C Cardno

now



Stantec Australia ABN 17 007 820 322

Level 9 - The Forum 203 Pacific Highway St Leonards NSW 2065 PO Box 19

Phone +61 2 9496 7700 Fax +61 2 9439 5170

www.cardno.com www.stantec.com

Our Ref: 304100230\_RPA\_Western Campus\_HLS Carpark\_Lift\_ver2:BD Contact: Bikesh Deoju

9 November 2022

TSA Management Level 15 207 Kent Street Sydney NSW 2000

Attention: Liam Hearne

Dear Mr. Hearne,

ROYAL PRINCE ALFRED HOSPITAL STAGE 1 REDEVELOPMENT WORKS FOR HELICOPTER LANDING SITE

# 1 INTRODUCTION

Cardno now Stantec Pty Ltd ("Cardno") was engaged by TSA Management (TSA) ("the Client"), on behalf of NSW Health Infrastructure, to undertake a geotechnical investigation to determine the in-situ ground conditions for the following location:

• Helicopter Landing Site (HLS) – Multistorey Car Park – Lift Pit

The carpark is situated at the corner of Grose Street and Hospital Road as part of the Royal Prince Alfred Hospital (RPA) – Western Campus (the 'site').

The contents of this letter report detail the ground investigation, methodology, presentation of factual data obtained and interpretation of data appropriate for the design and construction of the lift pit area.

This investigation was carried out concurrently with contamination investigation and hazmart survey of the subject area, reported separately to this report.

This report addresses the SEARs requirements as detailed in the table below:

| 14   | OFAD   | Demine    |                                                                                                                                                         | Delevent Continue of Demont |
|------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| ltem | SEAR   | s Require | ments                                                                                                                                                   | Relevant Section of Report  |
| 13   | Ground | d and Wat | er Conditions                                                                                                                                           |                             |
|      | •      | infrastru | potential impacts on soil resources and related<br>icture and riparian lands on and near the site, including<br>sion, salinity, and acid sulfate soils. | Section 2.4 & 2.5           |
|      | •      |           | a Surface and Groundwater Impact Assessment that<br>as potential impacts on:                                                                            |                             |
|      |        | 0         | surface water resources (quality and quantity) including related                                                                                        | Refer Note A                |
|      |        | 0         | infrastructure, hydrology, dependent ecosystems, drainage lines, downstream assets and watercourses.                                                    | Refer Note A                |
|      |        | 0         | groundwater resources in accordance with the<br>Groundwater Guidelines.                                                                                 | Section 5.2                 |

Notes:

A) Cardno (2022). Draft Detailed Site Investigation, *Royal Prince Alfred Hospital, East Campus*, Job Reference 80022026 R001, Revision B, dated 4 November 2022. Sections 7.2, 7.8 and 8.2



## 1.1 Available Information

The following information has been provided by the client as part of this assessment:

- > Temporary HLS Options Set of Plans prepared by Jacobs
  - 220808\_RPAH\_MW\_Temporary HLS\_Options\_v3\_r (7 pages)

## 1.2 Purpose and Scope of works

The purpose of this investigation was to provide the client with geotechnical advice on the in-situ subsurface conditions encountered within the proposed lift pit.

Cardno 👓 () Stantec

The scope of works undertaken is presented below:

- > Site Investigation carried out in accordance with AS 1726:2017 Geotechnical Investigation.
- > Preliminary work, Safe Work Method Statements (SWMS) and site-specific paperwork and inductions as required;
- Undertaking a Dial-Before-You-Dig search and check the site using an electronic services locator and GPR (ground penetrating radar);
- > Provision of traffic management for supervising traffic and pedestrians during the fieldwork;
- Nominate an experienced geotechnical engineer/geologist professional to manage the field investigation component of the work. The engineer to supervise, collect samples and complete a detailed log of the boreholes. The engineer to also undertake an assessment of the existing site conditions, and take note of any anomalies encountered during investigation that could be of geotechnical risk during future construction activities;
- > Drilling of boreholes using a track/truck mounted track mounted drill rig fully equipped for geotechnical investigation. The drilling of the upper soil layer to be carried out using solid flight auger with Tungsten Carbide (TC) bit. The rock coring to be carried out using NMLC rock coring techniques;
  - Two Investigatory boreholes to 2m into medium strength rock for the lift pit;
- Standard penetration tests (SPTs) at 1.5 m depth intervals in all boreholes to assess subgrade consistency and recover disturbed soil samples;
- Logging encountered subsurface conditions by and experienced Geotechnical Engineer in accordance with AS1726-Geotechnical Site Investigation;
- > Point Load Testing to be carried out within recovered rock core at 1.0m intervals;
- Collection of soil/rock samples for material classification, moisture content, aggressivity suite and Uniaxial Compressive Strength (UCS) testing purposes; and
- The boreholes to be backfilled with excavated spoils, topped with clean sand and reinstated with cold mix/quick set concrete.

## 1.3 Background and Project Context

The Royal Prince Alfred (RPA) Hospital campus is located in Sydney's inner west suburb of Camperdown, within the City of Sydney Local Government Area. The campus is situated between the University of Sydney to the east and the residential area of Camperdown to the west. A north-south arterial road (Missenden Road) divides the campus into two distinct portions, known as the East and West Campuses. The northern boundary of the campus is defined by the Queen Elizabeth II Rehabilitation Centre and the southern extent of the campus is defined by Carillon Avenue.

# WEST CAMPUS

🔿 Cardno 👓 🕥 Stantec

Figure 1-1 RPA Hospital Campus

The subject area consisting of multi storey carpark is shown on Figure 1-2 below



Figure 1-2 Proposed Development Zone – West Campus

# 2 SITE DESCRIPTION

## 2.1 HLS – Multi Storey Carpark

The multistorey carpark is situated at the corner of Grose Street and Hospital Road, Camperdown. The carpark is bounded by Church Street to the west, New Hospital Road to the east, Grose Street to the north and a vacant lot to the south.

Cardno now

Stantec

The lift pit is planned to be situated at the north of the carpark building at Grose Street. Grose Street consisted of asphaltic pavement and the footpath immediately to the north of the carpark consisted of part concrete and part asphaltic pavement. There is also a garden bed between the northern boundary and the footpath.

The investigatory boreholes undertaken for the HLS lift pit are shown in **Figure 2-1** below, which are also attached in **Appendix A – Site Plan**.

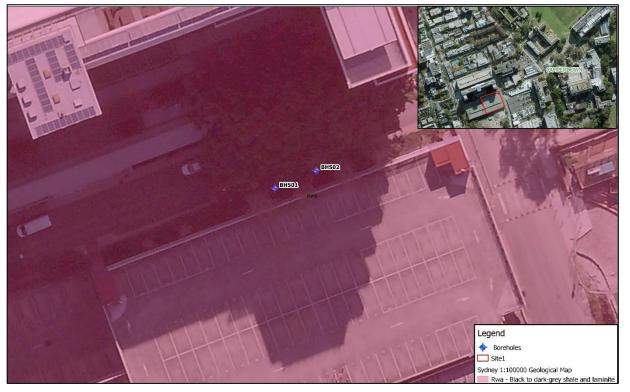



Figure 2-1 Approximate Borehole Locations within HLS Lift Pit Area

## 2.2 Topography and Drainage

#### 2.2.1 HLS – Multi Storey Carpark

Based on elevation contours shown on Enviro Screen Report (ESR) prepared by LandInsight Pty Ltd, as part of the *Enviro (Ref:* LI-02930 ESR dated 9 September 2022), the ground surface of the carpark area generally falls to the south-west with elevation levels varying from approx. RL 34 m AHD (north-west) to RL 26 m AHD (south-west). The proposed lift well locations sit at an RL of approximately 32mAHD.

No surface water bodies were observed. Drainage would likely concentrate in the stormwater infrastructure onsite.

# Cardno now



## 2.3 Regional Geology

The Sydney 1:100 000 Geological Map, Herbert C, 1983, illustrates that the area is underlain by Ashfield Shale (Rwa) of Wianamatta Group from Middle Triassic period of Mesozoic era. The map shows the site is underlain by Ashfield Shale (Rwa) which is charactered as Black to dark-grey shale and laminite.

Regional geology of the site area is also overlaid on the site plan as shown in **Figure 2-1** above.

Based on the locality of the site, there are no potential risks surrounding the building that may cause landslip risks. There is no existing landslip prone area map available for Camperdown which suggests that the site is not located within an area of known landslip occurrence. There are no natural cliff features, rock outcrop or rock shelves surrounding the site.

## 2.4 Acid Sulfate Soils and Salinity

The NSW Government Planning Industry and Environment online mapping tool, eSPADE Version 2.1, indicates that the site is not mapped as being situated within or near an ASS risk area. The nearest mapped ASS risk area is approximately 600m northwest in the vicinity of Johnstons Creek.

Previous contamination investigation carried out for the main works also suggested that there are no indicators of acid sulfate soils and salinity within the sampled soils.

# **3 INVESTIGATION WORKS**

## 3.1 Borehole Locations

The ground coordinates of test location were not picked up due to poor survey signal from weather conditions. However, based on the aerial imagery, the coordinates of the location in reference to GDA2020, Zone 56 is approximately provided below:

| Table 3-1 | Borehole | Co-ordinates |
|-----------|----------|--------------|
|           | Doronolo | 00 010110100 |

| ID    | Easting (m) | Northing (m) |
|-------|-------------|--------------|
| BH501 | 331692      | 6248591      |
| BH502 | 331699      | 6248594      |

## 3.2 Naming Convention

For fieldworks, the naming convention adopted for investigatory boreholes (BHs) was standardised in a sequential manner to provide unique identification.

> BH5xx – BH501, 502 and so on.

#### 3.2.1 Fieldwork Activities

Fieldwork for the investigation was carried out on 20<sup>th</sup>, 21<sup>st</sup> and 23<sup>rd</sup> of September 2022, comprising of the following sequence of activities;

- > A review of Dial Before You Dig (DBYD) and on-site service search;
- Drilling of two (2) boreholes (BH501 and BH502) at the proposed HLS lift pit area with a track mounted drill rig using solid flight augers with Tungsten Carbide (TC) bit and rock coring was carried out using NMLC coring techniques. These boreholes were drilled up to a depth of 14.79m below surface level (bsl);
- > Collection of disturbed soil samples for laboratory testing; and
- > Reinstatement of boreholes



All fieldworks, including logging of the subsurface profile, collection of soil samples, was undertaken by Geotechnical Engineers from Cardno. The locations of the completed geotechnical investigations are shown on the borehole location plan, attached to this report in **Appendix A – Site Plan**.

Subsurface conditions encountered are summarised in Section 4 and detailed in engineering borehole logs attached in **Appendix B** together with explanatory notes. Fieldwork was carried out in accordance with Australian Standard, AS1726-2017 '*Australian Standard - Geotechnical Investigations*'.

A breakdown of fieldwork activities is presented below:

#### 3.2.1.1 Underground Service Search

A Dial Before You Dig (DBYD) underground service search and service clearance was conducted by the Astrea Pty Ltd.

#### 3.2.1.2 Geotechnical Drilling

Investigatory drilling boreholes (BHs) were undertaken with the use of a tracked and Ute mounted rig operated by Geosense Engineering and Drilling Pty Ltd service. Boreholes were drilled vertically (90 degrees from the horizontal). Drilling through the soil and weathered rock was carried out using solid flight auger with Tungsten Carbide "TC" – bit. Deep boreholes were further advanced with NMLC coring until competent rock was reached, which ever came first. Standard penetration tests (SPT) were undertaken through the soil profile at 1.50 m intervals, proceeding from 1.5m below surface level (BSL). SPT refusal was considered where 30 blows generated less than 150mm penetration.

#### 3.2.1.3 Standard Penetration Testing (SPT)

The SPT test involves raising and dropping a 63.5kg slide hammer 760mm to drive a thick-walled sample tube through the underlying layers. The number of blows required to penetrate the sample tube across 150mm increments is measured until the tube has penetrated 450mm into the subsurface, or the hammer is bouncing, causing refusal (Blow counts > 25). SPT tests were undertaken, to assist with the assessment of in-situ soil strength parameters. The tests were performed at 1.0m – 1.5m increments until refusal was achieved. SPT tests are presented in engineering logs provided in **Appendix B**.

#### 3.2.2 Dynamic Cone Penetrometer (DCP) testing

DCP tests are carried out by driving a 16mm diameter steel rod with a 20mm diameter cone end into the ground using a standard 9kg hammer dropping 510mm. As the rod penetrates the soil, the number of blows required to penetrate each successive 100mm depth are recorded.

DCP tests were undertaken at the proposed delivery bund location, to assist with the assessment of in-situ soil strength. DCP tests are presented in separately in **Appendix B**.

## 3.3 Laboratory Testing

Samples of representative strata were recovered and returned to a NATA accredited laboratory. The following tests were carried out on selected samples:

- Two (2) samples for atterberg limits and particle size distribution testing to aid for material classification;
- > Four (4) samples for Uniaxial Compressive Strength (UCS) testing to aid for rock strength;
- > Four (4) samples to aggressivity and resistivity testing to steel and concrete; and
- > Point load strength index tests were carried out every 1 m of recovered core where defect spacing provided enough core to carry out testing.

The following labs were used:

- > Geotechnical Testing: STS Geotechnics Pty Ltd, Wetherill Park NSW
- > Chemical Testing: Eurofins, Girraween NSW.

Laboratory test certificates are included in **Appendix C** for geotechnical testing and **Appendix D** for chemical testing. Geotechnical laboratory testing was carried out in accordance with Australian Standard AS1289 'Laboratory Testing for Engineering Purposes'.





# 4 PROPOSED DEVELOPMENT

The proposed development consisted of ancillary works to the RPA Hospital West Campus, comprising:

> Temporary helicopter landing site above existing multi storey carpark;

# 5 GROUND CONDITIONS ENCOUNTERED

## 5.1 Geotechnical Units

The geotechnical units along with the material descriptions of strata encountered during borehole investigation are summarised below in **Table 5-1**. For full descriptions of the sub-surface profiles encountered, reference can be made to the borehole logs presented in **Appendix B**.

| Table 5-1 | Geotechnical Units and De                              | scriptions                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit ID   | Material Origin /<br>Formation                         | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit P    | Pavement                                               | <ul><li>Asphalt</li><li>Concrete</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unit F    | Fill                                                   | <ul> <li>Silty Sand, medium to coarse grained</li> <li>Silty CLAY: low to medium plasticity</li> <li>Stabilised Sandy Gravel</li> <li>Gravelly Sand, medium to coarse grained, grey, fine to medium, sub-<br/>angular to angular gravel</li> <li>Sand, medium to coarse grained</li> <li>Sandy Clay, medium to high plasticity, medium to coarse grained sand</li> <li>Sandy Gravel, medium to coarse grained, fine to medium grained sand</li> </ul> |
| Unit R1   | Residual                                               | <ul> <li>Silty Clay, low to high plasticity</li> <li>Gravelly Sandy Silt, low plasticity, fine to coarse grained sand, fine, angular to sub-angular gravel</li> <li>Gravelly Clay, medium plasticity</li> <li>Clayey Sandy Gravel, fine to medium, sub-angular to angular, fine to medium grained, low plascitiy clay</li> <li>Sandy Clay, low to medium plasticity</li> </ul>                                                                        |
| Unit R2   | Residual inferred as<br>Extremely<br>Weathered Bedrock | <ul> <li>Sity Clay, low to medium plascitiy, with ironstone and siltstone bands</li> <li>Gravelly Sandy Clay, medium plasticity, fine to medium grained sand, fine, sub-angular to angular siltstone and ironstone gravel</li> <li>Gravelly Clay, low plasticity</li> <li>Clayey Gravek, fine to medium gravel, low plasticity clay</li> </ul>                                                                                                        |
| Unit B    | Bedrock                                                | <ul><li>Siltstone</li><li>Interlaminated Siltstone and Sandstone</li></ul>                                                                                                                                                                                                                                                                                                                                                                            |





#### 5.1.2 Summary of Subsurface Conditions

Table 5-2 summarises the geological units and the encountered depths in each borehole.

Table 5-2 Summary of Geotechnical Units - Encountered Depth m bsl

| Borehole<br>ID | Unit P   | Unit F    | Unit R1   | Unit R2   | Unit B  | GW | TD    |
|----------------|----------|-----------|-----------|-----------|---------|----|-------|
|                |          |           | HLS       | Lift Pit  |         |    |       |
| BH501          | 0.0-0.07 | 0.20-0.70 | 0.70-4.00 | 4.00-6.20 | 6.20-TD | -  | 14.79 |
| BH502          | 0.0-0.07 | 0.20-0.0  | 0.70-2.50 | 2.50-6.80 | 6.80-TD | -  | 14.62 |

Notes:

1. Bsl = below surface level

2. Unit P = Pavement

3. Unit F = Fill

4. Unit R1 = Residual

5. Unit R2 = Extremely Weathered Siltstone

6. Unit B = Bedrock

7. GW = Groundwater Seepage

8. TD = Target Depth

## 5.2 Groundwater

Groundwater was not encountered within BH501 & BH502; however groundwater monitoring wells were installed in BH502 after the completion of borehole drilling, details are provided in contamination report.

Where groundwater is encountered, It should be noted that groundwater levels may fluctuate depending on the time of year and following periods of wet weather. Seepage may also occur along the soil / rock interface during and after periods of wet weather.

The **Table 5-3** provides a summary of the groundwater levels encountered across the testing locations during the investigatory works.

Table 5-3 Summary of Groundwater level from monitoring wells

|                         | BH ID | Groundwater Level after well development<br>(Date - m bsl) |
|-------------------------|-------|------------------------------------------------------------|
| BH502 29/09/2022 - 4.96 | BH502 | 29/09/2022 - 4.96                                          |

1. BSL = Below Surface Level

# 6 LABORATORY TEST RESULTS

A summary of laboratory test results is presented in Tables 6-1 to 6-2. The geotechnical lab results are attached in **Appendix C** and the chemical lab results are attached in **Appendix D**.

## 6.1 Soil Properties and classification

The results of material classification testing on selected samples are summarised below in Table 6-1 below:

| Table 6-1 | Soil classification lab results summary |                            |                     |                      |                            |                            |               |             |                         |  |
|-----------|-----------------------------------------|----------------------------|---------------------|----------------------|----------------------------|----------------------------|---------------|-------------|-------------------------|--|
| Hole ID   | Depth<br>(m BSL)                        | Moisture<br>Content<br>(%) | Liquid<br>Limit (%) | Plastic<br>Limit (%) | Plasticity<br>Index<br>(%) | Linear<br>Shrinkage<br>(%) | Gravel<br>(%) | Sand<br>(%) | Silt and<br>Clay<br>(%) |  |
| BH501     | 0.7-1.0                                 | 27.3                       | NT                  | NT                   | NT                         | NT                         | 0.3           | 1.7         | 98                      |  |
| BH502     | 3.0                                     | 13.5                       | 41                  | 22                   | 19                         | 9.5                        | 13.5          | 42.9        | 43.6                    |  |
| Notes:    |                                         |                            |                     |                      |                            |                            |               |             |                         |  |

🔿 Cardno 🔤 🕥 Stantec

1. NT = Not Tested

## 6.2 Chemical Properties

#### 6.2.1 Soil Aggressivity Test Results

Results of soil aggressivity tests on selected samples obtained are summarised in Table 6-2 below:

| Table 6-2 So | able 6-2 Soil Aggressivity Test results summary |                     |                         |     |                         |                     |                                                              |  |  |  |
|--------------|-------------------------------------------------|---------------------|-------------------------|-----|-------------------------|---------------------|--------------------------------------------------------------|--|--|--|
| Hole ID      | Depth<br>(m BSL)                                | Chloride<br>(mg/kg) | Conductivity<br>(µS/cm) | Hd  | Resistivity<br>(ohm.cm) | Sulphate<br>(mg/kg) | Exposure<br>Classification<br><sup>a</sup> (AS2159-<br>2009) |  |  |  |
| BH501        | 3.0                                             | <10                 | 14                      | 6.3 | 73000                   | <10                 | Non-aggressive to steel and concrete                         |  |  |  |
| BH502        | 10.21                                           | <10                 | 31                      | 6.8 | 33000                   | <10                 | Non-aggressive to steel and concrete                         |  |  |  |

Notes:

1. Based on AS 2159-2009 and groundwater condition mentioned above in Section 6.2.

## 6.3 Rock Testing

The point load test results are shown on the borehole logs attached in **Appendix B**. The summary of laboratory Uniaxial Compressive Strength (UCS) rock testing for the selected rock cores are provided in **Table 6-3** below:

| Borehole ID | Depth (m BSL) | UCS (MPa) | Dry Density<br>(t/m³) | Moisture Content<br>(%) |
|-------------|---------------|-----------|-----------------------|-------------------------|
| BH501       | 12.39         | 9.5       | 2.083                 | 3.6                     |
| BH502       | 13.25         | 15.0      | 2.504                 | 3.4                     |





# 7 GEOTECHNICAL ASSESSMENT

## 7.1 Subsurface Conditions / Geology

The general ground conditions encountered on site have been discussed in **Section 5** of this report. In summary the ground condition encountered are relatively similar comprising asphaltic pavement overlying fill, overlying extremely weathered siltstone bedrock. From the investigation undertaken on site, the subsurface ground profile was generally consistent with the geology maps.

## 7.2 Earthworks

#### 7.2.1 Site Preparation

The following sections provide advice on preparation, formation and unsuitable materials. The relevant earthworks standards referred to as a basis for design considerations and recommendations include:

- > AS3798-2007 'Guidelines on Earthworks for Commercial and Residential Developments'.
- > Safe Work Australia Excavation Work Code of Practice

Prior to bulk earthworks, the site shall be cleared of any foreign matter or unsuitable material which includes but may not be limited to the following:

- Vegetation or organic matter including root balls of any larger trees onsite;
- Topsoil or soil significantly affected by roots or root fibres;
- Any scattered waste or dumped materials;
- Uncontrolled filling which may be subject to further assessment;
- Loose or low strength (soft to firm) soils or otherwise 'unsuitable' soils; or
- Expansive soils.

An erosion and sediment control plan should be implemented before commencing any earthworks for the proposed development.

#### 7.2.2 Excavation Conditions

When considering excavation at any of the sites, the findings and recommendations presented in the Contamination Assessment report should also be considered.

Shallow / deep excavation will be required for lift pit foundation and it is recommended that construction contractors assess the engineering logs, core photographs and rock cores to make their own assessment of excavation plant and production rates. The recommendations presented below are preliminary only and based on the geotechnical information across the site.

Assessment of material excavatability can be based on the method published by Pettifer and Fookes (1994). The degree of excavatability of rock is based on its Point Load Index (Is50) and fracture spacing.

Excavatability categories range from easy to hard digging, through easy to hard ripping, to blasting.



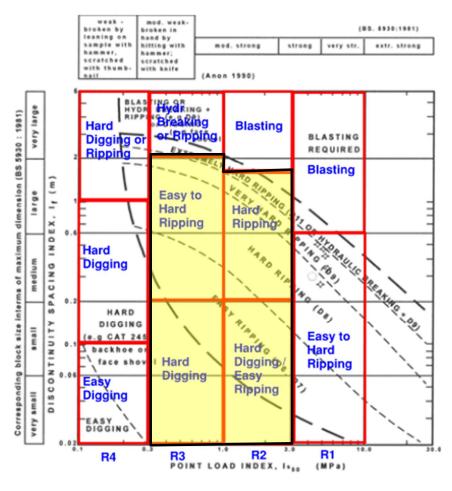



Figure 7-1 Zoning of excavatability based on Pettifer and Fookes (1994)

Examination of **Figure 7-1** shows that the excavatability zones are delineated according to rock strength categories (R4-low strength, R3-medium strength, R2-high strength, R1-very high strength), and further subdivided based on the defect spacing of the rock.

Our review of the borehole logs indicates that bedrock conditions encountered were generally moderately strong with defect spacing in the order of 5mm - 750mm. It is therefore expected that excavatability would classify as:

- > hard digging to easy ripping conditions and;
- > hard ripping in Class III to Class V Siltstone

## 7.3 Geotechnical Parameters

Geotechnical parameters relevant for the development have been developed based on available geotechnical information obtained to date for the project, published data and our experience of materials of similar nature and history on projects within Sydney region.

The design values derived are generally obtained from statistical analyses of project specific in-situ and laboratory test results. The values are representative of the properties of the material in its current condition. Where there are insufficient in-situ or laboratory tests, empirical correlations are used.

When project specific in-situ and laboratory tests, or empirical correlations are not applicable or not available, design values are then chosen with due consideration of relevant experience from past projects and the application of engineering judgement.

## Cardno now



#### 7.3.1 Soil Classification

No geotechnical parameters have been assigned to manmade fill layers due to potential variability. Relative density/consistency of natural granular/cohesive layers, if any, shall be assessed based on SPT N values.

| Table 7-1 Material Strength Parameters |  |
|----------------------------------------|--|
|----------------------------------------|--|

| Material                    | g<br>(kN/m³) | C <sub>u</sub><br>(kPa) | c' (kPa) | φ' (°) | E'<br>(MPa) | n'   | Ka   | Kp   |
|-----------------------------|--------------|-------------------------|----------|--------|-------------|------|------|------|
| Fill                        | N/A          | N/A                     | N/A      | N/A    | N/A         | N/A  | N/A  | N/A  |
| CLAY (Stiff)                | 19           | 50                      | 2        | 26     | 8           | 0.35 | 0.39 | 2.56 |
| CLAY (Very Stiff)           | 20           | 100                     | 5        | 28     | 15          | 0.35 | 0.36 | 2.77 |
| CLAY (Hard)                 | 21           | 200                     | 10       | 28     | 30          | 0.3  | 0.36 | 2.77 |
| GRAVEL (Dense - Very Dense) | 20           | -                       | 0        | 36     | 60          | 0.3  | 0.26 | 3.85 |
| Siltstone Class V           | 22           | -                       | 10       | 29     | 100         | 0.3  | 0.34 | 2.88 |
| Siltstone Class IV          | 23           | -                       | 25       | 30     | 300         | 0.3  | 0.33 | 3.00 |
| Siltstone Class III         | 23           | -                       | 100      | 32     | 600         | 0.2  | -    | -    |

Notes:

g: Unit Weight

cu: Undrained Shear Strength

c': Drained Shear Strength  $K_a$ : Active Earth Pressure

E': Elastic Modulus

φ': Internal Friction Angle

n': Poisson's ratio

K<sub>p</sub>: Passive Earth Pressure

N/A = No geotechnical parameters have been assigned to fill layers due to potential variability.

#### 7.3.2 Rock Classification

The classification of Siltstone bedrock (inferred as Shale) encountered on site is summarised in accordance with **Table 7-2** which are extracted from current Pells et al (2019) publication "Classification of Sandstones and Shales in the Sydney Region: A Forty Year Review".

| Rock Mass Classification | Unconfined Compressive<br>Strength qս(MPa) | Defect Spacing | Allowable Seams |
|--------------------------|--------------------------------------------|----------------|-----------------|
| I                        | >16                                        | >600           | <2%             |
| II                       | >7                                         | >200           | <4%             |
| III                      | >2                                         | >60            | <8%             |
| IV                       | >1                                         | >20            | <25%            |
| V                        | >1                                         | N/A            | N/A             |

Considering the classification system, and UCS and point load testing, the rock classification for each borehole is summarised in the **Table 7-3** below:

 Table 7-3
 Classification of Rock at Borehole Locations

| BH ID | BH ID Depth from BSL (m) |      | Rock Classification |
|-------|--------------------------|------|---------------------|
| BH501 | 6.50 - 8.40              | 1.90 | Siltstone Class IV  |
| BH501 | 8.40 – 14.79             | 6.39 | Siltstone Class III |
| BH502 | 9.80 -10.06              | 0.26 | Siltstone Class V   |





| BH502 | 10.06 – 11.00 | 0.94 | Siltstone Class IV  |
|-------|---------------|------|---------------------|
| BH502 | 11.00 – 14.62 | 3.62 | Siltstone Class III |

Note:

The above classification considers rock substance strength, defect spacing, and allowable seams as required by Pells et al (2019). Thereby, a portion of rock mass not meeting an upper class is placed at the next lower class where all three factors are satisfied. A strata of rock is subjected to all three factors in general and combining thin layers of different class into a thick stratum using engineering judgement. The Designer shall review the borehole logs and core photographs to assess the potential impacts of thin layers combined in thicker layers. This is particularly true for end bearing piles which shall be checked not to be adversely impacted by weak/ highly fractured bands of rock below the designed pile toe level.

## 7.4 Foundation Options

Shallow / deep foundations would be suitable for lift pit, subject to loading conditions. Parameters for both shallow and deep footing options are provided below.

#### 7.4.1 Shallow / Pad Footings

Due to the unknown loads and footing systems, no specified allowable bearing capacities can be determined at this time. Once specific loadings have been ascertained, Cardno can assist to optimise the footing size and depth to suit the loading on the founding material. Bearing capacity of footings in soil needs to be subjected to geotechnical checking considering footing size, depth, slope (ground surface and/or footing base) and loadings (i.e. bearing capacity is not a soil property but is dependent of footing size, depth, slope and loadings). A footing subjected to pull out forces will require further geotechnical assessment in addition to bearing capacity, overturning and sliding.

Conventional shallow footings designed in accordance with engineering principles and nominally embedded 0.5m into the design founding material, may be proportioned on the following ultimate end-bearing pressures, summarised in **Table 7-4** below:

| Table 7-4 | Shallow / Pad Footing Design Parameters |
|-----------|-----------------------------------------|
|-----------|-----------------------------------------|

| Founding Material | Area (m) | Ultimate Bearing Capacity (kPa) |
|-------------------|----------|---------------------------------|
| CLAY – Stiff      | 1 x 1    | 300                             |
| CLAY – Very Stiff | 1 x 1    | 500                             |
| CLAY – Hard       | 1 x 1    | 750                             |

Note:

1. Ultimate bearing capacity tabulated above assuming eccentricity of 1/6 x footing width.

2. Horizontal ground is assumed

3. Consideration of Section 6.3 should be considered, prior to selection of founding level.

4. The settlement for shallow footings depends upon the loading conditions, footing size and foundation material, but it should be less than 1% of the footing width if proportioned on the basis of above parameters.

5. A minimum geotechnical strength reduction factor Øg of 0.4 can be applied for the allowable design values.

## 7.4.2 Deep Foundations

The proposed structures are recommended to be founded on piles that transfer the column loads to more suitable founding strata at depth below the sites. The type of pile will depend on the specific ground and groundwater conditions and relative cost. For the purposes of pile design, the parameters shown in **Table 7-5** may be used. However, if bored piles are adopted, the base of the piles must be inspected during construction to ensure that material of adequate capacity supports each pile.





| Class               | Serviceability End<br>bearing (MPa) | Ultimate Shaft adhesion <sup>1</sup><br>(kPa) | Typical Efield (MPa) |
|---------------------|-------------------------------------|-----------------------------------------------|----------------------|
| Siltstone Class III | 3.5                                 | 350                                           | 600                  |
| Siltstone Class IV  | 1                                   | 150                                           | 300                  |
| Siltstone Class V   | 0.7                                 | 50                                            | 100                  |

#### Table 7-5 Pile Design Parameters (Based on Pells 2019)

Note:

- 1. Clean Sockets for roughness category R2 or better is required.
- 2. Horizontal ground is assumed

3. The settlement for shallow footings depends upon the loading conditions, footing size and foundation material, but it should be less than 1% of the footing width if proportioned on the basis of above parameters

#### Further Discussions for Pile Footings

- Where the design is dependent upon end bearing resistance, piles must extend at least 0.5m into the founding stratum to develop full design end bearing.
- > The base of the piles must be inspected during construction to ensure that material of adequate capacity supports each pile.
- > In accordance with the requirements of AS2159-2009, a geotechnical reduction factor is to be applied to the ultimate geotechnical strength to obtain the design geotechnical strength. We have determined that an average risk rating ARR=3.07 (corresponding to a moderate overall risk category) and a geotechnical reduction factor  $\phi g = 0.48$  can be adopted for this project. This is based on the following assumptions:
  - Detailed level of construction control is required with professional geotechnical supervision, construction processes that are well established and relatively straightforward;
  - No performance monitoring of the supported structure during and after construction is proposed;
  - Table 7-6 below gives an option table for the proposed deep foundations that can be adopted across the subject site, discussion and comments being noted;

| Table 7-6 | Deep | Foundation | Options |
|-----------|------|------------|---------|
|-----------|------|------------|---------|

| Wall Type   | Advantages                                                                                                                                                      | Disadvantages                                                                                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Bored Piles | <ul><li>&gt; Quiet / No Vibration</li><li>&gt; Greater lengths can be installed</li></ul>                                                                       | <ul> <li>Requires the use of liners and possible<br/>slurry.</li> <li>Requires additional plant (cranes, etc)</li> </ul>         |
| CFA Piles   | <ul> <li>&gt; Low Noise / vibration</li> <li>&gt; No need for casing due to<br/>sloughing/seepage</li> <li>&gt; Faster productivity than bored piles</li> </ul> | <ul> <li>A higher waste of concrete than<br/>traditional bored piles</li> <li>Requires additional plant (Cranes, etc)</li> </ul> |

# 8 CONSTRUCTION INSPECTION

It is recommended that placement of all structural fill and footing excavations be inspected, tested, and certified where necessary, by a suitably qualified geotechnical engineer to ensure recommendations made in this report have been addressed. Should subsurface conditions other than those described in this report be encountered, Cardno should be consulted immediately, and appropriate modifications developed and implemented if necessary.

# 



# 9 **REFERENCES**

- [1] Design Guidance Note No. 030, Rev C, Issue date: 30 May 2018, by NSW Health Infrastructure
- [2] Pells et al (2019) "Classification of Sandstone and Shales in the Sydney Region: A Forty Year Review". Issue date: August 2020, by Pells et al.
- [3[4] AS 1170.4 "Structural Design Actions, Part 4: Earthquake Actions in Australia", 2007, by Australian Standard
- [5] AS 1726-2017 "Geotechnical Site Investigation", 2017, by Australian Standard
- [6] AS 2159-2009 "Piling Design and Installation", 2009, by Australian Standard
- [7] AS 2870-2011 "Residential Slabs and Footing", 2011, by Australian Standard
- [8] AS 3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments", 2007, by Australian Standard

# 10 CLOSURE

We appreciate the opportunity to work collaboratively with you on this project. Our team looks forward to

bringing our high level of expertise to deliver successful outcomes in your future projects.

Your attention is drawn to the appended document titled "*Important Information about this Geotechnical Report*". This document is intended to clarify to the reader what the realistic expectations of this report should be, and what is the correct use of the document. Misinterpretation of geotechnical information presents significant risk to projects: The document includes a discussion on general limitations of geotechnical services, which by nature, are based extensively on opinion and judgement.

The statements included in this document are not intended to be exculpatory clauses or to reduce the general responsibility accepted by Cardno, but rather to identify where Cardno and our Client's responsibilities lie. The statements ensure that all parties that may rely on the report are aware of their respective responsibilities.

For further enquiries, please do not hesitate to contact Cardno on the information supplied.

# 11 LIMITATION

The geotechnical comments and recommendations are provided based on the existing geotechnical report. Prepared by DP. Cardno will not be held responsible if the data provided in DP's report do not resemble with the current site conditions.

Yours sincerely,


Bikesh Deoju Experienced Geotechnical Engineer for Cardno Direct Line: 0413 793 226 Email: bikesh.deoju@cardno.com.au Reviewed by

Liam Hutton Senior Principal for Cardno Direct Line: 0488 100238 Email: liam.hutton@cardno.com.au

Enc: Appendix A – Site Plan Appendix B – Borehole Logs with Explanatory Notes Appendix C – Geotechnical Laboratory Test Results Appendix D – Chemical Laboratory Test Results Appendix E – Important Information



# Appendix A – Site Plan









Appendix B – Borehole Logs with Explanatory Notes



# **Explanatory Notes**

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

| Method             |                                         |
|--------------------|-----------------------------------------|
| Test Pitting: exc  | avation/trench                          |
| BH                 | Backhoe bucket                          |
| EX                 | Excavator bucket                        |
| R                  | Ripper                                  |
| Н                  | Hydraulic Hammer                        |
| Х                  | Existing excavation                     |
| Ν                  | Natural exposure                        |
| Manual drilling: I | hand operated tools                     |
| HA                 | Hand Auger                              |
| Continuous sam     | ple drilling                            |
| PT                 | Push tube                               |
| PS                 | Percussion sampling                     |
| SON                | Sonic drilling                          |
| Hammer drilling    |                                         |
| AH                 | Air hammer                              |
| AT                 | Air track                               |
| Spiral flight auge | er drilling                             |
| AS                 | Auger screwing                          |
| AD/V               | Continuous flight auger: V-bit          |
| AD/T               | Continuous spiral flight auger: TC-Bit  |
| HFA                | Continuous hollow flight auger          |
| Rotary non-core    | drilling                                |
| WB                 | Washbore drilling                       |
| RR                 | Rock roller                             |
| Rotary core drilli | ing                                     |
| PQ                 | 85mm core (wire line core barrel)       |
| HQ                 | 63.5mm core (wire line core barrel)     |
| NMLC               | 51.94mm core (conventional core barrel) |
| NQ                 | 47.6mm core (wire line core barrel)     |
| DT                 | Diatube (concrete coring)               |

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method Soil sampling В Bulk disturbed sample D Disturbed sample С Core sample ES Environmental soil sample SPT Standard Penetration Test sample U Thin wall tube 'undisturbed' sample Water sampling WS Environmental water sample

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

|--|

| SPT       | Standar                   | d Penetration Test                |
|-----------|---------------------------|-----------------------------------|
| HP/PP     | Hand/Po                   | ocket Penetrometer                |
| Dynamic F | Penetrome                 | eters (blows per noted increment) |
|           | DCP                       | Dynamic Cone Penetrometer         |
|           | PSP                       | Perth Sand Penetrometer           |
| MC        | Moisture Content          |                                   |
| VS        | Vane Shear                |                                   |
| PBT       | Plate Bearing Test        |                                   |
| IMP       | Borehole Impression Test  |                                   |
| PID       | Photo Ionization Detector |                                   |

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

| Rock q | Rock quality description                                                                 |  |  |
|--------|------------------------------------------------------------------------------------------|--|--|
| TCR    | Total Core Recovery (%)                                                                  |  |  |
|        | (length of core recovered divided by the length of core run)                             |  |  |
| RQD    | Rock Quality Designation (%)                                                             |  |  |
|        | (sum of axial lengths of core greater than 100mm long divided by the length of core run) |  |  |
|        |                                                                                          |  |  |

Notes on groundwater conditions encountered may include.

| Groundwater     |                                      |
|-----------------|--------------------------------------|
| Not Encountered | Excavation is dry in the short term  |
| Not Observed    | Water level observation not possible |
| Seepage         | Water seeping into hole              |
| Inflow          | Water flowing/flooding into hole     |

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

| Excavation conditions |                                                                 |  |
|-----------------------|-----------------------------------------------------------------|--|
| Stable                | No obvious/gross short term instability noted                   |  |
| Spalling              | Material falling into excavation (minor/major)                  |  |
| Unstable              | Collapse of the majority, or one or more face of the excavation |  |



# Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

| Soil Classification |        | Particle Size (mm) |
|---------------------|--------|--------------------|
| CLAY                |        | < 0.002            |
| SILT                |        | 0.002 0.075        |
| SAND                | fine   | 0.075 to 0.21      |
|                     | medium | 0.21 to 0.6        |
|                     | coarse | 0.6 to 2.36        |
| GRAVEL              | fine   | 2.36 to 6.7        |
|                     | medium | 6.7 to 19          |
|                     | coarse | 19 to 63           |
| COBBLES             |        | 63 to 200          |
| BOULDERS            |        | > 200              |

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

| Terminology | In coarse grained soils |          | In fine soils |
|-------------|-------------------------|----------|---------------|
| reminology  | % fines                 | % coarse | % coarse      |
| Trace       | ≤5                      | ≤15      | ≤15           |
| With        | >5, ≤12                 | >15, ≤30 | >15, ≤30      |

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

| Strength   | Symbol | Undrained shear strength |
|------------|--------|--------------------------|
| Very Soft  | VS     | ≤12kPa                   |
| Soft       | S      | 12kPa to ≤25kPa          |
| Firm       | F      | 25kPa to ≤50kPa          |
| Stiff      | St     | 50kPa to ≤100kPa         |
| Very Stiff | VSt    | 100kPa to ≤200kPa        |
| Hard       | Н      | >200kPa                  |

Cohesionless soils are classified on the basis of relative density as follows.

| Relative Density | Symbol | Density Index |
|------------------|--------|---------------|
| Very Loose       | VL     | <15%          |
| Loose            | L      | 15% to ≤35%   |
| Medium Dense     | MD     | 35% to ≤65%   |
| Dense            | D      | 65% to ≤85%   |
| Very Dense       | VD     | >85%          |

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

| Plasticity        | Silt LL | Clay LL     |
|-------------------|---------|-------------|
| Low plasticity    | ≤ 35%   | ≤ 35%       |
| Medium plasticity | N/A     | > 35% ≤ 50% |
| High plasticity   | > 50%   | > 50%       |

The moisture condition of soil (*w*) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

| Moistu | Moisture condition and description                                                                                                     |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Dry    | Cohesive soils: hard, friable, dry of plastic limit.<br>Granular soils: cohesionless and free-running                                  |  |  |
| Moist  | Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere                                            |  |  |
| Wet    | Cool feel and darkened colour: Cohesive soils<br>usually weakened and free water forms when<br>handling. Granular soils tend to cohere |  |  |

The structure of the soil may be described as follows.

| Zoning | Description                               |
|--------|-------------------------------------------|
| Layer  | Continuous across exposure or sample      |
| Lens   | Discontinuous layer (lenticular shape)    |
| Pocket | Irregular inclusion of different material |

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

| Soil origin and description        |                                                                                                                                          |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fill                               | Anthropogenic deposits or disturbed material                                                                                             |  |
| Topsoil                            | Zone of soil affected by roots and root fibres                                                                                           |  |
| Peat                               | Significantly organic soils                                                                                                              |  |
| Colluvial                          | Transported down slopes by gravity/water                                                                                                 |  |
| Aeolian                            | Transported and deposited by wind                                                                                                        |  |
| Alluvial                           | Deposited by rivers                                                                                                                      |  |
| Estuarine                          | Deposited in coastal estuaries                                                                                                           |  |
| Lacustrine                         | Deposited in freshwater lakes                                                                                                            |  |
| Marine                             | Deposits in marine environments                                                                                                          |  |
| Residual<br>soil                   | Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident                                               |  |
| Extremely<br>weathered<br>material | Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties |  |

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used



# Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

| Rock type   | Groups                                                                                    |
|-------------|-------------------------------------------------------------------------------------------|
| Sedimentary | Deposited, carbonate (porous or non), volcanic ejection                                   |
| Igneous     | Felsic (much quartz, pale), Intermediate,<br>or mafic (little quartz, dark)               |
| Metamorphic | Foliated or non-foliated                                                                  |
| Duricrust   | Cementing minerology (iron oxides or<br>hydroxides, silica, calcium carbonate,<br>gypsum) |

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

| Term and sy             | /mbol | Definition                                                                                                                                                                                                                                      |
|-------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residual<br>Soil        | RS    | Soil developed on rock with the mass structure and substance of the parent rock no longer evident                                                                                                                                               |
| Extremely weathered     | XW    | Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident                                                                                                                                |
| Distinctly<br>weathered | DW    | The strength is usually changed and<br>may be highly discoloured. Porosity<br>may be increased by leaching, or<br>decreased due to deposition in<br>pores. May be distinguished into MW<br>(Moderately Weathered) and HW<br>(Highly Weathered). |
| Slightly<br>weathered   | SW    | Slightly discoloured; little or no<br>change of strength from fresh rock                                                                                                                                                                        |
| Fresh Rock              | FR    | The rock shows no sign of decomposition or staining                                                                                                                                                                                             |

The rock material strength can be defined based on the point load index as follows.

| Term and symbo | bl | Point Load Index I₅50<br>(MPa) |
|----------------|----|--------------------------------|
| Very Low       | VL | 0.03 to 0.1                    |
| Low            | L  | 0.1 to 0.3                     |
| Medium         | Μ  | 0.3 to 1.0                     |
| High           | Н  | 1.0 to 3                       |
| Very High      | VH | 3 to 10                        |
| Extremely High | EH | > 10                           |

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

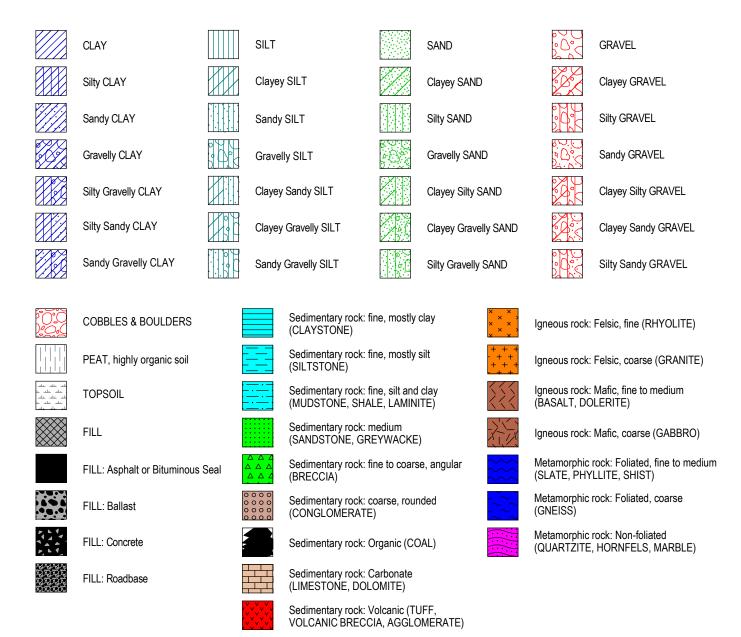
The defect spacing measured normal to defects of the same set or bedding, is described as follows.

| Definition          | Defect Spacing (mm) |
|---------------------|---------------------|
| Thinly laminated    | < 6                 |
| Laminated           | 6 to 20             |
| Very thinly bedded  | 20 to 60            |
| Thinly bedded       | 60 to 200           |
| Medium bedded       | 200 to 600          |
| Thickly bedded      | 600 to 2000         |
| Very thickly bedded | > 2000              |

Terms for describing rock and defects are as follows.

| Defect Terms    |    |                |    |
|-----------------|----|----------------|----|
| Joint           | JT | Sheared zone   | SZ |
| Bedding Parting | BP | Seam           | SM |
| Foliation       | FL | Vein           | VN |
| Cleavage        | CL | Drill Lift     | DL |
| Crushed Seam    | CS | Handling Break | HB |
| Fracture Zone   | FZ | Drilling Break | DB |

The shape and roughness of defects in the rock mass are described using the following terms.


| Planarity     |     | Roughness    |     |
|---------------|-----|--------------|-----|
| Planar        | PR  | Very Rough   | VR  |
| Curved        | CU  | Rough        | RF  |
| Undulose      | UN  | Smooth       | S   |
| Irregular     | IR  | Slickensided | SL  |
| Stepped       | ST  | Polished     | POL |
| Discontinuous | DIS |              |     |

The coating or infill associated with defects in the rock mass are described as follows.

| Infill and Coating | J   |                        |
|--------------------|-----|------------------------|
| Clean              | CN  |                        |
| Stained            | SN  |                        |
| Carbonaceous       | Х   |                        |
| Minerals           | MU  | Unidentified mineral   |
|                    | MS  | Secondary mineral      |
|                    | KT  | Chlorite               |
|                    | CA  | Calcite                |
|                    | Fe  | Iron Oxide             |
|                    | Qz  | Quartz                 |
| Veneer             | VNR | Thin or patchy coating |
| Coating            | СТ  | Infill up to 1mm       |




# Graphic Symbols Index



| Clie                                                             |                                                                                                                              |                                                                                                   | Healt                                                                                      | <b>dino</b> °<br>h Infrastruc                  |                                                                                                                                     |                                                           |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В                                                                  |                                    | HOLE LOG SHEET                    |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|-----------------------------------|--|--|--|--|
|                                                                  | ject:<br>atio                                                                                                                |                                                                                                   |                                                                                            | West Camp<br>Lift Pit                          | us                                                                                                                                  |                                                           |                |                  | Job No: 304100230                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                    | Sheet: 1 of 3                     |  |  |  |  |
|                                                                  |                                                                                                                              |                                                                                                   | 81693                                                                                      | 3.701 N62485                                   | 592.203 56                                                                                                                          | GDA2                                                      | )20            |                  | Angle from Horizontal: 90°                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | Surfac                             | e Elevation:                      |  |  |  |  |
| Rig                                                              | Тур                                                                                                                          | e: G                                                                                              | eo20                                                                                       | 5                                              |                                                                                                                                     |                                                           |                |                  | Mounting: Track                                                                                                                                                                                                                                                                                                                                                                                                                                  | [                                                                  | Driller:                           | MT                                |  |  |  |  |
| Cas                                                              | ing                                                                                                                          | Diam                                                                                              | eter:                                                                                      |                                                |                                                                                                                                     |                                                           |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contractor: Geosense                                               |                                    |                                   |  |  |  |  |
|                                                                  |                                                                                                                              | arted                                                                                             | 20/9                                                                                       |                                                | Date Com                                                                                                                            | pleteo                                                    | 1: 20/9        | /22              | Logged By: BD                                                                                                                                                                                                                                                                                                                                                                                                                                    | Checked By: DD                                                     |                                    |                                   |  |  |  |  |
|                                                                  | Drillin                                                                                                                      | ig                                                                                                | -                                                                                          | Sampling                                       | & Testing                                                                                                                           |                                                           |                |                  | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                    |                                   |  |  |  |  |
| Method                                                           | Resistance                                                                                                                   | Casing                                                                                            | Water                                                                                      |                                                | ple or<br>I Test                                                                                                                    | Depth (m)                                                 | Graphic<br>Log | Classification   | SOIL TYPE, plasticity or particle characteristic,<br>colour, secondary and minor components<br>ROCK TYPE, grain size and type, colour,<br>fabric & texture, strength, weathering,<br>defects and structure                                                                                                                                                                                                                                       | Moisture<br>Condition                                              | Consistency<br>Relative<br>Density | STRUCTURE<br>& Other Observations |  |  |  |  |
| A-H-A                                                            | -                                                                                                                            |                                                                                                   |                                                                                            | D 0.70 - 1.00 m                                | 1                                                                                                                                   | -                                                         |                |                  | ASPHALT     ASPHALT     ASPHALT     Support full: Silty SAND: medium to coarse grained, dark //     brown, trace fine sub-angular to angular gravel /     FILL: Silty CLAY: low to medium plasticity, brown,     dark brown, orange mottled pale grey, trace     o.70m rootlets (organic matter), trace fine sub-angular to     angular gravel     Silty CLAY: medium plasticity, grey mottled     1.00m orange, trace rootlets (organic matter) | <u>M</u>                                                           |                                    | PAVEMENT<br>FILL<br>RESIDUAL SOIL |  |  |  |  |
|                                                                  | E-F                                                                                                                          |                                                                                                   |                                                                                            | SPT 1.50 - 1.95<br>5, 6, 10 N=16               |                                                                                                                                     |                                                           |                | CI               | Same as above but colour change to grey and low to medium plasticity                                                                                                                                                                                                                                                                                                                                                                             | M (≈PL)                                                            | St                                 |                                   |  |  |  |  |
|                                                                  | F-H                                                                                                                          |                                                                                                   | t Observed                                                                                 |                                                |                                                                                                                                     | -<br>-<br>-<br>-3                                         | 0.000          | ML               | 2.50m<br>Gravelly Sandy SILT: low plasticity, grey, reddish<br>brown, fine to coarse grained sand, fine grained,<br>angular to sub-angular gravel, with low plasticity<br>clay<br>3.00m                                                                                                                                                                                                                                                          | to M<br>( <pl)< td=""><td>н</td><td>-</td></pl)<>                  | н                                  | -                                 |  |  |  |  |
| AD/T                                                             | E-F                                                                                                                          |                                                                                                   | Groundwater Not Observed                                                                   | ES 3.00 m<br>SPT 3.00 - 3.45<br>5, 10, 13 N=23 | - 3.45 m                                                                                                                            |                                                           | -4             | CL               | Silty CLAY: low plasticity, grey                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | VSt                                |                                   |  |  |  |  |
|                                                                  | F-H                                                                                                                          | -                                                                                                 |                                                                                            | SPT 4.50 - 4.80 m<br>7, 23 HB N=R              |                                                                                                                                     | -4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                | CL-<br>CI        | <ul> <li>4.00m</li> <li>Sitty CLAY: low to medium plasticity, grey mottled reddish brown, trace fine to medium grained sand, trace fine angular to sub-angular, ironstone and siltstone gravel gravel</li> <li>4.5-4.8: with reddish brown ironstone / siltstone bands</li> </ul>                                                                                                                                                                | -<br>M ( <pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<> | н                                  | EXTREMELY WEATHERED               |  |  |  |  |
| V                                                                | н                                                                                                                            |                                                                                                   |                                                                                            | SPT 6.00 - 6.32<br>2, 10, 3/20mm               |                                                                                                                                     | -<br>-<br>-<br>-<br>-                                     |                |                  | 6.20m<br>SILTSTONE: grey, brown, highly weathered, very<br>low strength                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                    | BEDROCK                           |  |  |  |  |
|                                                                  |                                                                                                                              |                                                                                                   |                                                                                            |                                                |                                                                                                                                     | -<br>- 7<br>-<br>-<br>-                                   |                |                  | Continued as Cored Drill Hole                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |                                    |                                   |  |  |  |  |
| ME<br>EX<br>HA<br>PTC<br>AH<br>PSC<br>AD<br>AD<br>HF<br>WE<br>RF | R<br>Pi<br>N<br>Si<br>Si<br>V<br>Si<br>Si<br>V<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si | xcavato<br>ipper<br>and au<br>ush tub<br>onic dri<br>ir hamn<br>ercussi<br>hort spi<br>olid fligi | ger<br>e<br>lling<br>ner<br>on sam<br>ral auge<br>nt auge<br>nt auge<br>ght aug<br>ght aug | pler<br>er<br>r: V-Bit<br>r: TC-Bit<br>ger     | PENETRATION<br>VE Very Easy (N<br>E Easy<br>F Firm<br>H Hard<br>VH Very Hard (F<br>WATER<br>Water L<br>Shown<br>Water in<br>Water o | Refusal)<br>_evel on<br>ıflow                             |                | S<br>F<br>F<br>F | IP     -     Hand/Pocket Penetrometer       ICP     -     Dynamic Cone Penetrometer       ISP     -     Perth Sand Penetrometer       IC     -     Moisture Content       IBT     -     Plate Bearing Test       IID     -     Photoionisation Detector       ID     -     Photoionisation Detector       ISS     -     Vane Shear; P=Peak,                                                                                                      | ist<br>t<br>stic limit                                             | mple<br>al sample<br>ə 'undistu    | S - Soft<br>F - Firm              |  |  |  |  |
|                                                                  |                                                                                                                              |                                                                                                   |                                                                                            | or details of<br>lescriptions                  |                                                                                                                                     |                                                           | CAR            |                  | NO (NSW/ACT) PTY LTD                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                    | 1                                 |  |  |  |  |

|                                                                                                                                                                                        |                                                                                        | <b>C</b>                                                                                          | arc                                                                                                         | Ino                                                           | 8                   |                                                                            |                                                                                                                                             |                                                         |                                                                              |                                                                                                                                                                                       |                                                                                               |                                                                                       | CORE LOG SHEET                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                        | ient:<br>oject:                                                                        |                                                                                                   |                                                                                                             |                                                               | astruc<br>Camp      |                                                                            |                                                                                                                                             |                                                         |                                                                              |                                                                                                                                                                                       |                                                                                               |                                                                                       | Hole No: BH501                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Lo                                                                                                                                                                                     | catio                                                                                  | n: I                                                                                              | HLSI                                                                                                        | Lift Pi                                                       | t.                  |                                                                            |                                                                                                                                             | Job No:                                                 |                                                                              |                                                                                                                                                                                       |                                                                                               |                                                                                       | Sheet: 2 of 3                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                        | ositior<br>g Typ                                                                       |                                                                                                   |                                                                                                             |                                                               | N6248               | 592.20                                                                     | 3 56 GDA2020                                                                                                                                | Angle fr<br>Mountin                                     |                                                                              | orizontal: 90<br>ack                                                                                                                                                                  |                                                                                               |                                                                                       | rface Elevation:<br>iller: MT                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                        | asing                                                                                  |                                                                                                   |                                                                                                             |                                                               |                     | Bit                                                                        | Type: Diamond                                                                                                                               |                                                         | Contractor: Geosense                                                         |                                                                                                                                                                                       |                                                                                               |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Di                                                                                                                                                                                     | ata Sta                                                                                | arted:                                                                                            | 20/9                                                                                                        | /22                                                           |                     | Date                                                                       | e Completed: 20/9/22                                                                                                                        | Logged                                                  | Checked By: DD                                                               |                                                                                                                                                                                       |                                                                                               |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                                                                                                                                        | Co                                                                                     | oring                                                                                             |                                                                                                             | â                                                             |                     |                                                                            |                                                                                                                                             | escription                                              |                                                                              |                                                                                                                                                                                       |                                                                                               |                                                                                       | Defect Description                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Method                                                                                                                                                                                 | Fluid                                                                                  | TCR (%)                                                                                           | RQD (%)                                                                                                     | RL (m AHD)                                                    | Depth (m)           | Graphic<br>Log                                                             | SOIL TYPE, plasticity<br>characteristic, colour,<br>& minor compon<br>ROCK NAME, grain siz<br>colour, fabric and t<br>inclusions & minor co | secondary<br>ients<br>e and type,<br>exture,            | Weathering                                                                   | Estimated<br>Strength<br>Is <sub>(50)</sub> MPa<br>• Axial O - Diametral                                                                                                              | Average<br>Natural<br>Defect<br>Spacing<br>(mm)<br>R & R & S & R                              | Visual                                                                                | Additional Data<br>DEFECT TYPE, orientation,<br>shape, roughness, infilling<br>or coating, thickness, other                                                                                                                                                                                                                                                                                             |  |  |  |  |
| CARDNO 2.016 LIB - COPY GLB Log CARDNO CORED BOREHOLE 304100230 HLS LIFT PTL GPV <cdrawingfile>&gt; 05/10/2022 11:49 10.02.00.04 Dagel AGS RTA, Photo, Monitoring Tools</cdrawingfile> |                                                                                        |                                                                                                   |                                                                                                             |                                                               |                     |                                                                            | 6.50m START CORING AT 6.50m                                                                                                                 |                                                         |                                                                              |                                                                                                                                                                                       |                                                                                               |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| ORED BOREHOLE 304100230 HLS LIFT                                                                                                                                                       | 5% Water LOSS                                                                          | 100                                                                                               | 35                                                                                                          |                                                               | - 7<br>- 7<br>-     |                                                                            | SILTSTONE, dark grey, indi<br>with fine grained, light grey s<br>with occassional iron stainin                                              | sandstone at 0- 5°                                      | HW                                                                           |                                                                                                                                                                                       |                                                                                               |                                                                                       | 6.55 m: BP, 0°, PR, S, CN<br>6.61 m: SM, 5 mm<br>6.62 - 6.72 m: JT, 80 - 90°, UN, RF, SN<br>6.75 m: JT, 60°, CU, C<br>6.80 m: BB<br>6.83 m: BP, 5°, PR, RF, SN<br>6.88 m: BP, 5°, ST, S, CT<br>6.96 m: SMGravely Clay, 10 mm<br>7.04 m: DB<br>7.08 - 7.13 m: JT, 80°, UN, S, CT<br>7.23 m: JT, 50°, PR, RF, C, 5 mm<br>7.26 m: BP, 5°, PR, S, CT<br>7.35 r. 7.37 m: SMGravel and Clay mix<br>7.40 m: HB |  |  |  |  |
|                                                                                                                                                                                        | AD/T S<br>HFA H<br>WB V<br>RR F<br>Q F<br>HQ F<br>HQ F<br>HQ F<br>HQ F<br>T F<br>SON S | Solid flig<br>Solid flig<br>Hollow fl<br>Vashboi<br>Rock roll<br>Rotary c<br>Rotary c<br>Rotary c | ht auge<br>ight aug<br>re drillir<br>er<br>ore (85<br>ore (63<br>ore (51<br>concret<br>e<br>on sam<br>lling | er: TC-Bi<br>ger<br>ng<br>mm)<br>.5mm)<br>.94mm)<br>re coring | it -<br>-<br>D<br>R | on d     wate     wate     ock QUA     ESCRIPT     QD Ro     De     CR Tot | CIONS FR Fresh<br>ck Quality DW Distinctly V                                                                                                | ERING<br>Deathered<br>Veathered<br>Weathered<br>athered | DEFE<br>JT<br>SZ<br>BP<br>SM<br>FL<br>VN<br>CL<br>CS<br>FZ<br>DL<br>HB<br>DB | <b>CT TYPE</b><br>Joint<br>Sheared zone<br>Bedding Parting<br>Seam<br>Foliation<br>Vein<br>Cleavage<br>Crushed Seam<br>Fracture Zone<br>Drift Lift<br>Handing Break<br>Drilling Break | IR Irregu<br>PR Plana<br>ST Step<br>UN Undu<br><b>ROUGHNE</b><br>VR Very<br>RF Roug<br>S Smoo | ed<br>ontinuc<br>ular<br>ped<br>Ilose<br>( <b>SS</b><br>Rough<br>gh<br>oth<br>kenside | VNR Veneer (thin or patchy)<br>CT Coating (up to 1mm)<br>INFILL MATERIALS<br>X Carbonaceus<br>MU Unidentified minteral<br>MS Secondary mineral<br>KT Chlorite<br>CA Calcite                                                                                                                                                                                                                             |  |  |  |  |
| CARDN                                                                                                                                                                                  | Refer to ex<br>obbreviation                                                            |                                                                                                   |                                                                                                             |                                                               |                     |                                                                            | CARDNC                                                                                                                                      | ) (NSW/A                                                | CT)                                                                          | PTY LTI                                                                                                                                                                               | D                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

| Pro                                                                  | ent:<br>ject:                                                                                    | F                                                                                                                                                               | RPA                                                                                                   | Nest                                                | astru<br>Camp                                                                                |                                                                             |                                                                                                                                        |                                                          |                                                                |                                                                                                                                                                                |                                                                                            | ŀ                                                                                      | lole No: BH50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                      | ation                                                                                            |                                                                                                                                                                 | -                                                                                                     | _ift Pi                                             | -                                                                                            | 592 20                                                                      | 3 56 GDA2020                                                                                                                           | Job No:<br>Angle fro                                     |                                                                | 00230<br>orizontal: 90                                                                                                                                                         | )°                                                                                         | Surf                                                                                   | Sheet: 3 of ace Elevation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                      |                                                                                                  | e: Ge                                                                                                                                                           |                                                                                                       |                                                     | 102-10                                                                                       | 002.20                                                                      |                                                                                                                                        | Mounting                                                 |                                                                |                                                                                                                                                                                | ,                                                                                          | Surface Elevation:<br>Driller: MT                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Cas                                                                  | sing I                                                                                           | Diame                                                                                                                                                           | eter:                                                                                                 |                                                     |                                                                                              | Bit 1                                                                       | Type: Diamond                                                                                                                          | Bit Cond                                                 | ition:                                                         | Good                                                                                                                                                                           |                                                                                            | Contractor: Geosense                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Dat                                                                  | a Sta                                                                                            | arted:                                                                                                                                                          | 20/9/                                                                                                 | 22                                                  |                                                                                              | Date                                                                        | Completed: 20/9/22                                                                                                                     | Logged I                                                 | By: B                                                          | D                                                                                                                                                                              |                                                                                            | Chee                                                                                   | cked By: DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                      | Co                                                                                               | oring                                                                                                                                                           |                                                                                                       |                                                     |                                                                                              |                                                                             | Material De                                                                                                                            | escription                                               |                                                                |                                                                                                                                                                                |                                                                                            |                                                                                        | Defect Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Method                                                               | inclusions & minor com                                                                           |                                                                                                                                                                 |                                                                                                       |                                                     |                                                                                              |                                                                             |                                                                                                                                        | econdary<br>ents<br>e and type,<br>exture,               | Weathering                                                     | Estimated<br>Strength<br>Is <sub>(50)</sub> MPa<br>• Axial O - Diametral                                                                                                       | Average<br>Natural<br>Defect<br>Spacing<br>(mm)<br>R & R                                   | Visual                                                                                 | Additional Data<br>DEFECT TYPE, orientation,<br>shape, roughness, infilling<br>or coating, thickness, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                      |                                                                                                  | 100                                                                                                                                                             | 35                                                                                                    |                                                     | -                                                                                            |                                                                             | SILTSTONE, dark grey, indis<br>with fine grained, light grey s<br>with occassional iron staining<br>8.3-8.6: highly fractured<br>8.60m | andstone at 0- 5°                                        | HW                                                             |                                                                                                                                                                                |                                                                                            |                                                                                        | ~746 m: BP, 5°, PR, S, SN<br>-7.61 m: HB<br>-7.63 m: HB<br>-7.75 m: BP, 0°, PR, S, CT<br>-7.80 m: HB<br>-7.86 m: BP, 0°, PR, S, CT<br>-7.87 -7.89 m: HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                      | 15% Water LOSS                                                                                   | 97                                                                                                                                                              | 53                                                                                                    |                                                     | -<br>-9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                             | CORE LOSS 0.05m (8.60-8.6<br>SILTSTONE, dark grey, with<br>grained, light grey sandstone<br>5°                                         | occassional fine                                         | MW<br>MW<br>to<br>SW                                           |                                                                                                                                                                                |                                                                                            |                                                                                        | - 7.93 m: BP, 0°, PR, S, SN<br>- 8.15 - 8.21 m: SM<br>- 8.23 - 8.25 m: SMGravel and Clay mix<br>- 8.29 m: BP, 0°, PR, S, CN<br>- 8.30 - 8.60 m: FZ<br>- 8.65 - 8.74 m: FZ<br>- 8.65 - 8.74 m: FZ<br>- 8.74 - 8.75 m: SM, 10 mm<br>- 8.84 m: BP, 0°, PR, S, CN<br>- 9.00 - 9.04 m: FZ<br>- 9.04 - 9.06 m: FZ<br>- 9.08 - 9.25 m: JT, 70°, PR, S, CN<br>- 9.29 m: BP<br>- 9.39 m: BP, 0°, PR, S, CN<br>- 9.39 m: BP, 0°, PR, S, CN<br>- 9.52 m: BP, 0°, UN, S, CN                                                                                                                                    |  |  |  |  |  |
|                                                                      | 5% Water LOSS                                                                                    | 100                                                                                                                                                             | 22                                                                                                    |                                                     | -<br>-<br>11<br>-<br>-                                                                       |                                                                             | 10.24-10.36: highly fractured<br>11.49-11.54: Siltstone, light b                                                                       | rown,                                                    | HW to<br>MW<br>MW                                              |                                                                                                                                                                                |                                                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                      | Water LOSS                                                                                       | 100                                                                                                                                                             | 83                                                                                                    |                                                     | - 12<br>-<br>-<br>- 13<br>-                                                                  |                                                                             | 12.46m<br>SILTSTONE (60%), dark grey<br>grained, light grey SANDSTO<br>interlaminated at 0-5°                                          |                                                          | F                                                              |                                                                                                                                                                                |                                                                                            |                                                                                        | L 11.06 - 11.18 m: JT, 40 - 90°, PR, S,<br>CN<br>L 11.18 - 11.22 m: SMExtremely<br>Weathered<br>11.23 m: JT, 50°, CU, S, CT<br>- 11.25 - 11.26 m: SM<br>- 11.38 m: HB<br>- 11.40 m: BP, 0 - 5°, PR, S, CN<br>- 11.42 m: HB<br>- 11.44 m: BP, 0 - 5°, PR, S, CN<br>- 11.47 m: BP, 0 - 5°, PR, S, CN<br>- 11.49 m: BP, 0 - 5°, PR, S, CN<br>- 11.49 m: BP, 0 - 5°, PR, S, CN<br>- 11.49 m: BP, 0 - 5°, PR, S, CN<br>- 11.49 m: BP, 0 - 5°, PR, S, CN<br>- 11.49 m: D, 0 - 5°, PR, S, CN<br>- 11.49 m: D, 0 - 5°, PR, S, CN<br>- 11.60 m: BP, 0 - 5°, PR, S, CN<br>- 11.60 - 11.70 m: JT, 80°, PR, S, CN<br>- 11.70 - 11.90 m: FZ<br>- 12.14 - 12.17 m: JT, 80°, UN, S, CN |  |  |  |  |  |
|                                                                      | 5% /                                                                                             |                                                                                                                                                                 |                                                                                                       |                                                     | -<br>- 14<br>-<br>-                                                                          |                                                                             | 14.08: Light grey sandstone t<br>weathered<br>14.79m<br>TERMINATED AT 14.79 m                                                          | and, highly                                              | HW<br>F                                                        |                                                                                                                                                                                |                                                                                            |                                                                                        | - 12.17 m: BP, 5°, PR, S, CN<br>+ 12.25 m: BP, 5°, PR, S, CN<br>+ 12.38 + 12.40 m: JT, 30°, PR, S, CN<br>+ 12.75 m: DB<br>+ 12.90 m: DB<br>+ 12.98 m: BP, 0 - 5°, CU, S, CN<br>+ 13.04 m: BP, 0 - 5°, PR, S, CN<br>+ 13.04 + 13.07 m: JT, 35°, PR, S, CN<br>+ 13.12 m: BP, 0°, PR, S, CN<br>+ 13.20 m: BP, 0°, PR, S, CN<br>+ 13.20 m: BP, 0°, PR, S, CN<br>+ 13.44 m: BP, 0 - 5°, CU, S, CN<br>+ 13.44 m: BP, 0 - 5°, CU, S, CN<br>+ 13.48 m: BP, 0 - 5°, CU, S, CN<br>+ 13.44 m: HB                                                                                                                                                                                   |  |  |  |  |  |
|                                                                      |                                                                                                  |                                                                                                                                                                 |                                                                                                       |                                                     | - 15<br>-<br>-<br>-                                                                          |                                                                             | Target depth                                                                                                                           |                                                          |                                                                |                                                                                                                                                                                |                                                                                            |                                                                                        | - 14.19 m: BP, 0 - 5°, PR, S, CN<br>- 14.12 - 14.73 m: JT, 80°, PR, S, CN<br>- 14.60 m: BP, 0 - 5°, PR, S, CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| AD<br>AD<br>HF<br>WE<br>RR<br>PC<br>HC<br>NM<br>DT<br>PT<br>SC<br>AH | N/T S<br>A H<br>B W<br>A R<br>R<br>R<br>R<br>R<br>R<br>R<br>C<br>R<br>C<br>P<br>N<br>S<br>N<br>S | G<br>Solid fligt<br>Solid fligt<br>Hollow fli<br>Vashbor<br>Rotary cc<br>Rotary cc<br>Rotary cc<br>Rotary cc<br>Diatube c<br>Percussic<br>Sonic dri<br>Nir hamn | nt auge<br>ght aug<br>e drillin<br>ore (85)<br>ore (63)<br>ore (51)<br>concret<br>e<br>on sam<br>ling | r: TC-Bi<br>ger<br>mm)<br>5mm)<br>94mm)<br>e coring | it -<br>-<br>-<br>-<br>-<br>-<br>-                                                           | on d     wate     wate     ock QUA     ESCRIPT     QD Ro     De      CR Tot |                                                                                                                                        | gh<br>RING<br>athered<br>eathered<br>Weathered<br>thered | JT<br>SZ<br>BP<br>SM<br>FL<br>VN<br>CL<br>CS<br>FZ<br>DL<br>HB | CT TYPE<br>Coint<br>Sheared zone<br>Bedding Parting<br>Seam<br>Foliation<br>Vein<br>Cleavage<br>Crushed Seam<br>Fracture Zone<br>Drift Lift<br>Handing Break<br>Drilling Break | IR Irreg<br>PR Plan<br>ST Step<br>UN Undu<br><b>ROUGHNE</b><br>VR Very<br>RF Roug<br>S Smo | ed<br>ontinuous<br>ular<br>ped<br>ilose<br><b>SS</b><br>Rough<br>gh<br>oth<br>censided | VNR Veneer (thin or patchy)<br>CT Coating (up to 1mm)<br>INFILL MATERIALS<br>X Carbonaceus<br>MU Unidentified minteral<br>MS Secondary mineral<br>KT Chlorite<br>CA Calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |



| <b>Cardno</b>            | TITLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Borehole Core Photogra                  | -                          |                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|--------------------------------------------------------------|
| now                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chnical and Contamination Investigation | -                          |                                                              |
| Stantec                  | PROJECT NO:<br>304100230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRILLED DATE: 20/09/2022                | INCLINATION:<br>-90 degree | CORED LENGTH: BOX 2 OF 2<br>11.00 m to 14.79 m – 3.79 m Leng |
| Health<br>Infrastructure | DRILL RIG:<br>Comacchio GEO 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONTRACTOR:<br>Cardno & Geosense        | LOGGED BY:<br>BD           | CHECKED BY:<br>DD                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
| 0                        | Candra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BH ID: BH 501                           |                            |                                                              |
|                          | Shaping the Future                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth: 11.00 - 14                       | 179                        |                                                              |
| Num                      | ber: 3041002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 UFT Date: 20.09.22                    | 20F2                       |                                                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The part of the                         |                            | enote handling or drilling breaks                            |
|                          | <u>A de la conten</u> te de la contente de la conte |                                         |                            | Induktion                                                    |
| 11- 196                  | A MARKEN H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mill Massaler Ford                      |                            |                                                              |
| Constant of the second   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
| 12n                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
| 1-2 - 6 -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
| 15m 1110                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
| 4~                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            | End BH at 14.79m                                             |
| S. J. Carthoused and     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            | A DESCRIPTION OF                                             |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                            |                                                              |

|                                                                    | nt:<br>ect:                                                                                        |                                                                                                      |                                                                               | h Infrastructure<br>West Campus                                                                                |                                              |                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | Нс                                 | ole No:                                   | BH502                                                                                                                                                                          |    |                                                                      |                                                     |   |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------|-----------------------------------------------------|---|--|--|
| .oc                                                                | atior                                                                                              | 1: H                                                                                                 | ILS I                                                                         | _ift Pit                                                                                                       |                                              |                                        |                       | Job No: 304100230                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                    |                                           | Sheet: 1 of                                                                                                                                                                    |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    |                                                                                                      |                                                                               | .964 N6248594.772 56                                                                                           | GDA20                                        | 020                                    |                       | Angle from Horizontal: 90°                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                    | e Elevation:                              |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    | e: Ge<br>Diame                                                                                       |                                                                               |                                                                                                                |                                              |                                        |                       | Mounting: Track                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | Driller:                           | tor: Geose                                | neo                                                                                                                                                                            |    |                                                                      |                                                     |   |  |  |
|                                                                    | -                                                                                                  | rted:                                                                                                |                                                                               | 22 Date Con                                                                                                    | npletec                                      | 1: 21/9                                | /22                   | Logged By: BD                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                    | ed By: DD                                 | 156                                                                                                                                                                            |    |                                                                      |                                                     |   |  |  |
|                                                                    | Drillin                                                                                            |                                                                                                      |                                                                               | Sampling & Testing                                                                                             |                                              |                                        |                       | Material Description                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                    | <i></i>                                   |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    | ,<br>                                                                                                |                                                                               |                                                                                                                |                                              |                                        | 6                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                    |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
| Method                                                             | Resistance                                                                                         | Casing                                                                                               | Water                                                                         | Sample or<br>Field Test                                                                                        | Depth (m)                                    | Graphic<br>Log                         | Classification        | SOIL TYPE, plasticity or particle characteristic,<br>colour, secondary and minor components<br>ROCK TYPE, grain size and type, colour,<br>fabric & texture, strength, weathering,<br>defects and structure                                                                                                                                                                                                                | Moisture<br>Condition                               | Consistency<br>Relative<br>Density | & Other                                   | RUCTURE<br>Observations                                                                                                                                                        |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    |                                                                                                      |                                                                               |                                                                                                                |                                              | $\times\!\!\times\!\!\times\!\!\times$ |                       | 0.07m ASPHALT<br>0.20m Fill L. Sith: SAND: medium to second drained, dark                                                                                                                                                                                                                                                                                                                                                 | 1                                                   |                                    | PAVEMENT<br>FILL                          |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
| ▲<br>₽<br>₽                                                        |                                                                                                    | -                                                                                                    |                                                                               |                                                                                                                | -                                            |                                        |                       | FILL: Silty SAND: medium to coarse grained, dark<br>brown, trace fine sub-angular to angular gravel _/<br>FILL: Silty CLAY: low to medium plasticity, brown,<br>dark brown, orange mottled pale grey, trace<br>0.70m rootlets (organic matter), trace fine sub-angular to<br>angular gravel _/                                                                                                                            |                                                     |                                    |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    | E-F                                                                                                |                                                                                                      |                                                                               |                                                                                                                | -1                                           |                                        | СІ                    | Gravelly CLAY: medium plasticity, grey, reddish<br>brown, fine to medium, sub-angular, siltstone and<br>ironstone gravel                                                                                                                                                                                                                                                                                                  | M ( <pl)< td=""><td>н</td><td></td><td></td></pl)<> | н                                  |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    | -                                                                                                    |                                                                               | D 1.50 m<br>SPT 1.50 - 1.95 m<br>5, 18, 25 N=43                                                                | -                                            |                                        |                       | 1.30m<br>Clayey Sandy GRAVEL: fine to medium,<br>sub-angular to angular, grey, reddish brown, fine<br>to medium grained sand, low plasticity clay                                                                                                                                                                                                                                                                         |                                                     |                                    |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    | F                                                                                                  |                                                                                                      |                                                                               |                                                                                                                | -2                                           |                                        | GC                    |                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                   | VD                                 |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    | -                                                                                                    |                                                                               |                                                                                                                |                                              |                                        |                       | 2.50m<br>Sandy CLAY: low plasticity, grey, reddish brown,<br>trace fine to medium, sub-angular to angular,<br>siltstone and ironstone gravel                                                                                                                                                                                                                                                                              | +                                                   |                                    | EXTREMELY WI                              | EATHERED — —                                                                                                                                                                   |    |                                                                      |                                                     |   |  |  |
|                                                                    |                                                                                                    |                                                                                                      |                                                                               | SPT 3.00 - 3.37 m<br>9, 20, 6/70mm HB N=R                                                                      | 3                                            |                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                    |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
| AD/T                                                               |                                                                                                    |                                                                                                      | Groundwater Not Observed                                                      |                                                                                                                |                                              |                                        |                       | 3.8m: Same as above but colour changed to grey, reddish brown                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                    |                                           |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
|                                                                    | F-H                                                                                                |                                                                                                      | 5                                                                             | Gro                                                                                                            | Grou                                         | Groundw                                | Groundwat             | Groundwater N                                                                                                                                                                                                                                                                                                                                                                                                             | Groundwater Not                                     |                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                | CL | 5.2m: Same as above but colour changed to light brown, reddish brown | M ( <pl)< td=""><td>н</td><td></td><td></td></pl)<> | н |  |  |
|                                                                    |                                                                                                    |                                                                                                      |                                                                               |                                                                                                                |                                              |                                        |                       | 6.80m<br>SILTSTONE: dark brown, dark grey, highly<br>weathered, very low strength                                                                                                                                                                                                                                                                                                                                         |                                                     |                                    | BEDROCK                                   |                                                                                                                                                                                |    |                                                                      |                                                     |   |  |  |
| ME<br>EX<br>HA<br>PT<br>SO<br>H<br>PS<br>AD<br>AD<br>HF<br>WE<br>R | Ri<br>Ha<br>Pu<br>Si<br>Ai<br>Si<br>V<br>Si<br>V<br>Si<br>V<br>Si<br>Si<br>V<br>Si<br>V<br>Si<br>V | cavato<br>pper<br>and aug<br>ish tube<br>onic drill<br>r hamm<br>ercussic<br>iort spir<br>olid fligh | er<br>ing<br>er<br>n sam<br>al auge<br>t auge<br>t auge<br>ht auge<br>ht auge | ve veryeasy<br>E Easy<br>F Firm<br>H Hard<br>VH VeryHard (<br>WATER<br>*<br>* V-Bit<br>er ₩ater i<br>• water i | No Resistar<br>Refusal)<br>Level on<br>nflow |                                        | S<br>F<br>F<br>M<br>F | P     - Hand/Pocket Penetrometer     D     - Di       CP     - Dynamic Cone Penetrometer     U     - Th       SP     - Perth Sand Penetrometer     U     - Th       C     - Moisture Content     MOISTURE       3T     - Plate Bearing Test     D     - Dr       IP     - Borehole Impression Test     M     - Md       D     - Photoionisation Detector     W     - Wu       S     - Vane Shear; P=Peak,     L     - Lic | /<br>bist                                           | mple<br>al sample<br>e 'undistu    | rbed' VS<br>S<br>rbed' St<br>VSt<br>H     | L CONSISTENCY<br>- Very Soft<br>- Soft<br>- Firm<br>- Stiff<br>- Very Stiff<br>- Hard<br>ATIVE DENSITY<br>- Very Loose<br>- Loose<br>- Loose<br>- Medium Dense<br>- Very Dense |    |                                                                      |                                                     |   |  |  |

|          | $\mathbf{D}$                                                                                                                  | G                             | arc                      | no                           |                                     |             |                |                |               |                                        |                                                                                                |                                        |                                | В                     | ORE                                | HOLE       | LO              | G SHEET                                                   |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|------------------------------|-------------------------------------|-------------|----------------|----------------|---------------|----------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|-----------------------|------------------------------------|------------|-----------------|-----------------------------------------------------------|--|--|
| Clie     | ent:<br>ject:                                                                                                                 |                               |                          | h Infrastr<br>West Can       |                                     |             |                |                |               |                                        |                                                                                                |                                        |                                |                       | Нс                                 | ole No     | ):              | <b>BH502</b>                                              |  |  |
| Loc      | ation                                                                                                                         | : F                           | HLS I                    | ift Pit                      | iipus                               |             |                |                |               | Job No                                 | o: 3041002                                                                                     | 230                                    |                                |                       |                                    |            |                 | Sheet: 2 of 3                                             |  |  |
| Pos      | ition                                                                                                                         | : E33                         | 1700                     | .964 N624                    | 48594.772 56                        | GDA20       | )20            | <u> </u>       |               |                                        |                                                                                                |                                        |                                |                       | Surface Elevation:                 |            |                 |                                                           |  |  |
|          | Туре                                                                                                                          |                               |                          | 5                            |                                     |             |                | 5              |               |                                        |                                                                                                |                                        |                                |                       | Driller:                           |            |                 |                                                           |  |  |
|          | ing [                                                                                                                         |                               |                          | ·00                          | Data Oan                            |             |                |                |               |                                        |                                                                                                |                                        |                                | Contractor: Geosense  |                                    |            |                 |                                                           |  |  |
| -        | a Sta                                                                                                                         |                               | 21/9                     |                              | Date Com                            | pletec      | 1: 21/9        | /22            |               | Logge                                  | d By: BD                                                                                       | N 4 - 4                                | Decembration                   | Checked By: DD        |                                    |            |                 |                                                           |  |  |
|          | Drilling                                                                                                                      |                               | ł                        | Sampl                        | ling & Testing                      |             |                |                |               |                                        |                                                                                                | Material                               | Description                    |                       |                                    |            |                 |                                                           |  |  |
| Method   | Resistance                                                                                                                    | Casing                        | Water                    | S                            | ample or<br>ield Test               | Depth (m)   | Graphic<br>Log | Classification |               | colour, sec<br>ROCK TYF<br>fabric & to | lasticity or part<br>ondary and min<br>E, grain size an<br>exture, strength<br>efects and stru | nor compo<br>ind type, c<br>h, weathei | onents<br>colour,              | Moisture<br>Condition | Consistency<br>Relative<br>Density | S<br>& Oti | STRU(<br>her Ol | CTURE<br>oservations                                      |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | -           |                |                |               |                                        | ark brown, da<br>ery low strengt                                                               |                                        |                                |                       |                                    | BEDROCK    |                 |                                                           |  |  |
|          |                                                                                                                               |                               | Groundwater Not Observed |                              |                                     | ŀ           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               | Not Of                   |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
| AD/T     |                                                                                                                               |                               | water                    |                              |                                     | -9          |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               | punot                    |                              |                                     | _ 9         |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               | 0                        |                              |                                     |             |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | Ļ           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
| L¥.      |                                                                                                                               |                               |                          |                              |                                     |             |                |                | 9.80m         | <u> </u>                               | 0                                                                                              |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | - 10        |                |                |               | Continued as                           | Cored Drill Ho                                                                                 | ле                                     |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | -           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | - 11        |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     |             |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
| 0        |                                                                                                                               |                               |                          |                              |                                     |             |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | L           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | - 12        |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | -           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | -           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | - 13        |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | -14         |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
| 0        |                                                                                                                               |                               |                          |                              |                                     |             |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | Ļ           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | +           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | +           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | - 15        |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | ŀ           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 |                                                           |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | F           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          |                                                                                                                               |                               |                          |                              |                                     | t           |                |                |               |                                        |                                                                                                |                                        |                                |                       |                                    |            |                 | -                                                         |  |  |
|          | THOD                                                                                                                          |                               |                          |                              | PENETRATION                         |             |                | 1              | FIELD T       |                                        | a a ta a tina 🕋 🗧                                                                              |                                        | SAMPLES                        |                       |                                    |            |                 | ONSISTENCY                                                |  |  |
| EX<br>R  | Ri                                                                                                                            | oper                          | r bucke                  | et                           | VE Very Easy (N<br>E Easy           | lo Resistar | nce)           | H H            | HP -          | Hand/Pocke                             | netration Test<br>t Penetrometer                                                               | r                                      | D - Dist                       | urbed sa              | ed sample<br>mple                  | S          | ; .             | <ul> <li>Very Soft</li> <li>Soft</li> <li>Firm</li> </ul> |  |  |
| PT<br>SC | Pu                                                                                                                            | nd aug<br>sh tube<br>nic dril | ə                        |                              | F Firm<br>H Hard<br>VH Very Hard (F | Refusal     |                |                |               |                                        | ne Penetromet<br>Penetrometer                                                                  | ter                                    | U - Thir                       | n wall tub            | al sample<br>e 'undistu            | rbed' S    | it -            | - Firm<br>- Stiff<br>- Very Stiff                         |  |  |
| AH       | SON         Sonic drilling         VH         Very Hard (Refusal)           AH         Air hammer         WATER         WATER |                               |                          |                              |                                     |             |                | N              |               | Moisture Co<br>Plate Bearin            | ntent                                                                                          |                                        | MOISTURE                       |                       |                                    | Г          | 1 .             | - Hard                                                    |  |  |
| AS<br>AD | /V Sc                                                                                                                         | ort spir<br>lid fligh         | al auge                  | er<br>r: V-Bit               |                                     | evel on     | Date           | IN             | MP -          | Borehole Im                            | pression Test                                                                                  |                                        | D - Dry<br>M - Mois<br>W - Wet | st                    |                                    | V          | ΊL ·            | Very Loose                                                |  |  |
| AD<br>HF | /T So<br>A Ho                                                                                                                 | lid fligh<br>llow flig        | nt auge<br>ght aug       | r: TC-Bit<br> er             | water in                            |             |                | 1              | PID -<br>/S - | Photoionisat<br>Vane Shear             | P=Peak,                                                                                        |                                        | PL - Plas<br>LL - Liqu         | stic limit            |                                    |            | 1D -            | <ul> <li>Loose</li> <li>Medium Dense</li> </ul>           |  |  |
| RF       |                                                                                                                               | ashbor<br>ck rolle            | e drillin<br>er          | g                            | water o                             | utflow      |                |                |               | R=Resdual                              | uncorrected kF                                                                                 | Pa)                                    |                                | sture con             | itent                              |            |                 | <ul> <li>Dense</li> <li>Very Dense</li> </ul>             |  |  |
| Ref      | er to exp                                                                                                                     | lanatory                      | notes fo                 | or details of<br>escriptions |                                     |             | CAR            |                |               | NSW/                                   | ACT) P                                                                                         | TY I                                   | TD                             |                       |                                    | I          |                 |                                                           |  |  |

| Cardno                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | CORE LOG SHEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client: Health Infra<br>Project: RPA West 0                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | Hole No: BH502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Location: HLS Lift Pit                                                                                                                                                                                                                                                                                                                                                                                                   | t -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Job No: 304100230                                                                           | Sheet: 3 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | N6248594.772 56 GDA2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Angle from Horizontal:                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rig Type: Geo205<br>Casing Diameter:                                                                                                                                                                                                                                                                                                                                                                                     | Bit Type: Diamond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mounting: Track<br>Bit Condition: Good                                                      | Driller: MT<br>Contractor: Geosense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data Started: 21/9/22                                                                                                                                                                                                                                                                                                                                                                                                    | Date Completed: 21/9/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logged By: BD                                                                               | Checked By: DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Coring                                                                                                                                                                                                                                                                                                                                                                                                                   | Material Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | Defect Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method<br>Fluid<br>TCR (%)<br>RQD (%)<br>RL (m AHD)                                                                                                                                                                                                                                                                                                                                                                      | E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, sec       E     SOIL TYPE, plasticity or p characteristic, colour, fabric and textu inclusions & minor component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ondary Lie Strength<br>s ls <sub>(50)</sub> MPa<br>nd type, tt e-Axial O-Diame<br>ure, ≥ 55 | (mm) snape, roughness, initialing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | - 9<br>- 9<br>- 9<br>- 9<br>- 10<br>- 10 000 START CORING AT 9.80m<br>- 991m<br>SILTSTONE, dark grey, extreme<br>- 10 000 START CORING AT 9.80m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NMLC<br>20% Water LOSS                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>10.99<sup>4</sup> CORE LOSS 0.04m (9.91-9.95)</li> <li>SILTSTONE, dark grey</li> <li>CORE LOSS 0.02m (10.04-10.0</li> <li>SILTSTONE, dark grey, traces o sandstone, light grey laminated a 10.5-10.55m: Siltstone, dark bro</li> <li>11.12-11.20m: Siltstone, dark br at 0°</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f fine grained, SW        <br>at 0-5°<br>wn        <br>wn        <br>                       | 1         10.13 m: BP. 0°, PR. S, CT           10.13 m: BP. 0°, PR. S, CN         10.17 - 10.20 m: JT, 60°, PR, S, CN           10.25 - 10.30 m: SM, 5 mm         10.20 m: SM, 5 mm           10.25 - 10.30 m: SM, EWM & Clay         10.30 - 10.40 m: JT, 70°, PR, S, CN           10.45 - 10.48 m: SM, EWM         10.64 m: HB, 0°, PR, S, CN           10.64 m: HB         10.64 m: HB           10.74 m: BP, 0°, PR, S, CN         10.64 m: HB           10.81 - 10.87 m: BPX3, 0°, PR, S, CN           10.93 m: HB           11.09 m: HB           11.09 m: TH           11.25 m: JT, 40°, PR, S, CN           11.25 m: JT, 40°, PR, S, CN           11.25 m: JT, 40°, CU, S, CN           11.25 m: JT, 30°, CU, S, CN           11.89 m: JT, 60°, CU, S, CN           11.89 m: JT, 60°, CU, S, CN           11.89 m: JT, 60°, CU, S, CN           11.80 m: JT, 60°, CU, S, CN |
| 0         98         71           0         98         71           0         100         80           0         100         80           0         100         80           0         100         80           0         100         80           0         100         80           0         100         80           0         100         80           0         100         80           0         100         100 | 12.80m<br>SILTSTONE (60%), dark grey, w<br>grained, light grey SANDSTONE<br>interlaminated at 0-5°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (40%)                                                                                       | I       I       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WB         Washbore drilling           RR         Rock roller           PQ         Rotary core (85mm)           HQ         Rotary core (63.5mm)           NMLC         Rotary core (51.94mm)           DT         Diatube concrete coring           PT         Push tube           PS         Percussion sampling                                                                                                        | TERMINATED AT 14.62 m<br>Target depth<br>- 15<br>- 15 | ered CS Crushed Sear<br>FZ Fracture Zone<br>hered DL Drift Lift                             | PR     Planar     CT     Coating (up to 1mm)       ST     Stepped     INFILL MATERIALS       UN     Undulose     X     Carbonaceus       ROUGHNESS     MU     Unidentified minteral       VR     Very Rough     KS     Secondary mineral       RF     Rough     KT     Chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SON Sonic drilling<br>AH Air hammer<br>Refer to explanatory notes for details o<br>abbreviations and basis of descriptions                                                                                                                                                                                                                                                                                               | TCR     Total Core<br>Recovery (%)     HW     Highly Weathe<br>XW       of<br>s     CARDNO (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | red DB Drilling Break                                                                       | SL Slockensided Fe Iron Oxide<br>POL Polished Qz Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| now                      | dino TITLE: Borehole Core Photographs – BH502<br>Geotechnical and Contamination Investigation – RPA West Campus – HLS Lift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Stantec                  | PROJECT NO:<br>304100230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRILLED DATE: 21/09/2022         | INCLINATION:<br>-90 degree                                                                                      | CORED LENGTH: BOX 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Health<br>Infrastructure | DRILL RIG:<br>Comacchio GEO 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONTRACTOR:<br>Cardno & Geosense | LOGGED BY:<br>BD                                                                                                | CHECKED BY:<br>DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 1 Initiasti detare       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 | the state of the s |  |  |  |
| CD                       | Cardno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BH ID: 13H 50 2                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | Haping the Future                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth: 9.8m - 14                 | 1.62m                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Project: P               | roject RPA WEST AP<br>304100230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UFT Date: 21:09.23               | f1                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Number:                  | 304100230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIFT Date: 21:09.22              | No. 1                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 100                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The states                       |                                                                                                                 | enote frandling or drilling breaks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | - P.1 (/2) P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20016 8 9.9                      | 1/00/                                                                                                           | 40 man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                          | BH 502 START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CORING @ 9.8m 22                 | 1/09/22                                                                                                         | Lore Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| -                        | ALL ST STORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the state of the                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Are how                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| NU                       | Mark and Market and Andrews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| [m]                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 | The in the community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | and the state of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | contrast in which we are a sufficient to the second s |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 24<br>3m                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 2 w                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | EO BH 502                                                                                                       | 2@ 14.62m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |



**Appendix C – Geotechnical Laboratory Test Results** 



#### **STS Geotechnics Pty Ltd**

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au



Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750

# Moisture Content of Soil and Aggregate Samples

| Project No.: | 31980                                                |
|--------------|------------------------------------------------------|
| Report No.:  | 22/3502                                              |
| Report Date: | 6/10/2022                                            |
| Page:        | 1 of 1                                               |
|              | Project No.:<br>Report No.:<br>Report Date:<br>Page: |

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| STS / Sample<br>No.     | 6947D-L/1                                  | 6947D-L/2                          | 6947D-L/4                      |  |  |
|-------------------------|--------------------------------------------|------------------------------------|--------------------------------|--|--|
| Sample<br>Location      | BH 501                                     | BH 502                             | BH 504                         |  |  |
| Material<br>Description | Silty Clay,<br>grey brown<br>trace of sand | Silty Sand,<br>grey<br>with gravel | Silty Sandy<br>Gravel,<br>grey |  |  |
| Depth (mm)              | 0.7 - 1.0                                  | 1.5 - 1.95                         | 1.0 - 1.5                      |  |  |
| Sample Date             | 20-21/9/22                                 | 20-21/9/22                         | 20-21/9/22                     |  |  |
| Moisture<br>Content (%) | 27.3                                       | 13.5                               | 12.7                           |  |  |

Remarks:

Approved Signatory.....

David Ly - Senior Geotechnician

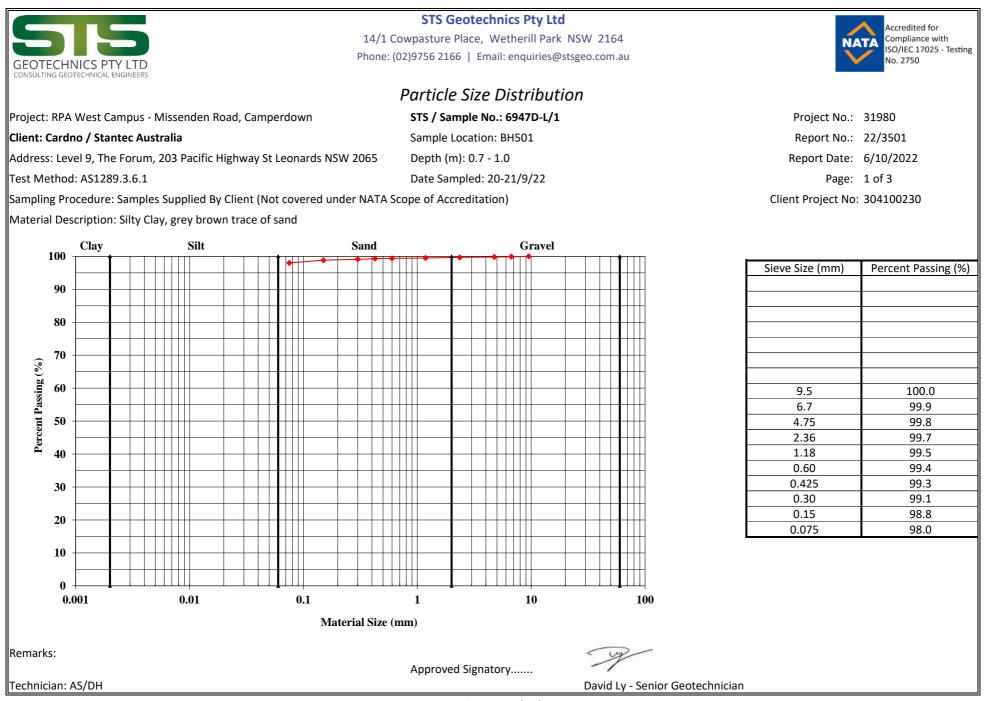
Technician: AS

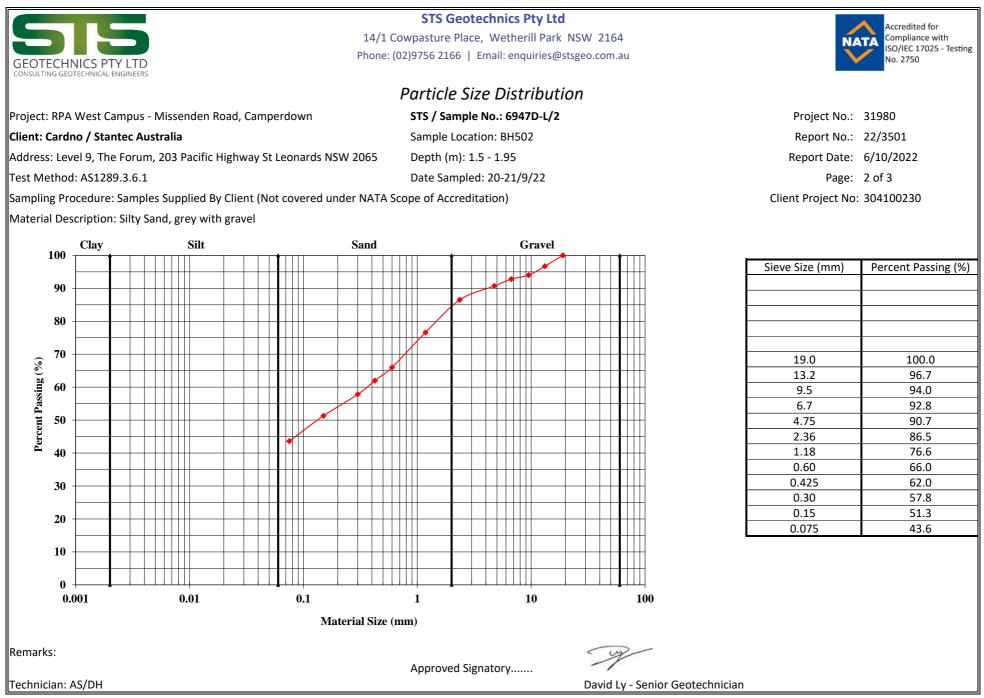


## STS Geotechnics Pty Ltd

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au




Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750


## <sup>°</sup> Atterberg Limits and Linear Shrinkage Report

| Project: RPA West Campus - Missenden Road, Camperdown                           | Project No.: | 31980     |
|---------------------------------------------------------------------------------|--------------|-----------|
| Client: Cardno / Stantec Austrralia                                             | Report No.:  | 22/3503   |
| Address: Level 9, The Forum, 203 Pacific Highway St Leonards NSW 2065 Australia | Report Date: | 6/10/2022 |
| Test Method: AS1289.3.1.2, 3.2.1, 3.4.1, 2.1.1                                  | Page:        | 1 of 1    |

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| STS / Sample<br>No.                                    | 6947D-L/2                          | 6947D-L/4                      |  |  |  |  |
|--------------------------------------------------------|------------------------------------|--------------------------------|--|--|--|--|
| Sample<br>Location                                     | BH 502                             | BH 504                         |  |  |  |  |
| Material<br>Description                                | Silty Sand,<br>grey<br>with gravel | Silty Sandy<br>Gravel,<br>grey |  |  |  |  |
| Depth (m)                                              | 1.5 - 1.95                         | 1.0 - 1.5                      |  |  |  |  |
| Sample Date                                            | 20-21/9/22                         | 20-21/9/22                     |  |  |  |  |
| Sample History                                         | Oven Dried                         | Oven Dried                     |  |  |  |  |
| Method of<br>Preparation                               | Dry Sieved                         | Dry Sieved                     |  |  |  |  |
| Liquid Limit<br>(%)                                    | 41                                 | 38                             |  |  |  |  |
| Plastic Limit<br>(%)                                   | 22                                 | 19                             |  |  |  |  |
| Plasticity<br>Index                                    | 19                                 | 19                             |  |  |  |  |
| Linear<br>Shrinkage (%)                                | 9.5                                | 9.5                            |  |  |  |  |
| Mould Size<br>(mm)                                     | 250                                | 128                            |  |  |  |  |
| Crumbing                                               | Ν                                  | Ν                              |  |  |  |  |
| Curling                                                | Ν                                  | N                              |  |  |  |  |
| Remarks:                                               |                                    |                                |  |  |  |  |
|                                                        | Approved Signatory                 |                                |  |  |  |  |
| Technician:     DH     Lucky Ly - Senior Geotechnician |                                    |                                |  |  |  |  |





| GEOTECHNICS PTY LTD<br>CONSULTING GEOTECHNICAL ENGINEERS | STS Geotechnics Pty Ltd<br>14/1 Cowpasture Place, Wetherill Park NSW 2164<br>Phone: (02)9756 2166   Email: enquiries@stsgeo.com.au | Accredited for<br>Compliance with<br>ISO/IEC 17025 - Testing<br>No. 2750 |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                          | Uniaxial Compressive Strength of Rock Core                                                                                         |                                                                          |
| Project: RPA West Campus - Misse                         | Project No.: 31980                                                                                                                 |                                                                          |
| Client: Cardno / Stantec Austrrali                       | Report No.: 22/3553                                                                                                                |                                                                          |
| Address: Level 9, The Forum, 203                         | Report Date: 07/10/22                                                                                                              |                                                                          |
| Test Method: AS4133.4.2.2, .1.1                          |                                                                                                                                    | Page: 1 of 2                                                             |

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| Sample No                           | ).                  | 6947D-L/5             | 6947D-L/6             |                      |                             |                  |
|-------------------------------------|---------------------|-----------------------|-----------------------|----------------------|-----------------------------|------------------|
| Location                            | (BH)                | BH501                 | BH502                 |                      |                             |                  |
| Depth                               | (m)                 | 12.39                 | 13.25                 |                      |                             |                  |
| Sample Descri                       | ption               | Shale                 | Shale                 |                      |                             |                  |
| Date Core                           | d                   | 21/09/2022            | 21/09/2022            |                      |                             |                  |
| Date Teste                          | d                   | 5/10/2022             | 5/10/2022             |                      |                             |                  |
| Testing Mach                        | nine                | MAN1000               | MAN1001               |                      |                             |                  |
| Sample Diameter                     | (mm)                | 51.7                  | 51.9                  |                      |                             |                  |
| Sample Height                       | (mm)                | 134.7                 | 105.1                 |                      |                             |                  |
| L/D Ratio                           |                     | 2.6                   | 2.0                   |                      |                             |                  |
| Sample Conditi                      | oning               | Tested as<br>Received | Tested as<br>Received |                      |                             |                  |
| Test Duration                       | (min:sec)           | 24:00                 | 17:00                 |                      |                             |                  |
| Failure Descrip                     | otion               | Single Shear          | Single Shear          |                      |                             |                  |
| Uniaxial<br>Compressive<br>Strength | (MPa)               | 9.5                   | 15                    |                      |                             |                  |
| Moisture Content                    | (%)                 | 3.6                   | 3.4                   |                      |                             |                  |
| Dry Density                         | (t/m <sup>3</sup> ) | 2.083                 | 2.504                 |                      |                             |                  |
| Storage Condi                       | tions               | Core wrapped          | Core wrapped          |                      |                             |                  |
| Other Commo                         | ents                |                       |                       |                      |                             |                  |
| Remarks:                            |                     |                       |                       |                      |                             | P. Ihunti        |
| Technician: LL                      |                     |                       |                       | Approved Signat<br>P | ory<br>hilip Ihnativ - Seni | or Geotechnician |



STS Geotechnics Pty Ltd 14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

## Unconfined Compressive Strength of Rock Cores

Project: RPA West Campus - Missenden Road, Camperdown **Client: Cardno / Stantec** 

Address: Level 9, The Forum, 203 Pacific Highway St Leonards NSW 2065 Australia

 Project No.:
 31980

 Report No.:
 22/3553

 Report Date:
 7/10/2022

 Page:
 2 of 2





304100230\_RPA\_Western Campus\_HLS Carpark\_Lift\_ver2:BD 9 November 2022



**Appendix D – Chemical Laboratory Test Results** 



עיוייא

**ac-MRA** 

4 Julia

NATA

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

NATA Accredited Accreditation Number 1261 Site Number 18217

Stantec Australia Pty Ltd Level 22, 570 Bourke Street Melbourne **VIC 3000** 

Attention:

#### Bikesh Deoju

Sep 23, 2022

Report Project name Project ID **Received Date**  925953-S **GEOTECHNICAL INVESTIGATION - RPA WEST CAMPUS HLS LIFT** 304100230

| Client Sample ID                                    |     |          | BH501         | BH502         |
|-----------------------------------------------------|-----|----------|---------------|---------------|
| Sample Matrix                                       |     |          | Soil          | Soil          |
| Eurofins Sample No.                                 |     |          | S22-Se0051103 | S22-Se0051104 |
| Date Sampled                                        |     |          | Sep 20, 2022  | Sep 21, 2022  |
| Test/Reference                                      | LOR | Unit     |               |               |
|                                                     |     |          |               |               |
| Chloride                                            | 10  | mg/kg    | < 10          | < 10          |
| Conductivity (1:5 aqueous extract at 25 °C as rec.) | 10  | uS/cm    | 14            | 31            |
| pH (1:5 Aqueous extract at 25 °C as rec.)           | 0.1 | pH Units | 6.3           | 6.8           |
| Resistivity*                                        | 0.5 | ohm.m    | 730           | 330           |
| Sulphate (as SO4)                                   | 10  | mg/kg    | < 10          | < 10          |
| % Moisture                                          | 1   | %        | 16            | 8.7           |

Date Reported: Sep 30, 2022



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | Holding Time |
|----------------------------------------------------------------------|--------------|--------------|--------------|
| Chloride                                                             | Sydney       | Sep 27, 2022 | 28 Days      |
| - Method: LTM-INO-4270 Anions by Ion Chromatography                  |              |              |              |
| Conductivity (1:5 aqueous extract at 25 °C as rec.)                  | Sydney       | Sep 27, 2022 | 7 Days       |
| - Method: LTM-INO-4030 Conductivity                                  |              |              |              |
| pH (1:5 Aqueous extract at 25 °C as rec.)                            | Sydney       | Sep 27, 2022 | 7 Days       |
| - Method: LTM-GEN-7090 pH by ISE                                     |              |              |              |
| Sulphate (as SO4)                                                    | Sydney       | Sep 27, 2022 | 28 Days      |
| - Method: In-house method LTM-INO-4270 Sulphate by Ion Chromatograph |              |              |              |
| % Moisture                                                           | Sydney       | Sep 23, 2022 | 14 Days      |
|                                                                      |              |              |              |

- Method: LTM-GEN-7080 Moisture

|            |                              | fine                  | Eurofins Envi<br>ABN: 50 005 085                                                                   |                                            | g Australia Pty Ltd |                                 |              |                                                                                        |                                                                                                           |                                                                                                                                             | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954                                     |                                                                                                        |
|------------|------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------------|--------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| web: w     | ww.eurofins.com.au           |                       | Melbourne<br>6 Monterey Road<br>Dandenong Sout<br>VIC 3175<br>Tel: +61 3 8564 5<br>NATA# 1261 Site | h Grovedale<br>VIC 3216<br>5000 Tel: +61 3 | Girrawe<br>NSW 2    | gowar Ro<br>en<br>145<br>2 9900 | 3400         | Canberra<br>Unit 1,2 Dacre Street<br>Mitchell<br>ACT 2911<br>Tel: +61 2 6113 8091<br>7 | Brisbane<br>1/21 Smallwood Place<br>Murarrie<br>QLD 4172<br>Tel: +61 7 3902 4600<br>NATA# 1261 Site# 2079 | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Tel: +61 2 4968 8448<br>94 NATA# 1261 Site# 25079 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 45 51<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: 0800 856 450<br>IANZ# 1290 |
|            | mpany Name:<br>dress:        |                       | tralia Pty Ltd<br>70 Bourke Stre                                                                   |                                            |                     |                                 | R<br>Pl      | rder No.:<br>eport #: 925<br>hone:<br>ax:                                              | 5953                                                                                                      |                                                                                                                                             | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Sep 23, 2022 11:00<br>Sep 30, 2022<br>5 Day<br>Bikesh Deoju                                    | ) AM                                                                                                   |
|            | oject Name:<br>oject ID:     | GEOTECHN<br>304100230 | NICAL INVES                                                                                        | TIGATION - RF                              | PA WEST CAMPL       | IS HLS                          | LIFT         |                                                                                        |                                                                                                           | Euro                                                                                                                                        | ofins Analytical Servic                                                                              | es Manager : Hanr                                                                              | ah Mawbey                                                                                              |
|            |                              | Sa                    | ample Detail                                                                                       |                                            |                     | Aggressivity Soil Set           | Moisture Set |                                                                                        |                                                                                                           |                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                        |
|            | ney Laboratory               |                       | Site # 18217                                                                                       |                                            |                     | X                               | X            | -                                                                                      |                                                                                                           |                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                        |
| Exte<br>No | rnal Laboratory<br>Sample ID | Sample Date           | Sampling<br>Time                                                                                   | Matrix                                     | LAB ID              |                                 |              | -                                                                                      |                                                                                                           |                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                        |
| 1          | BH501                        | Sep 20, 2022          |                                                                                                    | Soil                                       | S22-Se0051103       | Х                               | Х            | ]                                                                                      |                                                                                                           |                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                        |
| 2          | BH502                        | Sep 21, 2022          |                                                                                                    | Soil                                       | S22-Se0051104       | Х                               | Х            |                                                                                        |                                                                                                           |                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                        |
| Test       | Counts                       |                       |                                                                                                    |                                            |                     | 2                               | 2            |                                                                                        |                                                                                                           |                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                        |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| <b>U</b> IIIIU                   |                                             |                                                                   |
|----------------------------------|---------------------------------------------|-------------------------------------------------------------------|
| mg/kg: milligrams per kilogram   | mg/L: milligrams per litre                  | <b>μg/L:</b> micrograms per litre                                 |
| ppm: parts per million           | ppb: parts per billion                      | %: Percentage                                                     |
| org/100 mL: Organisms per 100 mi | lilitres NTU: Nephelometric Turbidity Units | MPN/100 mL: Most Probable Number of organisms per 100 millilitres |
|                                  |                                             |                                                                   |

#### Terms

| Terms            |                                                                                                                                                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APHA             | American Public Health Association                                                                                                                                                                                                                                                   |
| COC              | Chain of Custody                                                                                                                                                                                                                                                                     |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                                                                                                                                                |
| CRM              | Certified Reference Material (ISO17034) - reported as percent recovery.                                                                                                                                                                                                              |
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                                                                                                                                       |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                                                                                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                                                                                                                                  |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                                                                                                                                            |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.                                                                                                                       |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.                                                                                                                   |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                                                                                                                                           |
| SRA              | Sample Receipt Advice                                                                                                                                                                                                                                                                |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                                                                                                                                           |
| твто             | Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                                                                                                                                           |
| TEQ              | Toxic Equivalency Quotient or Total Equivalence                                                                                                                                                                                                                                      |
| QSM              | US Department of Defense Quality Systems Manual Version 5.4                                                                                                                                                                                                                          |
| US EPA           | United States Environmental Protection Agency                                                                                                                                                                                                                                        |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                      |

#### **QC** - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

| Test                                                |                  |              |          | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------|------------------|--------------|----------|----------|----------|-----|----------------------|----------------|--------------------|
| Method Blank                                        | -                |              |          |          |          | -   |                      |                |                    |
| Chloride                                            | Chloride         |              |          |          |          |     | 10                   | Pass           |                    |
| Conductivity (1:5 aqueous extract a                 | t 25 °C as rec.) |              | uS/cm    | < 10     |          |     | 10                   | Pass           |                    |
| Sulphate (as SO4)                                   |                  |              | mg/kg    | < 10     |          |     | 10                   | Pass           |                    |
| LCS - % Recovery                                    |                  |              |          | -        |          |     |                      | -              |                    |
| Chloride                                            |                  |              | %        | 109      |          |     | 70-130               | Pass           |                    |
| Conductivity (1:5 aqueous extract a                 | t 25 °C as rec.) |              | %        | 87       |          |     | 70-130               | Pass           |                    |
| Resistivity*                                        |                  |              | %        | 87       |          |     | 70-130               | Pass           |                    |
| Sulphate (as SO4)                                   |                  |              | %        | 98       |          |     | 70-130               | Pass           |                    |
| Test                                                | Lab Sample ID    | QA<br>Source | Units    | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery                                  |                  |              |          |          |          |     |                      |                |                    |
|                                                     |                  |              |          | Result 1 |          |     |                      |                |                    |
| Chloride                                            | S22-Se0045401    | NCP          | %        | 73       |          |     | 70-130               | Pass           |                    |
| Sulphate (as SO4)                                   | S22-Se0045401    | NCP          | %        | 101      |          |     | 70-130               | Pass           |                    |
| Test                                                | Lab Sample ID    | QA<br>Source | Units    | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                                           |                  |              |          |          |          |     |                      |                |                    |
|                                                     |                  |              |          | Result 1 | Result 2 | RPD |                      |                |                    |
| Chloride                                            | S22-Se0045400    | NCP          | mg/kg    | < 10     | < 10     | <1  | 30%                  | Pass           |                    |
| Conductivity (1:5 aqueous extract at 25 °C as rec.) | S22-Se0045404    | NCP          | uS/cm    | 19       | 20       | 3.1 | 30%                  | Pass           |                    |
| pH (1:5 Aqueous extract at 25 °C as rec.)           | S22-Se0045404    | NCP          | pH Units | 7.2      | 7.1      | <1  | 30%                  | Pass           |                    |
| Resistivity*                                        | S22-Se0045404    | NCP          | ohm.m    | 530      | 510      | 3.1 | 30%                  | Pass           |                    |
| Sulphate (as SO4)                                   | S22-Se0045400    | NCP          | mg/kg    | < 10     | < 10     | <1  | 30%                  | Pass           |                    |
| % Moisture                                          | S22-Se0049914    | NCP          | %        | 10       | 10       | 1.9 | 30%                  | Pass           |                    |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | No  |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### Authorised by:

Hannah Mawbey Ryan Phillips Analytical Services Manager Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



# **ANALYTICAL REPORT**





| - CLIENT DETAILS |                                                                    | LABORATORY DE | TAILS                                        |
|------------------|--------------------------------------------------------------------|---------------|----------------------------------------------|
| Contact          | Alejandra Beltran                                                  | Manager       | Huong Crawford                               |
| Client           | STANTEC AUSTRALIA PTY LTD                                          | Laboratory    | SGS Alexandria Environmental                 |
| Address          | Level 9, The Forum, 203 Pacific Highway<br>St Leonards<br>NSW 2065 | Address       | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | 61 2 9024 7072                                                     | Telephone     | +61 2 8594 0400                              |
| Facsimile        | (Not specified)                                                    | Facsimile     | +61 2 8594 0499                              |
| Email            | alejandra.beltran@cardno.com.au                                    | Email         | au.environmental.sydney@sgs.com              |
| Project          | 304100230 - Additional                                             | SGS Reference | SE237127A R0                                 |
| Order Number     | 304100230                                                          | Date Received | 27/9/2022                                    |
| Samples          | 19                                                                 | Date Reported | 30/9/2022                                    |
|                  |                                                                    |               |                                              |

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



#### pH in soil (1:2) [AN101] Tested: 29/9/2022

|           |          |     | BH503_0.6-0.7  | BH504_0.4-0.6  |
|-----------|----------|-----|----------------|----------------|
|           |          |     | SOIL           | SOIL           |
|           |          |     | -<br>23/9/2022 | -<br>23/9/2022 |
| PARAMETER | UOM      | LOR | SE237127A.002  | SE237127A.003  |
| pH (1:2)  | pH Units | -   | 5.2            | 4.8            |



#### Conductivity (1:2) in soil [AN106] Tested: 29/9/2022

|                           |        |     | BH503_0.6-0.7  | BH504_0.4-0.6  |
|---------------------------|--------|-----|----------------|----------------|
|                           |        |     | SOIL           | SOIL           |
|                           |        |     | -<br>23/9/2022 | -<br>23/9/2022 |
| PARAMETER                 | UOM    | LOR | SE237127A.002  | SE237127A.003  |
| Conductivity (1:2) @25 C* | µS/cm  | 1   | 180            | 28             |
| Resistivity (1:2)*        | ohm cm | -   | 5500           | 35000          |



#### Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 29/9/2022

|           |       |      | BH503_0.6-0.7  | BH504_0.4-0.6  |
|-----------|-------|------|----------------|----------------|
|           |       |      | SOIL           | SOIL           |
|           |       |      | -<br>23/9/2022 | -<br>23/9/2022 |
| PARAMETER | UOM   | LOR  | SE237127A.002  | SE237127A.003  |
| Chloride  | mg/kg | 0.25 | 13             | 2.5            |
| Sulfate   | mg/kg | 0.5  | 140            | 18             |



| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN101  | pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.                                                                                                |
| AN106  | Conductivity : Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μmhos/cm or μS/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:2 and the EC determined and reported on the extract basis after the 1 hour extraction (EC(1:2)) or after the 1 hour extraction and overnight aging (EC(1:2)) aged). Reference APHA 2510 B.         |
| AN106  | Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.                                                                                                                                                                                                                                                                                           |
| AN245  | Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B |

#### FOOTNOTES -

| *   | NATA accreditation does not cover    | -   | Not analysed.                     | UOM | Unit of Measure.        |
|-----|--------------------------------------|-----|-----------------------------------|-----|-------------------------|
|     | the performance of this service.     | NVL | Not validated.                    | LOR | Limit of Reporting.     |
| **  | Indicative data, theoretical holding | IS  | Insufficient sample for analysis. | ¢↓  | Raised/lowered Limit of |
|     | time exceeded.                       | LNR | Sample listed, but not received.  |     | Reporting.              |
| *** | Indicates that both * and ** apply.  |     |                                   |     |                         |

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

304100230\_RPA\_Western Campus\_HLS Carpark\_Lift\_ver2:BD 9 November 2022





# **Appendix E – Important Information**



# Important Information about this Geotechnical Report

## Scope of Work

The purpose of this report and any associated documentation is expressly stated in the document. This document does not form a complete assessment of the site, and no implicit determinations about Cardno's scope can be taken if not specifically referenced. Whilst this report is intended to reduce geotechnical risk, no level of detail or scope of work can entirely eliminate risk.

The nature of geotechnical data typically precludes auxiliary environmental assessment without undertaking specific methods in the investigation. Therefore, unless it is explicitly stated in the scope of work, this report does not provide any contamination or environmental assessment of the site or adjacent sites, nor can it be inferred or implied from any component of the document.

The scope of work, geotechnical information, and assessments made by Cardno may be summarised in the report; however, all aspects of the document, including associated data and limitations should be reviewed in its entirety.

### **Standard of care**

Cardno have undertaken investigations, performed consulting services, and prepared this report based on the Client's specific requirements, data that was available or was collected, and previous experience.

Cardno's findings and assessment represent its reasonable judgment, diligence, skill, with sound professional standards, within the time and budget constraints of its commission. No warranty, expressed or implied, is made as to the professional advice included in this report.

### **Data sources**

In preparing this document, or providing any consulting services during the commission, Cardno may have relied on information from third parties including, but not limited to; sub-consultants, published data, and the Client including its employees or representatives. This data may not be verified and Cardno assumes no responsibility for the adequacy, incompleteness, inaccuracies, or reliability of this information.

Cardno does not assume any responsibility for assessments made partly, or entirely based on information provided by third parties.

### Variability in conditions and limitations of data

Subsurface conditions are complex and can be highly variable; they cannot be accurately defined by discrete investigations. Geotechnical data is based on investigation locations which are explicitly representative of the specific sample or test points. Interpretation of conditions between such points cannot be assumed to represent actual subsurface information and there are unknowns or variations in ground conditions between test locations that cannot be inferred or predicted.

The precision and reliability of interpretive assessment between discrete points is dependent on the uniformity of the subsurface strata, as well as the frequency, detail, and method of sampling or testing.

Subsurface conditions are formed by various natural and anthropogenic processes and therefore are subject to change over time. This is particularly relevant with changes to the site ownership or usage, site boundary or layout, and design or planning modifications. Aspects of the site may also not be able to be determined due to physical or project related constraints and any information provided by Cardno cannot apply following modification to the site, regulations, standards, or the development itself.

It is important to appreciate that no level of detail in investigation, or diligence in assessment, can eliminate uncertainty related to subsurface conditions and thus, geotechnical risk. Cardno cannot and does not provide unqualified warranties nor does it assume any liability for site conditions not observed or accessible during the investigations.



## Verification of opinions and recommendations

Geotechnical information, by nature, represents an opinion and is based extensively on judgment of both data and interpretive assessments or observation. This report and its associated documentation are provided explicitly based on Cardno's opinion of the site at the time of inspection, and cannot be extended beyond this.

Any recommendations or design are provided as preliminary until verified on site during project implementation or construction. Inspection and verification on site shall be conducted by a suitably qualified geotechnical consultant or engineer, and where subsurface conditions or interpretations differ from those provided in this document or otherwise anticipated, Cardno must be notified and be provided with an opportunity to review the recommendations.

## **Client and copyright**

This document is produced by Cardno solely for the benefit and use by the Client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.