

t: +61 2 9406 1000 f: +61 2 9415 1678 tetratechcoffey.com

17 October 2022

Our ref: SYDGE308795AB M1 Rev 1

Holdmark NSW Pty Ltd Suite 2/2-4 Giffnock Avenue Macquarie Park NSW 2113

Attention: Marvin Huang

Dear Marvin,

4-6 Bligh Street, Sydney – Response to SEARs for Issues 13 and 17 for SSD-48674209

Holdmark NSW Pty Ltd (Holdmark) commissioned Tetra Tech Coffey Pty Ltd (Coffey) to address Planning Secretary's Environmental Assessment Requirements (SEARs) for Issues 13 and 17, which are reproduced below. The proposed development site for a mixed-use hotel at 4-6 Bligh Street, Sydney (the site) is identified as Lot 1 in Deposited Plan 1244245. This site is within the City of Sydney local government area. Holdmark's development application is identified as SSD-48674209.

This letter presents Coffey's responses to issues regarding ground and water conditions (Issue 13) and contamination and remediation (Issue 17), which have been prepared by suitably qualified and experienced environmental professionals. Coffey's responses are based on results and reports from its previous environmental and geotechnical investigations at the site and observation of current groundwater levels.

ISSUE 13. GROUND AND WATER CONDITIONS	
Assessment Requirements Assess potential impacts on soil resources and related infrastructure and riparian lands on and near the site, including soil erosion, salinity and acid sulfate soils.	 Documentation Surface and Groundwater Impact Assessment Salinity Management Plan and/or Acid Sulfate Soils Management Plan
 Provide a Surface and Groundwater Impact Assessment that assesses potential impacts on: surface water resources (quality and quantity) including related infrastructure, hydrology, dependent ecosystems, drainage lines, downstream assets and watercourses groundwater resources in accordance with the Groundwater Guidelines 	

Soil resources

The site is at the northern end of the Sydney central business district and is currently occupied by a multistorey building with two basement levels which extend over the entire site. Coffey's geotechnical investigation, reported in November 2018 (reference SYDGE205019-AD Rev0), found that the ground conditions below the lower basement concrete floor included no natural soil with quarried stone aggregate providing a levelling layer directly above sandstone bedrock. Consequently, the potential for soil erosion from the site is eliminated as well as saline soil and/or acid sulfate soil not being present. Coffey concludes that the potential impacts on soil resources and related infrastructure and riparian lands on and near the site does not exist because the soil has not been retained on the site. The related management plans are therefore not applicable.

Surface water resources

The natural ground surface over the site has been excavated for the construction of the existing two-level basement. Existing development of the Sydney central business district (CBD) around the site has modified environmental conditions to the extent that surface water is present on the site and surrounds during rain events only. This water is managed through the Council's stormwater drainage system which, in the vicinity of the site, flows into the Tank Stream which ultimately discharges into Sydney Cove at Circular Quay.

The proposed development would not materially alter the quantity or quality of surface water generated from the site during rainfall events. Quality of discharged water may be improved by any first-flush retention device required under current Council management plans. Because the quality and quantity of water discharged from the site is reasonably expected to be the same as that from the existing premises during rainfall events, the potential for change in impact related to surface water is negligible.

Groundwater resources

Coffey's geotechnical investigation (report as cited earlier) included three investigation borings to depths of approximately 20 metres below the current street level. After recovery of cored rock (sandstone and shale), each borehole was used for installation of a piezometer, which is a slotted pipe allowing observation of groundwater level and collection of groundwater samples. Groundwater quality was assessed to be typical of that found in a Hawkesbury sandstone aquifer, with very low concentrations of petroleum hydrocarbons attributed to an off-site source. Hawkesbury sandstone of the rock quality observed beneath the site is associated with low yielding aquifers, which means that extraction of groundwater for beneficial use is not practicable. The land surrounding the site is intensively developed for high-rise buildings with basement levels and underground infrastructure including major tunnels for road and rail transport.

In general, groundwater prior to European settlement is expected to have flowed from the site to the north with seepage occurring into the Tank Stream and/or Sydney Cove. Development of the area around the site includes buildings with basement levels and underground infrastructure including major tunnels which have the potential to intersect groundwater and result in localised effects on groundwater flow and levels.

Site observations – observed groundwater levels

A Coffey engineer visited site on 13 October 2022 and measured groundwater levels at three existing piezometers, BH101, BH102 and BH103. The results are shown in Table 1 and the piezometer locations are shown in Figure 1.

Piezometer location	Surface elevation (m AHD)	Casing stickup (m above ground)	Depth to water (m below top of casing)	Date and time	Groundwater level (m AHD)
BH101	17.9	-0.11	11.45	13 Oct 22 9:55am	6.3
BH102	17.9	-0.08	10.69	13 Oct 22 9:45am	7.1
BH103	12.8	-0.08	5.47	13 Oct 22 10:00am	7.3

Table 1: Groundwater levels observed on 13 October 2022

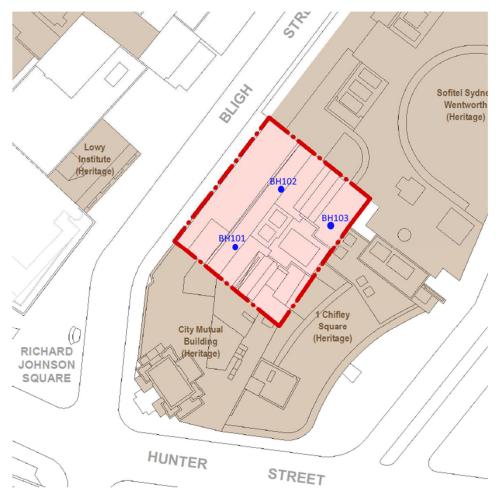


Figure 1: Piezometer locations

It is noteworthy that these levels were observed following nine months of "very much above average" rainfall in the Sydney region (source: Bureau of Meteorology), refer to Figure 2, and can therefore be assumed to represent groundwater levels higher than the long term average.

The current two-level basement does not penetrate the groundwater table. An extension of the basement at the site to provide four levels is expected to intersect approximately the top metre of the groundwater table.

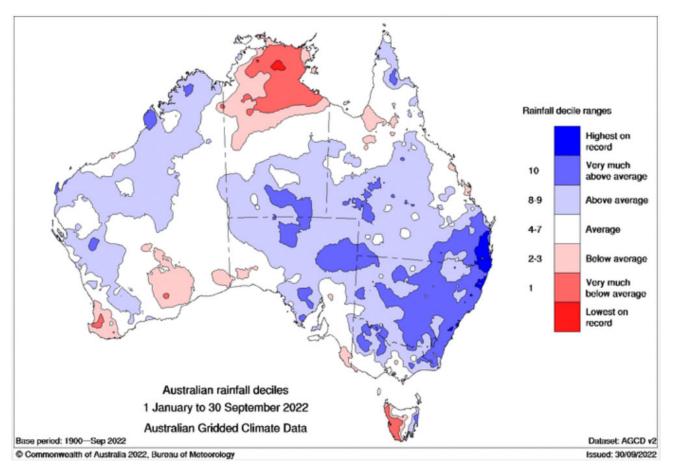


Figure 2: Australian rainfall deciles for 1 Jan 2022 to 30 September 2022

Groundwater inflow assessment

A steady state groundwater inflow assessment for the case of an extension of the basement at the site to provide four levels was carried out. The assessment assumed a design groundwater level of 7.5 m AHD, a bulk excavation level of 6.0 m AHD with excavation footprint dimensions of 37 m x 32 m, and a hydraulic conductivity of the bedrock of 5 x 10^{-7} m/s.

The assessed inflows to the excavation are less than 2.5 megalitres (ML) / year.

The adopted hydraulic conductivity for sandstone / shale bedrock of 5 x 10^{-7} m/s is considered conservative based on our experience with inflows to similar basements in the Sydney CBD. In particular, the observed core in the three investigation borings (report as cited earlier) does not indicate the presence of adverse fracturing in the sandstone / shale around and below the area of the proposed basement.

The details of the inflow assessment are included as an attachment, which also includes a second alternative case for inflows being captured by a lift core at an elevation of 3.8 m AHD, rather than being captured by the basement.

Water NSW provides for a water access licence exemption for aquifer interference activities taking 3ML or less of groundwater per year. Under the exemption, a person can take up to 3 ML of groundwater through an aquifer interference activity per authorised project per water year without needing to obtain a water access licence, provided:

a) the water is not taken primarily for consumption or supply; and

b) the person claiming the exemption keeps a record of the water taken under the exemption and provides this to the Minister within 28 days of the end of the water year; and

c) the records are kept for 5 years.

In relation to the potential for groundwater induced settlement impacts, an extension of the basement at the site to provide four levels would lead to around 1.5 m of groundwater drawdown in the bedrock at the excavation (assuming a design groundwater level of 7.5 m AHD, a bulk excavation level of 6.0 m AHD) and lesser drawdowns away from the excavation. A consideration of typical compressibility parameters for Sydney sandstone / shale indicates that this amount of drawdown in bedrock would result in negligible groundwater induced settlement.

The future basement is proposed for car parking and certain services which are considered to pose no unacceptable impact to groundwater quality.

Given the above discussion and considering groundwater resources in the context of the site's location in the northern part of the Sydney CBD, Coffey concludes that impact to groundwater resources for inclusion of a four-level basement would have negligible groundwater related impacts and that a water access licence would not be required.

Summary for Issue 13 Assessment Requirements

- the current premises on the site covers the entire site;
- the current premises includes a two-level basement which resulted in elimination of natural soil from the site;
- the proposed four-level basement development makes no material change to surface water management on or around the site;
- the site is located in an intensely developed area which includes major subsurface infrastructure, the proposed for basement for car parking and services is considered to pose no unacceptable impact to groundwater quality.

ISSUE 17. CONTAMINATION AND REMEDIATION

Assessment Requirements	Documentation
In accordance with Chapter 4 of SEPP (Resilience and Hazards) 2021, assess and quantify any soil	Preliminary Site Investigation If required:
and groundwater contamination and demonstrate that the site is suitable (or will be suitable, after remediation) for the development.	 Detailed Site Investigation Remedial Action Plan Preliminary Long-term Environmental Management Plan

Coffey has completed and reported:

- Preliminary Site Investigation, 4-6 Bligh Street, Sydney (reference SYDEN205070-R01, dated 7 July 2017), and
- Detailed Site Investigation, 4-6 Bligh Street, Sydney (reference SYDEN205070-R02, dated 3 December 2018).

Based on the findings of these contamination investigations and interpretation of that information in the context of the proposed development, Coffey concluded that the site is suitable for the proposed commercial development. Given that no widespread contamination was identified across the site, and that petroleum hydrocarbon impact to groundwater appears to be low and not attributable to a release from the disused fuel storage tank in the existing basement, Coffey considers that remediation and/or long-term management is not warranted.

Summary for Issue 17 Assessment Requirements

Existing contamination assessment addressed Issue 17 and we confirm that current conditions on the site indicate that conditions as assessed in 2018 remain applicable.

Limitations

Coffey assessed the site and issued environmental assessment reports including a statement titled "Important information about your Coffey environmental report". That statement also applies to information reported in this letter.

For and on behalf of Tetra Tech Coffey,

Dr Michael Dunbavan Senior Principal Consultant, CEnvP-SC

Attachment A - Inflow assessment_details

Attachment B - Detailed Environmental Site Investigation - 4-6 Bligh Street, Sydney

Attachment A - Groundwater Inflow Assessment

PARAMETERS

 no flow level
 -20 m AHD

 design gwl
 7.5 m AHD

 k
 5.0E-07 m/s

Theim-Dupuit equation for steady-state inflow

$$Q = \frac{\pi k (H^2 - h^2)}{\ln\left(\frac{R}{r}\right)}$$

CASE 1 - inflow to basement level 4

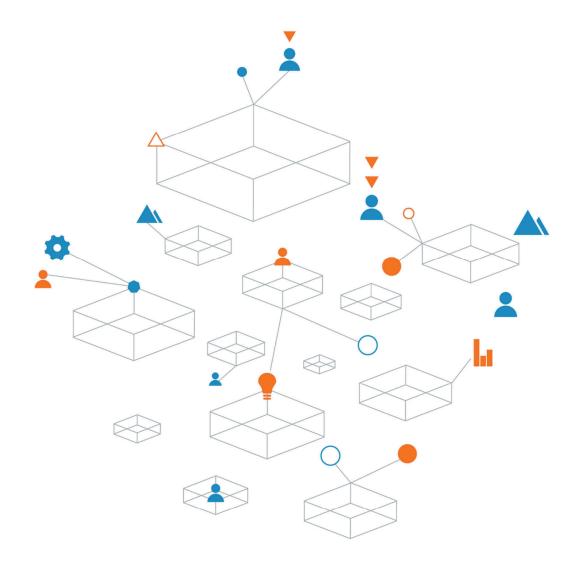
BEL	6	m AHD
L	37	m
W	32	m
r (equiv)	19.4	m
R - Radius of influence	250	m
Н	27.5	m
h	26	m
Inflow	4.9E-05 0.05	
	4.26	m3/day
	1.6	ML/yr

Note:

Case 1 and Case 2 are separate inflow cases and are not to be added together

CASE 2 - inflow to lift core

BEL	3.8 m AHD
L	3.3 m
W	2.8 m
r (equiv)	1.7 m
R - Radius of influence	100 m
Н	27.5 m
h	23.8 m


Inflow

7.3E-05 m3/s 0.07 L/s 6.34 m3/day 2.3 ML/yr Attachment B -Detailed Environmental Site Investigation - 4-6 Bligh Street, Sydney

HOLDMARK

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Trust is the cornerstone of all our projects

This page has been left intentionally blank

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Prepared for HOLDMARK

Prepared by Coffey Services Australia Pty Ltd Level 19, Tower B, Citadel Tower, 799 Pacific Highway Chatswood NSW 2067 Australia t: +61 2 9406 1000 f: +61 2 9415 1678 ABN 55 139 460 521

17 Oct. 2022

SYDEN205070

R03

Quality information

Revision history

Revision	Description	Date	Originator	Approved
Draft	Initial Draft	30/11/2018	E. Hafsteinsdottir	M. Dunbavan
R02	Issued as final	03/12/2018	E. Hafsteinsdottir	M. Dunbavan
R03	Reviewed	17/10/2022	Matthew Locke	M. Dunbavan

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Draft	1	PDF	Coffey – Rosanna Petteno	30/11/2018
Final	1	PDF	Coffey – Rosanna Petteno	03/12/2018
Reviewed	1	PDF	HOLDMARK	17/10/2022

Table of contents

Abb	reviati	ons	iv
Exe	cutive	Summary	. v
1.	Introc	uction	.1
	1.1.	Background and Development Description	. 1
	1.2.	Objectives	.2
	1.3.	Scope of Investigation	.2
2.	Site I	nformation	.2
	2.1.	Site Identification	.2
	2.2.	Site History	.3
	2.3.	Site Condition and Surrounding Environment	.4
	2.4.	Summary of Previous Investigations	.5
3.	Data	Quality Objectives	.5
4.	Prelir	ninary Conceptual Site Model	.7
5.	Samp	ling and Analysis Plan	.7
	5.1.	Planning investigations	.7
	5.2.	Well Construction and Groundwater Sampling	.7
	5.3.	Analytical Schedule	.9
6.	Grou	ndwater Assessment Criteria	.9
		6.1.1. Assessment of environmental values	.9
		6.1.2. Groundwater Stressor Criteria1	10
7.	Quali	ty Assurance/Quality Control1	11
	7.1.	DQIs for analytical results1	11
	7.2.	DQIs for sampling and analysis1	11
	7.3.	Field QA/QC1	11
	7.4.	Laboratory QA/QC1	12
	7.5.	QA/QC Data Evaluation1	12
8.	Resu	lts1	12
	8.1.	Site Walkover Reconnaissance1	12
	8.2.	Field Observations and Measurements1	13
	8.3.	Site Specific Geology1	13
	8.4.	Groundwater Analytical Results1	14
9.	Conc	eptual Site Model	14
10.	Conc	usions and Recommendations1	15
11.	Limita	ations1	16
Refe	erence	s1 Information about your Coffey Environmental Report	
Figu	ires		

Tables

- Table 2-1: Summary of site identification details.
- Table 2-2: Summary of site history.
- Table 2-3: Summary of site conditions and surrounding environment.
- Table 3-1: Data Quality Objectives.
- Table 5-1: Well construction and groundwater sampling procedures.
- Table 5-2: Summary of analysis.
- Table 6-1: Summary of the adopted GILs
- Table 7-1: DQIs for analytical results.
- Table 8-1: Field Measured Groundwater Level and Quality.
- Table 8-2: Site Specific Geology (Coffey, 2018b).
- Table 8-3: Summary of CoPCs Exceeding the Adopted Assessment Criteria.
- Table 9-1: Updated CSM.

Figures

- Figure 1: Preliminary CSM (schematic only, not to scale)
- Figure A1: Site Location
- Figure A2: Site Layout Features and Sampling Locations

Appendices

- Appendix A Proposed Development Drawings
- Appendix B Field Notes & Calibration Certificate
- Appendix C Laboratory Reports
- Appendix D QA/QC Data Evaluation
- Appendix E Geotechnical Borehole Logs

Abbreviations

AHD	Australian Height Datum
ASC NEPM	National Environmental Protection (Assessment of Site Contamination) Measure
ASS	Acid Sulfate Soil
bgl	below ground level
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
CoPC	Contaminant of Potential Concern
DBYD	Dial-Before-You-Dig
DP	Deposited Plan
DQO	Data Quality Objective
Eurofins	Eurofins Environment Testing Australia Pty Ltd, trading as Eurofins MGT
HSL	Health Screening Level
LOR	Limit of Reporting
mbgs	metres below ground surface
ΝΑΤΑ	National Association of Testing Authorities
NEPC	National Environment Protection Council
NSW EPA	New South Wales Environment Protection Authority
NSW OEH	New South Wales Office of Environment & Heritage
РАН	Polycyclic Aromatic Hydrocarbon
PID	Photo-ionisation Detector
QA	Quality Assurance
QC	Quality Control
RL	Reduced Level
RPD	Relative Percent Difference
SOP	Standard Operating Procedures
SWL	Standing Water Level
ТРН	Total Petroleum Hydrocarbon
TRH	Total Recoverable Hydrocarbon
VOC	Volatile Organic Compound

Executive Summary

One Investment Management Pty Ltd as trustee for Recap Management No. 4 Trust (Recap) is proposing to redevelop the existing property at 4-6 Bligh Street, Sydney (the site) into a modern hotel and commercial high-rise development. Coffey Services Australia Pty Ltd (Coffey), has been appointed by Recap to undertake a Detailed Environmental Site Investigation (DESI) for the site in response to a Preliminary Site Investigation (PSI) undertaken by Coffey in 2017, which identified potential contamination at the site, and City of Sydney Council's comments on the contamination.

The DESI works were carried out in conjunction with geotechnical investigations at the site. Following drilling of three boreholes at the site they were converted into groundwater wells; BH101, BH102 and BH103. Groundwater levels were measured and groundwater samples were collected from these three wells by a Coffey Environmental Consultant on 12 November 2018.

• Plan to manage any unexpected contamination encountered during excavation at the site.

Based on the review of available data, observations made during fieldwork and an assessment of laboratory analytical data, Coffey concludes that:

- No soil is present in a material quantity below the current basement levels;
- Petroleum hydrocarbon (TRH) impacted groundwater is present at the site, up-gradient of the disused fuel tank, but no volatile hydrocarbons (defined as TRH F1, BTEX and naphthalene) were reported and dissolved TRH F2 was reported at low concentrations (<0.05 to 0.27 mg/L);
- The source of the petroleum hydrocarbons is unknown and remains as a data gap. However, concentrations are unlikely to be derived from the disused fuel tank due to no detectable TRH reported in BH103, downgradient of the impacted locations (BH101 and BH102). However, we recommend removal of this tank prior to demolition, to avoid any potential residual fuel spillage;
- Groundwater is present within the sandstone bedrock, which is approximately 6m beneath the current basement level. The proposed development includes four basement levels, with the lowest basement level proposed at 6.01mAHD, approximately 1.5 m below the groundwater table;
- Associated potential human health and ecological risk (including potential vapour intrusion risk) is considered to be low due to the absence of TRH F1, BTEX and naphthalene, relatively low concentrations of TRH F2 and the air exchange rates required for use of the basement for car parking.

In summary, based on the findings of the investigation and in consideration of the key factors outlined above, Coffey concludes that the site is suitable for the proposed commercial development. Given that no widespread contamination was identified across the site, and that petroleum hydrocarbon impact to groundwater appears to be low and not attributable to a release from the disused UST in the sub-basement, Coffey considers that a RAP is not warranted. As a precaution against localised unidentified contamination, we recommend:

- Preparation and implementation of a Construction Environmental Monitoring Plan which includes an Unexpected Finds Protocol (UFP), to manage any unexpected contamination encountered during excavation at the site; and
- Confirmation of acceptable health risk related to petroleum impacted groundwater seepage into the lowest basement level when the structural detail for walls of that basement level and system for management of groundwater seepage is selected.

Any use of information in this report must consider the uncertainties outlined in *Important Information* about your Coffey Environmental Report, which follows Section 11.

1. Introduction

One Investment Management Pty Ltd as trustee for Recap Management No. 4 Trust (Recap) intends to redevelop the existing property at 4-6 Bligh Street, Sydney (the site) into a modern hotel and commercial high-rise development. Coffey Services Australia Pty Ltd (Coffey), was appointed by Recap to undertake a Detailed Environmental Site Investigation (DESI) for the site subsequent to a Preliminary Site Investigation (PSI) completed by Coffey in 2017, which identified potential contamination at the site, and to address City of Sydney Council's comments on that issue. Coffey understands that this DESI report is intended to form part of the responses to relevant authorities to support the Development Application (DA) for the redevelopment of the site.

This report has been carried out in general accordance with Coffey's proposal dated 23 October 2018 (ref: 754-SYDGE205019-AC Rev04), guidance made or endorsed by NSW Environment Protection Authority under section 105 of the *Contaminated Land Management Act 1997* (CLM Act) including the NSW Office of Environment and Heritage (NSW OEH, 2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.1. Background and Development Description

At the time of investigation, the site was occupied by a multi-storey commercial building with a twolevel basement that was used for car parking and building plant storage. Based on the Architectural Package (dated 2 June 2017) developed by Architectus (included in Appendix A), Coffey understands that the development will require demolition of the existing site structure, excavation of an additional basement level and the construction of a high-rise building.

The current building consists of a multi-storey commercial building with 19 floors office space above ground floor commercial and retail premises, overlying one level of basement car-parking and one level of building plant room. The proposed basement configuration will be four levels of basement including loading, car parking and plant room on basement level B1. Thus, excavation of another basement level is required to achieve the lowest basement design floor level of 6.01 m AHD. The development will include ground floor commercial and retail premises, two floors of function rooms and/or gyms, seven levels of commercial offices and meeting/conference rooms. Hotel levels will extend up to 46 floors (including two floors of plant rooms), with a business club, roof terrace and mezzanine level occupying the 45th - 47th floors. The 48th floor will be occupied by building plant.

Recap has lodged a planning proposal to redevelop the site. This proposal is subject to evaluation against extant planning policies including:

- State Environmental Planning Policy 55 Remediation of Land (SEPP55) 1998; and
- City of Sydney Development Control Plan (DCP) 2012.

The planning policies above state that when determining a planning instrument, the determining authority should consider whether the land is suitable or can and will be made suitable for the proposed use.

Coffey (2017) previously prepared a PSI report for the site (ref. SYDEN205070-R01) that accompanied the planning proposal. The PSI report identified several potential sources of contamination at the site, including an underground storage tank (UST) for fuel and related fill points along the Bligh Street footpath. Subsequent information provided by the client and site reconnaissance confirmed the presence of a disused fuel storage tank within the sub-basement. Following these findings, Council has requested further investigation into these potential sources of contamination. Coffey understands that this DESI report is intended to form part of the responses to relevant authorities to support the DA, with a State Significant Development Application (SSDA) lodged in the future.

Concurrent to the DESI presented herein, Coffey has also undertaken geotechnical investigations at the site as part of the DA process and issued a separate Geotechnical Investigation Report (ref. SYDGE205019-AD Rev0).

1.2. Objectives

The objectives of the DESI were to:

- Carry out an environmental assessment in response to Council's concerns about potential contamination identified during the PSI;
- Refine the assessment of contamination risks associated with the identified fuel tank; and,
- Provide an opinion on the suitability for the site for the proposed development in accordance with SEPP55.

1.3. Scope of Investigation

The scope of investigation was based on the NSW EPA endorsed Australian framework for contaminated site assessment outlined in the National Environment Protection (Assessment of Site Contamination) Measure 1999 (the ASC NEPM, amended 2013) and the complimentary guidance published by the NSW EPA and the NSW Department of Planning for contamination assessment in NSW.

To meet the above objectives, Coffey undertook the following activities:

- Site visit to the sub-basement area where the disused fuel tank is located to observe the condition of the tank and presence/extent of staining observed on the floor (if any). During the visit, Coffey interviewed building maintenance representatives to obtain further information regarding the use of the tank and whether there are records detailing spillages, leaks etc.;
- Observation of soil and bedrock cuttings arising from geotechnical drilling for indicators of fuel impacts (e.g. staining or hydrocarbon odours). Cuttings from each borehole were screened using a calibrated photo-ionisation detector (PID) for the presence of ionisable volatile organic compounds such as petroleum hydrocarbons;
- Installation of groundwater monitoring wells, to enable collection of groundwater samples and assessment of groundwater flow direction;
- Development of monitoring wells in accordance with Coffey standard procedures, prior to sampling;
- Gauging, purging and collection of groundwater samples approximately one week after well installation. Samples analysed for TRH and PAH;
- Preparation of a DESI report (this document) based on information obtained from the site investigation and in general accordance with *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (NSW OEH, 2011).

2. Site Information

2.1. Site Identification

Site identification details are summarised in Table 2-1. The location of the site is shown on Figure A1, and the current site plan on Figure A2 (both attached).

Table 2-1: Summary of site identification details.

Item	Description
Site Address	4-6 Bligh Street, Sydney, NSW 2000
Lot Number & Deposited Plan	Lots 1 and 2 in DP134866, Lot A in DP184770 and Lot 1 in DP919932
Site Area	Approximately 1,230 m ²
Present & Proposed Zoning	B8 – Metropolitan Centre. Sydney Local Environmental Plan (LEP) 2012
Local Government Authority	City of Sydney Council
Present Land Use	Commercial
Proposed Land Use	Commercial offices and hotel accommodation
Surrounding Land Use	North: Commercial buildings. East: Commercial buildings. South: Commercial buildings followed by Hunter Street. West: Bligh Street followed by commercial buildings and an active construction site.

2.2. Site History

Details of site history were provided in Coffey's PSI report (2017), including a review of historical aerial photographs, historical parish maps and a search of government registers.

A summary of the site history is provided in Table 2-2.

Table 2-2: Summary of site history.

ltem	Description
Aerial Photographs	 Selected aerial photography between 1943 and 2017 was reviewed: Site appears to have been occupied by commercial buildings prior to 1943. Surrounding area has been dominated by commercial buildings since 1943, with some car parks and residential buildings.
Parish Maps	 The site is in Bourke Ward in the Parish of St James with the site occupied by a private building of brick or stone in 1854; Residential and commercial buildings were present on the site in 1880, which included gardens, kitchens, lumber store, out houses and work sheds. The Union Club house was present north of the site, stables were present east / south east and an Iron Front workshop present on the corner of Hunter and Bligh Street. The 1949 historical aerial photograph identified that the site was occupied by two large, multi-storey buildings, a lane north of the site. This building appeared the same as what was observed within the 1943 aerial photograph.
Government Registers	 Coffey referred to the registers listed below but no information relevant to the site was identified: NSW EPA contaminated land records Protection of the Environment Operation Public Registers NSW State Heritage search Former gasworks Waste management facilities Mine areas and storage tanks SafeWork NSW dangerous goods licence records

2.3. Site Condition and Surrounding Environment

Table 2-3 provides a summary for the site conditions and surrounding environment. Detailed information can be found in Coffey (2017) PSI report and Coffey (2018b) Geotechnical Investigation Report.

Table 2-3: Summary of site conditions and surrounding environment.

Item	Description
Topography and drainage	 Elevation from 21 m AHD within the north western corner, dropping to 19.5 m AHD within the south western corner; Surface water anticipated to run offsite, and discharge into the municipal stormwater system; Site is part of the extensive Sydney Harbour Catchment.
Surface waters and wetlands	 Sydney Cove (Circular Quay) is the closest identified surface water body, approximately 500 m north of the site; No known wetlands at or within 500 m of the site.
Critical habitats	No Critical habitat declarations at or within 500 m of the site under Sections 53-55 of the Threatened Species Conservation Act 1995.
Geology and soil landscapes	 Underlain by the Hawkesbury Sandstone: medium to coarse grained quartzose sandstone with very minor shale and laminite lenses. Pittman LIV dyke: north of the site, runs east-west across the CBD; GPO Fault Zone: west of the site, oriented in a NNE – SSW direction; Martin Place Swarm Joint: east of the site, running in a NNE – SSW direction subparallel to the GPO Fault Zone; Sandstone was overlain by the Gymea soil landscape: typically comprise undulating to rolling rises and low hills on Hawkesbury Sandstone. Where present, soils are shallow to moderately deep (30-100 cm), yellow earths and earthy sands on crests and inside benches; shallow (<20 cm) siliceous sands on leading edges of benches; localised podzolic soils and yellow podzolic soils on shale lenses; shallow to moderately deep (<100 cm) siliceous sands and leached sands along drainage lines. Soil was not present in bore samples collected as part of the geotechnical investigations, which is attributed to historical development of the site including a basement.
Acid sulfate soils	 Site has no known occurrences of acid sulfate soils. Area of 'Disturbed Terrain' (X4) is present north of the site, which includes filled areas, where reclamation of low lying areas has occurred for urban development.
Hydrogeology	 Coffey's PSI report assumed groundwater flow directions to be north toward Circular Quay. However, Coffey (2018b) geotechnical investigations interpreted the flow direction to be south, south-south east (based on 12 November 2018 groundwater observations), potentially due to drainage to existing drained basement and infrastructure such as the Eastern Suburbs Railway tunnels south of the site; Coffey (2018b) did not report noticeable tidal fluctuation changes in groundwater levels; No registered groundwater bores exist within a 500 m radius of the site.

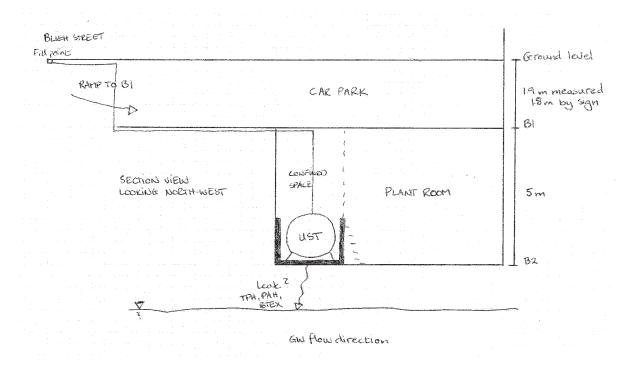
2.4. Summary of Previous Investigations

Coffey referred to the following documents for the DESI:

- Coffey (2017). Preliminary Site Investigation, 4-6 Bligh Street, Sydney NSW, 7 July 2017 (ref. SYDEN202725-R01).
 - The following areas of environmental concern were identified:
 - Hazardous building materials in current site structures;
 - Isolated leaks/spills from mechanical plant within the basement; and
 - Suspected USTs.
 - Further work to address data gaps was recommended:
 - Undertake an inspection of the suspected USTs and/or fill points; and
 - Effectively characterise the site by carrying out a detailed site investigation, in tandem with geotechnical works.
- Coffey (2018b). Geotechnical Investigation Report for 4-6 Bligh Street, Sydney, dated 16 November 2018. Coffey Geotechnics Pty Ltd (ref. SYDGE205019-AD Rev0).
 - Soil was not present in borings into sandstone bedrock beneath the current basement; and
 - Groundwater flow direction was inferred to be south, south-south east (based on 12 November 2018 groundwater observations), attributed to drainage to existing drained basement and subsurface infrastructure such as the Eastern Suburbs Railway tunnels approximately 200m south of the site

3. Data Quality Objectives

With reference to Section 18 Appendix B of Schedule B2 – Guideline on Site Characterisation in the ASC NEPM, the data quality objectives (DQO) process is a seven-step iterative planning approach used to define the type, quantity and quality of data needed to support decisions relating to the environmental condition of a site. The seven-step DQO process used for this assessment is described in Table 3-1.


Table 3-1: Data Quality Objectives.

Step 1: State the problem	Coffey (2017) PSI report identified several potential sources of contamination at the site, including a disused fuel storage tank and related fill points along the Bligh Street footpath, which could adversely affect the suitability of the site through vapour intrusion into the basement of the proposed redevelopment. Council requested further investigation into these potential sources of contamination.
Step 2: Identify the decision/Goal of the study	 Is the site suitable for the proposed redevelopment considering potential presence of petroleum hydrocarbons in soil and groundwater? Has fuel been released to the sub-surface, and if so, has contamination moved offsite? Is there a complete pathway to potential receptors?
Step 3: Identify information inputs	 The main inputs are: How many boreholes should be drilled and where? Are there access restrictions present that may affect the location of boreholes and the method(s) used for drilling? To what depths should the boreholes be drilled? At what depth should soil samples be collected? Where should groundwater monitoring wells be installed?

	• What are the contaminants of potential concern for both soil and groundwater?
	The primary inputs to assessing the above include:
	 Information available from previous site investigations. Observations made by Coffey during a site walkover. Results of the proposed soil and groundwater sampling. Relevant legislation and regulatory guidelines. Proposed design levels for the additional basement level.
Step 4: Define the study boundaries	 Lateral study boundaries: defined by the boundaries of the site, for both soil and groundwater, as shown in Figure A2; Vertical boundaries: target depth of the boreholes (30 m for BH101 and BH102, 15 m for BH103) and depth of groundwater wells, which screened lengths will be determined onsite based on subsurface conditions; Temporal boundaries: the period of on-site activity; Investigation constraints: significant access constraints.
Step 5: Develop the decision rule	The decision rule to assess the suitability of the site will be as follows:
	 QA/QC assessment indicates that the data is usable; Where contaminant concentrations for each sample are above the limit of reporting (LOR) but below the adopted investigation levels, no further assessment/remediation is required with respect to that chemical/media/area; and Where contaminant concentrations are reported to exceed the adopted investigation levels, then additional investigation and/or management (including remediation) may be required.
Step 6: Specify the	There are two sources of error for input to decisions:
performance or acceptance criteria	 Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and Measurement errors, which occur during sample collection, handling, preparation, analysis and data reduction. The null hypothesis for this study is: Contaminant concentrations within the soil and groundwater beneath the site are above the adopted investigation levels. These errors may lead to the following decision errors: Type I - deciding that the soil and/or groundwater is not contaminated and, therefore, the site is suitable for the proposed development when the reverse is true; and Type II - deciding that the soil and/or groundwater is contaminated and, therefore, the site is not suitable for the proposed development when the reverse is true; and
	The acceptable limit on decision errors is a 5% probability of a false negative (i.e. assessing that the average concentrations of COPC are below the adopted soil and groundwater investigation levels when they are actually above the investigation levels).
	Where data sets are sufficiently populated, the 95% upper confidence limit (UCL) of the arithmetic mean will be used to calculate this probability. The 95% UCLs are to be less than the investigation level and standard deviation of the sample population shall be less than 50% of the investigation level.
	The assessment criteria for the investigation are nominated in Section 6 of this report.
Step 7: Optimise the design for obtaining data	Based on the previous Steps 1 to 6 of the DQO process, the optimal design for obtaining the required data is presented in the following sections (i.e. sampling and analysis plan).

4. Preliminary Conceptual Site Model

A generalised preliminary CSM was developed as part of the DQO process, defining the potential sources of contamination, potentially affected media, Contaminants of Potential Concern (CoPC), potential receptors and exposure scenarios for redevelopment of the site for the proposed hotel and commercial high-rise development.

A summary of the preliminary CSM in a graphic format is provided in Figure 1.

Figure 1: Preliminary CSM (schematic only, not to scale)

5. Sampling and Analysis Plan

5.1. Planning investigations

Investigation of potential contamination in soil and groundwater included the following:

- Fieldwork undertaken by Coffey environmental and geotechnical practitioners;
- Site walkover on 19 September 2018 to inspect the fuel tank and fill points;
- Subsequent selection of borehole locations which surrounded the tank location;
- Observation of cuttings from three (3) boreholes drilled during the geotechnical investigations between 29 October and 6 November 2018 (Coffey, 2018b);
- Installation and development of three (3) groundwater monitoring wells following the geotechnical drilling;
- Gauging and sampling of the three (3) groundwater wells on 12 November 2018.

5.2. Well Construction and Groundwater Sampling

During the geotechnical investigations, the boreholes were completed as groundwater monitoring wells for contamination assessment. Details of the well construction and groundwater sampling

procedures are summarised in Table 5-1. Details of well construction and bore logs are included in Appendix E, which is an extract from Coffey (2018b).

Table 5-1: Well construction and groundwater sampling procedures.

Activity	Detail / Comments
Below Ground Service Clearance	 Prior to commencement of borehole drilling, Coffey carried out: <i>Dial before you dig</i> search; Engagement of an experienced services location subcontractor to locate the underground service and set out proposed borehole locations at cleared locations; Review of plans showing locations of existing services.
Concrete Cutting	 Boreholes were drilled by specialist geotechnical drilling subcontractor BG Drilling; Boreholes initially advanced through the concrete floor slabs and sub-base by diatube, and then cored through rock to final depth.
Well Construction and Development	Groundwater wells were constructed in accordance with the Coffey Standard Operating Procedures (SOPs), which are consistent with Schedule B2 of the ASC NEPM. Details of the groundwater well construction can be viewed in the well construction logs in Appendix E. The new monitoring wells were developed on 2 (BH102), 5 (BH101) and 6 November (BH103), using a bailer with three well volumes removed from each monitoring well. Well development records are presented in Coffey (2018b).
Well Location & Gauging	 Well locations are shown in Figure A2 in Appendix A, being: BH101 and BH102 – located in the upper level basement carpark at elevation 17.9 m AHD, drilled with a specialist small track-mounted rig; BH103 – located in the pump room in the lower basement at elevation 12.8 m AHD, drilled with a portable rig. Each well was gauged 12 November 2018 using an oil/water Interface Probe (IP) to measure the depth to groundwater and the presence of Non-Aqueous Phase Liquid (NAPL) (if any). Data loggers were installed in these three wells on 6 November 2018 to record groundwater level for a planned monitoring period of four weeks (Coffey, 2018b).
Well Purging & Sampling Method	Groundwater was sampled in general accordance with the relevant Coffey SOP, which is consistent with Schedule B2 of the ASC NEPM. No purging was required due samples being collected using a Hydrasleeve (installed for a minimum of 30 minutes). Groundwater quality parameters were measured at each well, including pH, temperature, dissolved oxygen, electrical conductivity and redox potential. Groundwater sampling field sheets and water quality measurements are provided in Appendix B. The water quality meter calibration certificate is included in Appendix B.
QA/QC Samples	 To measure the accuracy and precision of the data generated by the field and laboratory procedures for this assessment, Coffey collected and analysed the following quality assurance/quality control (QA/QC) samples: One blind duplicate (QD01) groundwater sample was collected from BH102; One rinsate blank (RB) to assess the adequacy of the decontamination process in the field; One trip blank (TB) was included to assess whether any volatile organic contamination may have been introduced to the samples during sample handling;

Activity	Detail / Comments
	One trip spike (TS) was included to assess if any loss of volatile organic compounds may have occurred during sample handling.
Sample Handling and Transportation	Sample collection, storage and transport were in general accordance with Coffey's SOPs, which are consistent with Schedule B2 of the ASC NEPM. Groundwater samples were immediately placed into laboratory supplied bottles with appropriate preservatives, with Teflon lined seals and placed into an ice chilled cooler. The samples were transported to a NATA accredited laboratory under chain of custody control.
Decontamination of sampling equipment	The interface probe was decontaminated with Decon 90 solution and rinsed with potable water prior to use and between each sample location.

5.3. Analytical Schedule

Groundwater samples were submitted for laboratory analysis of the chemicals of potential concern, to Eurofins | MGT at Lane Cove West (NATA accredited), as summarised in Table 5-2.

NATA endorsed laboratory reports for this investigation are included in Appendix C.

Table 5-2: Summary of analysis.

Chemical of Concern	No. Primary Groundwater Samples
TRH/TPH	3
PAH	3
BTEX	3

6. Groundwater Assessment Criteria

To assess groundwater quality, reference was made to environmental and/or human health threshold levels or acceptance criteria. Groundwater assessment criteria were selected based on published criteria for beneficial use of groundwater and potential environmental impact.

6.1.1. Assessment of environmental values

NSW DEC *Guidelines for Assessment and Management of Groundwater Contamination 2007* (NSW DEC, 2007) describes the process for identifying the likely environmental values that must be considered during groundwater investigations at potentially contaminated sites. Based on this, assessment of relevant environmental values follows the steps below:

- Determine whether the aquifer beneath the site is included in the NSW Office of Water list of major aquifers of drinking water quality;
- Assess the identified uses of groundwater from the aquifer; and
- Use groundwater indicators to assess whether the aquifer is suitable for use as a drinking water source (i.e., based on measured field groundwater quality).

Based on these steps, Coffey identified the following:

• The groundwater underlying the site is not considered to be part of the NSW Office of Water list of protected aquifers as an actual or potential drinking water supply;

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

- A review of WaterNSW, found no registered bores within 500 m radius of the site. Therefore, it
 is considered unlikely that groundwater beneath and migrating from the site would be used for
 the following environmental values or uses:
 - Drinking water reticulated water is available in the area;
 - Homestead water supply;
 - Irrigation water supply; or
 - Livestock water supply.
- The closest identified potential ecological receptor to groundwater contamination is Sydney Cove (Circular Quay). However, the cove is approx. 500 m north of the site and is a highly urbanised area, experiencing high vehicle traffic (i.e. watercrafts, including the Sydney ferry network). Also, no known wetlands are at or within 500 m of the site.

Based on the above, Coffey considers that potential beneficial uses of groundwater include:

- Protecting marine aquatic ecosystems in a moderately disturbed habitat (Circular Quay); and
- Visual amenity of Sydney Cove as a major tourist attraction (no oily sheens, visible suspended solids or algal blooms)

The presence of a reticulated water supply to the area and the low yield of the water bearing zone are expected to preclude the use of local groundwater as a drinking water supply. Therefore, potable use was not considered when selecting GILs for comparison against the groundwater analytical results.

6.1.2. Groundwater Stressor Criteria

Chemical concentrations in groundwater are assessed against the ASC NEPM (NEPC, 2013):

• Groundwater Investigation Levels (GILs) for Marine Waters listed in Table 1C, Schedule B1;

Supplemented by the following guidelines:

• ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

Assuming slightly to moderately disturbed ecosystems and the proximity to Circular Quay, marine criteria for protection of 95% of species are applied.

The lowest level of the proposed four level basement be approximately 1.5 m below the observed groundwater table. Potential health risk posed by intrusion of volatile organic compounds into indoor air is usually assessed by reference to published Health Screening Levels (HSLs), presence of impacted groundwater less than 2m below the base floor level precludes application of HSLs.

The adopted GILs are summarised in Table 6-1.

Table 6-1: Summary of the adopted GILs

Analyte	GIL (μg/L)
TRH C ₆ -C ₁₀	20 ⁽¹⁾
TRH >C10-C16	50 ⁽¹⁾
TRH >C16-C34	100 ⁽¹⁾
TRH >C ₃₄ -C ₄₀	100 ⁽¹⁾
Benzene	500
Naphthalene	50

(1) In the absence of a nominated guideline value, the laboratory LOR has been taken as the nominal trigger value for the presence of TRH compounds in groundwater and will be used as the GIL (NSW DEC, 2007).

7. Quality Assurance/Quality Control

This Quality Assurance/Quality Control (QA/QC) assessment addresses the predetermined data quality indicators (DQIs) that demonstrate data completeness, comparability, representativeness, precision and accuracy (bias) based on field and laboratory considerations and the processes for assessment of data quality provided in Section 19 (Appendix C) of Schedule B2 Guideline on Site Characterisation of the ASC NEPM.

7.1. DQIs for analytical results

The DQIs are based on the analysis of field and laboratory quality control sample results, and in accordance with AS 4482.1-2005. Specific DQIs for field and laboratory QA/QC samples are listed in Table 7-1.

Table 7-1: DQIs for analytical results.

Type of Quality Control Sample	Control Limit
Duplicate Samples	Relative Percentage Difference (RPD) within 50% for groundwater. Where the reported concentration was less than 10 times laboratory limit of reporting (LOR), no limit applies, and sample results are assessed subjectively.
Spikes	Recoveries within the following ranges: 60% - 140% for organics
Blanks	Analytes not detected above LOR.

7.2. DQIs for sampling and analysis

DQIs for the project are based on the field and laboratory considerations in Appendix C of Schedule B2 of the ASC NEPM. This comprises:

- Completeness a qualitative measure of the amount of useable data from a data collection activity;
- Comparability the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (expressed qualitatively) that data are representative of each media present on the site;
- Precision a quantitative measure of the variability (or reproducibility) of data; and
- Accuracy a quantitative measure of the closeness of reported data to the true value.

7.3. Field QA/QC

QA/QC procedures implemented for this project included:

- Sampling performed by qualified Coffey environmental professionals in general accordance with Coffey's SOPs which are based on industry accepted protocols for environmental sampling and are consistent with Schedule B2 of the ASC NEPM;
- The PID was bump tested using isobutylene gas (100ppm in air) and fresh air calibration was performed in accordance with manufacturer's instructions, to ensure the equipment was holding calibration;
- The water quality meter was calibrated by the manufacturer before use;

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

- A blind duplicate groundwater sample was collected and submitted for laboratory analysis:
 - QD01 (primary sample BH102).
- Three groundwater primary samples were collected for analysis.

7.4. Laboratory QA/QC

In accordance with NATA endorsed quality plans, the project laboratory performed internal QA/QC assessments which include laboratory duplicates, method blanks, matrix spikes and surrogate spikes.

Laboratory QC analytical results are summarised below:

- Laboratory analysis of samples was undertaken by NATA accredited environmental testing laboratories.
- All samples were extracted and analysed within acceptable holding times.
- No target analytes were detected in any of the method blanks.
- RPDs for the laboratory duplicate samples were within the acceptable range for all samples.
- Percentage recovery results for laboratory control samples were within the acceptable range for all samples.
- Percentage recovery results for surrogate samples were within the acceptable range for all samples.

Percentage recovery results for matrix spikes were within the acceptable range for all samples.

7.5. QA/QC Data Evaluation

QA/QC data evaluation was carried out as per Appendix D.

Based on an assessment of the field and laboratory QA/QC information, Coffey considers that the data obtained is representative of subsurface conditions at the sampling locations. Overall, it is assessed that the results are acceptable for the purposes of this investigation.

8. Results

8.1. Site Walkover Reconnaissance

A walkover of the site was carried out on 19 September 2018 by a Coffey environmental practitioner. Observations included:

- Tank fill point visible on footpath on Bligh Street;
- Basement (B1) headroom measured at 1.9 m (1.8 m by sign);
 - Low points are services and beams;
- Lower basement (B2):
 - Plant room headspace approx. 5 m;
 - Tank is located in lower basement plant room;
 - Not accessible by vehicle as there are three flights of stairs;
 - Situated in confined space in a concrete bund;
 - Some staining on enclosure floor but unsure whether diesel or a sealant;

– Tank bund accessible through 1.1 m high steps.

8.2. Field Observations and Measurements

Standing water level (SWL) and groundwater quality parameters were measured in the field prior to collection of groundwater samples, from all three monitoring well (BH101, BH102 and BH103). Table 8-1 presents the results from these field measurements. Water samples collected from BH101 and BH102 were observed slightly yellow but no odour or sheen. Water sample from BH103 was clear, with no odour or sheen.

Groundwater quality parameters from BH101, BH102 and BH103 indicated the following:

- Electrical conductivity (EC) ranged from 288.1 μ S/cm in BH102 to 404.1 μ S/cm in BH101 which is indicative of fresh conditions.
- pH ranged from 5.58 in BH103 to 7.06 in BH101, which represents slightly acidic to neutral conditions.
- Redox potential was recorded at -45.4 mV in BH101 to 48.1 mV in BH103 which is indicative of moderately oxidising conditions after correction to the Standard Hydrogen Electrode (add 199 mV); and
- Dissolved oxygen concentrations were indicative of low levels of oxygen in groundwater based on the temperature range reported between 21.2 and 21.7 degrees Celsius.

Groundwater levels ranged from 7.21 mAHD in BH103 to 7.49 mAHD in BH102. Groundwater flow direction was inferred to be to the south east, supporting the findings of the Geotechnical Investigation Report (Coffey, 2018b). Coffey (2018b) did not report material tidal fluctuation induced in groundwater levels.

Field notes and equipment calibration sheets are provided in Appendix B.

Monitoring Well	Date	Depth to Water (mbgs)	Water Level (mAHD)	DO (mg/L)	EC (µS/cm)	рН	Redox reading (mV) ¹	Temp. (°C)
BH101	12/11/2018	10.66	7.27	2.10	404.1	7.06	-45.4	21.7
BH102	12/11/2018	10.44	7.49	0.51	288.1	6.39	-39.4	21.5
BH103	12/11/2018	5.58	7.21	1.17	385.5	5.58	48.1	21.2

Table 8-1: Field Measured Groundwater Level and Quality.

Notes: 1. Add 199 mV to these readings to provide standard Redox potential.

8.3. Site Specific Geology

Based on the Geotechnical Investigation Report (Coffey, 2018b), the general subsurface conditions below current basement levels are summarised in Table 8-2.

Table 8-2: Site Specific Geology (Coffey, 2018b).

Ur	hit	Material Description		Thickness of Unit (m)	
1:	Rock above proposed lower basement level	Moderately weathered to fresh, medium and high	BH101: 5.1	5.3 to 7.8	
	of 6 mAHD	strength sandstone	BH102: 6.2		
			BH103: 5.0		

Un	it	Material Description Base of Unit (mAHD		Thickness of Unit (m)	
2:	Rock near proposed lower basement level	Interbedded sandstone, shale and shale breccia,	BH101: 2.7	2.4 to 2.6	
	of 6 mAHD	varies from highly to slightly weathered, and from low to	BH102: 2.3		
		high strength, fractured	BH103: 3.2		
0.	Dealahalan ana arad	Farah madium and biah			
3:	Rock below proposed basement level	Fresh medium and high strength sandstone	BH101: below -11.4	5.7 to 14.1	
			BH102: below -4.5		
			BH103: below -2.5		

8.4. Groundwater Analytical Results

Groundwater analytical results for samples collected on 12 November 2018 are presented in Table A1 at the end of this report. In summary, the concentrations of all CoPC were reported below the assessment criteria, except for the following summarised in Table 8-3. We note that the sample from BH103 reported no detectable TRH.

Table 8-3: Summary of CoPCs Exceeding the Adopted Assessment Criteria.

Chemical	Unit	GIL	BH101	BH102
F2-NAPHTHALENE	mg/L	0.05*	0.09	0.27
C10 - C40 (Sum of total)	mg/L	0.10*	0.49	0.57
C10-C16	mg/L	0.05*	0.09	0.27
C16-C34	mg/L	0.1*	0.4	0.3

* In the absence of a reliable guideline value, the laboratory LOR has been taken as the nominal trigger value for the presence of TRH compounds in groundwater and will be used as the GIL (NSW DEC, 2007).

9. Conceptual Site Model

A CSM is a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors.

Three groundwater wells were installed at the site; BH101, BH102 and BH103. Collection of groundwater samples from these three wells on 12 November 2018, provided the foundation for the following updated CSM, provided in Table 9-1.

Table 9-1: Updated CSM.

Source	Petroleum Hydrocarbon impacted groundwater identified within BH101 and BH102.
	The source is unknown. However, it does not appear to be derived from the disused fuel tank located in the lower basement of the site due the identified south-easterly groundwater flow direction.

Contaminants of Potential Concern and Affected Media	TRH impacted groundwater.
Likelihood of Impact	Low due to known concentrations, depth to groundwater, and groundwater flow direction.
Plausible Exposure Pathways	Inhalation of vapours
	Incidental ingestion of groundwater
	Dermal contact
Receptors	Construction workers
	Future maintenance workers
	Current and future site users (vapour inhalation only)
	Adjoining sensitive land uses (direct contact with aquatic species)
Comments	Workers involved in excavation and construction of the basement are unlikely to be exposed to low concentrations of petroleum hydrocarbon impacted groundwater because the excavation will be open to the air.
	There is potential for impacted groundwater to be migrating through the site. However, the concentrations in BH103, downgradient of the impacted locations (BH101 and BH102), reported no dissolved hydrocarbons.

10. Conclusions and Recommendations

Based on the review of available data, observations made during fieldwork and an assessment of laboratory analytical data, Coffey concludes that:

- No soil is present in a material quantity below the current basement levels;
- Petroleum hydrocarbon (TRH) impacted groundwater is present at the site, up-gradient of the disused fuel tank, but no volatile hydrocarbons (defined as TRH F1, BTEX and naphthalene) were reported and dissolved TRH F2 was reported at low concentrations (<0.05 to 0.27 mg/L);
- The source of the petroleum hydrocarbons is unknown and remains as a data gap. However, concentrations are unlikely to be derived from the disused fuel tank due to no detectable TRH reported in BH103, downgradient of the impacted locations (BH101 and BH102). However, we recommend removal of this tank prior to demolition, to avoid any potential residual fuel spillage;
- Groundwater is present within the sandstone bedrock, which is approximately 6m beneath the current basement level. The proposed development includes four basement levels, with the lowest basement level proposed at 6.01mAHD, approximately 1.5 m below the groundwater table;
- Associated potential human health and ecological risk (including potential vapour intrusion risk) is considered to be low due to the absence of TRH F1, BTEX and naphthalene, relatively low concentrations of TRH F2 and the air exchange rates required for use of the basement for car parking.

In summary, based on the findings of the investigation and in consideration of the key factors outlined above, Coffey concludes that the site is suitable for the proposed commercial development. Given that no widespread contamination was identified across the site, and that petroleum hydrocarbon impact to groundwater appears to be low and not attributable to a release from the disused UST in the sub-basement, Coffey considers that a Remedial Action Plan is not warranted. As a precaution against localised unidentified contamination, we recommend:

- Preparation and implementation of a Construction Environmental Monitoring Plan which includes an Unexpected Finds Protocol (UFP), to manage any unexpected contamination encountered during excavation at the site; and
- Confirmation of acceptable health risk related to petroleum impacted groundwater seepage into the lowest basement level when the structural detail for walls of that basement level and system for management of groundwater seepage is selected.

11. Limitations

It is the nature of contaminated site investigations that the degree of variability in site conditions cannot be known completely and no sampling and analysis program can eliminate all uncertainty concerning the condition of the site. Professional judgement must be exercised in the collection and interpretation of the data.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for One Investment Management Pty Ltd as trustee for Recap Management No. 4 Trust to provide a detailed assessment of land contamination at the subject site. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone relying on this document with reference to a particular development concept does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation. Any use of information in this report must consider the uncertainties outlined in *Important Information about your Coffey Environmental Report*, which follows this text.

References

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.

ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines

Coffey (2017). Preliminary Site Investigation, 4-6 Bligh Street, Sydney NSW, 7 July 2017 (ref. 754-SYDENV202725-R01).

Coffey (2018a). Proposal for site investigation, environmental assessment, and Sydney Metro infrastructure impact assessment for 4-6 Bligh Street, Sydney to assist DA for Early Works – Rev04 (ref: 754-SYDGE205019-AC).

Coffey (2018b). Geotechnical Investigation Report for 4-6 Bligh Street, Sydney, dated 16 November 2018. Coffey Geotechnics Pty Ltd (ref. SYDGE205019-AD Rev0).

NEPC (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (the ASC NEPM, amended 2013). National Environment Protection Council.

NSW DEC (2007). *Guidelines for Assessment and Management of Groundwater Contamination 2007*. Department of Environment and Conservation NSW.

NSW OEH (2011). Guidelines for Consultants Reporting on Contaminated Sites. Office of Environment and Heritage, Sydney.

Important information about your **Coffey** Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice,

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be revised and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such

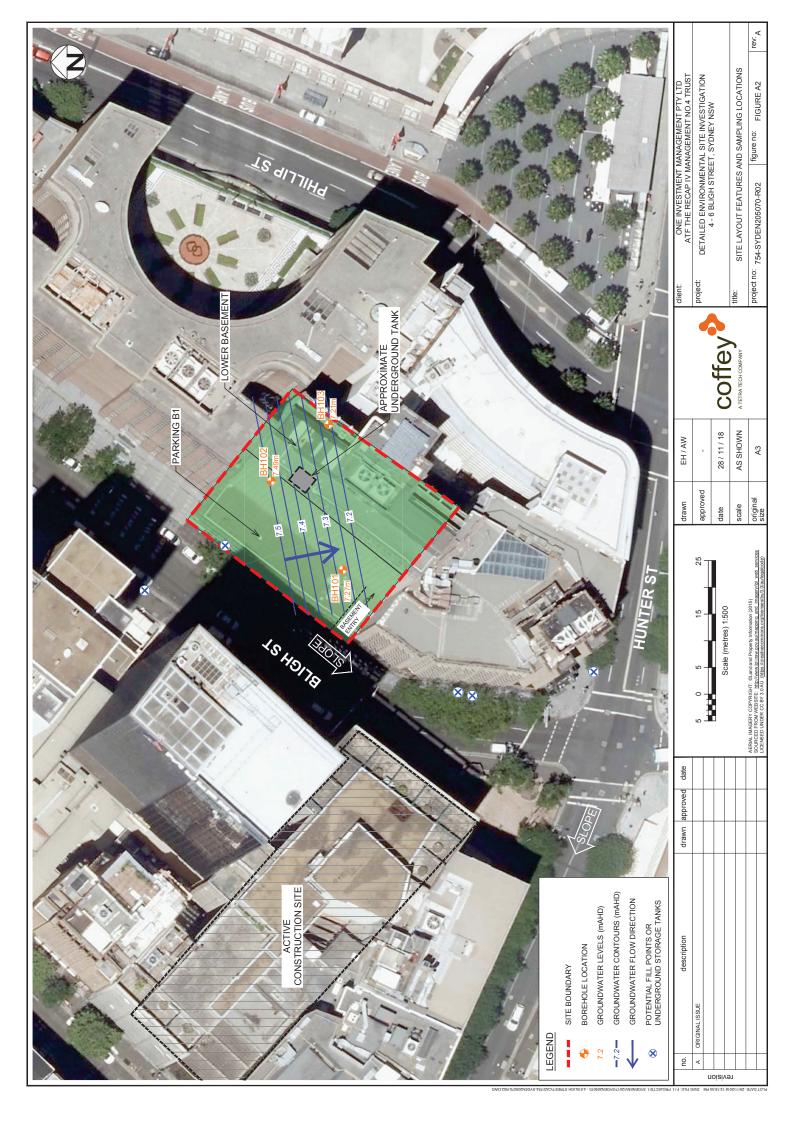
Coffey Environments Australia Pty Ltd ABN 65 140 765 902 Issued: 22 October 2013 assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

Responsibility


Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

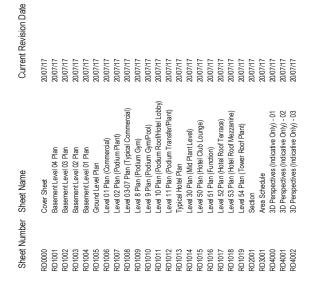
Figures

Coffey, A Tetra Tech Company SYDEN205070 3 December 2018

PLOT DATE: 28/11/2018 10:48:51 AM DWG FILE: F:11. PROJECTS11. SYDENEWV2017/SYDEN205070 - 4-6 BLIGH STREET/CAD754-SYDEN205070-R0

Table

					Field_ID BH101	BH101	BH102	BH103	QD01	RB01	TB	TS
					LocCode BH101	BH101	BH102	BH103	QD01	RB01	TB	TS
					WellCode							
					Sampled_Date-Time 12-Nov-18 12-Nov-18 12-Nov-18 12-Nov-18 12-Nov-18 12-Nov-18 12-Nov-18 12-Nov-18	12-Nov-18	12-Nov-18	12-Nov-18	12-Nov-18	12-Nov-18	12-Nov-18	12-Nov-18
				NEPM 2013 GIL Marine Waters(A)	NEPM 2013 GW HSL D Commercial/Industrial Vapour Intrusion 2m to AIm Clay							
Method_Type	ChemName	Units	EQL									
Organic	Naphthalene	μg/L	10	50		<10	<10	<10	<10	<10	<10	81,000
	F 2-NAPHTHALENE		0.05	0.05*		0.09	0.27	<0.05	0.21	<0.05	,	
	C6 - C9	μg/L	20	20*		<20	<20	<20	<20	<20	<20	86,000
	C10 - C40 (Sum of total)	μg/L	100	100*		490	570	<100	610	<100	,	
	C6-C10 less BTEX (F1)	mg/L	0.02	0.02*		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
	C10-C16	mg/L	0.05	0.05*		0.09	0.27	<0.05	0.21	<0.05	,	
	C16-C34	mg/L	0.1	0.1*		0.4	0.3	<0.1	0.4	<0.1	,	
	C34-C40	mg/L	0.1	0.1*		<0.1	<0.1	<0.1	<0.1	<0.1	,	
_	C6 - C10	mg/L	0.02	0.02*		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	87
РАН	Acenaphthene	μg/L	1			4	4	<1	<1	4		
	Acenaphthylene	μg/L	1			4	4	<1	<1	4	,	
	Anthracene	μg/L	1			<1	4	<1	<1	4		
	Benzo(a)anthracene	μg/L	1			4	4	<1	<1	4		
	Benzo(a)pyrene	μg/L	1			4	4	<1	4	4	,	
	Benzo(g,h,i)perylene	μg/L	1			4	4	<1	<1	4		
	Benzo(k)fluoranthene	μg/L	H			4	4	<1	4	4		
	Chrysene	µg/L	1			4	4	41	4	4	,	
	Benzo[b+j]fluoranthene	µg/L	1			4	4	41	4	4	,	
	Dibenz(a,h)anthracene	µg/L	1			4	4	41	4	4	,	
	Fluoranthene	μg/L	1			4	4	<1	4	4	,	
	Fluorene	μg/L	1			4	4	<1	4	4		
	Indeno(1,2,3-c,d)pyrene	µg/L	1			4	4	4	4	4	,	
	Naphthalene	μg/L	H	50		4	4	-1	4	4	,	,
	Phenanthrene	µg/L	-			4	4	-1	1	4	,	
	Pyrene	μg/L	1			4	4	<1	4	4	,	,
-	Total PAHs	μg/L	1			4	4	4	1	4	'	
трн	C10 - C14	μg/L	50	50*		<50	70	<50	<50	<50		
	C15 - C28	μg/L	100	100*		400	200	<100	500	<100	,	
	C29 - C36	μg/L	100	100*		<100	<100	<100	100	<100		
	C10 - C36 (Sum of total)	μg/L	100	100*		400	570	<100	600	<100		
Volatile	Benzene	μg/L	1	500	30,000	4	4	<1	4	4	4	95,000
	Ethylbenzene	μg/L	1			4	4	<1	4	4	4	120,000
	Toluene	μg/L	1			4	4	<1	4	4	4	100,000
	Xylene (m & p)	μg/L	2			4	\$	<2	<2	\$	<2	110,000
	Xylene (o)	μg/L	1			4	4	<1	4	4	4	110,000
	Xylene Total	μg/L	m			ę	Q	~	\$	Ω	Q	110,000


(A) Investigation levels are used in the interval of the presence of TRH compounds in groundwater and will be used as the GL (NSW DEC, 2007) * In the absence of a nominated guideline value, the laboratory LOR has been taken as the nominal trigger value for the presence of TRH compounds in groundwater and will be used as the GL (NSW DEC, 2007)


Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Appendix A – Proposed Development Drawings

Coffey, A Tetra Tech Company SYDEN205070 3 December 2018

4-6 Bligh Street, Sydney **Reference Design**

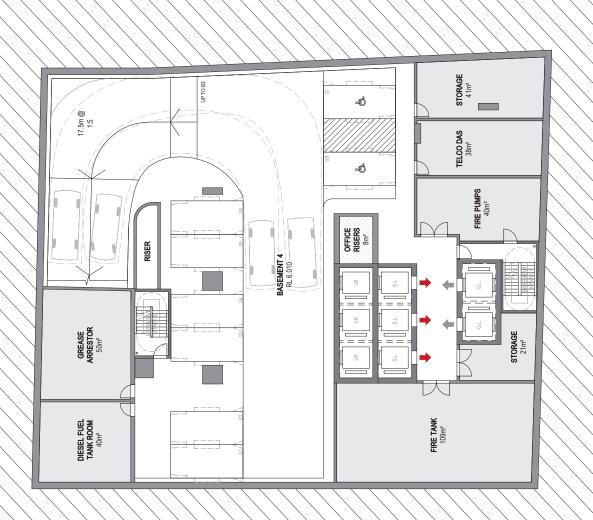
Cover Sheet RD0000 20/07/17

Drawing: Drawing no: Issue: Scale @ A3: Date

4-6 Bligh Street, Sydney

architectus

Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 sydney@architectus.com.au


Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 Sydney@architectus.com.au

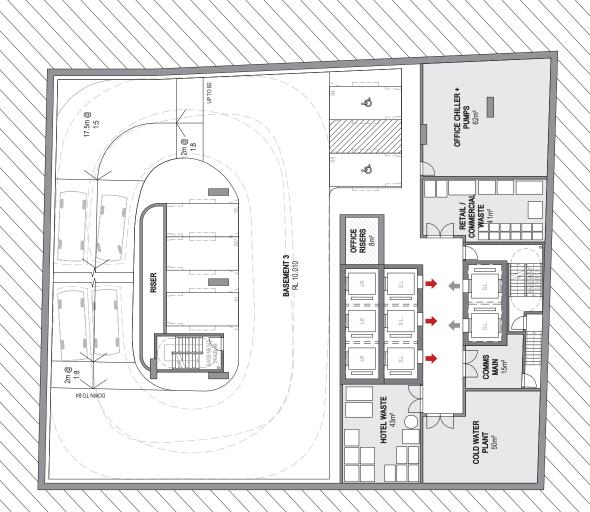
North

Basement Level 04 Plan RD1001 5 20/07/17

Drawing: Drawing no: Issue: Scale @ A3: Date

4-6 Bligh Street, Sydney

GA - Basement Level 04 Plan


Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 Sydney@architectus.com.au

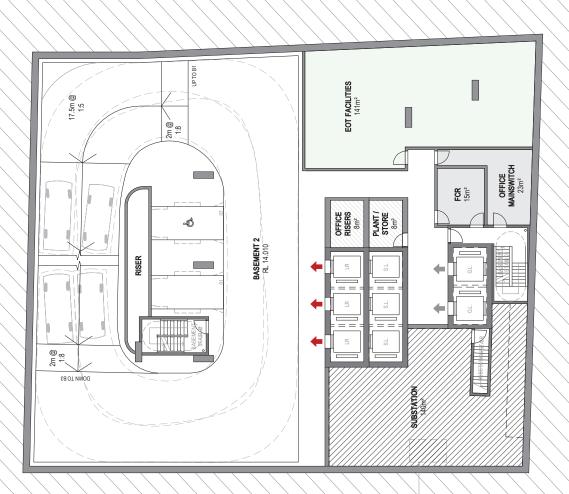
North

Basement Level 03 Plan RD1002 5 1 : 200 20/07/17

Drawing: Drawing no: Issue: Scale @ A3: Date

4-6 Bligh Street, Sydney

GA - Basement Level 03 Plan


Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 Sydney(@architectus.com.au

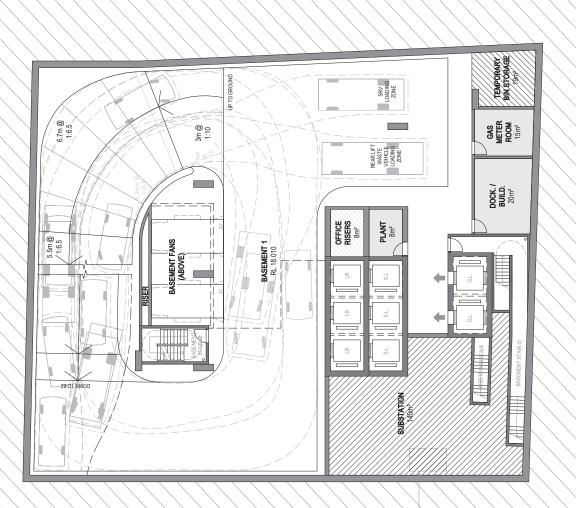
North

Basement Level 02 Plan RD1003 5 1 : 200 20/07/17

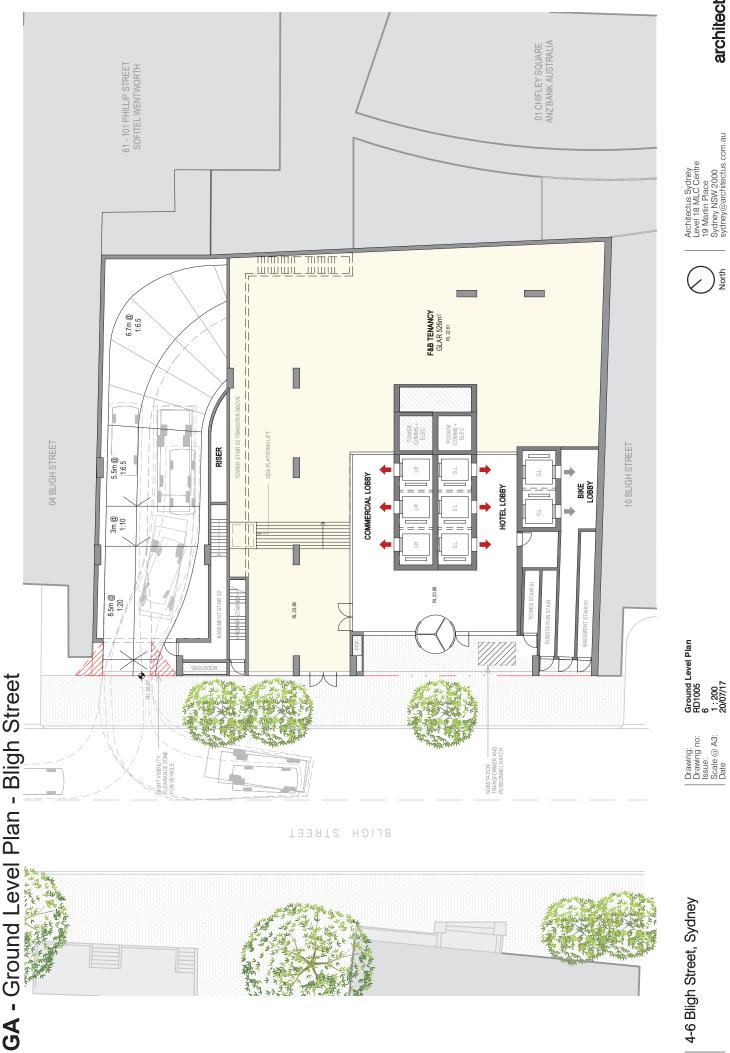
Drawing: Drawing no: Issue: Scale @ A3: Date

4-6 Bligh Street, Sydney

GA - Basement Level 02 Plan

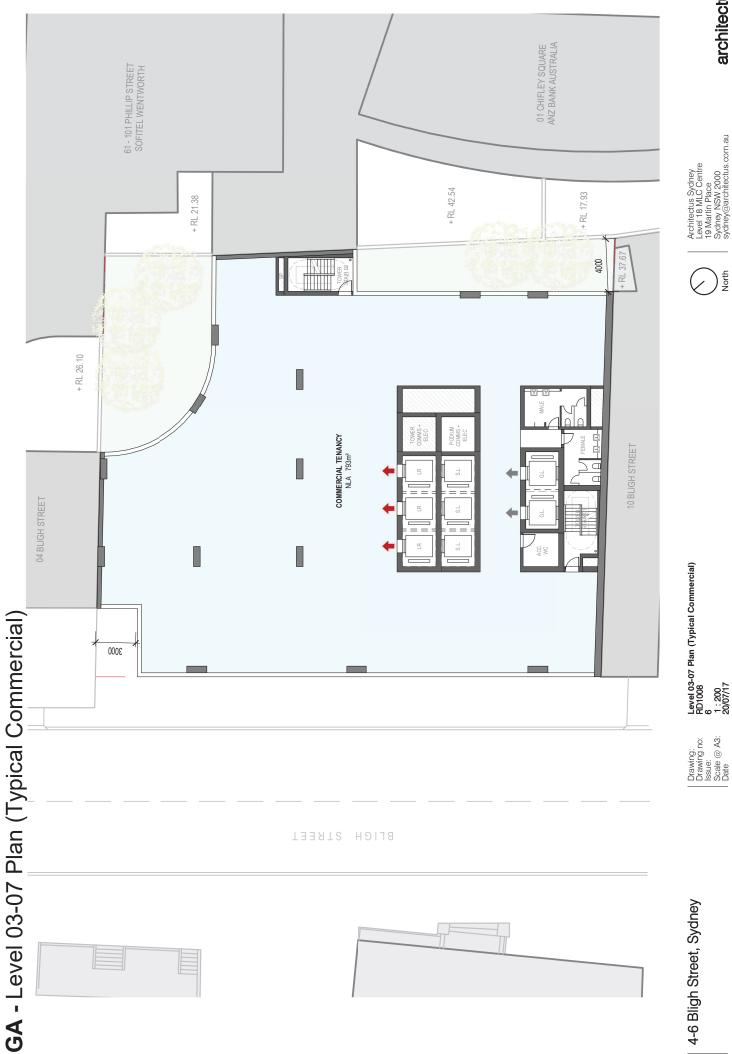

Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 Sydney@architectus.com.au

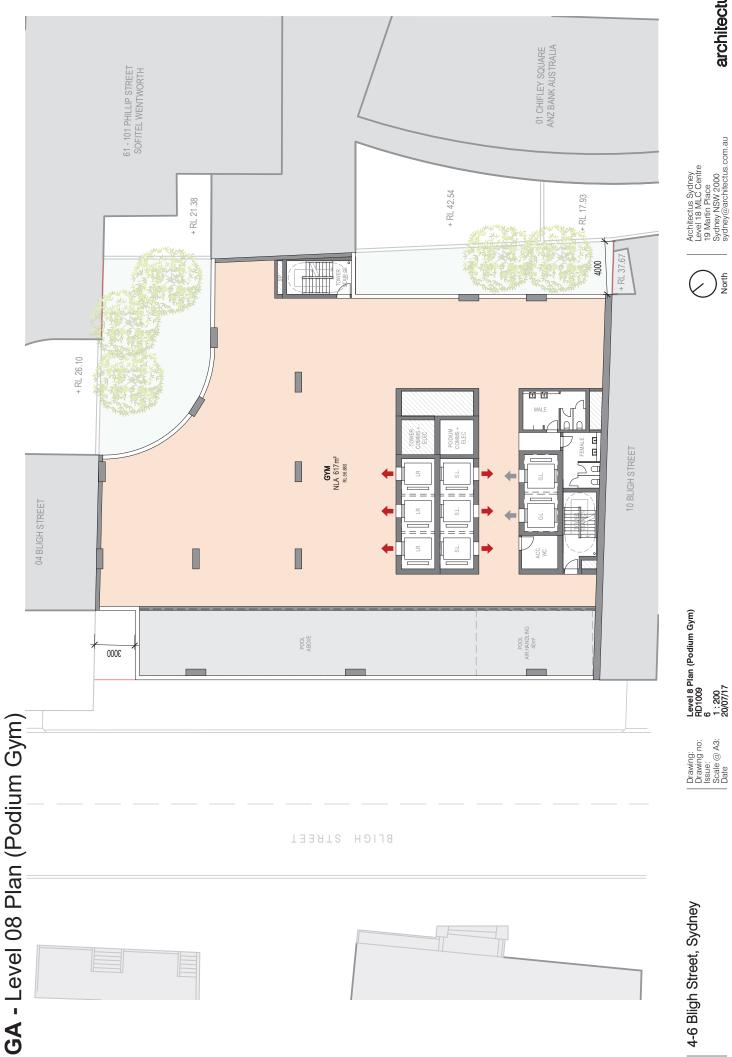
North


Basement Level 01 Plan RD1004 5 20/07/17 20/07/17

Drawing: Drawing no: Issue: Scale @ A3: Date

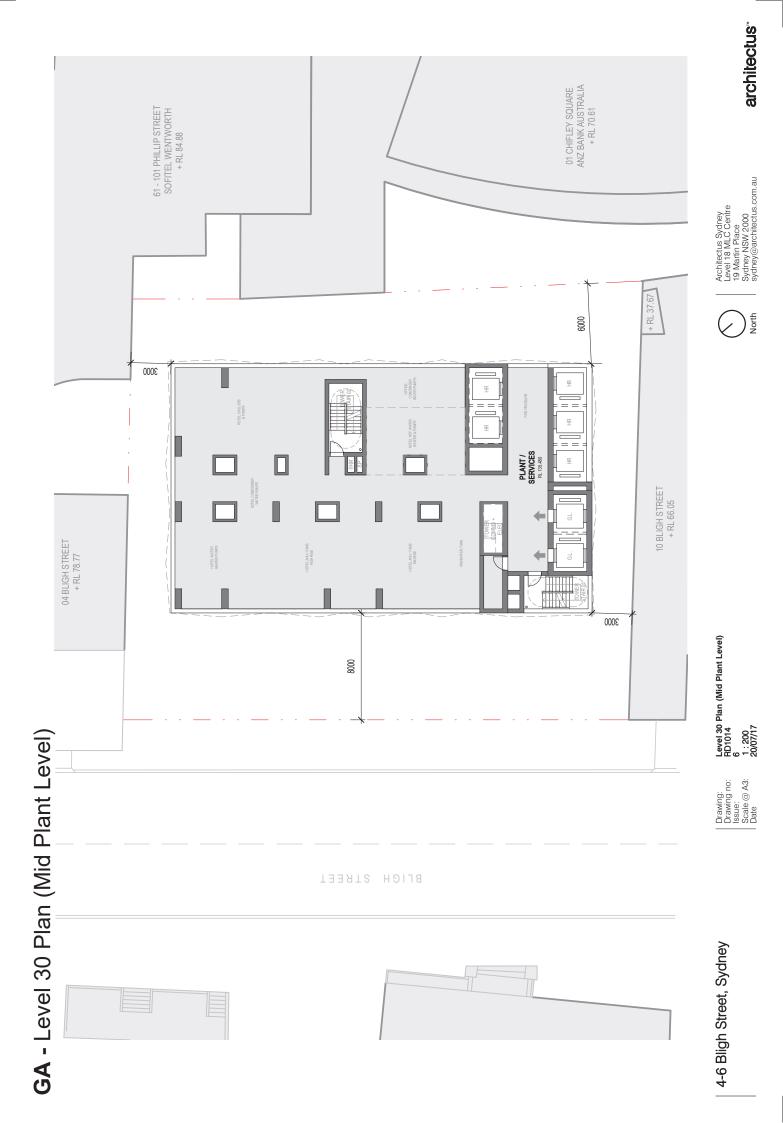
4-6 Bligh Street, Sydney

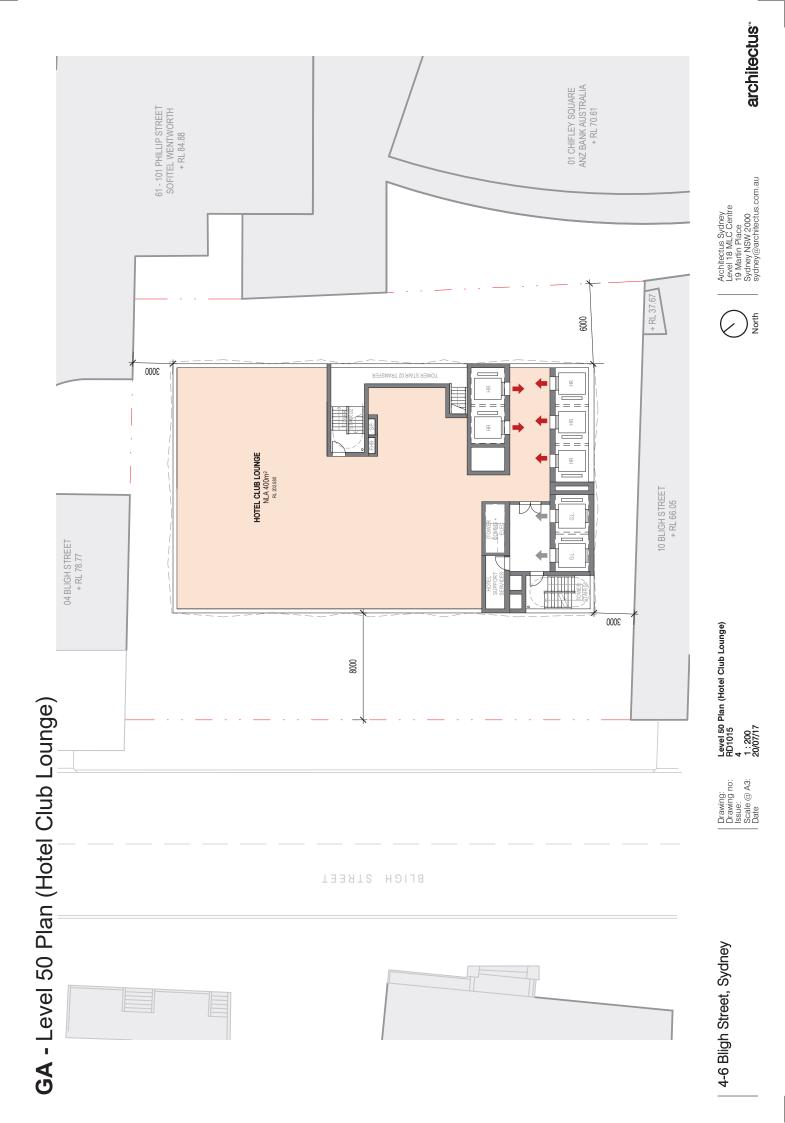

GA - Basement Level 01 Plan

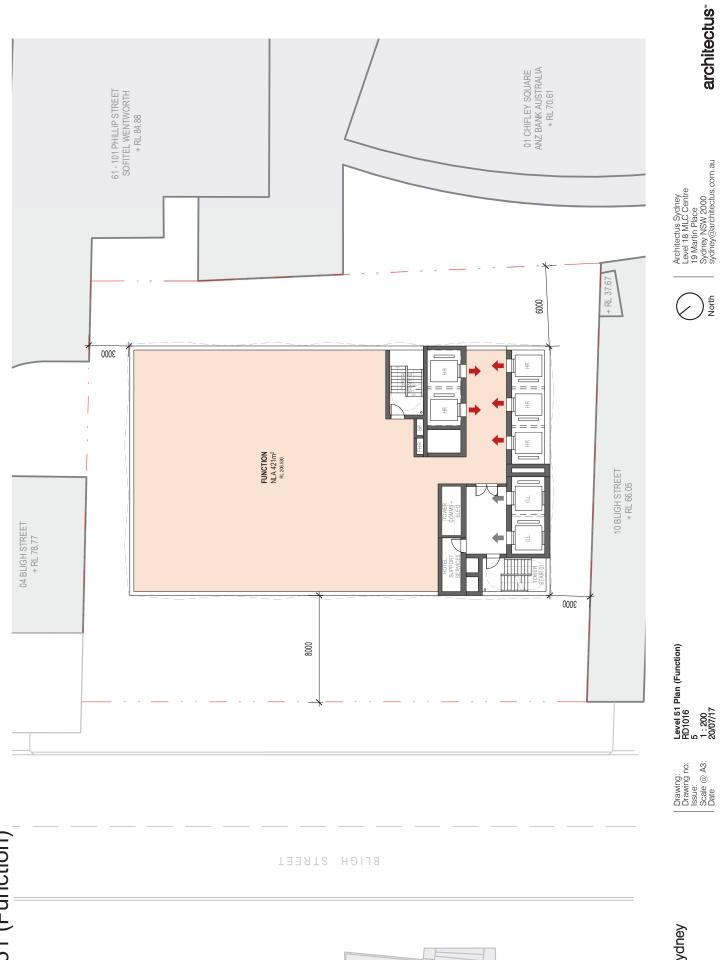

North



North

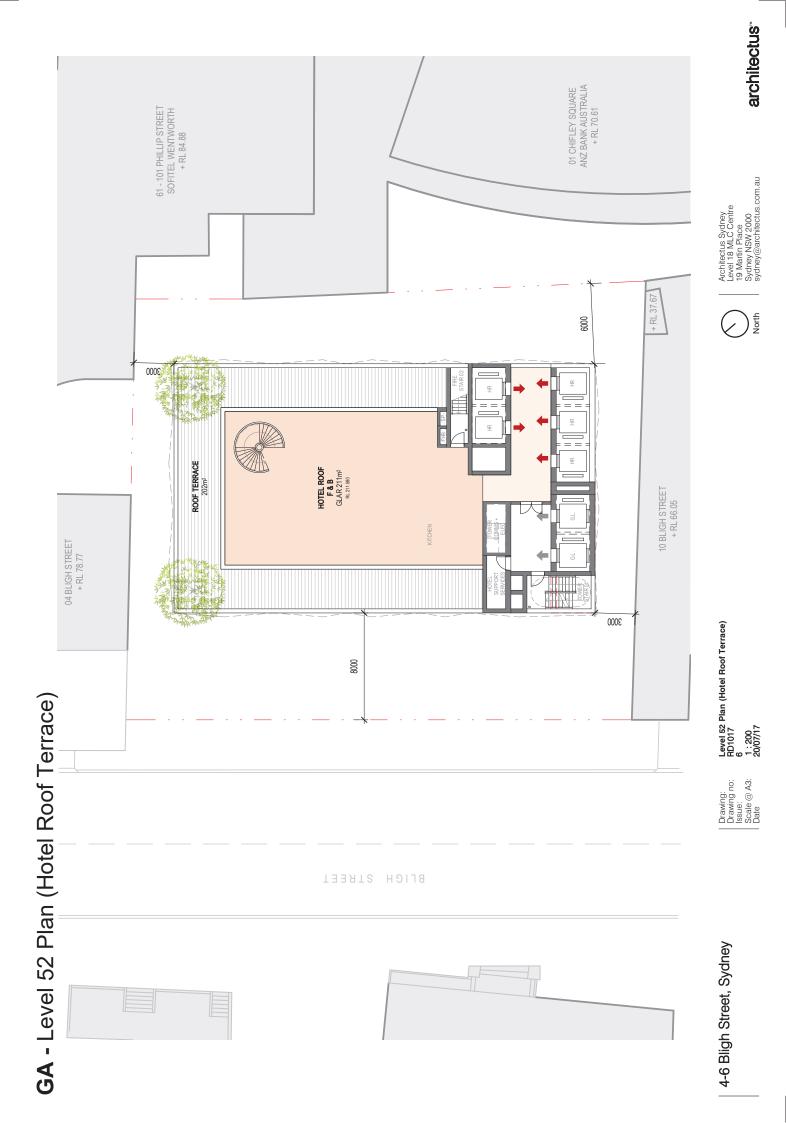


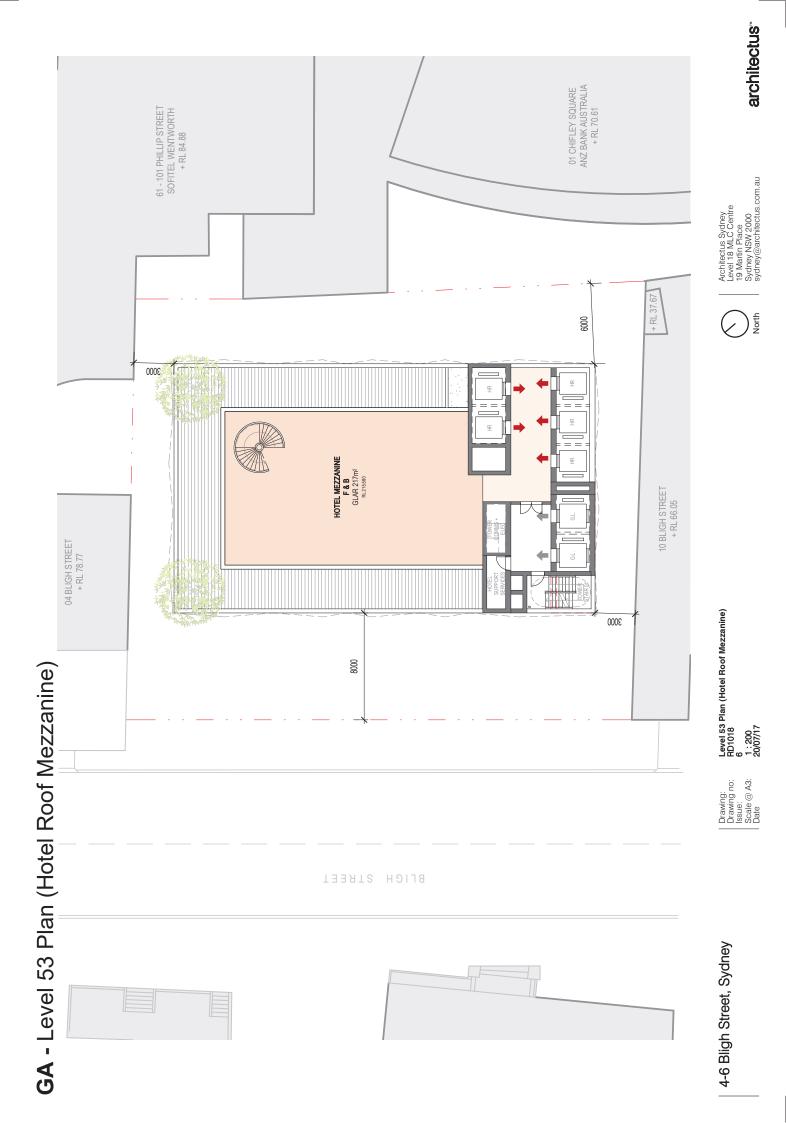


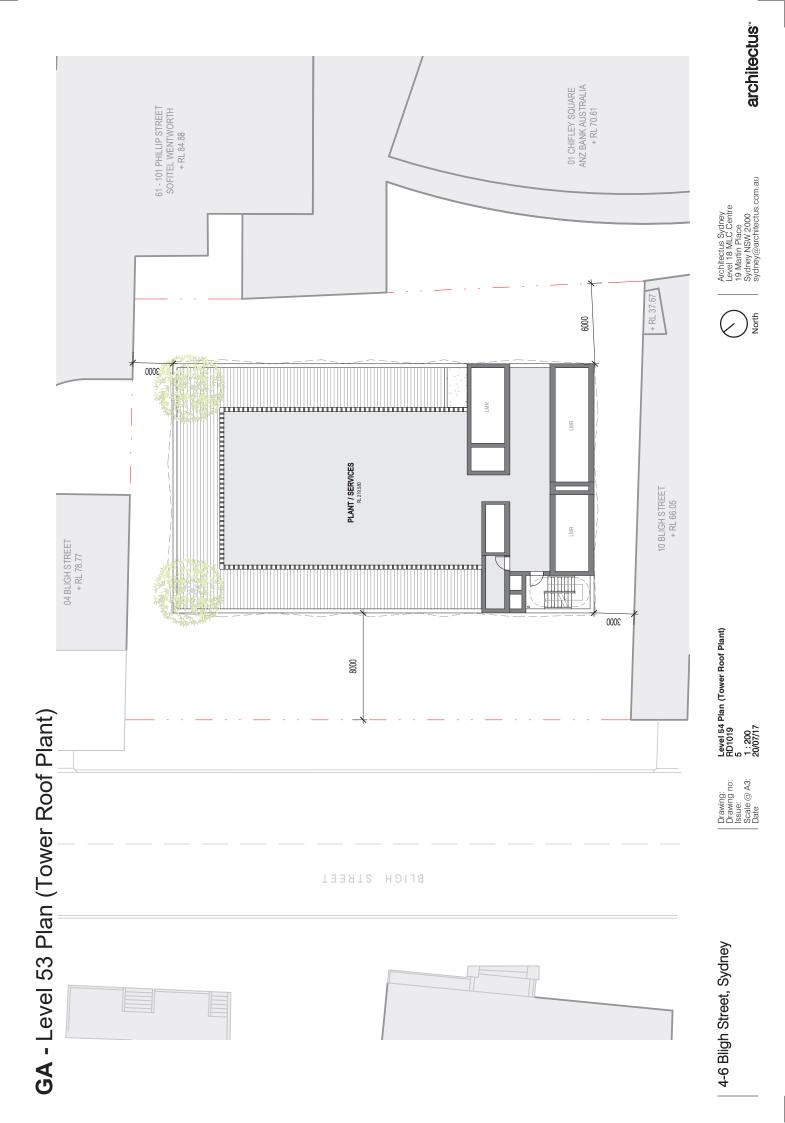


GA - Typical Hotel Plan

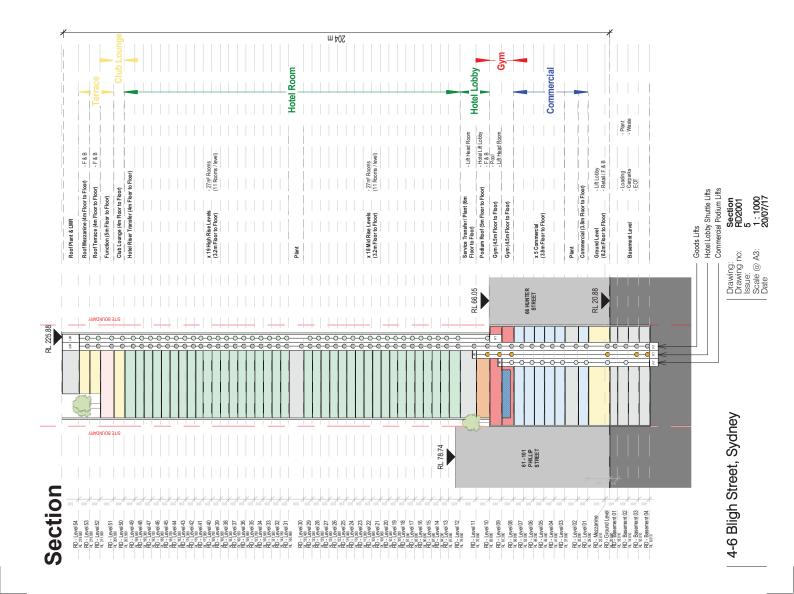
4-6 Bligh Street, Sydney

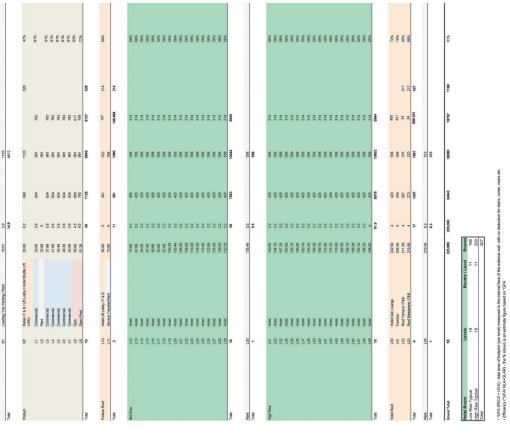


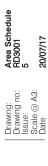




GA - Level 51 (Function)


4-6 Bligh Street, Sydney


Area Schedule 4-6 Bligh Street, Sydney Parting Proposal - Reference Design



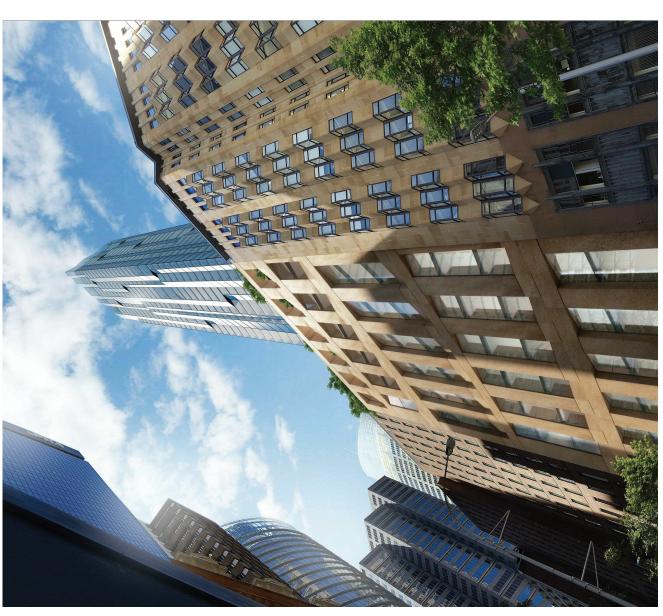


Basement

Architectus Sydney Level 18 MLC Centre 19 Mattin Place Sydney NSW 2000 sydney@architectus.com.au

3D Perspective (Indicative Only) - Roof Bar & Restaurant

3D Perspectives (Indicative Only) - 01 RD4000 1


20/07/17

Drawing: Drawing no: Issue: Scale @ A3: Date

4-6 Bligh Street, Sydney

Architectus Sydney Level 18 MLC Centre 19 May NSW 2000 Sydney@architectus.com.au architectus.

4-6 Bligh Street, Sydney

3D Perspective (Indicative Only) - View from Bligh Street

3D Perspectives (Indicative Only) - View from the Domain

architectus

Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 sydney@architectus.com.au

4-6 Bligh Street, Sydney

3D Perspectives (Indicative Only) - 03 RD4002 20/07/17 Drawing: Drawing no: Issue: Scale @ A3: Date Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Appendix B – Field Notes & Calibration Certificate

Coffey, A Tetra Tech Company SYDEN205070 3 December 2018

					9		COMMENTS	ODOUR, COLOUR, SEDIMENTS, PSH COLLECTED, etc	outsidenty Vellow, Wo adour 25.9	~	No octory orsheen [5-13		£-			
N ON			SCREEN INTERVAL:	WELL STICK-UP:	WELL HEADSPACE PID READING PID READING PPM:		KRITY – tick one rudy idy idy	Sligi Clou Clou Clou Turt	X Slight	z X	Clear No			-	TRIPLICATE ID:	
NUMBER: SYNCAL 200	12/11/21		SCREEN	MELI	LITRES PER 1 WELL VOLUME	ō	TEMPERATURE (°C)	SE* READING CHANGE	21.7	21.5	21.2			± 0.2°C	NLECTED: Y N X TRIPL	
PROJECT NUMBER:			TOTAL WELL DEPTH:	WELL DIAMETER:) REDOX POTENTIAL (mV)	CHANGE READING CHANGE	-45.4	-39.4	48.1			unit ± 10mV	С ш	
					ogether with ater Samplin e to be purg		ELECTRICAL CONDUCTIVITY (mS or <u>uStam</u>) (pH units)	CHANGE* READING	7.06	6.30	2:28			3% ± 0.1 ur	DUPLICATE ID: ADO/ Taken Am RHIO Unfiltered samples must not be put into a preserved container (i.e. 'metals' bottle) Form (A) – General	OR LATEST VERSION
			type:	RA 🗌 OTHER	Beneficial States		DISSOLVED ELECT OXYGEN CONDU (mg/l) (mS or]	NG CHANGE* READING		5] 2.88.1	7 385.5			± 10% ± 3	DUPLICATE ID: 00000000000000000000000000000000000	EE ELECTRONIC COPY F
NAME: BLigh C-	R S	NAGER: MC	METER ID& TYPE	: Bailer 🔲 Waterra	WELL GAUGING AND PURGE VOLUME CALCULATIONS (TOTAL WELL DEPTH) – (DEPTH TO WATER) = (WATER COLUMN)		VOLUME DEPTH TO DI (L) (m) (0	READING	10.66 2.10	·41 0.	5.58 1.1				Coffey Environments - Groundwater Sampling Form (A) - General	ILLED WHEN PRINTED - S
PROJECT NAME:	FIELD PERSONNEL:	PROJECT MANAGER:	WELL ID:	EQUIPMENT USED:	WELL GAUGING AND PURGE VOLUN (Total Well Depth) – (Depth to Wati mmmm Orde: Ord Reference electrode:		TIME OF CYCLE/ DAY RATE V((ml/min)							STABILISATION CRITERIA (3 readings within following ranges)	DUPLICATE COLLECTED: WERE METALS FIELD FILTERED? Coffey Environments - G	UNCONTRO

BHIOI BHIOZ BHIOZ

Project No.	SYDEN 205070	
Date:	12/11/18	
Page 🛛 👢	of	

DAILY FIELD SUMMARY

st

Bligh

Project Name:

Field Personnel (Initials):

AC ML

Project Manager (Initials):

(Include details onsite, all personnel, standby, phone calls) 8:00 an lacking for the day. 9:00 an Leave office to site. 9:45 an Onsite stort works. 1:00 pm Leave site - Head back to office. 1:35 pm Arrive back to office - Complete paper work and organise som pls/equipment. 2:30 Sign off Job.	Time	Description of Tasks Undertaken:
8:00 an facking for the day. 9:00 an Leave office to site. 9:45 an Onsite start works. 1:00 pm Leave site - Head back to office. 1:35 pm Arrive back to office - Complete paper work and organise samples/equipment.		
9.00 an Leave office to site. 9.45 an Onsite start works. 1.00 pm Leave site - Head back to office. 1.35 pm Arrive back to office - Complete paper work and organise samples/equipment.	8.00 am	
9.45 an Onsite start works. 1.00 pm Leave site - Head back to office. 1.35 pm Arrive back to office - Complete paper work and organise samples/equipment.		
1.00 pm Leave site - Head back to office. 1.35 pm Arrive back to office - Complete paper work and organise samples/equipment.		
1.35 pm Arrive back to office - Complete paper work and organise samples/equipment.	1	
organise samples equipment.	1.00 pm	Leave site - flead back to office.
	1.35 pm	
2:30 Sign off Job.	0.0	
	2.30	Sign off Job.

Oil / Water Interface Meter

Instrument Interface Meter (30M) Serial No. 312444

Air-Met Scientific Pty Ltd 1300 137 067

ltem	Test	Pass	Comments
Battery	Compartment	1	
	Capacity	1	
Probe	Cleaned/Decon.	1	
	Operation	✓	
Connectors	Condition	1	
		1	
Tape Check	Cleaned	1	
	Checked for cuts	1	
			B _{ac} parts
Instrument Test	At surface level	1	
		с.	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Snalli Calibrated by: Sarah Lian

Calibration date:

6/11/2018

Next calibration due:

5/01/2019

Multi Parameter Water Meter

Instrument YSI Qu Serial No. 13D10

YSI Quatro Pro Plus 13D100014

1300 137 067

Pass Comments Item Test **Charge Condition** Battery 1 1 Fuses 1 Capacity 1 Operation Switch/keypad 1 Display Intensity 1 Operation (segments) Condition 1 **Grill Filter** Seal 1 1 PCB Condition 1 Condition Connectors 1 1. pH Sensor 1 2. mV 1 3. EC 1 4. D.O 1 5. Temp Beeper 1 Alarms Settings 1 1 Version Software 1 Operation Data logger 1 Download Operation Other tests:

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH10.00		320322	pH 9.78
2. pH 7.00		pH 7.00		317272	pH 6.90
3. pH 4.00		pH 4.00		320612	pH 4.16
4. mV		234mV		321773/325420	235.1mV
5. EC		2.76mS		320325	2.74mS
6. D.O		0.00ppm		10175	0.08ppm
7. Temp		20.6°C		Multithern	19.9°C

Sachta Calibrated by:

Sarah Lian

Calibration	date:	09/11/2018

Next calibration due: 10/12/2018

09/11/2018

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Appendix C - Laboratory Reports

Coffey, A Tetra Tech Company SYDEN205070 3 December 2018

mgt

Certificate of Analysis

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA

WORLD RECOGNISED

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Matthew Locke

Report
Project name
Project ID
Received Date

627443-W	
BLIGH ST	
SYDEN205070	
Nov 12, 2018	

Client Sample ID			BH101	BH102	BH103	QD01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-No16254	M18-No16255	M18-No16256	M18-No16257
Date Sampled			Nov 12, 2018	Nov 12, 2018	Nov 12, 2018	Nov 12, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	0.09	0.27	< 0.05	0.21
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.09	0.27	< 0.05	0.21
TRH >C16-C34	0.1	mg/L	0.4	0.3	< 0.1	0.4
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	0.49	0.57	< 0.1	0.61
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	0.07	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	0.4	0.5	< 0.1	0.5
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	0.1
TRH C10-36 (Total)	0.1	mg/L	0.4	0.57	< 0.1	0.6
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	133	132	139	126
Polycyclic Aromatic Hydrocarbons			_			
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{№7}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID Sample Matrix			BH101 Water	BH102 Water	BH103 Water	QD01 Water
Eurofins mgt Sample No.			M18-No16254	M18-No16255	M18-No16256	M18-No16257
Date Sampled			Nov 12, 2018	Nov 12, 2018	Nov 12, 2018	Nov 12, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	73	50	58	95
p-Terphenyl-d14 (surr.)	1	%	72	87	128	74

Client Sample ID			RB01	тв	R20 TS
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M18-No16258	M18-No16259	M18-No16260
Date Sampled			Nov 12, 2018	Nov 12, 2018	Nov 12, 2018
Test/Reference	LOR	Unit	,,	,,,	,,
Total Recoverable Hydrocarbons - 2013 NEPM F		Onic			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	81
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	87
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-	_
TRH >C16-C34	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	86
TRH C10-C14	0.05	mg/L	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	-
BTEX	·				
Benzene	0.001	mg/L	< 0.001	< 0.001	95
Toluene	0.001	mg/L	< 0.001	< 0.001	100
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	120
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	110
o-Xylene	0.001	mg/L	< 0.001	< 0.001	110
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	110
4-Bromofluorobenzene (surr.)	1	%	118	131	126
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			RB01 Water M18-No16258 Nov 12, 2018	TB Water M18-No16259 Nov 12, 2018	R20TS Water M18-No16260 Nov 12, 2018
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	82	-	-
p-Terphenyl-d14 (surr.)	1	%	103	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 14, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Melbourne	Nov 14, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Nov 14, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Nov 14, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 14, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Nov 14, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			

	mgt
fins	
eurof	

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisbane

 Unit F3, Building F
 1/21 Smallwood Place

 1/21 Smallwood Place
 1/21 Smallwood Place

 1/21 Smallwood Place
 Murarie QLD 4172

 1/21 Smallwood Place
 Murarie QLD 4172

Perth 291Leach Highway Kewdale WA 6105 Phone: -6161 8 3251 9600 NATA # 1261 Site # 23736

Company Name:	Coffey Environments Pty Ltd NSW	Order No.:		Received:	Nov 12, 2018 3:09 PM
Address:	Level 20, Tower B, Citadel Tower 799 Pacific Highway	Report #:	627443	Due:	Nov 19, 2018
	Chatswood	Phone:	+61 2 9406 1000	Priority:	5 Day
	NSW 2067	Fax :	+61 2 9406 1004	Contact Name:	Matthew Locke
Project Name:	BLIGH ST				
Project ID:	SYDEN205070				
				Eurofins mgt Analytical S	Eurotins mgt Analytical Services Manager : Nibha Vaidya
	Eurofins mgt Su	BTEXN and Vola			

BTEXN and Volatile TRH	×											×	×	2
Eurofins mgt Suite B4	×						×	×	×	×	×			5
						LAB ID	M18-No16254	M18-No16255	M18-No16256	M18-No16257	M18-No16258	M18-No16259	M18-No16260	
	71					Matrix	Water							
Sample Detail	# 1254 & 142	8217	20794	36		Sampling Time								
σ	ry - NATA Site	NATA Site # 1	- NATA Site #	ATA Site # 237		Sample Date	Nov 12, 2018							
	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	Perth Laboratory - NATA Site # 23736	External Laboratory	Sample ID	BH101	BH102	BH103	QD01	RB01	TB	TS	Test Counts
	Melb	Sydn	Brisb	Perth	Exter	No	1	2	з	4	5	6	7	Test

Page 5 of 10 Report Number: 627443-W

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre
ppm: Parts per million	ppb: Parts per billion
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units

ug/L: micrograms per litre %: Percentage MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

101113	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ns				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank		• •	· · · ·		
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ns				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	1
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.002	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	IIIg/L	< 0.005	0.003	1 435	
Polycyclic Aromatic Hydrocarbons				I	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene		< 0.001	0.001	Pass	
	mg/L	< 0.001	0.001	1	
Benz(a)anthracene	mg/L			Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery		T T		1	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction				-	
Naphthalene	%	109	70-130	Pass	
TRH C6-C10	%	120	70-130	Pass	
TRH >C10-C16	%	119	70-130	Pass	
LCS - % Recovery				1	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction		<u> </u>		ļ	
TRH C6-C9	%	118	70-130	Pass	
TRH C10-C14	%	129	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	118	70-130	Pass	
Toluene	%	116	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene			%	117			70-130	Pass	
m&p-Xylenes			%	117			70-130	Pass	
Xylenes - Total			%	117			70-130	Pass	
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbons	6								
Acenaphthene			%	94			70-130	Pass	
Acenaphthylene			%	93			70-130	Pass	
Anthracene			%	93			70-130	Pass	
Benz(a)anthracene			%	82			70-130	Pass	
Benzo(a)pyrene			%	91			70-130	Pass	
Benzo(b&j)fluoranthene			%	84			70-130	Pass	
Benzo(g.h.i)perylene			%	90			70-130	Pass	
Benzo(k)fluoranthene			%	95			70-130	Pass	
Chrysene			%	97			70-130	Pass	
Dibenz(a.h)anthracene			%	85			70-130	Pass	
Fluoranthene			%	101			70-130	Pass	
Fluorene			%	95			70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	79			70-130	Pass	
Naphthalene			%	79			70-130	Pass	
Phenanthrene			%	98			70-130	Pass	
Pyrene			%	103			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	M18-No15175	NCP	%	120			70-130	Pass	
Spike - % Recovery		<u> </u>	<u>.</u>		·			<u>.</u>	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	M18-No15175	NCP	%	113			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	5			Result 1					
Acenaphthene	M18-No16254	CP	%	73			70-130	Pass	
Acenaphthylene	M18-No16254	CP	%	70			70-130	Pass	
Anthracene	M18-No16254	CP	%	101			70-130	Pass	
Benz(a)anthracene	M18-No16254	CP	%	94			70-130	Pass	
Benzo(a)pyrene	M18-No16254	CP	%	102			70-130	Pass	
Benzo(b&j)fluoranthene	M18-No16254	CP	%	93			70-130	Pass	
Benzo(g.h.i)perylene	M18-No16254	CP	%	102			70-130	Pass	
Benzo(k)fluoranthene	M18-No16254	CP	%	102			70-130	Pass	
Chrysene	M18-No16254	CP	%	100			70-130	Pass	
Dibenz(a.h)anthracene	M18-No16254	CP	%	97			70-130	Pass	
Fluoranthene	M18-No16254	CP	%	111			70-130	Pass	
Fluorene	M18-No16254	CP	%	91			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-No16254	CP	%	95			70-130	Pass	
, , , , , , , , , , , , , , , , , , ,	M18-No16254	CP	%	95			70-130		
Naphthalene							1	Pass	
Phenanthrene	M18-No16254	CP	%	107			70-130	Pass	
Pyrene Test	M18-No16254		[%] Units	113 Result 1			70-130	Pass Pass	Qualifying
		Source					Limits	Limits	Code
Duplicate Total Recoverable Hydrocarbons -		ione		Result 1	Result 2	RPD			
		1	ma/l	< 0.05	< 0.05		200/	Doco	
TRH >C10-C16	M18-No15174	NCP	mg/L			<1	30%	Pass	
TRH >C16-C34	M18-No15174	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M18-No15174	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M18-No15174	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M18-No15174	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M18-No15174	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbor	IS			Result 1	Result 2	RPD			
Acenaphthene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M18-No16256	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya	Analytical Services Manager
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

11 Juli

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rng shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | but liable for cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | but liable for cost, damages or expenses included of the samples as a received.

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Appendix D - QA/QC Data Evaluation

Coffey, A Tetra Tech Company SYDEN205070 3 December 2018

I. SAMPLE HANDLING

- 1. Were the sample holding times met?
- 2. Were the samples in **proper custody** between the field and reaching the laboratory?
- 3. Were the samples **properly and adequately** preserved? *This includes keeping the samples chilled, where applicable.*
- 4. Were the samples received by the laboratory in good condition?

Yes No (Comment below) Image: Second secon

COMMENTS:

No ice was used to keep the samples chilled. However, this is unlikely to affect the results as there were only three samples collected, time on site was short and samples were delivered on the same day as they were collected.

Sample Handling was:

Satisfactory

Partially Satisfactory

Unsatisfactory

Coffey Services Australia Pty Ltd A.B.N. 55 139 460 521 DATA VALIDATION REPORT Job No: 754-SYDEN205070 Groundwater Analysis - Lab Batch References – 627443-W

II PRECISION/ACCURACY ASSESSMENT

- 1. Was a NATA registered laboratory used?
- 2. Did the laboratory perform the requested tests?
- 3. Were the laboratory methods adopted NATA endorsed?
- 4. Were the appropriate test procedures followed?
- 5. Were the reporting limits satisfactory?
- 6. Was the NATA Seal on the reports?
- 7. Were the reports signed by an authorised person?

COMMENTS:

No Comments.

Yes	No	
	(Comment below)	

Precision/Accuracy of the Laboratory Report	Satisfactory	Unsatisfactory
	Partially Satisfactory	

III. FIELD QA/QC

1. Number of Samples Analysed

Soil: 0 Groundwater: 3

2. Number of Days of Sampling: 1

3. Number and Type of QA/QC Samples Collected:

Quality Control Sample Type	No.	% Total No. Samples	
Intra-lab Duplicates (Soil)	0		
Inter-lab Duplicates (Soil)	0		
Intra-lab Duplicates (Groundwater)	1	33.33%	
Inter-lab Duplicates (Groundwater)	0	0%	
Trip Blanks	1	-	
Trip Spike	1	-	
Equipment Rinsate	1	-	

4. FIELD DUPLICATES

	Yes	No (Comment below)
A. Were an <u>Adequate Number</u> of field duplicates analysed for each chemical?	\boxtimes	
 B. Were RPDs within Control Limits? a. Organics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR)) 		
 b. Metals/Inorganics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR)) 		
c. Volatile & semi volatile organics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR))		

COMMENTS:

Metals/Inorganics were not analysed for these samples (not the CoPCs).

IV. TRIP BLANKS (TB) AND TRIP SPIKES (TS)

A. Were an <u>Adequate Number</u> of trip blanks and spikes analysed?

B. Were the trip blanks free of contaminants and trip spike were within acceptance limit?

C. Were the trip spikes reported within acceptable recoveries?

COMMENTS:

No Comments.

6. EQUIPMENT RINSATE SAMPLES

A. Were an adequate number of Equipment Rinsate Samples collected?B. Were the Equipment Rinsate Samples free of contaminants?

Yes	No	
	(Comment below)	
\boxtimes		
\boxtimes		

Field QA/QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

Yes	No	
	(Comment	
	below)	
\square		
\square		

1. Type of QA/QC Samples

	Yes	No
Laboratory Blanks/Reagent Blanks	\square	
Laboratory Duplicates	\square	
Matrix Spikes/Matrix Spike Duplicates	\square	
Laboratory Control Spike	\square	
Surrogate (where appropriate)*	\square	

- 2 Were the laboratory blanks/reagents blanks free of contamination?
- 3. Were the spike recoveries within control limits?
 - a. Organics (70% to 130%)
 - b. Metals/Inorganic (70% to 130%)
- 4. Were the RPDs of the laboratory duplicates within control limits?
- 5. Were the surrogate recoveries within control limits?

COMMENTS:

No Metals/Inorganics were collected as part of this investigation.

Yes	No	
	(Comment	
	below)	
\square		
\square		
\square		

5. The laboratory internal QA/QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

Coffey Services Australia Pty Ltd A.B.N. 55 139 460 521 DATA VALIDATION REPORT Job No: 754-SYDEN205070 Groundwater Analysis - Lab Batch References – 627443-W

VI DATA USABILITY

- 1. Data Directly Usable
- 2. Data Usable with the following considerations
- 3. Data Not Usable.

COMMENTS:

No Comments.

Detailed Environmental Site Investigation 4-6 Bligh Street, Sydney

Appendix E - Geotechnical Borehole Logs

Coffey, A Tetra Tech Company SYDEN205070 3 December 2018

Rock Description Explanation Sheet (1 of 2)

DEFINITIONS:	Rock m	aterial, defect, structure and rock mass are define	d as follows:						
Rock material Defect Structure Rock mass	disaggr which c Discont Nature	neering terms rock material is any naturally occurri egated by hand in air or water without prior soakin an be disaggregated or remoulded should be des- inuity, fracture, break or void in the material or ma and configuration of the different defects within the entirety of the system formed by all of the rock ma ctively homogeneous.	ig. Rock material is ir cribed as a soil. terials across which t e rock mass and their	ntact rock that is b there is little or no relationship with	oounded by defects. Materi o tensile strength. each other.				
MATERIAL DE	SCRIPT	IVE TERMS:	ROCK MATER	AL STRENGT	HTERMS				
Rock name		rock names are used rather than precise cal classification.	Term (Abbreviation)	Gu Point Load	ide to Strength Field Assessment				
Particle size	Grain si	ze terms for sandstone are:		Strength Index, I _{s(50)}					
Coarse grained		0.6mm to 2mm		(MPa)					
Medium grained		0.2mm to 0.6mm	Very Low (VL)	0.03 - 0.1	Material crumbles under firm blows with sharp en				
Fine grained		0.06mm (just visible) to 0.2mm	(*=)		of pick; can be peeled w				
Fabric	orientat for sedi metamo	rains show an alignment, a preferred ion or a layering (e.g. bedding or lamination mentary rocks, and foliation or cleavage for orphic rocks) the terms used are:			a knife; too hard to cut a triaxial sample by hand; pieces up to 30mm thick can be broken by finger pressure.				
Massive Indistinct		ring or penetrative fabric. g or fabric just visible. Little effect on	Low	0.1 - 0.3	•				
Indistinct		properties.	(L)	0.1-0.3	Easily scored with a knif indentations 1mm to 3m				
Distinct	more ea	g or fabric is easily visible. Rock may break asily parallel to the fabric.			show with firm bows of a pick point; has a dull sound under hammer. A				
CLASSIFICATI	ON OF I	MATERIAL WEATHERING			piece of core 150mm lor by 50mm diameter may				
Term Abb	reviation	Definition			broken by hand. Sharp edges of core may be				
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible. Soil has not been	Medium	0.3 to 1.0	friable and break during handling. Readily scored with a				
Extremely Weathered	xw	significantly transported. Material is weathered to such an extent that it has soil properties, i.e. it either disaggregates or can be remoulded in water. Mass structure	(M)		knife; a piece of core 150mm long by 50mm diameter can be broken hand with difficulty.				
		and material texture and fabric of original rock are still visible.	High (H)	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by ha				
Highly Weathered ¹	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary			but can be broken by a pick with a single firm blow; rock rings under hammer.				
		minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to the deposition of weathering products in pores.	Very High (VH)	3 to 10	Hand specimen breaks after more than one blow rock rings under hamme				
Moderately Weathered ¹	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is no longer recognisable. Little or no change of strength from fresh rock.	Extremely High (EH)	More than 10	Specimen requires mar blows with geological p to break through intact material; rock rings und hammer.				
Slightly Weathered	SW	Rock is partially discoloured with staining or bleaching adjacent to defects, but shows little or no change of strength from fresh rock.	Notes on Rock M	-					
Fresh	FR	Rock shows no sign of decomposition of individual minerals or colour changes.	described us 2. The method	sing soil character	I _{S(50)} should be in				
Notes on Weathe	ring:		3. The rock str	ength should be d	letermined perpendicular t				
practicable (a distinction 'Moderately 'Rock streng highly discol increased by weathering	or it is juc) to disting Weathere oth usually oured, us y leaching products i	(eathered' (DW) may be used where it is not lged that there is no advantage in making such guish between 'Highly Weathered' and ed'. 'Distinctly Weathered' is defined as follows: y changed by weathering. The rock may be ually by iron staining. Porosity may be g, or may be decreased due to deposition of n pores'. hemical changes of the rock material are	4. Although AS terms based the ratio bet 10 to over 3 strength. Th determined 5. The rock str	break parallel to t 1726:2017 provid on Unconfined C ween UCS and Is 0 depending on th e UCS/Is(50) stren for each rock mat ength classificatio	on using I _{S(50)} above should				
caused by h term 'altered	ot gases I' may be	or liquids at depth (process called alteration) the substituted for 'weathering' to give the , MA, SA and DA.	be considered indicative only. The rock strength classifie						

Rock Description Explanation Sheet (2 of 2)

COMMON RO	OCK DEFECT TYPES			
Term	Definition	Diagram	Map Symbol	Graphic Log (Note 1)
Parting	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (e.g. cleavage). May be open or closed.		20 Bedding 20 Cleavage	(Note 2)
Joint	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or to planar anisotropy in the rock material. May be open or closed.		¥60	(Note 2)
Sheared Zone/Seam (Note 3)	Zone of rock material with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.		35	
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.		40	10. 20 20
Crushed Seam (Note 3)	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.		50 	1. J. J. J. J.
Infilled Seam	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams up to 1mm thick may be described as veneer or coating on a joint surface.		65 H	11100
Extremely Weathered Seam	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.	Seam	32 FUTTURE	

Notes on Defects:

Г

- 1. Usually borehole logs show the true dip of defects, and face sketches and sections show the apparent dip.
- 2. Partings and joints are not usually shown on the graphic log unless considered significant.
- Sheared zones/seams, sheared surfaces and crushed seams are generally faults in geological terms.

DEFECT SHAPE TERMS

Planar		ne defect does not vary orientation
Curved		ne defect has a gradual nange in orientation
Undulating		ne defect has a wavy Irface
Stepped		ne defect has one or ore well defined steps
Irregular	sh	ne defect has many narp changes of ientation
	enced b	ment of defect shape is by the scale of the
DEFECT	ROUC	GHNESS TERMS
Very Roug	ļh	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.
Rough		Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Smooth		Smooth to touch. Few or no surface irregularities.
Polished		Shiny smooth surface.
Slickensic	led	Grooved or striated surface, usually polished.
DEFECT	COAT	ING TERMS
Clean	No vis	ible coating.
Stained		ble coating but surfaces coloured.
Veneer	minera	le coating of soil or Il, too thin to measure; e patchy.
Coating	thick. should approp infilled strengt	le coating up to 1mm l'hicker soil material be described using oriate defect terms (e g. seam). Thicker rock th material should be bed as a vein.
		F DEFECTS
Spaning 1	onath	anannaaa and

Spacing, length, openness and thickness

The spacing, length, aperture (openness), and seam thickness should generally be described directly in millimetres or metres.

Block Shape

Where it is considered significant, block shape (e.g. tabular, prismatic, columnar) should be described using the terms in Table 23 of AS 1726:2017.

20.02.2018

ATETR	RA TEC	CON	IPANY								Boreł	nole	ID.		BH101	
с.	na	in	oor	ind	~ I	~	N	B o	rabala		sheet	t:			1 of 5	
	ng		eer	шć	J	-0(<u>J -</u>	DU	orehole		proje	ct n	0.		754-SYDGE205	019
clier	nt:	R	ecap	Man	age	emer	nt				dates	star	ted:		01 Nov 2018	
prine	cipal:										date	com	plet	ed:	03 Nov 2018	
proje	ect:	4-	6 Blig	gh S	tree	et					logge	d by	/:		YA	
loca	tion:	4-	6 Blig	gh S	tree	et, Sy	/dne	y, NS	SW		check	ked	by:		AJB	
posit	ion: E		465.60; N	-					surface elevation: 17.90 m (AHD)	angle	from ho		-	90°		
drill r	nodel:	, Trac	k mount	ted					drilling fluid:	hole d	liameter	:				
drill		nforma	tion				mate		bstance		<u> </u>	_				
⊗ p ±	penetration		samp field		_	(E	c log	icatio	material description SOIL TYPE: plasticity or particle characteristic,	on	ency / densit	pe	iand netro ieter	-	structure and additional observations	
method & support	: bene				RL (m)	depth (m)	graphic log	classification symbol	colour, secondary and minor components	moisture condition	consistency / relative density	(kPa) ରୁଚ୍ଚିତ୍ସ			
		T			<u> </u>				CONCRETE SLAB: angular, no voids, 20-40mm		01			_	NCRETE	
				-	_		4		aggregate, separate at two layers 150mm rubber BALLAST: 70-80mm coarse aggregate, angular, well	-		II.		BAL		
	+					-]	\ compacted.	1		$\left \right $		BEC	DROCK	
				-	-17	- 1.0-			Borehole BH101 continued as cored hole							-
						- 1.0										-
				-	-	-						ļį				-
		i				-										
					-16	2.0-										-
						-										
					-							ļį.				-
107/1					-15	-						ļį				
						3.0-										-
				-	_	-										
						-										-
, į				-	-14	-						ļį				
						4.0-										
				-	_	-										-
						-										
				-	-13	5.0-										-
	11					-						li.	İİİ			
				-	_	-						1 .				
					10	-										
3					-12	6.0-										-
	11	i			_							i	İİİ			
		i				-						i				-
				-	-11	-										
						7.0-										-
טטר_יַיַדַיַע_נוטאארו אניטט ואייאר גען טער טטאבווטבר. ואטו טטאבט ואדי				-	_	-						i	i i i			
		i				-										
					-10		1		l							
AD	aug	er drilli	ng*		sup M	mud	N	l nil	samples & field tests B bulk disturbed sample		escriptic	n	ž	V	consistency / relative density /S very soft	
AS HA W	han	er scre d auge hbore				casing etration	1		D disturbed sample E environmental sample	based Classific	on Unifi ation Sy		I	S F	- firm	
DT	diat				Ŵ	0.0		sistance no to		dry				- S V H	/St very stiff	
*	L. 14	harr			wate		 refusa 	al	N standard penetration test (SPT) M N* SPT - sample recovered W	dry moist wet				F	Thang To friable /L very loose	
e.g. B	AD/		by suffix			- leve	Oct-12 w el on date ter inflow		Nc SPT with solid cone W VS vane shear; peak/remouded (kPa) W	p plastic				L	Loose MD medium dense	э
TV	TC I V bi	oit					ter outflow	N	R refusal HB hammer bouncing						D dense /D very dense	

ATET	RA TE	ECH CC	MPANY										Boreho	le ID.	BH10	1	
с.	Engineering Log - Cored Borehole												sheet:		2 of 5		
	ΠĆ	JIII	ee	nn	g Log - Corec	a borer		•					project	no.	754-SY	DGE20	5019
clier	nt:	F	Reca	o Ma	nagement								date sta	arted:	01 Nov	2018	
prin	cipa	ll:											date co	mpleted:	03 Nov	2018	
proj	ect:	4	-6 B	ligh S	Street								logged	by:	YA		
loca	ation			-	Street, Sydney, NSW								checke	-	AJB		
						rface elevation: 17.	90 m (Al	-ID)				angle	e from horiz		7.02	-	
1° –			ack mo			lling fluid:	(,				0	diameter :		Va	ane id.:	
drill	illing information material substance material description ∞ estimated sampl											rock	mass defe	1			
method & support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain charaon colour, structure, minor co	cterisics,	weathering & alteration	s o	trenç & Is5 X=axi = diam	gth 50 ^{al;} etral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	(type, incline	dditional obser defect desc ation, planarity thickness,	riptions y, roughness,	, coating general
⊂ o	7 ※ 花									u – ulamouai	0~	8 7 8 7 8	particular			general	
				$ \sim$	start coring at 0.63m												_
		-17	-		NO CORE: 0.21 m SANDSTONE: medium grained, p	ale grey and	MW	H			a=0.41 d=0.35		┝┿┪╵╎╵╎╵		PL, VR, SN, ir	on oxide	
			1.0-		orange-brown, 5°-10° distinctly be moist, massive.			li		ii	u=0.55						-
		-	-									86%					
			-						Ø		a=1.13 d=1.36			-			
		-16	2.0-														-
			-	· · · · · · · · · · ·				ļį		ii							
		F	-		2.46 to 2.85 m: vertical joint, 2-3mr	n wide, filled with		li		ij				— PT, 15°,	PL, RO, CN, i	iron oxide	
			_		iron oxide										UN, RO, SN, i	iron ovide	
		-15	3.0 —								a=1.01 d=0.85	100%		PT, 0°, F	PL, RO, CO - 0	Clay, iron oxid	Je _
			-					ļį		ii			liiili				
			_					li		ii	a=1.21						ا ت
		-14	-								d=0.88						PL, RO, CN, described
			4.0-	: : : :										— РТ, 5°, F	PL, RO, CN		, PL, e des,
		-	-		4.40 to 4.60 m: becomes grey, bro	wn bairling to			ø		a=0.95 d=1.26	100%		— SZ, 0°, F	PL, RO, CO - 0	Clay	PT, 0°, nerwise
			-		1mm cracks, moist, 5°-10° to bedd		SW	łi		ii	u-1.20	10070	li G ii	-			Defects are: unless oth
		-13	5.0-					li									befects unle
			-						***				┟┼┼┨╷	↑ PT, 5°, F	PL, RO, CN PL, RO, CN JN, RO, CN		
		F	-						888		a=0.49 d=0.87			11,0,0	, ito, oit		
			-														
		-12	6.0-					li		İİ		100%	liii li				-
			-								a=1.11			DT 5° I	PL, SO, SN, bl	look	
	Comparison of the second									d=0.74				PL, SO, SN, B	ack		
	: : : : 6.50 to 6.60 m: shale, moist										 -+ 	-					
																-	
										100%		DT 00 1					
			-												PL, SO, SN, bl PL, SO, SN	аск	
		-10	-														
AS	method & support water graphic log / core recovery RS residua AS auger screwing L = 140/10/12 water XW extreme										ual soil		PT partin JT joint		planarity PL planar CU curved		
AD CB W	CB claw or blade bit W water level on date shown W water level on date shown W water level on date shown W distin										weath ctly wea	ered athered	SZ shear SS shear	r surface	UN undulat ST stepped	ting d	
NM NQ	LONN wi	MLC co reline c	re (51.9 ore (47	.6mm)	water inflow complete drilling fluid loss	no core	recover	ed			SW slight	ly weath		CO conta CS crush SM seam	ied seam	IR Irregula	лг
PQ	HQ wireline core (63.5mm) PQ wireline core (85.0mm)											eration	roughness		coating		
DT	tes	st	Poneue		water pressure test result						L Iow M mediu			SL slick POL polis	ensided shed	CN clean SN stain	
1		test barrel withdrawn L low												SO smo RO roug		VN veneer CO coating	

AT	ETRA	A TEC	HCO	MPANY								Borehol	e ID.	BH10)1	
	Engineering Log - Cored Borehole											sheet:		3 of 5		
_		iy										project r	10.		YDGE20	5019
С	lient		R	leca	o Ma	nagement						date sta	rted:	01 Nov	/ 2018	
р	rinci	ipal:										date cor	npleted:	03 Nov	/ 2018	
р	rojeo	ct:	4	-6 Bl	igh S	Street						logged b	by:	YA		
lo	ocati	on:	4	-6 Bl	igh S	Street, Sydney, NSW						checked	by:	AJB		
р	ositio	on: E			-		rface elevation: 17.9	90 m (AHE	D)		angle	from horizo	ontal: 90°			
d	rill mo	odel:	, Tra	ick mou	unted	dri	illing fluid:				hole	liameter :		v	ane id.:	
4	Irillin	ng ini	form	ation	mate	erial substance			4: 4 4		rock	mass defec				
method &	보	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain charao colour, structure, minor co	cterisics,	weathering & alteration	estimated strength & Is50 X= axial; O= diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)		dditional obse defect des ation, planari thickness	criptions ty, roughness	
		-	-9	- - - 9.0 -		SANDSTONE: medium grained, p orange-brown, 5°-10° distinctly bec moist, massive. (continued) 8.05 to 8.15 m: hairline cracks 8.25 to 8.32 m: shale layer and hav 8.65 to 8.68 m: cracks	dded, ironstains,	SW		a=1.13 d=1.17 a=1.60 d=0.92	100%		PT, 0°, F CS, 5°, 1 PT, 2°, F PT, 5°, F SM, 5°,	PL, RO, SN PL, SO, SN CU, SO, SN PL, RO, CN PL, RO, CN PL, RO, CN PL, RO, CN		-
5:45		-	·8	- - 10.0 — - -		SANDSTONE: medium grained, o brown, dry, indistinctly bedded.	range, red	-		a=1.32 d=1.22	100%		─ CS, 5°, 1 — PT, 2°, 0	PL, RO, CO - CU, RO, CN PL, RO, CN	Clay	PL, RO, CN, described
< <drawingfile>> 15/11/2018 16</drawingfile>		_	-7 -6	- -						a=1.34 d=1.95				PL, RO, CN CU, RO, CO -	Clay	Defects are: PT, 0°, PL, RO, CN, unless otherwise described
D 754-SYDGE205019.GPJ		-	-5	12.0 — - - 13.0 —		SANDSTONE: medium to coarse a brown, indistinctly bedded, high qu		-		a=1.83 d=1.36	100%			PL, RO, CN CU, RO, CN		-
GLB rev: AR Log COF BOREHOLE: CORED		-	·4	- - - 14.0 - -		SHALE: fine to medium grained, p sheared zone (fault). 13.33 to 13.39 m: clay seam, extrer very low strength SANDSTONE: medium grained, d grey, indistinctly bedded with irreg inclusions. BRECCIATED SHALE: fine graine indistinctly bedded, moderately we	ale grey, moist, mely weathered, / ark grey and ular shale ed, grey, /	xw ×		a=2.61 d=1.22	100%		— PT, 5°, (— SZ, IR, I -	IR, RO, CN CU, RO, CN RO, CN ST, SO, CN		efects are: CS, 0°, PL, RO, CO unless otherwise described
CDF_0_9_06_LIBRARY.GL	-3 -3 15.0 - SANDSTONE: medium grained, grey brown, indistinctly bedded, slightly weathered, medium to high strength. 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -								d=0.63 a=0.84 d=0.82	100%		— CS, CN ⊐— CS, 10°	, UN, RO, CC) - Clay	Defects are: C unless othe	
	AS AD CB W NMLO NQ HQ PQ SPT	auge claw was ONML wire wire wire	er scr er dril v or bl hbore C col line c line c line c dard	ewing ling ade bit	.6mm) .5mm) .0mm)	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth interval shown	core run & RQD	covered nbols indicate ma e recovered vithdrawn	aterial)	XW extrer HW highly DW distin MW mode SW slight FR fresh *W replaced wi strength VL very lo L low M medium	& altera Jal soil nely we vweathe ctly weathe trately w ly weath th A for alt w m gh	athered red thered eathered ered	CO conta CS crush SM seam roughness SL slick POL polis SO smo RO roug	ng r zone r surface lot seam seam shed shed soth	planarity PL planar CU curvec UN undula ST steppe IR Irregul coating CN clean SN stain VN venee CO coatin	d ating ed lar

A TETI	RA TE	CHCC	MPANY							Borehole ID.	BH101
	00	nin		rin	alog Corod Poro	hal	•			sheet:	4 of 5
	nĉ	JII	lee	m	g Log - Cored Bore	noie	5			project no.	754-SYDGE205019
clier	nt:	F	Recap	o Ma	nagement					date started:	01 Nov 2018
prin	cipa	I:								date completed:	03 Nov 2018
proj	ect:	4	I-6 Bl	ligh S	Street					logged by:	YA
loca	ation	: 4	-6 Bl	- ligh S	Street, Sydney, NSW					checked by:	AJB
posit	tion:	E: 334	4,465.60); N: 6,2	251,284.97 (MGA94) surface elevation: 1	7.90 m (Al-	HD)		angle	e from horizontal: 90°	
drill ı	mode	el:, Tr	ack mou	unted	drilling fluid:				hole	diameter :	vane id.:
drill	ling i	nform	ation	mate	erial substance	rock	mass defects				
method & support	water	(m) -	depth (m)	graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components	weathering & alteration	estimated strength & Is50 X=axial; O=diametral	samples, field tests & ls(50) (MPa) a = axial:	core run & RQD	spacing (mm) (type, inclin	additional observations and defect descriptions nation, planarity, roughness, coating thickness, other)
sul	N N	R	de	gre			≓ _ ≥ ± ╄ ⊞	d = diametral	S ∞	_ຂ ຍຼິ ຄຼິຍິ ຄິ particular	general
		-	- - - 17.0-		SANDSTONE: fine to coarse grained, pale grey to grey, 5°-10° distinctly bedded, common shale laminae throughout. <i>(continued)</i>	SW		a=0.68 d=0.63	100%		-
		-	-			FR		a=1.24 d=1.01			PL, RO, VN - Clay PL, RO, CO - Clay
		-0	- 18.0 — - -		17.65 m: 3mm thick clay band (shale) 17.90 m: 10mm thick clay bands, shale occassional clay bands between 18.2-18.4m			a=0.88 d=0.86	100%	 	
		1	- 19.0 — -		18.60 m: trace of clay bands, and trace of basaltic feature, 2mm size 19.00 m: 20-40mm clay coating on surface only			a=0.73 d=0.20		 	CU, RO, CO - Clay

CDF_0_9_06_LIBRARY.GLB_rev:AR_Log_COF_BOREHOLE: CORED_754-SYDGE205019.GPJ_<<Drawing

PL, RO describ PT, 5°, CU, RO, CO - Clay 100% PT, 2°, PL, RO, CN -2 11 Defects are: PT, 0°, unless otherwise 20.0 1 ¢ 1 ||a=0.77 d=1.04 1 1 1 ||||1 ||||--3 1 21.0 21.00 to 21.40 m: hairline cracks I | |100% PT, 2°, CU, RO, SN ||||a=1.44 ||d=0.84 11 ||||-4 22 0 11 ||a=1.63 d=1.22 22.60 to 23.15 m: hairline cracks 100% PT, 2°, PL, RO, CN ĿГ --5 ||- PT, 0°, PL, SO, CN 23.0 | || |I a=1.15 d=0.85 ||Ϊİ. PT, 0°, PL, SO, SN ||100% İ weathering & alteration* RS residual soil XW extremely weathered DW distinctly weathered DW distinctly weathered MW moderately weathered SW slightly weathered FR fresh W replaced with A for alteration strength VL very low L low M medium H high defect type PT parting JT joint SZ shear z SS shear s CO contact planarity PL planar CU curved UN undulating ST stepped IR Irregular method & support water graphic log / core recovery parting joint shear zone shear surface auger screwing auger drilling claw or blade bit AS AD CB W |10/10/12, water |level on date shown V core recovered material) washbore water inflow W washbore NMLCNMLC core (51.9 mm) NQ wireline core (47.6mm) HQ wireline core (63.5mm) PQ wireline core (85.0mm) contact CS SM crushed seam seam complete drilling fluid loss no core recovered partial drilling fluid loss core run & RQD coating CN clean SN stain VN veneer CO coating standard penetration test diatube SPT roughness SL slickensided POL polished SO smooth RO rough barrel withdrawn water pressure test result (lugeons) for depth interval shown DT 25uL RQD = Rock Quality Designation (% high very high extremely high H VH VR very rough ΕH

A TETRA TECH	H COMPANY	Borehole ID.	BH101
Engl	incoring Log Cored Porchala	sheet:	5 of 5
Eng	ineering Log - Cored Borehole	project no.	754-SYDGE205019
client:	Recap Management	date started:	01 Nov 2018
principal:		date completed:	03 Nov 2018
project:	4-6 Bligh Street	logged by:	YA
location:	4-6 Bligh Street, Sydney, NSW	checked by:	AJB
position: E	· 334.465.60: N: 6.251.284.97 (MGA94) surface elevation: 17.90 m (AHD)	angle from borizontal: 90°	

p	position: E: 334,465.60; N: 6,251,284.97 (MGA94) surface elevation: 17.90 m (AHD) drilling odel: , Track mounted drilling fluid: drilling information material substance estimated								angle	e from horizo	ontal: 90°			
d	Irill m	odel	:, Tr	ack mo	unted	drilling	fluid:				hole	diameter :	v	ane id.:
[drillir	ng ir	nform	ation	mate	rial substance					rock	mass defe	cts	
method &	support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain characteris colour, structure, minor compo	sics, nents	weathering & alteration	estimated strength & Is50 X=axial; O=diametral ⇒ _ ≥ ⊥ ∋ I	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	additional obse defect des (type, inclination, planarii thickness particular	criptions ty, roughness, coat
		-	7	-		SANDSTONE: fine to coarse grained, p grey, 5°-10° distinctly bedded, commor laminae throughout. <i>(continued)</i>		FR		a=1.30 d=0.93	100%			
			8	25.0		25.05 to 25.50 m: hairline to 1mm, shale	e laminae			a=0.64 d=0.57	100%			
	9 27.0-					26.50 to 26.65 m: hairline shale laminae	e			a=1.19 d=0.88			PT, 2°, PL, SO, SN PT, 2°, CU, SO, SN	Defects are: PT, 0°, PL, RO, CN.
•	9 27.0									a=1.10 d=0.98	100%		-	Defects are:
			10 -	-						a=1.18 d=0.82	100%		- - - PT, 2°, PL, RO, CN	
			_	29.0-		Borehole BH101 terminated at 29.30 m	1			a=0.84 d=0.84				
			12											
			13	- 31.0 — -										
			14	-						weatherin	n & alter	 	defect type	planarity
	Method & support AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm NQ wireline core (47.6mm HQ wireline core (63.5mm				9 mm) .6mm) .5mm) .0mm)		core recc (graphic symbol (graphic symbol no core r core run & RQD	overed	material)	RS resid XW extre HW high DW distii MW mod SW sligh FR fresh *W replaced v strength	lual soil mely we ly weath nctly weath erately w tly weath n with A for at	eathered ered athered veathered nered	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam	PL planar CU curved UN undulating ST stepped IR Irregular
	HQ wireline core (63.5m) PQ wireline core (85.0m) SPT standard penetration test DT diatube					water pressure test result	RQD = Rock Qua			VL very low L low M mediu	ow um iigh		roughness SL slickensided POL polished SO smooth RO rough VR very rough	coating CN clean SN stain VN veneer CO coating

CDF_0_9_07_LIBRARY.GLB Grietbi COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DrawingFile>> 16/11/2018 09:08

CDF_0_9_07_LIBRARY.GLB GricTbl COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DramingEile>> 16/11/2018 09:08

²DF_0_9_77_LIBRARY.GLB Grith COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DrawnogFile>> 130-0_2016

²DF_0_9_07_LIBRARY.GLB GricTb1 COF PHOTO CORE PHOTO 1 PER PAGE 754-5YDGE205019.GP1 <<DreamingFile>> 16/11/2018 09:08

DF_0_9_07_LIBRARY.GLB Grictbl COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DrawingFile>> 16/11/2018 09:08

ATETR	A TEC	CON	/PANY								H	ole ID.	BH101
Di	~7	or	no	tor	Inetalla	tion	20				sł	neet:	1 of 1
					' Installa		Uy					roject no.	754-SYDGE205019
client			ecap) Mai	nagement							ate started:	01 Nov 2018
princ	ipal:										da	ate completed:	03 Nov 2018
proje	ct:	4-	6 BI	igh S	Street						lo	gged by:	YA
locat	ion:	4-	6 BI	igh S	Street, Sydney	, NSW					cł	necked by:	AJB
					51,284.97 (MGA94)			ation: 17.90	m (AHD)			m horizontal: 90°	
equipi drillin				mounte	ed rial substance	driliir	ng fluid:	niezomete	construction		hole diam	ieter :	
	5			<u> </u>		ial name		P • • • •				bore constructio	
method & support	water	RL (m)	depth (m)	graphic log						BH101		drilling compan driller: driller's permit r	
					CONCRETE							Concrete	
		-16	-		BEDROCK							Sand	
								3.60 m					
		-	4-									Bentonite	-
			-					4.55 m					
		-12						5.83 m					-
			8-										-
			-										
		-8											- - -
			-										
		-	12-										-
		-4	-	[::::									
		4										Sand	-
		-	- 16-									Sur_	-
			-										
		-0											- - -
			-										
			20-										-
		4	-										
			-										- -
		-	24										-
			-					25.38 m					-
		8	-										-
			- - 28-										
			20-										-
		12	-								I		
				1									
meth	od & :	suppor	rt	1	graphic log / cor	re recovery)		type	installation	stickup	tip water le	
see wate	r			or detail		covered -				date	(m)	depth (m) (m)	(AHD) stickup tip water level
	- lev	el on d ter infl	2, water late sho ow	own	(graphic s indicate m	symbols B naterial)	BH101	sta	andpipe piezo.			29.30 m	-11.40
	cor	mplete		g fluid lo uid loss	oss 🛛 🔼	e recovered							
			-	t result									
25	(luge		or depth										

CDF 0 9 06_LIBRARY.GLB rev.AR Log COF PIEZOMETER ONE PAGE SUMMARY 754-SYDGE205019.GPJ <<DrawingFile>> 15/11/2018 16:46

	TECH		ANY							Boreł	nole ID.	BH102
		no	orin	a I		N	P~	robolo		sheet	:	1 of 4
	igi	ne	enn	<u>y</u> ı	_ 0(<u>J -</u>	DU	rehole		proje	ct no.	754-SYDGE20501
client	:	Re	сар Ма	nage	emer	nt				date	started:	29 Oct 2018
princ	pal:									date	completed	1: 31 Oct 2018
proje	ct:	4-6	Bligh S	Stree	et					logge	d by:	YA
locati			Bligh			/dne	v. NS	W			ked by:	AJB
			7.59; N: 6,2				,,	surface elevation: 17.90 m (AHD)	angle		rizontal: 90	
		,	mounted	-,		,		drilling fluid:	0		: 215 mm	
drilli	ng info	rmati	on			mate	erial sub	stance				
method & support	penetration	water	samples & field tests		depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
uns ∎	- ~ ~	Š		R	de	ъ. Д.Д	s de	CONCRETE: 5-20mm coarse aggregate, angular, no	ĔS	<u>e</u> c	40 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BASEMENT SLAB
					-			Voids.	-			BASE COURSE
								voids				BALLAST BEDROCK
				-17	-			BALLAST: 60-90mm coarse aggregate, angular, well				
					1.0-			SANDSTONE: medium grained, pale grey, distinct, iron stains, visible, fresh, very high strength.				
				F	-			Borehole BH102 continued as cored hole				
					-							
				-16	2.0-							
					-							
				-	-							
					-							
				-15	3.0-							
					-							
				-	-							
				-14	-							
				14	4.0-							
					-							
				-13	-							
					5.0-	1						
				F	-						i i i i	
					-							
				-12	6.0-							
					-							
				F	-							
				-11	-							
					7.0-							
				L		1						
					-							
				-10	-							
metho AD	od auger	drilling	1*		port		l nil	Samples & new tests	lassificat soil de	tion sym		consistency / relative density VS very soft
AS HA	auger hand a	screwi		С	mud casing		l nil	D disturbed sample		on Unifi	ed	S soft F firm
W DT	washb diatub	ore			etration		sistance	SS split spoon sample	sture			St stiff VSt very stiff
						 no res rangir refusa 	ng to al	HP hand penetrometer (kPa) D N standard penetration test (SPT) M	dry moist			H hard Fb friable
* e.g.	bit sho AD/T	wn by	suffix	wat	110-	Oct-12 w	ater shown	N* SPT - sample recovered W Nc SPT with solid cone Wp	wet plastic	limit		VL very loose L loose
e.y. B T	blank I TC bit	oit			- wat	ter inflow		VS vane shear; peak/remouded (kPa) WI R refusal	liquid lii	חונו		MD medium dense D dense
v	V bit				wat		IV.	HB hammer bouncing				VD very dense

ATET	'RA TI	ECH CC	MPANY								Borehol	e ID.	BH102
E	Engineering Log - Cored Borehole ^{sheet: 2 of 4} project no. 754-SYDGE205019												
	пć	JIII	ee		y Loy - Coreu	Dorei		5			project ı	10.	754-SYDGE205019
clie	nt:	F	Reca	o Ma	nagement						date sta	rted:	29 Oct 2018
prir	ncipa	al:									date cor	npleted:	31 Oct 2018
pro	ject:	4	-6 B	ligh S	Street						logged k	by:	YA
loca	ation	: 4	-6 B	ligh S	Street, Sydney, NSW						checked	l by:	AJB
posi	ition:					e elevation: 17.9	0 m (Ał	HD)		angle	e from horizo	ontal: 90°	
drill	mode	el:, Tr	ack mo	unted	drilling	ı fluid:				hole	diameter : 2	15 mm	vane id.:
dril	ling	inform	ation	mate	erial substance	samples,	rock	mass defe	1	latitional abaan attions and			
nod & bort	ar.	(m)	(m) ti	graphic log	material description ROCK TYPE: grain characteri colour, structure, minor compo	re run RQD	defect spacing (mm)		lditional observations and defect descriptions ation, planarity, roughness, coating, thickness, other)				
method 8 support	water	RL (depth	grap			weathering alteration	X=axial; O=diametral ⊃ _ ≥ ⊥ 5 ⊞	(MPa) a = axial; d = diametral	core & R	30 100 300 300 3000	particular	general
			-										
		-	-										-
	+		-	::::	start coring at 0.65m SANDSTONE: medium grained, pale	oinkish grey,	SW		a=0.67		╺╺╼╼		R, SO, CO - 2L, RO, CN -
		-17	1.0-		indistinctly bedded, red iron staining.				d=0.92				
			-		0.99 m: trace pyrite, some quartz grain glassy	is upto 15mm,				100%			-
		F	-						a=1.00 d=0.49			PT, 5 - 1	- 0°, PL, RO, CN
												PT, 5°, F	PL, RO, CN
		-16	2.0-										-
			-							100%		DT (0)	-
		-	-		2.35 to 3.32 m: interbedded grey and r bedding angle 10°-15°, very closely sp				a=0.38 d=0.86				PL, RO, CN _
3 16:45													-
11/2018		-15	3.0-										-
> 15/			-										-
ngFile>		F	-		3.32 to 4.50 m: interbedded grey shale	laminae			a=0.90 d=0.97			— РТ, 5°, F	PL, RO, CN -
cDrawi			-							100%			-
× lq		-14	4.0-										-
5019.6			-										-
DGE20					4.55 to 5.05 m: occasional shale lamina	20		© 	a=0.89 d=1.44		╎┢┽┩╎		PL, RO, CN PL, SO, VN, 5 mm, clay infill -
54-SY		-13	-										PL, RO, CN
RED 7			5.0-										
С Ш			-						a=0.99	100%			
KEHOL			-						d=0.92			P1, 2, F	PL, RO, CN -
CDF_0_9_06_LIBRARY.GLB rev:AR_Log_COF_BOREHOLE: CORED_754-SYDGE205019.GPJ_< <drawingfile>> 15/11/2018 16:45</drawingfile>		-12	-					li 🛛 i i					-
50 60			6.0-										-
v:AR I		F	-						a=0.84 d=0.58			PT, 2°, F	PL, RO, VN, 2 mm, clay infill
GLB re			-										-
RY.		-11	7.0-		6.88 to 7.40 m: shale laminae, black		MW			100%			- CU, SO, CO, black PL, RO, CO, black —
6_LIBF					,				a=0.90			PT, 0°, F	PL, RO, CO, black
0 6 0													PL, RO, CO, black
CDF											;;] ;;	P1, 0', F	L, SO, VN, clay infill
		-10			 				weathering	100%			PL, RO, CN, black
AS AD CE W NN	Sau) au Scla Wa MLONI Q wi	ashbore MLC co reline o	rewing Iling Iade bit e ore (51.9 core (47	9 mm) .6mm)	■ 10/10/12, water level on date shown water inflow complete drilling fluid loss	graphic log / core core rec (graphic sym no core	overed	material)	RS residu XW extrer HW highly DW distin MW mode SW slight	ual soil nely we / weathe ctly wea rately w ly weath	athered ered athered reathered hered	CO conta	g PL planar CU curved zone UN undulating surface ST stepped ct IR Irregular ed seam
	2 wi PT sta	reline o andard		.0mm)	partial drilling fluid loss				*W replaced w strength VL very lo	ith A for alt W	eration	roughness	coating
	HQ wireline core (63.5mm) Image: Core run & RQD Wireliaced with A for alteration strength PQ wireline core (85.0mm) water pressure test result Image: Core run & RQD VL very low SPT standard penetration water pressure test result Image: Core run & RQD VL very low DT diatube water pressure test result Image: Core run & RQD Medium RQD = Rock Quality Designation (%) H high VH very high EH extremely high EH extremely high											POL polis SO smo RO roug	oth VN veneer

A TETRA TECH COMPANY											Borehol	e ID.	BH10	2	
с.	n (Nin		rin	alog Coror	sheet:		3 of 4							
Engineering Log - Cored Borehole												no.	754-SY	DGE2050)19
client: Recap Management									date sta	rted:	29 Oct 2018				
prine	cipa	:II:									date co	mpleted:	31 Oct 2018		
project: 4-6 Bligh Street									logged by: YA						
location: 4-6 Bligh Street, Sydney, NSW										checked	checked by: AJB				
posit	ion:					rface elevation: 17.9	90 m (Ał	HD)		angle	from horize	-			
drill r	mode	∄:, Tr	ack mo	unted	dril	illing fluid:				hole o	diameter : 2	15 mm	Va	ane id.:	
drilling information ma				mate	material description	in	ø	estimated	samples,	rock	mass defe defect		dditional obser	vations and	
method & support	water	RL (m)	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor cor	cterisics,	weathering a	strength & Is50 X=axial; O=diametral	field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm)		defect descriptions nclination, planarity, roughness, co thickness, other)		oating, jeneral
50	>	-	δ		SANDSTONE: medium grained, pa		≤ œ SW			0	0 → 0 → 0	paruouiui			
		-	-		planar isotropic, indistinctly bedded, bands visible. SANDSTONE: medium grained, red becoming massive.				a=1.14 d=1.20	100%		← PT, 5°, PL, SO, CO, black - - SM, 0°, PL, SO, VN, 2 mm, c			-
		-9	9.0			ldish-brown,	FR		a=1.66 d=1.23			— SM, 0 ⁻ , 1	PL, SU, VN, ∠	mm, clay influ	-
		-8	- - 10.0 — -							100%		— PT, 0°, PL, RO, C)	-
		-7	- - - 11.0-						a=1.52 d=1.42						
		-	-		SANDSTONE: fine to medium grain	inch note draw	MW		a=0.70 d=1.44	100%		PT, 2°, 0	PL, RO, CO, bl CU, RO, CN	-	PL, RO, CN, described
		-6	12.0-		distinctly bedded. 11.74 to 12.68 m: occasional thin sh 12.30 to 12.36 m: shale bed							SM, 0°, I		ۇmm, clay infill	ໍ້ປ
			-	: 	NO CORE: 0.06 m	SW		a=1.34 d=1.12		╵║╵╵╵				Defects unlee	
		-5	- 13.0 — -		SANDSTONE: fine to medium grain distinctly bedded.	ned, pale grey,	01.		a=1.54	95%				Ľ	-
			-						d=1.39						
		-4	14.0 <i>-</i> - -		SHALE: fine grained, pale grey, inc bedded, inclusions of basaltic fill. 13.89 to 14.00 m: brecciated shale 14.18 to 14.30 m: brecciated shale	-	DW		a=0.38 d=0.27	100%		— JT, 20°, — PT, 2°, 0 — JT, 10°,	PL, SO, VN UN - IR, SL, C CU, RO, CN IR, SO, CN	ò	
		-3	- - 15.0 —							100%		PT, 0°, F PT, 0°, F	CU, SO, CN PL, SO, CN PL, SO, CN PL, SO, CO - C	Clav	-
		- 15.25 to 15.55 m: intrebedded, shale bands 2mm thick SANDSTONE: medium grained, pale grey, basaltic inclusions.					FR		a=0.35 d=0.86	100%		PT, 2°, F	PL, SO, CO - C		
AS AD CB W NM NQ HQ PQ SP	au au cla wa ILONN win win win to sta	ashbore MLC co reline c reline c andard st	rewing Iling blade bit	9 mm) 7.6mm) 8.5mm) 5.0mm)	water Ilo/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	te shown w Irilling fluid loss ng fluid loss core run & RQD barrel withdrawn			weathering & alteration* RS residual soil XW extremely weathered HW highly weathered DW distinctly weathered MW moderately weathered SW sightly weathered FR fresh 'W replaced with A for alteration strength VL VL very low L low			CO conta CS crush SM seam roughness SL slick	ng r zone r surface act led seam l s s kensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular	g
DT diatube					water pressure test result (lugeons) for depth interval shown				M mediun H high VH very hi EH extrem	gh		POL polis SO smo RO roug VR very	oth	SN stain VN veneer CO coating	

A TETRA TECH COMPANY											Borehole			BH102		
E	nr	nir		rin	a Loa - Coro		sheet:			4 of 4						
	Engineering Log - Cored Borehole											project i	10.	754-SYD	GE2050)19
clier	ent: Recap Management										date sta	rted:	29 Oct 2018			
principal:										date completed: 31 Oct 20)18			
project: 4-6 Bligh Street										logged by: YA						
location: 4-6 Bligh Street, Sydney, NSW											checked	d by:	AJB			
1 ·					251,298.59 (MGA94) su	rface elevation: 17.9	90 m (AH	ID)			angle	e from horizo	ontal: 90°			
drill model: , Track mounted					drilling fluid:							diameter : 2		vane	id.:	
drilling information			ation		material substance attribution attributii attribution attribution attribution attribution					samples,	rock	defect		lditional observati		
method & support	water		depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor co		weathering alteration	strength & Is50 X=axial; O=diametral		field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm) (type, incl		defect descriptions nation, planarity, roughness, thickness, other)		coating, general
			-		SANDSTONE: medium grained, p basaltic inclusions. (continued)	ale grey, trace of	FR				100%					-
		-1	- - - 17.0 —		16.73 to 17.55 m: alternative shale broken parallel to bedding	laminae, easily				a=0.42 d=0.60	100%			PL, SO, CN PL, SO, CN		
		-0	- - - 18.0-		17.85 m: 10mm, dark grey, shale la	aminae				a=1.13 d=1.10			-	JN, RO, CN		-
		1	18.0							a=1.05 d=0.45	97%			JN, RO, VN, clay infill CU, RO, VN - Clay PL, RO, VN - Clay CU, RO, CN CU, RO, CN		
		2	- - - 20.0 — -		NO CORE: 0.05 m 19.25 m: clay infill SANDSTONE: medium grained, p shale laminae. 19.30 m: becoming massive, occas laminae	FR			a=1.27 d=1.28	100%		- PT, 0°, C	CU, RO, CN			
		3	- - 21.0 — -							a=1.26 d=1.61			PT, 0°, P	PT, 0°, PL, RO, SN, black		-
J		4	- - 22.0 — -							a=1.45 d=1.17 a=0.90 d=0.85	100%					
		5	- 23.0 — - -		Borehole BH102 terminated at 22.3	18 m				u~v.oo						-
		6	-													
method & support AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLONMLC core (51.9 mm) NQ wireline core (47.6mm) HQ wireline core (63.5mm) PQ wireline core (85.0mm) SPT standard penetration test DT diatube					water I 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss water pressure test result	graphic log / core recovery core recovered (graphic symbols indicate material) no core recovered core run & RQD barrel withdrawn				weathering & alteration* RS residual soil XW extremely weathered HW highly weathered DW distinctly weathered MW moderately weathered FR fresh Wreplaced with A for alteration strength VL very low L low M medium			CO contac CS crushe SM seam roughness SL slicke POL polisi	g PL Cl zone UN surface ST ct IR ed seam	pating N clean N stain	ıg
					(lugeons) for depth interval shown	RQD = Rock Quality Designation (%				H high VH very hi EH extrem	gh	1	SO smoo RO rough	oth VN	N veneer O coating	

²DF_0_9_07_LIABRARY.GLB GH6rbl COF PHOTO CORE PHOTO 1 PAGE 754-SYDGE2050.9.GPJ <<Creative Statement 2014/11/2014 09:17

⁷b_0_907_1_18RARY.GLB Grietal COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DrawnogFile>> 130-0_201

CDF_0_9_07_LIBRARY.GLB GricTbl COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DramingEile>> 16/11/2018 09:17

A TETR	A TECH (COMPAN	Y		Hole ID.	BH102			
Di	070	m	otor	Installation				sheet:	1 of 1
)		project no.	754-SYDGE205019
clien	t:	Reca	p Man	agement				date started:	29 Oct 2018
princ	ipal:							date completed:	31 Oct 2018
proje	ect:	4-6 E	ligh S	treet				logged by:	YA
locat	ion:	4-6 E	ligh S	treet, Sydney, NSV	/			checked by:	AJB
positio	on: E:3	34,477.5	i9; N: 6,25	1,298.59 (MGA94)	surface elev	vation: 17.90 m (AHD)		angle from horizontal: 90°	
equip	ment typ	e:, Tra	k mounte	ł	drilling fluid	:		hole diameter : 215 mm	
drillin	inforn	nation	materi	al substance		piezometer constru	ction details	have construction	
method & support	water	depth (m)	graphic log	material name			BH102	bore construction drilling company driller: driller's permit no	:
DT - T S	3 0	ت ک		BASEMENT SLAB		/ 0.15 m	<u> </u>	Concrete	
F				BASE COURSE		0.88 m		Bentonite	
	-10	6		BALLAST BEDROCK		1.38 m			
			-						
		4	-						
	-1:	,	-						
		-							
	-	8							
			-						
	-8								
			-						
		12						Sand	
			-						
	-4								
		16							
			-						
	-0								
			-						
		20							
			-						
	4					22.38 m			
1			-						
			1	- F				Ι	
			for details	graphic log / core recover	y ID	type	installation date	stickup tip water lev (m) depth (m) (m)	vel Relative Levels (AHD) stickup tip water level
	10-Oc	t-12, wat n date s		core recovered (graphic symbols indicate material)	BH102	standpip	e	22.38 m	-4.48
	- water	inflow	ng fluid los	no core recovered	d				
			luid loss						
			est result						
	(lugeons interval s		u I						

A	TETRA	TECH	COMF	PANY							Boreh	nole ID.		BH1()3
	En	ai	~~	orin	a I	~	2	Po	rabala		sheet	:		1 of 3	
_	Engineering Log - Borehole													754-S	YDGE205019
C	client: Recap Management principal:											started:		04 No	v 2018
p												complete	ed:	06 No	v 2018
p	orojeo	oject: 4-6 Bligh Street										logged by: YA			
le	location: 4-6 Bligh Street, Sydney, NSW										check	ked by:		AJB	
position: E: 334,491.89; N: 6,251,287.55 (MGA94)									surface elevation: 12.80 m (AHD)	from ho	rizontal: §	90°			
d	Irill mo	odel:, [·]	Frack	mounted					drilling fluid:	iameter	:				
┢	drillir	ng info ⊆	rmat	on			mate	erial sub ⊂			≥	h a m al			
° T	8 D L	penetration		samples & field tests	-	(E	graphic log classification symbol		material description SOIL TYPE: plasticity or particle characteristic,	tion	tency /	hand penetro- meter	structure and additional observation		
- dtom	support support	² pene	water		RL (m)	depth (m)	graphic log	classi symbo	colour, secondary and minor components	moisture condition	consistency / relative density	(kPa) 0 0 0 0 0 0			
F						_	À À		CONCRETE BASEMENT SLAB : 5-20mm aggregate, angular to sub-rounded, 2-5% voids, 6mm rebar				CO	ICRETE	
					-	-			\used?? (mesh??).			; ; ; ;		LAST	
		111			10	-			CONCRETE: 10-20mm aggregate, 2% voids, (no // mesh).					NOON	
					-12	1.0-			BALLAST: 50-80mm coarse, ballast, angular, medium						-
					_	-			SANDSTONE. Borehole BH103 continued as cored hole						
						-									-
					-11	-									
		iii				2.0-									-
4					-	-									
018 16:						-									-
15/11/2					-10	- 3.0									-
						- 3.0									
awingF					_	-									-
Q ≫ P					-9										
019.GP						4.0-									-
GE205					-	-									
54-SYD						-									-
RED 7					-8	-									
N COF						5.0-									-
LE: NO					-	-						1111			-
OREHC					-7	-									
COF B(-/	6.0-									-
Log					_	-									
CDF_0_9_06_LIBRARY.GLB rev.AR_Log_COF_BOREHOLE: NON CORED_754-SYDGE205019.GPJ_< <drawingfile>>_15/11/2018_16:44</drawingfile>						-									-
KY.GLB		111			-6	-						1111			
LIBRAF						7.0-									-
90 6					-										
OPF 0						-									-
Ľ					-5	-									
	metho AD	auger of	Irilling	9*		port mud	N	l nil	samples & field tests cl. B bulk disturbed sample		scriptio	n		onsistency /	relative density very soft
	AS HA	auger s hand a	crew uger	ing*	Co	casing etration			D disturbed sample C	based lassifica	on Unifie ation Sys		S F	5	soft firm
		washb diatube				- N M	- no res	sistance	SS split spoon sample U## undisturbed sample ##mm diameter HB band constructor (PDa)				V	st /St	stiff very stiff bard
					wate		rangir refusa	al		dry moist wet				ł ib iL	hard friable very loose
		bit sho AD/T blank b		/ suffix		10- lev	Oct-12 w el on date ter inflow	e shown	Nc SPT with solid cone Wp	plastic I liquid lir	imit nit		L		loose medium dense
1	Т	TC bit			wate				R refusal HB hammer bouncing				D		dense very dense

A TETRA TECH COMPANY BC												le ID. BH103			_
-						2 of 3 754-SYDGE205019									
Engineering Log - Cored Borehole												10.	754-SY	DGE205	019
clie	nt:	F	≀eca	р Ма	nagement						date sta	irted:	04 Nov	2018	
prin	ncipal	l:									date cor	mpleted:	06 Nov	2018	
pro	ject:	4	I-6 B	liah (Street						logged b	nv.	YA		
	location: 4-6 Bligh Street, Sydney, NSW checke												AJB		
	position: E: 334,491.89; N: 6,251,287.55 (MGA94) surface elevation: 12.80 m (AHD) angle from horizon												AJD		
1° -	bosition: E: 334,491.89; N: 6;251,287.55 (MGA94) surface elevation: 12.80 m (AHD) angle tro drill model: , Track mounted drilling fluid: hole diar											Alton. 00	Vē	ane id.:	
dril	ling i	inform	ation	mate	erial substance					rock	mass defe				
× 1			Ê	bol :	material description ROCK TYPE: grain character	erisics,	ering & on	estimated strength & Is50	samples, field tests & ls(50)		defect spacing (mm)		ditional obser defect desc ation. planarity		coating.
method & support	water	RL (m)	depth (m)	graphic log	colour, structure, minor com	ponents	weathering a	X = axial; O = diametral	(MPa) a = axial;	core run & RQD	3000 3000 3000 3000 3000	particular	thickness,	other)	-
≿ s	\$	<u>~</u>	9	<u></u>			σ≤		d = diametrai	0 ~	87878	particular			general
		\vdash		1 '											
			-		start coring at 0.79m										
	+	-12	1.0-		SANDSTONE: fine to medium grain	ied, pale grey,	SW		a=1.08 d=0.92			2°	PL, RO, CN		
			1.0		indistinctly bedded, dry.	I' t- Onena									
		F	-		1.20 to 1.32 m: laminated shale, hair extremely closely laminated	line to 2mm,			100%		PT, 0°, P − PT, 20°,	PL, SO, CN PL, RO, CN		-	
		-11	-						a=0.89 d=0.90			PT, 5°, P	PL, RO, CN		
			2.0-	::::'								PT 2° F	PL, SO, SN, bl	look	-
												F\ PT, 2°, F	PL, SO, SN, DI PL, SO, SN, bl PL, SO, SN, bl	lack	-
0									0.70	100%			PL, RO, CN		
		-10 2.80 to 3.70 m: becoming pale grey, massive, hig							a=0.72 d=0.76		li e dii		R, RO, SN R, RO, CN		-
			3.0-		quartz content	maoon e, 11g.							CU, RO, CN		-
		F	.										JN, RO, CN JN, RO, CN		-
D.			-					a=1.39 d=1.60				PL, RO, CN R, RO, SN, da	el arov	, X	
		-9	4.0-		3.70 to 5.64 m: pale reddish to brown	n			u-1.00			-			RO, C cribed
			-							100%		I ` PT. 2°. F	PL, RO, CO - 8 PL, RO, CN PL, RO, CN	3N, clay	, PL, e desr
		[-									PT, 20°,	IR, RO, CN		Defects are: PT, 0°, PL, RO, CN, unless otherwise described
		-8	-					a=1.12 d=1.58					s are: ss oth		
2			5.0-												Jefect: unle
		F	-								╡┥╻╷╷	-−− PT, 20°,	IR, RO, CN		
			-						a=1.25 d=1.31	100%]— CS, 10 -	30°, IR, RO, S	SN	-
		-7	-		5.64 to 6.17 m: pale yellow grey, trac and clay seams (up to 8mm thick)	ce shale laminae		11 📓 1				CS, 0 - 2	20°. PL - CU, I	RO, CO - Clay	, -
D D			6.0-												
		F	-		6.17 to 7.25 m: pale reddish to brown	n			a=0.74 d=1.21			_			
			-												-
		-6	7.0-							100%		PT, 1°, F	PL, RO, CN		_
		-	-		7.25 to 7.70 m; polo vollow grov				a=1.47 d=0.36		li i G i i i		PL, RO, SN		-
			-	· · · · ·	7.25 to 7.70 m: pale yellow grey				u 0.00			DT 1° F			
2		-5	-							4000/		PT, 0°, F	PL, RO, SN PL, SO, CN PL, SO, CN		-
me	thod {	& supp	ort		water	graphic log / core	e recove	<u> 🖾 🖾 </u> ry	weathering RS resid	100% & altera	ation*	defect type	9	planarity PL planar	
AS AD CB) au	ger scr ger dril			10/10/12, water level on date shown	core rec			XW extremed HW highly	mely wea y weathe	ered	JT joint SZ shear	•	CU curved UN undulati	ing
W	wa	ashbore			water inflow		nbols indicate		MW mode		eathered	CO conta	⁻ surface ct ed seam	ST stepped IR Irregular	
NG HQ	Q wir Q wir	reline c reline c	core (47 core (63	7.6mm) 3.5mm)	complete drilling fluid loss		recover	ed	FR fresh *W replaced w strength	ily weath ith A for alt		SM seam			
	T sta	andard	core (85 penetra	.0mm) ation		core run & RQD	vithdrawı	n	VL very lo	W		roughness SL slick	s ensided	coating CN clean	
DT diatube water pressure test result (lugeons) for depth RQD = Rock Quality Designation (%) H high POL polished SO smooth										oth	SN stain VN veneer				
1				I	interval shown				VH very hi	ign Jelv high		RO roug	rough	CO coating	

A														Borehole ID. BH103				
	Ξ.	~~	.in	~~~	rin	alaa Cara	Doroh		•			sheet:		3 of 3				
_		ĨĆ	JIII	ee	m	g Log - Coreo	a porei		÷			project	no.	754-SY	DGE20	5019		
C	lien	it:	F	Reca	p Ma	nagement						date sta	rted:	04 Nov	2018			
F	orino	cipa	l:									date completed: 06 Nov 2018						
F	oroje	ect:	4	-6 B	ligh S	Street						logged l	logged by: YA					
l	ocat	tion	4	-6 B	ligh S	Street, Sydney, NSW						checke	checked by: AJB					
F	ositi	on:	E: 334	1,491.8	9; N: 6,2	251,287.55 (MGA94) su	rface elevation: 12.8	30 m (Al	HD)		angle	e from horize	from horizontal: 90°					
c	Irill n	node	l:, Tr	ack mo	unted	dri	lling fluid:				hole	diameter :		Vá	ane id.:			
ŀ	drilli	ng i	nform	ation	mate	material substance material description ∞ estimated samples,							cts ad	ditional obse	vations and			
method &	support	water	RL (m)	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor co	cterisics,	weathering alteration	strength & Is50 X=axial; O=diametral ⇒ _ ∑ ⊥ 듯 표	field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	spacing (mm)		defect desc ation, planarit thickness,	riptions /, roughness			
Γ				-		SANDSTONE: fine to medium graindistinctly bedded, dry. (continue		FR		a=1.15 d=0.63	4000/			IR, RO, CN CU, RO, CN				
			F	-			-)	HW			100%		- PT, 0°, F	PL, SO, CO - (PL, SO, CN	Clay			
			4	-		SHALE: fine grained, slightly weat	horod modium	-				liitii	► PT, 20°,	IR, RO, CO - 10°, IR, SO, C	Clay O - Clay			
-4		-4	9.0-		to high strength.							PT, 10°,	, IR, VR, CN		_			
		L	-		BRECCIATED SHALE: slightly we strength.	eathered, medium			a=0.68 d=0.56	100%		— PT, 0°, CU, RO, CN						
						SHALE: fine grained, slightly weat	arad madium	-		u=0.50				IR, RO, CN				
			-3	-		\to high strength.	/	FR						CU, RO, CN PL, RO, CN				
				10.0 —		SANDSTONE: medium to coarse gyellow grey, indistinct bedding.	grained, pale						11,0,1	2, 110, 011		-		
			F							a=1.11 d=1.27			_					
45				-						u=1.27	100%							
018 16			-2	-											. z			
Z/LL/GL				11.0								liifii	-			RO, CI ribed		
			F	-						a=0.71 d=0.65		ligii	_			PL, F desc		
awingh				-		11.50 to 11.90 m: band of shale an	d shale laminae	SW					_			oT, 0°, erwise		
			-1	12.0-				FR			d=0.65				Defects are: PT, 0°, PL, RO, CN, unless otherwise described			
19.GP			L	-							100%					efects unles		
JEZU50				-						a=0.91 d=0.95		liifii	CS, 0°, l	JN, RO, SN, b	black	ٽ آ		
4-SYDC			-0	-									_					
3				13.0 —												-		
202			F	-		SANDSTONE: fine to coarse grain high quartz content, slightly weather			¢ 🕺 I I	a=2.14 d=0.32			PT, 0°, P	PL, RO, CO - (CU, RO, CO -	Clay CL Clay			
EHOLE				-		high strength. SANDSTONE: medium to coarse	-				100%		- PT, 2°, C	CU, RO, CO - Clay				
H BOR			1	-		indistinct bedding, fresh.	graineu, grey,						-					
5 6-				14.0												-		
V:AK			F	-						a=1.57 d=1.92			-					
GLB re			2	-							100%					.		
KAKY.			2	15.0 -							100%		PT, 0°, P PT, 2°, P	PL, RO, CO - 0 PL, RO, CN	Clay	-		
				-								<u> </u>						
ת כ				-		Borehole BH103 terminated at 15.3	31 m									-		
5			3	-												-		
\mathbf{F}			& supp		L	water	graphic log / core	e recove	ry	weathering RS reside	s & alter ual soil	ation*	defect type PT partin	9	planarity PL plana	r		
	AS AD CB	au	ger dri	ewing lling lade bit		10/10/12, water evel on date shown	core red			XW extrem HW highly	mely we y weath	athered ered	JT joint SZ shear	zone	CU curve UN undul	d ating		
	W NMI	wa _CNN	shbore	e ire (51.9	9 mm)	water inflow		nbols indicate				/eathered	SS shear CO conta CS crush		ST stepp IR Irregu			
	NQ HQ	niw niw	eline o eline o	ore (47 ore (63	.6mm) .5mm)	complete drilling fluid loss	core run & RQD	recover	eu	FR fresh *W replaced w strength			SM seam	cu sedili				
	PQ SP1	sta tes	indard t	ore (85 penetra				vithdraw	n	VL very lo L low	W		roughness SL slick	ensided	coating CN clean			
	DT	dia	itube			water pressure test result (lugeons) for depth	 RQD = Rock Qu			M mediu H high			POL polis SO smo	hed oth	SN stain VN venee			
L						interval shown				VH very hi EH extrem		ı	RO roug VR very	n rough	CO coatir	чy		

²DF_0_9_07_LIBRARY.GLB GricTbl COF PHOTO CORE PHOTO 1 PER PAGE 754-SYDGE205019.GPJ <<DrawingFile>> 16/11/2018 09:11

ATETR	A TEC	CON	IPANY								H	ole ID.		BH10	3			
Piezometer Installation Log											sł	neet:		1 of 1				
						alion	LUY)			project no.			754-SYDGE205019				
client	t:	R	ecap) Mai	nagement						da	ate starte	ed:	04 Nov	2018			
princ	ipal:										da	ate comp	leted:	06 Nov 2018				
project: 4-6 Bligh Street											lo	gged by:		YA				
locat	ion:	4-	6 BI	igh {	Street, Sydn	ey, NSW					cł	necked b	y:	AJB				
positio	on: E	E: 334,	491.89	; N: 6,2	251,287.55 (MGA94) sı	urface eleva	ation: 12.80 r	n (AHD)		angle fror	m horizonta	al: 90°					
<u> </u>				c mounte		dr	rilling fluid:				hole diam	neter :						
drillin	g int	ormat	ion		erial substance	aterial name		piezometer	construction of	details		bore co	nstruction li	cense:				
method & support	water	RL (m)	depth (m)	graphic log						BH103		drilling o driller:	company: permit no.:					
	-		-	<u> </u>							1	Concre	te					
		-12	- -		BALLAST		/	0.80 m				Sand			-			
			1												-			
		F	2-									Benton	ite		_			
								2.50 m			• • • •				-			
		-10	3-					2.00 m							-			
			:					3.30 m							-			
		F	4-												_			
		-8	-												-			
			5-												-			
		F													-			
			6-												-			
		-6	7-												-			
															-			
		F	8-												-			
			-												-			
		-4	9-	1								Sand			-			
															-			
			10-												-			
		-2	-												-			
			11-												-			
		-	- - 12-												_			
															-			
		-0	13-												-			
		F	14-												-			
		2													-			
	-	-	15-		-			15.31 m										
		<u> </u>													-			
see	e engi	suppoi jineerin		or detail	ls graphic log /	core recovery	ID		type	installation date	stickup (m)	depth	water level (m)		ative Levels (AHD) tip water level			
wate	10-	-Oct-12	2, water late sho	r	core (grap	e recovered	BH103	sta	andpipe piezo.			(m) 15.31 m		stickup	-2.51 water level			
	- wa	ater infl	ow		X no c	ate material) core recovered												
				g fluid lo uid loss														
25	(luge		or depth	st result h														

CDF 0 9 06 LIBRARY.GLB rev.AR Log COF PIEZOMETER ONE PAGE SUMMARY 754-SYDGE205019.GPJ <<DrawingFile>> 15/11/2018 16:46

This page has been left intentionally blank