh St Aerial Sydney, Australia

Contents

01 Development Constraints

02 Additional Basements Study

Sketchbook / 3

Development Constraints

Current Design Levels

Existing Excavation DA

Sydney Metro Alignments

01.1 Current Design Levels

Basement Level 01 Floor Plan

Basement Level 02 Floor Plan

Basement Level 03 Floor Plan

Basement Level 04 Floor Plan

SCALE 1:500 FIGURE A1

- UNIT 0 UNOBSERVED GROUND, LIKELY FILL, RESIDUAL SOIL TO SANDSTONE (CLASS V TO II)
- UNIT 1 MODERATELY WEATHERED TO FRESH CLASS II AND CLASS I SANDSTONE
- UNIT 2 CLASS III SHALE
- UNIT 3 FRESH CLASS II AND CLASS I SANDSTONE
- INFERRED GEOLOGICAL BOUNDARY

01.3 Sydney Metro Alignments

Metro Interactive Map

Sydney Metro West

Sydney Metro City & Southwest

Overlay with site plan drawing

Sydney Metro City & Southwest - Reference Drawings

Drawing Reference

Title: Tunnel Alignment Control Line RT01 - Sheet 14 Drawing No: SMCSWTSE-JAB-TPW-AL-DRG-505114 Date issued: 04.02.2019

Drawing Reference

Title: Plan Of Acquisition For Rail Purposes Drawing No: DP12 the Rocks DP1231659.pdf - Page7 Date issued: 07.06.2017

Sydney Metro West - Reference Drawings

4 – 6 Bligh Street, Sydney Overlay of SMW Alignment rev5.7

POINT	EASTING (MGA 56 2020)	NORTHING (MGA 56 2020)	RL (mAHD)
А	334461.4	6251293.1	-17.1
В	334464.3	6251292.9	-17.1
С	334511.8	6251286.5	-17.8
D	334465.6	6251271.3	-17.1
Е	334466.6	6251271.1	-17.2
F	334507.7	6251265.6	-17.8

Note: RLs are taken at tunnel centreline Points A, B and C are on Eastbound Alignment (UP) Points D, E and F are on Westbound Alignment (DOWN)

Drawing Reference

Title: 4-6 Bligh Street, Sydney Overlay of SMW Alignment rev5.7 Drawing No: 4-6 Bligh ST Sydney 221020.pptx Date issued: 20.10.2022

Sydney Metro Guidelines

Note: all dimensions are taken from the excavated profile of tunnels and caverns Figure 4.1 Protection reserves for metro tunnels and caverns

Drawing Reference

Title: Sydney Metro Underground Corridor Protection Technical Guidelines Drawing No: Protection reserve diagram Fg.4.1 (Page 8) Date issued: April 2021

Additional Basements Study

Lift Pit Strategy

Sydney Metro Tunnels Overlay

Sketchbook / 17

02.1 Lift Pit Strategy

Basement Level 04 Floor Plan - Current lift pit levels

Basement Level 04 Floor Plan - Proposed lift pit levels

02.2 Sydney Metro Tunnels Overlay

Legend

Sydney Metro West:

Tunnel

City & Southwest Metro:

Cavern

Note:

Coordinates highlighted in **red** as per Sydney Metro West Alignment. Refer to **'Sydney Metro West - Reference Drawings'**

Centreline of Tunnels:

A) -17.1		
B) -17.1		
C) -17.8		
D) -17.1		
E) -17.2		
F) -17.8		

Coordinates highlighted in **blue** as per Tunnel Alignment Control Line RT01 - Sheet 14. Refer to **'Sydney Metro City & Southwest -***Reference Drawings*'

Centreline of Tunnels:

G) -4.105 H) -4.357

Ground Floor Plan

Legend

Sydney Metro West:

Tunnel

City & Southwest Metro:

Cavern

Tunnel

Acquisition Boundary

Cores

Note:

Coordinates highlighted in **red** as per Sydney Metro West Alignment. Refer to **'Sydney Metro West - Reference Drawings'**

Centreline of Tunnels:

A) -17.1			
B) -17.1			
C) -17.8			
D) -17.1			
E) -17.2			
F) -17.8			

Coordinates highlighted in **blue** as per Tunnel Alignment Control Line RT01 - Sheet 14. Refer to **'Sydney Metro City & Southwest -Reference Drawings'**

Centreline of Tunnels:

G) -4.105 H) -4.357

Cross Section - West / East

Cross Section - Current levels

Note: Tunnel centreline levels shown are relative to section line location.

Cross Section - Proposed

Long Section - North / South

Note: Tunnel centreline levels shown are relative to section line location.

Long Section - Proposed

Cross Section - West / East [Proposed]

Long Section - North / South [Proposed]

NOTES:

1) Shallow foundation solution shown is a work in progress based on a snapshot in time at the SSDA stage. Future coordination and completion of detailed design may call for adjustments to the designs.

 The foundations presented in these sketches are based on tower stress distribution only and have not been assessed in terms of geotechnical aspects (ie different settlements etc)

3) Primary foundation elements are shown in this sketch secondary elements for support of smaller loads requires further work and coordination with the remainder of the floorplates - but should not have an appreciable impact on the tunnel stresses.

			imensio wings.)	
M M	Mott MacDonald 383 Kent Street Sydney, NSW 2000 08	T: W:	+61 www	(0)2 9098 6800 5 v.mottmac.com	
MACDONALD	Australia	© Mott MacDonald			nald
Project			Project No 40909		
4-6 BLIGH STREET		Scale			
Sketch Title LEVEL B5 - FOUNDATIONS		Drawn J.O.	n Checke J.J.O.		Approved G.D.
		Date 17/10/		/10/2022	
Sketch Number MMD-SK-005		Status		Re E	3

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

)ate

Ultimate Load Conditions

NOTES:

1) Shallow foundation solution shown is a work in progress based on a snapshot in time at the SSDA stage. Future coordination and completion of detailed design may call for adjustments to the designs.

2) The foundations presented in these sketches are based on tower stress distribution only and have not been assessed in terms of geotechnical aspects (ie different settlements etc)

3) Primary foundation elements are shown in this sketch secondary elements for support of smaller loads requires further work and coordination with the remainder of the floorplates - but should not have an appreciable impact on the tunnel stresses.

M MOTT MACDONALD	Mott MacDonald 383 Kent Street Sydney, NSW 2000 08 Australia	
t		F
BLIGH STREET		0,

Т:	+61 (0)2 9098 6800
W :	www.mottmac.con

tralia © Mott MacDonald Project No 409096

Project	Project No		409090			
4-6 BLIGH STREET	Scale					
Sketch Title TUNNEL SECTION 1 - ULTIMATE		Checked J.O.		Approved G.D.		
		Date		/10/2022		
Sketch Number MMD-SK-006	Status	R		Re		v 3

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

Service Load Conditions

NOTES:

1) Shallow foundation solution shown is a work in progress based on a snapshot in time at the SSDA stage. Future coordination and completion of detailed design may call for adjustments to the designs.

2) The foundations presented in these sketches are based on tower stress distribution only and have not been assessed in terms of geotechnical aspects (ie different settlements etc)

3) Primary foundation elements are shown in this sketch secondary elements for support of smaller loads requires further work and coordination with the remainder of the floorplates - but should not have an appreciable impact on the tunnel stresses.

Μ	Mott MacDonald
MOTT MACDONALD	383 Kent Street Sydney, NSW 2000 08 Australia
ct	

Т:	+61 (0)2 9098 6800 5
W :	www.mottmac.com

© Mott MacDonald

Project	Project No		409096	
4-6 BLIGH STREET	Scale			
Sketch Title TUNNEL SECTION 1 - SERVICE		Chec J.C	ked).	Approved G.D.
			17	/10/2022
Sketch Number MMD-SK-007	Status		Re E	₹V }

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

Section B-B

Ultimate Load Conditions

NOTES:

1) Shallow foundation solution shown is a work in progress based on a snapshot in time at the SSDA stage. Future coordination and completion of detailed design may call for adjustments to the designs.

2) The foundations presented in these sketches are based on tower stress distribution only and have not been assessed in terms of geotechnical aspects (ie different settlements etc)

3) Primary foundation elements are shown in this sketch secondary elements for support of smaller loads requires further work and coordination with the remainder of the floorplates - but should not have an appreciable impact on the tunnel stresses.

M M MOTT MACDONALD	Mott MacDonald 383 Kent Street Sydney, NSW 2000 08 Australia	т: W : © Мс	T: +61 (0)2 9098 68 W: www.mottmac.c © Mott MacDonald		
ect		Project	No	40	9096
-6 BLIGH STREET		Scale			
tch Title UNNEL SECTION 2	- ULTIMATE	Drawn J.O.	Chec J.C	ked).	Approved G.D.

Project	Project	roject No		409096	
4-6 BLIGH STREET	Scale				
Ketch Title TUNNEL SECTION 2 - ULTIMATE		Chec J.C	ked).	Approved G.D.	
	Date		17	/10/2022	
Sketch Number MMD-SK-008	Status		Re E	v 3	

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

Section B-B

Service Load Conditions

NOTES:

1) Shallow foundation solution shown is a work in progress based on a snapshot in time at the SSDA stage. Future coordination and completion of detailed design may call for adjustments to the designs.

2) The foundations presented in these sketches are based on tower stress distribution only and have not been assessed in terms of geotechnical aspects (ie different settlements etc)

3) Primary foundation elements are shown in this sketch secondary elements for support of smaller loads requires further work and coordination with the remainder of the floorplates - but should not have an appreciable impact on the tunnel stresses.

M M MOTT MACDONALD	Mott MacDonald 383 Kent Street Sydney, NSW 2000 08 Australia
ct	

T:	+61 (0)2 9098 6800
vv:	www.mottmac.com

© Mott MacDonald Project No 4090

Project		Project No		409096	
4-6 BLIGH STREET	Scale				
Sketch Title TUNNEL SECTION 2 - SERVICE		Chec J.C	ked).	Approved G.D.	
			17	/10/2022	
Sketch Number MMD-SK-009	Status		Re E	∨ 3	

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

APPENDIX F: TRANSPORT FOR NSW ACQUISITION SURVEY PLANS

ATIAL INFORMATION REGULATION 2012 : CLAUSE 35(1)(b) & 61(2) AND 62							
MGA NORTHING	CLASS	ORDER	AHD	CLASS	ORDER	METHOD	ORIGIN
6 251 549.464	В	2	7.716	LB	L2	SCIMS	SCIMS
6 251 547.632	В	2	9.697	LC	L3	SCIMS	SCIMS
6 251 428.312	C	3				SCIMS	SCIMS
6 251 445.620	В	2				SCIMS	SCIMS
6 251 430.691	C	3				SCIMS	SCIMS
6 251 288.927	C	3				SCIMS	SCIMS
6 251 284.070	C	3				SCIMS	SCIMS
6 251 384.645	C	3				SCIMS	SCIMS
6 251 410.293	C C	3				SCIMS	SCIMS
6 251 595.273		3				SCIMS	SCIMS
6 251 615.397	B	2				SLIMS	SLIMS
6 251 571.902		3				SLIMS	SLIMS
6 251 632.182		5				SLIMS	SUMS
6 251 618.041		5				SLIMS	SLIMS
6 251 534.194	В					SLIMS	SLIMS
6 251 570.747		5				SLIMS	SLIMS
6 251 556.340		5				SLIMS	SLIMS
6 251 614.629		5				SLIMS	SLIMS
6 251 661.635	В	2				SLIMS	SUMS
6 251 388.409	В	2				SLIMS	SLIMS
6 251 533.021		5				SLIMS	SLIMS
6 251 561.101	B	2	8.662		L3	SLIMS	SLIMS
6 251 673.500		4	22.643	В	2	SLIMS	SLIMS
6 251 536.135	В	Z	15.745	в	Z	SLIMS	SLIMS
6 251 642							
6 251 641							
6 251646							
6 251438							
6 Z51 5Z1.334	В		10 4/7	1.0			
6 251 239.250	В		19.167		L3		
6 251 250.082		2	0 4/ 4	1.0	1.2		
0 251 44 1.3 13 6 251 276 555			9.141			SCIMS	SCIMS
0 251 2 /0.555		2				SCIPIS	
		2				SCIPIS	SCIMS
0 201 019.003							
0 201 014.221		2	E 22	10			SCIMS
0 201 010.241		2	5.22			SCIPIS	
0 201 001.104		2	4.441			SCIPIS	SCIPIS
0 201 019.999		2	22111	1.0	12	SCIPIS	SCIPIS
0 201 043.094 6 251 780 361	B		23.444			SCIPIS	
6 251 707.301	B		26 736			SCINS	SLING
v 2J1 J24.417		4	20.150			30113	50015
D SCALE FACTOR	1 = 0.999	9933		ZO	NE 56		

ePlan

SOURCE: M.G.A. CO-ORDINATES AND SCALE FACTOR ADOPTED FROM SCIMS ON THE 7th JUNE 2017

SURVEY CONNECTIONS

SSM 46691-PM 50837	129°14′52″ – 869.558 (MGA GRND) ″X″–″Y″ 129°14′52″ – 869.558 (SURVEY)
SSM 46691-SSM 31234	156°34′26″ - 268.407 (MGA GRND) 156°34′28″ - 268.402 (SURVEY)
SSM 31234-SSM 71425	98°39'11" - 124.135 (MGA GRND) 98°39'10" - 124.142 (SURVEY)
SSM 71425-PM 150420	84°24'46" - 120.347 (MGA GRND) 84°24'39" - 120.344 (SURVEY)
PM 150420-PM 150301	74°05'45" - 91.112 (MGA GRND) 74°06'03" - 91.106 (SURVEY)
PM 150301-PM 150216	357°27'33" - 100.640 (MGA GRND) 357°27'19" - 100.635 (SURVEY)
PM 40090-PM 150301	323°42'09" - 49.344 (MGA GRND) 323°41'51" - 49.348 (SURVEY)
PM 40090-PM 147471	84°27'43" - 133.262 (MGA GRND) 84°27'42" - 133.252 (SURVEY)
PM 147471-PM 147416	82°22'32" – 101.290 (MGA GRND) 82°22'15" – 101.292 (SURVEY)
PM 147171-PM 51327	169°48′24" – 88.219 (MGA GRND) 169°48′15" – 88.212 (SURVEY)
PM 147416-PM 150224	157°57′09" - 171.797 (MGA GRND) 157°57′05" - 171.800 (SURVEY)
PM 51327-PM 150224	111°33'22" - 160.497 (MGA GRND) 111°33'22" - 160.500 (SURVEY)
PM 51327-PM 50837	164°08'47" - 216.366 (MGA GRND) 164°08'41" - 216.372 (SURVEY)
PM 150224-PM50837	211°09'02" - 174.302 (MGA GRND) 211°08'57" - 174.300 (SURVEY)
SSM 46691-PM150372	145°15′06" - 141.017 (MGA GRND) 145°15′05" - 141.016 (SURVEY)
PM 150372-SSM31234	168°35′04" - 133.047 (MGA GRND) 168°35′09" - 133.044 (SURVEY)
SSM 46691-PM150216	106°27'31" - 450.843 (MGA GRND) 106°27'36" - 450.835 (SURVEY)

Registered:

DP1231659

15

DP1231659

PLAN FORM 2 (A2)

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

PLAN FORM 2 (A2)

SECTION 'C'-'C'

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

	Surveyor: DAVID WALLACE FAIRLIE	PLAN OF	L.G.A.:	SYDNEY
	Date of Survey: 07.06.2017	ACQUISITION FOR RAILWAY PURPOSES	Locality:	SYDNEY, MILLERS POI & THE ROCKS
	Surveyor's Ref: PR124856-DP12		Subdivision No:	
	2017M7100 (792 & 799) EXEMPTION No. 16/070-072		Lengths are in metres.	Reduction Ratio 1: N.T.S.
m	(Cad Ref: PR124856-DP12-001m.dwg)			

DP1231659

DP1231659

PLAN FORM 2 (A2)

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

TABLE OF AFFECTATIONS AND STRATUM LIMITS

	LOT & DP	PLAN NOTATION	APPROX. GROUND SURFACE	UPPER STRATUM LIMIT	LOWER STRATUM	PART AREA (approx.)	TOTAL AREA (approx.)
	LOT 2 DP 869022					(m ²)	(m ²)
	LOT 2 DP 869022	<u> </u>		ACQUISITIO	N LOT 120		
	LOT 40 PD 4005 440	(SN1)	RL 3	RL -9.75	RL -32.05	13	
	LUT TU DP 1065410	(SN2)	RL 3	RL -9.75	RL -32.05	7	
		(SN3)	RL 3	RL -9.75	RL -32.05	90	
	LOT 11 DP 1065410	(SN4)	RL 3	RL-11.05	RL -33.85	1870	2036
		(SN7)	RL 16	RL-11.05	RL -33.85	76	
	LOT 5 DP 873158	(SN6)	RL 3	RL -11.05	RL -33.85	24	
		(SN5)	RL 4	RL-11.05	RL -33.85	197	
	LOT 12 DP 1065410	(SN8)	RL 16	RL-11.05	RL -33.85	35	432
		(SN9)	RL 17	RL -12.85	RL -35.65	78	
		(SN9A)	RL 16	RL -12.85	RL -35.65	122	
	CP SP77663	(SN10)	RL 20	RL -12.85	RL -35.65	372	402
		(SN75)	RL 16	RL-11.05	RL -33.85	30	
	CP SP56911	(SN74)	RL 16	RL-11.05	RL -33.85	9	
	CP SP61643	(SN11)	RL 22	RL -12.85	RL -35.65	404	
	LOT 4 DP 1158807	(SN12)	RL 27	RL -15.35	RL -40.45	144	
	LOT 1 DP1052779	(SN13)	RL 27	RL -15.35	RL -40.45	276	
	LOT 401 DP 1175658	(SN14)	RL 27	RL -15.35	RL -40.45	11	
	LOT 3 DP 1053387	(SN15)	RL 20	RL -15.35	RL -40.45	1076	
	LOT 1 DP 771884	(SN16)	RL 17	RL -15.35	RL -40.45	56	
				ACQUISITIO	N LOT 121		
		(SN17)	RL 13	RL -13.35	RL -36.45	879	1110
	LUT I DP // 1004	(SN19)	RL 9	RL -11.3	RL -34.4	234	
	LOT 2 DP 771884	(SN21)	RL 8	RL -11.3	RL -34.4	8	
		(SN27)	RL 7	RL -11.3	RL -34.4	219	070
	LOT 21 DP 1063401	(SN28)	RL 6	RL -9.25	RL -32.35	159	3/8
		(SN29)	RL 7	RL -11.3	RL -34.4	2	
	LOT 1 DP 75111	(SN30)	RL 6	RL -9.25	RL -32.35	35	37
	LOT 1 DP 1213767	(SN31)	RL 4	RL -9.25	RL -32.35	248	
	LOT 1 DP 787946	(SN32)	RL 4	RL -9.25	RL -32.35	249	
		(SN36)	RL 4	RL -9.25	RL -32.35	44	
	LOT A DP 104160	(SN40)	RL 4	RL -7.25	RL -30.3	294	338
	LOT B DP 104160	(SN41)	RL 3	RL -7.25	RL -30.3	10	
	LOT 7 DP 110046	(SN42)	RL 3	RL -7.25	RL -30.3	5	
	LOT 1 DP 513109	(SN43)	RL 4	RL -7.25	RL -30.3	398	
	LOT 1 DP 62581	(SN44)	RL 5	RL -8.78	RL -28.25	245	253
		(SN48) (SN45)	RL 6	RL -8.78	RL -26.25	8	
	LOT 1 DI 303734	(SN46)	RL 5	RL -8.78	RL -28.25	252	
	CP SP 68748	(SN47)	RL 6	RL -3.15	RL -26.25	42	292
	LOT 7048 DP 93668	(SN50)	RL 6	RL -3.15	RL -26.25	193	
LO	OT 1 SEC 48 DP 758942	(SN51)	RL 7	RL -3.15	RL -26.25	95	
	LOT 1877 DP 877000	(SN52)	RL 8	RL -3.15	RL -26.25	3	499
·	LOT 56 DD 720620	(SN53) (SN55)	RL 11 BL 15	RL -2.65	RL -24.2	490	
	LOT 50 DF 729020	(SN55)	RL 15	RL-1.75	RL -22.13	619	
	LOT 100 DP 1126282	(SN50) (SN57)	RL 19 PL 20	RL -0.95	RL -20.1	104	722
		(SN67)	RL 22	RL 5	RL -18.1	302	
	LOT 1 DP 1084537	(SN70)	RL 23	RL -5.6	RL -16.05	555	857
		(SN68)	RL 22	RL 5	RL -18.1	32	
	LOT 2 DP 1084537	(SN69)	RL 22	RL 5.6	RL -16.05	3	133
		(SN71)	RL 24	RL 5.6	RL -16.05	98	
	CP SP 74556	(SN/2) (SN/3)	RL 23 RI 24	RL 5.6	RL -16.05	13	
	01 01 74000	(011/0)	112 24	ACQUISITIO	N LOT 122	100	<u> </u>
		(SN18)	RL 14	RL -12.8	RL -35.8	883	1172
	LOT I DP //1004	(SN20)	RL 10	RL -10.65	RL -33.85	290	11/3
	LOT 1 DP 75111	(SN22)	RL 8	RL -10.65	RL -33.85	90	322
		(SN25)	RL 7	RL -8.55	RL -31.7	232	
	LOT 1 DP 70970	(SN23)	RL 8	RL -10.65	RL -33.85	26	128
		(SN24)	RL 7	RL -8.55	RL -31.7	102	
	LOT 1 DP 70970 LOT 1 DP 1213767	(SN25) (SN23) (SN24) (SN26)	RL 7 RL 8 RL 7 RL 6	RL -8.55 RL -10.65 RL -8.55 RL -8.55	RL -31.7 RL -33.85 RL -31.7 RL -31.7	232 26 102 220	

AFFECTED PROPERTY		EXTENT OF ACQUISITION					
LOT & DP	PLAN NOTATION	APPROX. GROUND SURFACE LEVEL (RL)	UPPER STRATUM LIMIT	LOWER STRATUM LIMIT	PART AREA (approx.) (m ²)	TOTAL AREA (approx.) (m ²)	
			ACQUISITIO	N LOT 122	,		
	(SN33)	RL 5	RL -8.55	RL -31.7	26	46	
LOT 1 DF 101940	(SN34)	RL 4	RL -6.4	RL -29.55	20	40	
LOT 50 DP 1038651	(SN37)	RL 5	RL -6.4	RL -29.55	8		
LOT A DP 104160	(SN35)	RL 4	RL -6.4	RL -29.55	1		
LOT 51 DP 1038651	(SN38)	RL 4	RL -6.4	RL -29.55	512	710	
ECT OF DP 1000001	(SN39)	RL 5	RL -4.25	RL -27.45	198	710	
LOT 1 DP62940	(SN82)	RL 5	RL -4.25	RL -27.45	4		
LOT 1 DP 222751	(SN49)	RL 7	RL -5.15	RL -24.27	248		
LOT 1877 DP 877000	(SN54)	RL 10	RL -0.45	RL -23.2	192		
LOT 1 DP 814858	(SN58)	RL 13	RL -1.50	RL -21.5	367	590	
2011 21 014000	(SN59)	RL 14	RL -1.00	RL -19.8	223	000	
LOT 100 DP 1126282	(SN60)	RL 15	RL 0.2	RL -19.8	13		
	(SN61)	RL 15	RL 0.2	RL -19.8	116		
CP SP 6412	(SN62)	RL 16	RL 5.1	RL -17.85	394	521	
	(SN83)	RL 18	RL 5.1	RL -17.85	11		
CP SP 73569	(SN63)	RL 17	RL 5.1	RL -17.85	161		
	(SN64)	RL 17	RL 5.1	RL -17.85	109	358	
EOT 2 DF 307 190	(SN65)	RL 18	RL 6.45	RL -15.95	249	550	
LOT 1 DP587198	(SN66)	RL 19	RL 6.45	RL -15.95	215		
			ACQUISITIO	N LOT 123			
LOT 1 DP 771884	(SN76)	RL 10	RL -12.2	RL -32.75	50	52	
LOT 2 DP 771884	(SN77)	RL 9	RL -12.2	RL -32.75	2	52	
			ACQUISITIO	N LOT 124			
LOT 51 DP 1038651	(SN78)	RL 4	RL -5.85	RL -26.75	11	20	
LOT 1 DP 62581	(SN79)	RL 4	RL -8.78	RL -26.75	9	20	
			ACQUISITIO	N LOT 125			
LOT 1877 DP 877000	(SN80)	RL 14	RL -0.10	RL -20.10	8	15	
LOT 1 DP 814858	(SN81)	RL 13	RL -1.50	RL -20.1	7	15	

ROAD OWNERSHIP TABLE

AFFECTED ROAD	FEE SIMPLE
HIGH STREET	CT 1318-29, GOV'T GAZETTE 25/01/1923 FOL 346-347
HICKSON BOAD	GOV'T GAZETTE 25/01/1923 FOL 346-347
	CT 4454-65, CT 1318-29, CT 473-144, CT 462-35
GAS LANE	CT 4454-65
KENT STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
	CT 2050-103, CT 4454-65
BRADFIELD HIGHWAY	GOV'T GAZETTE 9/12/1927 FOL 5670, GOV'T GAZETTE 19/02/1932 FOL 680
	GOV'T GAZETTE 15/05/1970 FOL 1773 & 1774, CT 1/52538, CT 1/57574, CT 834-241
GROSVENOR STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
GLOUCESTER STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
HARRINGTON STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
GEORGE STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
	O/S LAND, PART ALLOT 2 SEC 47 GRANT DATED 1/5/1804 SERIAL 3 PAGE 128
UNDERWOOD STREET	O/S LAND, PART ALLOT 1 SEC 47 GRANT DATED 27/5/1823 SERIAL 14 PAGE 175
	CT 10132-41, CT 5139-138
DALLEY STREET	O/S LAND, PART ALLOT 1 SEC 47 GRANT DATED 27/5/1823 SERIAL 14 PAGE 175, CT 6931-98
QUEENS COURT	O/S LAND, PART ALLOT 1 SEC 47 GRANT DATED 27/5/1823 SERIAL 14 PAGE 175
DITT STREET	O/S LAND, PART ALLOT 15 SEC 47 GRANT DATED 1/1/1810 SERIAL 14 PAGE 175
FITTSTREET	O/S LAND, PART ALLOT 15A SEC 47 GRANT DATED 17/4/1851 SERIAL 53 PAGE 149
MACQUARIE PLACE	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
BRIDGE STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
GRESHAM STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
LOFTUS STREET	CROWN ROAD (FORMERLY PT SEC 49)
BENT STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920
O'CONNELL STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920, CT 4732-28
BLIGH STREET	GOV'T GAZ 31/12/1834 SYDNEY CORPORATION ACT 1932 FOL 920, CT 1040-134

AFFECTED ROAD	EXTENT OF ACQUISITION				
	PLAN NOTATION	UPPER STRATUM LIMIT	LOWER STRATUM LIMIT	PART AREA (approx.) (m ²)	TOTAL AREA (approx.) (m ²)
			COUISITION L	OT 120	
HICKSON ROAD	(R1)	RL-9.75	RL -32.05	2445	3222
HIGH STREET	(R3)	RL-11.05	RL -33.00	8.	
GASTANE	(R4)	RI -12.85	RL -35 65	228	
KENT STREET	(R5)	RL -12.85	RL -35.65	1421	
	(R6)	RL -12.85	RL -35:65	363	
CLARENCE STREET	(R7)	RL -14.55	RL -37.35	109	739
	(R8)	RL -14.55	RL -37.35	267	
	(R9)	RL -14.55	RL -37.35	749	
	.(R10)	RL -14.55	RL -37.35	152	
BRADEIELD HIGHWAY	(R11)	RL -14.55	RL -37.35	219	2284
	(R12)	RL -14.55	RL -37.35	333	
	(R13)	RL -14.55	RL -37.35	559	
	(R14)	RL -14.55	RL -37.35	272	
YORK STREET	(R15)	RL -14.55	RL -37.35	495	
GROSVENOR STREET	(R16)	RL -15.35	RL -40.45	530	
GLOUCESTER STREET	(R17)	RL -15.35	RL -40.45	414	
HARRINGTON STREET	(R18)	RL -15.35	RL -40.45	539	
		AC	QUISITION L	OT 121	
HARRINGTON STREET	(R19)	RL -13,35	RL -36.45	112	
GEORGE STREET	(R22)	RL -11.3	RL -34.4	362	
UNDERWOOD STREET	(R23)	RL -9.25	RL -32.35	90	
QUEENS COURT	(R27)	RL -7.25	RL -30.3	40	
DIT STREET	(R28)	RL -7.25	RL -30.3	78	205
PILIOIREEI	(R29)	RL -8.7	RL -28.25	217	290
MACQUARIE PLACE	(R33)	RL -3.15	RL -26.25	-83	
	(R34)	RL -3.15	RL -26.25	398	
BRIDGE STREET	(R35)	RL -2.65	RL-24.2	59	497
	(R38)	RL -2.65	RL -24.2	271	
LOFIUS STREET	(R38A)	RL -1.75	RL -22.15	196	467
	(R39)	RL -1.75	RL -22.15	491	
BENT STREET	(R40)	RL -0.95	RL -20 1	206	697
BI IGH STREET	(R43)	RI 5.0	RI -18 1	387	
BEIGHTOTHEET	freedy	Δ(COUNSITION	OT 122	
HARRINGTON STREET	(820)	RI -12.8	RI -35.8	2	
GEORGE STREET	(R24)	RL -10.65	PL_33.85	2/15	
GEORGE SINCE	(IVZ I) (P26)	DI 9.55	DI 217	120	
DALLEY STREET	(1/20)	112-0.00		240	330
	(rc20) (P24)	DI 0.4	DI 04 7	210 E4	
	(624)	FL -0.33		477	
PILLSINGEL	(R30)	RL -4.23	RL -27.40	+//	
BRIDGE STREET	(F(31)	RL -4.20	RL-21.40	3/1	503
	(R32)	RL -5.15	RL -24.27	132	
GRESHAM STREET	(R36)	RL -5,15	RL -24.27	370	719
,, ,,	(R37)	RL -0,45	RL -23.2	349	
BENT STREET	(R41A)	RL -0.45	RL -23.2	60	293
	(R41)	RL 1.25	RL-21.5	233	
O'CONNEEL STREET	.(R42)	RL 0.2	RL -19.8	324	
BLIGH STREET	(R44)	RL 6.45	RL -15.95	23	
		AC	QUISITION L	OT 123	
GEORGE STREET	(R45) RL -12.2 RL -32.75 38				
		AC	QUISITION L	OT 124	
PITT STREET	(R47) RL -5.85 RL -26.75 431				
		AC	QUISITION L	OT 125	
BENTSTREET	(R49)	RL -0.10	RL -20.10	51	722
	(P/R)	PL_0 10	PL-2010	682	100

Surveyor: DAVID WALLACE FAIRLIE	PLAN OF	L.G.A.:	SYDNEY
Date of Survey: 07.06.2017	ACQUISITION FOR RAILWAY PURPOSES	Locality:	SYDNEY, MILLERS POIN & THE ROCKS
Surveyor's Ref: PR124856-DP12		Subdivision No	:
201/M/100 (/92 & /99) EXEMPTION No. 16/070-072		Lengths are in metres	Reduction Ratio 1: N.T.S.
(Cad Ref: PR124856-DP12-001m.dwg)			

DP1231659
APPENDIX G: GROUNDWATER INFLOW ASSESSMENT

SEEPW - Total groundwater inflow rate (Plane Strain - Transient Analysis)

Total

Excavation Dimension: W = 32 m L = 37 m

Total Basement Inflow = Water rate (m³/sec) x (W + L) = $8.5*10^{-7}$ x (32+67) = 6 x 10⁻⁵ m³/sec

Groundwater Inflow Assessment

PARAMETERS

 no flow level
 -20 m AHD

 design gwl
 7.5 m AHD

 k
 5.0E-07 m/s

Theim-Dupuit equation for steady-state inflow

$$Q = \frac{\pi k (H^2 - h^2)}{\ln\left(\frac{R}{r}\right)}$$

CASE 1 - inflow to basement level 4

6	m AHD
37	m
32	m
19.4	m
250	m
27.5	m
26	m
4.9E-05	m3/s
0.05	L/s
4.26	m3/day
1.6	ML/yr
	6 37 32 19.4 250 27.5 26 4.9E-05 0.05 4.26 1.6

Note:

Case 1 and Case 2 are separate inflow cases and are not to be added together

CASE 2 - inflow to lift core

3.8 m AHD
3.3 m
2.8 m
1.7 m
100 m
27.5 m
23.8 m

Inflow

7.3E-05 m3/s 0.07 L/s 6.34 m3/day 2.3 ML/yr