Geotechnical Interpretative Report

Royal Prince Alfred Hospital – Eastern Campus

80022026

Prepared for TSA Management c/o NSW Health Infrastructure (NSW HI)

16 February 2022

now

Contact Information Cardno (NSW/ACT) Pty Ltd	Document Inform Prepared for	nation TSA Management c/o
ABN 95 001 145 035		NSW Health Infrastructure
		(NSW HI)
Level 9 - The Forum	Project Name	Royal Prince Alfred
203 Pacific Highway		Hospital – Eastern
St Leonards NSW 2065		Campus
Australia	File Reference	80022002
		RPA_Geotechnical
www.cardno.com		Investigation
Phone +61 2 9496 7700		Report_RevA.docx
Fax +61 2 9439 5170	Job Reference	80022026
	Date	16 February 2022
	Version Number	А
Author(s):		
Bikesh Deoju	Effective Date	16/02/2022
Experienced Geotechnical Engineer		
Approved By:		
Dayl-		
Sanka Ekanayake	Date Approved	16/02/2022
Senior Geotechnical Engineer		

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
0	11/02/2022	Draft for Client Review	BD	SE
Rev A	16/02/2022	Final Issue	BD	SE

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno. This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	INTRO	ODUCTION	1
	1.1	Background	1
	1.2	Purpose and Scope of works	1
	1.3	Previous Investigation	2
2	SITE I	DESCRIPTION	3
	2.1	Site Description	3
	2.2	Topography and Drainage	5
	2.3	Regional Geology	5
3	INVES	STIGATORY WORKS	6
	3.1	Borehole Locations	6
	3.2	Investigation Naming Convention	6
	3.3	Laboratory Testing	7
4	PROF	POSED DEVELOPMENT	8
5	GROL	JND CONDITIONS ENCOUNTERED	9
	5.1	Subsurface Strata	9
	5.2	Groundwater	10
	5.3	Laboratory testing results (Geotechnical)	10
	5.4	Laboratory testing results (Chemical)	11
6	GEOT	FECHNICAL ASSESSMENT	12
	6.1	General	12
	6.2	Subsurface Conditions / Geology	12
	6.3	Earthworks	12
	6.4	Aggressiveness Classification	17
	6.5	Site Classification	17
	6.6	Seismic Classification	17
	6.7	Geotechnical Parameters	17
	6.8	Foundation Options	19
	6.9	Ground Anchors	20
	6.10	Pavement Design Evaluation	21
7	CONS	STRUCTION INSPECTION	21
8	CONC	CLUSION AND RECOMMENDATIONS	21
9	REFE	RENCES	22
10	CLOS	SURE	22

Tables

Table 3-1	Borehole Coordinates	6
Table 5-1	Subsurface Conditions Summary	10
Table 5-2	Groundwater Monitoring Results	10
Table 5-3	Soil Classification lab results summary	11
Table 5-4	CBR Laboratory Results	11

Table 5-5	Results of Shrink Swell test	11
Table 5-6	Uniaxial Compression Strength Results	11
Table 5-7	Environmental Soil Aggressivity Test results summary	12
Table 6-1	Cut Batter Recommendations	15
Table 6-2	Permanent Options	15
Table 6-3	Recommendation for Shoring Options	16
Table 6-4	Material Strength Parameters	17
Table 6-5	Rock Mass Classification System – Shale – Pells et al (2019)	18
Table 6-6	Classification of Rock at Borehole Locations	18
Table 6-7	Shallow / Pad Footing Design Parameters	19
Table 6-8	Pile Design Parameters (Based on Pells 2019)	19
Table 6-9	Deep Foundation Options	20
Table 6-10	Allowable Bond Stresses for Anchor Design	20

Figures

Figure 2-1	RPA Hospital Campus	3
Figure 2-2	RPA Hospital Campus with building numbers	4
Figure 2-3	Approximate Borehole Locations	4
Figure 2-4	Geological Map, Herbert C., 1983, 1 st Edition	5
Figure 4-1	Proposed Development Zone – East Campus	8
Figure 4-2	Proposed Concept Design Plan – East Campus (Prepared by Jacobs)	9
Figure 6-1	Zoning of excavatability based on Pettifer and Fookes (1994)	14

Appendices

- Appendix A GEOTECHNICAL INVESTIGATION PLAN
- Appendix B ENGINEERING LOGS
- Appendix C LABORATORY TEST RESULTS
- Appendix D SITE PHOTOGRAPHS
- Appendix E PREVIOUS BOREHOLE LOGS AND LABORATORY TEST RESULTS
- Appendix F IMPORTANT INFORMATION

1 INTRODUCTION

1.1 Background

Cardno, now Stantec Pty Ltd was engaged by TSA Management (TSA) ("the client") on behalf of NSW Health Infrastructure, to undertake an Interpretative geotechnical and contamination investigation report to determine the in-situ ground conditions, for the proposed redevelopment of Royal Prince Alfred Hospital (RPA) – Eastern Campus. The contents of this report detail the ground investigation, methodology, presentation of factual data obtained and interpretation of data appropriate for the design and construction.

The investigatory RPA Eastern Campus ("the Site") is approximately 4.5 Ha in area, located in Sydney's inner west suburb of Camperdown. The site resides under the Local Government Area (LGA) of City of Sydney.

The ground assessment comprised boreholes at nominated locations across the subject site in order to obtain relevant geotechnical and environmental information to aid detailed design for site redevelopment.

This report only presents the results of the geotechnical investigation works undertaken at RPA. A separate report has been prepared for environmental conditions encountered on site and is provided in Ref: 80022026, entitled "*Desktop Contamination Assessment with Limited Sampling*", by Cardno (NSW/ACT) Pty Ltd.

1.2 Purpose and Scope of works

The purpose of this report is to provide the client with geotechnical advice on the in-situ subsurface conditions encountered, along the proposed redevelopment works.

The scope of works undertaken are presented below:

- i) Undertaking a desktop study of existing geotechnical information for the site and surrounding areas.
- ii) Site Investigation will be carried out in accordance with AS 1726:2017 Geotechnical Investigation. The locations and depths to be undertaken following discussions with Project Civil Engineer.
- iii) Preliminary work, including preparation of a Field Work Safety and Environmental Plan (FWSEP), Safe Work Method Statements (SWMS) and site-specific paperwork and inductions as required;
- iv) Undertaking a Dial-Before-You-Dig search and check the site using an electronic services locator and GPR (ground penetrating radar).
- v) Undertake boreholes drilling as indicated on the attached plans. This includes the following
 - Drilling of four (4) boreholes (BHs) up to a depth of 5m to 8m using track and/or ute mounted geotechnical drill rig with solid flight augers and Tungsten Carbide (TC) bit.
 - Drilling of four (4) BHs to 3m into medium strength rock. Coring of the rock was carried out using NMLC diamond drilling techniques;
- vi) Undertake in-situ Standard Penetration Tests (SPT), including recovery of samples, at 1.5 m intervals in the boreholes to assess sub-surface geotechnical strength and geological material characteristics;
- vii) Reinstate borehole locations, back-filling with spoil cuttings and topping up with sand, cement grout and rapid set concrete. In instances where this method is not suitable the reinstatement shall match the existing area i.e. pavers, bitumen etc.

- viii) Survey of the investigation locations by using survey equipment Topcon GNSS Receiver to determine the ground co-ordinate marks and collar elevation, referencing to GDA 2020, Zone 56 and AHD (m) respectively;
- ix) Installation of one (1) Groundwater (GW) monitoring well in one of the drilled borehole;

Stantec

- Laboratory testing to be carried out on representative samples by Cardno NATA accredited laboratory, which may include:
 - Particle Size Distribution (AS1289.3.6.1);
 - Atterberg Limits (AS1289.3.4.1 3.3.1 3.2.1);
 - Moisture Contents (AS1289.2.1.1);

now

- California Bearing Ratio (CBR) (AS1289.6.1.1);
- Soil Aggressiveness testing (Sulphate, Chloride, Electrical Resistivity and pH testing);
- Point Load (PL) Tests; and
- Unconfined Compressive Strength (UCS).
- Acid sulphate soil (ASS) testing (covered in environmental report)

xi) Provision of a Geotechnical Report

1.3 Previous Investigation

Cardno

Douglas Partners (DP) have previously carried out a geotechnical investigation, (Ref: 99709.00 R.001.Rev0 dated 26 August 2020) for the same site which included four rock cored boreholes (BH201 – BH204). This report also included previous borehole logs carried out in 1989 (Proj Ref: 12093) and 1998 (Proj Ref: 27456) by DP.

The geotechnical information provided in DP's report also has been taken into consideration in our report. The previous borehole locations are shown on Appendix A – site plan together with cross section of subsurface profiles from previous and current investigations.

DP has carried out a total of 4 BHs (BH201 – BH024) in 2020 in the eastern campus, which were drilled to a depth of approx. 14 to 16m below surface level (BSL). Two (2) Groundwater monitoring wells at BH201 and BH202 were installed. The subsurface profile consisted of Pavement/Fill overlying Residual Clay and Ashfield shale bedrock. The bedrock comprised of very low to low strength laminite over medium to very high strength laminite/siltstone.

The geotechnical investigation carried out by DP in 1989 comprised of six boreholes (BH1 to

BH6) for Eastern Campus which were drilled up to 9.70m BSL. The subsurface profile comprised of Pavement/Fill overlying Residual Clay and Laminite. The Laminite varied from low to high strength.

The geotechnical investigation from 1998 comprised of 17 boreholes (BH1 to BH17) for the Eastern precinct. Those boreholes were drilled up to 11.45m BSL. The subsurface conditions comprised of Fill underlain by residual clay and shale and laminite bedrock. The laminate varied from low to high strength.

The interpretation of previous boreholes was carried out in accordance with Pells et al (2019) publication "Classification of Sandstone and Shales in the Sydney Region: A Forty Year Review". The interpreted subsurface profiles have been shown in the cross section provided in Appendix A – Site Plan. The borehole logs and test results are presented in Appendix E.

🗘 Cardno 🔤 🕥 Stantec

2 SITE DESCRIPTION

2.1 Site Description

The Royal Prince Alfred Hospital (RPA) campus is located in Sydney's inner west suburb of Camperdown. It is situated between Sydney University to the east and the residential area of Camperdown to the west. The campus is divided by Missenden Road, which runs north to south dividing the campus into two distinct portions, called East Campus and West Campus as show in Figure 2-1 below:

Figure 2-1 RPA Hospital Campus

The RPA Hospital campus (outlined in red in Figure 2-1 above) incorporates a diverse range of operations including research, education, student housing, acute quaternary health services, as well as healthcare in both private and public domains.

There is an internal road called John Hopkins Drive / Lambie Dew Drive, which loops around the Eastern hospital from North west to the South East direction.

The following figure shows the locations of RPA buildings with unique building numbers for the entire eastern and western campus.

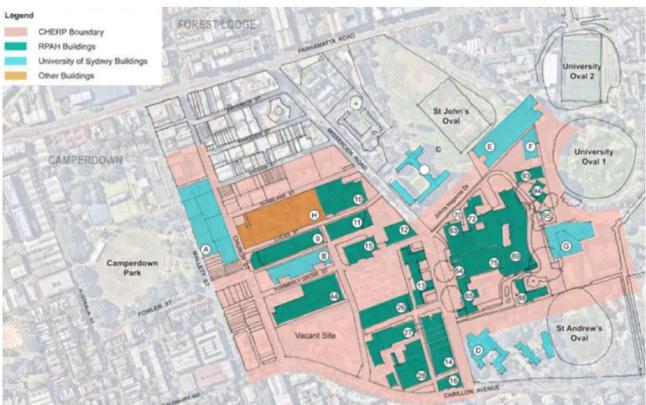


Figure 2-2 RPA Hospital Campus with building numbers

The investigatory boreholes undertaken for the hospital redevelopment are shown in Figure 2-3 below, which are also attached in **Appendix A – Site Plan**:

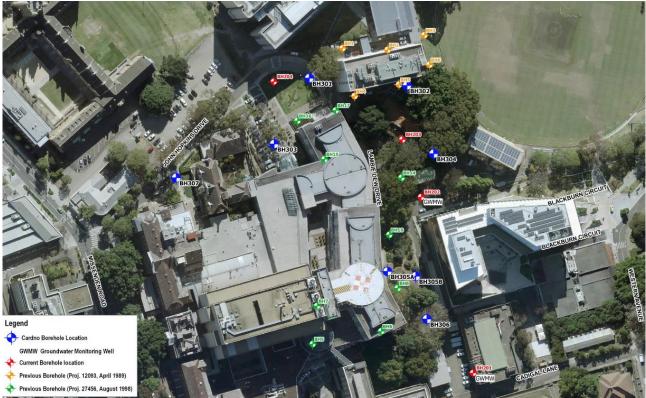


Figure 2-3 Approximate Borehole Locations

2.2 Topography and Drainage

now

Cardno

The ground surface levels generally fall towards in an easterly direction with elevation levels varying from approx. RL 29 m AHD (westerly – BH307) to RL 19 m AHD (easterly-BH 302).

Various drainage stormwater pits were present throughout the site; however, their functionality was not assessed at the time of investigation. Majority of the site consisted of hardstand pavement areas and some landscaped / garden areas were present towards the North and East of Building 89.

Based on our site observations, there are no potential risks surrounding the building that may potentially cause landslip risks and the site is not located within high erosion potential area. There is no existing landslip prone area map available for Camperdown as well which suggests that the site is not located within the known occurrence of landslip.

2.3 Regional Geology

The Sydney 1:100 000 Geological Map, Herbert C, 1983, illustrates that the subject site ins underlain by Ashfield Shale (Rwa) of Wianamatta Group from Middle Triassic period of Mesozoic era. The map shows the site is underlain by Ashfield Shale (Rwa) which is charactered as Black to dark-grey shale and laminite.

Regional geology of the site area is presented in Figure 2-4 below:

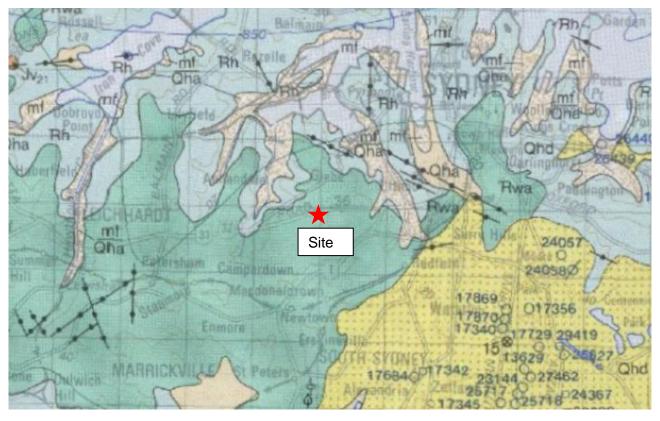


Figure 2-4 Geological Map, Herbert C., 1983, 1st Edition

3 INVESTIGATORY WORKS

now

3.1 Borehole Locations

Cardno

The ground coordinates of boreholes are listed in Table 3-1 below. At the time of investigation, all boreholes were located by survey based on nominated borehole positions outside of overhead and underlying utility services. Upon completion of works, all boreholes were picked up with Topcon GNSS Receiver, to determine the ground coordinate marks and collar elevation, referencing to GDA2020, Zone 56 and AHD (m) respectively.

ID	Easting (m)	Northing (m)	Elevation (m AHD)			
BH301	332016.065	6248761.9	22.9			
BH302	332076.300	6248757.4	19.7			
BH303	331994.419	6248721.4	27.1			
BH304	332092.740	6248715.4	21.9			
BH305A	332064.290	6248642.9	24.2			
BH305B	332081.752	6248640.0	22.6			
BH306	332088.600	6248613.6	23.2			
BH307	331934.052	6248700.6	29.8			

Table 3-1 Borehole Coordinates

3.2 Investigation Naming Convention

For fieldworks, the naming convention adopted for investigatory boreholes (BHs) was standardised in a sequential manner, since there are previously known ground investigations undertaken on the site by DP.

- i) BH3xx BH301, BH302, continuing Represents investigatory boreholes undertaken across the subject site
- BH305 was subdivided into BH305A and BH305B. BH305A was shallow borehole undertaken mainly for CBR sampling whereas BH305B was carried out to identify the subsurface profile to deeper depth targeted for eastern extension to Building 89.

3.2.1 Fieldwork Activities

Fieldwork for the investigation was carried out from 29th of November to 3rd of December 2021, comprising of the following sequence of activities;

- i) A review of Dial Before You Dig (DBYD) and on-site service search.
- ii) Drilling of eight (8) boreholes (BHs) using a track and ute mounted drill rig. Four (4) BHs were drilled up to a depth of 8m below surface level (BSL) and four (4) BHs were drilled up to 15.21m BSL;
- iii) Standard Penetration Tests (SPT) were undertaken within the soil profile at 1.50 m intervals;
- iv) Collection of disturbed soil samples for laboratory testing;
- v) Installation of one GW monitoring well at BH303 location;
- vi) Reinstatement of boreholes

All fieldworks, including logging of the subsurface profile, collection of soil samples, was undertaken by Geotechnical Engineers from Cardno. The locations of the completed geotechnical investigations are shown on the borehole location plan, attached to this report in Error! Reference s

ource not found. Appendix A – Site Plan.

Subsurface conditions encountered are summarised in Section 6 and detailed in engineering borehole logs attached in **Appendix B** together with explanatory notes. Fieldwork was carried out in accordance with Australian Standard, AS1726-2017 '*Australian Standard - Geotechnical Investigations*'.

A breakdown of fieldwork activities is presented below:

3.2.1.1 Underground Service Search

A Dial Before You Dig (DBYD) underground service search was conducted by the Cardno for the site and surrounding area prior to the fieldworks. A qualified underground service locator, Astrea cleared the borehole locations from utilities, with the use of a pipe/cable locator & transmitter and ground-penetrating radar (GPR) prior to the drilling. Hand auguring was carried out for the first 1m of subsurface profile as non-destructive digging method.

3.2.1.2 Geotechnical Drilling

Investigatory drilling boreholes (BHs) were undertaken with the use of a tracked and Ute mounted rig operated by Stratacore drilling service.

Boreholes were drilled vertically (90 degrees from the horizontal). Drilling through the soil was carried out using solid flight auger with Tungsten Carbide "TC" – bit. Deep boreholes were further advanced with NMLC coring until competent rock was reached, which ever came first. Standard penetration tests (SPT) were undertaken through the soil profile at 1.50 m intervals, proceeding from 1.5m below surface level (BSL). SPT refusal was considered where 30 blows generated less than 150mm penetration.

3.2.1.3 Standard Penetration Testing (SPT)

SPT test involves raising and dropping a 63.5kg slide hammer 760mm to drive a thick-walled sample tube through the underlying layers. The number of blows it requires to penetrate the sample tube across 150mm increments is measured until the tube has penetrated 450mm into the subsurface, or the hammer is bouncing, causing refusal (Blow counts > 25).

SPT tests were undertaken, to assist with the assessment of in-situ soil strength parameters. The tests were performed at 1.0m - 1.5m increments until refusal was achieved. SPT tests are presented in engineering logs provided in **Appendix B**.

3.3 Laboratory Testing

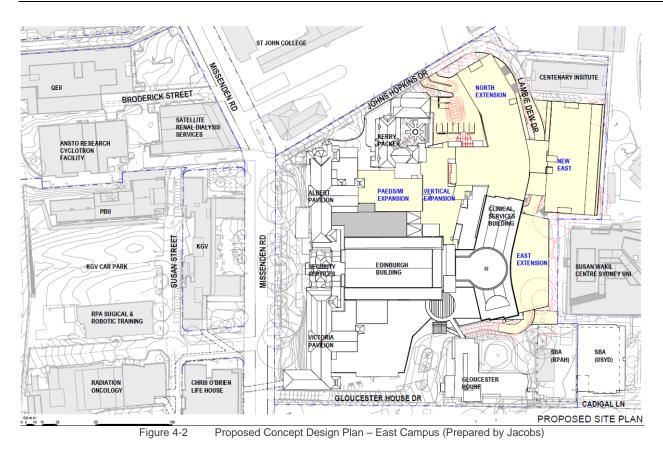
Samples of representative strata were recovered and returned to NATA accredited laboratory. The following tests were carried out on selected samples:

- i) Three (3) samples for atterberg limits and particle size distribution testing to aid for material classification;
- ii) Two (2) samples for California Bearing Ratio (CBR) testing to aid for pavement design thickness;
- iii) One (1) sample for shrink swell testing to aid for characteristic surface movement;
- iv) Three (3) samples to aid with strength of the selected rock cores;
- v) Three (3) samples to aid with chemical characterisation of the soils;
- vi) Four (4) samples for Uniaxial Compressive Strength (UCS) testing to aid for rock strength; and
- vii) Point load strength index tests were carried out every 1 m of recovered core where defect spacing provided enough core to carry out testing. A total of twenty (25) point load strength index tests were carried out;

The Laboratory test results for soils and rock are included in **Appendix C**. Laboratory testing was carried out in accordance with Australian Standard AS1289 'Laboratory Testing for Engineering

Purposes'.

4 PROPOSED DEVELOPMENT


The proposed development zone is situated within the Eastern campus as shown in Figures 4-1 below and the concept design plan prepared by Jacobs (Ref: IA0251300- MW- AR- DRG-0102(1)) for Eastern Campus is shown in Figure 4-2 below. The proposed development testing zone will encompass:

- i) the building footprints of the new proposed development;
- ii) areas between the existing buildings and new proposed development;
- iii) John Hopkins Drive and Lambie Dew Drive due to potential civil works for road realignment/ enhancements and service diversions;
- iv) Gloucester House Drive due to potential civil works for new in-ground services/ services connections;
- v) existing Building 89 which may be subject to vertical expansion and refurbishment works to some levels;
- vi) New Mortuary drop off within the access lift between levels 1 and 2 of Building 89;
- vii) Relocation of the existing roller shutter door on the eastern side of the Clinical Services Building; and
- viii) some departments within some levels of existing Buildings 63, 75, 94 and 95 which may be subject to refurbishment works

Figure 4-1 Proposed Development Zone – East Campus

5 GROUND CONDITIONS ENCOUNTERED

A brief summary of the typical sub-surface conditions encountered within each investigatory locality is provided below. For full description of the sub-surface profiles encountered, reference can be made to the borehole logs presented in **Appendix B**.

5.1 Subsurface Strata

The ground conditions across the subject site were relatively uniform and resembled with the geology (Rwa – Ashfield Shale) as shown on the published map.

The subsurface profiles encountered across the site were as follows:

- > Asphaltic concrete / concrete paver, between 0.00 m and 0.40 m, overlying;
- > Fill consisting of Gravelly Sand, Silty/Sandy Clay, between 0.10 m and 3.30 m, overlying;
- > Possible residual soil, comprising of silty CLAY, between 0.15 m to 3.30 m, overlying;
- > Residual Silty CLAY, between 1.45 m to 7.00 m;
- > Bedrock, comprising of Siltstone/Laminite, between 4.10 m to 15.21 m;

The subsurface profile is summarised in Table 5-1 below, and presented in engineering logs attached in Appendix B, together with explanatory notes.

Stantec

Table 5-1 Subsurface Conditions Summary

now

Cardno

Notes:

All depths measured in metres below ground surface level (Refer to Table 4-1) at the time of the investigation. 1.

Refer to attached Soil Description, Rock Description and Glossary of Terms on Appendix B for a full list of symbols and terms. 2. 3.

Soil Classification follows United Soil Classification system (USCS).

TD = Termination Depth. 4.

R = Auger Refusal Depth 5.

6. BSL = Below Surface Level

5.2 Groundwater

Groundwater seepage was encountered at 4.50m and 6.00m BSL within BH306 during investigatory borehole drilling. A groundwater monitoring well was also installed at the BH03 location. There were two monitoring wells previously installed by DP at BH201 and BH202.

It should be noted that groundwater levels may fluctuate depending on the time of year and following periods of wet weather.

The following table shows a summary of the groundwater levels encountered and measured during the investigation:

Table 5-2	Groundwater Monitoring Result	S
-----------	-------------------------------	---

Borehole ID	Date and Time	Depth m BSL	RL m AHD
BH201	12/01/22 @1045	1.69	21.51
BH202	12/01/22 @0930	5.72	20.68
BH303	12/01/22 @0800	7.81	19.29

5.3 Laboratory testing results (Geotechnical)

5.3.1 Soil Properties and classification

A summary of the material classification testing on selected samples are presented below, in Table 5-3. Geotechnical laboratory test results have been presented in Appendix C.

Table 5-3	Soil Classification lab results summary
-----------	---

Borehole	Depth (m)	MC (%)	Gravel (%)	Sand (%)	Fines (%)	LL (%)	PL (%)	PI (%)	LS (%)
BH 302	2.0-2.50	20.4	3	8	89	54	20	34	12.5
BH 303	4.0-4.50	17.4	1	10	89	53	20	33	13.0
BH 305B	4.0-4.50	23.1	8	13	79	62	21	41	17.5

Notes:

PI: Plasticity Index

MC: Field Moisture Content LS: Linear Shrinkage

NP: Non-Plastic

5.3.2 California Bearing Ratio (CBR)

Results of CBR and Standard Maximum Dry Density (SMDD) tests on selected samples from the investigatory boreholes are summarised below in Table 5-4.

Table 5-4 **CBR** Laboratory Results

Hole ID	Depth (m BSL)	SMDD (t/m3)	OMC (%)	CBR (%)	Swell (%)
BH 305A	2.50-3.00	1.70	19.5	3.5	2.5
BH 301	0.50-1.00	1.54	25.0	5.0	1.5

Notes:

CBR testing was undertaken on remoulded specimens compacted to a target 100% standard maximum dry density with a 1. surcharge of 4.5 kg and soaked for four days. Subgrade strength is moisture and density dependent and where the existing subgrade is compacted to 100% standard compaction and moistures above OMC exist, the in situ CBR values may be less than the above tested values.

2. OMC - Optimum Moisture Content

5.3.3 Shrink Swell Test

The results of the shrink swell test are presented in Table 6-5 below.

Table 5-5 Results of Shrink Swell test

Borehole Number	Depth (m)	Shrink Swell Index %
BH307	1.00 - 1.45	2.2

5.3.4 **Uniaxial Compression Strength**

The results of uniaxial compression strength (UCS) testing on selected samples are summarised below in Table 6-6 below. The UCS and point load test results are attached in Appendix C.

Table 5-6	Uniaxial Compression Streng	th Results	
	Hole ID	Sample Depth (m BSL)	Uniaxial Compressive Strength UCS (MPa)
	BH 302	10.68-10.85	52
	BH 303	13.45-13.67	50
	BH 304	15.00-15.11	36
	BH 306	12.28-12.43	10

5.4 Laboratory testing results (Chemical)

5.4.1 Soil Aggressivity Test Results

Results of soil aggressivity tests on selected samples obtained from selected boreholes are summarised in Table 5-7 below:

LL: Liquid Limit

PL: Plastic Limit

Hole ID	Depth (m BSL)	Chloride (mg/kg)	Conductivity (µS/cm)	Hq	Resistivity (ohm.cm)	Sulphate (mg/kg)	Moisture (%)	Exposure Classification ^a (AS2159- 2009)
BH302	2.50	31	150	5.1	6800	37	17	Mild aggregoive to
BH303	3.40	<10	64	4.9	16000	17	6.6	Mild aggressive to steel and mild aggressive to
BH306	3.0	11	83	5.4	12000	<10	22	concrete

Notes: 1.

Based on AS 2159-2009 and groundwater condition mentioned above in Section 6.2.

6 GEOTECHNICAL ASSESSMENT

6.1 General

Geotechnical parameters for RPA hospital redevelopment have been developed based on available geotechnical information obtained to date for the project, published data and our experience of materials of similar nature and history on projects within Sydney region.

The design values derived are generally obtained from statistical analyses of project specific in-situ and laboratory test results. The values are considered to be representative of the properties of the material in its current condition. Where there are insufficient jn-situ or laboratory tests, empirical correlations are used.

When project specific in-situ and laboratory tests, or empirical correlations are not applicable or not available, design values are then chosen with due consideration of relevant experience from past projects and the application of engineering judgement.

6.2 Subsurface Conditions / Geology

The general ground conditions encountered on site have been discussed in Section 6 of this report. In summary the ground condition encountered are relatively similar comprising asphaltic pavement / concrete paver overlying fill, overlying residual soil and siltstone / laminite bedrock. From the borehole investigation undertaken on site, the subsurface ground profile was generally consistent with the geology maps.

6.3 Earthworks

6.3.1 Site Preparation

The following sections provide advice on preparation, formation and unsuitable materials. The relevant earthworks standards referred to as a basis for design considerations and recommendations include:

- i) AS3798-2007 'Guidelines on Earthworks for Commercial and Residential Developments'.
- ii) Safe Work Australia Excavation Work Code of Practice
- iii) Prior to bulk earthworks, the site shall be cleared of any foreign matter or unsuitable material which includes but may not be limited to the following:
 - Vegetation or organic matter including root balls of any larger trees onsite;
 - Topsoil or soil significantly affected by roots or root fibres;

- Any scattered waste or dumped materials;

now

- Uncontrolled filling which may be subject to further assessment;

Stantec

- Loose or low strength (soft to firm) soils or otherwise 'unsuitable' soils; or
- Expansive soils.

Cardno

BasedErosion and sediment control plan should be implemented before commencing any earthworks for the proposed development.

6.3.1.1 Structural Fill / Compaction Specification and Quality Control

Prior to the placement of any structural fill, the site should be proof rolled using a minimum 12 tonne roller in the presence of the geotechnical engineer. Should isolated soft/loose areas be encountered during this process, this material should be removed and replaced with suitable granular structural fill. Structural fill could comprise a select well graded granular material such as processed sandstone and road-base (DGB20). Additional filling may also be required for levelling purpose.

Depressions formed by the removal of vegetation should have all disturbed soil cleaned out and be backfilled with compacted select fill material.

To minimise the potential for post compaction volume change due to moisture content variations, any structural clay bearing fill, containing cohesive strata, should be placed in loose layers not greater than 300mm in thickness, and compacted to a minimum 98% of Standard Maximum Dry Density (SMDD) at a moisture content within 2% of standard optimum moisture content.

If the structural fill is located in landscaped areas, then the minimum density ratio can be reduced to 95% of SMDD.

Measures should be adopted to ensure that this clay fill material is not allowed to dry out prior to the placement of succeeding layers of fill and final covering with building slabs and road pavements.

It is recommended that the placement of all structural fill be inspected, tested and certified by Cardno to Level 1 requirements, during the earthworks operations to ensure that all fill is placed in a 'controlled manner', in accordance with AS3798-2007 'Guidelines on Earthworks for Commercial and Residential developments'.

Site observations and laboratory test results have indicated the presence of high plasticity silty clays in majority of areas which could be adversely affected by inclement weathered. Whilst these soils are typically of a stiff to very stiff consistency when dry, they can rapidly lose strength during wet periods. Trafficking over areas where high moisture content and low strength residual clays may not be possible without the use of bridging layers, structural fill and/or geogrids.

Conventional sediment and erosion control measures should also be implemented during the construction phase.

6.3.2 Material Management

The following general comments regarding appropriate material management shall be considered for design;

- i) Strict moisture and compaction control, with fill materials placed as close to OMC as practical while not exceeding the OMC. Over compaction shall also be avoided;
- ii) The clays would generally be suitable for general fill, and would be expected to provide a suitable subgrade for road construction; however, depending on the material utilised, a select layer and appropriate drainage would be recommended due to the swell potential;
- iii) Any oversized material should be screened prior to use as fill material.

iv) The contamination report shall also be read in conjunction to this geotechnical report for the suitability of material re-use on site.

Stantec

6.3.3 Excavation Conditions

now

D Cardno

When considering excavation at any of the sites, the findings and recommendations presented in the Contamination Assessment report should also be considered.

It is recommended that construction contractors assess the engineering logs, core photographs and rock cores to make their own assessment of excavation plant and production rates. Below recommendations are preliminary only and based on the geotechnical information across the site. Assessment of material excavatability can be based on the method published by Pettifer and Fookes (1994). The degree of excavatability of rock is based on its Point Load Index (Is50) and fracture spacing.

Excavatability categories range from easy to hard digging, through easy to hard ripping, to blasting.

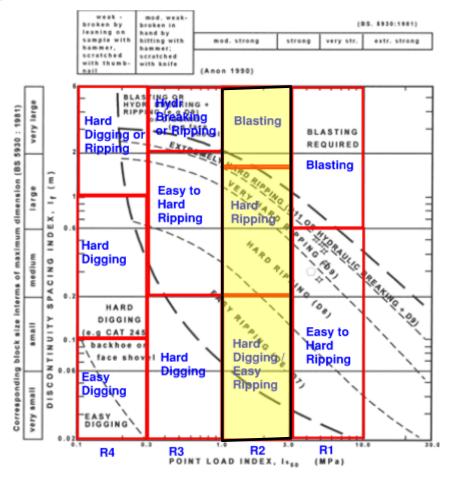


Figure 6-1 Zoning of excavatability based on Pettifer and Fookes (1994)

Examination of Figure 7-1 shows that the excavatability zones are delineated according to rock strength categories (R4-low strength, R3-medium strength, R2-high strength, R1-very high strength), and further subdivided based on the defect spacing of the rock.

Our review of the borehole logs indicates that bedrock conditions encountered were generally moderate with defect spacing in the order of 10mm – 2970mm. It is therefore expected:

- i) hard digging to easy ripping conditions in Class III to Class V Siltstone / Laminite
- ii) hard ripping to blasting in Class II Siltstone / Laminite

Large size hydraulic excavator or similar should be adequate for hard digging conditions and the use of hydraulic rock breakers / hammer in combination with Caterpillar D9 ripper or similar should be

Stantec

adequate for hard to very hard ripping conditions.

now

Where high strength rock (R2 or better) is present at the site, excavation production rates are likely to decrease with the above machinery. Where larger cuts are required the use of chemicals can be used as an alternative option for rock splitting.

6.3.4 **Open Cuts / Temporary and Permanent**

6.3.4.1 Temporary cuts

) Cardno

Where open cuts are required as part of temporary works during ground support and embankment stability work. Recommendations for temporary unsupported cuts batters (if required) are presented in the following table:

Table 6-1 Cut Batter Recommendations

Geotechnical profile	Temporary Batter (Horizontal to Vertical Ratio)	
Fill	2H:1V	
Residual Soil	1.5H:1V	
Class V / IV Siltstone / Laminite	1V:1H	
Class III / II Siltstone / Laminite	Refer to Note (g)	

Notes:

Table 6-1 applies to temporary unsupported cut batters only, for a period of no greater than 3 months once constructed 2. Temporary batters apply to cuts no greater than 1.50m in vertical height. Where deeper cuts are proposed for each

- stratum, further geotechnical designed support or retention systems may be required. 3. Excavations in soil have assumed no groundwater table has been encountered;
- 4. The ground surface at the crest of the excavation is horizontal;

There is no surcharge at the crest of the excavation for a distance equal to the depth of the excavation;
 All cuts are protected from erosion.

7. Temporary sub-vertical excavations in Sandstone/Siltstone (Class III - II = medium strength or better bedrock) may be considered appropriate (where encountered), upon inspection and approval by a Geotechnical Consultant.

6.3.4.2 Permanent cuts

Permanent cuts have not been fully identified at this stage, due to the unknown locality and depth of proposed cuts. However, it is considered where the training facility is proposed, deep cuts are envisaged as part of permanent works, where the following measures would potentially be required.

Table 6-2 Permanent Options

Geotechnical Profile	Permanent Options	Additional Comments
Fill	 i) Regrade batter – potentially strip and replace ii) Soil nail and shotcrete 	Due to variability of material in fill stratum, the existing fill where cuts are required, the fill recommended to be removed and replaced with controlled fill.
Residual Soils	iii) Regrade batter slopeiv) Soil nail and shotcrete	Not much residual soil encountered across subject site
Class II to V Siltstone / Laminite	 v) Regrade batter vi) Scaling, block removal and reprofiling vii) Rock / spot bolting viii) Rock fall netting ix) Catch fence and ditches 	Requires geotechnical input / site observations during top down excavation works to determine extend of stabilization options required

Excavation Support / Shoring 6.3.5

Where deep excavations are to be proposed, earth pressures for shoring support are provided in Table 6-4 material strength parameters. The options for the lateral support that may be considered are tabulated below:

Table 6-3 Recommendation for Shoring Options

Cardno now

Wall Type	Advantages	Disadvantages	Additional Comments
Open Cut excavation	Simple / Cheap Option	Dependent on batter slope space	 i) Consideration of groundwater table required. ii) Base and slope instability and dewatering to be assessed.
Sheet pile wall	 i) Provides an economic embedded wall ii) No arising's to be removed iii) Suitable as a water retaining system 	 iv) Potential declutching in coarse grained soil v) Difficult to impose installation where shallow rock exists 	 vi) Use of tie back anchors (soil strength and space considerations). Cantilever sheet piles to be evaluated. Groundwater table and tanking to be considered.
Secant Piles	 i) A permanent water retaining wall ii) Installed using standard piling plant with high torque rigs 	Depth is limited by the vertical tolerance, which may determine the depth of secanting	 iii) Use of tie back anchors (soil strength and space iv) considerations). Cantilever option to be evaluated. v) Groundwater table and tanking to be considered.
Contiguous Piles	The cheapest form of concrete piled wall	 i) Not a water retaining solution ii) Not a permanent solution in any soil due to gaps between piles unless structural face is applied. 	The presence of a shallow groundwater table makes this option unlikely.

Stantec

Considering the above options, pros and cons, the following recommendations are given.

- i) Where excavation is not along another property, use open excavation technique.
- ii) Where excavation is along another property the following two options should be considered.
 Use a tied back sheet pile wall.
 - Use an internally braced sheet pile wall where structures sensitive to settlement / horizontal movement are located within 15m from the excavation. Elsewhere, use cantilevered sheet pile walls with provision for remedial works on the adjacent property.
 - Alternative to the above, install secant piles and use them as part of the permanent basement wall.

6.3.6 Groundwater Conditions

Due to the presence of shallow groundwater level, significant groundwater inflow is likely and is likely to vary with rainfall events as well. Some seepage into excavations is likely to occur through fissures in the residual soil, at the soil / rock interface and from joints and bedding planes in the rock. The permeability of the siltstone/sandstone rock mass is considered to be generally relatively low, although localised inflows could be high through discrete rock defects.

Further detailed investigations and groundwater modelling will be required to predict seepage rates and drawdown in the short and long term, if any basement levels are proposed.

6.3.7 Vibrations

The excavation will have to be carried out in close proximity to other hospital buildings, hence use of impact hammers may result in vibrations that could affect adjacent structures. A rock saw could be used to reduce the lateral transfer of vibrations.

For general guideline purposes, induced vibrations in structures adjacent to the excavation should not exceed a Peak Particle Velocity (PPV) of 5mm/sec for structures in good condition, or 2mm/sec for structures in poor condition or heritage structures. If vibrations in adjacent structures exceed these PPV's or if vibrations appear excessive, this office should be contacted immediately for further advice.

6.4 Aggressiveness Classification

now

In accordance with AS3600 (2018), exposure classification for concrete 'A2' for the subsurface materials across the investigated areas. Future concrete structures should be designed in accordance with the concrete cover specifications in AS 3600 (2018) for an exposure classification of 'A2'.

6.5 Site Classification

Cardno

It has been assessed that there is more than 400mm depth of fill across the majority of the subject site, which in the absence of any construction records should be considered as '*uncontrolled*' in accordance with AS2870-2011 "*Design of Footings and Slabs for Residential Construction*. Therefore, the site is classified as Class "P".

However, if the site is prepared in accordance with Section 6.3 of this report, the site can be reclassified based on the shrink swell index (I_{ss}) results. The shrink swell test on natural clay collected from BH307 resulted in 2.2% I_{ss} and three shrink swell tests carried out by Douglas Partner gave I_{ss} in the range of 1.7 - 2.9%. With consideration of these shrink swell indices and the soil profile, the site can be reclassified as moderately reactive clay site (Class 'M1'), which may experience moderate ground movement from moisture changes with a characteristic surface movement of 20 - 40mm.

6.6 Seismic Classification

Based on the subsurface conditions encountered across the site, the site sub-soil Class C_e (shallow soil) can be assigned in accordance with AS1170 - 2007 *"Structural Design Actions, Part 4: Earthquake Actions in Australia"*. A hazard factor (Z) of 0.08 can be applied for sites in Sydney.

6.7 Geotechnical Parameters

Based on the borehole logs and the results of laboratory tests, geotechnical design parameters are inferred and presented to assist with geotechnical design.

6.7.1 Soil Classification

No geotechnical parameters have been assigned to manmade fill layers due to potential variability. Relative density/consistency of natural granular/cohesive layers, if any, shall be assessed based on SPT N values. All manmade (i.e. fill) layers are recommended to be considered loose (for granular soils), as presented below;

Material	γ (kN/m ³)	C _u (kPa)	c' (kPa)	φ' (°)	E' (MPa)		Ka	K _p
Fill	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CLAY (Firm)	18	25	0	24	4	0.35	0.42	2.37
CLAY (Stiff)	19	50	2	26	8	0.35	0.39	2.56
CLAY (Very Stiff)	20	100	5	28	15	0.35	0.36	2.77

Table 6-4 Material Strength Parameters

Material	γ (kN/m³)	C _u (kPa)	c' (kPa)	φ' (°)	E' (MPa)		Ka	K _p
CLAY (Hard)	21	200	10	28	30	0.3	0.36	2.77
Siltstone / Laminite Class V	22	-	10	29	100	0.3	0.34	2.88
Siltstone / Laminite Class IV	23	-	25	30	300	0.3	0.33	3.00
Siltstone / Laminite Class III	23	-	100	32	600	0.2	-	-
Siltstone / Laminite Class II	24	-	300	34	1200	0.2	-	-

Notes: γ : Unit Weight

c_u: Undrained Shear Strength

c': Drained Shear Strength

E': Elastic Modulus

φ': Internal Friction Angle

 ν ': Poisson's ratio

K_a: Active Earth Pressure

K_p: Passive Earth Pressure N/A = No geotechnical parameters have been assigned to topsoil layers due to potential variability.

6.7.2 **Rock Classification**

The classification of sandstone and shale rock encountered on site is summarised in Table 6-5 which are extracted from current Pells et al (2019) publication "Classification of Sandstone and Shales in the Sydney Region: A Forty Year Review".

Table 6-5 Rock Mass Classification System - Shale - Pells et al (2019)

Rock Mass Classification	Unconfined Compressive Strength qս (MPa)	Defect Spacing	Allowable Seams
I	>16	>600	<2%
II	>7	>200	<4%
III	>2	>60	<8%
IV	>1	>20	<25%
V	>1	N/A	N/A

Considering the classification system, and UCS and point load testing, the rock classification for each borehole is summarised in the Table 6-6 below.

Table 6-6	Classification of Rock at Borehole Locations

BH ID	Depth from BSL (m)	RL Depth (m AHD)	Thickness (m)	Rock Classification
BH301	4.50 - 7.90	18.496-15.096	3.4	Siltstone Class V
	4.10 - 7.70	15.596-11.996	3.6	Siltstone Class V
BH302	7.70 – 10.40	11.996-9.296	2.7	Laminite Class III
	10.40 – 14.36	9.296-5.336	3.96	Laminite Class II
	4.70 – 10.00	22.398-17.098	5.3	Siltstone Class V
BH303	10.00 – 11.50	17.098-15.598	1.5	Siltstone Class III
	11.50 – 14.00	15.598-13.098	2.5	Siltstone / Laminite Class II
PLI204	5.20 – 12.26	16.673-9.613	7.06	Siltstone Class V
BH304	12.26 – 15.21	9.673-6.663	3.01	Siltstone Class III
BH305B	7.00 - 8.00	15.568-14.568	1.0	Siltstone Class V
	6.40 - 9.20	16.765-13.965	2.8	Siltstone Class V
BH306	9.20 - 11.00	13.965-12.165	1.8	Siltstone / Laminite Class
	11.00 – 14.97	12.165-8.195	3.97	Laminite Class II
BH307	5.30 - 5.50	24.518-24.318	0.2	Siltstone Class V

Note:

The above classification considers rock substance strength, defect spacing and allowable seams as required by Pells et al (2019). Thereby, a portion of rock mass not meeting an upper class is placed at the next lower class where all three factors are satisfied. A strata of rock is subjected to all three factors in general and combining thin layers of different class into a thick stratum using engineering judgement. The Designer shall review the borehole logs and core photographs to assess the potential impacts of thin layers combined in thicker layers. This is particularly true for end bearing piles which shall be checked not to be adversely impacted by weak/ highly fractured bands of rock below the designed pile toe level.

6.8 Foundation Options

Both shallow and deep options of foundations could be adopted for the proposed development. Parameters for both shallow and deep footing options are provided below;

6.8.1 Shallow / Pad Footings

Due to the unknown loads and footing systems, no specified allowable bearing capacities can be determined at this time. Once specific loadings have been ascertained, Cardno can assist to optimise the footing size and depth to suit the loading on the founding material. Bearing capacity of footings in soil needs to be subjected to geotechnical checking considering footing size, depth, slope (ground surface and/or footing base) and loadings (i.e. bearing capacity is not a soil property but is dependent of footing size, depth, slope and loadings). A footing subjected to pull out forces should be further geotechnical assessment in addition to bearing capacity, overturning and sliding. Conventional shallow footings designed in accordance with engineering principles and nominally embedded 0.5m into the design founding material, may be proportioned on the following ultimate end-bearing pressures, summarised in Table 7-7 below:

Founding Material	Area (m)	Ultimate Bearing Capacity (kPa)
CLAY - Stiff	1 x1	300
CLAY - Very Stiff	1 x1	500
CLAY - Hard	1 ×1	750
Siltstone / Laminite Class V	1 x1	850

 Table 6-7
 Shallow / Pad Footing Design Parameters

Note:

1. Ultimate bearing capacity tabulated above assuming eccentricity of 1/6 x footing width.

2. Horizontal ground is assumed

3. Consideration of Section 6.3 should be considered, prior to selection of founding level.

4. The settlement for shallow footings depends upon the loading conditions, footing size and foundation material, but it should be

less than 1% of the footing width if proportioned on the basis of above parameters.

5. A minimum geotechnical strength reduction factor Øg of 0.4 can be applied for the allowable design values.

6.8.2 Deep Foundations

The proposed structures are recommended to be founded on piles that transfer the column loads to more suitable founding strata at depth below the sites. The type of pile will depend on the specific ground and groundwater conditions and relative cost. For the purposes of pile design, the parameters shown in Table 6-8 may be used. However, if bored piles are adopted, the base of the piles must be inspected during construction to ensure that material of adequate capacity supports each pile.

Table 6-8Pile Design Parameters	(Based on Pells 2019)
---------------------------------	-----------------------

Class	Serviceability End bearing MPa	Ultimate Shaft adhesion ¹ kPa	Typical Efield MPa
Siltstone / Laminite Class II	5	600	1200
Siltstone / Laminite Class III	3.5	350	600
Siltstone / Laminite Class IV	1	150	300
Siltstone / Laminite Class V	0.7	50	100

Note:

1. Clean Sockets for roughness category R2 or better is required.

2. Horizontal ground is assumed

3. The settlement for shallow footings depends upon the loading conditions, footing size and foundation material, but it should be less than 1% of the footing width if proportioned on the basis of above parameters

Further Discussions for Pile Footings

now

Cardno

- i) Where the design is dependent upon end bearing resistance, piles must extend at least 0.5m into the founding stratum to develop full design end bearing.
- ii) The base of the piles must be inspected during construction to ensure that material of adequate capacity supports each pile.

Stantec

- iii) In accordance with the requirements of AS2159-2009, a geotechnical reduction factor is to be applied to the ultimate geotechnical strength to obtain the design geotechnical strength. We have determined that an average risk rating ARR=3.07 (corresponding to a moderate overall risk category) and a geotechnical reduction factor $\phi g = 0.52$ can be adopted for this project. This is based on the following assumptions:
 - Detailed level of construction control is required with professional geotechnical supervision, construction processes that are well established and relatively straightforward;
 - No performance monitoring of the supported structure during and after construction is proposed;
 - Table 6-9 below gives an option table for the proposed deep foundations that can be adopted across the subject site, discussion and comments being noted;

Wall Type	Advantages	Disadvantages
Bored Piles	i) Quiet / No Vibrationii) Greater lengths can be installed	 iii) Requires the use of liners and possible slurry. iv) Requires additional plant (cranes, etc)
CFA Piles	 i) Low Noise / vibration ii) No need for casing due to sloughing/seepage iii) Faster productivity than bored piles 	 iv) A higher waste of concrete than traditional bored piles v) Requires additional plant (Cranes, etc)

Table 6-9 Deep Foundation Options

6.9 Ground Anchors

Where required, the use of ground anchor is suggested to provide lateral restraint on the boundary soldier wall. Such ground anchors should be declined below the horizontal to allow anchorage into the stronger materials at depth. It should be noted that installation of ground anchors beyond the site boundaries will require permission to be obtained from relevant authorities and adjacent property owners. The design of temporary ground anchors for the support of pile wall systems may be carried out using the following parameters provide in Table 6-10 below:

Table 6-10 Allowable Bond Stresses for Anchor Design

	5
Material	Allowable Bond Stress ¹ (kPa)
Siltstone / Laminite Class III	300
Siltstone / Laminite Class IV	150
Siltstone / Laminite Class V	50

Note:

1. The anchors should have a minimum bond length of 3m. The anchor free length is determined to have the bond length behind the plane of failure starting from the bulk excavation level. The horizontal inclination of the plane of failure is considered to be 45 degrees.

2. All anchors should be proof tested to 1.3 times the working load under the direction of an experienced engineer.

6.10 Pavement Design Evaluation

now

Cardno

As presented in Table 6-4, laboratory soaked CBR tests indicates a subgrade swell of between 1.5% to 2.5% considered as moderately expansive soil. Test result for the specimens indicate CBR values of 3.5 % and 5.0%. A review of SPT testing indicates that the residual subgrade material, generally consisted of stiff to hard clay.

Stantec

Based on the previous results reported by DP on clayey fill and natural clay, CBR value ranged from 2 - 7%.

Taken into consideration of existing and previous CBR test results, a design CBR of 2% can be adopted for pavement design of Lambie Dew Drive.

7 CONSTRUCTION INSPECTION

It is recommended that placement of all structural fill and footing excavations be inspected, tested and certified where necessary, by a suitably qualified geotechnical engineer to ensure recommendations made in this report have been addressed. Should subsurface conditions other than those described in this report be encountered, Cardno should be consulted immediately and appropriate modifications developed and implemented if necessary.

8 CONCLUSION AND RECOMMENDATIONS

The following provides a summary of the conclusions and recommendations with regard to the geotechnical investigation that was undertaken for RPA Eastern Campus. The following conclusions can be drawn from Cardno's geotechnical investigation works undertaken, however the proceeding sections of this report should be read for a full description of the conclusions:

- i) Geotechnical investigatory works were undertaken for the proposed redevelopment of RPA Hospital Eastern Campus;
- ii) Investigatory works comprised of drilling eight (8) boreholes. Four (4) BHs were drilled up to a depth of 8m below surface level (BSL) and four (4) BHs were drilled up to 15.21m BSL;
- iii) Standard Penetration Tests (SPT) were undertaken within the soil profile at 1.50 m intervals;
- iv) Installation of one GW monitoring well at BH303 location;
- v) The subsurface condition encountered across the site were relatively uniform across the site. The ground profile generally comprised of a pavement/fill overlying residual soil and siltstone/laminate bedrock.
- vi) Investigatory laboratory test results can be found in section 6 of this report along with laboratory test certificated in Appendix C.
- vii) Recommendations on earthworks and foundation options are discussed in Section 7.

9 **REFERENCES**

now

Cardno

[1] Design Guidance Note No. 030, Rev C, Issue date: 30 May 2018, by NSW Health Infrastructure

Stantec

- [2] Pells et al (2019) "Classification of Sandstone and Shales in the Sydney Region: A Forty Year Review". Issue date: August 2020, by Douglas Partners.
- [3] Report on Geotechnical Investigation "Royal Prince Alfred Hospital Redevelopment". Issue date: 2 June 2019, by Pells et al.
- [4] AS 1170.4 "Structural Design Actions, Part 4: Earthquake Actions in Australia", 2007, by Australian Standard
- [5] AS 1726-2017 "Geotechnical Site Investigation", 2017, by Australian Standard
- [6] AS 2159-2009 "Piling Design and Installation", 2009, by Australian Standard
- [7] AS 2870-2011 "Residential Slabs and Footing", 2011, by Australian Standard
- [8] AS 3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments", 2007, by Australian Standard

10 CLOSURE

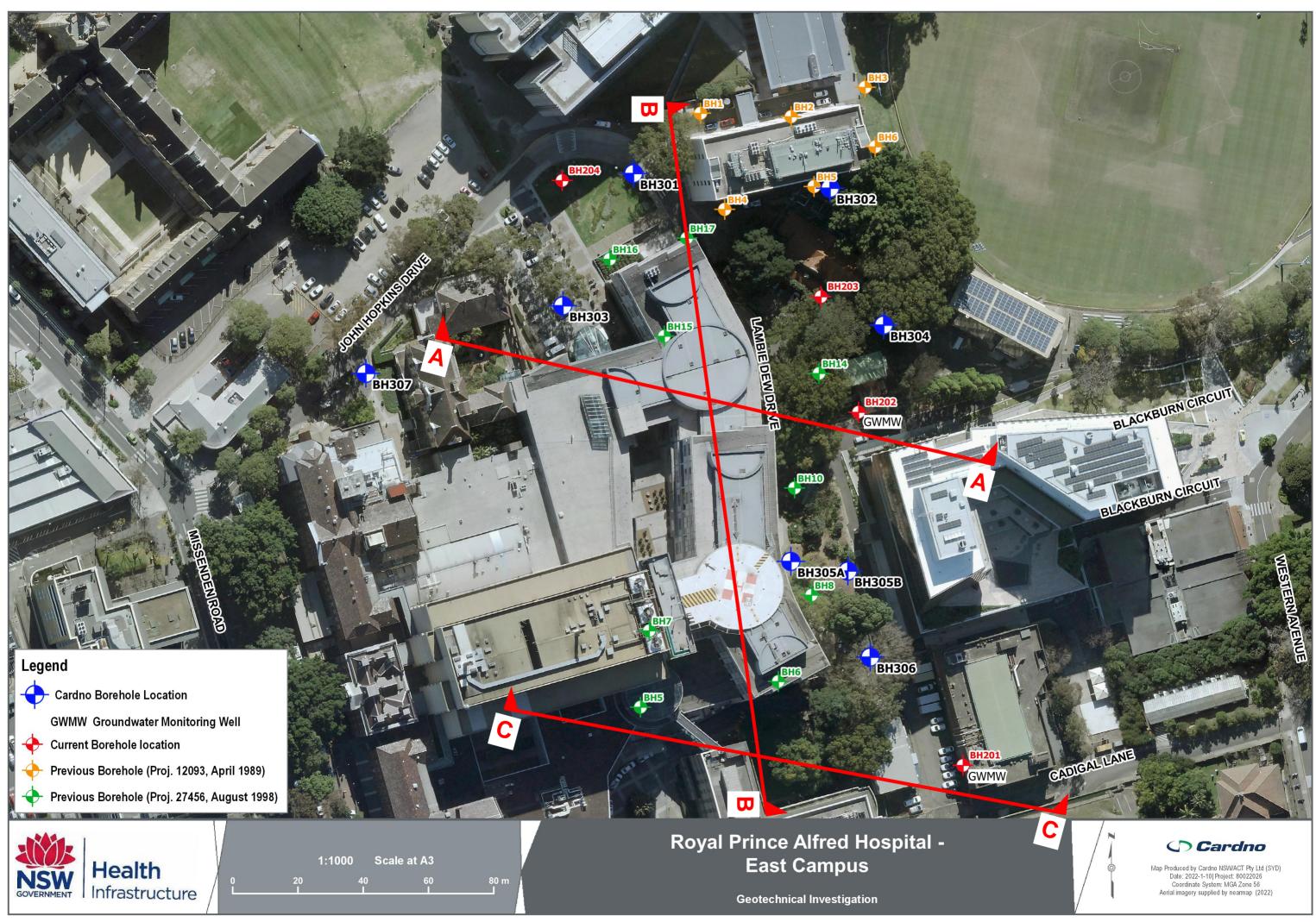
We appreciate the opportunity to work collaboratively with you on this project. Our team looks forward to

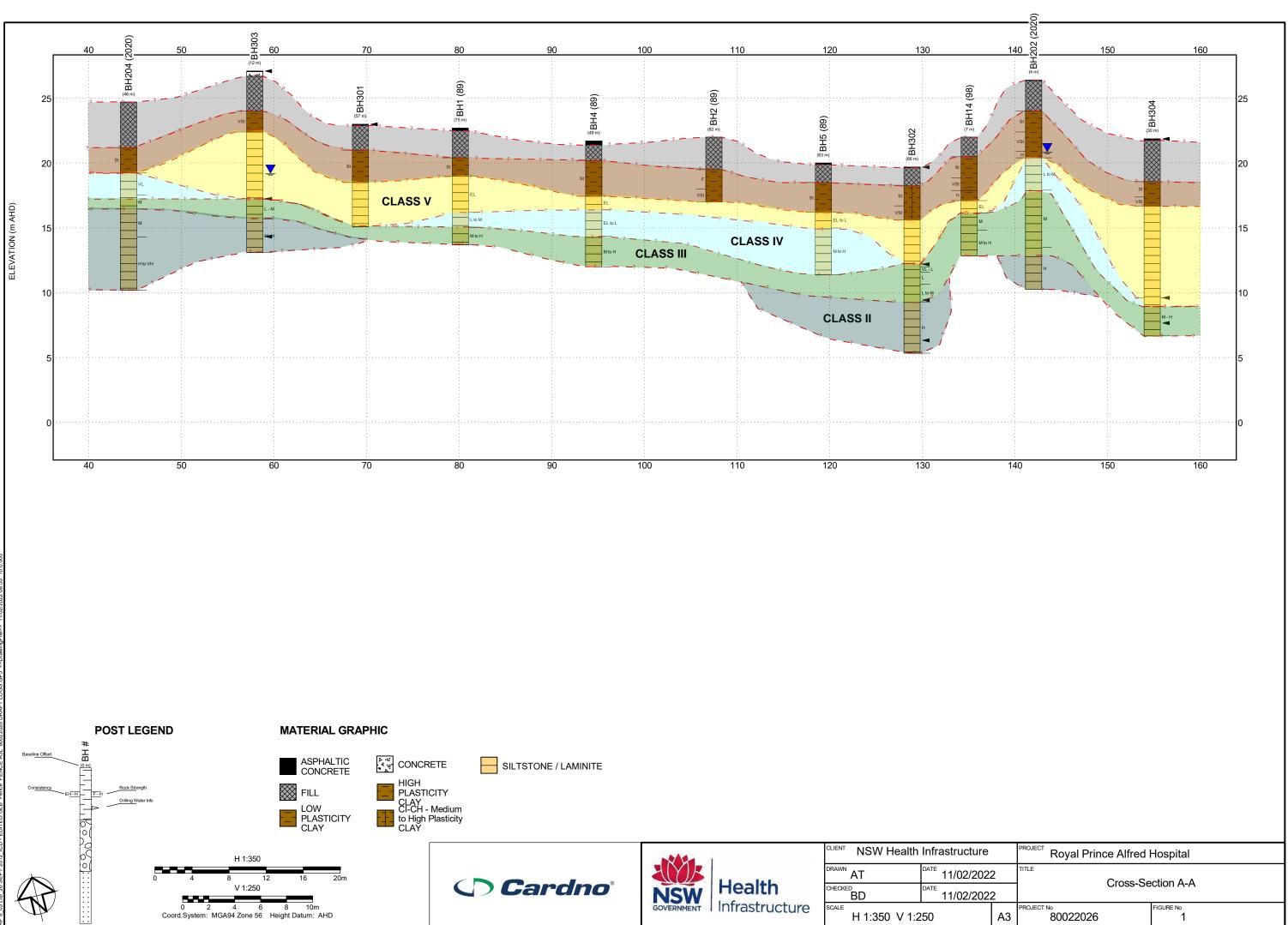
bringing our high level of expertise to deliver successful outcomes in your future projects. Your attention is drawn to the appended document titled "*Important Information about this Geotechnical Report*". This document is intended to clarify to the reader what the realistic expectations of this report should be, and what is the correct use of the document. Misinterpretation of geotechnical information presents significant risk to projects: The document includes a discussion on general limitations of geotechnical services, which by nature, are based extensively on opinion and judgement.

The statements included in this document are not intended to be exculpatory clauses or to reduce the general responsibility accepted by Cardno, but rather to identify where Cardno and our Client's responsibilities lie. The statements ensure that all parties that may rely on the report are aware of their respective responsibilities.

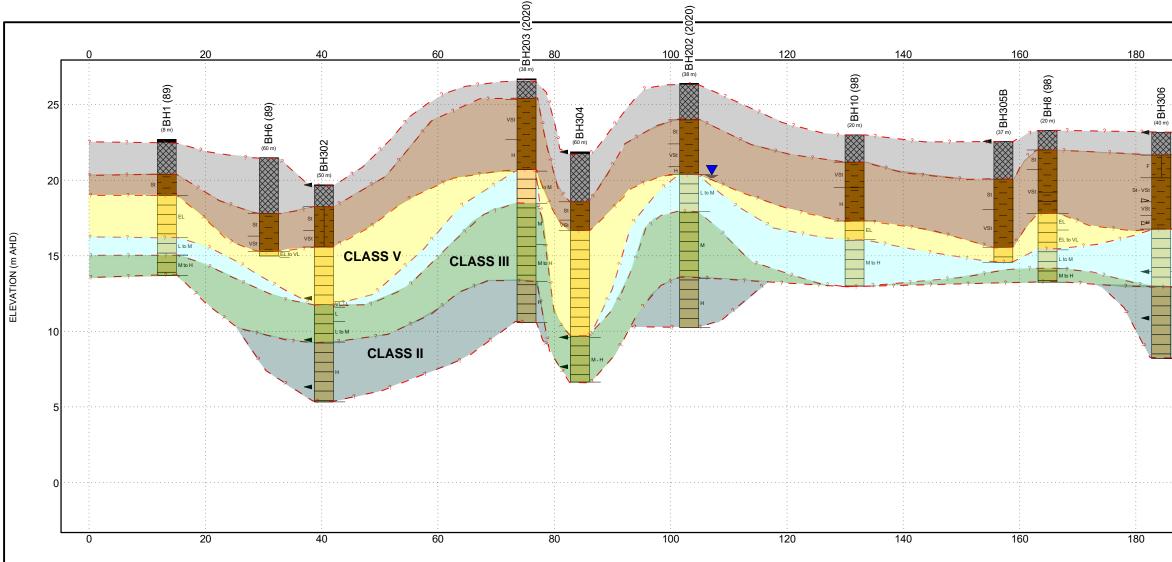
For further enquiries, please do not hesitate to contact Cardno on the information supplied.

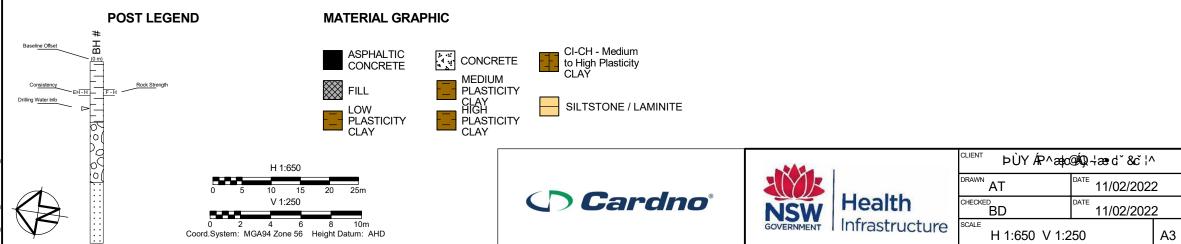
Royal Prince Alfred Hospital – Eastern Campus

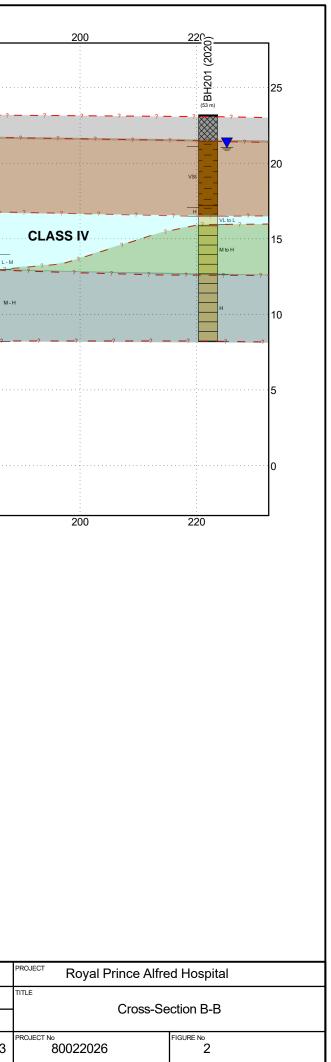


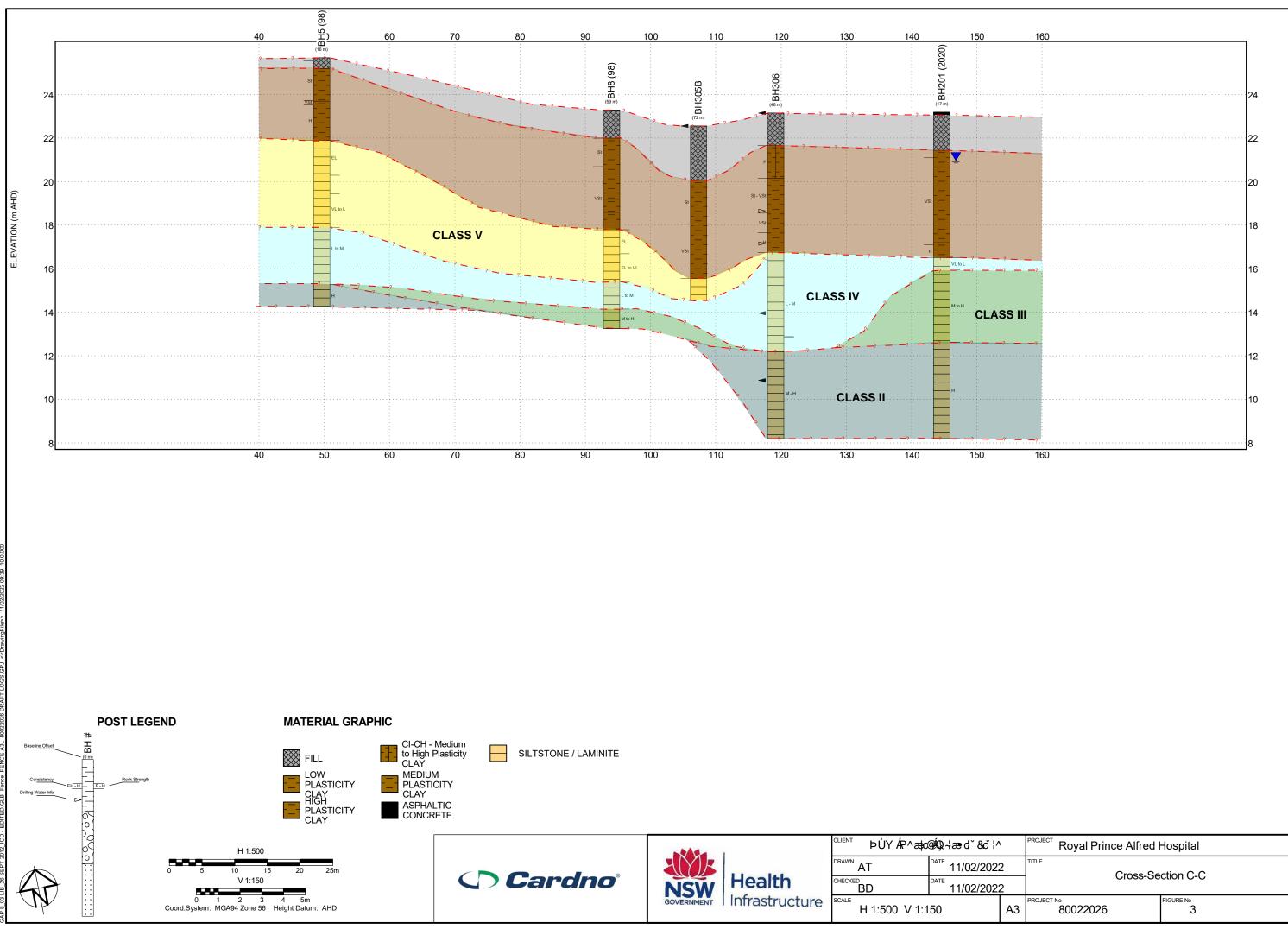

GEOTECHNICAL INVESTIGATION PLAN




now







Royal Prince Alfred Hospital		
TITLE		
Cross-Section C-C		
PROJECT № 80022026	FIGURE № 3	
	Royal Prince Alfred	

Royal Prince Alfred Hospital – Eastern Campus

APPENDIX

B

ENGINEERING LOGS

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method			
Test Pitting: exc	avation/trench		
BH	Backhoe bucket		
EX	Excavator bucket		
R	Ripper		
Н	Hydraulic Hammer		
Х	Existing excavation		
Ν	Natural exposure		
Manual drilling: I	hand operated tools		
HA	Hand Auger		
Continuous sam	ple drilling		
PT	Push tube		
PS	Percussion sampling		
SON	Sonic drilling		
Hammer drilling			
AH	Air hammer		
AT	Air track		
Spiral flight auge	Spiral flight auger drilling		
AS	Auger screwing		
AD/V	Continuous flight auger: V-bit		
AD/T	Continuous spiral flight auger: TC-Bit		
HFA	Continuous hollow flight auger		
Rotary non-core	drilling		
WB	Washbore drilling		
RR	Rock roller		
Rotary core drilling			
PQ	85mm core (wire line core barrel)		
HQ	63.5mm core (wire line core barrel)		
NMLC	51.94mm core (conventional core barrel)		
NQ	47.6mm core (wire line core barrel)		
DT	Diatube (concrete coring)		

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method Soil sampling В Bulk disturbed sample D Disturbed sample С Core sample ES Environmental soil sample SPT Standard Penetration Test sample U Thin wall tube 'undisturbed' sample Water sampling WS Environmental water sample

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Field	testing

SPT	Standard Penetration Test		
HP/PP	Hand/Pocket Penetrometer		
Dynamic Penetrometers (blows per noted increment)			
	DCP	Dynamic Cone Penetrometer	
	PSP	Perth Sand Penetrometer	
MC	Moisture Content		
VS	Vane Shear		
PBT	Plate Bearing Test		
IMP	Borehole Impression Test		
PID	Photo Ionization Detector		

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

Rock q	Rock quality description		
TCR	Total Core Recovery (%)		
	(length of core recovered divided by the length of core run)		
RQD	Rock Quality Designation (%)		
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)		

Notes on groundwater conditions encountered may include.

Groundwater	
Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions		
Stable	No obvious/gross short term instability noted	
Spalling	Material falling into excavation (minor/major)	
Unstable	Collapse of the majority, or one or more face of the excavation	

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classific	ation	Particle Size (mm)
CLAY		< 0.002
SILT		0.002 0.075
SAND	fine	0.075 to 0.21
	medium	0.21 to 0.6
	coarse	0.6 to 2.36
GRAVEL	fine	2.36 to 6.7
	medium	6.7 to 19
	coarse	19 to 63
COBBLES		63 to 200
BOULDERS		> 200

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

Terminology	In coarse	In fine soils	
reminology	% fines	% coarse	% coarse
Trace	≤5	≤15	≤15
With	>5, ≤12	>15, ≤30	>15, ≤30

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	≤12kPa
Soft	S	12kPa to ≤25kPa
Firm	F	25kPa to ≤50kPa
Stiff	St	50kPa to ≤100kPa
Very Stiff	VSt	100kPa to ≤200kPa
Hard	н	>200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	<15%
Loose	L	15% to ≤35%
Medium Dense	MD	35% to ≤65%
Dense	D	65% to ≤85%
Very Dense	VD	>85%

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

Plasticity	Silt LL	Clay LL
Low plasticity	≤ 35%	≤ 35%
Medium plasticity	N/A	> 35% ≤ 50%
High plasticity	> 50%	> 50%

The moisture condition of soil (w) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

	ire condition and description
Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere

The structure of the soil may be described as follows.

Zoning	Description
Layer	Continuous across exposure or sample
Lens	Discontinuous layer (lenticular shape)
Pocket	Irregular inclusion of different material

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin a	Soil origin and description			
Fill	Anthropogenic deposits or disturbed material			
Topsoil	Zone of soil affected by roots and root fibres			
Peat	Significantly organic soils			
Colluvial	Transported down slopes by gravity/water			
Aeolian	Transported and deposited by wind			
Alluvial	Deposited by rivers			
Estuarine	Deposited in coastal estuaries			
Lacustrine	Deposited in freshwater lakes			
Marine	Deposits in marine environments			
Residual soil	Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident			
Extremely weathered material	Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties			

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

Rock type	Groups
Sedimentary	Deposited, carbonate (porous or non), volcanic ejection
Igneous	Felsic (much quartz, pale), Intermediate, or mafic (little quartz, dark)
Metamorphic	Foliated or non-foliated
Duricrust	Cementing minerology (iron oxides or hydroxides, silica, calcium carbonate, gypsum)

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and symbol		Definition	
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident	
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident	
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores. May be distinguished into MW (Moderately Weathered) and HW (Highly Weathered).	
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock	
Fresh Rock	FR	The rock shows no sign of decomposition or staining	

The rock material strength can be defined based on the point load index as follows.

Term and symbol		Point Load Index I₅50 (MPa)	
Very Low	VL	0.03 to 0.1	
Low	L	0.1 to 0.3	
Medium	Μ	0.3 to 1.0	
High	Н	1.0 to 3	
Very High	VH	3 to 10	
Extremely High	EH	> 10	

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing measured normal to defects of the same set or bedding, is described as follows.

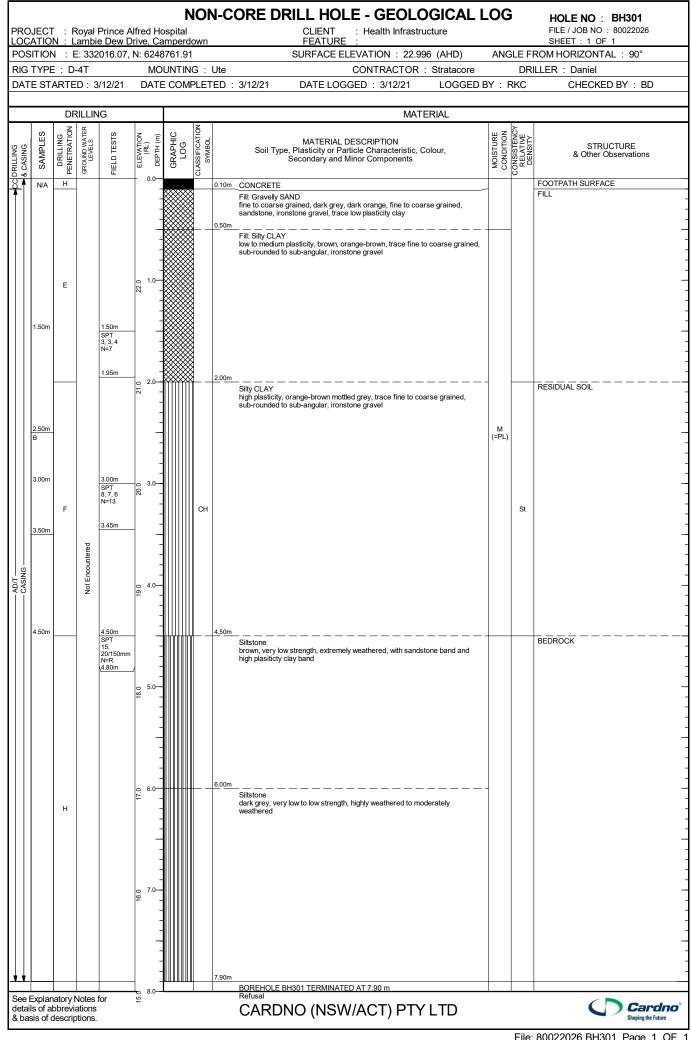
Definition	Defect Spacing (mm)
Thinly laminated	< 6
Laminated	6 to 20
Very thinly bedded	20 to 60
Thinly bedded	60 to 200
Medium bedded	200 to 600
Thickly bedded	600 to 2000
Very thickly bedded	> 2000

Terms for describing rock and defects are as follows.

Defect Terms			
Joint	JT	Sheared zone	SZ
Bedding Parting	BP	Seam	SM
Foliation	FL	Vein	VN
Cleavage	CL	Drill Lift	DL
Crushed Seam	CS	Handling Break	HB
Fracture Zone	FZ	Drilling Break	DB

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulose	UN	Smooth	S
Irregular	IR	Slickensided	SL
Stepped	ST	Polished	POL
Discontinuous	DIS		


The coating or infill associated with defects in the rock mass are described as follows.

Infill and Coating		
Clean	CN	
Stained	SN	
Carbonaceous	Х	
Minerals	MU	Unidentified mineral
	MS	Secondary mineral
	KT	Chlorite
	CA	Calcite
	Fe	Iron Oxide
	Qz	Quartz
Veneer	VNR	Thin or patchy coating
Coating	СТ	Infill up to 1mm

Graphic Symbols Index

PR	OJEC	T : F	Royal	Prince A	Alfred F	lospital		N-CORE D		E - GEOL		-00	;	HOLE NO : BH302 FILE / JOB NO : 80022026
						Camperd 48757.40			FEATURE SURFACE ELE	: : ://ATION · 10				SHEET : 1 OF 3 ROM HORIZONTAL : 90°
								Track				ANC		ILLER : Daniel
				9/11/21				ED : 29/11/21		ED : 29/11/21		3Y : I		CHECKED BY : BD
			RILLIN	IG		<u> </u>	1			MA	TERIAL			
& CASING	SAMPLES	DRILLING PENETRATION	GROUND WATER LEVELS	FIELD TESTS	ELEVATION (RL)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil Ty	MATERIAL DE rpe, Plasticity or Partic Secondary and Mir	cle Characteristic	, Colour,	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	N/A		•	-	0.0-	_		0.05m ASPHALT			/	+		ROAD SURFACE
							§	Fill: Silty CLA medium to bi	λΥ igh plasticity, dark browr	n. with fine arained.	sub-angular to			FILL -
						1	-₹	0.35m angular grav Fill: Silty CLA	el			1		-
					-		§.	medium to hi	igh plasticity, brown, mot ⊦angular to angular grav	tled pale grey and r	red-brown, trace fine			-
		E			19.0	-	ž	granieu, sub	-angular to angular grav					-
					t.		8							-
					1.0-	-	8							_
							Š.							-
							₹ ₹	1.45m						-
	1.50n	י		1.50m SPT 4, 5, 8		-2000	f –	1.45m Silty CLAY				- w ~ PL		
				4, 5, 8 N=13	0			medium to hi trace fine gra	igh plasticity, pale grey, i ained, sub-angular to an	mottled red-brown a gular gravel	and yellow-brown,			
					18.0									-
				1.95m	2.0-									_
														-
													St	-
					.									-
														-
					17.0		сі-сн							-
				3.00m	3.0-			3.00m						-
				SPT 6, 10, 15	3.0-				ent ironstone band					-
				N=25										-
				3.45m										-
					-							w < PL	VSt	
- AD/T			tered		16.0									-
- CA			Encountered		-									-
			Vot En	4.00m SPT 17/150mm	4.0-			4.10m						
			2	HB N=R	1			Siltstone grev, verv lo	w strength, extremely to	highly weathered.	with occassional iron			BEDROCK
				4.15m	-			staining						-
		F			-									_
					15.0									-
					15									
					5.0-	-								-
														4
														-
					0									4
					14.0									-
					6.0-	_								-
														-
														-
														-
					13.0									
					7.0-									
														-
														-
							L	7.50m						
						-		Continued as	s Cored Drill Hole					
					12.0	1								
					8.0-	1								
deta	ails of	natory l abbrevi descrip	ations	for	- 0.0-			CARE	DNO (NSW/	ACT) PT	Y LTD			Condition Cardino Shaping the Future

		CORED DRILL					OLE NO : BH302
PROJECT : Royal Prince LOCATION : Lambie Dew		CLIENT : H FEATURE :	Health Infra	structure			LE / JOB NO : 80022026 HEET : 2 OF 3
POSITION : E: 332076.30		SURFACE ELEVA					HORIZONTAL : 90°
RIG TYPE : Comacchio GE				R : Stratacore			R : Daniel
DATE STARTED : 29/11/2 CASING DIAMETER : N/A	DATE COMPLETED : 2 BARREL (Leng			1 LOGGE	DBA :		CHECKED BY : BD DITION : Good
DRILLING		MATERIAL	otopped				OCK MASS
	20	DESCRIPTION	D	ESTIMATED STRENGTH Is(50)		DEFECT	DEFECTS
PRILLING & CASING & CASING & CASING RETURN BETURNS SSAMPLES & SAMPLES & FIELD TESTS CR 1) COLORE COL	Image: Constraint of the sector of the se	: Colour, Grain size, Structure, , mineral composition, hardne: ementation, etc as applicable)	atherir 0	●- Axial O- Diametral	RQD (%)	SPACING (mm)	(joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
A Solution Soluti	2.50m START CORIN	AND grained, dark grey, sub-rounded to onstone, siltstone STRENGTH EH Extremely High VH Very High	CL Clea CS Cru: CZ Cru: DB Drill FC Frac HB Har IS Infill JT Join SM Sea SS She	ding Plane avage shed Seam shed Zone ing Break dling Break ed Seam t ar Seam ar Seam ar Zone	COATI CN FILLEE SN VR PLANA CU DIS IR PST UN	Clean Coating (>= 1.0) Filled Stained Veneer (< 1.0n	mm) FE Iron Oxide FE Iron Oxide Clay CLAY KT Chlorite MS Secondary Mineral MU Unidentified Mineral QZ Quartz
See Explanatory Notes for details of abbreviations & basis of descriptions.	C	ARDNO (NSW/A	CT) P	FY LTD			Cardno [®] Shaping the Future
							· 80022026 BH302 2 OF 3

		CORED DRILL				ENO: BH302
PROJECT : Royal Prince LOCATION : Lambie Dew I		CLIENT : FEATURE :	Health Infrastruct	ure		JOB NO : 80022026 T : 3 OF 3
POSITION : E: 332076.30			VATION : 19.696	、 /	ANGLE FROM HO	
RIG TYPE : Comacchio GE DATE STARTED : 29/11/21	O 3063000 NTING : Track DATE COMPLETED : 29		ONTRACTOR : S	Stratacore	DRILLER :	Daniel CHECKED BY : BD
CASING DIAMETER : N/A	BARREL (Leng			LOOGED D		FION : Good
DRILLING		MATERIAL				K MASS
PRILLING & CASING WATER RETURN SAPLES SAMPLES FIELD TESTS FIELD TESTS	texture, fabric,	DESCRIPTION : Colour, Grain size, Structor, mineral composition, hardr mentation, etc as applicabl	nue the or	ED STRENGTH Is(50) - Axial Diametral 2^{2} r 9^{2} H W H H	DEFECT SPACING (mm) (joi	DEFECTS ints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness,
□ ∞ DEPTH Is(50) d=0.01 a=0.25 MPa	LAMINITE	grey, Sandstone (80%), dark grey 20%), interlaminated at 0-10°, clos	HwΨ 🛛 😫			thickness, other 97: HB 10: BP, 0-5°, PR, RF, CN 12: BP, 0-5°, PR, RF, CN
3 ⁸ 0 0 0 0 0 0 0 0 0 0 0 0 0		ued)		• 1 • 1 1 1 1 1 • 1 1 1 1 1 • 1 1 1 1 1 • 1 1 1 1 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.36: BP, 0-5°, PR, RF, CN
Is(50) d=0.99 m a=2.3 MPa 11.		grey, Siltstone (80%), dark grey ar grey, Siltstone (80%), dark grey ar %), grey, fine grained, interlaminal	F id F led at 			0.09: BP, 0-5°, PR, RF, CN 0.14: BP, 0-5°, PR, RF, CN 0.32: DB 0.34: DB 0.37: DB 0.40: DB 0.40: DB 0.42: DB 0.42: DB
S S S S S S S S S S S S S S S S S S S				1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.49: DB
13. (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)					I I	
▼ ▼ 1s(50) G: 1,46 a=2.06 MPa 0; 15. 0;	BOREHOLE B Target depth	H302 TERMINATED AT 14.36 m				4.30: DB
DRILLING AD/T Auger Drilling with TC Bit AD/V Auger Drilling with V Bit AD Screwing DB Washbore with Drag Bit DT Diatube HMLC HMLC Core Barrel HQ3 Core Barrel NQ3 NQ3 Core Barrel PQ3 PQ3 Core Barrel R Rock Roller	WEATHERING FR Fresh SW Slightly Weathered MW Moderately Weathered DW Distinctly Weathered HW Highly Weathered XW Extremely Weathered	STRENGTH EH Extremely High VH Very High H High M Medium L Low VL Very Low EL Extremely Low ROUGHNESS POL POL Polished RF Rough S Smooth SL Sitckensided VR Very Rough	DEFECT TYPE BP Bedding P CL Cleavage CS Crushed S CZ Crushed Z DB Drilling Bre FC Fracture HB Handling E IS Infilled See JT Joint SM Seam SS Shear Sea SZ Shear Zon VN Vein VO Void FA Fault	lane Cf CT eam Fill one SN eak VF Break PL Im Ct DT M IR	F Coating (>= 1.0m) LLED Filled N Stained R Veneer (< 1.0mm) ANARITY J Curved S Discontinuous Irregular R Planar F Stepped	FE Iron Oxide FE Iron Oxide Clay
See Explanatory Notes for details of abbreviations & basis of descriptions.	C	ARDNO (NSW/	ACT) PTY I	_TD		Concentration Cardino*

	TITLE:		hotographs – BH302 ation – RPA East Campus	
Cardno	PROJECT NO: 80022026	TEST DATE: 29/11/2021	INCLINATION: -90 degree	CORED LENGTH: BOX 1 OF 2 7.50 m to 12.00 m – 4.50 m Length
	DRILL RIG: Comacchio GEO 305	CONTRACTOR: Cardno & Stratacore Drilling	LOGGED BY: RK	CHECKED BY: BD
			· · · 新·	
	Cardno 💦 💦	BH ID: BH		The second second
	aping the Future A Haspital - East comput	Depth: ⊋ 5 Core Tray		
	mber: 80022026	Date: 29/11	2021	
	1 . 1	In the last of the	Chalk	marks denote handling or drilling breaks
7m ca	mperdown 29/11/21 7	·50m		
Q MAMM				
Om Multilling				
9m				
LUm				
11m				
L at 11				

	TITLE:		notographs – BH302 ation – RPA East Campus	
C Cardno	PROJECT NO: 80022026	TEST DATE: 29/11/2021	INCLINATION: -90 degree	CORED LENGTH: BOX 2 OF 2 12.00 m to 14.35 m – 2.35 m Length
	DRILL RIG: Comacchio GEO 305	CONTRACTOR: Cardno & Stratacore Drilling	LOGGED BY: RK	CHECKED BY: BD
Project: RP	ping the Future A Hospital - East compus mber: 80022026	BH ID: 9H 3 Depth: 12m Core Tray P Date: 29J III)	-1435m 10.: 2 2021	arks denote handling or drilling breaks

							NO	N-C	ORE DRILL HOLE - GEOLOGICAL L	.00	;	HOLE NO : BH303
PRO	DJEC ⁻	F:F N:L	Royal ambi	Prince A e Dew D	Afred Ho rive, Ca	ospita amper	l dowr		CLIENT : Health Infrastructure FEATURE :			FILE / JOB NO : 80022026 SHEET : 1 OF 3
POS	SITIO	N : E	: 331	994.42,	N: 6248	8721.3	36		SURFACE ELEVATION : 27.098 (AHD)	ANC	GLE F	ROM HORIZONTAL : 90°
		E : D							CONTRACTOR : Stratacore			LLER : Daniel
DAI	ESI	ARTE	D: 3	/12/21	DATI		NPLE	IED :	3/12/21 DATE LOGGED : 3/12/21 LOGGED E	3Y : I	RKC	CHECKED BY : BD
		DF	RILLIN	IG					MATERIAL			
DRILLING	SAMPLES	DRILLING PENETRATION	GROUND WATER LEVELS	FIELD TESTS	ELEVATION (RL) DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	STINDOL	MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	AOISTURE ONDITION	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
A DR	N/A	L L	В	Ë	- 0.0-		CL	0.05m	\Paver	20	<u>0</u>	ROAD SURFACE
HH	N/A	н			27.0			0.40m	Concrete	D		
					-		×	0.70m				FILL
	1.00m			1.00m SPT 4, 5, 5 N=10	- - 1.0- - 90 - -			1.30m	Fill: Silty CLAY	_		
		E		1.45m					medium to high plasticity, orange-brown, trace sub-rounded to sub-angular, siltstone, sandstone, ironstone gravel			
					2.0					M (=PL)		
	3.00m			3.00m SPT	- - - 3.0			3.10m				- - - -
	3.40m ES			4, 8, 14 N=22 3.45m	24.0		C-		Silty CLAY high plasticity, orange-brown, mottled grey, trace sub-rounded, ironstone gravel, trace rootlets			RESIDUAL SOIL
CASING	<u>4.00m</u> D	_	Not Encountered		- - 4.0			<u>4.00m</u>			VSt	-
AD/T	<u>4.50m</u>	-	z	4.50m SPT	- 33.0		C⊦		higń plasticity, grey, orange-brown, with sub-rounded to sub-angular ironstone gravel	w < PL	-	- - -
				13, 10, 12 N=22	-		-	4.70m				BEDROCK
				4.95m	- - 0.2 - 5.0 - 52				bands and ironstone bands			
		F										-
	6.00m			6.00m SPT	- 6.0							
				8, 23, 18 N=41 6.45m	- 21.0	-						
					7.0							
					- 20.0							
	7.50m			7.50m SPT	-			7.60m				-
				13, 17, 30 N=47 7.95m					Siltstone dark grey, very low strength, extremely weathered to highly weathered, with iron indurated bands			
deta	ils of a	l natory l lbbrevi descrip	ations		8.0		U II I		CARDNO (NSW/ACT) PTY LTD	1	<u>I</u>	Cardno [®] Sheping the Future

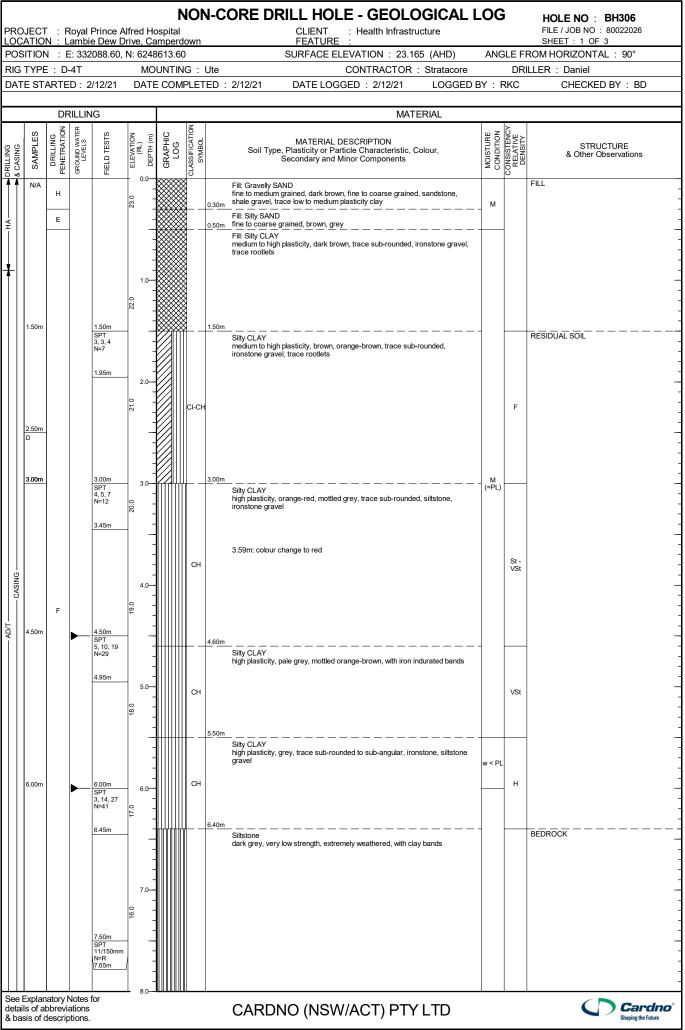
	CORE DRILL HOLE - GEOLOGICAL LOG CLIENT : Health Infrastructure	HOLE NO : BH303 FILE / JOB NO : 80022026
PROJECT : Royal Prince Alfred Hospital LOCATION : John Hopkins Drive, Camperdown	FEATURE :	SHEET : 2 OF 3
POSITION : E: 331994.42, N: 6248721.36 RIG TYPE D-4T MOUNTING : Ut		LE FROM HORIZONTAL : 90° DRILLER : Daniel
DATE STARTED : 3/12/21 DATE COMPLETE		
DRILLING	MATERIAL	
		5
A CASING & CASING SAMPLES SAMPLES PRILLING PRILLING PRUND WATER RILLING ROUND WATER RUND CLUEVELS (RL) DRILLING CLOG CLOG CLOG	MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	STRUCTURE STRUCTURE & Other Observations STRUCTURE & Other Observations
CASNG CASNG CASNG 190 190 190 190 190 190 190 190 190 190	Silistone dark grey, very low strength, extremely weathered to highly weathered, with iron indurated bands (continued) 5m 	
See Explanatory Notes for details of abbreviations & basis of descriptions.	CARDNO (NSW/ACT) PTY LTD	Cardno [*] Shaping the Future

		CORED DRILL					OLE NO : BH303
PROJECT : Royal Prince Alf LOCATION : John Hopkins D		CLIENT : FEATURE :	Health In	frastructure			LE / JOB NO : 80022026 HEET : 3 OF 3
POSITION : E: 331994.42, N		SURFACE ELEV		, ,			HORIZONTAL : 90°
RIG TYPE : D-4T DATE STARTED : 3/12/21	MOUNTING : Ute DATE COMPLETED : 3/-			TOR : Stratacore			CHECKED BY : BD
CASING DIAMETER : N/A	BARREL (Lengt	h):3.00 m BIT :NML0	C Stepped	1		BIT CON	DITION : Good
DRILLING		MATERIAL					OCK MASS
DRILLING A & CASING & CASING WATER WATER RETURN SSAMPLES & FIELD TESTS FIELD TESTS ELEVATION	ບ H ບ KOCK TYPE (texture, fabric, ຍິ່ງ alteration, ce	DESCRIPTION : Colour, Grain size, Structu mineral composition, hardn mentation, etc as applicable	iess 🛱	ESTIMATED STRENGTH Is(50) O - Diametral	RQD (%)	DEFECT SPACING (mm)	DEFECTS (joints, partings, seams, zones, etc) Description, orientation, infilling or coating, shape, roughness, thickness, other
<u>□ ∞ · u depth</u> · u s.0 -	9.85m START CORIN	G AT 9.85m					
10.0 - 10.0 - 15(50) d=0.49 a=0.3 MPa 11.0 - 0 0 0 0 0 0 0 0 0 0 0 0 0	SILTSTONE dark grey, with lamination at 0- 10.80-10.86m: sandstone matr 11.20m SILTSTONE dark grey, indis 11.50m sandstone SILTSTONE	5% grey, fine grained sandstone 5° SHALE, grey, with 5-10° fine grain			97		- 9.84-10.00: FZ
Q Q Q Q Q Q Q Q Q Q Q Q Q Q	SILTSTONE dark grey, with lamination at 0- 12.90m						- 12.61: DB
d=0.85 c a=1.03 c MPa v 000 v 000 v 1 ls(50) d=1.23 c d=1.23 c d=1.23 c d=1.23 c d=1.23 c d=1.23 c d=1.23 c d=2.78 c d=2.78 c d=2.85 c d=	Siltstone (50%)	, dark grey and Sandstone (50%), erlaminated at at 0-5°	grey,		97		— 13.06: DB — 13.46: HB — 13.72: DB
11.0 -	BOREHOLE BH Target depth	1303 TERMINATED AT 14.00 m					
AD/T Auger Drilling with TC Bit AD/V Auger Drilling with V Bit AS Auger Screwing DB Washbore with Drag Bit DT Diatube	WEATHERING FR Fresh SW Slightly Weathered MW Moderately Weathered DW Distinctly Weathered HW Highly Weathered XW Extremely Weathered	STRENGTH EH Extremely High VH Very High M Medium L Low VL Very Low EL Extremely Low ROUGHNESS POL Polished RF Rough S Smooth SL Slickensided VR Very Rough	CL CS CS CD DFC F HB SJ SS SS SS VO VO	TYPE Bedding Plane Cleavage Crushed Seam Crushed Zone Drilling Break Fracture Handling Break Infiled Seam Joint Seam Shear Seam Shear Zone Vein Void Fault	SN VR	Clean Coating (>= 1.0 D Filled Stained Veneer (< 1.0n IARITY Curved Discontinuous Irregular Planar Stepped Undulose	nm) FE Iron Oxide FE Iron Oxide Clay CLAY KT Chlorite MS Secondary Mineral MU Unidentified Mineral QZ Quartz
See Explanatory Notes for details of abbreviations & basis of descriptions.	C	ARDNO (NSW/A	ACT) I	PTY LTD			R0022026 BH303 3 OE 3

	TITLE:		hotographs – BH303 ation – RPA East Campus	
C Cardno	PROJECT NO: 80022026	TEST DATE: 03/12/2021	INCLINATION: -90 degree	CORED LENGTH: BOX 1 OF 1 9.85 m to 14.00 m - 4.15 m Length
	DRILL RIG: D-4T Ute Rig	CONTRACTOR: Cardno & Stratacore Drilling	LOGGED BY: RK	CHECKED BY: BD
				•
		BH ID: BH 3	3	
	Cardino ° aping the Future	Depth: 9 85		
	A Hospital - East compus	Core Tray N	0.: 1	9
Project Nu	mber: 80022026	Date: 03 12		arks denote handling or drilling breaks
		In the local as		
9 80022	026 3/12/21			ASTER A
9m 80022 RPA Ho	026 3/12/21 BH303 SPITAL CORING STARTS FROM	y 9.85m		
Plantant	P L I			
10m	and the second se			
11				
			the second s	
12m			Same and a start of the start of	
1211				
12			THE REPORT OF THE REPORT OF THE PARTY OF T	and a second
The second statement of the se	ALL			

		CLIENT : Health Infrastructure	OG	HOLE NO : BH304 FILE / JOB NO : 80022026
PROJECT : Royal Prince A OCATION : Lambie Dew I	Drive, Camperdown	FEATURE :		SHEET : 1 OF 3
POSITION : E: 332092.74,		SURFACE ELEVATION : 21.873 (AHD)		FROM HORIZONTAL : 90°
RIG TYPE : Geoprobe 6620 DATE STARTED : 29/11/21				RILLER : Daniel CHECKED BY : BD
DRILLING		MATERIAL		
A CASING & CASING SAMPLES DRILLING DRILLING PENETRATION GROUND WATER LEVELS	ELEVATION (RL) DEPTH (m) GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	MOISTURE CONDITION CONSISTENCY RELATIVE	STRUCTURE
N/A F		ASPHALT	-	ROAD SURFACE FILL
E 1.50m E 1.50m SPT SPT SPT SPT SPT SPT 3.00m SPT 3.45m SPT 3.45m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT 4.50m SPT SPT 4.50m SPT	0 0.50m	Fill: Gravely SAND fine to coarse grained, dark brown, fine to coarse grained, sub-rounded to sub-angular, ironstone gravel, trace high plasticity clay, rootlets Fill: Silty CLAY high plasticity, grey, orange-brown, trace rounded to sub-rounded, siltstone, ironstone gravel Fill: Silty CLAY Fill: Silty CLAY Fill: Silty CLAY Silty CLAY high plasticity, orange-red, mottled grey, trace charcoal, siltstone gravel	(=PL)	RESIDUAL SOIL
4,8,8 N=16 <u>4.95m</u>	- € 5.0 5.0 - 5.20m	Silty CLAY high plasticity, grey, mottled red, orange-brown, trace sub-rounded, ironstone gravel	- VSt	
н		Sittsone grey, very low strength, extremely weathered to highly weathered, with fine to medium grained sandstone, with ocassional clay band		BEDROCK
See Explanatory Notes for letails of abbreviations basis of descriptions.	<u>-t-</u> 8.0 ₩₩₩₩₩₩₩₩	CARDNO (NSW/ACT) PTY LTD	1	Cardno Shaping the Future

							ION	-CORE DRILL HOLE - GEOLOGICA	LO	G	HOLE NO : BH304
PROJ LOCA	ECT	: F N : L	loyal I ambie	Prince / e Dew [Alfred Ho Drive, Ca	ospital Imperd	own	CLIENT : Health Infrastructure FEATURE :			FILE / JOB NO : 80022026 SHEET : 2 OF 3
					, N: 6248			SURFACE ELEVATION : 21.873 (AHD)			ROM HORIZONTAL : 90°
					00DTMO DATE			rack CONTRACTOR : Stratacor ED : 29/11/21 DATE LOGGED : 29/11/21 LOGGE			CHECKED BY : BD
										-	
			LLLIN ∝				z	MATERIAL		≻	
DRILLING & CASING	SAMPLES	DRILLING PENETRATION	GROUND WATER LEVELS	FIELD TESTS	ELEVATION (RL) DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	MOISTURE	CONDITION CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
C B L(Q) L(Q) Cys(N) Cys(of al	H	Not Encountered Address f					Silitone grey, very low strength, extremely weathered to highly weathered, with fir to medium grained sandstone, with occassional clay band <i>(continued)</i> 12 26m Continued as Cored Drill Hole CARDNO (NSW/ACT) PTY LTD			


	e	CORED DRILL					ENO: BH304
PROJECT : Royal Prince Al _OCATION : Lambie Dew Dr		CLIENT : FEATURE :	Health Infrastru	icture			JOB NO : 80022026 T : 3 OF 3
POSITION : E: 332092.74, 1		SURFACE ELEV		. ,			RIZONTAL : 90°
RIG TYPE:Geoprobe 66200 DATE STARTED:29/11/21	DIMOUNTING : Track DATE COMPLETED : 29/		ONTRACTOR	LOGGE			Daniel CHECKED BY:BD
CASING DIAMETER : N/A	BARREL (Length			LOOOL		BIT CONDIT	
DRILLING		MATERIAL					MASS
URLING WATER WATER RETURN SS MATER ATTON SAMPLES SAMPLES FIELD TESTS FIELD TESTS FIELD TESTS	ROCK TYPE : ROCK TYPE : (texture, fabric, alteration, cer	DESCRIPTION Colour, Grain size, Structu mineral composition, hardn	athering all	MATED STRENGTH Is(50) • - Axial O - Diametral	RQD (%)	()	DEFECTS ats, partings, seams, zones, etc) escription, orientation, infilling
DRAILLING & CASING & CASING RETURN RETURN RETURN SAMPLE FIELD TE FIELD TE RIL	alteration, cer	mentation, etc as applicable		е Б С С С С С С С С С С С С С С С С С С	R		r coating, shape, roughness, thickness, other
° 9.0- ° 9.0- ° 11.0- ° 11.0- ° 11.0- ° 12.0-							
C C C C C C C C C C C C C C C C C C C	lamination at 0-5	5% grey, fine grained sandstone	F		81		.31: DB
% % 00 0 0 15(50) 0 112 0 4=1.12 0 4=1.12 0 4=1.12 0 4=1.12	15.21m				80		.05: JT, 55°, IR, RF, CN .07: JT, 55°, IR, RF, CN .10: DB .15: JT, 85°, PR, RF, CN .21: BP, 0°, PR, S, CN .26: JT, 65°, IR, RF, CN .30: BP, 0-5°, IR, RF, CN .57: JT, 55°, PR, S, CN .60-15.21: DB
	- BOREHOLE BH - Target depth 	304 TERMINATED AT 15.21 m					-
DRILLING AD/T Auger Drilling with TC Bit AD/V Auger Drilling with V Bit AS Auger Screwing DB Washbore with Drag Bit DT Diatube HMLC HMLC Core Barrel NMLC NMLC Core Barrel NMLC NMLC Core Barrel NA3 NQ3 Core Barrel PQ3 PQ3 Core Barrel R Rock Roller	WEATHERING FR Fresh SW Slightly Weathered MW Moderately Weathered DW Distinctly Weathered HW Highly Weathered XW Extremely Weathered	STRENGTH EH Extremely High VH Very High H High M Medium L Low VL Very Low EL Extremely Low ROUGHNESS POL Polished RF Rough S Smooth SL Slickensided VR Very Rough	DEFECT TYPE BP Bedding CL Cleavag CS Crushee DB Drilling FC Fracture HB Handlin IS Infilled 3 JT Joint SM Seam SS Shear 2 VN Vein VO Void FA Fault	ge d Seam d Zone Break e g Break Seam Seam	COAT CN CT FILLEI SN VR PLANJ CU DIS IR PR ST UN	Clean Coating (>= 1.0m) D Filled Stained Veneer (< 1.0mm)	INFILL CA Calcite CLAY Clay FE Iron Oxide FE Iron Oxide Clay CLAY KT Chlorite MS Secondary Mineral MU Unidentified Mineral QZ Quartz X Carbonaceous
See Explanatory Notes for details of abbreviations	C	ARDNO (NSW/A					Cardno [°] Shaping the Future

	TITLE: Borehole Core Photographs – BH304 Geotechnical Investigation – RPA East Campus									
C) Cardno	PROJECT NO: 80022026	TEST DATE: 29/11/2021	INCLINATION: -90 degree	CORED LENGTH: BOX 1 OF 1 12.26 m to 15.21 m – 2.95 m Length						
	DRILL RIG: Geoproble 6620DT	CONTRACTOR: Cardno & Stratacore Drilling	LOGGED BY: RK	CHECKED BY: BD						

				Prince A Dew D		ospital		N-C	ORE DRILL HOLE - GEOLOGICAL L CLIENT : Health Infrastructure FEATURE :	00	;	HOLE NO : BH305A FILE / JOB NO : 80022026 SHEET : 1 OF 1
				064.29,					SURFACE ELEVATION : 24.158 (AHD)	ANG	GLE FI	ROM HORIZONTAL : 90°
				be 6620								LLER:Daniel
DAT	E ST	ARTE	D: 3	0/11/21	DAT	E COM	PLET	FED :	30/11/21 DATE LOGGED : 30/11/21 LOGGED B	BY : I	RKC	CHECKED BY : BD
		DF	RILLIN	G					MATERIAL			
A CASING	SAMPLES	DRILLING PENETRATION	GROUND WATER LEVELS	FIELD TESTS	ELEVATION (RL) DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
-HA	N/A				- 0.0			0.30m	Fill: Clayey Sitty SAND fine to medium grained, brown, dark grey, low plasticity clay Fill: Sitty Sandy CLAY low plasticity, dark brown, trace sub-rounded, sandstone gravel, trace rootlets	м	_	FILL
		F	Not Encountered					0.90m	Fill: Silty CLAY medium to high plasticity, dark brown, trace rootlets 1.50m: colour change to brown	w < PL		- - - - - - - - - - - - - - - - - - -
	2.50m				- 2.0- - 0.25 - - -			2.50m	Fill: Sandy CLAY bow plasticity, brown, grey, fine to medium grained sand, trace sub-rounded, ironstone gravel	-		RESIDUAL SOIL
	B 3.00m				- 3.0		сн		Silty CLAY high plasticity, orange-brown, trace sub-rounded, ironstone gravel		St	RESIDUAL SUIL
					21.0	-			BOREHOLE BH305A TERMINATED AT 3.00 m Target depth			- - - - - - - - - - - - -
						-						- - - - - - - - - - - - - - - - - - -
					5.0							
					- 							- - - - - - - - - - - - - - - - - - -
			Notes f	ör	8.0-							Cardno
		bbrevia descrip							CARDNO (NSW/ACT) PTY LTD			Shaping the Future

			Prince A			spital		I-CORE DRILL HOLE - GEOLOGICAL CLIENT : Health Infrastructure FEATURE :	LOG	6	HOLE NO : BH305B FILE / JOB NO : 80022026 SHEET : 1 OF 1
			2081.75,					SURFACE ELEVATION : 22.568 (AHD)	ANG	GLE F	ROM HORIZONTAL : 90°
			obe 6620						DV .		ILLER : Daniel
JATES	IARTI	=D : 3	30/11/21	DA	AIE	COM	PLEI	ED : 30/11/21 DATE LOGGED : 30/11/21 LOGGED	BY :	RKC	CHECKED BY : BD
		RILLIN	NG					MATERIAL			
& CASING SAMPLES	DRILLING	GROUND WATER LEVELS	FIELD TESTS	ELEVATION (RL)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
N/A				— o).0		XXXX	Fill: Clayey Silty SAND fine to medium grained, dark brown, dark grey, low plasticity clay 0.30m	м	_	FILL
				0.22.0	- - - - - - - - - - - - - - - - - - -			1.00m	w < Pl	-	
1.50n	^m E		1.50m SPT 4, 6, 8 N=14 1.95m	5			****	1.50-1.95m: trace charcoal			
3.00n	n		3.00m SPT 6, 6, 8 N=14	50.0	- - - 3.0- - -			2.50m Silty CLAY high plasticity, orange-brown, pale grey, trace sub-rounded to sub-angular, ironstone and sandstone gravel, trace rootlets, charcoal 3.20m: colour change to orange-red, mottled grey	_ w ~ Pl	-	RESIDUAL SOIL
CASING CASING CASING CASING CASING	n	Not Encountered	3.45m	- 19.0	- - - 4.0- - -		СН	3.80m: colour change to red		St	
4.50n	m F		4.50m SPT 7, 10, 15 N=25 4.95m	18.0			сн	4.50m Sitty CLAY Nigh plasticity, pale grey, mottled red and orange-brown, with sub-rounded to sub-angular, ironstone gravel			
6.00n	n		6.00m	17.0				5.30m Sitty CLAY high plasticity, pale grey, mottled orange-red, with sub-rounded to sub-angular, ironstone, siltstone gravel	- w < Pl	_ VSt	
			SPT 8, 12, 16 N=28 6.45m	16.0			СН	6.30m: trace pale grey, fine to medium grained sand			
7.50n	т н	_	7.50m SPT 30/150mm N=R 7.65m		- 7.0 - - - - - - - - - -			7.00m			BEDROCK — — — — — — — — — — — — — — — — — — —
See Expla details of & basis of	abbrev	iations		⊥ ₀	3.0			BOREHOLE BH305B TERMINATED AT 8.00 m CARDNO (NSW/ACT) PTY LTD			C Cardin Shaping the Future

	CORE DRILL HOLE - GEOLOGICAL LOG	HOLE NO : BH306
PROJECT : Royal Prince Alfred Hospital LOCATION : Lambie Dew Drive, Camperdown	CLIENT : Health Infrastructure FEATURE :	FILE / JOB NO : 80022026 SHEET : 2 OF 3
POSITION : E: 332088.60, N: 6248613.60		FROM HORIZONTAL : 90°
DATE STARTED : 2/12/21 DATE COMPLETED		
RIG TYPE : D-4T MOUNTING : Ute DATE STARTED : 2/12/21 DATE COMPLETED DRILLING University UNIVERSITY DHUDENS Image: Started in the started in	: 2/12/21 DATE LOGGED : 2/12/21 LOGGED BY : RKC MATERIAL MATERIAL MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components Siltistone dark grey, very low strength, extremely weathered, with clay bands (continued)	
See Explanatory Notes for details of abbreviations	CARDNO (NSW/ACT) PTY LTD	

		CORED DRILL	HOLE	LOG		HOLE NO : BH306
PROJECT : Royal Prince A LOCATION : Lambie Dew D		CLIENT : FEATURE :	Health Infra	astructure		FILE / JOB NO : 80022026 SHEET : 3 OF 3
POSITION : E: 332088.60,		SURFACE ELE		, ,		OM HORIZONTAL : 90°
RIG TYPE : D-4T DATE STARTED : 2/12/21	MOUNTING : Ute DATE COMPLETED : 2/			OR : Stratacore	DRILL	ER : Daniel CHECKED BY : BD
CASING DIAMETER : N/A	BARREL (Lengt				-	ONDITION : Good
DRILLING		MATERIAL				ROCK MASS
BRILLING & CASING & CASING & CASING RETURN SAMPLES FILD TESTS FIELD TESTS FIELD TESTS	ROCK TYPE HL4 W HC47 HC (texture, fabric, alteration, ce	DESCRIPTION : Colour, Grain size, Structor mineral composition, hardr	ness 🛱	ESTIMATED STRENGTH Is(50) • Axial • Diametral	C DEFECT SPACING (%) O O W	DEFECTS (joints, partings, seams, zones, etc) Description, orientation, infilling
		mentation, etc as applicabl	e) >	П п п п п п п п п п п п п п п п п п п п		or coating, shape, roughness, thickness, other
DIMU C T C T C T C T C T C T C T C T	9.20m START CORIN 9.40m dark grey, low f 9.40m dark grey, low f 9.50m grianed sand, v SILTSTONE dark grey, very clay bands LAMINITE dark grey and g grained grey ard interlaminated a 11.00m LAMINITE dark grey and g grained grey ard grained grey ard interlaminated a 11.00m	o medium plasticity, fine to coarse vith siltstone gravel low strength, extremely weathered grey, Siltstone (50%), fine to medit d Sandstone (50%), dark grey, at 0-5° grey, Siltstone (80%), fine to medit of Sandstone (20%), dark grey,	/ EW d, with / K um MW EW MW EW MW EW MW EW MW			9.34-9.50: SM, clay 9.53: BP, 5', PR, S, clay CT 9.59: BP, 0', PR, S, CN 9.62: JT, 85', IR, RF, CN 9.62: JT, 85', IR, RF, CN 9.77: BP, 0-5', PR, S, CN 9.93: BP, 0-5', PR, S, CN 9.93: BP, 0-5', PR, S, CN 10.33: JT, 80', IR, RF, CN 10.14: JT, 75', IR, RF, CN 10.22: BP, 0', PR, S, CN 10.22: BP, 0', PR, S, CN 10.23: BP, 0', PR, S, CN 10.24: BP, 0', PR, S, CN 10.25: BP, 0', PR, S, CN 10.26: BP, 0', PR, S, CN 10.26: BP, 0', PR, S, CN 10.34: BP, 0', PR, S, CN 10.42: 10.45: FZ 10.67-10.68: SM, clay 10.67-10.68: SM, clay 10.66-10.70: SM, clay 10.67-10.68: SM, clay 10.67-10.68: SM, clay 10.68: BP, 0-5', PR, S, CN 10.98: BP, 0-5', PR, S, CN 10.98: BP, 0-5', PR, S, CN 10.98: BP, 0-5', PR, S, CN 11.23: DB 11.23: DB 11.45: DB 12.46: DB 12.46: DB 12.46: DB 12.42: DB 12.46: DB 12.42: DB 12.46: DB 12.42: DB 12.46: DB 12.42: DB 12.42: DB 12.45: DB 13.30: DB
♥ ♥ ↓ 15.00		H306 TERMINATED AT 14.97 m				13.35: BP, 0°, PR, S, CN 13.45-13.58: 5x BP, 0-5°, PR, S, CN 13.69: DB 14.42: DB 14.42: DB 14.75: DB
DRILLING AD/T Auger Drilling with TC Bit AD/V Auger Drilling with TC Bit AD/V Auger Screwing DB Washbore with Drag Bit DT Diatube HMLC HMLC Core Barrel HMLC NMLC Core Barrel NG3 NG3 Core Barrel NG3 NG3 Core Barrel PG3 PG3 Core Barrel R Rock Roller	FR Fresh SW Slightly Weathered MW Moderately Weathered DW Distinctly Weathered HW Highly Weathered XW Extremely Weathered	STRENGTH EH Extremely High VH Very High H High M Medium L Low VL Very Low EL Extremely Low ROUGHNESS POL Polished RF Rough S Smooth SL Slickensided VR Very Rough	CL Cle CS Cru DB Dri FC Fra HB Ha IS Infoi SM Se SS Sh	dding Plane savage ushed Seam ushed Zone illing Break acture indling Break illed Seam int am ear Seam ear Seam ear Zone in id	COATING COATING CN Clean CT Coating (>= FILLED Filed SN Stained VR Veneer (< PLANARITY CU Curved DIS Discontinuu IR Irregular PR Planar ST Stepped UN Undulose	1.0mm) FE Iron Oxide FE Iron Oxide Clay CLAY KT Chlorite MS Secondary Mineral MU Unidentified Mineral QZ Quartz
See Explanatory Notes for details of abbreviations & basis of descriptions.	С	ARDNO (NSW/	ACT) P	TY LTD		

	TITLE:	Borehole Core	Photographs – BH306							
	Geotechnical Investigation – RPA East Campus									
() Cardno	PROJECT NO: 80022026	TEST DATE: 02/12/2021	INCLINATION: -90 degree	CORED LENGTH: BOX 1 OF 2 9.20 m to 13.00 m – 3.80 m Length						
	DRILL RIG: D-4T Ute Rig	CONTRACTOR: Cardno & Stratacore Drilling	LOGGED BY: RK	CHECKED BY: BD						
C Car		BH ID: BH 306 Depth: 9.20m-13								
Project: RPH Hos		Core Tray No.: 1								
Project Number		Date: 02/12/2021		enote handling or drilling breaks						
		and and an								
	MILLOUT									
8 m 80022020	CORING STARTS FROM	1 9.20m								
	2/2021									
9 m										
10m			MELT							
11m										
11176 11-1-	1+6-17-18P-4-1-11									

	TITLE: Borehole Core Photographs – BH306 Geotechnical Investigation – RPA East Campus									
C Cardno	PROJECT NO: 80022026	TEST DATE: 02/12/2021	INCLINATION: -90 degree	CORED LENGTH: BOX 2 OF 2 13.00 m to 14.97 m – 1.97 m Length						
	DRILL RIG: D-4T Ute Rig	CONTRACTOR: Cardno & Stratacore Drilling	LOGGED BY: RK	CHECKED BY: BD						

PRC LOC		「 : F N : J	loyal ∣ ohn ⊦	Prince A lopkins I	lfred Ho Drive, C	ospital		CL	HOLE - GEOLC		.OG	ì	HOLE NO : BH307 FILE / JOB NO : 80022026 SHEET : 1 OF 1
				934.05,					FACE ELEVATION : 29.81	. ,	ANG		ROM HORIZONTAL : 90°
				140/04							N/ . F		LLER : Daniel
DAI	E 51.	ARTE	D: 2	/12/21	DATE		PLEI	D : 2/12/21 DA	TE LOGGED : 2/12/21	LOGGED B	6Y : F	KKC	CHECKED BY : BD
		DF		IG					MAT	ERIAL			
BRILLING & CASING	SAMPLES	DRILLING PENETRATION	GROUND WATER LEVELS	FIELD TESTS	ELEVATION (RL) DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil Type, Plastic	ATERIAL DESCRIPTION city or Particle Characteristic, C dary and Minor Components	Colour,	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	N/A	E			- 0.0 - - - -			Sub-angular, ironstone g	brown, fine to coarse grained, sub- gravel	/	М		ROAD SURFACE / FILL -
					29.0	*****	_	Silty CLAY	prown, trace sub-rounded, ironstone		M (=PL)		RESIDUAL SOIL
	1.00m U75	-			1.0			1.0m: with iron indurated	d bands			St	
	1.45m			1.45m SPT 5, 11, 15 N=26			сн					VSt	
	2.00m			1.90m 2.00m SPT 6, 17, 21 N=38	2.0								-
- AD/T CASING			Not Encountered	2.45m				0m Silty CLAY high plasticity, orange-b	orown, with iron indurated bands		-		
	3.00m	F	z	3.00m SPT 7, 20, 30 N=50	3.0						w < PL		
				3.45m	0							н	-
	4.00m			4.00m SPT 9, 19, 22 N=41 4.45m	- ⁹² - 4.0 - -								
					25.0								
	5.00m			5.00m SPT 19, 13/30mm N=R 5.18m	5.0			0m			-		WEATHERED ROCK
**					+ $-$		4	BOREHOLE BH307 TE	ngth, extremely weathered with clay ERMINATED AT 5.50 m	y bands	-		
					24.0			Target depth					- - - - -
					- - - 33.0 - 7.0 -								
deta	ls of a	hatory l bbrevi descrip	ations	for				CARDNO ((NSW/ACT) PTY	'LTD			Cardno [*]

PF LC	IENT OJE CATI B NC	CT: ION:	Royal P 800220	trince Alfred Hospital			INCLINATION: -90° HOLE DEPTH: 14.00 m			SHEET: 1 OF 1 DRILL RIG: D-4T CONTRACTOR: Str LOGGED: RKC CHECKED:	atacore DATE: 3/12/21 DATE:
	D	rilling		Sampling			Field Material Descriptio	n and Ir	strum		
METHOD	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		CONSTR	RUCTION
AD/T HA		0		SPT 1.00-1.45 m 4, 5, 5 N=10 SPT 3.00-3.45 m 4, 8, 14 N=22 ES 3.40 m C 3.85-12.76 m D 4.00-4.50 m SPT 4.50-4.95 m 13, 10, 12 N=22 SPT 6.00-6.45 m 8, 23, 18 N=41			tiles concrete slab dry Gravelly SAND fine to coarse grained, dark brown, fine to coarse grained, sub-rounded, sandstone, shale, igneous gravel, trace low plasticity clay dry Sandy CLAY low to medium plasticity, brown, fine to coarse grained sand, trace sub-rounded ironstone, shale gravel Silty CLAY medium to high plasticity, orange-brown, trace sub-rounded to sub-angular, shale, sandstone, ironstone gravel Silty CLAY high plasticity, orange-brown, mottled grey, trace sub-rounded, ironstone gravel, trace rootlets very stiff Silty CLAY high plasticity, grey, orange-brown, with sub-rounded to sub-angular ironstone gravel dry, very stiff siltstone dark grey, orange-brown, very low strength, extremely weathered, with clay bands and ironstone bands				entonite
		- - - - - -		SPT 7.50-7.95 m 13, 17, 30 N=47			siltstone dark grey, very low strength, extremely weathered to highly weathered, with iron indurated bands	-		Sa S	Ind
NMLC	100% Water RETURN	10					SILTSTONE dark grey, with 5% grey, fine grained sandstone lamination at 0-5° slightly weathered, low to medium strength SILTSTONE dark grey, indistinctly laminated, with 20% dark grey sandstone slightly weathered, low to medium strength SILTSTONE	-			
NN	100% Water RETURN 10	12 — - - - - -	14.00	C 12.76-14.00 m			SILTSTONE dark grey, with 5% grey sandstone laminations at 0° slightly weathered, medium strength SILTSTONE dark grey, with 10% grey, fine grained sandstone lamination at 0-5° slightly weathered, medium strength INTERLAMINATED SILTSTONE (50%) AND SANDSTONE (50%) AT 0-5° dark grey siltstone, grey fine grained sandstone slightly weathered, medium to high strength				
	10						END OF BOREHOLE @ 14.00 m TARGET DEPTH				

ſ

Royal Prince Alfred Hospital – Eastern Campus

APPENDIX

LABORATORY TEST RESULTS

now

Address: Unit 2, 4 Kellogg Road,

Glendenning NSW 2761

Laboratory:Glendenning LaboratoryPhone:02 9854 1700Fax:02 4577 9055Email:Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

Client:	Cardno (NSW) Pty Ltd		Report Number:	12385/R/264008-1	
Client Address:	Level 9, The Forum, 203 Pacific Highway, St Leor	Project Number:	12385/P/1543		
Project:	Royal Prince Alfred Hospital	Lot Number:	BH302		
Location:	St Leonards	Internal Test Request:	12385/T/119353		
Component:	Bore Hole Testing		Client Reference/s:	80022026	
Area Description:	Lambie Deu Drive, Camperdown	Report Date / Page:	22/12/2021	Page 1 of 3	
Test Procedures:	AS1289.3.6.1				
Sample Number	12385/S/967183		Sampl	e Location	
Sampling Method	Tested As Received	Borehole		BH302	
Date Sampled	29/11/2021 12:00	Depth	(m)	2.0-2.50	
Sampled By	Client Supplied				
Date Tested	7/12/2021				
Material Source	Not Supplied	Material Ty	vpe Combined		

AS Sieve (mm)	Specification Minimum (%)	Percent Passing (%)	Specification Maximum (%)			PARTICLE SIZE DISTRIBUTION GRAPH
19.0		100		1	100 .]
13.2		100				
9.5		100			90 -	
6.7		99			80 -	-
4.75		99			00 -	-
2.36		97			70 ·	
1.18		95		~	10	
0.600		93		%)	60	-
0.425		92		ing		-
0.300		92		Percent Passing (%)	50 ·	-
0.150		90		ant P		
0.075		89		erce	4 0 ·	
				ď		
					30 -	
					20 ·	
						-
					10 ·	
						-
					0 -	
						19.0 13.2 9.5 6.7 4.75 2.36 2.36 0.600 0.425 0.300 0.150
						AS Sieve Size (mm)

Remarks

Results apply to the sample/s as received.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dean

Approved Signatory: Patrick Deasy Form ID: W9Rep Rev 2

Address: Unit 2, 4 Kellogg Road,

Glendenning NSW 2761

Laboratory:Glendenning LaboratoryPhone:02 9854 1700Fax:02 4577 9055Email:Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

			Ĩ		
Client:	Cardno (NSW) Pty Ltd		Report Number:	12385/R/264008-1	
Client Address:	Level 9, The Forum, 203 Pacific Highway, St Leon	Project Number:	12385/P/1543		
Project:	Royal Prince Alfred Hospital	Lot Number:	BH305B		
Location:	St Leonards	Internal Test Request:	12385/T/119353		
Component:	Bore Hole Testing		Client Reference/s:	80022026	
Area Description:	Lambie Deu Drive, Camperdown	Report Date / Page:	22/12/2021	Page 2 of 3	
Test Procedures:	AS1289.3.6.1				
Sample Number	12385/S/967184		Sampl	e Location	
Sampling Method	Tested As Received	Borehole		BH305B	
Date Sampled	29/11/2021 12:00	Depth	(m)	4.0-4.50	
Sampled By	Client Supplied				
Date Tested	7/12/2021				

AS Sieve (mm)	Specification Minimum (%)	Percent Passing (%)	Specification Maximum (%)			PARTICLE SIZE DISTRIBUTION GRAPH
19.0		100			100	00
13.2		100				
9.5		98			90	90
6.7		97			80	0.0
4.75		95			00	
2.36		92			70	70
1.18		90		(· · · · · · · · · · · · · · · · · · ·
0.600		88		Percent Passing (%)	60 ·	60
0.425		87		sing]
0.300		85		basi	50 ·	50
0.150		82		sut		
0.075		79		erce	40	40
				d.		
					30	30 -
					20	20 -
					10	10
					10	
					0	n <u>1</u>
						19.0 9.5 6.7 4.75 2.36 0.600 0.425 0.300 0.150
						AS Sieve Size (mm)

Remarks

Results apply to the sample/s as received.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Approved Signatory: Patrick Deasy Form ID: W9Rep Rev 2

Address: Unit 2, 4 Kellogg Road,

Glendenning NSW 2761

Laboratory:Glendenning LaboratoryPhone:02 9854 1700Fax:02 4577 9055Email:Sydney@constructionsciences.net

PARTICLE SIZE DISTRIBUTION REPORT

Client:	Cardno (NSW) Pty Ltd		Report Number:	12385/R/264008-1	
Client Address:	Level 9, The Forum, 203 Pacific Highway, St Leon	ards	Project Number:	12385/P/1543	
Project:	Royal Prince Alfred Hospital	Lot Number:	BH303		
Location:	St Leonards	Internal Test Request:	12385/T/119353		
Component:	Bore Hole Testing	Client Reference/s:	80022026		
Area Description:	Lambie Deu Drive, Camperdown	Lambie Deu Drive, Camperdown			Page 3 of 3
Test Procedures:	AS1289.3.6.1				
Sample Number	12385/S/967185		Sampl	e Location	
Sampling Method	Tested As Received	Borehole		BH303	
Date Sampled	29/11/2021 12:00	Depth	(m)	4.0-4.50	
Sampled By	Client Supplied				
Date Tested	8/12/2021				
Material Source	Not Supplied	Material Ty	/pe Combined		

AS Sieve (mm)	Specification Minimum (%)	Percent Passing (%)	Specification Maximum (%)			PARTICLE SIZE DISTRIBUTION GRAPH
19.0		100		1	100	0
13.2		100				
9.5		100			90	
6.7		100			80	0
4.75		100			00	
2.36		99			70	n
1.18		97		_		·
0.600		95		Percent Passing (%)	60	.0 _
0.425		94		ing		
0.300		93		ass	50	0 -
0.150		91		ut P		1
0.075		89		erce	40	.0
				ď		1
					30	0
					20	.0
					10	0
					0	
					0	
						19.0 9.5 6.7 4.75 2.36 0.600 0.425 0.300 0.150
						AS Sieve Size (mm)

Remarks

Results apply to the sample/s as received.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Pal Dear

Approved Signatory: Patrick Deasy Form ID: W9Rep Rev 2

Address: Unit 2, 4 Kellogg Road,

Glendenning NSW 2761

Laboratory:Glendenning LaboratoryPhone:02 9854 1700Fax:02 4577 9055Email:Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client:	Cardno (NSW)	Pty Ltd			Report N	umber:		12385/R/2640	09-1	
		orum, 203 Pacific Hi	idhwav. St Leor	ards	Project N			12385/P/1543		
	Royal Prince A		5,		, Lot Numb			BH305A		
-	-						w.o.o.t.	12385/T/1193	E 2	
	St Leonards				Internal T			12385/1/1193	53	
Component:	Bore Hole Test	ting			Client Re	ference	/s:	80022026		
Area Description:	Lambie Deu D	rive, Camperdown			Report D	ate / Pa	ge:	22/12/2021		Page 1 of 2
Test Procedures	AS1289.6.1.1, T1	03 (W0), AS1289.5.1.1,	AS1289.2.1.1							
Sample Number	12385/S/96718	36				9	Sampl	e Location		
Sampling Method	Tested As Rec	eived		Borehole				BH305A		
Date Sampled	29/11/2021			Depth		(m)		2.50 - 3.0		
Sampled By	Client Supplied	ł								
Date Tested	13/12/2021									
Material Source	Not Supplied			Material L	mit Start			-		
Material Type	Combined			Material L	mit End			-		
Client Reference	80022026			Compactiv	e Effort			Standard		
Material Description	Brown clay									
Maximum Dry Density ((t/m³):	1.70			CBR P		ATIO	N PLOT		
Optimum Moisture Con	tent (%):	19.5								
Field Moisture Content	(%):	22.7	900							
Sample Percent Oversi	ze (%)	0.0	900 -						/	-
Oversize Included / Exc	cluded	Excluded	800				_			
Target Density Ratio (%	6):	100	-							
Target Moisture Ratio (-	100	700							
Placement Dry Density		1.71	600							
Placement Dry Density		100.5	-							
Placement Moisture Co	()	19.2	(N) 500							
Placement Moisture Ra		98.5								
Test Condition / Soakin	g Period:	Soaked / 4 Days	400							
CBR Surcharge (kg)		4.5	300							
Dry Density After Soak		1.67								
Total Curing Time (hrs)		3	200							
Liquid Limit Method		Estimation	100							
Moisture (top 30mm) Af		25.5	100							
Moisture (remainder) At	fter Soak (%)	21.1	0 1							
CBR Swell (%):		2.5	0.5	15	ω is us	5 S	6.5	7.5		12.5
Minimum CBR Specific	ation (%):					Pene	tratio	n (mm)		or
CBR Value @ 2.5mm ((%):	3.5				rene	andro			

Remarks Results apply to the sample/s as received.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Approved Signatory: Connor Deasy Form ID: W2ASRep Rev2

Address: Unit 2, 4 Kellogg Road,

Glendenning NSW 2761

Laboratory:Glendenning LaboratoryPhone:02 9854 1700Fax:02 4577 9055Email:Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client:	Cardno (NSW)	Ptv I td			Report	Number:	12385/R/2640	109-1
		-		anda	-			
Client Address:		orum, 203 Pacific H	ignway, St Leor	lards	-	Number:	12385/P/1543	
Project:	Royal Prince A	Ifred Hospital			Lot Nur	mber:	BH301	
Location:	St Leonards				Interna	I Test Reque	est: 12385/T/1193	53
Component:	Bore Hole Test	ting			Client F	Reference/s:	80022026	
Area Description:	Lambie Deu D	rive, Camperdown			Report	Date / Page	: 22/12/2021	Page 2 of 2
Test Procedures	AS1289.6.1.1, T1	03 (W0), AS1289.5.1.1,	AS1289.2.1.1					
Sample Number	12385/S/96718	37				Sa	mple Location	
Sampling Method	Tested As Rec	eived		Borehole			BH301	
Date Sampled	29/11/2021			Depth		(m)	2.5-3.5	
Sampled By	Client Supplied	1						
Date Tested	13/12/2021							
Material Source	Not Supplied			Material Li	mit Start		-	
Material Type	Combined			Material Li	mit End		-	
Client Reference	80022026			Compactiv	e Effort		Standard	
Material Description	Brown clay							
Maximum Dry Density	(t/m³):	1.54			CBR	PENETRAT	TON PLOT	
Optimum Moisture Cor	ntent (%):	25.0						
Field Moisture Content	: (%):	28.4						
Sample Percent Overs	ize (%)	0.0	1200					
Oversize Included / Ex	cluded	Excluded	-					
Target Density Ratio (%	-	100	1000					
Target Moisture Ratio	(%):	100	1000					
Placement Dry Density	/ (t/m³):	1.55	-					
Placement Dry Density		101.0	≈ 800 -					
Placement Moisture Co	. ,	24.8	(N) PEO1 600					
Placement Moisture Ra		99.0	<u> </u>					
Test Condition / Soakir	ng Period:	Soaked / 4 Days	-					
CBR Surcharge (kg)		4.5	400					
Dry Density After Soak		1.52						
Total Curing Time (hrs))	3						
Liquid Limit Method		Estimation	200					
Moisture (top 30mm) A		27.0	1/					
Moisture (remainder) A	After Soak (%)	25.4	0		ուիւսիւուիւ			
CBR Swell (%):		1.5	c iu	1.5 5	ω	າ ເບ 4 ນີ້ ເບີ ເບີ		12.
Minimum CBR Specific		-					ation (mm)	in
CBR Value @ 2.5mm	(%):	5				Penetr	ación (mm)	

Remarks Results apply to the sample/s as received.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Approved Signatory: Connor Deasy Form ID: W2ASRep Rev2

Address:

Unit 2, 4 Kellogg Road, Glendenning NSW 2761
 Laboratory
 Glendenning Laboratory

 Phone:
 02 9854 1700

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

				1				_
Client:	Cardno (NSW) Pty L	td		Report	Number:	12385/R/2640	10-1	
Client Address:	Level 9, The Forum,	203 Pacific Highway, St Leon	ards	Project	Number:	12385/P/1543		
Project:	Royal Prince Alfred	Hospital		Lot Nur	Lot Number: B			
Location:	St Leonards			Internal	Test Request:	12385/T/1193	53	
Component:	Bore Hole Testing			Client F	Reference/s:	80022026		
Area Description:	Lambie Deu Drive, Camperdown			Report	Date / Page:	22/12/2021	Page 1 o	of 3
Test Procedures:	AS1289.3.1.1, AS 1289.3	3.3.1, AS1289.3.2.1, AS1289.3.4.1, A	AS1289.2.1.1					
Sample Number	12385/S/967183			Sampl	e Location			
Sampling Method	Tested As Received	Borehole		BH302				
Date Sampled	29/11/2021		Depth (m)	2.0-2.50			
Sampled By	Client Supplied							
Date Tested	9/12/2021							
Att. Drying Method	Oven Dried		Material S	Source	Not Supplie	d		
Atterberg Preparation	Dry Sieved		Material Type Combined					
LL Device	Cassagrande		Water Ty	ре	Potable			
Material Description	Silty Gravelly Clay, r	nottled grey brown						
Atterberg Limit		Specification Minimum		Tes	t Result	Specit	fication Maximum	
Liquid Limit (%)					54			
Plastic Limit (%)					20			
Plasticity Index (%)					34			
Linear Shrinkage (%)					12.5			
Linear Shrinkage Mou	ld Length / Defects:	Mould Length: 254.0mm / -						

Remarks

Results apply to the sample/s as received.

ΝΔ

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385 \mathcal{C}

Approved Signatory: Connor Deasy Form ID: W11bRep Rev 1

Address:

Unit 2, 4 Kellogg Road, Glendenning NSW 2761
 Laboratory
 Glendenning Laboratory

 Phone:
 02 9854 1700

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client:	Cardno (NSW) Pty L	td		Report	Number:	12385/R/264	1010-1	
Client Address:	Level 9, The Forum,	203 Pacific Highway, St Leon	ards	Project	Number:	12385/P/154	3	
Project:	Royal Prince Alfred	Hospital		Lot Nun	Lot Number: B			
Location:	St Leonards			Internal	Test Request:	12385/T/119	353	
Component:	Bore Hole Testing			Client R	eference/s:	80022026		
Area Description:	Lambie Deu Drive, Camperdown			Report	Date / Page:	22/12/2021		Page 2 of 3
Test Procedures:	AS1289.3.1.1, AS 1289.3							
Sample Number	12385/S/967184			Sampl	e Location			
Sampling Method	Tested As Received	Borehole		BH305B				
Date Sampled	29/11/2021		Depth (m)	4.0-4.50			
Sampled By	Client Supplied							
Date Tested	9/12/2021							
Att. Drying Method	Oven Dried		Material Source Not Supplied			d		
Atterberg Preparation	Dry Sieved		Material	Гуре	Combined			
LL Device	Cassagrande		Water Ty	ре	Potable			
Material Description	Silty Clay, trace of g	ravel, red brown.						
Atterberg Limit		Specification Minimum		Test	Result	Spe	cification Max	kimum
Liquid Limit (%)					62			
Plastic Limit (%)					21			
Plasticity Index (%)					41			
Linear Shrinkage (%)					17.5			
Linear Shrinkage Mou	ld Length / Defects:	Mould Length: 254.7mm / -						

Remarks

Results apply to the sample/s as received.

.

ΝΔ

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385 \mathcal{C}

Approved Signatory: Connor Deasy Form ID: W11bRep Rev 1

Address:

Unit 2, 4 Kellogg Road, Glendenning NSW 2761
 Laboratory
 Glendenning Laboratory

 Phone:
 02 9854 1700

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client:	Cardno (NSW) Pty L	td		Report Number:	12385/R/264010-1	
Client Address:	Level 9, The Forum,	203 Pacific Highway, St Leor	ards	Project Number:	12385/P/1543	
Project:	Royal Prince Alfred	Hospital		Lot Number:	BH303	
Location:	St Leonards			Internal Test Request:	12385/T/119353	
Component:	Bore Hole Testing			Client Reference/s:	80022026	
Area Description:	Lambie Deu Drive, (Camperdown		Report Date / Page:	22/12/2021	Page 3 of 3
Test Procedures:	AS1289.3.1.1, AS 1289.3	3.3.1, AS1289.3.2.1, AS1289.3.4.1, A	AS1289.2.1.1			
Sample Number	12385/S/967185			Sampl	e Location	
Sampling Method	Tested As Received		Borehole	BH303		
Date Sampled	29/11/2021		Depth (m)	4.0-4.50		
Sampled By	Client Supplied					
Date Tested	9/12/2021					
Att. Drying Method	Oven Dried		Material S	ource Not Supplie	ed	
Atterberg Preparation	Dry Sieved		Material T	ype Combined		
LL Device	Cassagrande		Water Typ	e Potable		
Material Description	Silty Gravelly Clay p	ale brown				
Atterberg Limit		Specification Minimum		Test Result	Specificatior	n Maximum
Liquid Limit (%)				53		
Plastic Limit (%)				20		
Plasticity Index (%)				33		
Linear Shrinkage (%)				13.0		
Linear Shrinkage Mou	ld Length / Defects:	Mould Length: 251.0mm / -				

Remarks

Results apply to the sample/s as received.

ΝΔ

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385 \mathcal{C}

Approved Signatory: Connor Deasy Form ID: W11bRep Rev 1

Address: Unit 2, 4 Kellogg Road,

Glendenning NSW 2761

 Laboratory
 Glendenning Laboratory

 Phone:
 02 9854 1700

 Fax:
 02 4577 9055

 Email:
 Sydney@constructionsciences.net

MOISTURE CONTENT REPORT

Client:	Cardno (N	SW) Pty Ltd		Report Number:	12385/R/264	1013-1	
Client Address:	Level 9, Th	Level 9, The Forum, 203 Pacific Highway, St Leonards			12385/P/1543		
Project:	Royal Prince Alfred Hospital			Lot Number:	BH302		
Location:	St Leonards			Internal Test Request:	12385/T/119	353	
Component:	Bore Hole	Testing		Client Reference/s:	80022026		
Area Description: Lambie Deu Drive, Camperdown		Report Date / Page:	22/12/2021		Page 1 of 1		
Test Procedures:		AS1289.2.1.1					
O a manda Niama ha m		10085/0/007190	10005/0/007404	1008510/007	405		

Moisture Content (%)	20.4	23.1	17.4	
Depth	2.0-2.50	4.0-4.50	4.0-4.50	
Borehole	BH302	BH305B	BH303	
Material Type	Combined	Combined	Combined	
Material Source	Not Supplied	Not Supplied	Not Supplied	
Date Tested	7/12/2021	7/12/2021	7/12/2021	
Tested By	Neil Pillay	Neil Pillay	Neil Pillay	
Sampled By	Client Supplied	Client Supplied	Client Supplied	
Sampling Method	Tested As Received	Tested As Received	Tested As Received	
Date / Time Sampled	29/11/2021 12:00	29/11/2021 12:00	29/11/2021 12:00	
Lot Number	BH302	BH305B	BH303	
ID / Client ID	80022026	80022026	80022026	
Sample Number	12385/S/967183	12385/S/967184	12385/S/967185	

Sample Number			
ID / Client ID			
Lot Number			
Date / Time Sampled			
Sampling Method			
Sampled By			
Tested By			
Date Tested			
Material Source			
Material Type			
Borehole			
Depth (m)		
Moisture Content (%)			

Remarks

Results apply to the sample/s as received.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 12385

Approved Signatory: Connor Deasy Form ID: W20Rep Rev 3

Warabrook NSW 2304

Laboratory: Warabrook Laboratory Phone: 02 4062 0200 Fax: 02 6654 0261 Email: Newcastle@constructionsciences.net

SHRINK SWELL INDEX

Client:	Construction Science	es - Professional Services		Report Number:	16822/R/32481-2	
Client Address:	31 Anvil Road, S	Seven Hills		Project Number:	16822/P/185	
Project:	Geotechical Ser	vices-Testing		Lot Number:		
Location:	Various			Internal Test Request:	16822/T/21226	
Supplied To:	Construction Sci	ences - Professional Services		Client Reference/s:		
Area Description:				Report Date / Page:	14/01/2022	Page 1 of 1
Test Procedures:	AS1289.7.1.1, AS12	289.2.1.1	Bore No.		NOT SUPPLIED	
Sample Number	16822/S/108081		Sample Ty	ре		
Sampling Method	Tested As Recei	ived	Sample De	epth m		
Date Sampled	29/11/2021					
Sampled By	Client Supplied		Material So	ource -		
Date Tested	10/01/2022		Material Ty	vpe -		
Soil Description:		Silty CLAY				
Cracking / Crumbling:		NIL				
Estimated Inert Inclus	ions (%):	1.00	Swell Pre-	Soak Moisture Content (%) 17.7	
Shrinkage Moisture C	ontent (%):	21.1	Swell Post	-Soak Moisture Content	(%) 31.5	
Shrinkage Strain (%)	3.3	Ch	mle / Curoll Indou		0.0
Swell Strain (%) 1.4				nk / Swell Index		2.2

Remarks

Re-Issued Report Replaces Report No 16822/R/32481-1 (reason:)., Results apply to the sample/s as received.,

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number:

Corporate Site Number:

1986
16822

6A

Approved Signatory: Blayke Desvaux Form ID: W21Rep Rev 1

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Cardno

Project:

Job number: 21-0143

Report number: 1 Page: 1 of 3

Royal Prince Alfred Hospital - East Campus Location:

Uniaxial Compressive Strength of Rock Core

Sampling method: Tested as received

80022026

Test method(s): AS 4133.1.1.1, 4.2.2

	Results			
Laboratory sample no.	26327	26328	26329	26330
Customer sample no.	BH304 15.00-15.11m	BH302 10.68-10.85m	BH303 13.45-13.67m	BH306 12.28-12.43m
Sample depth	15.00-15.11m	10.68-10.85m	13.45-13.67m	12.28-12.43m
Date sampled	29/11/2021	29/11/2021	03/12/2021	02/12/2021
Date tested	17/12/2021	17/12/2021	17/12/2021	17/12/2021
Lithological description	LAMINITE	LAMINITE	LAMINITE	LAMINITE
Storage history, curing and environment	Sealed, moist, moisture condition as received			
Type of test machine used	Matest 1500kN - Grade A			
Description of failure	Tensile dominated	Tensile dominated	Tensile dominated	Mixed mode
Specimen average length (mm)	97.6	145.5	144.5	143.7
Specimen average diameter (mm)	51.6	51.8	51.4	51.5
Moisture content at time of test (%)	2.8	1.9	1.7	4.4
Test duration (mins)	112	18	17	12
Rate of displacement (mm/min)	<0.1	<0.1	<0.1	<0.1
Uniaxial Compressive Strength (MPa)	36	52	50	10

Notes: 26327 - Length to diameter ratio less than 2.0

Approved Signatory:

C. Greely

Date: 20/12/2021

NATA Accredited Laboratory Number: 17062

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Job number: 21-0143

Report number: 1

Location: Royal Prince Alfred Hospital - East Campus

Customer: Cardno

80022026

Project:

Page: 2 of 3

Uniaxial Compressive Strength of Rock Core

Specimen prior to testing

Laboratory sample no.	26328	
Customer sample no.	BH302 10.68-10.85m	
and the second second		
and the second		
	Contraction of the local division of the loc	
	1	
	AND TO A	

Specimen after failure

Laboratory sample no.	26327 BH304
Customer sample no.	15.00-15.11m

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Customer: Cardno

80022026

Project:

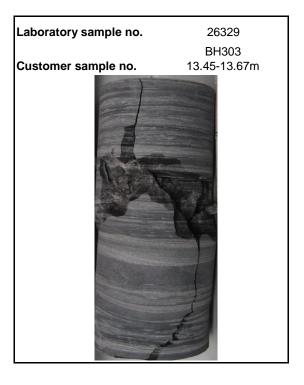
Test Report

Job number: 21-0143

Report number: 1

Page: 3 of 3

Location: Royal Prince Alfred Hospital - East Campus


Uniaxial Compressive Strength of Rock Core

Specimen prior to testing

Laboratory sample no. 26330 BH306 Customer sample no. 12.28-12.43m

Specimen after failure

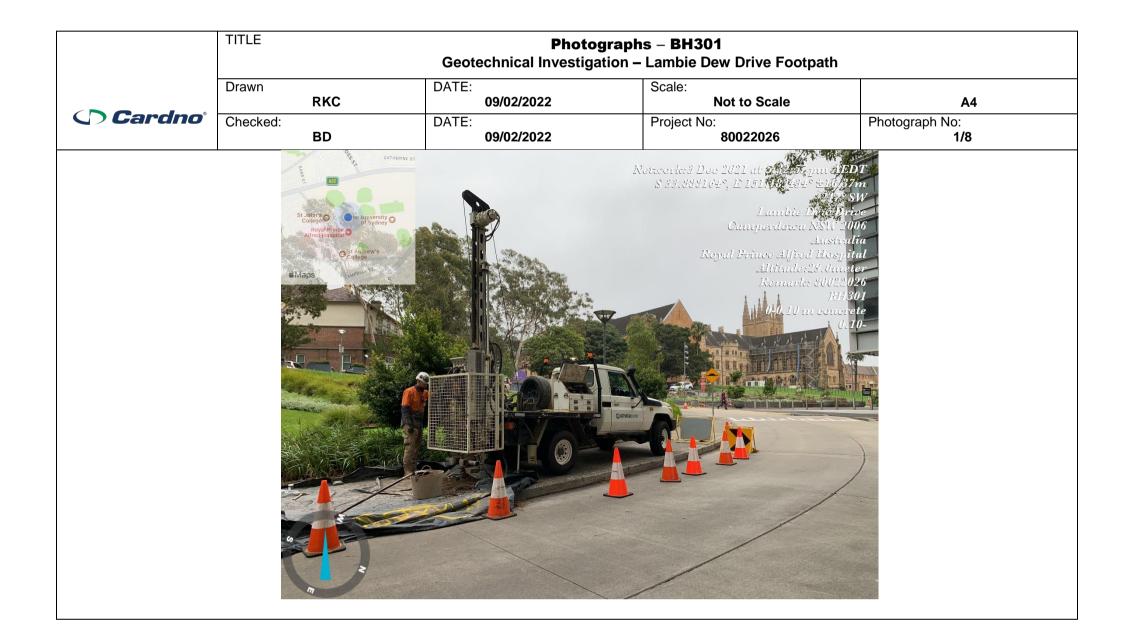
PROJECT			026 RPAH		1				(a) the dia	imetral test te	. (b) the axial est.	test, (c) the			egular lump	
LOCATIO SAMPLE	N:	BH30					DATE:	1/12/2021			Coring s		NMLC			
DEPTH / NTERVAL (m)	TEST No.	ROCK TYPE #	TYPE OF TEST	L LENGTH (mm)	SHAPE OK ?	D DISTANCE (mm)	W WIDTH (mm)	P LOAD (KN)	De ² (mm)	De (mm)	ls (MPa)	Size Corr. F	ls(50) (MPa)	Empirica UCS (MPa)	Rock Strength (MPa)	FAILUR TYPE
8.03	1		Diametral	30.0	OK	52.0	n/a	0.03	2704	52	0.01	1.02	0.01	0.23	EL	С
	2		Axial		OK	30.0	52.0	0.52	1986	45	0.26	0.95	0.25	4.97	L	С
											Test D	ate:	1/12	/2021		
9.04	1		Diametral	33.0	OK	52.0	n/a	0.08	2704	52	0.03	1.02	0.03	0.60	VL	С
	2		Axial		OK	33.0	52.0	0.53	2185	47	0.24	0.97	0.24	4.71	L	С
9.57	1		Diamatral	45.0	OK	52.0	- 1	0.1/	2704	50	Test D	1		/2021	N/I	
7.57	2		Diametral Axial	45.0	OK OK	52.0 45.0	n/a 52.0	0.16	2704	52 55	0.06 0.65	1.02	0.06	1.20 13.48	VL M	C C
	-		Axiai		ÖK	43.0	52.0	1.75	2717	55	Test D	•		/2021	TVI	Ŭ
10.64	1		Diametral	41.0	OK	52.0	n/a	2.62	2704	52	0.97	1.02	0.99	19.72	М	С
	2		Axial		OK	41.0	52.0	6.12	2715	52	2.25	1.02	2.30	45.93	Н	С
											Test D	ate:	1/12	/2021		
11.45	1		Diametral	37.0	OK	52.0	n/a	3.76	2704	52	1.39	1.02	1.42	28.31	н	С
	2		Axial		OK	37.0	52.0	3.73	2450	49	1.52	1.00	1.52	30.31	Н	С
40.05											Test D	1		/2021		
12.25	1		Diametral	35.0	OK	52.0	n/a	4.03	2704	52	1.49	1.02	1.52	30.34	H	С
	2		Axial	-	OK	35.0	52.0	5.88	2317	48	2.54	0.98	2.49	49.89	H	С
13.07	1		Diametral	43.0	ОК	52.0	n/a	3.33	2704	52	Test D 1.23	ate: 1.02	1/12	/2021 25.07	н	С
10107	2		Axial	43.0	OK	43.0	52.0	5.85	2847	53	2.05	1.02	2.12	42.32	н	С
			/ Midi		011	1010	02.0	0.00	2017	00	Test D			/2021		
14.27	1		Diametral	40.0	OK	52.0	n/a	3.89	2704	52	1.44	1.02	1.46	29.28	Н	С
	2		Axial		OK	40.0	52.0	5.39	2648	51	2.04	1.01	2.06	41.24	Н	С
											Test D	ate:	1/12	/2021		
												1		[
				-												
							{ }									
		<u> </u>														<u> </u>
						1										
							1									
]									
																<u> </u>
							{ }					ļ				
																L

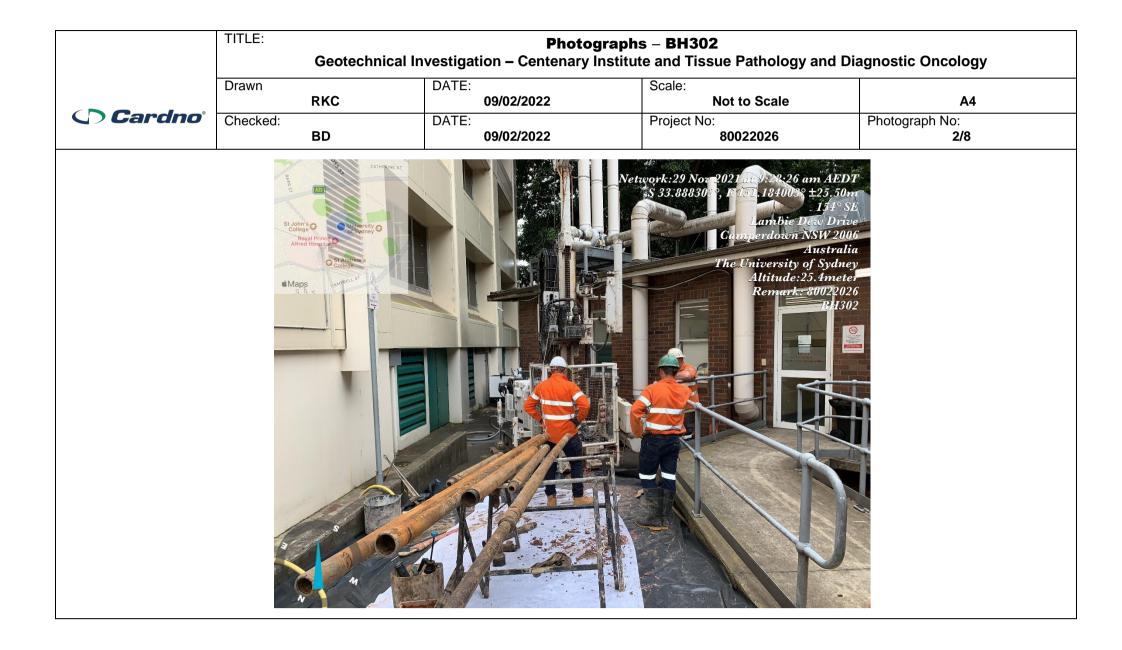
PROJEC ⁻	T:	80022	026 RPAH		- -₩-+				(a) the dia	imetral test	. (b) the axial st.	test, (c) the	block test, a	2 and (d) the irr	egular lump	
LOCATIC		BH30					DATE:	6/12/2021			Coring s	ize	NMLC			
SAMPLE DEPTH / INTERVAL (m)	TEST No.	ROCK TYPE #	TYPE OF TEST	L LENGTH (mm)	SHAPE OK ?	D DISTANCE (mm)	W WIDTH (mm)	P LOAD (KN)	De ² (mm)	De (mm)	ls (MPa)	Slze Corr. F	ls(50) (MPa)	Empirica UCS (MPa)	Rock Strength (MPa)	FAILUF TYPE
10.25	1		Diametral	39.0	OK	52.0	n/a	1.29	2704	52	0.48	1.02	0.49	9.71	М	С
	2		Axial		OK	39.0	52.0	0.78	2582	51	0.30	1.01	0.30	6.09	М	С
											Test D	ate:	6/12	/2021		
11.41	1		Diametral	40.0	OK	52.0	n/a	1.27	2704	52	0.47	1.02	0.48	9.56	М	С
	2		Axial		OK	40.0	52.0	0.64	2648	51	0.24	1.01	0.24	4.90	L	С
12.28											Test D			/2021		
12.28	1		Diametral	25.0	NOT OK	52.0	n/a	1.13	2704	52	0.42	1.02	0.43	8.51	M	С
											Test D	ate:	6/12	/2021		
12.56	1		Diametral	49.0	OK	52.0	n/a	1.46	2704	52	0.54	1.02	0.55	10.99	М	С
	2		Axial		OK	49.0	52.0	1.24	3244	57	0.38	1.06	0.41	8.11	М	Р
											Test D	ate:	6/12	/2021		
12.95	1		Diametral	40.0	OK	52.0	n/a	2.25	2704	52	0.83	1.02	0.85	16.94	М	С
	2		Axial		ОК	40.0	52.0	2.68	2648	51	1.01	1.01	1.03	20.50	Н	С
											Test D	ate:	6/12	/2021		
13.67	1		Diametral	50.0	OK	52.0	n/a	3.28	2704	52	1.21	1.02	1.23	24.69	Н	С
	2		Axial		OK	50.0	52.0	8.64	3310	58	2.61	1.07	2.78	55.60	Н	С
											Test D	ate:	6/12	/2021		

DW or (HW & MW) = Distinctly Weathered ** Rocks are FRESH unless otherwise stated.

POINT TEST H			-		(b)	Eguvalent core	(c) L>050	0.3%	Equi	D. Vatent core	(d) L>050			W, Equ Section through looding points	D.	
	_			2	-w-+	03W < 0 < W			(a) the dia	ametral test	t, (b) the axial :	A. 1989		$w \cdot \frac{w_1 + w_2}{2}$ and (d) the irro		
PROJECT LOCATIO		80022 BH30	2026 RPAH				DATE:	1/12/2021		5	^{est.} Coring s		NMLC			
SAMPLE		ROCK		L		D	w	P				Size		Empirica	Rock	FAILURE
DEPTH / INTERVAL	TEST No.	TYPE	OF	LENGTH	SHAPE	DISTANCE	WIDTH	LOAD	De ²	De	ls (MPa)	Corr.	ls(50) (MPa)	UCS	Strength	TYPE
(m)		#	TEST	(mm)	OK ?	(mm)	(mm)	(KN)	(mm)	(mm)		F		(MPa)	(MPa)	*
12.63	1		Diametral	28.0	OK	52.0	n/a	1.23	2704	52	0.45	1.02	0.46	9.26	M	C C
	2		Axial		ОК	28.0	52.0	2.75	1854	43	1.48 Test D	0.93 ate:	1.39	27.74	Н	L
12.95	1		Diametral	31.0	OK	52.0	n/a	2.58	2704	52	0.95	1.02	0.97	19.42	M	С
	2		Axial		ОК	31.0	52.0	3.36	2052	45	1.64	0.96	1.57	31.32	н	С
											Test D	ate:	1/12	/2021		
13.39	1		Diametral	40.0	OK	52.0	n/a	1.19	2704	52	0.44	1.02	0.45	8.96	М	С
	2		Axial		OK	40.0	52.0	2.10	2648	51	0.79	1.01	0.80	16.07	М	P
14.05											Test D	1		/2021		_
14.95	1		Diametral	36.0	OK	52.0	n/a	2.97	2704	52	1.10	1.02	1.12	22.36	H	C C
	2		Axial		OK	36.0	52.0	2.79	2384	49	1.17 Test D	0.99 ate:	1.16	23.16	Н	C
											10310					
							-									
														r		
														1		
														r		
	I	I				1	1									1
PLT MODEL	_ No: G	eotech.	Systems Aust.	6500							* P=Partial	C=Com	olete			
				tone MD=Muds	tone CB=Car	bonaceous										
CG=Con	glomera	te CO=	Coal IG=Igne	ous IB=Interbe	dded (% 1st ro	ick type:% 2nd ro	ock type)							P-10 0		FROM Is(50)
				= Slightly Wea ed ** Rocks a		iless otherwise s	tated.					LIDRAT		UCS = 20		

PROJECT	Г:	80022	026 RPAH						(a) the dia		. (b) the axial t ist.	test, (c) the	block test, a	nd (d) the irr	egular lump	
LOCATIO	N:	BH30	5			1	DATE:	6/12/2021			Coring s	lze	NMLC		1	
SAMPLE DEPTH / NTERVAL (m)	TEST No.	ROCK TYPE #	TYPE OF TEST	L LENGTH (mm)	SHAPE OK ?	D DISTANCE (mm)	W WIDTH (mm)	P LOAD (KN)	De ² (mm)	De (mm)	ls (MPa)	Size Corr. F	ls(50) (MPa)	Empirica UCS (MPa)	Rock Strength (MPa)	FAILUR TYPE
9.88	1		Diametral	39.0	OK	52.0	n/a	0.31	2704	52	0.11	1.02	0.12	2.33	L	С
	2		Axial		OK	39.0	52.0	1.47	2582	51	0.57	1.01	0.57	11.47	М	С
											Test D	ate:	6/12	/2021		L
10.3	1		Diametral	34.0	OK	52.0	n/a	1.31	2704	52	0.48	1.02	0.49	9.86	М	С
	2		Axial		OK	34.0	52.0	2.39	2251	47	1.06	0.98	1.04	20.74	Н	С
11.41	1		Diametral	41.0	ОК	52.0	2/2	2.61	2704	52	Test D 0.97	ate: 1.02	6/12 0.98	/2021 19.65	М	С
	2		Axial	41.0	OK	41.0	n/a 52.0	2.53	2704	52	0.97	1.02	0.98	19.05	M	C
	-		Axiai		OK	41.0	52.0	2.00	2715	52	Test D			/2021	TVI	Ŭ
11.73	1		Diametral	45.0	OK	52.0	n/a	0.27	2704	52	0.10	1.02	0.10	2.03	L	С
	2		Axial		OK	45.0	52.0	1.72	2979	55	0.58	1.04	0.60	12.01	М	С
											Test D	ate:	6/12	/2021		
12.79	1		Diametral	41.0	OK	52.0	n/a	1.19	2704	52	0.44	1.02	0.45	8.96	М	С
	2		Axial		OK	41.0	52.0	4.22	2715	52	1.55	1.02	1.58	31.67	Н	С
10.00											Test D	1		/2021		
13.33	1		Diametral	37.0	OK	52.0	n/a	0.44	2704	52	0.16	1.02	0.17	3.31	L	C
	2		Axial		OK	37.0	52.0	2.79	2450	49	1.14 Test D	1.00	1.13	22.67 /2021	H	С
14.78	1		Diametral	41.0	ОК	52.0	n/a	2.61	2704	52	0.97	1.02	0.98	19.65	M	С
	2		Axial	1110	OK	41.0	52.0	4.04	2715	52	1.49	1.02	1.52	30.32	н	C
																L
												1				I
							1									
																I
							4									
							1									
						1	L									L


Royal Prince Alfred Hospital – Eastern Campus


APPENDIX

SITE PHOTOGRAPHS

	TITLE:				phs – BH303 ation – Maternity Building	
	Drawn	RKC	DATE:	09/02/2022	Scale: Not to Scale	A4
Cardno [®]	Checked:	BD	DATE:	09/02/2022	Project No: 80022026	Photograph No: 3/8
		SLADINS OF CALLENS OF			Vetwork: 3 Dec 2027 at 8:00:21 am ABL \$ 33.888499°, E 151.153299° ±18.09 215° S 12 Missenden Ro- Camperioux: AlSit 204 Austral Roral Prince Alfreid Hospit Mittude: 28.7 met Romark: 800220 BH3	m W ad 5U ia cal car 26

	TITLE:			Photograph	ns – BH304	
	Geotech	nnical Investigation	on – Rear		and Tissue Pathology and Diag	gnostic Oncology and Chapel
	Drawn		DATE:		Scale:	
Cardno [®]	Checked:	RKC	DATE:	09/02/2022	Not to Scale Project No:	A4 Photograph No:
	Checked.	BD	DATE.	09/02/2022	80022026	4/8
	200	CATHERINE ST				
	Anni Si		No. 1	N	etwork: 29 Nov 2021 at 12:55:55 pm Al	DT Vim
	St.	Pohn's Contraction			Blackburn Cir	10-5
		John's O The University O ollege St Sydney O Royal Prince O			Camperdown NSW 2	
		O St Andrew's	1		The University of Syd	
		Maps - CAMPOELL ST	Sec		Altitude: 37.3nd -Remark: 80022	eter
			anther			304
	A.C.					
		Constant of				
	10	ALL NO VIE				
	K	122 State				
		VIL CONST	PE.			
						2
	1	S				
	3					
		M				No. of the second secon
		N			the the	

	TITLE:		raphs – BH305A estigation – Lambie Dew Drive	
C Cardno	Drawn RKC	DATE: 09/02/2022	Scale: Not to Scale	A4
	Checked: BD	DATE: 09/02/2022	Project No: 80022026	Photograph No: 5/8
	St John's Dryal Prinse Maps Maps		Network: 30 Nov 2021 at 3:14:00 pm Si3:889049°, E 151:1841379 H2 Camperdown NSH The University of S Altitude: 73:37 Remark: 800 B1	estant STNE Drives W 2006 stralia

TITLE:				ns – BH305B ation – Lambie Dew Drive	
Drawn	RKC	DATE:	09/02/2022	Scale: Not to Scale	A4
Checked:	BD	DATE:	09/02/2022	Project No: 80022026	Photograph No: 6/8
	In the Cardina of Card			etwork:30 Nov 2021 at 4:57:06 pm Al S 33.889271°, E 151.184132° ±16 Lambie Dew D Camperdown NSW 2 Austr The University of Sya Altitude:31.1m Remark: 80022 BH9	32m 0°N prive 2006 valia Iney seter 2026

	TITLE:			raphs – BH306 - South end of Clinical Services Bu	uilding
	Drawn	RKC	DATE: 09/02/2022	Scale: Not to Scale	A4
C Cardno [®]	Checked:	BD	DATE: 09/02/2022	Project No: 80022026	Photograph No: 7/8
	St. John	Ar on the second		The University of S Altitude:16.7 Remark: 800	27° NW 9 Drive W 2006 Stralia Sydney 7 meter

	TITLE:			Photographs	s – BH307	
				Geotechnical Investig	ation – Cyclotron Building	
	Drawn	RKC	DATE:	09/02/2022	Scale: Not to Scale	Α4
Cardno [®]	Checked:	BD	DATE:	09/02/2022	Project No: 80022026	Photograph No: 8/8
		St Johns O Royal Prince O Anter de Systems O College St Anterna's College			etieviti 2 Dec 2021 at 9:17:54 am Al 3 828735 E 151 182578 2218 299 12 Missenden R 200 2 Missenden NSW 2 Austre Royal Prince Alfred Hosp Altitude: 33.6072 BH	For NW oud 050 alia ital eter 026

Royal Prince Alfred Hospital – Eastern Campus

APPENDIX

PREVIOUS BOREHOLE LOGS AND LABORATORY TEST RESULTS

Stantec

BORE No. 1

G. W. STACE & CO. PTY. LTD. CLIENT

SITE

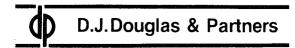
DATE 7/4/89

INSTITUTE OF CANCER & CELL BIOLOGY BUILDING CONTRACT No. SSI/12093 LOCATION ROYAL PRINCE ALFRED HOSPITAL, CAMPERDOWN SURFACE LEVEL Approx. 22.7 m

			Sampling and in-sit	u Testing	
Description of Strata	Depth metres	Туре	Depth	`N' value	Core recovery
BITUMEN	S.L.				%
CONCEPTE	0.05				
CONCRETE	0.20				
FILLING - crushed shale, sand, clay and ash with gravel and brick fragments to 25mm		S	0.50 - 0.95	3,4,4 N=8	
		S	1.70 - 2.15	8,8,4	
	2.30			N=12	
SILTY CLAY - stiff to very stiff, grey and red brown silty clay with minor ironstone gravels to 10mm		S	2.90 - 3.35	7,10,1 N=25	5
	3.70				
CLAYEY SHALE - extremely weak to very		S	4.10 - 4.45	10,12,	10/50mm
weak, grey and red brown clayey shale with ironstone layers to 25mm *core loss 5.00-5.05 m		C	5.00 - 6.00		95
*core loss 6.00-6.20 m	м. -	С	6.00 - 9.00		94
	6.50				
LAMINITE - weak to medium strong, highly fractured to fractured, dark grey shale and pale grey fine grained sandstone with some extremely weak to very weak layers					
LAMINITE - medium strong to strong, fractured to slightly fractured dark grey shale and pale grey fine grained sandstone with some extremely weak fragmented layers	7.65				
*fragmented from 8.40-8.50 m	9.00				

BORE DISCONTINUED AT 9.00 METRES DRILLER Bannister RIG B20 CASING TYPE OF BORING Solid flight auger to 5.00 m, NMLC coring thereafter WATER LEVEL OBSERVATIONS No free ground water observed

REMARKS


 $Is_{(50)} = 1.69MPa \text{ at } 7.35 \text{ m}$ = 1.11MPa at 8.75 m

TYPE

- auger sample
 standard penetration test sample
 mm diameter undisturbed A Ş
- U
- sample
- continuous diamond core
 field vane shear test

"N" VALUE

blows of a 63.5 kg hammer falling 760 mm to drive a standard 50 mm O.D. split penetrometer for the last 300 mm of test (where thin walled undisturbed sample tubes are driven in the same manner, the values are shown bracketed).

BORE No. 2

G. W. STACE & CO. PTY. LTD. CLIENT

SITE

DATE 6/4/89

INSTITUTE OF CANCER & CELL BIOLOGY BUILDING CONTRACT No. SSI/12093 LOCATION ROYAL PRINCE ALFRED HOSPITAL, CAMPERDOWN SURFACE LEVEL Approx. 22.0 m

			Sampling and in-site	Testing	
Description of Strata	Depth metres	Туре	Depth	`N' value	Core recovery
	S.L.				%
		U	0.50 - 0.90		
FILLING - dark brown clay with some					
roots		S	1.70 - 2.15		300mm
				N=3	
	2.50				
SILTY CLAY - stiff, mottled grey and		S	2.90 - 3.35	1,2,3	
red brown silty clay with minor				N=5	
ironstone gravel to 4mm					
	4.00	S			
SILTY CLAY - very stiff grey silty clay		D	4.10 - 4.55	5,7,11 N=18	
with ironstone gravel to 20mm					
	5.00				
			ł.		
REFUSAL AT 5.00 METRES	.*		-		
	-			ļ	
			1.		
L				<u> </u>	

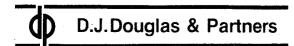
Jacro RIG

DRILLER Bannister

CASING

Solid flight auger TYPE OF BORING

WATER LEVEL OBSERVATIONS Free ground water observed at 2.50 m


REMARKS

TYPE

- A auger sample S standard penetration test sample
- υ
- mm diameter undisturbed sample continuous diamond core ç _ field vane shear test

"N" VALUE

blows of a 63.5 kg hammer falling 760 mm to drive a standard 50 mm O.D. split penetrometer for the last 300 mm of test (where thin walled undisturbed sample tubes are driven in the same manner, the values are shown bracketed).

BORE No. 3

G. W. STACE & CO. PTY. LTD. CLIENT

DATE 5/4/89

SITE INSTITUTE OF CANCER & CELL BIOLOGY BUILDINGCONTRACT No. SSI/12093 LOCATION ROYAL PRINCE ALFRED HOSPITAL, CAMPERDOWN SURFACE LEVEL Approx. 22.1 m

	D - 11		Sampling and in-situ	Testing	
Description of Strata	Depth metres	Туре	Depth	`N' value	Core recovery
	S.L.			1	%
		S	0.50 - 0.95	1,1,2	
FILLING - dark brown grey clay, gravel				N=3	
and ash					
		S	1.70 - 2.15	2,3,5	
				N=8	
		-			
		S	2.90 - 3.35	2,2,3	
		D	2.30 - 3.33	N=5	
	3.10				
FILLING - grey and brown clay with					-
some shale fragments	•	S	4.10 - 4.55	2,3,5	
				N=8	
	5.30				
		S	5.30 - 5.75	4,6,8	
SILTY CLAY - stiff to very stiff, grey				n=14	
silty clay with some ironstone gravel to 20mm - grades into shaley clay		С	6.00 - 7.00		100
so zonut - grades into sharey cray	6.10				
CLAYEY SHALE - extremely weak pale grey	0.10				
clayey shale with sandy laminations to		С	7.00 - 8.00		90
8mm *ironstone layer 6.90-6.95 m					
*core loss 7.00-7.10 m	7.10				
LAMINITE - weak highly fractured to					
fractured, dark grey shale and pale		С	8.00 - 9.00		80
grey fine grained sandstone with some extremely weak and medium strong					
layers					
*laminations at 10-15°					
*core loss 8.00-8.20 m					
	9.00				
BORE DISCONTINUED AT 9.00 METRES				}	

Jacro RIG

Bannister DRILLER CASING

Solid flight auger to 6.00 m, NMLC coring thereafter TYPE OF BORING

WATER LEVEL OBSERVATIONS No free ground water observed

REMARKS Two bores at this location, first attempt encountered a pipe at 2.2 m $Is_{(50)} = 0.80MPa \text{ at } 8.50 \text{ m}$ = 0.13MPa at 8.85 m

= 0.19MPa at 8.95 m

TYPE

"N" VALUE

- auger sample A S
- auger sampre
 standard penetration test sample
 mm diameter undisturbed
- υ
- sample continuous diamond core
- field vane shear test

blows of a 63.5 kg hammer falling 760 mm to drive a standard 50 mm O.D. split penetrometer for the last 300 mm of test (where thin walled undisturbed sample tubes are driven in the same manner, the values are shown bracketed).

BORE No. 4

G. W. STACE & CO. PTY. LTD. CLIENT

DATE 10/4/89

INSTITUTE OF CANCER & CELL BIOLOGY BUILDINGCONTRACT No. SSI/12093 SITE LOCATION ROYAL PRINCE ALFRED HOSPITAL, CAMPERDOWNE SURFACE LEVEL Approx 21.7 m

			Sampling and in-situ						
Description of Strata	Depth metres	Туре	Depth		Core recovery				
BITUMEN ROADBASE	S.L.				%				
	0.30								
FILLING - crushed sandstone to 0.7 m then clay and gravel		S	0.50 - 0.95	5,4,5 N=9					
SILTY CLAY - stiff to very stiff,	1.50	S	1.70 - 2.15	3,4,7 N=11					
mottled grey and red brown silty clay with minor ironstone gravel to 4mm									
	•	S	4.10 - 4.25	l5 for Bounci					
SHALE - extremely weak grey shale	4.25								
SHALE - very weak to weak, highly fractured to fractured, dark grey shale with high angle jointing and	5.30	C	5.50 - 8.50		86				
thinly laminated fine grained sand- stone layers and some extremely weak and fragmented layers with some medium strong ferruginous layers *core loss 5.50-5.90 m	7.35								
LAMINITE - medium strong to strong, fractured to slightly fractured, dark grey shale and pale grey fine grained sandstone with some extremely weak to		С	8.50 - 9.70		100				
very weak and fragmented layers *extremely weak pale yellow grey clay layer from 8.35-8.45 m BORE DISCONTINUED AT 9.70 METRES	9.70								

RIG B20 DRILLER Bannister CASING Solid flight auger to 5.5 m, NMLC coring thereafter TYPE OF BORING WATER LEVEL OBSERVATIONS Free ground water observed at 5 m

REMARKS

TYPE

- auger sample standard penetration test sample mm diameter undisturbed A S
- sample
- continuous diamond core field vane shear test

"N" VALUE

blows of a 63.5 kg hammer falling 760 mm to drive a standard 50 mm O.D. split penetrometer for the last 300 mm of test (where thin walled undisturbed sample tubes are driven in the same manner, the values are shown bracketed).

D.J.Douglas & Partners (ID

BORE No. 45

G. W. STACE & CO. PTY. LTD. CLIENT

SITE

DATE 10/4/89

INSTITUTE OF CANCER & CELL BIOLOGY BUILDINGCONTRACT No. SSI/12093

LOCATION ROYAL PRINCE ALFRED HOSPITAL, CAMPERDOWN

SURFACE LEVEL Approx. 20.0 m

			Sampling and in-situ	Testing	
Description of Strata	Depth metres	Туре	Depth	`N' value	Core recovery
BITUMEN & ROADBASE FILLING - crushed sandstone to 0.6 m then clay and gravel	S.L. 0.10	S	0.50 - 0.90	5,4,4 N=8	%
SILTY CLAY - stiff to very stiff mottled grey and red brown silty clay SILTY CLAY - very stiff light grey silty clay	1.50 2.50	S	1.70 - 2.15 2.90 - 3.35	2,4,5 N=9 3,6,9 N=15	
<pre>SHALE - extremely weak to very weak grey and brown shale *core loss 4.60-5.00 m LAMINITE - medium strong to strong, highly fractured to fractured, dark grey shale and pale grey fine grained sandstone with some extremely to ? very weak layers</pre>	3.80 5.00	s c	4.10 - 4.40 4.60 - 6.60 6.60 - 8.60	12,30 N 50	Bouncing 80 100
BORE DISCONTINUED AT 8.60 METRES	8.60				

RIG B20

DRILLER Bannister CASING

TYPE OF BORING Solid flight auger from G.L. to 4.6 m then NMLC coring thereafter WATER LEVEL OBSERVATIONS No free ground water observed

 $Is_{(50)} = 1.19MPa \text{ at } 8.45 \text{ m}$ = 0.56MPa at 6.10 m REMARKS


TYPE

auger sample

- A S standard penetration test
 sample
 mm dlameter undisturbed
- υ
- sample continuous diamond core
- ç field vane shear test

"N" VALUE

blows of a 63.5 kg hammer failing 760 mm to drive a standard 50 mm O.D. split penetrometer for the last 300 mm of test (where thin walled undisturbed sample tubes are driven in the same manner, the values are shown bracketed).

BORE No. 6

G. W. STACE & CO. PTY. LTD. CLIENT

DATE 5/4/89

INSTITUTE OF CANCER & CELL BIOLOGY BUILDINCONTRACT No. SSI/12093 SITE

LOCATION ROYAL PRINCE ALFRED HOSPITAL, CAMPERDOWN SURFACE LEVEL Approx. 21.5 m

	D. th		Sampling and in-situ	Testing	
Description of Strata	Depth metres	Туре	Depth	`N' value	Core recovery
	S.L.	S	0.50.0.05		%
		G	0.50 - 0.95	2,3,2 N=5	
FILLING - stiff grey brown clay with shale fragments and gravel to 15mm and some ash		S	1.70 - 2.15	2,2,5 N=7	
		S	2.90 - 3.35	2,2,3 N=5	
	3.70				
SILTY CLAY - stiff grey brown and red brown silty clay with ironstone gravel to 12mm		S	4.10 - 4.55	3,5,7 N=12	
	5.20				
SILTY CLAY - very stiff to hard light grey silty clay		S	5.30 - 5.75	4,7,11 N=18	
CLAYEY SHALE - extremely weak to very weak grey clayey shale	6.20				
wouk grey crayey share	6.50				
REFUSAL AT 6.50 METRES					
			· · · ·		

Jacro RIG DRILLER Bannister CASING TYPE OF BORING Solid flight auger from G.L. to 6.5 m No free ground water observed WATER LEVEL OBSERVATIONS Two bores at this location, first attempt encountered a pipe at 2.2 m REMARKS

TYPE

(<u>__</u>)

- auger sample
 standard penetration test A S
- sample

U — mm diameter undisturbed sample C — continuous diamond core V — field vane shear test

"N" VALUE

blows of a 63.5 kg hammer falling 760 mm to drive a standard 50 mm O.D. split penetrometer for the last 300 mm of test (where thin walled undisturbed sample tubes are driven in the same manner, the values are shown bracketed). **D D.J.Douglas & Partners**

CLIENT:CENTRAL SYDNEY AREA HEALTH SERVICEPROJECT:PROPOSED REDEVELOPMENT, EASTERN PRECINCTLOCATION:MISSENDEN ROAD, CAMPERDOWN

DATE: 7 JULY 98 PROJECT No.: 27456 SURFACE LEVEL: 29.1 BORE No. 1 SHEET 1 OF 1

	Description		Sampling & In Situ Testing										
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %								
)	CLAY — stiff, grey brown mottled orange clay	A	0.5	pp=150kPa									
1.0 -	SILTY CLAY - hard, grey brown silty clay	U ₅₀	1.1 640										
2		A A	2.0	pp=450kPa									
2.4	SHALY CLAY – hard, grey brown shaly clay		3.0	pp>450kPa									
3.5 4 4.0	SHALE – Iow strength, grey brown shale	A	3.6	ž.									
+ 4.0	SHALE – Iow to medium strength, brown shale	A	4.5										
5		A	5.5										
6.4	SHALE – medium strength, brown shale	A	6.5										
7 7.1	TEST BORE DISCONTINUED AT 7.1 METRES - due to auger refusal		E.										
8													
9													
10	×												

GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED

REMARKS: SLOW DRILLING FROM 6.4m

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia. tube Wp Plasitc limit (%) CHECKED: Initials: 1008 Date: 16/10/98

CENTRAL SYDNEY AREA HEALTH SERVICE DATE: 30 SEPTEMBER 98 CLIENT: **PROJECT:** RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No.: 27456 SURFACE LEVEL: 28.3

BORE No. 2 SHEET 1 OF 1

3

	Description		Sampling &	In Situ Testing	
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery
0	FILLING – loose, light yellow grey, fine grained sand and dark brown and grey gravelly silty clay filling				
1.2	CLAY – very stiff to hard, light red brown mottled, light grey clay with some silt and sugary ironstone bands		2.0		
2.3	SHALY CLAY - hard, red brown mottled, light		2.7		
3 3.0 3.2	- auger cuttings red brown between 2.7m		3.0 3.2		
4	SHALE - extremely low strength, light grey shale with ironstone bands SHALE - very low to low strength, grey				
4.5	shale with ironstone bands	A	4.5		
5	SHALE – low to medium strength, dark grey and grey brown shale with some ironstone bands	A	5.0		
6 6.3 6.7 7		A	6.3		
6.7	SHALE - medium strength, grey to grey brown shale	₩ 1	0.0		
7	TEST BORE DISCONTINUED AT 6.7 METRES - due to auger refusal				
8					
9					
72					

DRILLER: DUMMETT LOGGED: STEWART CASING: NIL **RIG:** PACIFIC 375 TYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGER GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane

M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia, tube Wp Plasitc limit (%)

CHECKED:

Initials: KSB Date: 16/10/98

CLIENT:CENTRAL SYDNEY AREA HEALTH SERVICEPROJECT:RPAH REDEVELOPMENT, EASTERN PRECINCTLOCATION:MISSENDEN ROAD, CAMPERDOWN

DATE: 30 SEPTEMBER 98 PROJECT No.: 27456 SURFACE LEVEL: 27.1 BORE No. 3 SHEET 1 OF 1

	Description		Sampling & In Situ Testing										
)epth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %								
	CLAY – very stiff, brown mottled light grey clay with some silt and ironstone gravel	Α	1.0		10								
2 2.0	SHALY CLAY - hard, red brown mottled grey clay with some sugary ironstone bands and	Ш <u>50</u> А	2.0										
3.5	ironstone gravel												
4.2	SHALE - very low strength, light grey to red brown shale (bands of extremely low strength, light grey shale, ironstone and low strength grey brown shale)		4.0										
5.0	SHALE - low to medium strength, grey to grey brown shale		5.0										
5.6	TEST BORE DISCONTINUED AT 5.6 METRES - due to auger refusal	A	5.6										
0													

RIG: PACIFIC 375DRILLER: DUMMETTLOGGED: STEWARTTYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGERGROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVEDREMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia, tube Wp Plasite limit (%) CHECKED: Initials: 16518

Date: 16/10/18

CASING: NIL

CENTRAL SYDNEY AREA HEALTH SERVICE DATE: 30 SEPTEMBER 98 CLIENT: PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No.: 27456 SURFACE LEVEL: 26.6 BORE No. 4 SHEET 1 OF 1

	Description		Sampling & In Situ Testing Core										
)epth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %								
)	FILLING – dark brown to grey sandy silty clay with gravel, concrete, bricks and other fragments of building rubble												
1.8 2 2.1	CLAY - very stiff, light brown and red brown mottled light grey clay with some silt and sugary ironstone bands	A	2.0										
3.4	SHALE – extremely low strength, light brown mottled light grey shale with some ironstone gravel	A	3.0										
4	SHALE - very low strength, light grey to light brown and dark grey shale (bands of extremely low strength, light grey shale, ironstone and low strength, dark grey shale)	A	4.0										
5		A	5.0										
6 6.0	SHALE - low to medium strength, dark grey and grey brown shale with some ironstone bands	A	6.0										
7 ^{6.9}	SHALE - medium strength, dark grey and	A	7.0										
7.7 8 9	TEST BORE DISCONTINUED AT 7.7 METRES - due to auger refusal	A											
9													
10													

LOGGED: STEWART RIG: PACIFIC 375 DRILLER: DUMMETT TYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGER GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

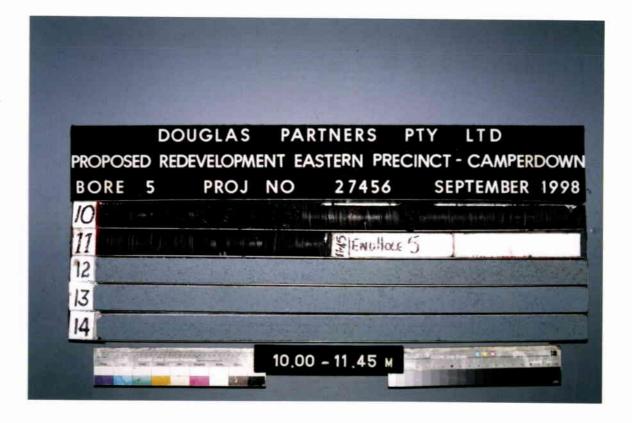
A Auger sample B Bulk sample D Disturbed sample HV Hand Vane

M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia, tube Wp Plasitc limit (%)

CHECKED:

Initials: KJB Date: 16/10/93

CASING: NIL


CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 25.67 DIP OF HOLE: 90"

BORE No: 5 DATE: 26 AUGUST 98 SHEET 1 OF 2 **AZIMUTH:**

		ol	8	Rock	Disease	ntinuities	Fracture Spacing	Sa	mpling	S In S	itu Testing
Depth	Description of	Degree of weathering	Graphic Log	Strength	1000,000		(m)	Sample Type	Core Rec. %	8.	Test Results &
(m)	- 1/	39900000000000000000000000000000000000	QC	EX LOW Very Low Very Hot	S - Shear	D - Drill Break	0.01 0.05 0.05 0.00 0.00	San	See	88 8	Comments
0.15	TILLING - crushed concrete CLAY - light grey mottled red prown clay slightly silty										
	- 1.95m - very stiff SHALY CLAY - hard, light grey shaly clay with traces of sand and silt							U50			pp=250kPa 10,17,22 N=39
3 3.8	SHALE - extremely low strength, extremely to highly								-		23/ref
-5	weathered, light grey, ironstaned shale (hard clay properties)							S			
-6 -	CORE LOSS - possibly due to extremely weathered shale					s 850mm	X				
6.257	SHALE - low and very low strength, moderately and highly weathered, highly fractured and fragmented, dark grey shale				10° 6.76m - rock is 1 7.12m -	es along planar at O' to 7.Om fragmented		С	62	0	
7.85 7.80-	SHALE - low and medium strength, slightly and highly weathered, fractured, dark grey black shale - 8.35m - 8.45m - extremely high strength, slightly weathered, sideritic siltstone				-7.80m - fracture smooth bedding 10° unle	es along planar 1s at 0° to		c	85	34	PL (A)=10.5MPa PL (A)=0.6MPa
-9	band				9.07m:J smooth	45° to 50° planar	Ş	С	10	0 48	Э
9,69	SHALE - see description next page					- 10,42m Tractured					
	OF BORING: ROTARY TO 5.40 R OBSERVATIONS: WATER		RING	TO 11.45m	LOGGEE): PARMAR		C	ASI	NG: (GL TO 2.6m
A auge B bulk C core	SAMPLING & IN SITU TESTIN er sample PL poir sample S star e drilling Ux x m	G LEGEND Int load stren Indard peneti In dia, tube ar Vane (KF	ration	(50)MPa test	CHECKED: tials: MAL ite: 31 - 8 - 91	()	Dou	igla nics	as Forvir	P	artners nt • Groundwater

- C core drilling pp pocket penetrometer (kPa)
- S standard enetration te: Ux x mm dia, tube V Shear Vane (kPa)

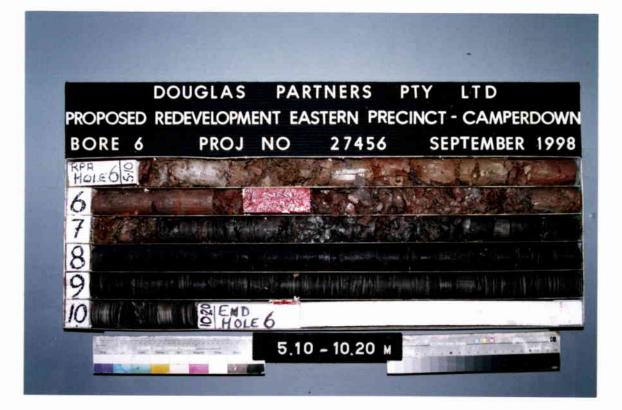
CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT I OCATION MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 25.67 DIP OF HOLE: 90'

BORE No: 5 DATE: 26 AUGUST 98 SHEET 2 OF 2 **AZIMUTH:**

epth of (m) Strata 语译变质仰在 (m) 读 读 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说		Description	e of ering	Fog	Rock Strength	Discontinuities	Fracture Spacing				itu Testing
Image: Strate Disagram Disagram <thdisagram< th=""> Disagram</thdisagram<>	epth		egree	aphic			(m)	aple be	se de ci	0.0	Test Results
USE - medua and low strength, dark grey black with the strength of the strength	(m)		品產產適的低低				0000000	Sar Ty	Зæ	R.	
und index i	S.G.A.	strength, highly weathered, highly fractured to fragmented, dark grey black shale SHALE - high strength, slightly weathered slightly				10.62m;J 45* smooth planar		С	100	49	PL (AO=1.3MPa
144 ATTLAGNED DISCONTINUED 13 Image: Ima		shale with 15 to 20% silty sandy laminae		555							PL (A)=1.2MPa
12 10 <td< th=""><th>11,45</th><th>TEST BORE DISCONTINUED AT 11.45 METRES</th><th>11111</th><th></th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	11,45	TEST BORE DISCONTINUED AT 11.45 METRES	11111		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Bit Amount Bit Amount LOGGED: PARMAR CASING: GL TO 2.000 RDS: APS 300 DRILLER: MONULTY LOGGED: PARMAR CASING: GL TO 2.000	12										
14 15 16 17 18 19 19 19 10 10 10 10 10 10 10 10 10 10	13										
15 -76 -77 -87 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	14										
THE TYPE OF BORING: ROTARY TO 5.40M, NMLC CORING TO 11.45M	15	ĸ									
-17 -18 -19 -19 -19 -19 -19 -19 -19 -19	- 16				111133						
RIG: APS 300 DRILLER: MCNULTY LOGGED: PARMAR CASING: GL TO 2.6m TYPE OF BORING: ROTARY TO 5.40m, NMLC CORING TO 11.45m	- 17										
RIG: APS 300 DRILLER: MCNULTY LOGGED: PARMAR CASING: GL TO 2.6m TYPE OF BORING: ROTARY TO 5.40M, NMLC CORING TO 11.45M	-18										
RIG: APS 300 DRILLER: MCNULTY LOGGED: PARMAR CASING: GL TO 2.6m TYPE OF BORING: ROTARY TO 5.40M, NMLC CORING TO 11.45M	- 19										
TYPE OF BORING: ROTARY TO 5.40m, NMLC CORING TO 11.45m				2 2 2 1 1 1 2 2							
TYPE OF BORING: ROTARY TO 5.40m, NMLC CORING TO 11.45m	DTC.	APS 300 Г						С	ASI	NG: G	GL TO 2.6m
REMARKS:	TYP WAT	E OF BORING: ROTARY TO 5.4 ER OBSERVATIONS: WATER	Om, NMLC CO	ring t	O 11.45m						

SAMPLING & IN SITU TESTING LEGEND


A auger sample

- B bulk sample
- C core drilling
- pp pocket penetrometer (kPa) V Shear Vane (kPa)
- PL point load strength Is (50)MPa S standard penetration test Ux x mm dia tube

CHECKED:

Douglas Partners Geotechnics · Environment · Groundwater

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 24.32

DIP OF HOLE: 90"

BORE No: 6 DATE: 25 AUGUST 98 SHEET 1 OF 2 **AZIMUTH:**


	Description	Do.	Cahesive	Soil	Nan- Cohes ive	_	C.	Rock itrengt	h			Sam	pling & In Situ Testing
Depth (m)	of Strata	Graphic Log	Caucasine Soft Stiff Kov Stiff	Herd Very Loose		1	Very Low	11	Very High Ex High	Sample Type	Core Rec. %	RQD %	Test Results & Comments
0.30- 0.60- -1	FILLING - concrete and cobble to 150mm SILTY CLAY - dark grey silty clay CLAY - firm to stiff, light grey mottled red brown clay with ironstone bands									S			2,3,5 N=8
2.6-	SHALY CLAY – very stiff to hard, light grey mottled red brown shaly clay with ironstone bands									А U ₅₀			pp=400kPa
3.80-	SHALE - extremely low to very low strength, highly weathered, light grey brown shale with ironstone bands	-/-								A	-		12,28/ref
-5 5,10 -6	SHALE – very low to low strength, highly and extremely weathered, fractured to fragmented, light brown and grey shale							5		С	100	0	
6.3 6.4										С	93	3	
7.75 	SHALE – medium strength, slightly weathered, slightly fractured to fractured, dark grey black shale with 15% to 20% silty sandy laminae									с	100	84	PL (A)=0.4MPa PL (A)=0.5MPa PL (A)=1.0MPa PL (A)=2.0MPa
TYP	APS 300 DRILLER: N E OF BORING: SFA TO 5.10M, NMLC CORING ER OBSERVATIONS: NO FREE GROUNDWA	TO 10.3	20m	WHIL				PARI	MAR				CASING: GL TO 5.10m
REM	ARKS: SAMPLING & IN SITU TESTING LEGEND			6	CHECK	ED							

B bulk sample

A auger sample

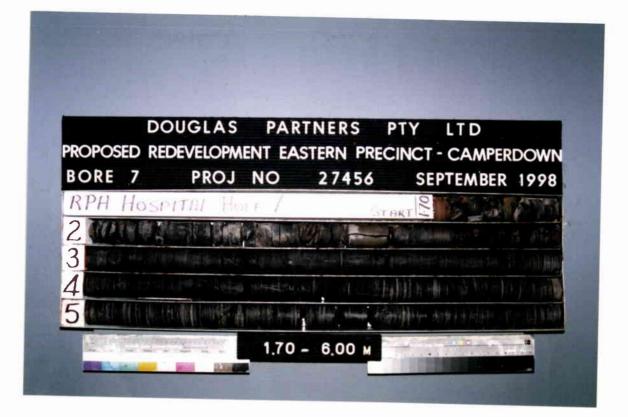
- PL point load strength I_S (50)MPa S standard penetration test C core drilling Ux x mm dia. tube pp pocket penetrometer (kPa) V Shear Vane (kPa)

Initials: KSB

Douglas Partners Geotechnics · Environment · Groundwater

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE

PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT


LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456

SURFACE LEVEL: 24.32 DIP OF HOLE: 90 BORE No: 6 DATE: 25 AUGUST 98 SHEET 2 OF 2

AZIMUTH:

	Descript	ion	Do:		ahesi	Sc		Nan- Cahesiyi		c	Ro Strei	ck ngth	1			Sam	ipling & In Situ Testing
epth (m)	of		Graphic Log	ti.			Logse	Dense 19	Dense					Sample Type	Core Rec %	RQD %	Test Results &
	Strata			Very S	E.S.	Very Stiff	Very	Lodge	Very	Ex. L Very	9						Comments PL (A)=0./MPa
10.20	SHALE - see description TEST BORE DISCONTINU			4				11	1					С	100	84	FE (A)=0.7 Mild
	METRES	IEU AT 10,20				1 1 1 1 1 1	1	11	1								
				ļ	i i				1	1		1					
							1		1								
								1.1			1 1 1 1 1 1						
											H				k.	ļ.	
				li.			i	11	1		11	ł					
				H.					i.	1	ii	1	Į.				
												÷					
								1.1	1			1	11				
									1	l	11	1	1 1				
3											11	1					
									1	10	11	1					
									÷.			-					
4									ł								
												1					
				ł						L.			11				
				ł							Į.		11				
5							1										
									1.1	1 1 T	1						
								1.1		11	1						
									1.1	11	ł						
16				li				AL 2.11	1	1	ł						
							ł				ł						
17											1	H					
					 			ii.			į.	11	11				
												i i					
					1						1						
48											1						
					i.						1	11	11			c.	
						1 1			11		1	H	1				
19					Ì			11	ÌÌ			11	11				
io.									11			11	1				
									11			11					
									1				1				
20		DRILLER:	Mohuu T	~	1	1.1.		10	66	ED	t P						CASING: GL TO 5.10m
TYP	APS 300 E OF BORING: SFA TO ER OBSERVATIONS ARKS:	5.10m, NMLC CORIN	G TO 10.	20m	RVE	DWH	ILS										
nem	SAMPLING & IN SITU	TESTING LEGEND] [С	HEC	KED):]						
A au	ger sample	PL point load stre	ngth I _s l	(50)N	۱Pa			als: W	-	2					i i		
8 bul	k sample re drilling	S standard pene Ux x mm dia. tube	tration t	est		1 1						ľ	1		D	ou	iglas Partnei nics · Environment · Groundwa
	icket penetrometer (kPa)	V Shear Vane (k				1.13	202	:16	110	195	71			- 1			- Contrangent Croundur

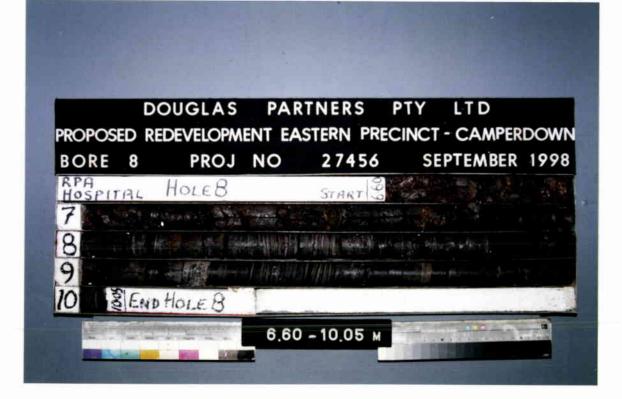
CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

C core drilling

pp pocket penetrometer (kPa)

Ux x mm dia, tube

V Shear Vane (kPa)


PROJECT No: 27456 SURFACE LEVEL: 19.96 DIP OF HOLE: 90' BORE No: 7 DATE: 28 AUGUST 98 SHEET 1 OF 1 AZIMUTH:

Douglas Partners Geotechnics · Environment · Groundwater

Depth	Description	e of ering	S Roc		Discon	tinuities	Fracture Spacing	Sa	mpling	& In 5	Situ Testing
(m)	of	Degree of Weathering			B - Bedding	J – Joint	(m)	mple ype	Core Rec. %	RQD %	Test Results &
0	Strata	믲늖슻괓юぃ		E SIL	S - Shear	D – Drill Break	0.00	- NS	10 g	æ	Comments
0.25	- GBAVEL - well graded to	Shithithithith			Uniess oth stated fac smooth pla bedding pl dipping at 10'	ctures are inar anes 0° to					
-2	SHALE – medium strength, slightly weathered, highly fractured to fragmented, dark grey shale				1.7m to 2.0 highly frac fragmente 2.36m:J 50 planar	ctured to d	ł	С	100	29	PL (AO=0.4MPa
3	- 2.54m to 2.54m - extremely high strength sideritic siltstone band SHALE - medium and high strength, slightly weathered, slightly fractured, dark grey black shale with 15 to 20% silty sandy laminae				2.54m:J 85 smooth un 3.08m;J 65 planar 3.41m:J 45 planar -3.54m to 4 1-2mm claa laminae ald bedding p	dulating 5 smooth 1.84m yey ong		С	100	92	PL (A)=0.6MPa PL (A)=1.4MPa
-5					5,30m:J 35 planar						PL (AO=1.4MP∂
-6 6.0	TEST BORE DISCONTINUED							С	100	100	PL (A)=1.7MPa
-7	AT 6.0 METRES					2					
		ILLER: MCNU			LOGGED: r	PARMAR	0 O 17	CA	SIN	G: GL	. TO 1.7m
WATE	E OF BORING: DIATUBE TO 0.25 ER OBSERVATIONS: NO FREE ARKS: V-Dit refusal at 1.70m										
	SAMPLING & IN SITU TESTING	LEGEND		-	ECKED:						
		load strength I ard penetration		Initials	alke		Dout				

Date: 3/-8 -

98

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE

PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT

I OCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 23.30 BORE No: 8 DATE: 31 AUGUST 98 SHEET 1 OF 2 **AZIMUTH:**

CATION: MISSENDEN ROAD, CAMPERDOWN			DIP OF HOLE: 90'												AZIMUTH:	
oth	Description		Co	SO Cahesive			Non- Cohesive			Rock Strength						ipling & In Situ Testing
m)	of Strata	Graphic Log	Very Saft Saft	Firm	Very Stiff Hard	Very Loose	Ned. Dense	Very Dense	Ex Low	Medjum	high	Very High Ex. High	Sample Type	Core Rec %	RQD %	Test Results & Comments
	FILLING – dark grey brown clay, ironstone gravel and sandstone filling															
1.30-	CLAY – light yellow brown mottled red clay with ironstone bands	Ø										1 1 1 1 1 1 1	S A			3,3,5 N=8
	- 2.60m - very stiff												4,U ₅ ,	0		pp=325kPa
4.10-	SILTY GRAVELLY CLAY - very stiff, light grey mottled red brown silty gravelly clay with ironstone gravel and traces of sand	000											S			8,10,14 N=24
4.70-	SHALY CLAY – very stiff to hard, grey, shaly clay with ironstone bands	-/-/-											A			
5.50-	SHALE – extremely low strength, extremely to highly weathered, grey shale with ironstone bands												S	-		17,28/ref
6.60-	SHALE – extremely low and very low strength, extremely and highly weathered, dark grey, shale with low strength bands												С	100	0	
7,90	SHALE - low and medium strength, highly and slightly weathered, fractured to slightly fractured, dark grey shale with 10% to 15% silty sandy laminae and extremely weathered bands												С	100	40	
9,14	SHALE – medium and medium to high strength, slightly weathered, fractured to slightly fractured, dark grey black shale with 15% to 20% silty sandy laminae										ļ					

RIG: APS 300

DRILLER: MCNULTY

LOGGED: PARMAR

CASING: GL TO 6.60m

TYPE OF BORING: HAND AUGER 0.7m, SFA 6.60m, NMLC CORING 10.05m

WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED WHILST AUGERING **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

A auger sample

B buik sample

C core drilling

PL point load strength Is (50)MPa S standard penetration test Ux x mm dia, tube pp pocket penetrometer (kPa) V Shear Vane (kPa)

CHECKED:

Initials: KSB Date: 16/10/98

Douglas Partners Geotechnics · Environment · Groundwater

Soil

Cohesive

Non-Cahesive

Pog

aphic

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE

PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT

Description

of

LOCATION: MISSENDEN ROAD, CAMPERDOWN

Depth

(m)

PROJECT No: 27456 SURFACE LEVEL: 23.30 BORE No: 8 DATE: 31 AUGUST 98 SHEET 2 OF 2 AZIMUTH:

Test Results

3

Sampling & In Situ Testing

DIP OF HOLE: 90'

Rock

Strength

	Strata	Gra	Very Stiff	Very Loose L	High La	Sam	Cor Rec	RQ %	& Comments
⁰ 10.05-	SHALE - see description previous page / TEST BORE DISCONTINUED AT 10.05 METRES					1			
0									
2									
3									
4									
5						1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
6									
ũ									
18					11111				
-19									

RIG: APS 300

DRILLER: MCNULTY

LOGGED: PARMAR

CASING: GL TO 6.60m

TYPE OF BORING: HAND AUGER 0.7m, SFA 6.60m, NMLC CORING 10.05m

WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED WHILST AUGERING REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A auger sample B bulk sample

C core drilling pp pocket penetrometer (kPa) PL point load strength I_S (50)MPa S standard penetration test Ux x mm dia, tube V Shear Vane (kPa) CHECKED: Initials: KSB

Date: 16/10/98

CLIENT:CENTRAL SYDNEY AREA HEALTH SERVICEPROJECT:PROPOSED REDEVELOPMENT, EASTERN PRECINCTLOCATION:MISSENDEN ROAD, CAMPERDOWN

DATE: 7 JULY 98 PROJECT No.: 27456 SURFACE LEVEL: 23.3 BORE No. 8A SHEET 1 OF 1

Douglas Partners Geotechnics · Environment · Groundwater

	Description		Sampling & 1	In Situ Testing	
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery
0 0.3 0.5 1 1.0 2 2	ASPHALTIC CONCRETE FILLING – brown grey and mottled orange sandy clay filling FILLING – brown, fine to medium grained, crushed sandstone filling TEST BORE DISCONTINUED AT 1.0 METRES	B	0.3 0.6 0.7 1.0		*
4	55				
6					
8					
10 RIG: PE	NGO DRILLER: ROBAR	LOG	GED: KAWALSKY	CASIN	G: –
TYPE OF	BORING: 300mm DIAMETER ROCK AUGER WATER OBSERVATIONS: NO FREE GROUNDWATE				-

SAMPLING & IN SITU TESTING LEGEND

A Auger sampleB Bulk sampleD Disturbed sampleHV Hand Vane

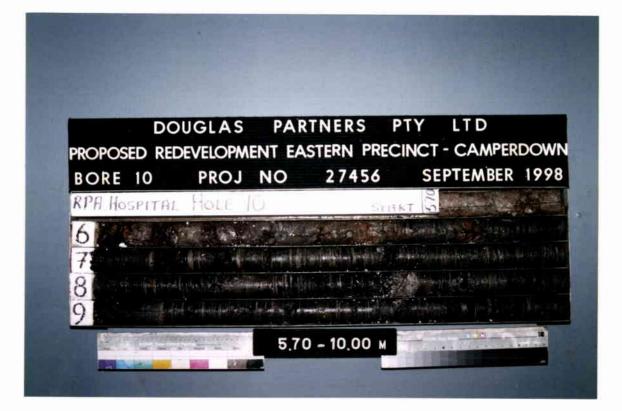
M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia, tube Wp Plasitc limit (%)

CLIENT:CENTRAL SYDNEY AREA HEALTH SERVICEPROJECT:RPAH REDEVELOPMENT, EASTERN PRECINCTLOCATION:MISSENDEN ROAD, CAMPERDOWN

DATE: 30 SEPTEMBER 98 PROJECT No.: 27456 SURFACE LEVEL: 24.9 BORE No. 9 SHEET 1 OF 1

	Description		Sampling & In Situ Testing								
mepth	of Strata	Туре	Depth (m)	Test Results	Core Recovery						
0.6	FILLING - dark grey and brown sandy gravelly clay with some wood, sandstone, brick and concrete fragments										
	CLAY — stiff, light brown and red brown mottled light grey clay with some silt and bands of sugary ironstone	A U50	0.9 1.0 1.3								
2 1.9 -	SHALY CLAY – hard, light brown and red brown mottled shaly clay with a trace of ironstone		2.0								
ł.			3.2								
3.8 4	SHALE – very low strength, light grey, light brown and dark grey shale (bands of extremely low strength, light grey shale, ironstone and low strength grey to dark grey shale	A	4.0								
5 5 6 6.7		A	5.2								
5.8 6	SHALE – medium strength, dark grey shale	A	6.0								
6.7 - 7	TEST BORE DISCONTINUED AT 6.7 METRES - due to auger refusal	A	6.6								
- 8											
-9											
10											

TYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGER GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED


REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia.tube Wp Plasitc limit (%) CHECKED:

Date: 16/10/98

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 23.04 DIP OF HOLE: 90"

BORE No: 10 DATE: 27-28 AUGUST 98 SHEET 1 OF 1 AZIMUTH:

	Description	to to	Fog	Rock	Discontinuities	Fracture Spacing	Sarr	npling	& In S	itu Testing
Depth	Description of	Degree of Weathering	Graphic Log	Strength	B - Bedding J - Joint	— (m)	Sample	Core Rec. %	RGD %	Test Results
(m) -0	Strata	948844		Low Very Low Low Very High Very High	S – Shear D – Drill Break	0.00	Sa Ca	5 Q 2	Ē	Comments
	FILLING - firm, dark grey, moist, gravelly clay filling, bricks and concrete (Drillers' description)		\bigotimes							2,4,5
1.30-	FILLING – dark brown gravelly clay filling with crushed sandstone		×				S			N=9
-2	CLAY – very stiff to hard light grey mottled orange red clay with ironstone						Α			
-3							U ₅₀			pp=400kPa
3.5	SHALY CLAY – hard, light grey mottled brown, shaly clay with ironstone bands						А			
-4							S			8,12,23 N=35
-5	5		-/							
-6	CLAYEY SHALE - dark grey				5.70m to 6.90m extremely weathered rock – not possible to identify fracture spacing and discontinuities		С	100	0	
-7 6.	SHALE - medium then medium to high strength, slightly weathered, fractured to slightly fractured, dark grey black shale with very low strength and highly weathered bands				6.90m to 10.0m fractures along smooth planar bedding planes at 0° to 10°	ľ J				PL (A)=0.4MPa PL (A)=0.6MPa
-8						7	С	100) 68	PL (A)=0.5MPa
	TEST BORE DISCONTINUED	J				1				PL (AO=1.0MPa
TYP WAT	APS 300 E DE OF BORING: HA - 1.0m, SFA FER OBSERVATIONS: NO FRE	E GROUNDWA	RY - ! TER O	5.7m, NMLC - 10			C	ASII	NG:	
REM	IARKS: WATER LEVEL AT 3.20M A		15		CHECKED:					
B bu	ulk sample Sista	IG LEGEND nt load streng ndard penetra m dia. tube		(50)MPa		Dou	gla	15	Pa	artners t • Groundwater
		ear Vane (kPa	э)	Dat	e:31.8.48	Geotechi	nics · L	Envir	onmen	t · Groundwater

- C core drilling pp pocket penetrometer (kPa)
- Ux x mm dia tube V Shear Vane (kPa)

CENTRAL SYDNEY AREA HEALTH SERVICE DATE: 30 SEPTEMBER 98 CLIENT: PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No.: 27456 SURFACE LEVEL: 27.6

BORE No. 11 SHEET 1 OF 1

	Description		Sampling & 1	In Situ Testing	
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %
0.6	FILLING - brown, grey, yellow grey and red brown sandy silty gravelly clay filling with fragments of shale, sandstone and concrete CLAY - stiff, light brown and red brown mottled light grey clay with some silt and ironstone SHALY CLAY - hard light brown and red brown mottled light grey shaly clay with a	A U ₅₀	0.9 1.0 1.3		
2 2.2	trace of ironstone gravel	A	2.0		
2.7	shale with some ironstone nodules to 40mm				
5		A	5.0		
6 ^{5.6} 7	SHALE – low to medium strength, dark grey and grey brown shale	A	6.0		
-8 8.3	SHALE - medium strength, grey shale	111111 A	8.0		
8. ⁻ - 9		A	8.6		

DRILLER: DUMMETT LOGGED: STEWART RIG: PACIFIC 375 TYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGER GROUND WATER OBSERVATIONS: GROUNDWATER OBSERVED AT 7.5m **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane

M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia, tube Wp Plasitc limit (%)

CHECKED:

CASING: NIL

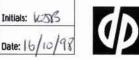
Initials: KSB

CENTRAL SYDNEY AREA HEALTH SERVICE CLIENT: PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

DATE: 30 SEPTEMBER 98 **PROJECT No.:** 27456 SURFACE LEVEL: 25.7

BORE No. 12 SHEET 1 OF 1

	Description		Sampling & I	n Situ Testing	
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %
0	FILLING – brown sand and silty clay with some organic material				
0.5 -	FILLING – stiff, brown silty clay filling				
1.3 -	CLAY — stiff, to very stiff, light brown and red brown mottled light grey slightly silty clay with a trace of sugary ironstone bands	U ₅₀	1.3 1.6		
2		Α	2.0		
2.8 -	SHALY CLAY – hard, red brown and light brown mottled light grey shaly clay with some ironstone nodules	A	3.0		
3.9 -	SHALE – very low strength, light grey, grey and brown shale (bands of extremely low strength, light grey shale, ironstone and low strength, grey brown shale)	A	4.0		
5		A	5.0		
8.5 -					
,	SHALE - low to medium strength, dark grey shale	Α	7.0		
7.5	TEST BORE DISCONTINUED AT 7.5 METRES	 A	7.2		
В	- due to auger refusal				
9					
0					


RIG: PACIFIC 375 DRILLER: DUMMETT LOGGED: STEWART TYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGER GROUND WATER OBSERVATIONS: NO FREE GROUNDWATER OBSERVED **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane

M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia, tube Wp Plasitc limit (%)

CHECKED: Initials: KSB

CASING: NIL

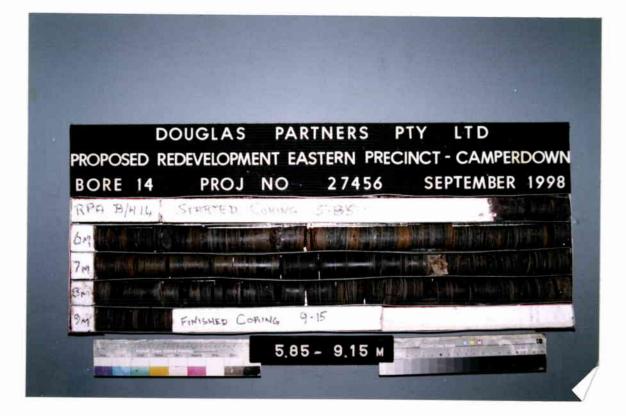
CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

DATE: 30 SEPTEMBER 98 PROJECT No.: 27456 SURFACE LEVEL: 26.9 BORE No. 13 SHEET 1 OF 1

	Description		Sampling & In Situ Testing								
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery						
0.2	FILLING – very stiff, dark brown to dark grey sandy silty clay with some gravel and organic matter (strong odour)										
	FILLING - stiff to very stiff, brown mottled dark grey brown clay with some silt, and a trace of sandstone gravel, mixed with dark brown organic clay	A	1.0								
1.7 2 2.2	SHALY CLAY - very stiff to hard, light grey shaly clay with very low strength ironstone	A	1.8								
	SHALE - extremely low strength, light grey	Α	2.3								
2.6	shale with some ironstone and shaly clay	Α	2.7								
3	Iayers SHALE - very low strength, dark grey brown and red brown and light grey shale (bands of extremely low strength, light grey shale, ironstone and low strength grey brown shale)	A	3.0								
4		A	4.0								
5		A	5.0								
6.1	SHALE – low to medium strength, dark grey	A	6.2								
7.0		A	7.0								
3 7.9	SHALE - medium strength, dark grey shale	A	8.0								
	- layer of very low strength ironstone observed between 8.0m and 8.2m	A	8.5								
9.0	TEST BORE DISCONTINUED AT 9.0 METRES - reach of rig	A	8.9								

RIG: PACIFIC 375DRILLER: DUMMETTLOGGED: STEWARTTYPE OF BORING: 300mm DIAMETER SPIRAL FLIGHT AUGERGROUND WATER OBSERVATIONS: FREE GROUNDWATER OBSERVED AT 6.2mREMARKS:

SAMPLING & IN SITU TESTING LEGEND


A Auger sampleB Bulk sampleD Disturbed sampleHV Hand Vane

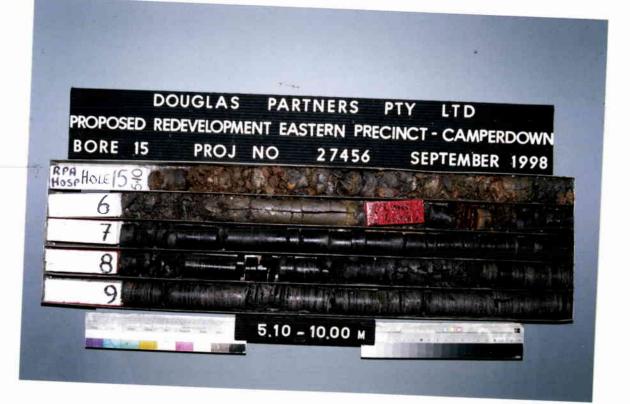
M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia. tube Wp Plasitc limit (%) CHECKED: Initials: WSB

Date: 16/10/98

Douglas Partners Geotechnics · Environment · Groundwater

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: RPAH REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 21.95 DIP OF HOLE: 90°

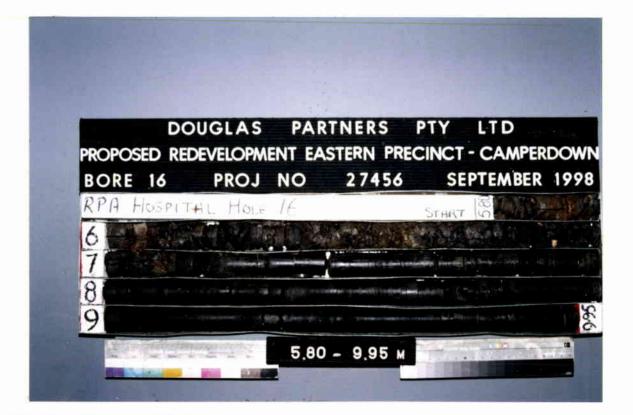

BORE No: 14 DATE: 27 AUGUST 98 SHEET 1 OF 1 **AZIMUTH:**

	Description	aring	Dort	Rock	Discon	itinuities	Fracture Spacing	Sar	npling (S In S	tu Testing
epth	of	Degree of weathering	Graphic Log	Strength	B - Bedding		- (m)	88	£1.96	0	Test Results &
m)	Strata	AFSSCE AFSSCE	Gre	A HOLE	S - Shear	D - Drill Break	0.00	Sample Type	Core Rec. %	89% 8	Comments
1.50	FILLING - dark brown, gravelly clay with sandstone and basalt gravel							S			1,5,6 N=11
1.07	CLAY — light grey brown mottled orange red clay with ironstone gravel							A			
	- 3.15m - very stift - 3.5m to 4.10m - gravelly							U ₅₀			pp=275kPa
4.10-	SHALY CLAY - hard, light grey mottled orange red shaly clay with ironstone bands and traces of silt and sand							S			9,14,20 N=34
5.85	CLAYEY SHALE - dark grey brown clayey shale (Drillers' description)				5.85m to	7 (5m					
7.15	SHALE - medium strength, slightly weathered, fractured to slightly fractured, dark grey black shale with ironstained bands and 10 to 15% silty sandy laminae				fractures ironstaine planar be planes at unless of stated 6.38m:B 5	along ed rough edding t O' to 10' herwise 5' smooth th 8-10mm	<u>}</u>	С	100	64	PL (A)=0.5M
1.10	SHALE - medium and high strength, slightly weathered, fractured to slightly fractured, dark grey black shale with 15 to 20% silty sandy laminae			-	fractures smooth p	s along	Ţ				PL (A)=0.8M
3							()	С	100	52	PL (A)=1.5M PL (A)=1.3M
9.15	TEST BORE DISCONTINUED AT 9.15 METRES						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
TYPE NATE	EDSON 3000 DE E OF BORING: SFA TO 5.85m, N ER OBSERVATIONS: NO FREE ARKS:		°O 9.15r	n	LOGGED:			CA	SIN	G: GL	. TO 5.85m

- C core drilling
- pp pocket penetrometer (kPa)
- S standard penetration test Ux x mm dia tube V Shear Vane (kPa)

Date: 31 - 8 - 98

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT PROJECT No: 27456 SURFACE LEVEL: 24.28 DIP OF HOLE: 90°


BORE No: 15 DATE: 1 SEPTEMBER 98 SHEET 1 OF 1 **AZIMUTH:**

LOCATION: MISSENDEN ROAD, CAMPERDOWN

	ION. MISSENDEN ROAD, CAMPENDONN	-	50		Pock	-	-		AZIMOTH.
oth	Description	Graphic Log	Catesive	Nan- Cahesive	Rock Strength				ipling & In Situ Testing
1)	of Strata	graph	ery Saft and and and and and	Very Loose Loose Ved Dense Dense	Er, Low Very, Low Low Heddue Wery High	Sample Type	Core Rec %	RQD %	Test Results
	FILLING - brick and concrete		Sart Sart Fara Start	Very I Laose Dense Very I	High L	1 So	0 2	LL.	Comments
		\otimes							
60-	CLAY - yellow brown clay	\otimes	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	CLAT - YENOW DIOWN CIdy	1//							
		1/							
		11	11111						
2.0		1/							
	SILTY CLAY - light grey, mottled red brown silty clay with ironstone bands	XX							
		M				А			
	- 2.60m - very stiff	XX							8,10,14
		W				S			N=24
		XX				A			
70-		XX							
	SHALE - extremely low to very low strength, highly weathered, grey shale					А			
						S			30/ref
						2	1		
		===							
10									
.10	SHALE - very low to low strength, highly and extremely weathered, highly fractured	===			E				
	to fragmented, brown and dark grey shale with medium strength ironstone bands				5				
						С	100	0	
1						1			
					I I T I I I I				
55 85	SHALE - medium and low to medium	M				-			
	strength, highly and slightly weathered, fractured to slightly fractured, dark grey								PL (A)=0.4MPa
	black shale with very low strength bands along bedding								
							0.0		PL (A)≃0.5MPa
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	96	40	
					2				PL (A)=0.3MPa
					E				
					-				
							10.5		PL (A)=0.4MPa
						C	100	0	
	TEST BORE DISCONTINUED AT 10.00 METRES								
-0-	PS 300 DRILLER: M			LOGGE	D: PARMAR	- J			CASING: GL TO 5.10m
	OF BORING: SFA 5.1m, NMLC CORING 10.0m			LUUUL					CAULTO OL TO U.O.
FEF	R OBSERVATIONS: NO FREE GROUNDWA		ERVED WHIL	ST AUGER	ING				
IAF	RKS:								
	SAMPLING & IN SITU TESTING LEGEND		0	CHECKED:					
	sample PL point load streng Sample S standard penetra			ials: KSB			_		las Partne
	drilling Ux x mm dia. tube			5.0			Do	ug	ilas Partne

C core drilling

Ux x mm dia. tube pp pocket penetrometer (kPa) V Shear Vane (kPa) Date: 16/10/98 Date: 16/10/98 Date: 16/10/98

CLIENT: CENTRAL SYDNEY AREA HEALTH SERVICE

PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT

LOCATION: MISSENDEN ROAD, CAMPERDOWN

PROJECT No: 27456 SURFACE LEVEL: 24.32 DIP OF HOLE: 90°

BORE No: 16 DATE: 1 SEPTEMBER 98 SHEET 1 OF 1 **AZIMUTH:**

Depth	Description	fool	Cahesi	SOI	Non- Cohes iv	e	S	Rock	:h			Samp	oling & In Situ Testing
(m)	of	Graphic Log	48	Very Stiff	ense lense	13e	12 104	Low	High	Sample Type	Core Rec. %	RQD %	Test Results &
0	Strata FILLING - grey brown clay filling with		ALL	Very Hard	Very L Lagse	Very 1	Very	Heddin H	E Kei	Sar	С Å	Ϋ́,	Comments
0.30-	gravel	\bigotimes		11		i	11	11					
0.60-	SILTY CLAY - dark grey silty clay	XXX				1			1 E 1 E 1 E				
0,00	SILTY CLAY - light grey, silty clay with traces of sand and ironstone gravel	W				1		11					
H		XXX	111	11		1		11					
		WM				1	11			U ₅₀			
	- 1.55m to 3.2m - very stiff	XXX								~50			pp=325kPa
		W						11					
-2		XXX		11			11	11					
		WXX		11	111		H	11					
ŧ.		WA					11						8,9,14
28-		XXX								S			N=23
3.20	SHALY CLAY – very stiff to hard, light	4		11				11		_			
	grey shaly clay with ironstone bands	-/-					ii	11		А			
		-/-						11					
-4		FZ-			111				11				
4.40		-/-					11						17,26/ref
	SHALE – extremely low strength, extremely weathered, dark grey shale	EE								S			1,20101
			111		111			H					
-5 -							11						
						1							
5.80		===		11	111	1	11	11		_			
-6	SHALE – extremely low to low strength, highly and extremely weathered, highly fractured to fragmented, light brown and				111		Ħ	5					
	grey shale		111	11	111		11	1					
[ſ			С	100	0	
					111								
7.15							i Li	ΪĘ.	5				PL (A)=6.1MPa
7,20	SIDERITIC SILTSTONE - very high strength, slightly weathered, light grey sideritic siltstone		111		111	1	IT	TI.					
	SHALE - medium strength, slightly weathered, fractured to slightly												PL (A)=0.6MPa
-8	fractured, dark grey black shale with 10% to 15% silty sandy laminae	====											
					111	1							
					111		1 h			С	100	75	PL (A)=0,7MPa
			111	i i l	111		i i						FL (A)-0,/MFB
-9					111								
							1 1 1 1 1 1						
			111		111	1							PL (A)=0.8MPa
9.95-	TEST BORE DISCONTINUED AT 9.95 METRES					1	L L						
RIG: A		ONULTY			LOG	GEI): Р.	ARMA	R				CASING:
TYPE	OF BORING: SFA 5.8m, NMLC CORING 9.95	m											
WATE	R OBSERVATIONS: NO FREE GROUNDWA	TER OBS	ERVED	WHILS	ST AUG	ERI	NG						
APLAN						D :	٦						
	SAMPLING & IN SITU TESTING LEGEND			C	HECKE	U:	-						

Initials: WTB

Date: 16/10/98

Ø

Douglas Partners Geotechnics · Environment · Groundwater

- A auger sample B bulk sample
- C core drilling
- pp pocket penetrometer (kPa)
- PL point load strength I_s (50)MPa S standard penetration test
- Ux x mm dia, tube V Shear Vane (kPa)

CLIENT:CENTRAL SYDNEY AREA HEALTH SERVICEPROJECT:PROPOSED REDEVELOPMENT, EASTERN PRECINCTLOCATION:MISSENDEN ROAD, CAMPERDOWN

DATE: 7 JULY 98 PROJECT No.: 27456 SURFACE LEVEL: 27.9 BORE No. 18 SHEET 1 OF 1

	Description		Sampling &	In Situ Testing	
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %
0 0.15 0.30 0.6 1 1.2	CONCRETE GRAVEL - up to 30mm CLAY - stiff, grey brown clay SILTY CLAY - very stiff, grey brown silty clay TEST BORE DISCONTINUED AT 1.2 METRES	B	0.3 0.6 0.8 1.1		
3					
-4					
6					
7					
-8					
-9 10					
	BORING: 300mm DIAMETER ROCK AUGER WATER OBSERVATIONS: NO FREE GROUNDWATE			CASIN	IG: -

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample D Disturbed sample HV Hand Vane M Moisture content (%) pp Pocket Penetration (kPa) Ux x mm dia. tube Wp Plasitc limit (%) CHECKED:

Date: 16/10/98

CENTRAL SYDNEY AREA HEALTH SERVICE CLIENT: PROJECT: PROPOSED REDEVELOPMENT, EASTERN PRECINCT LOCATION: MISSENDEN ROAD, CAMPERDOWN

DATE: 7 JULY 98 PROJECT No.: 27456 SURFACE LEVEL: 33.8 BORE No. 19 SHEET 1 OF 1

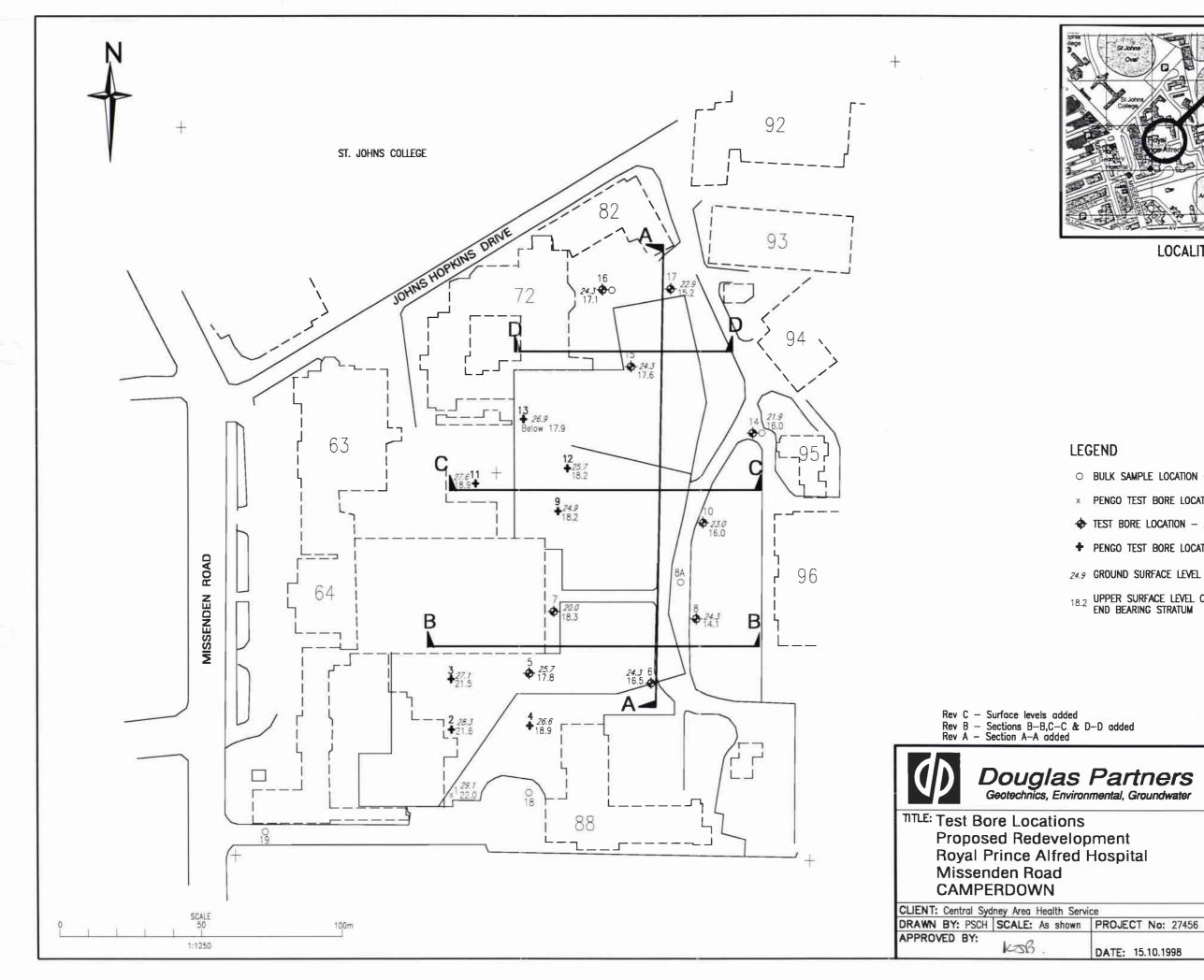
	Description		Sampling & I	n Situ Testing	
Depth m	of Strata	Туре	Depth (m)	Test Results	Core Recovery %
0 0.15	CONCRETE				<u>^</u>
	FILLING - brown grey, sandy clay filling	B	0.3		
0.6	SHALY CLAY - stiff, grey brown shaly clay	В	0.6 0.8		
' 1.1 -	TEST BORE DISCONTINUED AT 1.1 METRES	-	1.1		
0.6 - ¹ 1.1 - 2					
3					
4					
5					
6					
7					
8					
9					
10					
	BORING: 300mm DIAMETER ROCK AUGER WATER OBSERVATIONS: NO FREE GROUNDWATE		GED: KAWALSKY Served	CASIN	IG: –
	· · · · · · · · · · · · · · · · · · ·				
SA		ECKED:			
A Auger sa B Bulk sam D Disturbe HV Hand Va	pie pp Pocket Penetration (kPa)	5: KJB 16/10/			

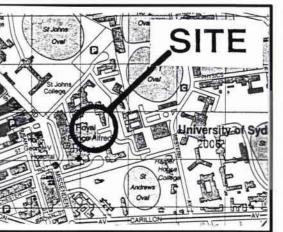
RESULTS OF DYNAMIC PENETROMETER TESTS

CENTRAL SYDNEY AREA HEALTH SERVICE 7-7-98 CLIENT DATE

PROJECT PROPOSED REDEVELOPMENT, EASTERN PRECINCT

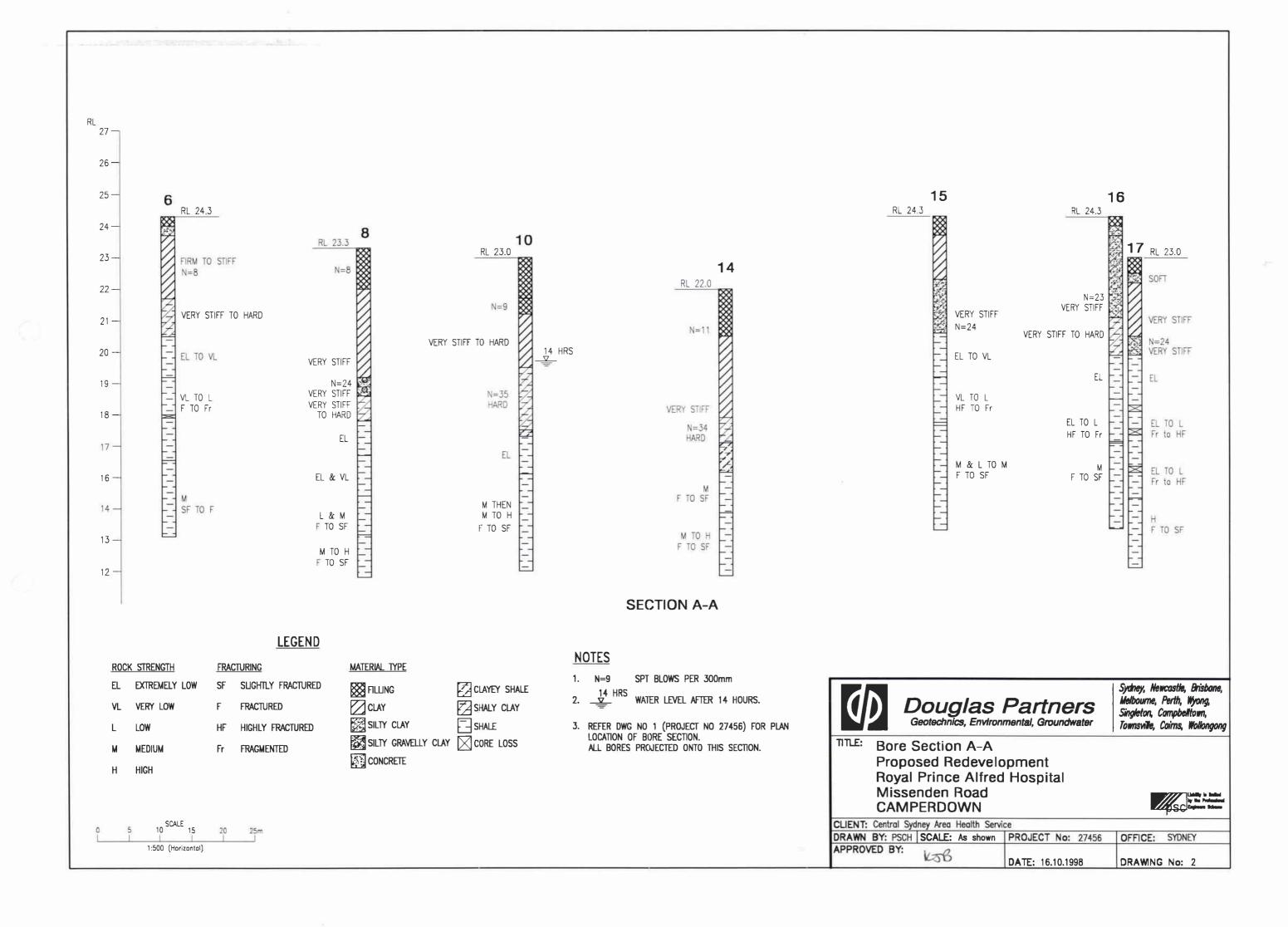
ROYAL PRINCE ALFRED HOSPITAL, LOCATION MISSENDEN RD, CAMPERDOWN


27456 PROJECT NO


PAGE NO 1 of 1

TEST LOCATIONS	1	18	19	8A	
RL OF TEST					
DEPTH m		PENETRATION RESISTANCE			
0.00 - 0.15	4	concrete	concrete	asphalt	BLOWS/150mm
0.15 - 0.30	7	2	1	-	
0.30 - 0.45	4	4	2	14	
0.45 - 0.60	4	4	4	5	
0.60 - 0.75	3	13	4	5	
0.75 - 0.90	4	11	4	10	
0.90 - 1.05	5	11	4	14	
1.05 - 1.20	10	13	4	11	
1.20 - 1.35					
1.35 - 1.50					
1.50 - 1.65					
1.65 - 1.80		-			
1.80 - 1.95					
1.95 - 2.10					
2.10 - 2.25					
2.25 - 2.40					
2.40 - 2.55					
2.55 - 2.70					
2.70 - 2.85					
2.85 - 3.00				2	

TEST METHOD AS 1289.6.3.2, CONE PENETROMETER AS 1289.6.3.3, FLAT END PENETROMETER TESTED BY: GAK CHECKED BY: KSB.

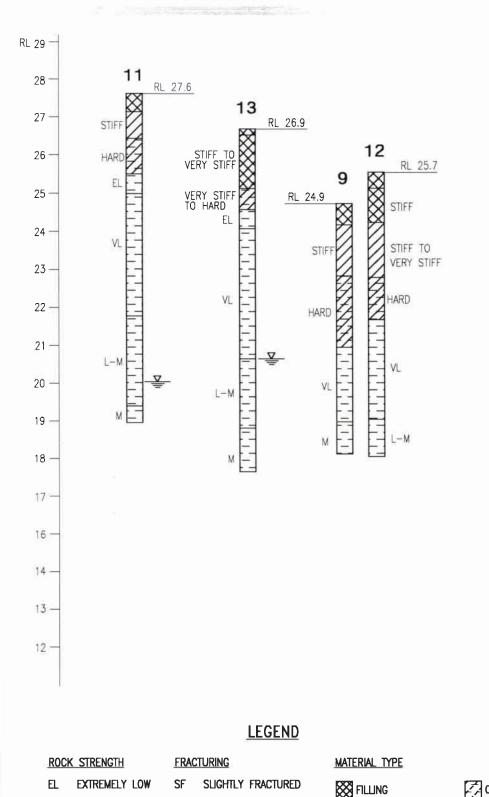

LOCALITY PLAN

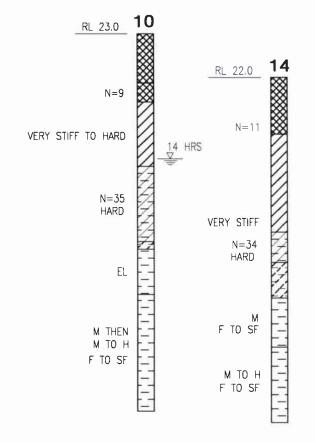
LEGEND

0				
	BULK SAMPLE LOCATION - 7	.7.1998		
х	PENGO TEST BORE LOCATION - 7.7.1998			
¢	TEST BORE LOCATION - 27.8	3.1998		
+	PENGO TEST BORE LOCATION	- 30.9.1998		
4.9	GROUND SURFACE LEVEL			
8.2	UPPER SURFACE LEVEL OF 3 END BEARING STRATUM	5.5MPa ALLOWABLE		
1		1.98		
¥ D		9.98 9.98		
5	Partners	9.98		
ron IS	Partners	9.98 3.98 <i>Sydney, Newcastle, Brisbane,</i> <i>Melbourne, Perth, Wyong,</i> <i>Singleton, Campbelltown</i> ,		
ron IS	Partners mental, Groundwater	9.98 3.98 <i>Sydney, Newcastle, Brisbane,</i> <i>Melbourne, Perth, Wyong,</i> <i>Singleton, Campbelltown</i> ,		

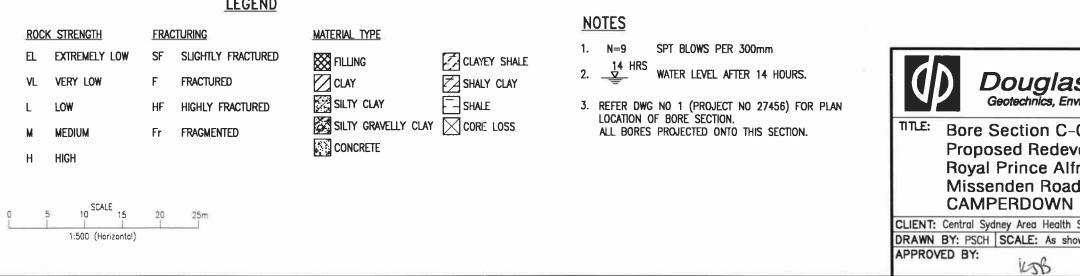
DRAWING No: 1 Rev C

DATE: 15.10.1998





TITLE: Bore Section B-E Proposed Redeve Royal Prince Alfr Missenden Road CAMPERDOWN


CLIENT: Central Sydney Area Health S DRAWN BY: PSCH SCALE: As show APPROVED BY:

nne, gong

SECTION C-C

-	Partners Imental, Groundwater	Sydney, Newcastle, Brisbane, Melbourne, Perth, Wyong, Singleton, Campbelltown, Townsville, Cairns, Wollongong
	opment I Hospital	LideBy is Setted by the Professional DSC Engineer Science
Servi		
wn	PROJECT No: 27456	OFFICE: SYDNEY
	DATE: 16.10.1998	DRAWING No: 4

RL 27 —

26 —

25 -

23 —

22 —

21 —

20 —

19 —

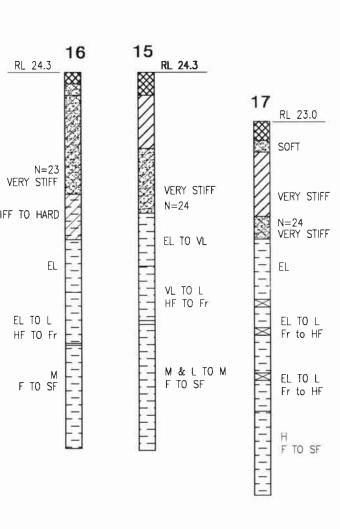
18 -

17 -

16 -

14 -

13 -


12 -

RL 24.3 VERY STIFF TO HARD

10 SCALE 15

1:500 (Horizontal)

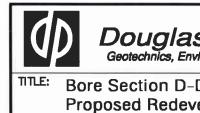
20 25m

SECTION D-D

LEGEND

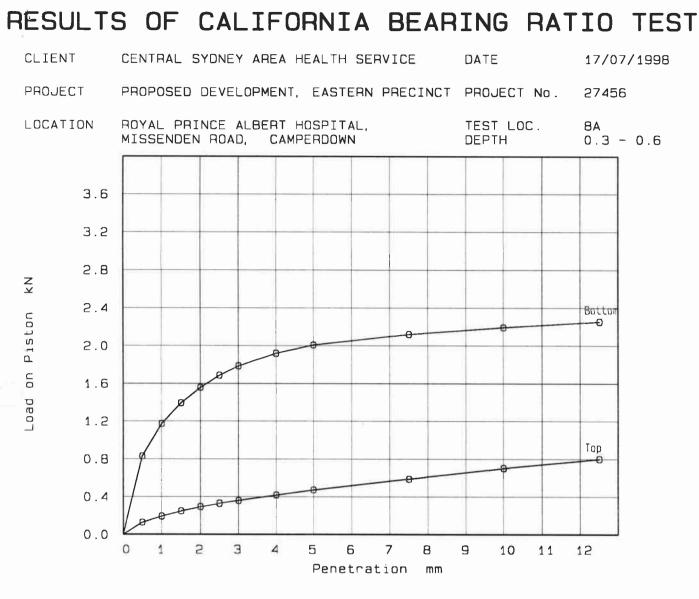
EL

EL TO L


HF TO Fr

M F TO SF

ROCK	STRENGTH	FRAC	TURING	MATERIAL TYPE	
EL	EXTREMELY LOW	SF	SLIGHTLY FRACTURED		CLAYEY SHALE
٧L	VERY LOW	F	FRACTURED	CLAY	SHALY CLAY
L	LOW	HF	HIGHLY FRACTURED	SILTY CLAY	
М	MEDIUM	Fr	FRAGMENTED	SILTY GRAVELLY CLAY	CORE LOSS
Н	HIGH			CONCRETE	


NOTES

- 1. N=9 SPT BLOWS PER 300mm
- 2. _____ WATER LEVEL AFTER 14 HOURS.
- REFER DWG NO 1 (PROJECT NO 27456) FOR PLAN LOCATION OF BORE SECTION. ALL BORES PROJECTED ONTO THIS SECTION.

Missenden Road CAMPERDOWN CLIENT: Central Sydney Area Health S DRAWN BY: PSCH SCALE: As show APPROVED BY: KJB

Douglas Geotechnics, Environ	Partners mental, Groundwater	Sydney, Newcastle, Brisbane, Melbourne, Perth, Wyong, Singleton, Compbelltown, Townsville, Cairns, Wollongong
Bore Section D-D Proposed Redevelo Royal Prince Alfred Missenden Road CAMPERDOWN	•	Listify is instead by the Protostand
Central Sydney Area Health Servi		
BY: PSCH SCALE: As shown	PROJECT No: 27456	OFFICE: SYDNEY
ED BY: KJB	DATE: 16.10.1998	DRAWING No: 5

DESCRIPTION FILLING - GREY BROWN AND MOTTLED ORANGE SANDY CLAY FILLING

PREPARATION

Remoulded to approximate 100% Maximum Dry Density & Optimum Moisture Content, then soaked for four days.

SWELL

LEVEL OF COMPACTION 100 % Standard SURCHARGE 9 kg

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At Compaction	18.8	1.70
After Soaking	23.2	1.66
After Test Top 30mm	25.1	-
- Remainder	22.1	-
Field Values	21.7	-
Standard Compaction	19.4	1.70

TEST METHOD AS 1289.F1.1

LABORATORY SYDNEY 828

REPORT No S98-190

CHECKED SIGNED

TESTED

2.4 %

Туре Тор

Bottom

RESULTS Penetration CBR (%)

- 2.5 mm

- 5.0 mm

- 2.5 mm

- 5.0 mm

KG

NW

Douglas Partners

Geotechnics · Environment · Groundwater

NWeimann

2.5

2.5

13

10

This Laboratory is registered by the National Association of Testing Authonies, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

PREPARATION

Remoulded to approximate 100% Maximum Dry Density & Optimum Moisture Content, then soaked for four days.

SWELL

0.1 %

LEVEL OF COMPACTION 99 % Standard SURCHARGE 4.5 kg

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At Compaction	13.2	1.85
After Soaking	15.0	1.85
After Test Top 30mm	15.1	-
- Remainder	13.9	-
Field Values	9.3	-
Standard Compaction	12.8	1.87

TEST METHOD AS 1289.F1.1

LABORATORY SYDNEY - 828

REPORT No S98-299

9 SIGNED

Туре Тор

TESTED

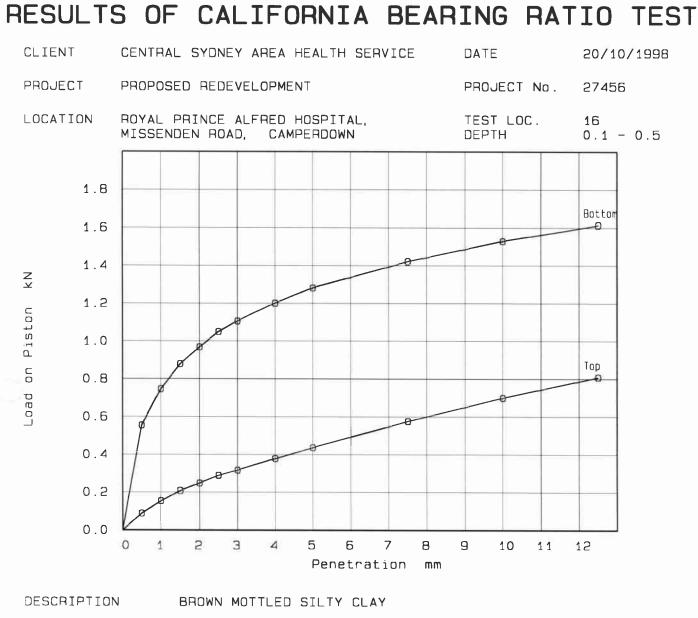
CHECKED

Weimann NORMAN WEIMANN

6

8

This Laboratory is registered by the National Association of Testing Authorilies, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.


RESULTS Penetration CBR (%)

CT

KG

- 2.5 mm

- 5.0 mm

PREPARATION

Remoulded to approximate 100% Maximum Dry Density & Optimum Moisture Content, then soaked for four days.

SWELL

3.4 %

Туре

Top

LEVEL OF COMPACTION 100 % Standard SURCHARGE 4.5 kg

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At Compaction	27.1	1.49
After Soaking	31.9	1.44
After Test Top 30mm	35.2	-
- Remainder	31.0	-
Field Values	29.2	-
Standard Compaction	27.2	1.49

TEST METHOD AS 1289.F1.1

LABORATORY SYDNEY - 828

REPORT No S98-299A

-299A SIGNED

Meleman NORMAN WEIMANN

2.0

2.0

8

6

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

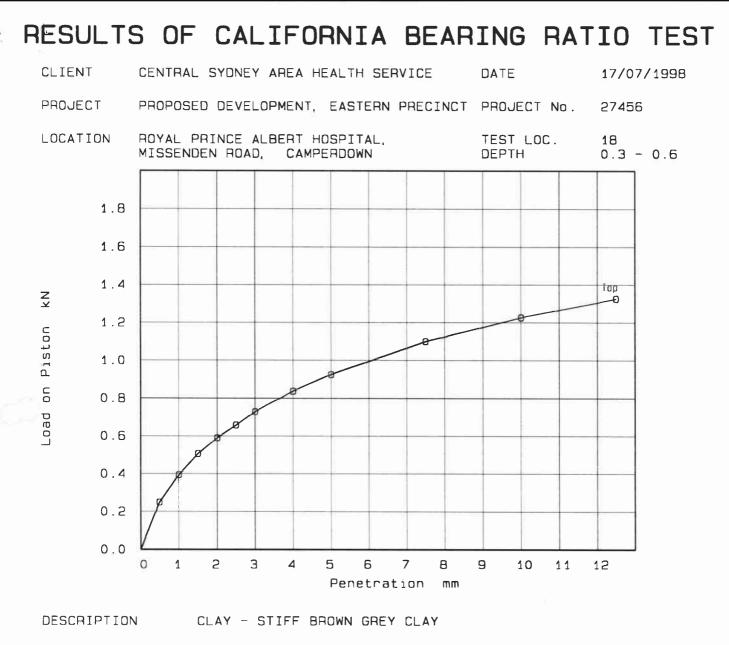
RESULTS

- 2.5 mm

- 5.0 mm

- 5.0 mm

CT


KG

Bottom - 2.5 mm

TESTED

CHECKED

Penetration CBR (%)

PREPARATION Remoulded to approximate 100% Maximum Dry Density & Optimum Moisture Content, then soaked for four days.

LEVEL OF COMPACTION 100 % Standard SURCHARGE 9 kg

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³	
At Compaction	26.6	1.53	
After Soaking	28.5	1.53	
After Test Top 30mm	27.7	E.	
- Remainder	27.2	-	
Field Values	30.5	-	
Standard Compaction	26.7	1.53	

TEST METHOD AS 1289.F1.1

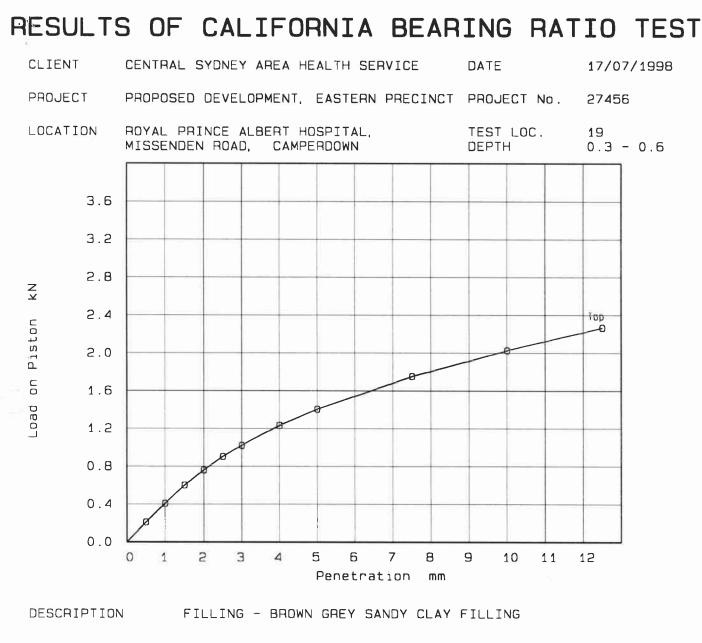
LABORATORY SYDNEY 828

REPORT No S98-190A

SIGNED

NORMAN WEIMANN

This Laboratory is registered by the National Association of Testing Authonities, Australia. The test(a) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.



SWELL -0.2 %

	RESULTS	
Туре	Penetration	CBR (%)
Тор	- 2.5 mm	5
	- 5.0 mm	4.5

TESTED KG CHECKED NW

PREPARATION Remoulded to approximate 100% Maximum Dry Density & Optimum Moisture Content, then soaked for four days.

LEVEL OF COMPACTION 99 % Standard SURCHARGE 9 kg

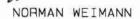
MOISTURE DRY DENSITY CONDITION t∕m³ CONTENT % At Compaction 24.4 1.56 After Soaking 27.8 1.54 After Test Top 30mm 28.3 _ - Remainder 25.9 Field Values 27.1 Standard Compaction 24.0 1.57

TEST METHOD AS 1289.F1.1

LABORATORY SYDNEY 828

REPORT No S98-190B

SIGNED


Maimann

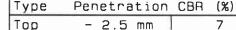
KG

NW

RESULTS

- 5.0 mm

7


7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Douglas Partners Geotechnics • Environment • Groundwater

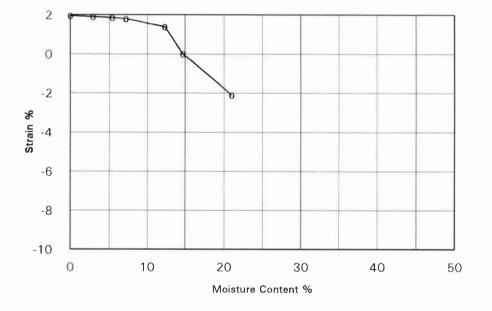
TESTED

CHECKED

SWELL 1.3 %

RESULTS OF INSTABILITY INDEX DETERMINATION

CLIENT:	CENTRAL SYDNEY AREA HEALTH SERVICE	DATE:	21/10/1998
PROJECT:	PROPOSED REDEVELOPMENT	PROJECT No:	27456
LOCATION:	ROYAL PRINCE ALFRED HOS., CAMPERDOWN	LOC No:	6
		DEPTH:	2.6-2.9 m


Description: CLAY - Mottled grey & red brown clay with some gravel

CORE SHRINKAGE TEST

SWELL TEST

Shrinkage - air dried	1.9 %
Shrinkage - oven dried	2.0 %
Significant inert inclusions	- %
Extent of cracking	- %
Extent of soil crumbling	- %
Moisture content of core	14.7 %

Pocket penetrometer reading at initial moisture content	>400	kPa
Pocket penetrometer reading at final moisture content	200	kPa
Initial Moisture Content	15.1	%
Final moisture content	21.0	%
Swell under 25kPa	2.1	%

SHRINK-SWELL INDEX I_{ss} 1.7 % per Δ pF

Remarks:

LABORATORY:

Test Method:	AS1289	7.1.1-1998
rest methou.	A01200	7.1.1-1000

SYDNEY	- 828	REPC

REPORT NO: S98-301a

TESTED BY:

CHECKED BY: NW

ΚG

Memour N.WEIMANN

DATE:

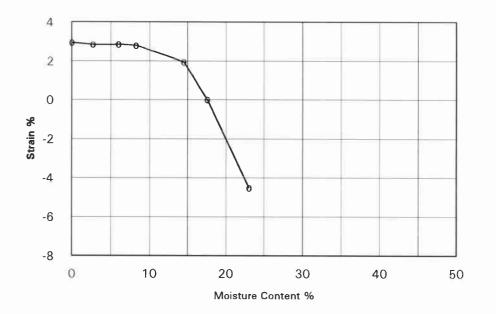
DATE:

This Laboratory is registered by the National Association of Testing Authorites, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

16/10/98

21/10/98

RESULTS OF INSTABILITY INDEX DETERMINATION


CLIENT:	CENTRAL SYDNEY AREA HEALTH SERVICE	DATE:	21/10/1998
PROJECT:	PROPOSED REDEVELOPMENT	PROJECT No:	27456
LOCATION:	ROYAL PRINCE ALFRED HOS., CAMPERDOWN	LOC No:	14
		DEPTH:	2.8-3.2 m

Description: CLAY - Mottled grey & red brown clay with some gravel

CORE SHRINKAGE TEST

SWELL TEST

Shrinkage - air dried	2.9 %	Pocket penetrometer reading	
Shrinkage - oven dried	3.0 %	at initial moisture content	>400 kPa
Significant inert inclusions	- %	Pocket penetrometer reading	
Extent of cracking	- %	at final moisture content	250 kPa
Extent of soil crumbling	- %	Initial Moisture Content	18.6 %
Moisture content of core	17.5 %	Final moisture content	23.0 %
		Swell under 25kPa	4.5 %

SHRINK-SWELL INDEX I_{SS} 2.9% per Δ pF

Remarks:

Test Method: AS1289 7.1.1-1998

LABORATORY: SYDNEY - 828

REPORT NO: S98-301b

TESTED BY:

CHECKED BY: NW

KG

ennon

DATE: 16/10/98

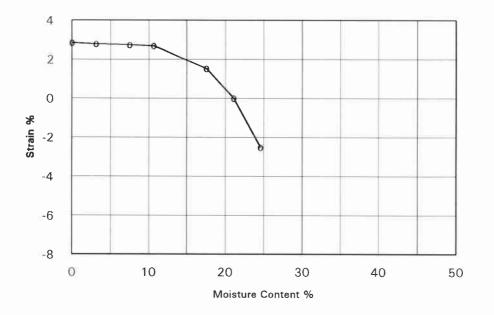
21/10/98

Form R013 Rev 2 Date of Issue May 1998

DATE:

This Laboratory is registered by the National Association of Testing Authorites, Australia. The test(s) reported herein have been per-formed in accordance with its terms of registration. This document shall not be reproduced except in full.

RESULTS OF INSTABILITY INDEX DETERMINATION


CLIENT:	CENTRAL SYDNEY AREA HEALTH SERVICE	DATE:	21/10/1998
PROJECT:	PROPOSED REDEVELOPMENT	PROJECT No:	27456
LOCATION:	ROYAL PRINCE ALFRED HOS., CAMPERDOWN	LOC No:	17
		DEPTH:	1.3-1.7 m

Description: CLAY - Mottled grey & red brown clay with some gravel

CORE SHRINKAGE TEST

SWELL TEST

Shrinkage - air dried	2.8 %	Pocket penetrometer reading	
Shrinkage - oven dried	2.8 %	at initial moisture content	>400 kPa
Significant inert inclusions	- %	Pocket penetrometer reading	
Extent of cracking	1 %	at final moisture content	200 kPa
Extent of soil crumbling	- %	Initial Moisture Content	20.8 %
Moisture content of core	21.1 %	Final moisture content	24.7 %
		Swell under 25kPa	2.5 %

SHRINK-SWELL INDEX I_{SS} 2.3% per Δ pF

Remarks:

Test Method: AS1289 7.1.1-1998

LABORATORY: SYDNEY - 828

REPORT NO: S98-301c

TESTED BY:

CHECKED BY: NW

KG

eman N.WEIMANN

Form R013 Rev 2 Date of Issue May 1998

DATE: 16/10/98

DATE: 21/10/98

NATA TA This Laboratory is registered by the National Association of Testing Authorites, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

SURFACE LEVEL: 23.2 AHD **EASTING:** 332107.6 **NORTHING:** 6248578.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH201 PROJECT No: 99709.00 DATE: 7/7/2020 SHEET 1 OF 2

_ ·	Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities			. <u> </u>	n Situ Testing	
Depth (m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint	Type	ore :. %	RQD %	Test Results &
	Strata	W H M S S H	ບ .		0.10	S - Shear F - Fault	Τy	ပိမ္စိ	R S	α Comments
- 0.1	ASPHALTIC CONCRETE		\times				E/D			PID < 1 ppm
-	brown and red-brown mottled grey, with fine to coarse sandstone gravel, trace silt and sand, w <pl< td=""><td></td><td>\bigotimes</td><td></td><td></td><td></td><td>E/D</td><td></td><td></td><td>PID < 1 ppm</td></pl<>		\bigotimes				E/D			PID < 1 ppm
- 1 - 1 	between 0.4-0.5m: sandstone cobble between 0.9-1.0m: sandstone cobble		\bigotimes				E			PID < 1 ppm
1.75			\bigotimes				E/D			PID < 1 ppm
2 2.1	CLAY CI-CH: medium to high plasticity, red-brown mottled grey, with silt, w <pl, residual<br="">CLAY CI-CH: medium to high plasticity, red-brown and mottled</pl,>						E/D			PID < 1 ppm
-3	grey, with ironstone gravel, fine to medium, angular to subangular, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td></td><td>6,9,10 N = 19</td></pl,>						S			6,9,10 N = 19
24 - - - - - - - 2 -							S			5,8,15 N = 23
				15-07-20						14,24,17/70
Ę	Below 5.7m: hard, trace ironstone gravel						S			refusal
-6 6.0 6.1 ⁻ 6.7	(extremely weathered rock) CLAY CI-CH: medium to high plasticity, grey, trace ironstone gravel, fine to medium, angular to subangular, w <pl, hard,="" residual<br="">(extremely weathered rock)</pl,>					6m: CORE LOSS: 100mm 6.78-6.92m: B(x4), ♪ 0-10°, pl-ir, fe, cly 10mm	с	90	0	pp = 480 pp = 520
2 7.25	grained sandstone laminations, very low to low strength then medium strength with clay seams, highly		·			6.92m: J50°, st, fe 6.97-6.99m: Cs, 20mm, fe 7.07-7.05m: B(0-10°), pl, fe 7.07-7.08m: Cs, 10mm				PL(A) = 0.35
- 8 - 8 	weathered then moderately weathered, highly fractured, Ashfield Shale LAMINITE: dark grey, thinly laminated, with 30-40% fine grained sandstone laminations, medium					7.1-7.26m: B(x8), 0-10°, pl,fe 7.41m: B(0-10°), pl, fe 7.56m: B0°, pl, cly 9mm 8.31m: J45° and 90°, st, ti	с	100	72	PL(A) = 0.78
	strength then high strength with clay seams, fresh, fractured, Ashfield Shale					*8.37-8.50m: J(60-70°), ir, cly vn 8.66m: J60°, pl, cly vn 8.75-8.78m: Cs, 30mm 9.30-9.52m: B(x3), 0-10°, pl, fe, cly 5mm				PL(A) = 0.95
9.71			\ge			9.55m: CORE LOSS: 160mm	с	94	52	
5.71			· · · · ·			160mm	С	94	52	

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: JJH/RB

 $\textbf{CASING:} \ \text{HW to 4.2m, HQ to 6.0m}$

TYPE OF BORING: Diacore to 0.1m, Non destructive digging to 2.1m, Solid flight auger (TC bit) to 4.0m, rotary to 6.0m. NMLC coring to 15.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Well installed: screened PVC 15.0m-2.5m, blank PVC 2.5m-0.1m, gravel pack 15.0m-2.0m, bentonite seal 2.0m-1.5m, backfill 1.5m-0.1m

SAN	/IPLIN	G & IN SITU TESTING	i LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partner	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test	Contractoriza I Environment I Organism	4
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwa	ter
					—	

SURFACE LEVEL: 23.2 AHD **EASTING:** 332107.6 **NORTHING:** 6248578.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH201 PROJECT No: 99709.00 DATE: 7/7/2020 SHEET 2 OF 2

	D	Description	Degree of Weathering	je.	Rock Strength ត្រ	Fracture	Discontinuities		ampli	ng & In Situ Testing		
¥	Depth (m)	of	Degree of Weathering ≳ ♣ ≩ ゑ ∞ ᡤ	irapt Log	Strength Very Low Medium Medium Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore 5. %	RQD %	Test Results &	
		Strata	T N N N N N N N N N N N N N N N N N N N	0			S - Shear F - Fault	ŕ	йğ	ж°.	Comments	
51 77 77 77 77 77 77 77 77 77 77 77 77 77	- 11	LAMINITE : as previous LAMINITE: dark grey, thinly laminated, with 20-25% fine grained sandstone laminations, high strength, fresh, slightly fractured, Ashfield Shale					9.74-10.57m: B(x9), 0-10°, pl, cly up to 7mm 11.39-11.63m: B(x4), 0-5°, pl, cly 3mm	С	94	52	PL(A) = 1.8	
ļ	- 12											
	- 13						12.4m: J60°, ir 12.7m: J(70-80°), ir, ti				PL(A) = 1.1 PL(A) = 1.4	
10							13.09m: J(45-55°), st, cln 13.15m: J60°, pl, ti	С	100	98	F L(A) - 1.4	
	- 14			· · · · · · · · · · · · · · · · · · · ·			14.17m: J45°, pl, cln 14.75m: J60°, ir, ti				PL(A) = 2.1	
ļ	-15 15.0	Bore discontinued at 15.0m					\sim 14.93m: J45°, pl, cly vn \sim					
	- 16	Target depth reached										
9	- 17											
2	- 18											
4	- 19											

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: JJH/RB

CASING: HW to 4.2m, HQ to 6.0m

TYPE OF BORING: Diacore to 0.1m, Non destructive digging to 2.1m, Solid flight auger (TC bit) to 4.0m, rotary to 6.0m. NMLC coring to 15.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Well installed: screened PVC 15.0m-2.5m, blank PVC 2.5m-0.1m, gravel pack 15.0m-2.0m, bentonite seal 2.0m-1.5m, backfill 1.5m-0.1m

		SAMP	LIN	3 & IN SITU TESTING	LEG	END									
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)	_	_						_	
В	Bulk sample		Р	Piston sample) Point load axial test Is(50) (MPa)			Doug	- 6	00				0 H0
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)					25		\mathbf{P}		
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)				_		-			
D	Disturbed sample	э	⊳	Water seep	S	Standard penetration test	11		-						
E	Environmental sa	ample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	1	Enviro	onme	ent I	Grour	iawater

SURFACE LEVEL: 26.4 AHD **EASTING:** 332074.2 **NORTHING:** 6248693.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH202 PROJECT No: 99709.00 DATE: 9/7/2020 SHEET 1 OF 2

		Description	Degree of Weathering	. <u>e</u>	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
묍	Depth (m)	of		Graphic Log	Strength High High Conversion	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results
	(,	Strata	T N N N N N N N N N N N N N N N N N N N	Ū		· · ·	S - Shear F - Fault	₽	ပိမ္မ	SR ⊗	& Comments
	0.05	ASPHALTIC CONCRETE		XX							-
26	0.25 -	FILL/SAND: fine to coarse, dark grey-brown, with silt, trace clay and fine to medium gravel, moist, apparently well compacted		\bigotimes				E/D			PID < 1 ppm
25	·1 1.2 -	FILL/Silty CLAY: low to medium plasticity, brown-grey, with fine to coarse igneous sandstone gravel, trace sand and rootlets, w <pl FILL/GRAVEL and COBBLES: pale</pl 						E/D			PID < 1 ppm
	1.7 - •2	vellow-grey sandstone cobbles and coarse sandstone gravel, moist / FILL/CLAY: low to medium plasticity, brown, with silt, trace fine gravel,		\bigotimes				E/D			PID < 1 ppm
24		coarse sandstone and ironstone \gravel, w < PL/ CLAY CI-CH: medium to high plasticity, grey mottled red-brown, with ironstone gravel, fine to						S/E			5,7,9 N = 16 PID < 1 ppm
23	• 4	medium, angular to subangular, w <pl, residual<="" stiff="" stiff,="" td="" to="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
22	-5							S/E			5,9,15 N = 24 PID < 1 ppm
21		Below 5.5m: grey, hard (extremely weathered rock)						S/E			22,25/70 refusal PID < 1 ppm
20	6 6.0-	LAMINITE: dark grey, thinly laminated, with 20-30% fine grained sandstone laminations, low and medium strength with clay seams, slightly weathered then fresh, fractured, Ashfield Shale		· · · · · · · · · · · · · · · · · · ·			6.01-6.56m: B(x8), 0-10°, pl, fe, cly up to 5mm 6.25-6.49m: Cs(x5), 10-30mm				<u> </u>
	7			· · · · · · · · · · · · · · · · · · ·			6.86-6.87m: Cs, 10mm,fe 6.87m: B0°, pl, fe 6.99-7.09m:J, 60-80°, ir, fe 7.09m: B0°, pl, fe 7.2m: B(x4) 0°, pl, cly	с	100	55	PL(A) = 0.3
	· 8 8.48 -	LAMINITE, doub many thinks		· · · · · · · · · · · · · · · · · · · ·			3-5mm 7.52-7.59m: Cs, 70mm, fe 7.67-7.82m: B(x4), 0°, pl, clv 5mm, fe				PL(A) = 0.5
	9	LAMINITE: dark grey, thinly laminated, with 20-30%, fine grained sandstone laminations, medium strength with clay seams, fresh, slightly fractured to fractured, Ashfield Shale					7.84-8.29m: Cs(x5), 10-25mm 7.90-8.20m: J(x2) 70-90°, ir, fe, cly vn 8.35-8.48m: B(x3) 0°, pl, cly 5-9mm 8.77-8.78m: Cs, 10mm 9.03-9.30m: B(x10), 0-5°, cly 5-7mm 9.09m: B0°, pl, cly 7mm 9.37-9.38m: Cs, 10mm	с	100	63	PL(A) = 0.74

RIG: Scout 1

CLIENT:

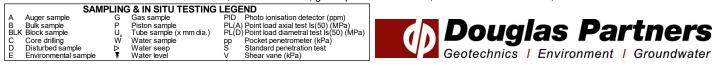
PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment


DRILLER: Ground Test

LOGGED: JJH/RB

CASING: HW to 4.2m, HQ to 6.0m

TYPE OF BORING: Diacore to 0.05m, Non destructive digging to 2.0m, Solid flight auger (TC bit) to 4.0m, rotary to 6.0m. NMLC coring to 16.15m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Approximately 40% water loss below 13.0m Well installed: screen 16.15m-4.0m, blank 4.0m-0.1m, gravel pack 16.15m-3.5m, bentonite seal 3.5m-3.0m, backfill from 3.0m-0.1m

SURFACE LEVEL: 26.4 AHD **EASTING:** 332074.2 **NORTHING:** 6248693.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH202 PROJECT No: 99709.00 DATE: 9/7/2020 SHEET 2 OF 2

$\left[\right]$	_	Description	Degree of Weathering .≅		Rock Strength	Fracture	Discontinuities				In Situ Testing
RL	Depth (m)		Degree of Weathering or da U S X X X X X X X X X X X X X X X X X X	Log	Very Low Very Low Medium High Ex High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
15		LAMINITE: dark grey, thinly laminated, with 20-30%, fine grained sandstone laminations, medium strength with clay seams, fresh, slightly fractured to fractured, Ashfield Shale <i>(continued)</i>					 19.89-9.94m: B(x10), 0°, pl, cly 5-9mm 9.98-9.99m: Cs, 10mm 10.75-10.76m: Cs, 10mm 10.78m: J(60-70°), ir 10.81m: J60°, pl, cly vn 10.9m: J(45° & 5°), st, cly vn 10.99-11.05m: B(x3), 0°, 	С	100		PL(A) = 0.47 PL(A) = 0.78
14	- 12						pl, cly 5-7mm 11.43m: J(60-70°), ir, cly vn 11.73m: B0°, pl, cly 7mm 11.74m: J45°, pl, cly vn 12.54-12.57m: J(x2),				PL(A) = 0.26
13	- 12.9 - 13 -	SILTSTONE: dark grey, thinly laminated, with 5-10% fine grained sandstone laminations, high strength, fresh, slightly fractured to unbroken, Ashfield Shale					30-60°, ir, st 12.69m: B5°, pl, cly 3mm	с	100	99	PL(A) = 1.1
12	- 14						13.84-14.15m: J(70-80°),st, cly vn 14.20-14.47m: J60°, st, cly vn				PL(A) = 1.6
11	- 15							С	100	100	PL(A) = 2.1
	- 16 16.15	Bore discontinued at 16.15m									PL(A) = 3.1
10	- 17	Target depth reached									
6	- 18										
- 8											
	- 19										

RIG: Scout 1

CLIENT:

PROJECT:

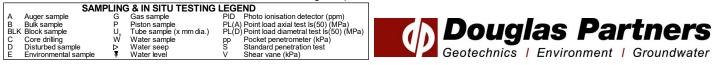
LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test


LOGGED: JJH/RB

CASING: HW to 4.2m, HQ to 6.0m

TYPE OF BORING: Diacore to 0.05m, Non destructive digging to 2.0m, Solid flight auger (TC bit) to 4.0m, rotary to 6.0m. NMLC coring to 16.15m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Approximately 40% water loss below 13.0m

Well installed: screen 16.15m-4.0m, blank 4.0m-0.1m, gravel pack 16.15m-3.5m, bentonite seal 3.5m-3.0m, backfill from 3.0m-0.1m

SURFACE LEVEL: 26.7 AHD **EASTING:** 332070.2 **NORTHING:** 6248721.2 **DIP/AZIMUTH:** 90°/-- BORE No: BH203 PROJECT No: 99709.00 DATE: 8/7/2020 SHEET 1 OF 2

$\left[\right]$		Description	Degree of Weathering	<u>o</u>	Rock Strength	Fracture Discontinuities			amplii	ng & l	n Situ Testing
R	Depth (m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint	Type	re .%	RQD %	Test Results
	()	Strata	HW KW SW FS SW	Ū	Ex Low Very Low Medium High Ex High Ex High	· · ·	S - Shear F - Fault	۲ ۲	ပိမ္စ	RC %	& Comments
	0.05										
	-	CONCRETE		\bigotimes							
	- 0.5	FILL/Silty SAND: brown, fine to		X				E/D			PID < 1 ppm
26	-	gravel, moist, apparently well		\bigotimes							
	-1	Between 0.18m - 0.40m: sandstone		\bigotimes				E/D			PID < 1 ppm
	- - 1.3	Cobbles, moist		\bigotimes				-			
		FILL/CLAY: medium to high plasticity, grey mottled red-brown,						E/D	-		PID < 1 ppm
25	-	with silt, trace rootlets and fine to medium ironstone gravel, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td></pl<>									· · · · · · · · · · · · · · · · · · ·
	-2	FILL/CLAY: low to medium plasticity,									
	-	brown mottled grey, with silt, trace sand and fine to medium sandstone									
	-	gravel, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>6,11,19</td></pl<>							-		6,11,19
24		CLAY CI-CH: medium to high plasticity, grey mottled red-brown,						S/E			N = 30
	- 3	with ironstone gravel, fine to									PID < 1 ppm
		medium, angular to subangular, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
	-										
33											
	- - 4	Delaw 4 Orach and							-		
ŀ	-	Below 4.0m: hard						S/E			9,16,21 N = 37
	-								-		PID < 1 ppm
52	_										
Ē	- 										
	-										
Ē											
5-	_	Below 5.5m: grey, trace laminations of fine grained sandstone						S/E			9,14,24 N = 38
	- 6 6.0	(extremely weathered rock)									PID < 1 ppm
	-6 6.0 _ 6.1	1 LAMINITE: dark grey, thinly		:::X			6m: CORE LOSS: ∖ 100mm				PL(A) = 0.1
	-	laminated, with 30-40% fine grained sandstone laminations, low then low		· · · ·			6.18-6.24m: Cs, 60mm, fe				
		to medium strength with clay seams,		••••	╡╡		6.27-6.94m: B(x11),	С	91	0	
		slightly weathered, fractured, Ashfield Shale		 		┊_┨╎╴╎╎ │	0-10°, pl, cly, 0-8mm, fe 6.4-6.5m: J(80-90°), ir,				
	- /			 	╎┿┱╹╎╎╎││		fe 6.96-6.97m: Cs,10mm				PL(A) = 0.24
	-			· · · · ·		L	⁻ 7m: B5°, pl, fe -7.03-7.05m: Cs, 30mm				
- <u>6</u> -	-			· · · ·			7.1-7.37m: B(x8), 0-10°,				
11	-			· · · · ·			pl, fe 7.24-7.57m: J(x5), 45.90° ir. pl and st.fe				
Ē	-8 - - 8.19			\ge			45-90°, ir, pl and st, fe 7.74m: B0°, pl, cly 5mm				
	- 8.23	LAMINITE: dark grey, thinly laminated, with 30-40% fine grained		: :			7.94m: B0°, pl, fe 8.02m: CORE LOSS:				PL(A) = 0.32
F	-	sandstone laminations, medium		· · · · · · · · · ·			170mm 8.19-8.23m: B(0-10°), pl,	С	94	51	(,
-9-	-	strength with clay seams, fresh, slightly fractured to fractured,		· · · ·		╎╎┞─┼┪╵	fe 8.36-8.88m: B(0-5°), pl,				
	-9	Ashfield Shale		· · · · ·			cly 0-9mm				PL(A) = 0.92
Ē	-			· · · · · · · · · ·							
t f	-			• • • • • • • •							
17	-			 							
Ľ							Λ				

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: JJH/RB

CASING: HW to 4.4m, HQ to 6.0m

TYPE OF BORING: Diacore to 0.14m, Non destructive digging to 2.4m, Solid flight auger (TC bit) to 4.0m, rotary to 6.0m. NMLC coring to 16.11m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Approximately 50% water loss below 8.5m

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
D Dull samely D Distance and D Distance and Distance an	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	O HO
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
B Bulk sample P iston sample P iston sample P [LO Point load axial test is(50) (MPa) BLK Block sample U, Tube sample (x mm dia.) C C ore drilling W Water sample p Pocket penetrometer (kPa)	
D Disturbed sample > Water seep S Standard penetration test	
E Ervironmental sample Vater seep V Scharadrone (VPa)	undwater

SURFACE LEVEL: 26.7 AHD **EASTING:** 332070.2 **NORTHING:** 6248721.2 **DIP/AZIMUTH:** 90°/-- BORE No: BH203 PROJECT No: 99709.00 DATE: 8/7/2020 SHEET 2 OF 2

\square		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
R	Depth	of	weathening d		Spacing (m)	B - Bedding J - Joint			-	Test Results
	(m)	Strata	W M M W W W W W W W W W W W W W W W W W	Ex Low Very Low Medium High Ex High Ex High		S - Shear F - Fault	Type	Core Rec. %	å%	& Comments
16		LAMINITE: dark grey, thinly laminated, with 30-40% fine grained sandstone laminations, medium strength with clay seams, fresh, slightly fractured to fractured, Ashfield Shale (continued)	X II 2 00 LL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			9.90-10.10m:J(x5),45-85°, ∖ ir and pl 10.16-10.95m: J(x9), ↓40-80°, pl, ir, st, he 10.37-10.45m: B(x10), 10°, pl, cly 5mm				PL(A) = 0.11 PL(A) = 1.1
	- 11 10.95 -	LAMINITE: dark grey, thinly laminated, with 20-30% fine grained sandstone laminations, medium then high strength, fresh, slightly					с	100	63	PL(A) = 0.63
	- 12	fractured, Ashfield Shale				12.13m: B0°, pl, cly 3mm 12.28-12.92m: J(x5), 20-45°, pl, cly vn, ti			03	PL(A) = 1.4
	- 13					⁴ 12.29-12.33m: Cs, 50mm				PL(A) = 2.2
	- 13.38 - 14	SILTSTONE: dark grey, thinly laminated, with 5-10% fine grained sandstone laminations, high strength, fresh, unbroken, Ashfield Shale				13.36m: J45°, pl, cln				PL(A) = 3.6
	- 15						с	100	100	PL(A) = 2
	- 16 16.11 -	Bore discontinued at 16.11m								PL(A) = 1.2
- - - - - - - - - - - - - - - - - - -	- 17	Target depth reached								
	- 18									
	- 19									

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: JJH/RB

CASING: HW to 4.4m, HQ to 6.0m

TYPE OF BORING: Diacore to 0.14m, Non destructive digging to 2.4m, Solid flight auger (TC bit) to 4.0m, rotary to 6.0m. NMLC coring to 16.11m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Approximately 50% water loss below 8.5m

	SAM	PLIN	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	-	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Partners
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)				Partners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			140	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	S Envir	onment Groundwater
	· · · · · · · · · · · · · · · · · · ·								

SURFACE LEVEL: 24.7 AHD **EASTING:** 331989.2 **NORTHING:** 6248757.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH204 PROJECT No: 99709.00 DATE: 10/7/2020 SHEET 1 OF 2

		Description	Degree of Weathering	ji	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint	Type	ore 2. %	RQD %	Test Results &
	. ,	Strata	XW MW SS SS SS SS SS SS SS SS SS SS SS SS SS	U		0.05	S - Shear F - Fault	∣≧	ŭ Å	Ж °`	Comments
4	0.35	FILL/Silty SAND: fine to medium, dark brown, with clay and rootlets, trace gravel, moist, poorly compacted Below 0.15m: trace silt		\bigotimes				A/E A/E* A/E			PID < 1 ppm PID < 1 ppm BD1-100720 PID < 1 ppm
· ·	0.8 -	FILL/Gravelly CLAY: low plasticity, brown, igneous gravel, with sand, trace brick fragments, w>PL, variably compacted FILL/CLAY: low to medium plasticity, brown and red-brown, with ironstone						A/E S/E			PID < 1 ppm 3,7,10 N = 17 PID < 1 ppm
23	2	and sandstone gravel, w <pl, variably compacted At 2.00m: possible sandstone boulder</pl, 							-		5,5,3/20
5		At 2.7m: trace ceramics		\bigotimes				S/E			refusal PID < 1 ppm
· F	·3 3.5 -	At 3.00m: metal wire		\bigotimes							
21	4.5	CLAY CI-CH: medium to high plasticity, brown to red-brown, with medium to high strength ironstone bands and ironstone gravel, fine to medium, angular to subangular, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td>S/E</td><td>-</td><td></td><td>10,12,17 N = 29 PID < 1 ppm</td></pl,>						S/E	-		10,12,17 N = 29 PID < 1 ppm
19 20	4.5 4.63	CLAY CI-CH: medium to high plasticity, red brown and grey, with medium to high strength ironstone bands and ironstone gravel, fine to medium, angular to subangular, w <pl, hard,="" residual<br="" stiff="" to="" very="">(extremely weathered rock)</pl,>					4.5m: CORE LOSS: 130mm 5.46-5.72: J(x4), 30-60°, pl & st, fe, cly 4mm	С	91	0	pp = 410 pp = 420 pp = 460 pp = 380 pp = 650
18	6	LAMINITE: brown and grey, laminated, with 20-30% fine grained sandstone laminations, very low strength with clay seams, highly weathered, fractured, Ashfield Shale					5.89m: Cs, 10mm, fe 5.95- 5.99m: Cs, 40mm, fe 6.02-6.06m: B(x4), 0-5°, fe 6.29m: J(x2), 45°, pl, fe, cly vn 6.42-6.47m: B(x6) 0-10°,				PL(A) = 0.08 PL(A) = 0.05
17	7.15 8	SILTSTONE: dark grey, thinly laminated, 5-10% fine grained sandstone laminations, medium strength, moderately weathered then fresh, fractured then slightly fractured, Ashfield Shale					cly vn, fe 6.59-6.73m: J(x4), 60-70°, pl & ir, fe, cly vn 7.04m: Cs, 10mm, fe 7.16-7.37m: J(x4), 60-70°, pl & ir, fe, cly vn 7.17-7.62m: B(x7), 0-10°, cly 5-8mm, fe 7.00°, cly 5-8mm, fe	С	100	33	PL(A) = 0.46
16	8.24 -	LAMINITE: dark grey, thinly laminated, with 0-10% fine grained sandstone, medium, fresh, slightly		· · · · · · · · · · · · · · · · · · ·			7.39-7.42m: Cs, 30mm, fe 7.75m: J45°, pl, cln 8.13-8.22m: J(x2) 60-70°, pl & ir				
-	9	fractured, Ashfield Shale						с	100	100	PL(A) = 0.58
15				· · · · ·							PL(A) = 0.47

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: RB

CASING: HW to 4.2m, HQ to 4.5m

TYPE OF BORING: Hand auger to 0.4m, Solid flight auger (TC bit) to 4.0m, rotary to 4.5m. NMLC coring to 14.51m. **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Duplicate sample: BD1-100720

	SAM	PLING	& IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Douglas Partners
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		N Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		📕 Geotechnics Environment Groundwate

SURFACE LEVEL: 24.7 AHD **EASTING:** 331989.2 NORTHING: 6248757.4 **DIP/AZIMUTH:** 90°/--

BORE No: BH204 **PROJECT No:** 99709.00 **DATE:** 10/7/2020 SHEET 2 OF 2

\square		Description	Degree of Weathering ≳ ≩ ≩ § ∞ ∰	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
R	Depth (m)	of	Vicutioning	raph Log	Very Low Very Low Very High Very High Ex High Not OO1	Spacing (m)	B - Bedding J - Joint	Type	ore S. %	RQD %	Test Results &
	· ,	Strata	XW MW SW FR FR	G		0.05 0.10 1.00	S - Shear F - Fault	Ţ	ы К С	RC 80	Comments
	-11	LAMINITE: dark grey, thinly laminated, with up to 50% fine grained sandstone, high then very high strength, fresh, slightly fractured to unbroken, Ashfield Shale					10.21m: J 45°& 5°, st, ∖cly vn 10.39m: B0°, pl, cly 3-5mm	с	100		PL(A) = 2.4
13	- 12			· · · · · · · · · · · · · · · · · · ·			11.93-11.97m: Cs, 40mm				PL(A) = 2.2
	- 13							с	100	100	PL(A) = 4
	- 14 14.51										PL(A) = 3.2 PL(A) = 4.8
	- 15	Bore discontinued at 14.51m Target depth reached									
-0-	- 16										
	- 17										
9	- 18										
	- 19										

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: RB

CASING: HW to 4.2m, HQ to 4.5m TYPE OF BORING: Hand auger to 0.4m, Solid flight auger (TC bit) to 4.0m, rotary to 4.5m. NMLC coring to 14.51m.

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Duplicate sample: BD1-100720

SAM	/IPLING & IN	SITU TESTING LE	EGEND	ן			
A Auger sample	G Gas sa	ample P	PID Photo ionisation detector (ppm)		_	-	— -
B Bulk sample	P Piston		PL(A) Point load axial test Is(50) (MPa)				Doutroom
BLK Block sample	U, Tube s	sample (xmmdia.) P	PL(D) Point load diametral test ls(50) (MPa)				
C Core drilling	W Water	sample p	p Pocket penetrometer (kPa)				
D Disturbed sample	Vater	seep S	Standard penetration test				
E Environmental sample	Water	level V	/ Shear vane (kPa)		Geotechnics	I Enviro	onment Groundwate
C Core drilling D Disturbed sample	Ŵ Water ⊵ Water	sample p seep S	p Pocket penetrometer (kPa) Standard penetration test	P	Doug Geotechnics		Partnel

SURFACE LEVEL: 33.6 AHD **EASTING:** 331807.1 **NORTHING:** 6248607.6 DIP/AZIMUTH: 90°/--

BORE No: BH205 **PROJECT No:** 99709.00 DATE: 13/7/2020 SHEET 1 OF 2

П			D	Degree of		Rock		Fracture	Discontinuities	6	moli	20 8 1	n Situ Tooting
RL	De	pth	Description of	Weathering	aphic od		ter	Spacing				-	n Situ Testing Test Results
R	(n	n)	Strata	Weathering	Gra	Extrength Very Low Medium High Ex High	Ne Ne	0.100 (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core	RQD %	&
$\left \right $			FILL/Sandy GRAVEL: fine to	× H M S S E E		<u>۵۱۶۱۲۱۶</u> ۱۲	- 			A/D			Comments PID < 1 ppm
33	- - - -	0.4 -	medium gravel, dark brown, igneous, fine to medium sand, angular to subangular, trace clay, moist, apparently well compacted (road base)							A/E*			PID < 1 ppm BD2-130720
	- -1 -		CLAY CI-CH: medium to high plasticity, brown mottled red-brown,							A/E			PID < 1 ppm 4,7,9 N = 16
32	- - - -		trace ironstone gravel, stiff to very stiff, residual (first 300mm possibly disturbed)							S/E			N = 16 PID < 1 ppm
	-2												
31	- 3	2.5 3.0	CLAY CI-CH: medium to high plasticity, grey and red brown, with bands of medium to high strength rionstone, hard, residual				 			S/E			7,14,20 N = 34 PID < 1 ppm
	-		(extremely weathered rock)										pp = 580
-8	-		CLAY CI-CH: medium to high plasticity, grey and red brown, with bands of medium to high strength							С	100	0	pp = 530
	- - - 4		ironstone, hard, residual (extremely weathered rock)				ļ						pp = 560
29	-						¥ 			с	100	0	pp = 450 pp = 510
	- 5						15-07-20						pp = 650
	-						15						pp = 520
28	- 6									с	100	0	pp = 580
	-												pp = 450
27	-												
	-7	7.0								с	100	0	pp = 570
26	- - - -	7.2	SILTSTONE: brown with grey, laminated, with 5-10% fine grained sandstone laminations, very low strength with low to medium strength		· _ ·				7.2-7.83m: B(x7) 0-10°, pl & ir, fe, cly up to 7mm 7.27-7.75m: Cs(x4), 10-80mm, fe			Ū	PL(A) = 0.2
25	- 8	8.22 -	ironstone bands and clay seams, highly weathered, fractured, Ashfield shale SILTSTONE: brown with grey, thinly laminated, with 5-10% fine grained sandstone laminations, low to very		·				^L 7.3-7.67m: J(x6), 45-85°, cly up to 5mm, fe 7.83-8.47m: Cs(x7), 10-80mm, fe 8.00-8.90m: J(x7), 45-90°, pl, cu & ir, fe, cly	с	100	0	PL(A) = 0.3
	- - - 9	9.05	low strength, moderately weathered, fractured, Ashfield shale				 		↓vn 8.12-8.36m: Ds(x2), 50 ↓&120mm				
24	- - - - -	0.00							8.9m: CORE LOSS: 150mm 9.05-9.22m: J(x4), 60-90°, fe, cly vn -9.2-9.39m: B(x5), 0-10°, fe, cly vn	с	95	55	

RIG: Bobcat TYPE OF BORING: Solid flight auger (TC bit) to 2.5m, rotary to 3.0m. NMLC coring to 15.0m

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: RB

CASING: HW to 2.5m, HQ to 3.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Well installed: screen 15.0m-4.0m, blank 4.0m-0.1m, gravel pack 15.0m-3.5m, bentonite seal 3.5m-3.0m, backfill 3.0m-0.1m. Duplicate Sample: BD2-130720

SAN	/IPLIN	G & IN SITU TESTING	LEG	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		_		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)				Partners	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)				Pariner	5
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			1		
D Disturbed sample	⊳	Water seep	S	Standard penetration test		O to a to a to a	1		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	s I Envir	ronment Groundwate	r

SURFACE LEVEL: 33.6 AHD **EASTING:** 331807.1 **NORTHING:** 6248607.6 **DIP/AZIMUTH:** 90°/--

BORE No: BH205 **PROJECT No:** 99709.00 DATE: 13/7/2020 SHEET 2 OF 2

		Description	Degree of Weathering	<u>c</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
RL	Depth (m)	of	Weathering	Graph Log	Strength Very Low Low High Very High Very High Very High Very High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
	40.4	Strata	W H M S S H	<u> </u>	High Fight	0.01	S - Shear F - Fault 9.54-9.66m: Ds,	ίΕ.	ပမ္ရ	2	Comments PL(A) = 0.3
22	- 10.1	SILTSTONE: dark grey, laminated, with 5% fine grained sandstone laminations, medium strength with low to very low strength crushed seams and a sheared zone, fresh, fractured to slightly fractured, Ashfield Shale					120mm, fe 9.62-9.70m: Cs, 20mm, fe 9.73-9.88m: B(x3), 0-10°, pl & cu, cly vn, fe 9.91m: Cs, 10mm, fe 9.94-9.97m: J(x2) 45°, pl, fe 10.06-11.63m: J(x5) 60°, pl 11.57-11.6m: Cz, cly,	С	95	55	PL(A) = 0.5
21	- 12						40mm 11.95m: J(x3) 60-80°, pl & ir 12.33-12.53m: Sz, cly 50mm 12.37m: J(x2), 60°, pl,	с	84	62	PL(A) = 0.7
20	- 13						cly 2mm 12.57m: CORE LOSS: 180mm 12.84-13.13m: J(x3), 35-60°, pl 13.41m: J45°, pl, cln 13.79-13.93m: J(x4),	С	100	68	PL(A) = 0.8
19	- 14						45°, pl, cly vn 14.01-14.21m: J(x3), 45° & 90°, pl & un 14.26-14.27m: Cs, 10mm	с	100	100	PL(A) = 0.8
18	- 15 15.0	Bore discontinued at 15.0m Target depth reached									
	- 16										
17	- 17										
16	- 18										
15											
14	- 19 										

RIG: Bobcat TYPE OF BORING: Solid flight auger (TC bit) to 2.5m, rotary to 3.0m. NMLC coring to 15.0m

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: RB

CASING: HW to 2.5m, HQ to 3.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Well installed: screen 15.0m-4.0m, blank 4.0m-0.1m, gravel pack 15.0m-3.5m, bentonite seal 3.5m-3.0m, backfill 3.0m-0.1m. Duplicate Sample: BD2-130720

	SAMPI	LINC	3 & IN SITU TESTING	LEGE	END		
A Aug	ger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	k sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Bloc	ck sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		Douglas Pariners
C Cor	re drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Dist	turbed sample	⊳	Water seep	S	Standard penetration test		
E Env	/ironmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 33.4 AHD **EASTING:** 331768.5 **NORTHING:** 6248588.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH206 PROJECT No: 99709.00 DATE: 14 - 15/7/2020 SHEET 1 OF 2

		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities				In Situ Testing
R	Depth (m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint	e	re .%	RQD %	Test Results
	(11)	Strata	XW MW SW FR	<u>م</u>	Ex Low Very Low Medium Very High Ex High O.01	0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10	S - Shear F - Fault	Type	ပိမ္စ	RQ %	& Comments
33	0.12	CONCRETE: 120mm thick, up to 20mm aggregate, 10mm reinforcement at 70mm depth						A/E	/		PID < 1 ppm
		CLAY CI-CH: medium to high plasticity, brown-dark brown, trace ironstone gravel, stiff then hard,						A/E*			PID < 1 ppm BD3-140720
	-1	w <pl, residual<br="">(possibly disturbed to 0.6m)</pl,>						S/E	-		3,5,9 N = 14
32		Below 0.6m: red-brown Below 1.0m: grey mottled red-brown, stiff							-		PID < 1 ppm
	-2										
31	2.5	CLAY CI-CH: medium to high plasticity, grey and red brown, with						S/E	-		9,19,33 N = 52
	-3 3.0 3.11-	bands of medium to high strength ironstone, hard, residual (extremely weathered rock)					3m: CORE LOSS:	5/E	-		PID < 1 ppm
30	- 4	CLAY CI-CH: medium to high plasticity, grey and red brown, with bands of medium to high strength ironstone, hard, residual (extremely weathered rock)					110mm	с	91	0	
50	4.38						4.23m: CORE LOSS: 150mm	c	80	0	
	-5						4.95m: CORE LOSS: 480mm		00		
28	5.43										
	-6							с	78	0	
27	- 7										
26	-8	SILTSTONE: brown and pale brown, thinly laminated, with 5-10% fine grained sandstone laminations, very low then low to very low strength, highly weathered, fractured, Ashfield shale					7.15-8.38m: J(x7), 60-80°, ir, pl & vt, fe, cly vn 7.25-7.64m: Ds, 390mm 7.35-7.43m: B(x8), 0-10°, pl, cly 2mm, fe	с	100	0	
25	8.4	SILTSTONE: grey, laminated, with 5-10% fine grained sandstone laminations, very low to low strength,		·			8.49-8.61: B(x3), 0-5°, pl, cly vn, fe				PL(A) = 0.2
	-9 9.02	moderately weathered, slightly fractured to fractured, Ashfield shale / SILTSTONE: dark grey, laminated,		• · • ·			8.93-9.02m: B(x4), 0-10°, pl, fe, cly vn	с	100	67	PL(A) = 0.5
24		with 5-10% fine grained sandstone laminations, medium strength, fresh, slightly fractured, Ashfield Shale		· ·			9.5m: B0°, pl, cly 6mm ∖9.72m: B0°, pl, cly 5mm 9.74m: J35°, pl, cly				, 0.0

RIG: Bobcat

CLIENT:

PROJECT:

Health Infrastructure

LOCATION: Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: RB

CASING: HW to 2.6m, HQ to 3.0m

TYPE OF BORING: Diacore to 0.12m, Solid flight auger (TC bit) to 2.5m, rotary to 3.0m. NMLC coring to 15.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Duplicate sample: BD3-140720

	SAM	PLINC	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 	-	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)			Partners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		140	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics	I Enviro	onment Groundwater

SURFACE LEVEL: 33.4 AHD **EASTING:** 331768.5 **NORTHING:** 6248588.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH206 PROJECT No: 99709.00 DATE: 14 - 15/7/2020 SHEET 2 OF 2

Π		Description	Degree of	υ	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
님	Depth (m)	of	Weathering	aphi og		Spacing (m)	B - Bedding J - Joint	e	e%	RQD %	Test Results
	(11)	Strata	XW HW SW FIS	<u>ق</u> _	Ex Low Very Low I cow Medium Very High Ex High Wate		S - Shear F - Fault	Type	Re C	R0 %	& Comments
F -		SILTSTONE: dark grey, laminated,					2mm				PL(A) = 0.5
33	.11	with 5-10% fine grained sandstone laminations, medium strength, fresh, slightly fractured, Ashfield Shale (continued)						с	100	67	
	^{. 11} 11.05			. V			11m: CORE LOSS: 50mm				
22	· 12						(11.05-11.29m: J (70-80°), ir				PL(A) = 0.5
21				•				с	100	100	PL(A) = 0.5
20	·13						13.1m: J45°, pl, cln				PL(A) = 0.5
	· 14	Between 13.83m-15.21m: fractured					13.83m: J45°, pl, cln 14.02-14.61m: J(x5), 45-70°, pl & ir	с	100	87	PL(A) = 0.6
	· 15			 			14.72-15.21m: J(x7), 45-60°, pl, ti				
	-16	Between 15.84m-15.95m: sandstone bands (x2), 20mm thick					15.81m: J60°, pl, ti	с	100	78	PL(A) = 0.4
							40.0455 100% at als				PL(A) = 0.6
16	17 17.0-	At 16.92m: sandstone band 80mm thick Bore discontinued at 17.0m Target depth reached		·			16.81m: J20°, pl, cln				
	· 18										
15											
14	· 19										

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Health Infrastructure

Missenden Road, Camperdown

Royal Prince Alfred Hospital Redevelopment

DRILLER: Ground Test

LOGGED: RB

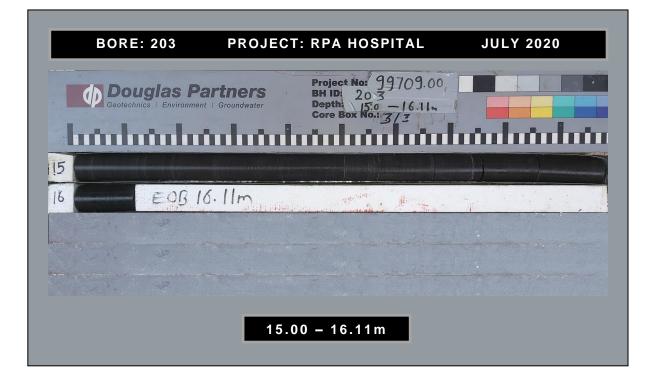
CASING: HW to 2.6m, HQ to 3.0m

TYPE OF BORING: Diacore to 0.12m, Solid flight auger (TC bit) to 2.5m, rotary to 3.0m. NMLC coring to 15.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

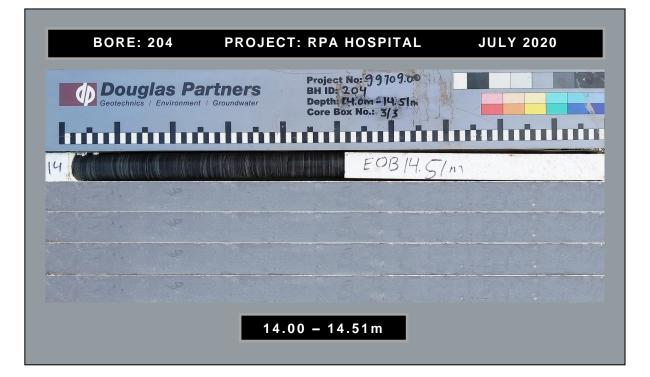
REMARKS: Location coordinates are in MGA94 Zone 56. Duplicate sample: BD3-140720

	SAM	PLINC	3 & IN SITU TESTING	LEG	END				
A A	uger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-	— –
B B	lulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)				Partners
BLK BI	llock sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)				Pariners
C C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doag		
D D	isturbed sample	⊳	Water seep	S	Standard penetration test	11			
E EI	nvironmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Enviro	onment Groundwater

	Douglas Par	Project No: 99 BH ID. 201 Depth: to 1 Core Box No: 2/	0.0m - 15m	
10,000				
2				
3				



10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	
13 Manual Martine Control (1) How To a state of the state	



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 247251

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Peter Valenti
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	99709.00, RPA Hospital Redevelopment
Number of Samples	2 Soil
Date samples received	17/07/2020
Date completed instructions received	17/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	24/07/2020
Date of Issue	24/07/2020
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Misc Inorg - Soil			
Our Reference		247251-1	247251-2
Your Reference	UNITS	BH201	BH205
Depth		4.0-4.45	1.0-1.45
Date Sampled		07/07/2020	13/07/2020
Type of sample		Soil	Soil
Date prepared	-	20/07/2020	20/07/2020
Date analysed	-	20/07/2020	20/07/2020
pH 1:5 soil:water	pH Units	4.6	4.2
Electrical Conductivity 1:5 soil:water	μS/cm	63	97
Chloride, Cl 1:5 soil:water	mg/kg	<10	32
Sulphate, SO4 1:5 soil:water	mg/kg	82	43

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	CONTROL:	Misc Ino		Duj	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/07/2020	[NT]		[NT]	[NT]	20/07/2020	
Date analysed	-			20/07/2020	[NT]		[NT]	[NT]	20/07/2020	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	96	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	88	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	114	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions										
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH/EC Sample #1 was out of the recommended holding time for this analysis.

RPA Hospital Redevelopment	To
99709.00 Sampler:Roshan B	
PAVMob. Phone: 0422 000 438	Att
peter.valenti@douglaspartners.com.au	
Standard TAT Lab Quote No	
	99709.00 Sampler:Roshan B PAVMob. Phone: 0422 000 438 peter.valenti@douglaspartners.com.au

o: Envirolab Services

12 Ashley Street, Chatswood NSW 2068

Attn: Tania Notaras

Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au

				Sam ple Typ e					Analytes	5			
Sample ID	Sample Depth √(m)	Lab ID	Sampling Date	S - soil W – water	Container type	рН	sulphate	Chloride	Electrical Conductivity				Notes
BH201	4.0-4.45	1	7.7	S	Plastic	x	x	x	x				Envirolab Services
BH205	1.0-1.45	2	13.7	s	Plastic	x	x .	х	. X				ENVIROLAB 12 Ashley St Chatswood NSW 2067
					-		,		ì				Ph: (02) 9910 6200
							l	,	_ \}				247251
					·								Date Received: HIHOLD Time Received:
													Received By: 1000
									r.				Cooling: Ice/Jcepack
_							1. ~						Security: Intactribroken/None
							u s						
Lab Repo	rt No											Phone:	(02) 9809 0666
Send Res	ults to: Do	ouglas	Partne	rs /	Address:	96 H	ermitage Ro	oad, We <u>st F</u>	Ryde_2114	ų		Fax:	(02) 9809 4095
	ed by: PAV					7 7 7	JA I	Date & Time:	: 17.7,20	Received	By:		Date & Time:
Relinquish	ed by: J	<u></u>	Sign	ied:	272		Date	& Time:		Received By:	Phay	C	Pate & Time: 1620 Affron

.

مر

Royal Prince Alfred Hospital – Eastern Campus

IMPORTANT INFORMATION

Important Information about this Geotechnical Report

Scope of Work

The purpose of this report and any associated documentation is expressly stated in the document. This document does not form a complete assessment of the site, and no implicit determinations about Cardno's scope can be taken if not specifically referenced. Whilst this report is intended to reduce geotechnical risk, no level of detail or scope of work can entirely eliminate risk.

The nature of geotechnical data typically precludes auxiliary environmental assessment without undertaking specific methods in the investigation. Therefore, unless it is explicitly stated in the scope of work, this report does not provide any contamination or environmental assessment of the site or adjacent sites, nor can it be inferred or implied from any component of the document.

The scope of work, geotechnical information, and assessments made by Cardno may be summarised in the report; however, all aspects of the document, including associated data and limitations should be reviewed in its entirety.

Standard of care

Cardno have undertaken investigations, performed consulting services, and prepared this report based on the Client's specific requirements, data that was available or was collected, and previous experience.

Cardno's findings and assessment represent its reasonable judgment, diligence, skill, with sound professional standards, within the time and budget constraints of its commission. No warranty, expressed or implied, is made as to the professional advice included in this report.

Data sources

In preparing this document, or providing any consulting services during the commission, Cardno may have relied on information from third parties including, but not limited to; sub-consultants, published data, and the Client including its employees or representatives. This data may not be verified and Cardno assumes no responsibility for the adequacy, incompleteness, inaccuracies, or reliability of this information.

Cardno does not assume any responsibility for assessments made partly, or entirely based on information provided by third parties.

Variability in conditions and limitations of data

Subsurface conditions are complex and can be highly variable; they cannot be accurately defined by discrete investigations. Geotechnical data is based on investigation locations which are explicitly representative of the specific sample or test points. Interpretation of conditions between such points cannot be assumed to represent actual subsurface information and there are unknowns or variations in ground conditions between test locations that cannot be inferred or predicted.

The precision and reliability of interpretive assessment between discrete points is dependent on the uniformity of the subsurface strata, as well as the frequency, detail, and method of sampling or testing.

Subsurface conditions are formed by various natural and anthropogenic processes and therefore are subject to change over time. This is particularly relevant with changes to the site ownership or usage, site boundary or layout, and design or planning modifications. Aspects of the site may also not be able to be determined due to physical or project related constraints and any information provided by Cardno cannot apply following modification to the site, regulations, standards, or the development itself.

It is important to appreciate that no level of detail in investigation, or diligence in assessment, can eliminate uncertainty related to subsurface conditions and thus, geotechnical risk. Cardno cannot and does not provide unqualified warranties nor does it assume any liability for site conditions not observed or accessible during the investigations.

Verification of opinions and recommendations

Geotechnical information, by nature, represents an opinion and is based extensively on judgment of both data and interpretive assessments or observation. This report and its associated documentation are provided explicitly based on Cardno's opinion of the site at the time of inspection, and cannot be extended beyond this.

Any recommendations or design are provided as preliminary until verified on site during project implementation or construction. Inspection and verification on site shall be conducted by a suitably qualified geotechnical consultant or engineer, and where subsurface conditions or interpretations differ from those provided in this document or otherwise anticipated, Cardno must be notified and be provided with an opportunity to review the recommendations.

Client and copyright

This document is produced by Cardno solely for the benefit and use by the Client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.