

Report on Geotechnical Investigation

Proposed Commercial Development 2-8a Lee Street, Haymarket

Prepared for Toga Development and Construction Pty Ltd

> Project 86884.02 July 2022

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86884.02	Document No.	R.001.Rev2			
Document title	Report on Geotechnical Investigation					
	Proposed Commercial Development					
Site address	2-8a Lee Street, Haymarket					
Report prepared for	Toga Development and Construction Pty Ltd					
File name	86884.02.R.001.Rev	2				

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Huw Smith	Scott Easton	15 April 2021	
Revision 1	Huw Smith	Scott Easton	23 July 2021	
Revision 2	Arash Afzali	Scott Easton	15 July 2022	

Distribution of copies

	copico		
Status	Electronic	Paper	Issued to
Revision 0	1	0	David McLaren, Toga Development and Construction Pty Ltd
Revision 1	1	0	David McLaren, Toga Development and Construction Pty Ltd
Revision 2	1	0	David Springford, Toga Development and Construction Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author w Lel	15 July 2022
Reviewer	15 July 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introd	uction	.1
2.	Previo	ous Investigations	.3
3.	Site D	Description	.4
4.	Publis	shed Mapping	.6
	4.1	Geology	.6
	4.2	Acid Sulfate Soils	.6
5.	Field	Work Methods	.7
	5.1	General	.7
	5.2	Boreholes	.7
	5.3	Standpipes	.8
6.	Field	Work Results	.9
	6.1	Boreholes	.9
	6.2	Standpipe Piezometers	11
	6.3	Permeability Testing	13
7.	Labor	atory Testing	15
8.	Geote	chnical Model	16
9.	Propo	sed Development	18
10.	Comn	nents	19
	10.1	Geotechnical Issues	19
	10.2	Site Preparation	19
	10.3	Bulk Excavation	21
	10.4	Vibration Control	21
	10.5	Disposal of Excavated Material	21
	10.6	Batter Slopes	22
	10.7	Groundwater	23
		10.7.1 General	
		10.7.2 Seepage Rates and Groundwater Drawdown	
		10.7.3 Disposal	
	10.8	Excavation Support	
		10.8.1 General	
		10.8.2 Shoring / Retaining Walls 10.8.3 Design of Excavation Support	
		10.8.4 Ground Anchors	
			-0

Douglas Partners Geotechnics | Environment | Groundwater

	10.9 Excavation-Induced Ground Movement	
	10.9.1 Transport for NSW Infrastructure	27
	10.9.2 Stress Relief	27
	10.10 Foundations	28
	10.11 Soil Aggressivity to Concrete and Steel Structures	30
	10.12 Seismic Design	30
11.	Further Geotechnical Work	30
12.	Cumulative Impacts	31
13.	Mitigation Measures	31
14.	Conclusion	31
15.	References	32
16.	Limitations	32

Appendix A:	About This Report
Appendix B:	Site Photographs
Appendix C:	Drawings
Appendix D:	Field Work Results
Appendix E:	Groundwater Monitoring and Permeability Test Results
Appendix F:	Previous Field Work Results and Permeability Test Results
Appendix G:	Laboratory Test Results

Executive Summary

This Geotechnical Investigation Report has been prepared by Douglas Partners Pty Ltd to accompany a detailed State significant development (SSD) development application (DA) for the mixed-use redevelopment proposal at TOGA Central, located at 2 & 8A Lee Street, Haymarket (the site). The site is legally described as Lot 30 in Deposited Plan 880518 and Lot 13 in Deposited Plan 1062447. The site is also described as 'Site C' within the Western Gateway sub-precinct at the Central Precinct.

This report has been prepared to address the Secretary's Environmental Assessment Requirements (SEARs) issued for the SSD DA (SSD 33258337).

Report on Geotechnical Investigation Proposed Commercial Development 2-8a Lee Street, Haymarket

1. Introduction

This report presents the results of geotechnical investigation undertaken for a proposed commercial development at 2-8a Lee Street, Haymarket. The investigation was commissioned by Mr. David McLaren of Toga Development and Construction Pty Ltd via email (approvals dated 17 February 2021 and 27 May 2021) and was undertaken in accordance with Douglas Partners' proposals SYD201237.P.001.Rev2 dated 16 February 2021, and SYD201237.P.002.Rev1 dated 6 May 2021.

This report has been prepared to accompany a SSD DA for the for the mixed-use redevelopment proposal at TOGA Central, located at 2 & 8A Lee Street, Haymarket.

The Minister for Planning, or their delegate, is the consent authority for the SSD DA and this application is lodged with the NSW Department of Planning and Environment (DPE) for assessment.

The purpose of the SSD DA is to complete the restoration of the heritage-listed building on the site, delivery of new commercial floorspace and public realm improvements that will contribute to the realisation of the Government's vision for an iconic technology precinct and transport gateway. The application seeks consent for the conservation, refurbishment and adaptive re-use of the Adina Hotel building (also referred to as the former Parcel Post building (fPPb)), construction of a 45-storey tower above and adjacent to the existing building and delivery of significant public domain improvements at street level, lower ground level and within Henry Deane Plaza. Specifically, the SSD DA seeks development consent for:

- Site establishment and removal of landscaping within Henry Deane Plaza;
- Demolition of contemporary additions to the fPPb and public domain elements within Henry Deane Plaza;
- Conservation work and alterations to the fPPb for retail premises, commercial premises, and hotel and motel accommodation. The adaptive reuse of the building will seek to accommodate:
 - Commercial lobby and hotel concierge facilities;
 - Retail tenancies including food and drink tenancies and convenience retail with back of house areas;
 - 4 levels of co-working space;
 - Function and conference area with access to level 6 outdoor rooftop space, and
 - Reinstatement of the original fPPb roof pitch form in a contemporary terracotta materiality.
- Provision of retail floor space including a supermarket tenancy, smaller retail tenancies, and back of house areas below Henry Deane Plaza (at basement level 1 (RL12.10) and lower ground (RL 16));
- Construction of a 45-storey hotel and commercial office tower above and adjacent to the fPPb. The tower will have a maximum building height of RL 202.28 m, and comprise:

- 10 levels of hotel facilities between level 10 level 19 of the tower including 204 hotel keys and 2 levels of amenities including a pool, gymnasium and day spa to operate ancillary to the hotel premises. A glazed atrium and hotel arrival is accommodated adjacent to the fPPb, accessible from Lee Street;
- 22 levels of commercial office space between level 23 level 44 of the tower accommodated within a connected floor plate with a consolidated side core; and
- Rooftop plant, lift overrun, servicing and BMU.
- Provision of vehicular access into the site via a shared basement, with connection points provided to both Block A (at RL 5) and Block B (at RL5.5) basements. Primary access will be accommodated from the adjacent Atlassian site at 8-10 Lee Street, Haymarket, into 4 basement levels in a splitlevel arrangement. The basement will accommodate:
 - Car parking for 106 vehicles, 4 car share spaces and 5 loading bays;
 - Hotel, commercial and retail and waste storage areas; and
 - Plant, utilities and servicing.
- Provision of end of trip facilities and 165 employee bicycle spaces within the fPPb basement, and an additional 72 visitor bicycle spaces within the public realm;
- Delivery of a revitalised public realm across the site that is coordinated with adjacent development, including an improved public plaza linking Railway Square (Lee Street), and Block B (known as 'Central Place Sydney'). The proposal includes the delivery of a significant area of new publicly accessible open space at street level, lower ground level, and at Henry Deane Plaza, including the following proposed elements:
 - Provision of equitable access within Henry Deane Plaza including stairways and a publicly accessible lift;
 - o Construction of raised planters and terraced seating within Henry Deane Plaza; and
 - Landscaping works within Henry Deane Plaza.
- Utilities and service provision; and
- Realignment of lot boundaries.

This report has been prepared in response to the requirements contained within the Secretary's Environmental Assessment Requirements (SEARs) dated 17 December 2021 and issued for the SSD DA. Specifically, this report has been prepared to respond to the SEARs requirement issued below.

Table 1: SEARs Requirement addressed in this report

ltem	Description of requirement	Section Reference (this report)
14 – Geotechnical Assessment	Provide and assessment of the potential impact on soil resources, including related infrastructure and riparian lands on and near the site	10.10
14 – Salinity Management Plan and/or Acid Sulfate Soils Management plan	Provide an assessment of salinity and acid sulfate soil impacts	4.2

The geotechnical investigation was carried out to provide information on the subsurface profile and groundwater levels for the assessment of excavation conditions, and to provide information for the design of the basement excavation, shoring systems and foundations. The geotechnical investigation was completed in conjunction with environmental contamination testing, and included drilling boreholes, installation of standpipes with data loggers, and laboratory testing of selected soil and rock samples.

Details of the field work are given in this report, together with comments relevant to design and construction practice.

This revised report is prepared to comply with the final architectural drawings provided by the client (Ref.: S12550, prepared by Bates Smart Architects Pty Ltd, dated 1 July 2022)

2. **Previous Investigations**

A desktop study for the site has previously been prepared by Douglas Partners Pty Ltd (DP), and the following reports from previous investigations completed near to the site have been supplied by the client:

- Report on "Supplementary Geotechnical Investigation, Proposed Commercial Development, 8-10 Lee Street, Haymarket", prepared by Douglas Partners Pty Ltd (Report reference: 86767.00.R.006.Rev5, dated 26 November 2020); and
- Report on "Supplementary Geotechnical Investigation, Proposed Commercial Development, 8-10 Lee Street, Haymarket (Devonshire Street Tunnel)", prepared by Douglas Partners Pty Ltd (Report reference: 86767.07.R.001.Rev0, dated 20 November 2020).

It is understood that a data-sharing agreement is in place between the site neighbour and Toga Development and Construction Pty Ltd (Toga), with the shared information including boreholes completed adjacent to the eastern site boundary, and groundwater monitoring data from standpipes.

The site investigations presented in the supplied geotechnical reports include:

- Vertical boreholes drilled to either refusal on the underlying rock (17 locations), or cored into the underlying rock (a further 16 locations);
- Angled boreholes drilled a short distance into the underlying rock using a diatube (2 locations); and
- Installation of standpipe piezometers in 11 of the cored boreholes, with the installed pipes screened within either alluvial sand, very low to low strength sandstone of the Mittagong Formation, or within the underlying medium to high strength sandstone of the Hawkesbury Sandstone geological unit.

Groundwater monitoring data and permeability test results (i.e. rising or falling head tests) from the 11 standpipes (to 15 September 2020) are included in the provided reports. It is noted that the results of extended groundwater monitoring for the site, incorporating some of the available data, has been prepared as a separate report (DP Report reference 86884.02.R.004.Rev0, dated 15 July 2021).

Some of the supplied site investigation results are reproduced in Appendix F of this report: the source boreholes are presented on Drawings 1 and 2 in Appendix C. The data from boreholes completed for both geotechnical and environmental purposes at the site from previous investigations has been considered in preparation of this report.

3. Site Description

The site is located within the City of Sydney Local Government Area (LGA). The site is situated 1.5 km south of the Sydney CBD and 6.9 km north-east of the Sydney International Airport within the suburb of Haymarket.

The site is located within the Western Gateway sub-precinct, an area of approximately 1.65 ha that is located immediately west of Central Station within Haymarket on the southern fringe of the Sydney CBD. Immediately north of Central Station is Belmore Park, to the west is Haymarket (including the University of Technology, Sydney and Chinatown), to the south and east is rail lines and services and Prince Alfred Park and to the east is Elizabeth Street and Surry Hills.

Central Station is a public landmark, heritage building, and the largest transport interchange in NSW. With regional and suburban train services, connections to light rail, bus networks and to Sydney Airport, the area around Central Station is one of the most-connected destinations in Australia.

The site is located at 2 & 8A Lee Street, Haymarket and is legally described as Lot 30 in Deposited Plan 880518, Lot 13 in Deposited Plan 1062447 and part of Lot 14 in Deposited Plan 1062447.

The land that comprises the site under the Proponent's control (either wholly or limited in either height or depth) comprises a total area of approximately 4,159 sqm.

The location of the TOGA Central site is illustrated in Figure 1.

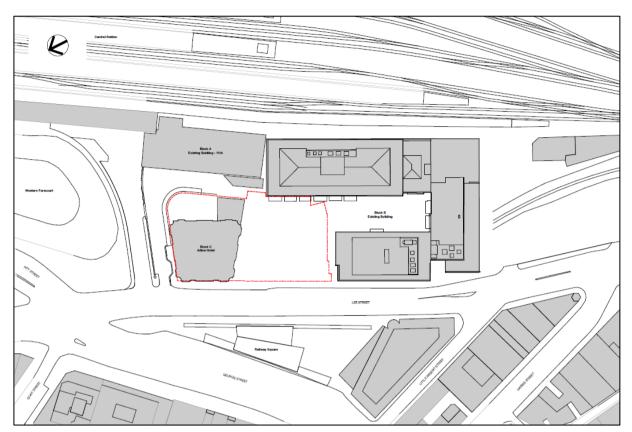


Figure 1: Site Identification Plan (Source: Bates Smart)

The site currently comprises the following existing development:

- Lot 30 in Deposited Plan 880518 (Adina Hotel building): the north-western lot within the Western Gateway sub-precinct accommodates a heritage-listed building which was originally developed as the Parcels Post Office building. The building has been adaptively re-used and is currently occupied by the Adina Hotel Sydney Central. The eight-storey building provides 98 short-stay visitor apartments and studio rooms with ancillary facilities including a swimming pool and outdoor seating at the rear of the site; and
- Lot 13 in Deposited Plan 1062447 and part of Lot 14 in Deposited Plan 1062447 (Henry Deane Plaza): the central lot within the Western Gateway sub-precinct adjoins Lot 30 to the south. It accommodates 22 specialty food and beverage, convenience retail and commercial service tenancies. The lot also includes publicly accessible space which is used for pop-up events and a pedestrian thoroughfare from Central Station via the Devonshire Street Tunnel. At the entrance to Devonshire Street Tunnel is a large public sculpture and a glazed structure covers the walkway leading into Railway Square. This area forms part of the busy pedestrian connection from Central Station to Railway Square and on to George and Pitt Streets, and pedestrian subways.

The site is listed as an item of local significance under Schedule 5 of the *Sydney Local Environmental Plan 2012* 'Former Parcels Post Office including retaining wall, early lamp post and building interior', Item 855.

The site is also included within the Central Railway Station State heritage listing. This is listed on the State Heritage Register 'Sydney Terminal and Central Railway Station Group', Item SHR 01255, and in Schedule 5 of the *Sydney Local Environmental Plan 2012* 'Central Railway Station group including buildings, station yard, viaducts and building interiors' Item 824.

The site is not however listed independently on the State Heritage Register. There is an array of built forms that constitute Central Station, however the Main Terminal Building (particularly the western frontage) and associated clocktower constitute key components in the visual setting of the Parcel Post building.

4. Published Mapping

4.1 Geology

Reference to the Sydney 1:100 000 Geological Series Sheet (Ref. 1) indicates that the site is underlain by Triassic age Ashfield Shale overlying Hawkesbury Sandstone, and that the site is located near Quaternary age alluvial sediments, including transgressive dune sands.

Although not specifically shown on the geological map, the Mittagong Formation is likely to be present at the transition between the Ashfield Shale and Hawkesbury Sandstone geological units.

The Quaternary sediments typically comprise medium to fine grained sand. The Ashfield Shale typically comprises black to dark grey shales and laminite. The Mittagong Formation consists of interbedded shale, laminite and fine grained quartz sandstone, and the underlying Hawkesbury Sandstone typically comprises horizontally bedded and vertically jointed, massive and cross-bedded, medium grained quartz sandstone with a few shale interbeds.

A former creek is shown on a plan from the year 1855 from the City of Sydney Archives (Ref. 2). The Devonshire Street Pedestrian Tunnel is inferred to be aligned sub-parallel to and either co-incident with or adjacent to the former creek.

The geological map indicates the possible presence of igneous dykes near to and north of the site, striking in a north-westerly direction. These dykes are commonly steeply dipping (often near-vertical) slabs of igneous rock which intrude through the bedrock, with measured widths in the Greater Sydney Region ranging between a centimetre or less to about 6 m (Ref. 3). These dykes could be associated with zones of closely spaced fractures within high strength rock. Although no evidence of dykes was found in the investigation there is a possibility that a dyke could cross the site.

Site investigations during the present study encountered alluvial and residual soils, and sandstone bedrock consistent with the Mittagong Formation and Hawkesbury Sandstone.

4.2 Acid Sulfate Soils

The 1:25 000 Acid Sulfate Soil Risk map for Botany Bay (Ref. 4) indicates that the Site does not lie within an area known for acid sulfate soils, nor does the site occur within an area known for soil salinity issues.

5. Field Work Methods

5.1 General

The field work for the investigation was completed in two stages, with the first stage of site work completed within both the Adina Hotel basement and Henry Deane Plaza during March 2021, and the second stage completed within a retail tenancy area on the southern side of the Adina Hotel footprint during June 2021.

Drilling within the Adina Hotel basement was completed between 11-12 March 2021 whereas works within the Henry Deane Plaza were completed over a period of six nights (commencing on the evenings of 10-11 March, and 15-18 March 2021). Drilling within the retail tenancy area was completed between 21-23 June 2021.

The two stages of work included the drilling of twelve boreholes at the locations shown on Drawing 1 and Drawing 2 in Appendix C (Boreholes BH1001-BH1007, BH1003A, BH1004A, BH2001-BH2002, and BH2001A), and installation of standpipes in boreholes BH1002, BH1003A and BH1007.

In conjunction with groundwater sampling activities for contamination assessment purposes, water levels were measured in the new standpipes during March 2021 and June 2021, and also in a selection of existing standpipes near the eastern and northern site boundaries (i.e. boreholes BH8, BH107A, BH107B, BH109B and BH202). Rising head tests were also carried out within boreholes BH1002, BH1003A, BH1007 and BH202. Extended groundwater monitoring within standpipes was concluded following the completion of drilling in June 2021 (reported under separate cover: DP Report 86884.02.R.004.Rev0 dated 15 July 2021).

5.2 Boreholes

Each of the boreholes were drilled vertically, and included:

- two boreholes within the Adina Hotel basement (i.e. Boreholes BH1001 and BH1002);
- seven boreholes in the open-air portion of the Henry Deane Plaza, between a retail tenancy on the southern side of the Plaza ('Priceline') and the northern side of a ramp leading down into the Lee Street pedestrian tunnel (i.e. Boreholes BH1003-BH1007, BH1003A and BH1004A); and
- three boreholes within a retail tenancy on the southern side of the Adina Hotel footprint, which is adjacent to the Lee Street pedestrian tunnel and beneath the ramp leading down eastwards into the Plaza from Lee Street (i.e. BH2001, BH2001A and BH2002).

Following coring of stone paving tiles (Henry Deane Plaza only) and concrete slabs using a diatube, each of the boreholes was commenced within soils using either non-destructive digging (NDD) vacuum excavation methods (Henry Deane Plaza only), or hand tools (e.g. hand auger). It is noted that refusal on buried obstructions or sandstone boulders within rubble or sand fill was encountered in Boreholes BH1003, BH1004, BH1006 and BH2001, with Borehole BH1006 abandoned in favour of a new location nearby (i.e. BH1007), whilst the other three boreholes were offset a short distance to new locations (i.e. BH1003A, BH1004A, BH2001A).

The boreholes were extended through the soils to the top of the underlying rock by either a track-mounted or tripod-mounted portable drilling rig, using auger and rotary drilling techniques.

Regularly spaced standard penetration tests (SPTs) were completed below the termination depth of NDD excavation in four of the Henry Deane Plaza boreholes (ie. BH1003A, BH1004A, BH1005 and BH1007). Dynamic cone penetrometer (DCP) testing was carried out prior to the start of rotary drilling within two of the boreholes (i.e. BH2001A and BH2002), to depths ranging between 0.75 m and 2.10 m. Photographs of the recovered SPT samples from these boreholes are presented together with the logs in Appendix D.

Following installation of drilling casing, the boreholes were advanced into the underlying sandstone using NMLC-sized diamond core drilling equipment to depths ranging between 12.0 m and 18.22 m, to obtain 50 mm diameter, continuous samples of the rock for identification and strength testing purposes.

Selected soil samples obtained during auger drilling were submitted to an analytical laboratory, with analysis of soil pH, electrical conductivity, sulfate and chloride ion concentrations.

All field work was carried out under the full-time supervision of a geotechnical engineer, with logging of the soil and rock materials undertaken in general accordance with Australian Standard AS 1726 (Ref. 5). Surface levels were interpolated from the provided site drawings, including Drawing WG.05 prepared by Synman, Justin and Bialek Architects, dated 21 March 1998 (for boreholes BH1001,-BH1002, BH2001-BH2002 and BH2001A), and Drawing Sheet D1, Reference 37908 by Norton Survey Partners Pty Ltd, dated 29 April 2019. Borehole co-ordinates were interpolated from known site features using tape measurements. The inferred accuracy is 0.1 m for surface levels, and 0.5 m for plan co-ordinates but they are approximate only.

5.3 Standpipes

Three new standpipe piezometers were installed into completed boreholes at the site to measure groundwater levels (i.e. Boreholes BH1002, BH1003A, and BH1007), comprising screened PVC pipe with gravel backfill, a bentonite pellet seal, and 'gatic' cover at ground level (refer to Borehole 'Well' Logs in Appendix D for specific details). It is noted that the screened intervals of the standpipes were selected to target either the medium or high strength sandstone (i.e. BH1002, BH1007), or the alluvial sand (i.e. BH1003A).

The standpipes installed within and adjacent to the site (in Boreholes BH8, BH107A, BH107B, BH202, BH1002, BH1003A and BH1007) were pumped on 19 March 2021 to remove drilling fluids and to prepare the standpipes for groundwater sampling, which was completed on 22 March 2021. Following the completion of sampling activities, data loggers were installed into BH202, BH1003A and BH1007 on 22 March 2021, to automatically measure groundwater levels at pre-determined time intervals. It is noted that there is a short gap in measurements between 30-31 March 2021 due to the loggers being temporarily removed. A data logger was subsequently installed into BH1002 on 31 March 2021. Water levels were also measured by hand on five occasions between 19 March 2021 and 24 June 2021. Rising head tests were carried out on 22 March 2021 after which time the dataloggers were re-programmed for groundwater monitoring through to 24 June 2021.

Further details of the methods and procedures employed during the site investigation are presented in the attached Notes About This Report.

6. Field Work Results

6.1 Boreholes

The detailed conditions encountered are presented on the borehole logs given in Appendix D, along with standard notes defining the descriptive terms and the classification methods used. Photographs of concrete cores, SPT soil samples, disturbed samples and the rock cores are included together with the borehole logs in Appendix D. Selected borehole logs, well logs and core photographs from the supplied reports are included in Appendix F.

The subsurface conditions encountered in the boreholes within the site can be summarised as:

STONE TILE (Henry Deane Plaza only):	Stone tiles (20-40 mm thick) laid over a layer of sand and cement 0.05-0.08 m thick; over
CONCRETE:	Single concrete slab (steel reinforcement not observed in Boreholes BH1001, BH1002, BH2001, BH2001A and BH2002), thickness ranging between 0.08-0.24 m; over
FILL:	Gravel or gravel and bricks (110 mm thick: Boreholes BH1001 and BH1002 only), or layers of clayey sand, sand, silt, or sandy clay, with either silty clay and gravel, cobble or boulder-sized fragments of sandstone, siltstone, igneous rock (railway ballast), concrete and brick rubble, or other anthropogenic materials (e.g. plastic bottles), trace ash and slag. The boreholes within the Henry Deane Plaza included one or more layers of building rubble in a clayey sand matrix, to depths ranging between 1.2 m and 3.5 m (refusal to Boreholes BH1003, BH1004 and BH1006 within these materials); over
ALLUVIAL SAND:	Medium dense to very dense alluvial sand (absent in Boreholes BH1001, BH1002 and BH2001A), typically wet, 1.0-3.7 m thick, including a thin layer (0.8 m thick) of stiff to very stiff silty clay in BH1007; over
ALLUVIAL SILTY CLAY:	Very soft to very stiff alluvial silty clay (Boreholes BH1004A and BH1005 only), 1.0-1.6 m thick, with traces of either charcoal and fine gravel; over
RESIDUAL CLAY:	Firm to very stiff residual silty clay or sandy clay (absent in Borehole BH1004A), 0.18-1.8 m thick, with traces of fine sand and/or gravel; over
RESIDUAL CLAYEY SAND or SANDY CLAY:	Medium dense to very dense residual clayey sand with occasional thin clay bands or very stiff to hard sandy clay (present in Boreholes BH1003, BH1005, BH1007 and BH2002 only), with relict rock texture (extremely weathered sandstone); over
SANDSTONE (MEDIUM GRAINED):	Very low to medium strength, medium grained sandstone, with both clay seams and iron-cemented bands of up to medium to high strength (absent in Boreholes BH1005 and BH1007); over
SANDSTONE (MEDIUM TO COARSE GRAINED):	Medium or high strength, medium to coarse grained sandstone, typically with widely spaced extremely low or very low strength bands.

The medium grained sandstone is interpreted to be part of the Mittagong Formation, and the underlying medium to coarse grained sandstone is interpreted to be Hawkesbury Sandstone.

Interpreted cross-sections through the site (including three cross-sections approximately parallel with the alignment of the Devonshire Street Pedestrian Tunnel) are presented as Drawings 3 to 7 in Appendix C.

Surface levels and depths at which various materials were encountered in the current boreholes are summarised in Table 2, with data from selected previous investigation locations summarised in Table 3 (these locations are shown on Drawings 1 and 2, and investigation data is included in Appendix F).

With the exception of Borehole BH1007 (and the four boreholes terminated prematurely at shallow depth in fill materials), groundwater was not observed during auger drilling and prior to the commencement of rotary drilling or rock coring. As outlined in Section 5.3, standpipe piezometers were installed in Boreholes BH1002, BH1003A and BH1007 to enable groundwater sampling and further groundwater observations to be made, and to enable permeability tests to be completed.

Bore hole ID	Surface	Top Alluvia		Top Residu		-	/ery low h Rock	-	Medium th Rock
	RL (m AHD)	Depth (m)	RL ⁽²⁾	Depth (m)	RL ⁽²⁾	Depth (m)	RL ⁽²⁾	Depth (m)	RL ⁽²⁾
BH1001	13.4	ne	ne	0.4	13.0	1.5	11.9	1.9	11.5
BH1002	13.4	ne	ne	0.4	13.0	0.5	12.9	0.7	12.7
BH1003	14.3	ne	ne	ne	ne	ne	ne	ne	ne
BH1003A	14.3	1.2	13.1	4.0	10.3	4.6	9.7	4.9	9.4
BH1004	15.8	ne	ne	ne	ne	ne	ne	ne	ne
BH1004A	15.8	3.0	12.8	ne	ne	5.6	10.2	6.8	9.0
BH1005	15.9	2.8	13.1	6.2	9.7	8.7	7.2	8.9	7.0
BH1006	15.7	ne	ne	ne	ne	ne	ne	ne	ne
BH1007	15.8	3.5	12.3	7.2	8.6	9.2	6.6	9.8	6.0
BH2001	14.0	ne	ne	ne	ne	ne	ne	ne	ne
BH2001A	14.0	ne	ne	2.0	12.0	ne	ne	2.5	11.5
BH2002	14.0	0.6	13.4	1.7	12.3	2.5	11.5	3.5	10.5

Table 2: Borehole Surface levels and Summary	v of Subsurface Profile	(Current Boreholes)
Table 2. Burellole Surface levels and Summar	y of Subsultace Flottle	(Current Dorenoies)

Notes: (1) "ne" indicates Not Encountered

(2) Elevation (RL) in metres AHD.

Bore bole ID	Surface	Top of Alluvial soil		Top of Residual soil		Top of Very low Strength Rock		Top of Medium Strength Rock	
	RL (m AHD)	Depth (m)	RL ⁽²⁾	Depth (m)	RL ⁽²⁾	Depth (m)	RL ⁽²⁾	Depth (m)	RL ⁽²⁾
BH8	15.5	0.6	14.9	ne	ne	2.1	13.4	4.2	11.3
BH107A	15.5	ne	ne	2.2	13.3	2.8	12.7	>3.9	<11.6
BH107B	15.5	ne	ne	2.2	13.3	2.8	12.7	4.0	11.5
BH110	15.3	ne	ne	ne	ne	ne	ne	ne	ne
W2	15.4	ne	ne	1.0	14.4	1.1	14.3	>1.3	<14.1
W3	13.4	ne	ne	ne	ne	0.0	13.4	>1.2 (3)	<12.3 (3)
W4	13.4	ne	ne	ne	ne	0.9	12.6 ⁽³⁾	2.2 (3)	11.5 ⁽³⁾
BH201	16.4	2.3	14.1	4.7	11.7	ne	ne	7.2	9.2
BH202	16.3	1.3	15.0	6.7	9.6	ne	ne	7.2	9.1
BH203	16.3	2.2	14.1	5.0	11.3	6.4	9.9	7.6	8.7

 Table 3: Borehole Surface levels and Summary of Subsurface Profile (Selected Previous Boreholes)

Notes: (1) "ne" indicates Not Encountered.

(2) Elevation (RL) in metres AHD.

(3) Depth along the hole, elevation in metres AHD allowing for the hole inclination.

6.2 Standpipe Piezometers

Groundwater observations for the new standpipes are summarised in Table 4, and for the existing available standpipes in both Table 5 and Table 6. Graphs of the measured groundwater levels from the dataloggers in BH1002, BH1003A and BH1007 (corrected for barometric pressure effects) are presented in Appendix E, and the supplied groundwater level data for the existing standpipes is included in Appendix F (including borehole BH202). Manual water level measurements obtained using a dip meter were almost identical to measurements obtained using the data logger.

Table 4: Groundwater	Observations	in New	Standpipes

	Standing Water Level Measurements in Boreholes							
Measurement Date	BH1002		BH1003A		BH1007			
	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾		
19 March 2021	16.4	-3.0	2.8	11.5	9.2 ⁽²⁾	6.6 ⁽²⁾		
22 March 2021	16.3	-2.9	2.8	11.5	9.3 ⁽²⁾	6.5 ⁽²⁾		
30 March 2021	16.3	-2.9	2.5	11.8	14.4	1.4		
31 March 2021	16.3	-2.9	2.5	11.8	14.4	1.4		

	Standing Water Level Measurements in Boreholes						
Measurement Date	BH1002		BH1003A		BH1007		
	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾	
24 June 2021	16.6	-3.2	3.0	11.4	14.4	1.4	

Notes: (1) Elevation (RL) in metres AHD.

(2) Water levels prior to completion of well development activities.

Table 5: Groundwater Observations in Existing Available Standpipes

	Standing Water Level Measurements in Boreholes							
Measurement Date	BH8		BH1	07A	BH107B			
Bate	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾		
23 July 2019	2.3	13.2	-	-	-	-		
26 November 2019	2.3	13.2	-	-	-	-		
19 February 2020	1.9	13.6	-	-	-	-		
5 May 2020	2.2	13.3	-	-	-	-		
17 May 2020	-	-	3.2	12.3	1.8	13.7		
26 May 2020	-	-	2.1	13.4	2.6	12.9		
05 June 2020	-	-	2.0	13.5	2.2	13.3		
7 September 2020	2.3	13.2	2.1	13.4	2.4	13.1		
08 December 2020	2.3	13.2	2.1	13.4	2.5	13.0		
09 March 2021	2.2	13.3	2.0	13.5	2.3	13.2		
19 March 2021	2.0	13.5	1.9	13.6	2.2	13.3		
22 March 2021	1.9	13.6	1.6	13.9	1.9	13.6		

Notes: (1) Elevation (RL) in metres AHD.

(2) "-" indicates Not Measured.

Table 6: Groundwater Observations in Available Standpipes

	Standing Water Level Measurements in Boreholes						
Measurement Date	BH1	09B	BH202				
Date	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾			
7 September 2020	2.5	12.8	-	-			
06 November 2020	-	-	4.5 ⁽³⁾	11.8 ⁽³⁾			
09 November 2020	-	-	3.5	12.8			
10 November 2020	-	-	3.5	12.8			
12 November 2020	-	-	3.4	12.9			

	Standing Water Level Measurements in Boreholes					
Measurement Date	BH1	109B	BH	202		
Date	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾		
08 December 2020	2.5	12.8	3.6	12.7		
09 March 2021	2.5	12.8	3.6	12.7		
19 March 2021	-	-	3.3	13.0		
22 March 2021	-	-	3.0	13.3		
30 March 2021	-	-	2.9	13.4		
31 March 2021	-	-	2.9	13.4		
24 June 2021	-	-	3.7	12.6		

Notes: (1) Elevation (RL) in metres AHD..

(2) "-" indicates Not Measured

(3) Observation during auger drilling.

Periods of high rainfall were recorded during the monitoring period. The graphs of groundwater level measurements in Appendix E and Appendix F include daily rainfall data obtained from Observatory Hill, Sydney (Bureau of Meteorology, reference <u>http://www.bom.gov.au</u>, Station 066062: 30 July 2019 to 31 August 2020, and Station 066214: 01 September 2020 to 24 June 2021).

Aside from temporary water level changes due to pumping activities for groundwater sampling and permeability testing (and considering also the varying duration of standpipe monitoring), the groundwater level measurements indicate the following:

- The range of maximum water levels for the available standpipes, screened in the following materials, were:
 - o Alluvial soils: between elevations of RL11.9 m and RL13.5 m;
 - o Mittagong Formation: between elevations of RL13.7 m and RL13.9 m; and
 - o Hawkesbury Sandstone: between elevations of RL-2.8 m and RL13.5 m;
- The variation in water level elevations ranged between 0.4-0.7 m for standpipes screened within rock (for both Mittagong Formation, Hawkesbury Sandstone, or both), and 0.6-0.9 m for standpipes screened within alluvial soil.

Electrical conductivity measurements of groundwater were made during sampling from standpipes BH1002, BH1003A, BH1007, BH202, BH107A and BH107B (refer to groundwater development field sheets within Appendix E). Measurements from standpipes screened within alluvial soils were in the range 178-241 μ S/cm, whereas measurements from standpipes screened within sandstone (either the Mittagong Formation or Hawkesbury Sandstone) were in the range 349-461 μ S/cm.

6.3 Permeability Testing

Permeability testing was completed within standpipes installed within BH202, BH1003A and BH1007 on 22 March 2021 using a rising head test method. The permeability of the screened intervals were

calculated using the Hvorslev analytical method. A summary of the calculated permeability results from BH1003A, BH1007 and BH202 from the current works are presented in Table 7 and included in Appendix E, whilst the permeability test results from the supplied reports are presented in Table 8 and included in Appendix F.

Borehole ID	Material Types within Screened Interval	Calculated Permeability (m/sec)
BH1003A	Alluvial Sand: medium grained, medium dense to dense	2.5 x 10 ⁻⁴
BH1007	Sandstone: medium to coarse grained, slightly fractured then unbroken, medium or high strength	3.5 x 10⁻⁵
BH202 ⁽¹⁾	Alluvial Sand and Silty Clay, and residual Silty Clay	2.6 x 10 ⁻⁶

Note: (1) Three tests carried out, refer Table 8.

Table 8: Calculated Permeabilit	y Results from Supplied Reports.

Borehole ID	Material Types within Screened Interval	Calculated Permeability (m/sec)
BH8 ⁽¹⁾	Sandstone: medium grained, with clay seams in upper metre of screened interval, low then high strength, fractured then unbroken	1.0 x 10⁻ ⁶
BH107A ⁽²⁾	Sandstone: fine to medium grained, high strength with very low strength bands, fractured	1.4 x 10 ⁻⁷ to 2.0 x 10 ⁻⁷
BH107B ⁽²⁾	Sandstone: medium grained, slightly fractured then unbroken, high strength	5.0 x 10 ⁻⁸ to 7.7 x 10 ⁻⁸
BH109B	Sandstone: medium grained, slightly fractured then unbroken, high strength	4.7 x 10⁻ ⁸
BH202 ⁽³⁾	Alluvial Sand and Silty Clay, and residual Silty Clay	7.4 x 10 ⁻⁷ to 1.0 x 10 ⁻⁶

Note: (1) Well screen includes an interval of core loss and clay seams below the top of rock (inferred to be Mittagong Formation). (2) Two tests carried out.

(3) Three tests carried out, refer Table 7.

Typical permeability values for sand, both from DP's previous experience in the area, Borehole BH1003A and from published values, are usually in the range 1×10^{-4} to 1×10^{-5} m/sec. The calculated permeability values from tests completed in borehole BH202 are not consistent with these values and are considered to be not representative of the permeability of sand. Borehole BH202 was positioned close to buildings which may have deep concrete footings founded on rock, and it is possible that these footings combined with a layer of alluvial clay may limit inflows from the soils. Based on the test results from BH1003A, the permeability of the alluvial sand is much higher than measured in the tests completed within borehole BH202.

A relatively rapid recharge rate was observed following well development in Borehole BH1002, and attempts to complete permeability testing were unsuccessful: a loss of water return was encountered during drilling in this borehole between depths of 16.0 m and 18.0 m within Hawkesbury Sandstone bedrock.

7. Laboratory Testing

From the better quality rock core obtained from the current boreholes, 102 samples were selected and tested for axial point load strength index ($Is_{(50)}$). The results of the point load strength testing, presented on the borehole logs, indicate Is_{50} values of 0.05 MPa to 0.9 MPa in the medium grained sandstone (Mittagong Formation) and 0.1 MPa to 2.6 MPa in the medium to coarse grained sandstone (Hawkesbury Sandstone). These values indicate rock ranging from very low strength to high strength. To obtain inferred unconfined compressive strengths (UCS) from point load strength test results, a conversion factor of 20 is suggested, indicating a UCS of up to about 52 MPa for the rock encountered during the current investigation (this conversion factor varies and could also be slightly higher).

Eleven selected disturbed samples of various materials from the boreholes were tested in a NATA-accredited analytical laboratory to determine soil aggressivity (pH, electrical conductivity, sulfate and chloride ion concentrations).

The soil aggressivity results for the current investigation are summarised in Table 9, with the laboratory test reports included in Appendix G. A selection of the laboratory test results presented in the supplied previous investigation reports are summarised in Table 10 (laboratory test reports are not reproduced in this report).

Sample ID	Sample Description	Sample Elevation (RL m) ⁽¹⁾	рН	EC ⁽²⁾ (μS/cm)	Chloride (mg/kg)	Sulfate (mg/kg)
BH1001, 0.9-1.0m	Silty CLAY (Residual)	12.5	5.4	29	<10	32
BH1003A, 0.8-0.9m	Clayey SAND (Fill material)	13.5	8.9	77	<10	20
BH1003A, 1.9-2.0m	SAND (Alluvium)	12.4	8.2	8	<10	<10
BH1004A, 4.5-4.95m	Silty CLAY (Alluvium)	11.3	6.1	40	<10	20
BH1005, 1.55-1.65m	Clayey SAND (Fill material)	14.3	9.5	1	20	51
BH1005, 7.0-7.45m	Silty CLAY (Residual)	8.9	6.4	27	10	<10
BH1007, 8.5-8.95m	Clayey SAND (Extremely weathered sandstone)	7.3	6.3	14	<10	<10
BH2001A, 1.0-1.1m	SAND (Fill material)	13.0	8.6	66	<10	23
BH2001A, 1.8-1.9m	SAND (Fill material)	12.2	8.8	40	<10	<10
BH2002, 0.5-0.6m	SAND (Fill material)	13.5	9.6	70	<10	20
BH2002, 0.9-1.0m	SAND (Alluvium)	13.1	8.9	21	<10	<10

Table 9: Laboratory	Test Results fo	r Aggressivity	to Buried	Concrete a	nd Steel f	from Current
Boreholes						

Notes: (1) Elevation quoted is for the 'top' of the sample.

(2) EC = Electrical Conductivity.

(3) Analysed soil was tested as a 1:5 mixture of soil:water prior to testing.

Table 10: Laboratory Test Results for Aggressivity to Buried Concrete and Steel(Selected Previous Boreholes)

Sample ID	Sample Description	Sample Elevation (RL m) ⁽¹⁾	рН	EC ⁽²⁾ (μS/cm)	Chloride (mg/kg)	Sulfate (mg/kg)
BH107B, 2.4-2.5m ⁽⁴⁾	Sandy CLAY (Residual)	13.1	5.9	24	<10	20
BH202, 1.4-1.5m		14.9	7.7	17	<10	<10
BH203, 3.4-3.5m	SAND (Alluvium)	12.9	8.0	12	<10	<10
BH203, 5.0-5.1m ⁽⁵⁾	Silty CLAY (Residual)	11.3	5.6	34	<10	34

Notes: (1) Elevation quoted is for the 'top' of the sample.

(2) EC = Electrical Conductivity.

(3) Analysed soil was tested as a 1:5 mixture of soil:water prior to testing.

(4) Sample mislabelled on Chain of Custody as 'BH107'.

(5) Sample mislabelled on Chain of Custody as 'BH203, 4.9-5.0 m'.

8. Geotechnical Model

The field work results are summarised on four geotechnical cross-sections in Appendix C (Drawings 3 to 7), which show the interpreted layers of fill materials, alluvial and residual soil, and sandstone units between the test locations. The interpreted boundaries shown on the sections are accurate only at the test locations and layers shown diagrammatically on the drawings are inferred only. Bands of lower or higher strength rock may be present within the generalised sandstone layers.

Below a surface layer of tiles (for Henry Deane Plaza only), a single concrete slab layer is inferred to be present across the site, with a thicker strip of concrete inferred to be present in the southern part of the site, inferred to be associated with footings and a (buried) wall on the southern side of the Adina Hotel retail tenancy. Fill materials are inferred to be present across the site, being of greater thickness and with building and demolition rubble inclusions in the southern part of the site (i.e. within the Henry Deane Plaza). Alluvial sand and clay soils are also inferred to be present within the Henry Deane Plaza (sub-parallel with the Devonshire Street pedestrian tunnel), whilst residual silty clay and sandy clay soils are inferred to be present across.

The interpreted geotechnical models for the site are:

- Northern part of the site (i.e. below the Adina Hotel: refer to Drawings 3, 5 and 7):
 - o Loose to medium dense fill materials (gravel and bricks or sand: about 0.1 m thick increasing southwards to about 2 m thick); over
 - o Dense to very dense sand alluvium (up to 1 m thick: Borehole BH2002 only);
 - o Firm to very stiff sandy or silty clay residual soil (possibly up to 1.5 m thick); overlying
 - Fine to medium grained sandstone (very low strength, with medium to high strength bands: up to about 1.5 m thick); and then overlying
 - o Medium grained, medium to high strength sandstone.

- Southern part of the site (i.e. within the Henry Deane Plaza: refer to Drawings 4, 5 and 6):
 - o Stiff or loose to medium dense fill materials (clayey sand, sand, gravelly sand, sandy clay or silty clay, with building rubble, bricks, sandstone gravel and cobbles: up to 3.3 m thick); over
 - o Medium dense to very dense sand and very soft to very stiff silty clay alluvium (up to 5.4 m thick); over
 - o Firm to very stiff silty clay, sandy clay or clayey sand residual soil / extremely weathered sandstone (up to 2.5 m thick); overlying
 - o Medium grained sandstone (extremely low or very low strength, with medium strength bands: up to about 1.2 m thick); and then overlying
 - o Medium to coarse grained, medium to high strength sandstone;

The rock materials encountered in the boreholes (summarised in Table 11) have been classified in accordance with the system given in Pells et. al. (Ref. 6), and Bertuzzi and Pells (Ref. 7), which grades Sydney sandstone into five classes on the basis of strength and defects from Class I (high strength with virtually no defects) to Class V (very low strength sandstone or higher strength rock with closely spaced defects). It should be noted that the profiles are accurate at the borehole locations only, and that variations must be expected away from the boreholes. It should be noted that bands of higher strength rock can occur within lower class and lower strength rock.

To simplify the interpreted model, the classes given in Table 11 are based on the lower class applicable within a depth zone. A selection of the rock classifications presented in the supplied investigation reports is presented as Table 12.

		Top of Stratum ⁽¹⁾								
Borehole ID	Class V ⁽²⁾		Class IV (2)		Class III ⁽²⁾		Class II ⁽²⁾		Class I ⁽²⁾	
	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)
BH1001	1.5	11.9	1.9	11.5	2.7	10.7	3.0	10.4	-	< -0.8
BH1002	0.5	12.9	0.7	12.7	1.3	12.1	3.0 (4)	10.4 ⁽⁴⁾	-	< -4.7
BH1003A	4.6	9.7	4.9	9.4	6.8 (4)	7.5 ⁽⁴⁾	11.2	3.1	-	< -0.1
BH1004A	5.6	10.2	6.8	9.0	8.4 (4)	7.4 ⁽⁴⁾	-	-	-	< -2.4
BH1005	8.0	7.9	-	-	8.9 (4)	7.0 ⁽⁴⁾	-	-	-	< 0.0
BH1007	9.2	6.6	9.8	6.0	11.0	4.8	-	-	-	< -0.4
BH2001A	-	-	2.5	11.5	3.8	10.2	5.7	8.3	-	< 2.0
BH2002	2.5	11.5	-	-	3.5	10.5	4.3	9.7	9.3	4.7

Table 11: Summary of Material Strata Levels and Rock Classifications

Notes: (1) Depths and levels shown are to the top of rock classes in boreholes, with depths in metres and elevations in m AHD.

(2) Rock classifications are based on Pells et. al (Ref. 6), and Bertuzzi and Pells (Ref. 7).

(3) '-' indicates the material was not encountered within the drilled length.

(4) A seam of extremely low strength was encountered within this interval.

		Top of Stratum ⁽¹⁾								
Borehole	Class V ⁽²⁾		Class IV (2)		Class III ⁽²⁾		Class II ⁽²⁾		Class I ⁽²⁾	
ID	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)
BH107B	2.8	12.7	4.1	11.5	-	-	-	-	4.9	10.6
BH201	-	-	-	-	-	-	7.2	9.2	-	-
BH202	-	-	-	-	7.2	9.1	10.8	5.5	-	-
BH203	6.4	9.9	7.6	8.7	9.1	7.2	11.8	4.5	-	-

Table 12: Summary of Material Strata Levels and Rock Classifications

Notes: (1) Depths and levels shown are to the top of rock classes in boreholes, with depths in metres and elevations in m AHD. (2) Rock classifications are based on Pells et. al (Ref. 6), and Bertuzzi and Pells (Ref. 7).

(3) '-' indicates the material was not encountered within the drilled length.

9. Proposed Development

It is understood that the proposed development of the site will include excavation beneath part of the northern area of the site (i.e. east of the Adina Hotel) for a four-level basement (to an elevation of RL1.9 m) and a localised deeper excavation for lift shafts , and excavation within the southern part of the site (within the Henry Deane Plaza) for a four split level basement to split elevations of RL1.0 m and RL 2.5 m, followed by construction of a multi-storey mixed-use tower. Based on the information provided by the client, detailed excavations of up to 4.5 m below bulk excavation level may be required for lift pits. It is further understood that buried services passing through the site south of the Adina Hotel and above the final basement floor level (i.e. stormwater and sewer pipes, and electrical cables) are to be structurally supported.

Based on the provided drawings, it is understood that the proposed southern basement will extend close to property boundaries, intersecting both the Lee Street and Devonshire Street pedestrian tunnels, and will need to interact with both existing and future basements on neighbouring sites. The proposed northern basement adjacent to the Adina Hotel will extend to the eastern boundary and partially to the northern boundary of the site. The drawings indicate that there will be two entry points into the basement, at Basement 3 level via a turntable from a neighbouring basement to the east (i.e. beneath the Devonshire Tunnel) at levels RL 5.5 m and RL 5.0 m.

Excavation for the basement will require excavation to depths ranging between about 11.7 m within the northern part of the site and 14.7 m within the southern part of the site, being deepened further for lift shafts.

10. Comments

10.1 Geotechnical Issues

Some of the geotechnical issues that need to be considered for the proposed development are:

- Maintaining the stability and integrity of adjoining structures, services and tunnels (i.e. the Adina hotel, Henry Deane Plaza buildings, the existing pedestrian tunnels, and buried stormwater/sewer services);
- Excavation-induced movement adjacent to Lee Street, which is a Roads and Maritime Services (RMS) asset;
- Interactions with adjoining basements, including to the east and south of the site;
- Groundwater is likely to be present within the basement excavation envelope, in the form of seepage within the fill and soils, at the soil-rock interface and along rock joints and bedding planes;
- Water-tight shoring walls will need to be designed around the perimeter of the site to retain fill, alluvial and residual soils, to reduce groundwater inflow and to control drawdown of water levels on adjacent sites;
- The shoring will need to be socketed into competent rock, which may be problematic for some shoring systems;
- Shoring installed (by others) along boundaries for adjoining basement developments will need to be assessed, to determine support strategies where narrow rock plinths will be formed;
- Design of the shoring walls (including anchors, props or struts) will need to take into consideration the positions of current or future proposed basement levels and connections;
- If water-tight shoring walls (cut-off walls) are constructed into rock to reduce inflow and drawdown
 of water levels, then it is technically feasible to construct a drained basement, however, this will be
 subject to review and approval by both the City of Sydney Council (Council) and by Water NSW;
 and
- Alternatively, a tanked basement could be constructed to reduce the need for long term collection, possible treatment and removal of groundwater inflows. A tanked basement would need to be designed for horizontal hydrostatic pressure behind shoring walls and hydrostatic uplift of the basement floor slab.

10.2 Site Preparation

Site preparation may require the partial demolition of portions of existing structures to facilitate access for machinery, and access tracks and ramps may be required to enable machinery (e.g. piling rigs) to access the southern part of the Site. Careful attention should also be made to the staging of the works, to prevent damage or over-loading of existing supporting structures, such as the concrete and sandstone columns supporting the Adina Hotel (which may be founded at relatively shallow depths on the underlying sandstone). Prior to the commencement of basement excavation works, a strategy to monitor building movement during the construction period will need to be implemented.

It is likely that removal and replacement of fill materials (e.g. including clay or sand fill, and demolition rubble) and construction of working platforms will be required. Subject to confirmation testing, existing

concrete slabs within the northern part of the site may be suitable as working platforms for piling rigs, prior to their removal as part of the bulk excavation works. Further geotechnical advice should be sought when further details are known.

Installation of water-tight shoring walls around the site perimeter will be required, prior to the commencement of the basement bulk excavation works. Low-height equipment is likely to be required, if piling works are to be carried out within indoor areas.

Sand, clay and rubble fill materials, and sand and clay alluvial soils, are likely to be exposed within the upper 4-7 m of the southern part of the excavation which is likely to pose challenges for construction vehicles with pneumatic tyres. Some rutting and surface damage should be expected, particularly if traversed following periods of prolonged rainfall. It is anticipated that tracked machines would be able to safely traverse and work upon this material while it is exposed.

If placement of fill is required, or there is a need to improve the allowable bearing capacity of the underlying site soils, additional site preparation will be required. Typical site preparation measures could include:

- Removal of loose soil to create a level surface, to a depth to be determined on a case-by-case basis by a geotechnical engineer;
- Compact the exposed material, then test roll the exposed surface using at least six passes of a minimum 12-tonne roller in non-vibration mode. The final pass should be witnessed by an experienced geotechnical engineer to detect any weak zones which would require additional rectification work, as directed by the geotechnical engineer;
- If required, replacement fill material should be free of oversize particles (>100 mm) and materials which could break down or degrade, and should be placed in layers of loose thickness not greater than 200 mm (dependent upon the size of compaction machinery), and compacted to a dry density ratio of at least 98% relative to Standard compaction. Moisture contents should be maintained within 2% of Standard optimum moisture content. Compaction should be increased to a dry density ratio of 100% relative to Standard compaction for the top layer of the fill material (if the replacement filling used is sand, compact to a density index of 75%);
- Moisture conditioning (i.e. drying or wetting) of the replacement fill material may be required, to enable a greater degree of compaction to be achieved; and
- All fill materials should be placed in accordance with Australian Standard AS 3798 (Ref. 8), with earthworks quality control testing undertaken to verify that the required compaction/moisture criteria are achieved.

Stabilisation of the underpinned brick retaining wall along the northern and eastern sides of the Adina Hotel basement will be required if it is to be retained as part of the works, such as by further underpinning of the brick retaining wall and the existing concrete underpin down to medium strength rock.

Dilapidation surveys should be carried out on adjacent properties, including structures, pathways, walls or roadways prior to commencement of the works. The dilapidation survey should document existing conditions and the presence of defects, and thereby allow appropriate responses should any claims arise from construction at this site. Buildings supported on shallow foundations are especially prone to the detrimental effects of settlement and vibration. The extent of dilapidation surveys can be reviewed once the detailed design has been completed.

10.3 Bulk Excavation

Following completion of the site preparation works, including the installation of shoring walls, excavation for the basement levels is expected to be required through up to about 7.5 m of soil (including clay, sand and rubble fill, alluvial sand and silty clay, and residual clayey sand, silty clay or sandy clay), then through rock of varying strength, including high strength sandstone.

The fill, alluvial and residual soils should be readily excavated using conventional earthmoving equipment. Very low to low strength rock will likely require light to medium ripping. The use of heavy ripping equipment, rock hammers or rock saws will be required to for excavation medium or high strength rock.

Rippability of the sandstone is critically dependent upon the spacing of bedding and vertical joints, as well as on strength. Effective removal of the medium or higher strength sandstone within the lower levels of the excavation should be achieved by heavy bulldozers ripping in conjunction with rock hammers, however, excavation contractors should make their own assessment of likely productivity depending on their equipment capabilities and operator skills. Some of the less fractured high strength rock may be effectively unrippable with low productivity. Detailed footing excavations adjacent to boundary lines can be achieved by use of rock hammers or hydraulic rotary rock saws, or milling heads. Rock saws should also be used along the site boundaries to minimise over-break and vibrations.

10.4 Vibration Control

Noise and vibration will be caused by excavation and earthworks activities at the site. The use of rock hammers will cause vibrations which, if not controlled, could possibly result in damage to nearby structures and disturbance to occupants, and it will be necessary to use appropriate methods and equipment to keep ground vibrations at adjacent buildings and structures within acceptable limits.

Based on previous experience and with reference to Australian / International Standard AS/ISO 2631.2 (Ref. 9), an initial vibration limit of 8 mm/sec vector sum peak particle velocity (VSPPV) is suggested at the foundation level of adjacent buildings, for human comfort considerations. This initial vibration limit may need to be reduced if there are vibration-sensitive buildings or equipment in the area (e.g. buried pipes). It is noted that brick buildings or structures near to the proposed excavation (e.g. the brick retaining wall along the northern and eastern site boundary) may be founded on pad or strip footings in sand at shallow depths, which could be affected by ground vibration. A lower vibration limit of 3-5 mm/s is recommended for any structures founded on loose sand. The owners of any in-ground utilities within and around the property should also be consulted regarding allowable vibration levels.

If generation or construction vibration is a potential problem, consideration should be given to rock sawing and rock milling methods of rock excavation. A site-specific vibration monitoring trial may be required to determine vibration attenuation, once excavation plant and methods have been finalised.

10.5 Disposal of Excavated Material

Off-site disposal of excavated material will require assessment and environmental testing for re-use or classification, in accordance with *Waste Classification Guidelines* (Ref. 10), prior to disposal to an appropriately licensed landfill or receiving site. This includes fill materials and virgin excavated natural

materials (VENM), such as may be removed from this site. The type and extent of testing undertaken will depend on the final use or destination of the spoil, and requirements of the receiving site.

10.6 Batter Slopes

Based upon the provided drawings, excavation up to site boundaries is proposed and it is likely that internal batters will be required during construction for temporary site access and driveways. Vertical excavations along the site boundaries in the fill, soils and very low to low strength rock cannot be relied upon to remain stable and will require shoring.

The suggested maximum batter slopes for temporary batters of up to 3 m height above the water table, which are not subjected to surcharge loads, are presented in Table 13. Where surcharges apply shallower batters will be required.

An assessment of stability using analytical techniques would be necessary for excavations deeper than 3 m, and flatter batters would usually be appropriate.

	-		
Excavated material	Temporary Batter	Permanent Batter	
Fill materials	1.5H:1V	2H:1V	
Residual soils	1.5H:1V	2H:1V	
Extremely low to low strength sandstone	0.5H:1V	1H:1V	
Medium strength sandstone (or better)	Vertical ⁽¹⁾	Vertical ⁽¹⁾	

Table 13: Recommended Maximum Batter Slopes for Excavated Slopes

Note: (1) Must be inspected by an engineering geologist or geotechnical engineer for unstable wedges, which should be cleared or rock bolted

Care should be taken where any surcharge loads are planned at the crest of batter slopes (e.g. placement of scaffolding sole boards). A slope stability analysis should be undertaken for batters subjected to surcharge loads on a case-by-case basis, following inspection and testing by a geotechnical engineer. Material stockpiles and machinery or equipment should not be stored at the crest of unsupported excavations.

Given the proximity to adjacent structures and the depth of excavation, shoring walls are likely to be required around the excavation perimeter.

Medium to high strength sandstone can be cut vertically, provided the exposed faces are carefully inspected by a suitably qualified geotechnical engineer or engineering geologist as the excavation progresses.

Regular inspections of the rock face will be required during excavation (recommended at about every 1.5 m 'drop' in excavation), to determine whether there are any adversely oriented defects which require rectification works to maintain stability, such as rock bolts or anchors or installation of steel mesh-reinforced shotcrete. Based upon the quality of the medium to high strength sandstone encountered in boreholes during the investigation, it is expected that there should only be a few minor beds of very low or low strength sandstone requiring shotcrete protection within the sides of the excavation.

10.7 Groundwater

10.7.1 General

Groundwater measurements from standpipe piezometers within and adjacent to the site indicate that the proposed design floor level of 'Basement 4' at a minimum elevation of RL1.0 m will be below the permanent groundwater table: the highest measured groundwater elevation was RL13.9 m within the Mittagong Formation, and RL13.5 m within the underlying Hawkesbury Sandstone. Perched groundwater is also indicated to be present within the overlying alluvial soils, for which the highest recorded water level was at an elevation of RL13.5 m, and at or near the soil-rock interface within the residual clay.

The measurements indicate that water inflows within the sandstone bedrock appear to be controlled by rock joints. The seams and other fractures in the weathered rock may also be acting as conduits for water flow, and temporary water storage. Groundwater data and observations from the supplied reports indicate minimal variability in groundwater levels following rainfall periods between July 2019 and September 2020. Recent groundwater observations made during the current study show a similar trend.

Previous experience indicates that groundwater from the geological units which are present at the site can have moderate concentrations of dissolved solids, including iron. Once the groundwater comes into contact with the atmosphere, precipitation of iron oxides is likely to occur and provision should be made for the filtering and cleaning of this precipitate from subsoil drains, sumps, pumps and other fittings over the medium to longer term.

It is likely that groundwater modelling will be required for the proposed basement, to indicate the volume of dewatering which is likely to be required during both the construction stage and over the longer term, noting that basements to similar levels are proposed for construction on adjoining sites to the east and south.

10.7.2 Seepage Rates and Groundwater Drawdown

The design of the basement is likely to target a groundwater drawdown in soils or extremely low strength rock at neighbouring properties (below existing water levels) of no more than 1.5 m. To achieve this, the basement construction will need to include a relatively water-tight perimeter 'cut-off' wall to minimise water ingress. This wall could be either socketed a minimum of 2 m into competent, slightly weathered to fresh, slightly fractured and unbroken, medium to high strength sandstone, or drilled through the medium or high strength sandstone to below the base of the excavation.

Extending the cut-off wall to below the level of the basement excavation would reduce the risk of seepage occurring through fractures in the rock in the sides of the excavation and would also further reduce the inflow to the basement. If excessive water ingress becomes an issue during excavation in the case whether the walls have been terminated above the basement design floor level, then grouting of open joints and bedding partings may be necessary and will be relatively difficult and costly to achieve.

A drained basement may be feasible for the site, provided a perimeter water-tight cut-off wall is constructed for the height of perimeter walls which are retaining soil, and extended at least 2 m into the slightly fractured or unbroken sandstone.

If seepage flows need to be further reduced then cut-off walls could be extended below the basement floor level, as the seepage would then only be able to occur up through the medium to high strength rock below the basement floor. It will be necessary to provide under-floor drainage to safeguard against uplift pressures for a slab designed for drained conditions. This could comprise a minimum 100 mm thick, durable open graded crushed rock with subsurface drains and sumps.

Approval for a drained basement will be subject to review and approval by Council and by Water NSW. If a drained basement slab is not permitted, or it is preferred to eliminate issues associated with long term removal of groundwater, then a water-tight 'tanked' basement will be required for the permanent basement structure. A tanked basement would need to be designed to resist uplift forces associated with hydrostatic groundwater pressures which could be in the order of 15 m of hydraulic head.

10.7.3 Disposal

It is noted that off-site disposal of collected groundwater will need to be carried out in accordance with New South Wales Government Legislation (Ref. 11), and that water to be discharged into the natural environment should comply with the relevant guidelines (e.g. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council (ANZECC), Agricultural and Resource Management Council of Australia and New Zealand), and/or City of Sydney Council's local stormwater discharge conditions. It is considered that preparation of a dewatering management plan will likely be required during a later stage of the project.

10.8 Excavation Support

10.8.1 General

Shoring will be required around the sides of the basement excavation, and the installation of a water-tight shoring wall will be required around the basement perimeter, socketed at least 2 m into the slightly fractured or unbroken sandstone.

10.8.2 Shoring / Retaining Walls

Shoring wall systems which could be considered include diaphragm walls and interlocking secant pile walls, as follows:

- Diaphragm walls may be used as the permanent basement wall. They are usually considered to
 have a reduced risk of adverse construction issues, but are relatively slow to construct and
 consequently more expensive. They are constructed using a large 'grab' bucket, which excavates
 the soil and rock in vertical panels which are supported by bentonite fluid. Each panel is then cast
 using concrete tremmied into the bentonite-supported excavation, with steel reinforcement cages
 installed prior to the concrete being tremmied. The joints between the panels are sealed with a
 'waterstop', so that a completely water-tight wall is achieved; or
- Interlocking secant pile walls are typically formed by drilling alternate 'soft' grout or concrete piles and then installing 'hard' reinforced concrete piles by cutting into the previously drilled soft piles. This overlap typically ensures that piles are sealed, but some misalignment can occur even at relatively shallow depths to create minor gaps in the wall. The potential for misalignment and therefore seepage ingress and soil loss through the wall is high for deep secant pile walls. Drilling

of piles into rock can also be problematic for secant piles, and may result in decompression or disturbance of the surrounding soils which can result in damage to adjacent buildings. The use of segmental casing through the soils would be required to avoid issues associated with decompression and hole collapse in sandy soils, and pumps may be required to remove seepage from pile excavations prior to placement of concrete.

10.8.3 Design of Excavation Support

The shoring may need to be supported by internal bracing (e.g. props or struts) or ground anchors to control deflections.

Excavation faces retained either temporarily or permanently will be subjected to earth pressures from the ground surface down to the top of medium strength rock. The values of active earth pressure coefficient (K_a) given in Table 14 may be used for a level ground surface and a 'flexible' wall which is allowed some lateral movement. 'At rest' earth pressure (K_o) values should be used where the wall movement needs to be reduced, such as next to neighbouring building footings.

Material Description	Unit Weight (kN/m ³)	Coefficient of Active Earth Pressure (K _a)	Coefficient of Earth Pressure 'at Rest' (K _o)	Effective Cohesion (c': kPa)	Effective Friction Angle (Degrees)
Fill materials, sand or clay alluvium, firm sandy or silty clay residual soil	18	0.4	0.6	0	28
Very stiff to hard silty clay, sandy clay or clayey sand residual soil / extremely weathered sandstone	20	0.25	0.4	5	25
Extremely low to low strength sandstone	22	0.1	0.2	100	25
Medium strength or stronger sandstone	24	0 (1)	0 (1)	300	40

Table 14: Preliminary Design Parameters for Shoring Systems

Note: (1) Subject to geotechnical inspection.

The design for lateral earth pressures of multiple anchored or propped walls may be based on a trapezoidal earth pressure distribution, with additional allowances made for surcharge loads from adjacent buildings, sloping ground surfaces, the rail corridor, and construction machinery. Hydrostatic pressures acting on the full height of the shoring wall should also be included in the design where adequate drainage is not provided behind its full height.

The following earth pressure magnitudes are considered appropriate, where H is the height of soil and rock to be retained (in metres):

• 4H kPa, where some lateral movement is allowed; and

• 6H kPa, where lateral movements need to be minimised (e.g. next to buildings or services).

In each case the maximum pressure generally acts over the central 60% of the wall height, reducing to zero at the top and base of the wall.

If the shoring terminates in rock above the bulk excavation level then rock bolts or anchors will be required to ensure that the toe of the shoring is not undermined by further excavation of the rock below the shoring level. Passive resistance for shoring founded in rock below the base of the bulk excavation (including allowance for services or footings) may be based on the ultimate passive restraint values provided in Table 15. These ultimate values represent the pressure mobilised at high displacements and therefore it will be necessary to incorporate a factor of safety of say 2 to limit wall movement. The top 0.5 m of the socket should be ignored due to possible disturbance and over-excavation.

Table 15: Preliminary Passive Resistance Values

Foundation Stratum	Ultimate Passive Pressure (kPa)
Low strength sandstone	2,000
Medium strength or stronger sandstone	4,000

Detailed design of shoring and should preferably be carried out using WALLAP, PLAXIS or other accepted computer analysis programs capable of modelling progressive excavation and anchoring, and predicting potential lateral movements, stresses and bending moments. PLAXIS (or similar) would be required if it is necessary to assess ground movements on surrounding properties (e.g. 8-10 Lee Street), as WALLAP can only assess wall movements.

10.8.4 Ground Anchors

For estimation purposes the design of temporary ground anchors for the support of shoring systems may be carried out on the basis of the maximum bond stresses given in Table 16. The anchors should preferably have their bond length within the medium strength or stronger sandstone.

To prevent excessive lateral deformation, installation of temporary ground anchors may be required below any adjoining footings (i.e. located on or close to the site boundaries), or into the toes of shoring piles installed above the basement design floor level. Additional anchors may be required if potentially unstable blocks or wedges are observed during excavation of rock.

Material Description	Maximum Allowable Bond Stress (kPa)	Maximum Ultimate Bond Stress (kPa)		
Very low strength sandstone	100	200		
Low strength sandstone	200	400		
Medium strength or stronger sandstone	500	1000		

The parameters given in Table 16 assume that the anchor holes are clean and adequately flushed, with grouting and other installation procedures carried out carefully and in accordance with good anchoring

practice. Careful installation and close supervision by a geotechnical specialist may allow increased bond stresses to be adopted during construction, subject to testing. The use of permanent anchors would require careful attention to corrosion protection. Further advice on design and specification should be sought if permanent anchors are to be employed at this site.

Ground anchors should be designed to have an appropriate free length (minimum of 3 m) and have a minimum 3 m bond length. After installation they should be proof loaded to 125% of the design working load and locked-off at no higher than 80% of the working load. Periodic checks should be carried out during the construction phase to ensure that the lock-off load is maintained and not lost due to creep effects or other causes.

It will be necessary to obtain permission from neighbouring landowners prior to installing anchors that will extend beyond the site boundaries. In addition, care should be taken to avoid damaging buried services, pipes and subsurface structures (possibly including neighbouring piled footings) during anchor installation. Anchoring should only be carried out by an experienced contractor with demonstrated experience in similar ground conditions.

Vertical anchors for uplift support (e.g., for uplift resistance of the side core) could also be designed using the parameters given in Table 16. The designer should check the cone pull-out failure mechanism by assuming a 90-degree cone for both the soil and rock.

10.9 Excavation-Induced Ground Movement

10.9.1 Transport for NSW Infrastructure

Lee Street is a Transport for NSW (TfNSW) asset, and the Devonshire Street pedestrian tunnel is a Sydney Trains asset. Reference should be made to a TfNSW Technical Direction for excavation adjacent to TfNSW infrastructure (Ref. 12), which outlines their requirements and includes the level of geotechnical investigation required, dilapidation surveying, instrumentation and monitoring during construction, trigger levels and contingency plans. Sydney Trains, TfNSW or other local authorities may have specific requirements, which will need to be discussed and implemented before construction commences.

A Geotechnical Impact Assessment (GIA: that is, numerical modelling) will typically be required as part of a Development Application (imposed by both TfNSW and Sydney Trains). The purpose of the GIA is to assess the likely amount of excavation-induced ground movement resulting from the proposed excavation.

During construction, instrumentation (e.g. inclinometers) and survey monitoring are typically required where the excavation exceeds heights of either 3 m (for cantilevered shoring walls) or 6 m (for anchored or propped shoring walls). A geotechnical monitoring plan is likely to be required by TfNSW prior to construction for this site.

10.9.2 Stress Relief

For an excavation which extends to a depth of up to about 11 m below the top of medium or high strength sandstone, there is likely to be some inward horizontal movement due to stress relief effects. It is impracticable to provide restraint for the relatively high in-situ horizontal stresses present within the

Hawkesbury Sandstone. Release of these stresses due to the excavation will generally cause horizontal movement along the rock bedding surfaces and partings.

Based on monitoring experience for excavations in the Sydney region, excavation to about 11 m below the top of weathered rock may give rise to lateral movements of between 0.5 mm and 1.5 mm for every 1 m depth of excavation below the top of rock (i.e. in the order of 5 - 16 mm total movement at the centre of the face, at the top of the excavation). The stress relief movements behind the top of the excavation typically reduce by 1 mm per metre of distance back from the face.

The new building structure should be designed to allow for some stress relief movements, i.e. leaving a gap between the structure and the rock face. The differences in stress relief movements behind the top of the excavation may result in cracking of adjacent brittle buildings. It is recommended that appropriate allowance also be made for the repair of pavements and public utilities, where excavations are carried out close to structures.

Regular monitoring of survey targets along the excavation perimeter during construction, such as following each successive 'drop' in excavation level, should be undertaken to monitor the effects of stress relief.

10.10 Foundations

It is anticipated that the foundations for the building above the proposed basement will be constructed within a uniform founding stratum, at or below the floor level of 'Basement 4' (i.e. RL1.0 m). New foundation columns to be installed beneath the Adina Hotel, and within a few metres of deep excavations for the basement, are proposed to be founded within a uniform stratum below an elevation of about RL10 m.

As depicted in the interpreted cross-sections (Drawings 3 to 7, Appendix C), medium to high strength Hawkesbury Sandstone with bands of lower strength and with occasional clayey seams (assessed to be either Class III or Class II sandstone) is expected to be exposed at 'Basement 4' level across the basement excavation floor, and at the positions of the new foundation columns beneath the Adina Hotel.

On this basis, spread footings (i.e. pad footings) should be suitable for supporting building loads within the excavation footprint of the southern basement. Pile foundations are likely to be considered for the main tower to resist uplift forces and overturning moment. Pile foundations will also be suitable for the new columns beneath the Adina Hotel. These foundations may be designed for the support of axial compression loads using the bearing pressures, shaft adhesions and modulus values presented in Table 17, which are based on the assumption that the excavations are clean and free of loose debris, with pile sockets free of smear and adequately roughened immediately prior to concrete placement. Shaft adhesion values for uplift (tension) may be taken as being equal to 70% of the values for compression.

Where footings are located within the zone of influence of adjacent excavations, drawn upward at 45 degrees from the toe of the excavation (such as tunnels, lift shafts or tanks), the allowable bearing pressure should be reduced by 25% and the excavation floor carefully inspected for adversely oriented joints. Alternatively, the footings may be taken deeper, below the zone of influence.

If allowable bearing pressures of more than 3.5 MPa are used in design, then additional testing will be required in the form of cored boreholes and spoon testing of pad footings, to ensure there are no defects

beneath footings. Spoon testing involves drilling a 50 mm diameter hole below the base of the pad footing, to a depth of 1.5 times the footing width, followed by testing to check for the presence of weak/clay bands. If weak seams are detected, then footings may need to be taken deeper to reach suitable foundation material.

Alternatively, if the bearing pressures are limited to a maximum of 3.5 MPa then visual inspection of foundations during construction will be sufficient. If an allowable bearing pressure of 10 MPa is used for design then 100% of the footings should be spoon tested to a depth equivalent to 1.5 times the footing width, with cored boreholes drilled at 50% of the footings and taken to 3 m below bulk excavation level. If the adopted bearing pressure is 6 MPa then the frequency of spoon testing could be reduced, needing to be completed for 33% of the footings.

	Allowable	Parameters	Ultimate Pa	arameters ⁽³⁾	Field Elastic Modulus (MPa)	
Foundation Stratum ⁽¹⁾	End Bearing (kPa)	Shaft Adhesion (kPa) ⁽²⁾	End Bearing (kPa)	Shaft Adhesion (kPa) ⁽²⁾		
Sandstone – Class V	1,000	75	3,000	150	50	
Sandstone – Class IV	2,000	100	6,000	250	100	
Sandstone – Class III	3,500	350	20,000	800	350	
Sandstone – Class II	6,000	600	60,000	1,500	900	
Sandstone – Class I	10,000	600	120,000	3,000	2000	

Table 17: Recommended Design Parameters and Moduli for Foundation Design

Notes: (1) Rock classification based on Pells et. al (1998) and Bertuzzi and Pells (2002).

(2) Shaft adhesion applicable to the design of bored piles, uncased over the rock socket length, where adequate sidewall cleanliness and roughness are achieved.

(3) Ultimate end bearing parameters mobilized at large settlements (i.e. >5% of pile diameter).

The settlement of a spread footing is dependent on the loads applied to the footing and the foundation conditions below the footing. The total settlement of a spread footing designed using the allowable parameters provided in Table 17 should be less than 1% of the footing width upon application of the design load. Differential settlements between adjacent footings may be in the order of 50% of the value of total settlement. The design of footings is usually governed by settlement criteria and performance rather than the ultimate bearing capacity or Ultimate Limit State condition.

For limit state design, selection of the geotechnical strength reduction factor (ϕ_g) in accordance with Australian piling code AS 2159 (Ref. 13) is based on a series of individual risk ratings (IRR), which are weighted on numerous factors and lead to an average risk rating (ARR). Therefore, it is recommended that an appropriate geotechnical strength reduction factor be calculated by the pile designer. Preliminary design could be based on a ϕ_g of 0.4 (i.e. no pile testing), and refined as the design progresses. Footing settlements may be calculated for assessment of the serviceability limiting state using the elastic modulus values given in Table 17.

All spread footings should be inspected by an experienced geotechnical engineer to check the adequacy of the foundation material, and proof-drilled or spoon tested as appropriate.

10.11 Soil Aggressivity to Concrete and Steel Structures

In accordance with Australian Standard AS 2159 (Ref. 13), the results of chemical laboratory testing completed on soil samples during the current investigation indicate that:

- all of the soils tested are non-aggressive to buried steel;
- clayey sand fill materials, the alluvial sand and silty clay (above the water table), and the sandy clay residual soils are non-aggressive to buried concrete;
- silty clay residual soils above the water table are mildly aggressive to buried concrete; and
- soils below the water table, including sand fill materials, alluvial sand, and clayey sand residual soils, are mildly aggressive to buried concrete.

The results of previous tests presented in the supplied reports (i.e. DP Report 86767.00.R.006.Rev5 dated 26 November 2020, and 86767.07.R.001.Rev0 dated 2 November 2020) indicate that:

- samples of alluvial sand from below the inferred water table are mildly aggressive to buried concrete; and
- samples of weathered sandstone (inferred to be Hawkesbury Sandstone) are mildly aggressive to buried concrete.

It is considered that the silty clay residual soils are likely to be derived from weathering of fine to medium grained sandstone (i.e. the Mittagong Formation), and so it is considered that the upper layer of fine to medium or medium grained sandstone is also likely to be mildly aggressive to buried concrete and non-aggressive to buried steel.

10.12 Seismic Design

In accordance with the Earthquake Loading Standard, AS 1170.4 (Ref. 14), the Site has a hazard factor (z) of 0.08. Given that most of the basement excavation is in Class V rock or better and that the building may be connected to the shoring, a site sub-soil class of rock (B_e) is considered appropriate, assuming that all major structural loads are carried to rock of at least extremely low to very low strength.

11. Further Geotechnical Work

It is suggested that the following further geotechnical work, to be completed at a later stage of the Project, could include:

- Supplementary geotechnical boreholes within the footprints of both the proposed foundation columns for the Adina Hotel;
- Preparation of a geotechnical monitoring plan (i.e. Lee Street and Devonshire Street Pedestrian Tunnel for TfNSW). Both TfNSW and Sydney Trains will typically require this as part of the later detailed development application or prior to Construction Certificate;
- Instrumentation (inclinometers and survey markers) installed during construction to monitor excavation-induced movements, and to confirm that they are within the approved / tolerable limits specified in both the geotechnical monitoring plan and track monitoring plan;

- Dilapidation surveys;
- Waste classification of all material to be excavated and transported off site; and
- Footing inspections during construction.

It is recommended that a meeting be held after the initial design has been completed to confirm that the recommendations given in this report have been interpreted correctly.

12. Cumulative Impacts

As discussed in Section 10.10, excavation for the proposed basement levels will likely produce some inward horizontal movement due to stress relief effects within Hawkesbury Sandstone. The differences in stress relief movements behind the top of the excavation may result in cracking of adjacent brittle buildings. It is recommended that appropriate allowance also be made for the repair of pavements and public utilities, where excavations are carried out close to structures.

Consideration should be given to drawdown effect to the neighbouring buildings and TfNSW assets (Lee Street and Devonshire Street Pedestrian Tunnel) due to dewatering during the bulk excavations. Further reference should be made to DP's groundwater assessment report (Ref.: 86884.02.R.006.Rev01).

13. Mitigation Measures

The following DA consents are anticipated to be required by different authorities during a later stage of DA process of the proposed development:

- Geotechnical Impact Assessment (GIA) by TfNSW to indicate the effects of excavation to the existing TfNSW assets (Lee Street and Devonshire Street Pedestrian Tunnel);
- Sydney Water Impact Assessment, to indicate the effects of the excavations and proposed development to the existing DN400 Sewer Main; and
- Groundwater assessment and Dewatering Monitoring Plan by City of Sydney Council and WaterNSW.

14. Conclusion

This report has discussed various geotechnical aspects of the proposed development and has outlined appropriate construction methods, monitoring requirements, and design parameters. Similar basements have been constructed in Sydney without significant impacts to surrounding properties. It is considered that once the DA consents are obtained with appropriate mitigation measure in place, the basement could be designed and constructed without significant adverse impacts to surrounding properties.

15. References

- 1 Herbert C. (1983), *Sydney 1:100 000 Geological Sheet 9130, 1st edition*. Geological Survey of New South Wales, Sydney.
- 2 City of Sydney Archives *Detail Plans*, 1855: *Sheet* 23 [A-00880168] from website <u>https://archives.cityofsydney.nsw.gov.au/nodes/view/1709095</u>.
- 3 Rickwood, P.C. (1985), *Igneous intrusives in the Greater Sydney Region*, in *Engineering Geology* of the Sydney Region, pages 215-308 (ed. Pells P.J.N), A.A Balkema, 1985.
- 4 Murphy C.L. (1997), *Acid Sulfate Soil Risk Map for Botany Bay, 2nd edition*. Department of Land and Water Conservation, New South Wales, Sydney.
- 5 AS 1726:2017, Geotechnical Site Investigations, Standards Australia.
- 6 Pells, P.J.N., Mostyn, G., Walker, B.F. (1998), *Foundations on Sandstone and Shale in the Sydney Region.* Australian Geomechanics Journal, December 1998.
- 7 Bertuzzi, R. and Pells, PJN (2002), Geotechnical parameters of Sydney Sandstone and Shale. Australian Geomechanics Journal, Vol. 37, No. 5.
- 8 AS 3798:2007, Guidelines on earthworks for commercial and residential developments, Standards Australia.
- 9 AS/ISO 2631.2: 2014, Mechanical vibration and shock Evaluation of human exposure to wholebody vibration – Vibration in buildings (1 Hz to 80 Hz), Standards Australia / International Standards Organisation.
- 10 NSW Environment Protection Authority (NSW EPA: 2014), Waste Classification Guidelines.
- 11 New South Wales Government Legislation (1997), *Protection of the Environment Operations Act* 1997 No. 156 (POEO Act), "<u>https://www.legislation.nsw.gov.au/~/view/act/1997/156/full</u>".
- 12 Transport for New South Wales (2020), *TfNSW Technical Direction 2020/001*, 2 July 2020.
- 13 AS 2159:2009, *Piling Design and Installation*, Standards Australia.
- 14 AS 1170.4:2007, Structural design actions Part 4: Earthquake actions in Australia, Standards Australia.

16. Limitations

Douglas Partners (DP) has prepared this report for this project at 2-8a Lee Street, Haymarket, in accordance with DP's proposals SYD201237.P.001.Rev2 dated 16 February 2021, and SYD201237.P.002.Rev1 dated 6 May 2021, and approvals received from Mr. David McLaren dated 17 February 2021 and 27 May 2021. The work was carried out under an amended Toga Major Consultancy Services agreement (contract number CSC-01, dated 10 March 2021). This report is provided for the exclusive use of Toga Development and Construction Pty Ltd or their agents, for this project only and for the purposes as described in the report. It should not be used by or be relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In

preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical / groundwater components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached pages and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation included the assessment of sub-surface materials for contaminants within the Site, which is presented under separate cover. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

Asbestos was detected by laboratory analysis of soil samples taken from specific borehole locations (refer to Douglas Partners Reports 86884.02.R.002.Rev0 and 86884.02.R.003.Rev0 for further details). Building demolition materials, such as brick and concrete rubble, sandstone boulders, ash, slag, igneous gravel and cobbles (railway ballast) were located in previous below-ground filling, which are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the Site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the Site being inaccessible and not available for inspection/sampling. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the Site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Page 34 of 34

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Site Photographs

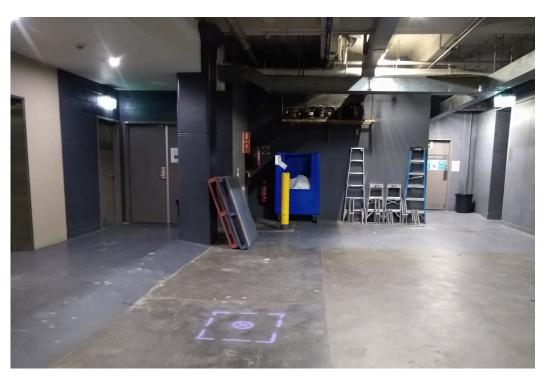


Photo B1 – View north-west at the location of Borehole BH1001, within the Adina Hotel basement.

Photo B2 – View north-east at the location of Borehole BH1001, within the Adina Hotel basement.

	Site Ph	Site Photographs		86884.02
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development		PLATE No:	B1
	2-8a Lee Street, Haymarket		REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

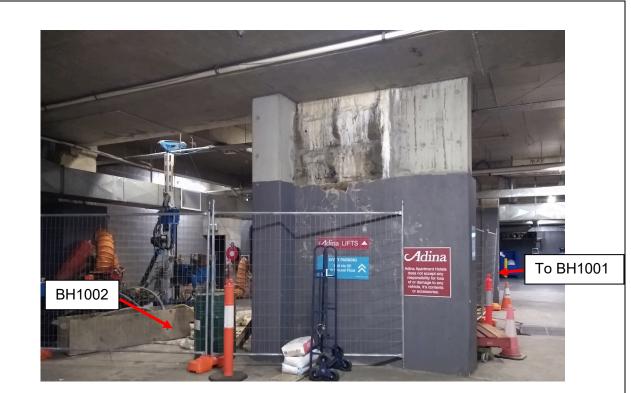


Photo B3 – View west near the location of Borehole BH1002, within the Adina Hotel basement during drilling.

Photo B4 – View north-west at the location of Borehole BH1002, within the Adina Hotel basement.

	Site Ph	Site Photographs		86884.02
Douglas Partners Geotechnics Environment Groundwater		Proposed Commercial Development		B2
	2-8a Lee Street, Haymarket		REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

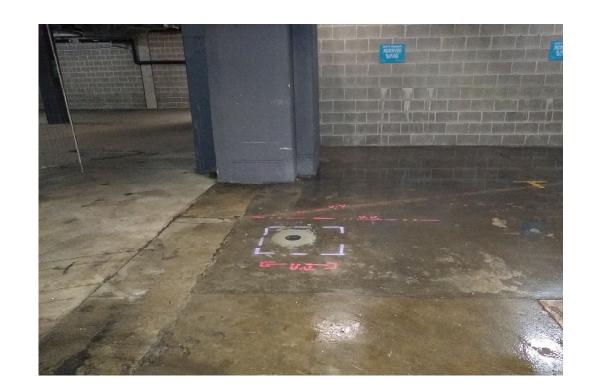


Photo B5 – View south-west at the location of Borehole BH1002, within the Adina Hotel basement during drilling.

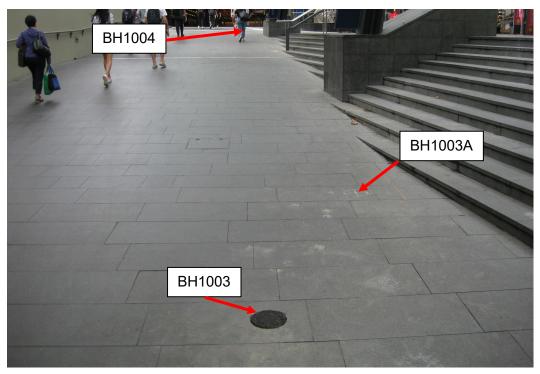


Photo B6 – View south-east towards the Devonshire Street Pedestrian Tunnel, adjacent to the portal of the Lee Street Tunnel. The locations of Borehole BH1003 and BH1003A are indicated as shown.

	Site Ph	Site Photographs		86884.02
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development		PLATE No:	В3
	2-8a Lee Street, Haymarket		REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

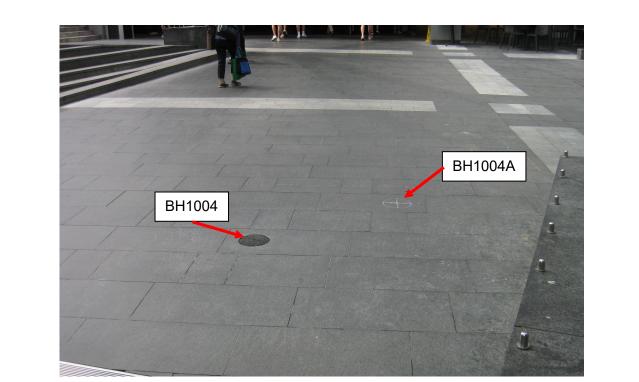


Photo B7 – View south-east towards the Devonshire Street Pedestrian Tunnel at the locations of Boreholes BH1004 and BH1004A, on the northern side of the Henry Deane Plaza.

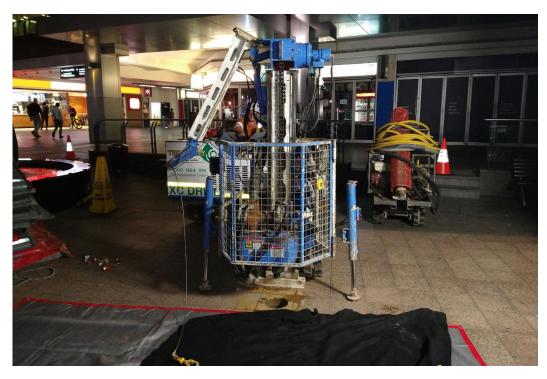


Photo B8 – View east towards the Devonshire Street Pedestrian Tunnel at the location of Borehole BH1005, on the southern side of the Henry Deane Plaza.

	Site Ph	Site Photographs		86884.02
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development		PLATE No:	B4
	2-8a Le	e Street, Haymarket	REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

Photo B9 – View south-west across the Henry Deane Plaza towards Lee Street. The locations of Boreholes BH1006 and BH1007 are indicated as shown.

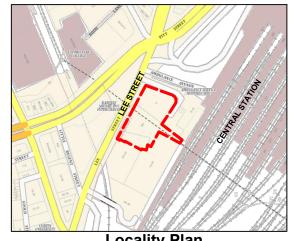
Photo B10 – View south within the Henry Deane Plaza near Lee Street, at the location of Borehole BH1007.

		Site Photographs		86884.02
Douglas Partners Geotechnics Environment Groundwater	Propos Develo	Proposed Commercial Development		B5
	2-8a Le	e Street, Haymarket	REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

Appendix C

Drawings

NOTE:


- 1:
- Base image from MetroMap (Dated 09.02.2022) Approximate Extent of Basement Levels 3 and 4 Outlines are from Bates Smart Architects Pty Ltd, Drawing No. BSMART-AR-DAD-10B03000 and BSMART-AR-DAD-10B04000, Draft Issue (Dated 17.06.2022) Co-ordinate system relative to Map Grid of Australia 1994 (MGA94). 2:
- 3:

Douglas Partners Geotechnics Environment Groundwate	5
Geotechnics Environment Groundwate	5

CLIENT: Toga Development	and Construction Pty Ltd	TITLE:
OFFICE: Sydney	DRAWN BY: MG	
SCALE: 1:500 @ A3	DATE: 29.06.2022	

0

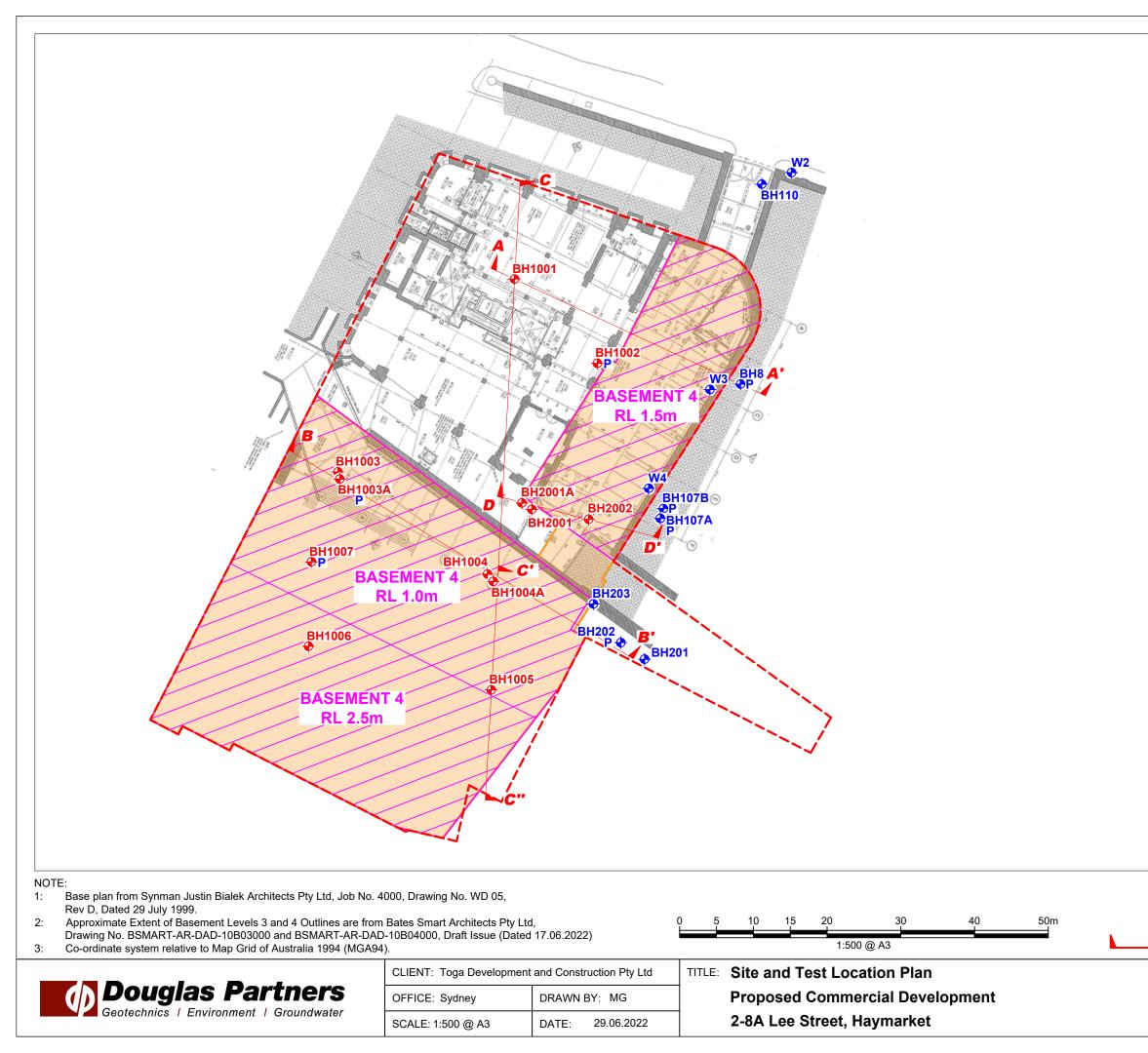
	5	10	15	20	30	40	50m	
				1:50	0 @ A3			
1	FITLE:	Site a	and Te	est Loc	ation Plan			
		Prop	osed	Comme	ercial Deve	elopment		
		2-8A	Lee S	treet, H	laymarket			
					-			

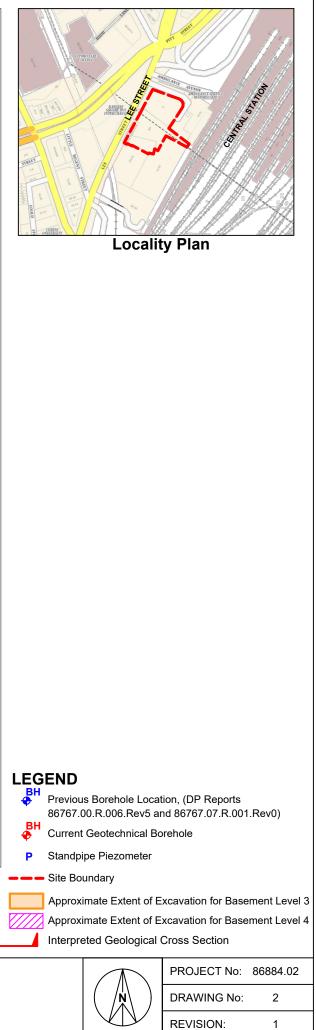
Locality Plan

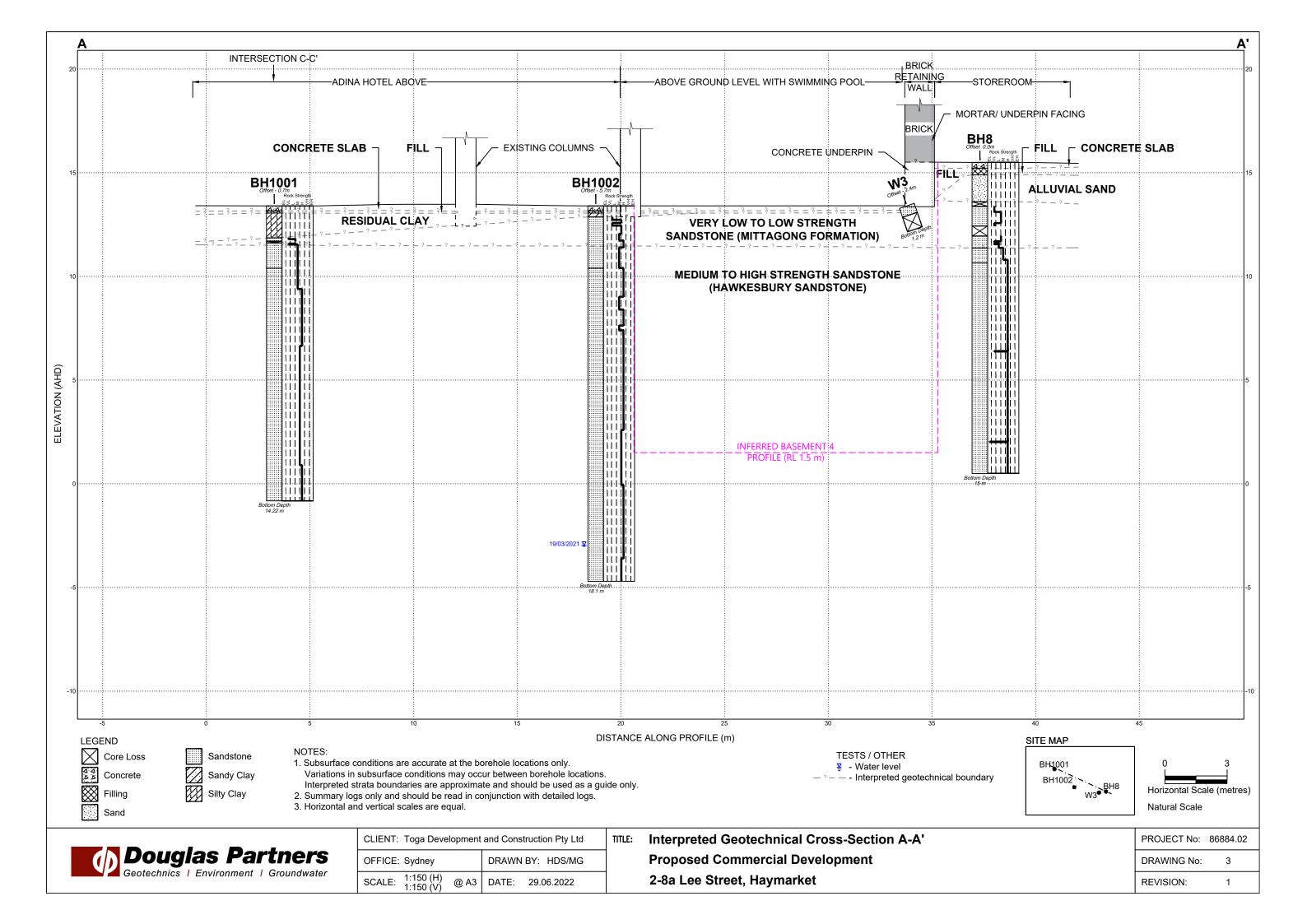
Previous Borehole Location, (DP Reports 86767.00.R.006.Rev5 and 86767.07.R.001.Rev0)

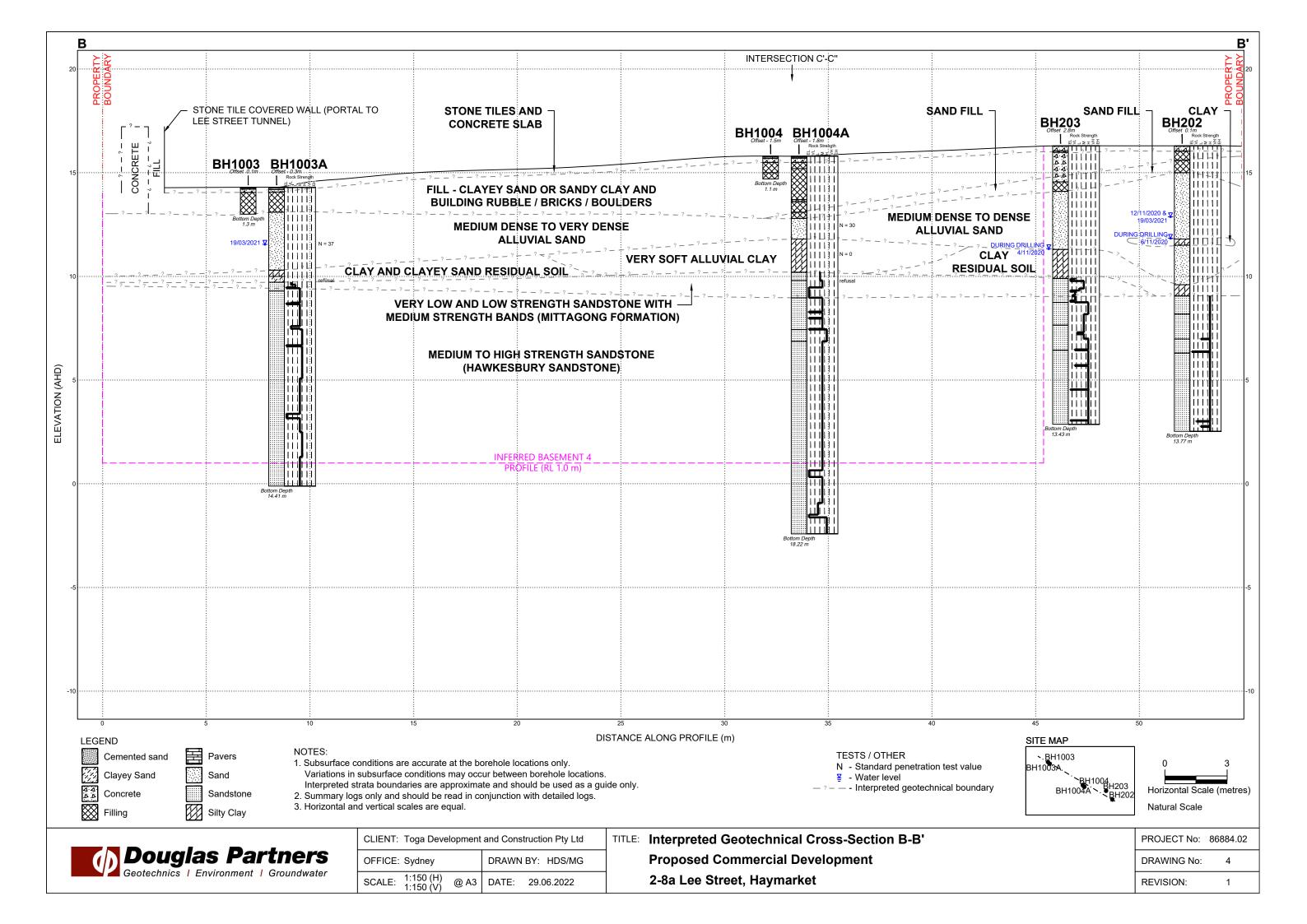
- Current Geotechnical Borehole
- P Standpipe Piezometer

B

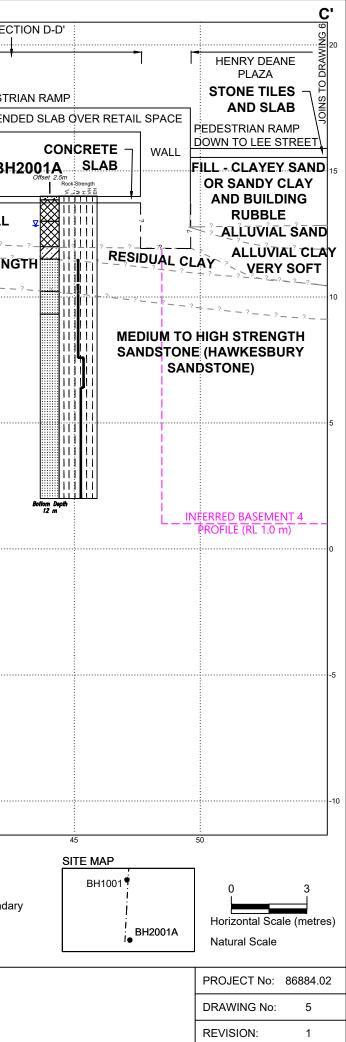

Site Boundary

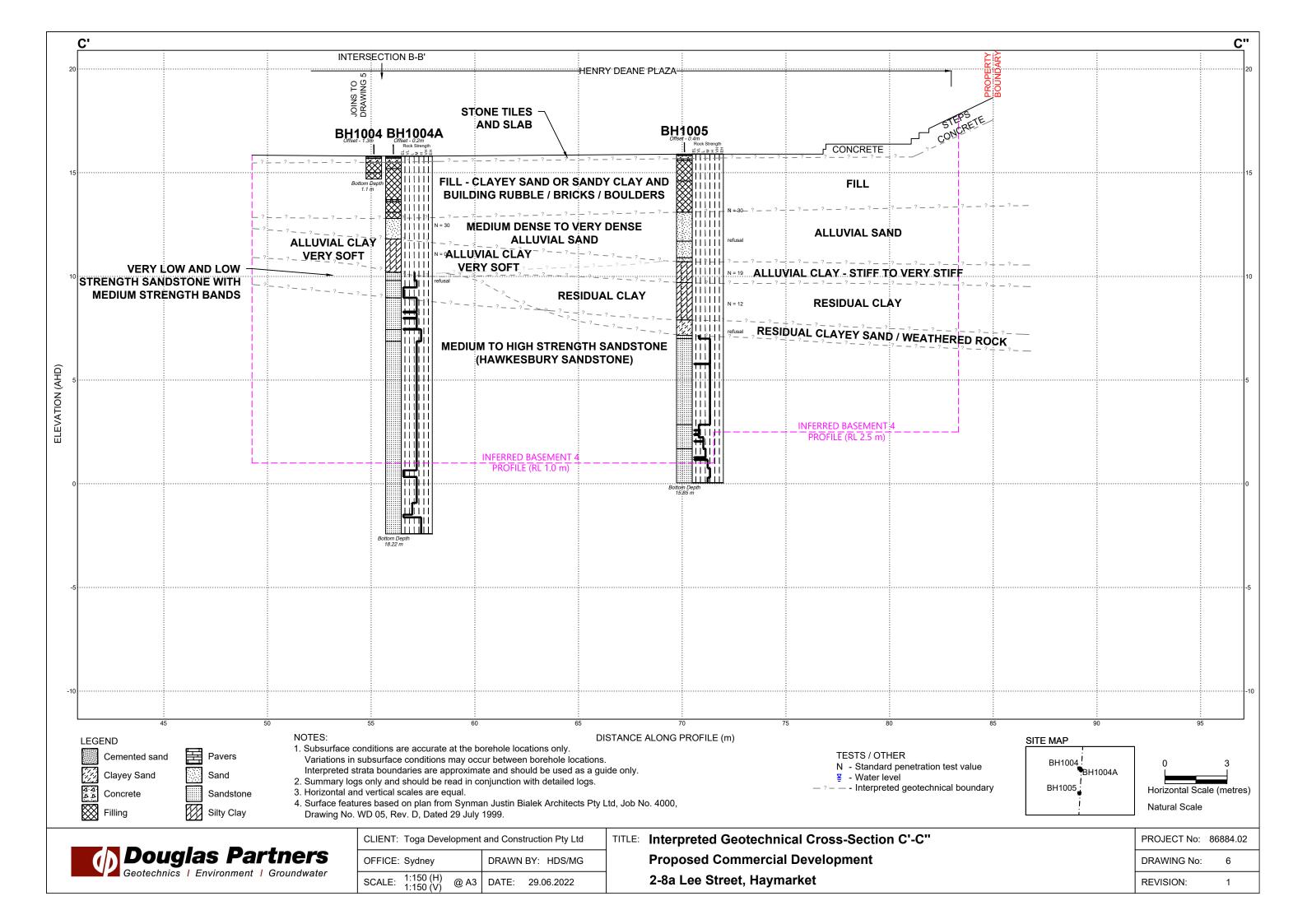



Approximate Extent of Excavation for Basement Level 3 Approximate Extent of Excavation for Basement Level 4 Interpreted Geological Cross Section



PROJECT No: 86884.02 DRAWING No: 1 **REVISION**: 1





	C				INTERSECTIO	N A-A'							INTERSEC
2	o					-	-ADINA HOTEL ABOVE	 -		RE	TAIL ȚEN	IANCY	
	BULANCE	PROPERTY BOUNDARY		IMN	CRETE SLAB (VER		STAIR WELL			MALL	- T	
						FIL			co	NCRETE SLAB 🔨			
1	5				BH100		· -			·····		(RL 14.0 m)	ВН
		EXISTING BASEME	ENT (RL13.4 m)		Offset - 0.5m	Strength			TING BASEMENT (?????			
		$= \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2}$				+	???	? — — ? — _ ? _	??? DEC			FILL	FILL
			0 HIGH STREN ₩KESBURY SA		? ? - ? ? DNE		???? ????	? — _ ? : _ ? = ? • ? — _ ? : _ ? = ? • ? — _ ? : ?	RY LOW TO LOV	STRENGTH SAND SANDS (MITTAGON			
1 (OF	0		TO LOW STRE		ONE		M TO HIGH STRENGT HAWKESBURY SAN		ONE				
ELEVATION (AHD)	5												
-1	0	0	5			5	20				55		40
			Silty Clay	Variations in Interpreted s 2. Summary log 3. Horizontal ar 4. Surface featu	subsurface co strata boundarie gs only and sho nd vertical scal- ures based on	nditions may occ es are approxima ould be read in cc es are equal.	prehole locations only. Sur between borehole locati te and should be used as a onjunction with detailed log an Justin Bialek Architects I 1999.	ons. a guide only. s.	ALONG PROFILE (r o. 4000,	n) — ?	- Wa	/ OTHER iter level erpreted geotec	
					CLIENT: To	ga Development	and Construction Pty Ltd	TITLE:	Interpreted G	eotechnical Cro	ss-Sec	tion C-C'	
		Dougla Geotechnics E	is Parti	ners	OFFICE: Sy		DRAWN BY: HDS/MG		-	ommercial Devel	opmen	t	
		Geotecnnics I E.	nvironment Gr	ounawater	SCALE: 1:	150 (H) @ A3 150 (V) @ A3	DATE: 29.06.2022		2-8a Lee Stre	eet, Haymarket			

2 - 2 - 2 2 + 12 + 13 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	CLAY	
CONCRETE BH2001A BH2001 BH2001A BH2001 CONCRETE BH2001A CLAY CONCRETE BH2001A CLAY CONCRETE BH2001A CLAY CONCRETE CONCRETE BH2001A CLAY CONCRETE CONCRETE CONCRETE BH2001A CLAY CONCRETE CONCRETE CONCRETE SANDSTONE CONCRETE CONCRETE CONCRETE CONCRETE SANDSTONE CONCRETE	CLAY	
Image: Same See See See See See See See See See S	CLAY	
Elever Depth INFERRED BASEMENT 4 Battern Depth	TO LOW STRENGTH SANDST RENGTH BANDS (MITTAGON HIGH STRENGTH SANDSTOP URY SANDSTONE)	IG FORMATION)
0		0
-10		
-10 -5 0 5 10 15 20 25 30 LEGEND Image: Sandstone filling Sandy Clay Sandy Clay Image: Sandy Clay filling NOTES: DISTANCE ALONG PROFILE (m) Image: Sandy Sand Sand Notes: Distance and should be used as a guide only. Tests / OTHER Sand Sandy Clay Sandy clay Notice features based on plan from Synman Justin Bialek Architects Pty Ltd, Job No. 4000, Drawing No. WD 05, Rev. D, Dated 29 July 1999. Tests / Other Tests / Other		0 3 orizontal Scale (metres) atural Scale
CLIENT: Toga Development and Construction Pty Ltd TITLE: Interpreted Geotechnical Cross-Section D-D'	PRC	OJECT No: 86884.02
Douglas Partners OFFICE: Sydney DRAWN BY: HDS/MG Proposed Commercial Development 0 FFICE: Sydney 0 FFICE: Sydney DRAWN BY: HDS/MG Proposed Commercial Development		AWING No: 7
SCALE: 1:150 (H) @ A3 DATE: 29.06.2022 2-8a Lee Street, Haymarket	REV	

Appendix D

Field Work Results

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

Bedding plane
Clay seam
Cleavage
Crushed zone
Decomposed seam
Fault
Joint
Lamination
Parting
Sheared Zone
Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

ari

sv sub-vertical

Coating or Infilling Term

clean
coating
healed
infilled
stained
tight
veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

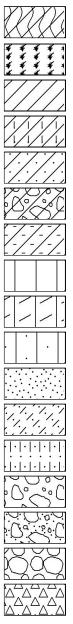
Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General


A. A. A. Z	

Asphalt Road base

Concrete

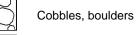
Filling

Soils

0
Topsoil
Peat
Clay
Silty clay
Sandy clay
Gravelly clay
Shaly clay
Silt

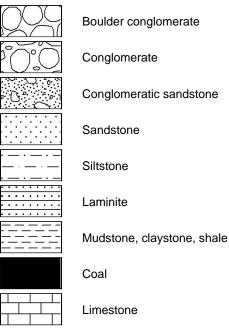
Clayey silt

Sandy silt


Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Talus

Sedimentary Rocks

Metamorphic Rocks

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1001 **EASTING:** 333923 NORTHING: 6249301 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 12/3/2021 SHEET 1 OF 3

		Dec set #	Degree of		Rock	Fracture	Discontinuities	6	molin	na 8 1	n Situ Tosting
	Depth	Description	Degree of Weathering ≥≧≧≥∞ ∞	ohic g	Strength 5	Spacing				-	n Situ Testing Test Results
R	(m)	of		Graph Log		(m)	B - Bedding J - Joint	Type	Core Rec. %	D 8 8	Results
			H M M M M M M M M M M M M M M M M M M M	0	Ex L Very Very Very 0.01	0.05 0.10 0.50 1.00	S - Shear F - Fault	ι ⊢	RCO	R	Comments
	- 0.24	CONCRETE SLAB		Q. A. Q							
13	- 1	FILL/GRAVEL: coarse, brown, with fine to coarse sand, apparently in loose to medium dense condition Silty CLAY CI-CH: medium to high						<u>A/E*</u>			PID<1ppm
-	-	plasticity, orange-brown, trace fine to medium ironstone gravel and fine sand, w~PL (affected by diatube), apparently firm to stiff, residual soil						A/E			PID<1ppm
-	- 1 - -	Below 1.2m: relict rock texture,						A/E	-		PID<1ppm
12	- - - 1.54 ·	extremely weathered sandstone (Mittagong Formation)						с	100	20	
	- - 1.78	SANDSTONE: medium grained, red-brown, orange-brown and pale grey, bedded at 0°-20°, with ironstone bands, very low strength to		\geq			1.59m: B0°, pl, ro, cly vn 1.7m: CORE LOSS: 80mm				PL(A) = 0.3
-	1.87 - 2	low to medium strength, highly weathered, fractured, Mittagong Formation					1.87m: B0°, pl, ro, cly co 2mm				PL(A) = 0.8
11	-	SANDSTONE: medium to coarse grained, orange-brown and pale grey, bedded at 0°-20°, with ironstone bands, medium strength, highly weathered, fractured, Hawkesbury Sandstone					2.20-2.55m: J70°-80°, cu, ro, cbs	с	92	84	
	-	Below 2.7m: moderately to slightly weathered					2.56m: Cs, 20mm 2.62m: B0°, pl, ro, cly co 15mm 2.68m: B0°, pl, ro, cly co 15mm 2.7m: B0°, pl, ro, cly co				PL(A) = 0.7
10	- 3 3.0 · - - - -	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 0°-20°, with 20% fine grained, grey to dark grey sandstone laminations and 5-10% carbonaceous laminations and flecks, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone					5mm 2.93m: B0-5°, un, ro, fe stn 2.95 & 2.96m: B5-10° (x2), un, ro, fe stn	с	100	98	PL(A) = 0.8
-	- - - 4 -										PL(A) = 0.8
6	-							с	100	100	
	-										PL(A) = 1.3

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 1.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-1.2m, NMLC Coring 1.2-14.22m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/120312 collected from 0.25-0.3m

	SAM	PLINC	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 	-	
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		00	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)			Partners
С	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)	Doagi		Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	📕 Geotechnics 📕	Enviro	onment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1001 **EASTING:** 333923 NORTHING: 6249301 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 12/3/2021 SHEET 2 OF 3

Π		Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sampling & In Situ Testing			
R	Depth (m)	of	, v caulening	Log	Strengt Medium High Kery High Ex High Mater Vater Migh	Spacing (m)	B - Bedding J - Joint	be	s.%	RQD %	Test Results
	(,	Strata	H M M M M M M M M M M M M M M M M M M M	Ō	Ex Low Very Low Medium Very High Ex High		S - Shear F - Fault	Type	ပိမ္မ	R0 8	& Comments
		SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 0°-20°, with 20% fine grained, grey to dark grey sandstone laminations and 5-10% carbonaceous laminations and flecks, medium to						С	100		
	- - - - - - - - - - - - -	high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					5.6m: B0°-5°, un, ro, cbs 5.75m: B0°-5°, un, ro, cbs 5.88m: B5°-10°, un, ro, cbs	С	100	100	PL(A) = 1.3
	- 7 - 7 						6.72m: B0°, pl, un, cly vn	С	100	100	PL(A) = 1
	- 8										PL(A) = 1
- +							**	С	100	100	PL(A) = 0.7
								С	100	100	PL(A) = 1.3

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 1.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-1.2m, NMLC Coring 1.2-14.22m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/120312 collected from 0.25-0.3m

	SAM	PLINC	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		-	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		00	
BLI	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		135	Pariners
C	Core drilling	Ŵ	Water sample	, aa	Pocket penetrometer (kPa)	Doag		Partners
D	Disturbed sample	⊳	Water seep	s	Standard penetration test			
Е	Environmental sample	¥	Water level	V	Shear vane (kPa)	Geotechnics	I Envire	onment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1001 EASTING: 333923 NORTHING: 6249301 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 12/3/2021 SHEET 3 OF 3

		Description	Degree of Weathering B ≹ ∯ & g g g U Degree of Degree of U U Degree of U Degree of U U Degree of U Degree of U Degree of U Degree of U Degree of U De		Rock Strength	Fracture	Discontinuities	Sampling & In Situ Testing				
RL	Depth (m)	of		Log	Strength Lew Low Medium Kety High Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety	Spacing (m)	B - Bedding J - Joint	be	re .%	DQ.	Test Results	
	()	Strata	FIS W W W	Ū	Ex Low Very Low High Very High Ex High		S - Shear F - Fault	Type	ပိမ္စိ	RQD %	& Comments	
3	- - - - - - - - - 11	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 0°-20°, with 20% fine grained, grey to dark grey sandstone laminations and 5-10% carbonaceous laminations and flecks, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					10.33m: B0°, pl, ro, cly co 5mm	с	100		PL(A) = 1	
	-						11.27m: B0°-5°, pl, ro, cly vn					
	- 12 - - - - -						12.5m: B0°, pl, ro, cly co 2mm	С	100	100	PL(A) = 0.7	
	- 13 - - -							с	100	95	PL(A) = 1.5	
	- - - 14 - 14.22	Bore discontinued at 14.22m					13.66m: B10°, pl, ro, cly vn 14.15m: B0°-5°, pl, ro,				PL(A) = 1.2	
	-	Bore discontinued at 14.22m - Target depth reached					<u>cly vn</u>					

RIG: XC Drill

DRILLER: Terratest


LOGGED: IT

CASING: HWT to 1.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-1.2m, NMLC Coring 1.2-14.22m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/120312 collected from 0.25-0.3m

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
BLF	Bulk sample	Р U.,	Piston sample Tube sample (x mm dia.)	PL(A) Point load axial test ls(50) (MPa) PL(D) Point load diametral test ls(50) (MPa)	Douglas Partners
С	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

BORE: 1001 PROJI	ECT: HAYMARKET	MARCH 2021
Douglas Partners Geotechnics / Environment / Groundwater	Project No: 86884.02 BH ID: 8H1001 Depth: 6.0 - 11.0 m Core Box No.: 2	
n the second	6.0 – 11.0m	

	BORE: 1001	PROJEC	T: HAYMARKET	MARCH 202	21
	Douglas Part		Project No: 86884.02 BH ID: 8H1001 Depth: 11.0-14.22m Core Box No.: 3		
1m 200000	Verset sides (
2m					
3m					
14m C.	END	OF HOLE	= 14.22m	1	
		1 <u>1.</u> () – 14.22m		

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 NORTHING: 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 1 OF 4

		Description	Degree of Weathering	<u>.0</u>	Strength I	Fracture	Discontinuities	Sampling & In Situ Testing				
RL	Depth (m)	of	liteatiening	Graphic Log	Strendth Medium	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results &	
	()	Strata	H M M M M M M M M M M M M M M M M M M M	G	Ex Low Low High Ex High 0.01	0.05 0.10 1.00	S - Shear F - Fault	Ţ	ပိမ္မိ	R N	α Comments	
-	-	CONCRETE SLAB		A 4 A 4								
$\left \right $	0.24	FILL/MIXTURE OF GRAVEL and BRICKS: coarse sandstone gravel						A/E			PID<1ppm	
13	- 0.53	and bricks, brown, apparently in loose to medium dense condition						A/E	-		PID<1ppm	
	0.53 0.67 	Sandy CLAY CI: medium plasticity, pale grey with pale brown, with fine sandstone gravel and silt, w~PL (affected by diatube), apparently very stiff, extremely weathered sandstone (Mittagong Formation)					0.53m: Cs, 30mm (sandy clay) 0.63m: Cs, 40mm 0.82m: B0°, pl, ro, cly vn 0.87m: B0°, pl, ro, cly vn	с	100	60	PL(A) = 0.1 PL(A) = 0.2	
12	- 1 - - -	SANDSTONE: medium grained, orange-brown and pale grey, bedded at 0°-10°, highly weathered, very low to low strength, fractured, Mittagong Formation SANDSTONE: medium to coarse					1.17m: B0°, pl, ro, fe stn 1.19m: J10°-20°, un, ro, fe stn 1.21m: Cs, 40mm (with	с	100	95	PL(A) = 1.1	
-	-	SANDSTONE: medium to coarse grained, red-brown and orange-brown with some pale grey, with ironstone bands, distinct and indistinct bedding at 0°-10°, highly weathered, high strength with very low strength bands, slightly					ironstone gravel)				PL(A) = 0.4	
	- -2 -	fractured, Hawkesbury Sandstone Below 1.67m: orange-brown and pale grey, moderately weathered to slightly weathered					1.88m: B10°, pl, ro, cly vn	с	100	100	PL(A) = 1.9	
11	-						2.29m: B10°, pl, ro, cly vn				PL(A) = 0.6	
	- - - -33.0						2.56 & 2.58m: B0-5° (x2), un, ro, cly co 2mm 2.62m: J20°, un, ti 2.67m: B5°-10°, pl, ti 2.77m: B5°, pl, ro, cly vn 2.8m: B5°-10°, pl, ro, cly vn				PL(A) = 0.5	
10	-	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone					2.81m: B5°-10°, pl, ro, cly vn 2.82-3.00m: J80°, pl, ro, fe stn, partially ti	с	100	86		
	- - 4										PL(A) = 1.1	
- 6	-	Below 4.36m: grading to fresh					∖ 4.36m: B5°, pl, ro, fe stn 4.39m: B5°, pl, ro, cly vn	С	100	98	PL(A) = 0.6	
-	-										PL(A) = 1.2	

RIG: XC Drill

TYPE OF BORING:

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD1/110311 collected from 0.35-0.5m; Groundwater well installed: blank PVC 0.0-1.5m, screen PVC 1.5-18.0m, bentonite 0.0-1.3m, gravel 1.3-18.0m, backfill 18.0-18.1m, gatic cover at the surface; 100% water loss from 16.0-18.1m

	SAI	MPLING	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1	1.	Douglas Parliers
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	ž	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwate

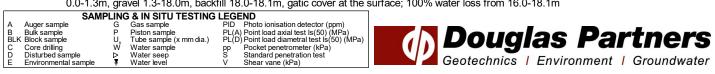
CLIENT: PROJECT: LOCATION: Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket **SURFACE LEVEL:** 13.4 m AHD **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

BORE No: BH1002 PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 2 OF 4

\square		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	υ	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
RL	Depth (m)	of	weathening	aphi og	Ex Low Very Low Medium High Very High Ex High	Spacing (m)	B - Bedding J - Joint				Test Results
	(11)	Strata	EW MW SW FR	<u>5</u> _	Ex Low Very L Mediur Ex High		S - Shear F - Fault	Type	Re O	RQD %	& Comments
		SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone					5.2m: B5°, un, ro, cly vn	с	100		Commente
	6	(continued) Below 5.2m: distinct and indistinct bedding at 0°-20°, with 5-10% carbonaceous laminations and flecks					5.91m: Cz, 50mm 5.96m: B10°, pl, un, cly vn	с	100	97	PL(A) = 0.7
	-7										PL(A) = 1.7
	,										PL(A) = 1.3
- 0- 							7.66m: B0°-5°, pl, ro, cbs	С	100	100	PL(A) = 1.2
 	- 8 - - -						8.29m: B5°, pl, ro, cbs				PL(A) = 1.1
	- - - - - - - - - - - -							С	100	100	PL(A) = 1
	-										PL(A) = 1.6

RIG: XC Drill

DRILLER: Terratest


LOGGED: IT

CASING: HWT to 0.5m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD1/110311 collected from 0.35-0.5m; Groundwater well installed: blank PVC 0.0-1.5m, screen PVC 1.5-18.0m, bentonite 0.0-1.3m, gravel 1.3-18.0m, backfill 18.0-18.1m, gatic cover at the surface; 100% water loss from 16.0-18.1m

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 3 OF 4

		Description	Degree of Weathering ≞ ≩ ≩ § ∞ œ	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
Ъ	Depth (m)	of		Log	Very Low Very Low Very High Kery High No.01	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
			H M S S H M M M M M M M M M M M M M M M		Very Very Very Very 0.01		S - Shear F - Fault	ŕ	õğ	Ψ,	Comments
2		SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					10.12m: B5°-10°, un, ro, cly vn 10.82m: B0°, pl, ro, cly vn	С	100		PL(A) = 1.3
	- 12 - 12 						12.33m: B20°, pl, ro, cbs 12.48m: B5°, pl, ro, cly co 5mm	С	100	100	PL(A) = 0.8 PL(A) = 0.8
-0-	- 13 - - - - - - - - - - - - - - - - - - -						14.12m: B0°-5°, un, ro, ∖cbs 14.19m: B5°, pl, ro, cly co 5mm	С	100	95	PL(A) = 1.4
	-							с	100	100	PL(A) = 2.6

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

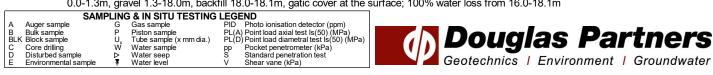
CASING: HWT to 0.5m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

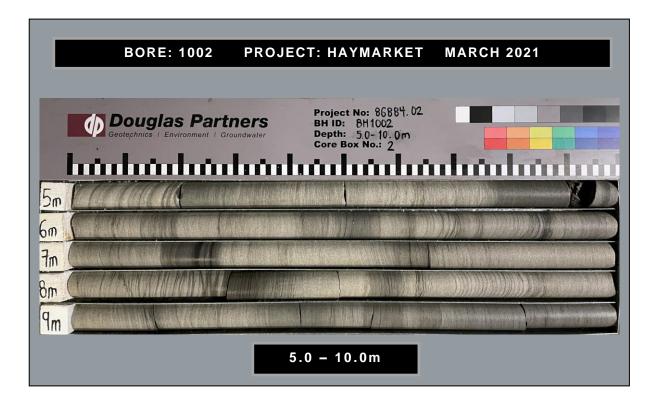
WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	MPLING	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		_	— –
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)				Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)	11.			Periners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		O to the line	1	
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics	I Envi	ronment Groundwater

CLIENT: PROJECT: LOCATION:


Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket **SURFACE LEVEL:** 13.4 m AHD **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

BORE No: BH1002 PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 4 OF 4


	Description	Degree of Weathering	.c	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
Depth (m)	of		Log	Very Low Very Low Medium Nedium Very High Ex High High High High High High High High	Spacing (m)	B - Bedding J - Joint	Type	Sre %	RQD %	Test Results &
	Strata	FIS W MW	Ū	Ex Low Very Low Medium High Ex High Ex High		S - Shear F - Fault	Þ	ပိမ္စိ	R0%	م Comments
	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					15.16m: B0°-5°, un, ro, cly vn	С	100		PL(A) = 1.2
	Between 17.10-17.35m: siltstone					16.19m: B20°, pl, ro, cly vn 16.86m: B10°, un, ti 17.11m: B5°-10°, un, ro,	С	100	100	PL(A) = 1.3
	clasts, up to 10mm					√ cly vn √17.23m: fg/Cz, 70mm				
- - - - 18 - 18.1 -	Bore discontinued at 18.1m					17.43m: B0°, pl, ro, cly vn 17.55-17.80m: F80°, pl, ti, <5mm displacement 17.92-18.10m: J80°, pl, ro, cln	С	100	87	PL(A) = 0.8
	- Target depth reached									
- - - - - - - - - - - - - - - - - - -										

RIG: XC DrillDRILLER: TerratestLOGGED: ITCASING: HWT to 0.5mTYPE OF BORING:Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

BORE: 1002 PROJE	CT: HAYMARKET	MARCH 2021
Douglas Partners Geotechnics / Environment / Groundwater	Project No: 86884.02 BH ID: BH1002 Depth: 10.0~15.0m Core Box No.: 3	
10m Classification of the second seco		
12m (
19m		
10	.0 – 15.0m	

BORE: 1002	PROJE	CT: HAYMARKET	MARCH 2021
Douglas Partn Geotechnics I Environment I Grou		Project No: %6884.02. ВН ID: 8H1002 Depth: 15:0-18:1 m Core Box No.: 4	
END OF HOLE	= 18.1m		
	1	5.0 – 18.1m	

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 1 OF 2

		1	1					
_ Depth	Description	Graphic Log				& In Situ Testing	er –	Well
L Depth	of	Log	Type	Depth	Sample	Results & Comments	Water	Construction
	Strata		F -	ă	Sar	Comments		Details
0.24	CONCRETE SLAB		·	0.25				
<u>m</u> [0.35	\Box FILL/MIXTURE OF GRAVEL and BRICKS: coarse \Box sandstone gravel and bricks, brown, apparently in loose to \int_{r}	¥.X.	A/E_ A/E	0.35		PID<1ppm PID<1ppm		
0.53	Norse allower at a new allower (1997)			0.5 0.57		PL(A) = 0.1		Bentonite 0.0-1.3m
-	Sandy CLAY CI: medium plasticity, pale grey with pale		AVE	0.9		PL(A) = 0.2		
-1	brown, with fine sandstone gravel and silt, w~PL (affected by diatube), apparently very stiff, extremely weathered sandstone (Mittagong Formation)			0.91 1.0 1.18		PL(A) = 1.1		Bentonite 0.0-1.3m
1	SANDSTONE: medium grained, orange-brown and pale grey, bedded at 0°-10°, highly weathered, very low to low			1.46 1.5		PL(A) = 0.4		
-	strength, fractured, Mittagong Formation			1.06		PI(A) = 10		
-2	SANDSTONE: medium to coarse grained, red-brown and orange-brown with some pale grey, with ironstone bands,		С	1.96		PL(A) = 1.9		
Ę	distinct and indistinct bedding at 0°-10°, highly weathered, high strength with very low strength bands, slightly fractured, Hawkesbury Sandstone			2.29 2.5		PL(A) = 0.6		
-	Below 1.67m: orange-brown and pale grey, moderately weathered to slightly weathered			2.67		PL(A) = 0.5		
-3 3.0	SANDSTONE: medium to coarse grained, pale grey,							
	cross-bedded at 10°-20°, with 20% fine grained, grey to		с					
2-	dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to							
-	unbroken, Hawkesbury Sandstone							
-4				3.95 4.0		PL(A) = 1.1		
[0				[[:]][]:[]]:[]:[]:[]:[]:[]:[]:[]:[]:[]:[]
ກ- -	Below 4.36m: grading to fresh			4.42		PL(A) = 0.6		
			с					
-5				4.95		PL(A) = 1.2		
-	Balow 5.2m; distinct and indictingt hadding at 0° 20° with							
Σ	Below 5.2m: distinct and indistinct bedding at 0°-20°, with 5-10% carbonaceous laminations and flecks		<u> </u>	5.5				
-				0.0				
-6				5.96		PL(A) = 0.7		
			c					
-								
E								
-				6.95		PL(A) = 1.7		
				7.0 7.19		PL(A) = 1.3		
- -				1.19		1 ((7) = 1.0		
-								
E			С					
-8				7.95		PL(A) = 1.2		8
E				8.3		PL(A) = 1.1		
"[<u> </u>	8.5				
-								
-9				8.96		PL(A) = 1		-9 · · = · ·
-			c					
4								
Ę								Sand filter
-				9.95		PL(A) = 1.6		- Slotted PVC pipe

RIG: XC Drill

CLIENT:

PROJECT:

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	A DOUGIAS PARLIERS
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	Oracterized I. Frankramment I. Oracandonatory
E Environmental sample F Water level V Shear vane (kPa)	Geotechnics Environment Groundwater

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 2 OF 2

							 1: 90°/		SHEET 2 OF 2	
	Dauth	Description	ji L		Sam		& In Situ Testing	5	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
2	- 11	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.03		PL(A) = 1.3		1.5-18.0m	
	- 12			С	11.95		PL(A) = 0.8		-12	
	- 13				. 12.95 13.0		PL(A) = 0.8		-13	
	- 14			С	13.95 14.5		PL(A) = 1.4		- 14	
	- 15			С	14.95		PL(A) = 2.6		- 15	
	- 16				15.95 16.0		PL(A) = 1.2		-16	
-4	- 17	Between 17.10-17.35m: siltstone clasts, up to 10mm		с	16.38 17.38 17.43		PL(A) = 1.3 PL(A) = 0.8	19-03-21 I	-17	
	- 18 - 18.1	Bore discontinued at 18.1m - Target depth reached		С	-18.1-				- 18 Backfill 18-18.1m End Cap	
	- 19								- 19	
-	-									

RIG: XC Drill

CLIENT:

PROJECT:

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
B	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1	1.	Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			_
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

SURFACE LEVEL: 14.3 m AHD BORE No: BH1003 **EASTING:** 333899 **NORTHING:** 6249275 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10/3/2021 SHEET 1 OF 1

				0			H: 90°/		SHEET 1 OF 1
\square		Description	<u>ں</u>		Sam	pling 8	& In Situ Testing		Well
RL	Depth (m)	of Strata	Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
14	0.04 0.09 0.25	STONE TILE SAND and CEMENT CONCRETE SLAB At 0.2m: 8mm steel reinforcement		_A/E_	0.25 0.3	05	PID<1ppm		-
	- - - - - 1	FILL/Clayey SAND: fine to medium, brown, with medium to coarse sandstone gravel, boulders, concrete and brick rubble, trace ash and slag		A/E	0.7 0.8		PID<1ppm		
13	• 1.3 •		\bigotimes						-
		Bore discontinued at 1.3m - Refusal on bricks (3 courses deep, minimum 4 bricks long)							-
	-2								- - -2 -
12									-
									-
	- 3								-3
									-
	- 4 - 4								- - -4 -
-9-									
									-

RIG: NDD and hand tools DRILLER: Excavac LOGGED: JS TYPE OF BORING: Diatube (200mm dia.) to 0.25m, Non-Destructive Digging 0.25-1.3m WATER OBSERVATIONS: No free ground water observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: Uncased

CLIENT:

PROJECT:

Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

Toga Development and Construction Pty Ltd

Photo D1 – View of the location of Borehole BH1003, with some of the retrieved rubble.

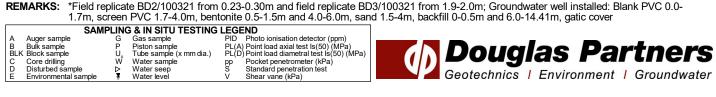
Photo D2 – View of concrete rubble retrieved from Borehole BH1003 during non-destructive digging through the upper part of the borehole.

	Boreho	le Photographs	PROJECT:	86884.02
Douglas Partners Geotechnics Environment Groundwater	Propos Develo	ed Commercial pment	PLATE No:	D1
	2-8a Le	2-8a Lee Street, Haymarket		0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

Photo D3 – View down Borehole BH1003 at the borehole refusal depth, showing a section of mortared brick rubble.

	Boreho	le Photographs	PROJECT:	86884.02
Douglas Partners Geotechnics Environment Groundwater	Propos Develo	ed Commercial pment	PLATE No:	D2
	2-8a Le	e Street, Haymarket	REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

CLIENT: **PROJECT:**


Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

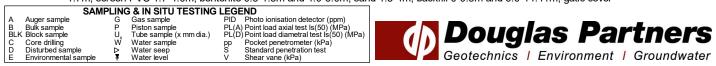
SURFACE LEVEL: 14.3 m AHD **EASTING:** 333900 **NORTHING: 6249274** DIP/AZIMUTH: 90°/--

BORE No: BH1003A **PROJECT No: 86884.02** DATE: 10 - 19/3/2021 SHEET 1 OF 3

Dorth	Description	Degree of Weathering	, <u>1</u>	Rock Strength	ъ	Fracture Spacing	Discontinuities	Sa			n Situ Testing
Depth (m)	of		Loc	Ex Low Very Low Medium Very High Ex High	Water	(m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
	Strata	H M M M M M M M M M M M M M M M M M M M	É	Ex Low Very Lov Medium Very Hig Ex High	001	0.05 0.10 1.00	S - Shear F - Fault	<u>⊢</u> .	ပမ္ရ	8	Comments
0.04 0.12											
	∖SAND and CEMENT		4								
0.25	At 0.2m: 8mm steel reinforcement		\mathbb{X}					A/E*			PID<1
	FILL/Clayey SAND: fine to medium,			iiiiii	i	ii ii					
	brown, with sandstone gravel and cobbles. concrete and brick rubble		\otimes								
	and bricks, trace ash and slag		\mathbb{X}		i						
			\otimes								
			\bigotimes		i			A/E			PID<1
1			\otimes								
			\bigotimes		i						
1.2	SAND SP: medium, pale brown and		<u>اېنې</u>								
	pale grey, moist, medium dense,										
	alluvial							A/E	-		PID<1
									1		
2								A/E*			PID<1
					ļ	ii ii					
					ļ	ii ii					
					lli	ii ii			1		
											8,15,22
					Ţ	ii ii		S			N = 37
	Below 2.8m: dense				19-03-21						
3					19-0:	ii ii			1		
					i						
					i						
					i						
					li	ii ii					
4 4.0	Silty CLAY CI-CH: medium to high	$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	77				Unless otherwise stated,				
	plasticity, pale grey and brown, with ironstone gravel, w <pl, apparently<="" td=""><td></td><td>1/1/</td><td></td><td> i</td><td></td><td>rock is fractured along rough, planar bedding</td><td></td><td></td><td></td><td></td></pl,>		1/1/		i		rock is fractured along rough, planar bedding				
4.3	stiff to very stiff, residual soil						dipping 0-5°, with iron				
4.3	Clayey SAND SC: medium, brown,		1.		i		staining or clay coating				
	moist, apparently medium dense to dense, extremely weathered		1.						4		5/0
4.58	sandstone	+	<u> </u>					S			refusal PL(A) = 0.05
	SANDSTONE: medium grained, brown, pale grey and red-brown,										
4.0-	bedded at 0-10°, very low to low			╽╧╧╝┊┊┊┊			4.83-4.87m: Ds 40mm	С	100	73	
4.87	strength, highly weathered, fractured, Mittagong Formation						4.00-4.07111. DS 40(11111				
0.0											
		LER: Excava				ED: JS	CASING: HV				
r⊨ OF E	BORING: Diatube (200mm dia.) to	0.23m, Non	-Desti	uctive Digging	0.23	-2.0m, Solid	Flight Auger (TC-bit) 2.0	-4.58	m, NI	VILC (Joring 4.58-14

1.7m, screen PVC 1.7-4.0m, bentonite 0.5-1.5m and 4.0-6.0m, sand 1.5-4m, backfill 0-0.5m and 6.0-14.41m, gatic cover

CLIENT: PROJECT: LOCATION: Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket **SURFACE LEVEL:** 14.3 m AHD **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--


BORE No: BH1003A PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 2 OF 3

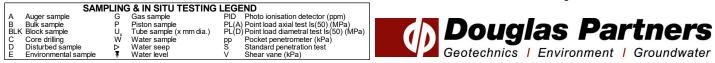
		Description	Degree of	<u>.o</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	In Situ Testing
RL	Depth (m)	of	Degree of Weathering	Log	Extrow Very Low High Wedium High Kery High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore 5. %	RQD %	Test Results &
	. ,	Strata	F S S W F E	U	Very Very Ex High		S - Shear F - Fault	Ļ	ပိမ္ရွိ	Я,	Comments
- 6	- - - - - - - -	SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone					5.03m: B20°, pl, ro, fe co 5.60-5.64m: Ds 40mm	с	100	73	PL(A) = 0.6
8	-						6.61m: B10° (x2), pl, ro,				PL(A) = 0.5
· · · · · · · · ·	- - - - -	Below 6.85m: pale grey, distinct and indistinct bedding at 0-10° with some cross-bedding, medium and medium to high strength, slightly weathered then fresh					∫fe co 6.70-6.82m: Ds 120mm	С	100	80	RI (A) = 1
	- - - - 8 -						7.62-7.67m: Ds 50mm 7.68m: J50°, pl, ro, cly co 7.9m: B5°, pl, ro, cly co 10mm				PL(A) = 1
9	- - - - - - 9							С	100	95	PL(A) = 1
5	-	Between 9.23-9.35m: grey, fine to medium grained band					9.28-9.31m: B10° (x3), pl, ro, cly co	с	100	82	
-	-										PL(A) = 0.9

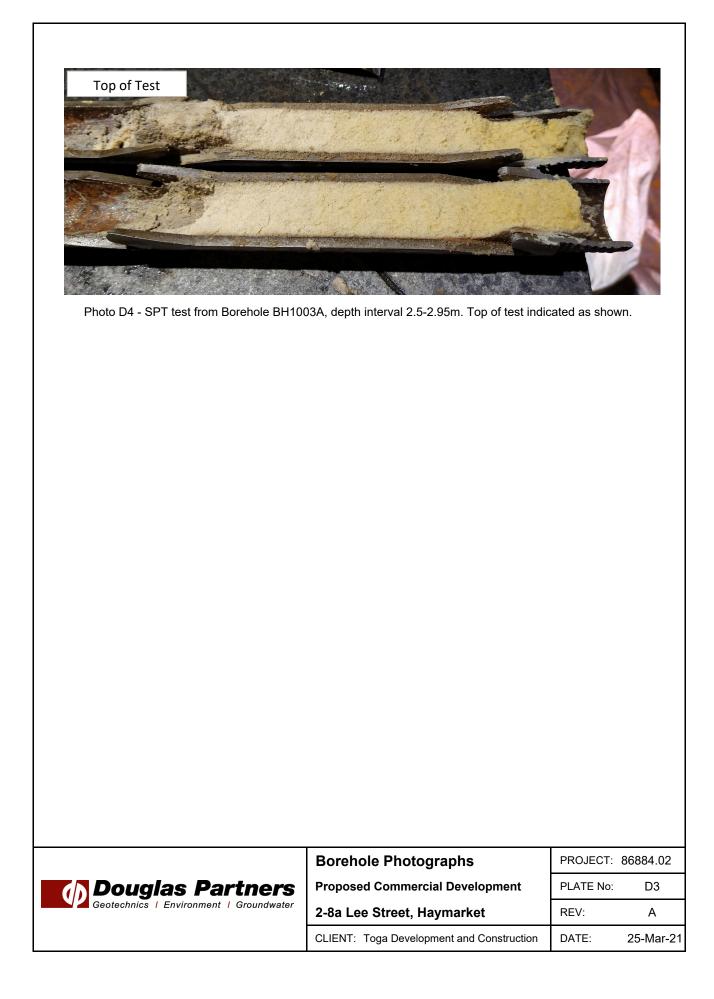
 RIG:
 NDD, hand tools, XC Drill
 DRILLER:
 Excavac, Terratest
 LOGGED:
 JS
 CASING:
 HW to 2.0m, HQ to 5.0m

 TYPE OF BORING:
 Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

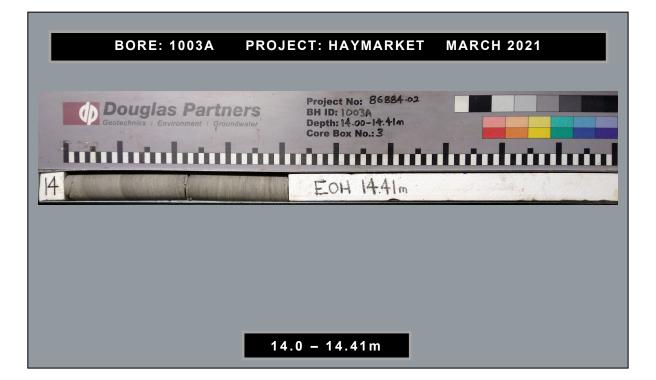
CLIENT: PROJECT: LOCATION:


Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket


SURFACE LEVEL: 14.3 m AHD BORE No: BH1003A **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 3 OF 3

\square		Description	Degree of Weathering	υ	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
R	Depth (m)	of	weathening	raphi Log		Spacing (m)	B - Bedding J - Joint	e	e.%	RQD %	Test Results
	(,		H M M M M M M M M M M M M M M M M M M M	Ū	Ex Low Very Low Medium Very High Ex High		S - Shear F - Fault	Type	ပိ မို	RC %	& Comments
		SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>						С	100		PL(A) = 0.7
- · ·	- - 11 - - -	Between 10.93-11.14m: extremely weathered seam					10.93-11.14m: Ds 210mm	С	100	86	
	- - - 12 - - -						12.35-12.40m: J50°, ir, ro, cln 12.46-12.53m: J60°, ir,				PL(A) = 0.8
	- 13 						ro, cln, healed	С	100	91	PL(A) = 1
	- - - 14 - - - - - - - - - - - - - - - - - - -	Between 13.58-13.84m: grey, fine to medium grained bed, with 10% dark grey siltstone laminations					13.81-13.83m: Ds 20mm	С	100	92	PL(A) = 0.9
	· · · · ·	Bore discontinued at 14.41m - Target depth reached									

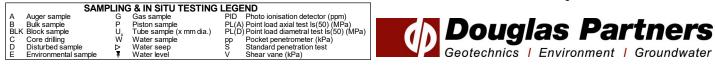

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.0m, HQ to 5.0m TYPE OF BORING: Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m WATER OBSERVATIONS: No free groundwater observed whilst augering

Toga Development and Construction Pty Ltd Proposed Commercial Development

2-8a Lee Street, Haymarket

CLIENT:

PROJECT:


LOCATION:

SURFACE LEVEL: 14.3 m AHD BORE No: BH1003A **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 1 OF 2

								1. 90 /		SHEET 1 OF 2
	_		Description	jc.		Sam		In Situ Testing	<u> </u>	Well
RL	Dej (n		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		0.04					0,			
4		0.23	SAND and CEMENT		A/E*	0.23		PID<1		E Backfill 0-0.5m
	- - - - - 1		CONCRETE SLAB At 0.2m: 8mm steel reinforcement FILL/Clayey SAND: fine to medium, brown, with sandstone gravel and cobbles, concrete and brick rubble		_A/E_	0.8 0.9		PID<1		1 Bentonite 0.5-1.5m
13	-	1.2	and bricks, trace ash and slag SAND SP: medium, pale brown and pale grey, moist,		A/E	1.4		PID<1		
	-		medium dense, alluvial			1.5				
12	-2				A/E*	1.9 2.0 2.5		PID<1		
11	- 3		Below 2.8m: dense		s	2.95		8,15,22 N = 37	19-03-21 i	Sand filter 1.5-4.0m 3 Slotted PVC pipe 1.7-4.0m
		4.0	Silty CLAY CI-CH: medium to high plasticity, pale grey and brown, with ironstone gravel, w <pl, apparently="" stiff="" th="" to<=""><th></th><th></th><th></th><th></th><th></th><th></th><th>4 End Cap</th></pl,>							4 End Cap
	-	4.58 -	(orayoy of the co. modiani, brown, molet, apparonaly	· · · · · · · · · · · · · · · · · · ·		4.5 4.58		5/0 refusal		
	- 5	4.87 5.0	\medium dense to dense, extremely weathered sandstone / SANDSTONE: medium grained, brown, pale grey and red-brown, bedded at 0-10°, very low to low strength, highly weathered, fractured, Mittagong Formation		с	4.6		PL(A) = 0.05		5 Bentonite fill 4.0-6m
	-		SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury		U	5.51		PL(A) = 0.6		
	-6		Sandstone			6.0				-6
	- - -					6.34		PL(A) = 0.5		
	- 7		Below 6.85m: pale grey, distinct and indistinct bedding at 0-10° with some cross-bedding, medium and medium to high strength, slightly weathered then fresh		С	7.48		PL(A) = 1		7
	8				с	7.53				-8
	- 9					8.95 9.13		PL(A) = 1		-9
2	-		Between 9.23-9.35m: grey, fine to medium grained band		С	9.86		PL(A) = 0.9		

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.0m, HQ to 5.0m TYPE OF BORING: Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m WATER OBSERVATIONS: No free groundwater observed whilst augering

Toga Development and Construction Pty Ltd

Proposed Commercial Development

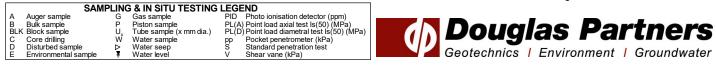
2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 14.3 m AHD **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--


BORE No: BH1003A PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 2 OF 2

								-	1	
	Dorth	Description	hic		Sam		& In Situ Testing	<u>۳</u>	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Constructior Details	ı
- +	- 11	SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i> Between 10.93-11.14m: extremely weathered seam		С	10.56 10.66	0,	PL(A) = 0.7		Backfill 6-14.41m	-
	- 12			с	11.63		PL(A) = 0.8		-12	
	-13			С	12.93		PL(A) = 1		- 13	
	- 14 - 14.41 -	Between 13.58-13.84m: grey, fine to medium grained bed, with 10% dark grey siltstone laminations		С	13.61 13.72 -14.41-		PL(A) = 0.9		-14	
	-15	Bore discontinued at 14.41m - Target depth reached			14.41				- 15	
-2	- 16								- 16	
	- 17								- 17	
-4-	- 18									
									- 19	

 RIG:
 NDD, hand tools, XC Drill
 DRILLER:
 Excavac, Terratest
 LOGGED:
 JS
 CASING:
 HW to 2.0m, HQ to 5.0m

 TYPE OF BORING:
 Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004 **EASTING:** 333920 **NORTHING:** 6249261 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10/3/2021 SHEET 1 OF 1

				DIF			 : 90°/		SHEET 1 OF 1
		Description	. <u>e</u>		Sam		& In Situ Testing	_	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.04								
Ì	0.11	SAND and CEMENT	Q. Q.						
	0.3	CONCRETE SLAB	<u></u>		0.3				-
-		FILL/Sandy CLAY: low to medium plasticity, brown and	\mathbb{X}	A/E*	0.4		PID<1ppm		
ł		FILL/Sandy CLAY: low to medium plasticity, brown and grey, with fine to medium sandstone and ironstone gravel, brick rubble, sandstone boulders, and igneous rock cobbles (railway ballast), trace ash and slag	\bigotimes						-
ľ		cobbles (railway ballast), trace ash and slag	\bigotimes	A/E	0.6 0.7		PID<1ppm		
15	0.8		\bigotimes		0.7				-
ł		FILL: building rubble (concrete rubble, bricks, railway ballast and sandstone boulders in a clayey sand matrix)	\bigotimes						
ł	- 1		\bigotimes						-1
t	1.1	Bore discontinued at 1.1m							
-		- Refusal in fill							-
ł									-
ł									-
f									
4									
ł									-
ł	-2								-2
F									
-									-
ł									
F									-
13									
-									
ł	- 3								-3
ł									
t									
-									-
ł									-
ł									
-5-									
									ļ
+	-4								-4
ŀ									F
t									t l
[
$\left \right $									- I
-									-
									F
-5-									

RIG: NDD and hand tools DRILLER: Excavac LOGGED: JS TYPE OF BORING: Diatube (200mm dia.) to 0.30m, Non-Destructive Digging 0.30-1.1m WATER OBSERVATIONS: No free ground water observed **REMARKS:** *Field replicate BD2/10.03.21 collected from 0.3-0.4m.

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

CASING: Uncased

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 NORTHING: 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 1 OF 4

			Degree of Weathering		Rock		Fronture	Discontinuities	0	mali		n Situ Taating
	Depth	Description	Weathering	a hic	Strength		Fracture Spacing	Discontinuities			-	n Situ Testing
Я	(m)	of		Grap Log	K Low Very Low Medium High K High K High	Water	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	g%	Test Results &
Ц			A A A A A A A A A A A A A A A A A A A	Ŭ	High EX H	0.01	0.05	S - Sriear F - Fault		°۳	Ľ.	Comments
	0.04 - 0.1-											
	-			4.4		į						
	- 0.3	CONCRETE SLAB →At 0.26m: 8mm reinforcement steel /		<i>۱. ۲. ا</i> .								
	-	FILL/Clayey SAND: fine to medium,		\bigotimes		l			A/E*			PID<1ppm
	-	brown, with silty clay, sandstone		\bigotimes		1						
$\left \right $	- 0.6	gravel and cobbles, igneous rock cobbles (railway ballast), concrete		\bigotimes		ł						
$\left \right $	-	and brick rubble, bricks and rubbish	iiiii	\bigotimes		i	ii ii					
-15	-	(plastic bottles), trace ash and slag		\bigotimes								
	-	FILL: building rubble (concrete rubble, bricks, railway ballast,		\bigotimes		i						
	-1	sandstone gravel, cobbles and		\bigotimes		1						
	-	boulders, in a clayey sand matrix)		\bigotimes		ł			A/E	1		PID<1ppm
t i	-		liiiii	\bigotimes		i	ii ii			1		
T I	-			\bigotimes								
				\bigotimes		l						
				\bigotimes								
	-			\bigotimes		l						
-4	-			\bigotimes		į	11 11					
	-			\bigotimes								
$\left \right $	-2			\bigotimes		i	ii ii					
$\left \right $	- 2.1	FILL/SILT: low to non-plastic, grey,		₩X					A/E			PID<1ppm
$\left \right $	- 2.2	with sandstone gravel and bricks		\bigotimes		ľ						Прафи
	-	FILL: building rubble (concrete and		\bigotimes		1						
	-	bricks - possible footing)		\bigotimes								
t t	-		iiiii	\bigotimes		i	ii ii					
T I	- 0.7			\bigotimes								
[2.7	FILL/SAND: medium, brown, moist		\bigotimes		i						
	_			\bigotimes								
	-3 3.0			[X]		l						
	-	SAND SP: medium, pale grey, wet, medium dense to dense, alluvial				1						
$\left \right $	-	,										7,12,18
$\left \right $	-					i	<u>ii ii</u>		S/E			N = 30
-	-											PID<1ppm REC = 0.3m
	-					i						
	-											
	-					l						
-9-	-					į						
	- 4 4.0											
	-4 4.0	Silty CLAY CL-CI: low to medium		1/		i						
	.	plasticity, grey, trace charcoal, w>PL, very soft to soft, alluvial		$\langle \prime \rangle$								
	-			1//								
	.			/1/		ļ						
	-			\mathbb{X}					<u> </u>			
	-			1/1/		ļ						pp = 50
$\left \right $	-			//					s			2,0,0 N = 0
-5	-			///		l						REC = 0.2m
	-			Vi/								
				L. /								

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed

REMARKS: *Field replicate BD4/110321 collected from 0.3-0.4m.

B. Bulk sample P Piston sample U, the sample (x mm dia.) PL(A) Point load diametral test Is(50) (MPa) PL(D) Poi	A Auger sample	PLIN	G & IN SITU TESTING Gas sample	G LEGEND PID Photo ionisation detector (ppm)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	B Bulk sample	P U	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Nouglas Partners
E Environmental sample V Shear vane (kPa)	D Disturbed sample	Ŵ ⊳	Water seep	S Standard penetration test	Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 NORTHING: 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 2 OF 4

$\left[\right]$		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of		Graphic Log	Strength Very Low Medium Medium Very High High High High High High Medium	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results
	(,	Strata	FIS N M M M M M M M M M M M M M M M M M M	Ū		0.01	S - Shear F - Fault	ج	ပိမ္စ	8%	& Comments
	5.6	Silty CLAY CL-CI: low to medium plasticity, grey, trace charcoal, w>PL, very soft to soft, alluvial (continued)				0 0	Unless otherwise stated, rock is fractured along rough, planar bedding dipping 0-5°, with				
	-6 6.0	SANDSTONE: brown, low to medium strength, Mittagong Formation					ironstaining or clay infill	, (S)			10/10
		SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, medium strength, highly weathered with 20-40% extremely weathered beds, slightly fractured, Mittagong Formation					6.33-6.83m: Ds 500mm				refusal PL(A) = 0.4
- 6 -	6.83	SANDSTONE: medium to coarse grained, red-brown, orange and pale grey, medium strength, highly then moderately weathered, slightly fractured, Hawkesbury Sandstone						С	100	60	PL(A) = 0.8
	- 8	Below 7.86m: grading to pale grey, slightly weathered					7.41m: J30°, pl, ro, cly Vn 7.50-7.54m: Ds 40mm 7.80-7.83m: Ds 30mm	c	100	93	PL(A) = 0.6
	8.36 8.93 - 9	SANDSTONE: fine to medium grained, pale grey, indistinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone SANDSTONE: medium to coarse grained, pale grey, distinct and					8.33-8.36m: Ds 30mm 8.93m: B10°, pl, ro, cly co 10mm			93	PL(A) = 1.2
 - 0 		indistinct bedding at 0-10°, cross-bedded, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone						С	100	100	PL(A) = 0.8

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed

REMARKS: *Field replicate BD4/110321 collected from 0.3-0.4m.

	SAI	MPLING	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B	Bulk sample	P	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)	1	1.	N Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	¥	Water level	V	Shear vane (kPa)			📕 Geotechnics Environment Groundwater
-						,		

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 **NORTHING:** 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 3 OF 4

\square		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	<u>o</u>	Rock Fra	acture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
RL	Depth (m)	of		raphi Log	Strength High High Ex High High Ex High High Ex High High Ex High High Ex High High Ex High High Ex High High Ex High Ex High High Ex High Ex High High Ex High Ex Hig	acing (m)	B - Bedding J - Joint	e	e.	۵	Test Results
	(11)	Strata	FR S W W	<u>9</u>		0.10	S - Shear F - Fault	Type	Core Rec. %	₿ 88	& Comments
	-	SANDSTONE: medium to coarse grained, pale grey, distinct and indistinct bedding at 0-10°, cross-bedded, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>						С	100		
	- 11 							С	100	95	PL(A) = 0.7 PL(A) = 0.9
	- 13							С	100	100	PL(A) = 0.9
	- - - 14 - - -						13.82m: B5°, pl, ro, cly co 5mm 14.31m: B10°, pl, ro, cly vn	с	100	99	PL(A) = 0.8
	-						14.91m: B10°, pl, ro, cly vn				PL(A) = 0.8

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed **REMARKS:** *Field replicate BD4/110321 collected from 0.3-0.4m.

	SAMF	PLIN	3 & IN SITU TESTING	LEGE						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_	
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		11.			Partners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			O and a shart start	I Factor	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	I Enviro	onment Groundwater
						•				

CLIENT: PROJECT:

Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

Toga Development and Construction Pty Ltd

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 **NORTHING:** 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 4 OF 4

\square		Description	Degree of Weathering	ic	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	In Situ Testing
Ч	Depth (m)	of	Wednering	raph Log	Ex Low Very Low High Ex High Ex High Ex High State	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	an %	Test Results &
		Strata	FIS & W A FIS	ი			S - Shear F - Fault	Γ	ပိမ္စ	R N	∝ Comments
		SANDSTONE: medium to coarse grained, pale grey, distinct and indistinct bedding at 0-10°, cross-bedded, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					15.15-15.47m: Ds 320mm	С	100	99	
		Between 15.15-15.47m: extremely low strength, extremely weathered bed					15.52-15.59m: J70°, pl, ro, cly vn, partially healed 15.83m: B10°, pl, ro, cly	с	100	65	
	- 16						co 10mm 15.83-16.00m: J80°, ir, ro, cln, partially healed 15.96m: B10°, pl, ro, cly co 10mm			00	PL(A) = 0.9
	- 17	Between 16.72-17.42m: cross-bedded at 0-10°, low strength, with extremely weathered seams, fractured					16.6m: B10°, pl, ro, cly co 5mm 16.72m: B10°, pl, ro, cly co 5mm 16.85m: B10°, pl, ro, cly co 5mm 16.95m: B10°, pl, ro, cly co 10mm 17.18m: B10°, pl, ro, cly co 5mm				PL(A) = 0.3
		Between 17.42-18.22m: cross-bedded at 0-10°, high strength, slightly fractured					17.29-17.42m: Ds 130mm 17.7m: B10°, pl, ro, cly co 10mm 17.81m: B5°, ir, ro, cbs	С	100	86	
	- 18										PL(A) = 1.7
 	10.22	Bore discontinued at 18.22m - Target depth reached									
	- 19										
-4-											

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed

REMARKS: *Field replicate BD4/110321 collected from 0.3-0.4m.

CLIENT:

PROJECT:

	SAM	IPLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-	· · · · · ·						

Photo D6 - SPT test from Borehole BH1004A, depth interval 4.5-4.95m. Top of test indicated as shown.

	Borehole Photographs	PROJECT:	86884.02
Douglas Partners	Proposed Commercial Development	PLATE No:	D4
Geotechnics Environment Groundwater	2-8a Lee Street, Haymarket	REV:	А
	CLIENT: Toga Development and Construction	DATE:	25-Mar-21

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD BORE No: BH1005 **EASTING:** 333920 NORTHING: 6249246 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 16/3/2021 SHEET 1 OF 4

Π		Description	Degree of Weathering	υ	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	In Situ Testing
님	Depth (m)	of	weathering	aphi -og	Strength Very Low Medium High Kery High Kery High Kery High Very High Kery High Kery High Kery High Kery Low Very Low Very Low Medium Kery Low Medium Kery Low Very Low Ve	Spacing (m)	B - Bedding J - Joint	e	e %	RQD %	Test Results
	(11)	Strata	H M M M M M M M M M M M M M M M M M M M	5	Ex Low Very Low Medium High Very High Ex High		S - Shear F - Fault	Type	Re C	R0%	& Comments
	0.02										
		SAND and CEMENT		A . 2							
	0.22	CONCRETE SLAB: 3x plastic conduit (empty)						A/E*			PID<1ppm
╞┝	-	Between 0.17-0.20m: 8mm steel		\mathbb{X}							
╞┝	-	reinforcement FILL/Clayey SAND: fine to medium,		\bigotimes				A/E			PID<1ppm
		brown, with fine to medium gravel and concrete rubble, dry		\bigotimes					-		T ID «Tppin
	-	FILL: building rubble (concrete rubble, bricks, sandstone gravel,		\bigotimes							
-5-	-	cobbles and boulders, railway		\mathbb{K}							
	- 1	ballast, ash, slag, in sandy clay matrix)		\bigotimes							
$\left \right $	-	,		$ \otimes $							
╞┝	- 1.3	FILL/Clayey SAND: fine to medium,	$\left\{ \begin{array}{c} 1 \\ 1 \end{array}\right\}$	\bigotimes							
$\left \right $	-	brown and grey, with sandstone and		\bigotimes							
	-	igneous rock gravel and cobbles and brick rubble, trace ash and slag		\mathbb{X}					-		
t I		-		\otimes				A/E			PID<1ppm
	-			\mathbb{X}							
-4	-			\bigotimes							
$\left \right $	-2										
f	-			\bigotimes							
				$ \otimes $							
$\left \right $	-			\bigotimes							
╞┝	-			$ \otimes $				<u> </u>			
╞╞	-			\bigotimes							8,15,15
f	-			$ \mathbb{X} $				S/E			N = 30 PID<1ppm
<u>ب</u>	- 2.8-	SAND SP: medium, pale grey, wet, medium dense to dense, alluvial						A/E			LID> Ibbiii
$\left \right $	-3	moulani achse lo achse, allavid									
╞╞	-										
$\left \right $	-										
t	-										
[]											
╞╎	-										
╞┝	-										
╞╞	-										
-9-	-										
	- 4								1		10.05
╞╎	- 4.2	CAND CDI modium mala braum and						s			10,25 refusal
╞┝	-	SAND SP: medium, pale brown and red-brown, wet, dense to very		[·				<u> </u>			
$\left \right $	-	dense, alluvial									
	-										
	-										
	-										
	5.0			$ \cdot\cdot\cdot\rangle$					1		

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAM	PLIN	3 & IN SITU TESTING	LEG	END]		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
B	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1		Douolas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD BORE No: BH1005 **EASTING:** 333920 **NORTHING:** 6249246 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 16/3/2021 SHEET 2 OF 4

			Degree of		Rock	Freeture	Discontinuities		- Barrella		n City Tasting
	Depth	Description	Degree of Weathering	d lic	Strength	Fracture Spacing	Discontinuities				n Situ Testing Test Results
Я	(m)	of		Grap Log	Strendth Low Low Medium Medium Very High Medium Strendth	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	å D S S	kesuits
Ц			H M M M M M M M M M M M M M M M M M M M		Ex L High Very Very Very	0.05	G-Gilcai F-Fàuil		<u> </u>	ш	Comments
	5.2	SAND SP: refer previous page Silty CLAY CI-CH: medium to high plasticity, grey, trace fine gravel and charcoal, w=PL, stiff to very stiff, alluvial									
	- 6							S	-		pp = 400 4,7,12 N = 19
	6.2	Silty CLAY CI-CH: medium to high plasticity, pale grey and pale brown, with fine to medium ironstone gravel, w>=PL, stiff with some soft to firm layers, residual soil									
-	-7										
								S			pp = 200 5,6,6 N = 12
	-8 8.0	Clayey SAND SC: medium, brown, dry, very dense, extremely weathered sandstone					Unless otherwise stated, rock is fractured along rough, planar bedding dipping 0-5°, with ironstaining or clay infill				
	8.74			(.,.) (.,.) (.,.) (.,.)				S	-		15/100 refusal
	-9	SANDSTONE: medium grained, orange-brown, very low strength, highly weathered, fractured, Hawkesbury Sandstone SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, medium to high strength, slightly weathered, slightly fractured to						С	100	87	PL(A) = 0.9
		unbroken, Hawkesbury Sandstone						C	100	92	PL(A) = 0.9

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAM	PLIN	G & IN SITU TESTING	G LEG	END		
A	 Auger sample 	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample	PL()	A) Point load axial test Is(50) (MPa)		
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		Doubles Parners
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		Douglas Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		_
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD BORE No: BH1005 **EASTING:** 333920 NORTHING: 6249246 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 16/3/2021 SHEET 3 OF 4

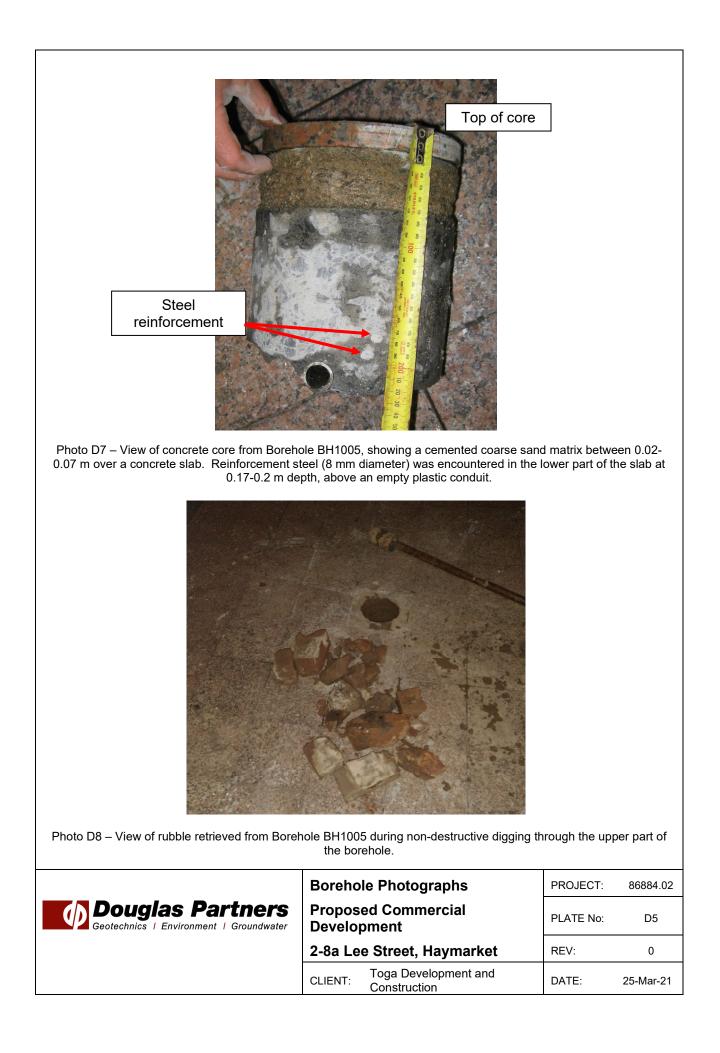
\square		Description	Degree of Weathering	υ	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth	of	vveathering	Graphic Log		Spacing	B - Bedding J - Joint				
	(m)	Strata	H H W K S W W K F R S W K	Ъ Ц	Ex Low Very Low Medium High Ex High Ex High	0.100 0.100 0.50 (u)	S - Shear F - Fault	Type	ĉ C	RQD %	& Comments
	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, medium to high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (<i>continued</i>) Between 10.13-13.05m: fresh					10.11-10.13m: Ds 20mm	С	100	92	PL(A) = 0.9
	- 12	Between 12.33-12.51m: fine to medium grained, grey						с	100	100	PL(A) = 0.9 PL(A) = 1.1
· · · · · · · · · · · · · · · · · · ·	- 13 13.05 - - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, indistinct bedding at 0-10°, very low then low strength, highly weathered with extremely weathered seams, fractured, Hawkesbury Sandstone SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, low to medium strength, slightly					13.05m: B 10°, pl, ro, cly co 13.31-13.33m: Ds 20mm 13.50-13.55m: Ds 50mm 13.60-13.6m: J40° (x2), pl, ro, cly co 10mm 13.84-13.86m: Ds 20mm 14.04m: B10°, pl, ro, cly co 10mm 14.1m: J60°, ir, ro, cly co 14.17m: J40°, ir, ro, cly co	с	100	31	PL(A) = 0.1
		weathered, slightly fractured, Hawkesbury Sandstone Below 14.75m: medium or medium to high strength, fresh					14.21m: B10°, pl, ro, cly vn 14.62-14.66m: Ds 20mm 14.72-14.75m: Ds 30mm	с	100	84	PL(A) = 0.3 PL(A) = 0.8

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAMF	LIN	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
B	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglas Partners
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
Ē	Environmental sample	Ţ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket


SURFACE LEVEL: 15.9 m AHD **EASTING:** 333920 NORTHING: 6249246 **DIP/AZIMUTH:** 90°/--

BORE No: BH1005 **PROJECT No: 86884.02** DATE: 10 - 16/3/2021 SHEET 4 OF 4

		Description	Degree of Weathering ≧ ≩ ≩ § ∞ ଝ	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	In Situ Testing
RL	Depth (m)	of		Log	Ex Low Very Low Very Low High High Ex High Aater	Spacing (m)	B - Bedding J - Joint	be	re .%	RQD %	Test Results
	(,	Strata	FIS W W W	Ū		0.10	S - Shear F - Fault	Type	ပိမ္စ	8%	& Comments
		SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, low to medium strength, slightly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>						С	100		PL(A) = 1
-0	- 15.85 - 16 - - - - - -	Bore discontinued at 15.85m - Target depth reached									
	- - 17 - - - - -										
	- - 18 - - - - -										
4	- - - - - - - - -										

DRILLER: Excavac, Terratest RIG: NDD, hand tools, XC Drill LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAME	LIN	G & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	_	-	_	_
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Doug			
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)			IRS		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
	Disturbed sample	⊳	Water seep	S	Standard penetration test		-			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envi	ronment I C	Groundwater

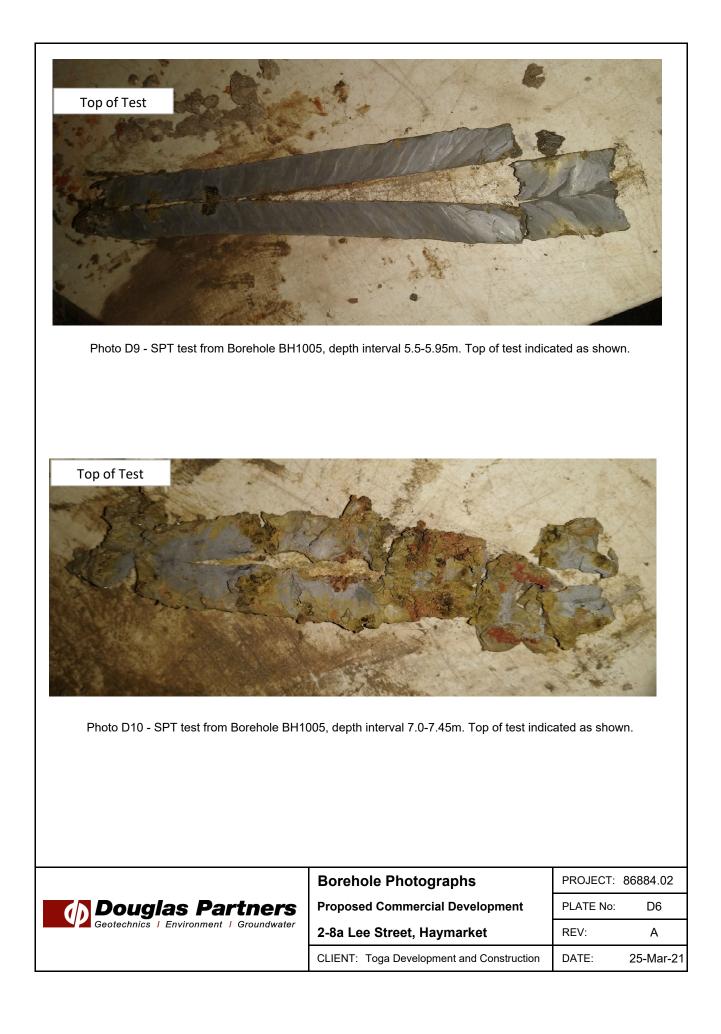


Photo D11 - SPT test from Borehole BH1005, depth interval 8.5-8.6m.

	Borehole Photographs	PROJECT:	86884.02
Douglas Partners	Proposed Commercial Development	PLATE No:	D7
Geotechnics / Environment / Groundwater	2-8a Lee Street, Haymarket	REV:	А
	CLIENT: Toga Development and Construction	DATE:	25-Mar-21

BO	RE: 1005	PROJ	ECT: HAY	MAR	KET	MARCH	2021	
Dou Geotechnik	glas Partn 28 Environment Grou	-	BH ID: 10	.74-13.001 No.: 1	'n			
86884.02	HAYMARKET	15 03 21	BH1005	START CORING	8.74 n			
Carlas -)	
		8	8.74 - 13	. 0 m				

BORE: 1005 PROJ	ECT: HAYMARKET	MARCH 2021
Douglas Partners Geotechnics Environment Groundwater	Project No: 86884-02 BH ID: 1005 Depth: 13:00-15:85 Core Box No.: 2.	
13 14. 15		Еон 15.85 м
1	3.0 — 15.85m	

SURFACE LEVEL: 15.7 m AHD BORE No: BH1006 **EASTING:** 333896 **NORTHING:** 6249252 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10/3/2021 SHEET 1 OF 1

							H: 90°/		SHEET 1 OF 1
		Description	с		Sam	pling 8	& In Situ Testing		Well
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Construction
	. ,	Strata	Ū	Ě	Det	Sam	Results & Comments	~	Details
	0.02		<u></u>						
	0.18		4.4.						
[CONCRETE SLAB	$\times\!\!\!\times$						
		At 0.18m: 20mm copper water pipe	\times						_
			$\times\!\!\!\times$						-
-		FILL: igneous rock cobbles (railway ballast) with fine to medium grained sand and brick rubble	\times						-
15		At 0.4m: 8mm steel reinforcement fragment	\times						-
-	0.8	0.90.0.95m; 65mm and 100mm conner pipes (huriod	XXX						
-		0.80-0.85m: 65mm and 100mm copper pipes (buried services)							-
-	-1	Bore discontinued at 0.8m							- 1
F		- Refusal on buried services							-
F									
[[
-4									-
									-
									-
-	-2								-2
ł									-
ŀ									-
ŀ									-
									-
3									
[
									-
	-3								-3
-									-
-									-
-									-
-									-
F									-
-2									
[[
	-4								-4
	.								
$\left \right $.								
$\left \right $.								
$\left \right $.								
$\left \right $.								
-1-	.								
	.								

RIG: NDD and hand tools DRILLER: Excavac LOGGED: JS TYPE OF BORING: Diatube (200mm dia.) to 0.18m, Non-Destructive Digging 0.18-0.80m WATER OBSERVATIONS: No free ground water observed **REMARKS:** Terminated on copper pipes

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: Uncased

Toga Development and Construction Pty Ltd

CLIENT: PROJECT:

Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

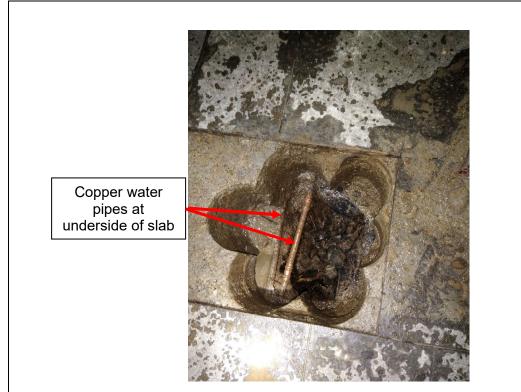


Photo D12 – View of copper water pipes and igneous rail ballast rubble beneath the surface at Borehole BH1006.

Photo D13 – View of two more deeply buried copper pipes within Borehole BH1006, at the termination depth of 0.8m.

	Boreho	le Photographs	PROJECT:	86884.02
Douglas Partners Geotechnics Environment Groundwater	Development		PLATE No:	D8
			REV:	0
	CLIENT:	Toga Development and Construction	DATE:	25-Mar-21

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 EASTING: 333896 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 1 OF 4

		Description	Degree of Weathering Claphic C	Rock	Fracture	Discontinuities	Sampling &	n Situ Testing
RL	Depth	Description of	Weathering		Spacing			Test Results
R	(m)	Strata	Gra	Ex Low Very Low Medium Very High Ex High	(m)	B - Bedding J - Joint S - Shear F - Fault	Type Core Rec. % %	&
$\left \right $	0.02	Strata	MAH MSSEE		0.05		Ŭ T T T T T T T T T T T T T T T T T T T	Comments
$\left \right $	0.02 0.07	SAND and CEMENT						
+ +	0.2	CONCRETE SLAB					A/E*	PID<1ppm
+ +	.	Between 0.14-0.15m: 8mm steel	🗰					тругирин
	·							
	.	FILL/Clayey SAND: fine to medium, brown and grey, with sandstone						
	.	brown and grey, with sandstone gravel and cobbles, igneous rock					A/E	PID<1ppm
<u>م</u>		cobble (railway ballast), concrete rubble and bricks, trace ash and						
	.	slag						
	-1							
	.		i i i i i 🔀	iiiiii	ii ii			
-	.							
}	.							
	.							
	.						A/E	PID<1ppm
[]			🏠					
4	.							
	.							
	-2							
	.		: : : : : 🔀				A/E	PID<1ppm
+ +	.							
	2.3	FILL/SAND: medium to coarse, pale	🔀					
	•	brown and grey, with pale grey and red-brown silty clay and fine to						
		medium gravel, moist						
	.							4,6,6
-÷	.						S/E	N = 12 PID60 ppm
	.		🗰					
+ +	-3							
+ +	.							
	.							
	•							
	. 3.5	SAND SP: medium, pale grey, wet, dense, alluvial						
	.	uchoc, alluviai						
-2-	.							
	.							
+ +	- 4							
	.							8,16,25
	•						S/E*	N = 41
[]				16-03-21				PID16 ppm
	.			9				
	.							
	.							
	.							
+ +	.							

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 1.7m, HQ to 9.2m **TYPE OF BORING:** Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

Γ	SAM	PLIN	G & IN SITU TESTING	G LEGEND	
	A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
	3 Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
	3LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
	C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglas Partners
	D Disturbed sample	⊳	Water seep	S Standard penetration test	
	E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 **EASTING:** 333896 **NORTHING:** 6249263 DIP/AZIMUTH: 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 2 OF 4

		Description	Degree of Weathering ·은	Rock Strength	7	Fracture	Discontinuities			-	n Situ Testin
	Depth (m)	of	Weathering U		Water	Spacing (m)	B - Bedding J - Joint	Type	%	RQD %	Test Result
	(,	Strata	Q A H M S S H Q	Ex Low Very Low High Very Hig		0.01 0.10 0.50	S - Shear F - Fault	Ţ	ပိမ္စိ	RC %	& Comment
		SAND SP: medium, pale grey, wet, dense, alluvial <i>(continued)</i> Below 5.0m: grading to loose									
- - -	5.7 · 6	Silty CLAY CL-CI: low to medium plasticity, grey, trace fine gravel, w>PL, stiff to very stiff, alluvial						s	_		pp = 100 3,7,9 N = 16
	6.5 ·	SAND SP: medium, brown, wet, medium dense, alluvial									
	7										pp = 500
		Silty CLAY CI-CH: medium to high plasticity, pale grey and brown, with ironstone gravel, w>PL, very stiff, residual soil						S	-		8,15,15 N = 30
-;	8 8.0-	Clayey SAND SC: medium to coarse, pale grey and brown, with silty clay layers, wet, medium dense, extremely weathered sandstone									
							Unless otherwise stated, rock is fractured along rough, planar bedding dipping 0-5°, with iron	s	_		20,13,8 N = 21
- (9 9.2 -	SANDSTONE: brown, very low			¥		staining or clay coating				
	9.5 -	strength, Hawkesbury Sandstone			19-03-21						
		SANDSTONE: medium to coarse grained, brown, indistinct bedding at 0-10°, very low strength, highly weathered, fractured, Hawkesbury Sandstone						с	100	97	PL(A) = 0
	10.0	SANDSTONE: refer following page									PL(A) = 1.

TYPE OF BORING: Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

Γ	SAM	PLIN	G & IN SITU TESTING	LEGEND	
1	A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
E	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Nouslas Bortror
E	3LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
0	C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglas Partners
1	D Disturbed sample	⊳	Water seep	S Standard penetration test	Contraction 1 Freedoments 1 Operations
E	E Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT:

RIG: NDD, hand tools, XC Drill

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 EASTING: 333896 **NORTHING:** 6249263 DIP/AZIMUTH: 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 3 OF 4

		Description	Degree of Weathering	ы	Rock F Strength	racture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of		log J	Strength Very Low Very Low Very High High High High High High High High	pacing (m)	B - Bedding J - Joint	e	e %.	Q,	Test Results
	(11)	Strata	FIS & W & E	ወ_	Very Low Very Low Very High Ex High 0.01 Va	0.10	S - Shear F - Fault	Type	ပိမ္စ	RQD %	& Comments
	· · ·	SANDSTONE: medium to coarse grained, pale grey, distinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>						С	100		
- 2 	- 11 	Below 10.87m: with 5-10% fine to medium grained beds, and low to medium strength to 10.91m Below 10.98m: medium strength to high strength, unbroken					10.87-10.91m: Ds 40mm 10.98m: B10°, pl, ro, cly co 10mm	С	100	88	PL(A) = 0.3 PL(A) = 0.4
- 4 -	- 12										
	- - 13 							С	100	100	PL(A) = 1.1
	- 14 - 14 							С	100	97	PL(A) = 0.9
							14.64-14.68m: B5° (x5), pl, ro, cly co				PL(A) = 1.5

DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 1.7m, HQ to 9.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

	e tai i api				, sentenne ere erenn, eans ere reizin, saennin e erenn, gane
	SAM	IPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Parmers
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contractories 1 Environment 1 Open devetor
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

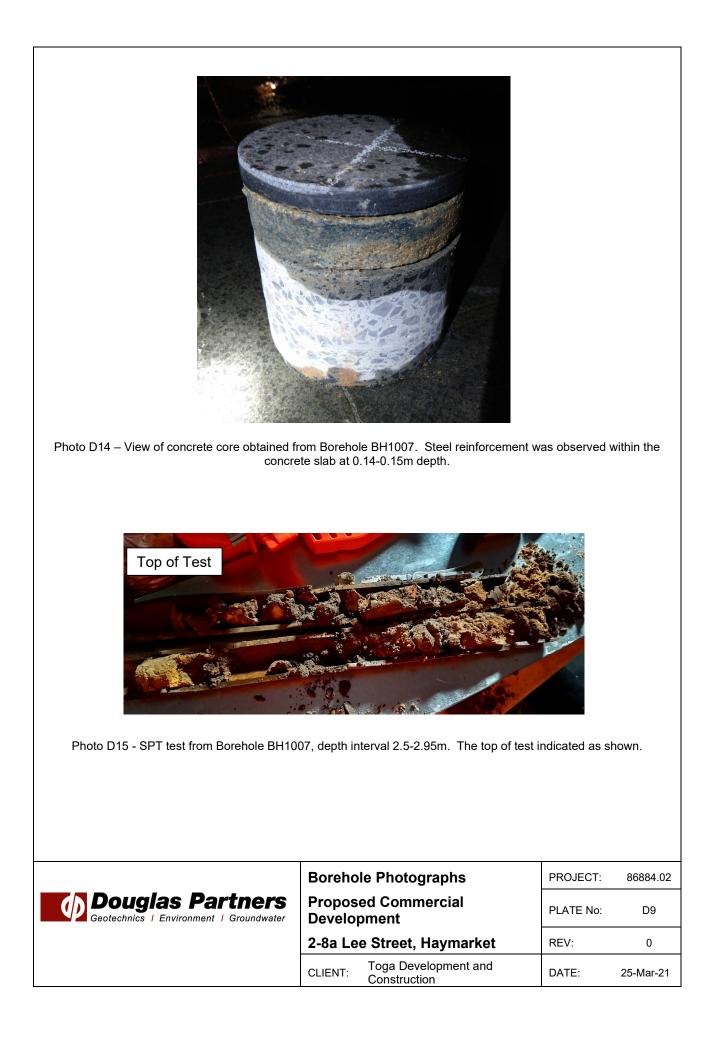
CLIENT: PROJECT:

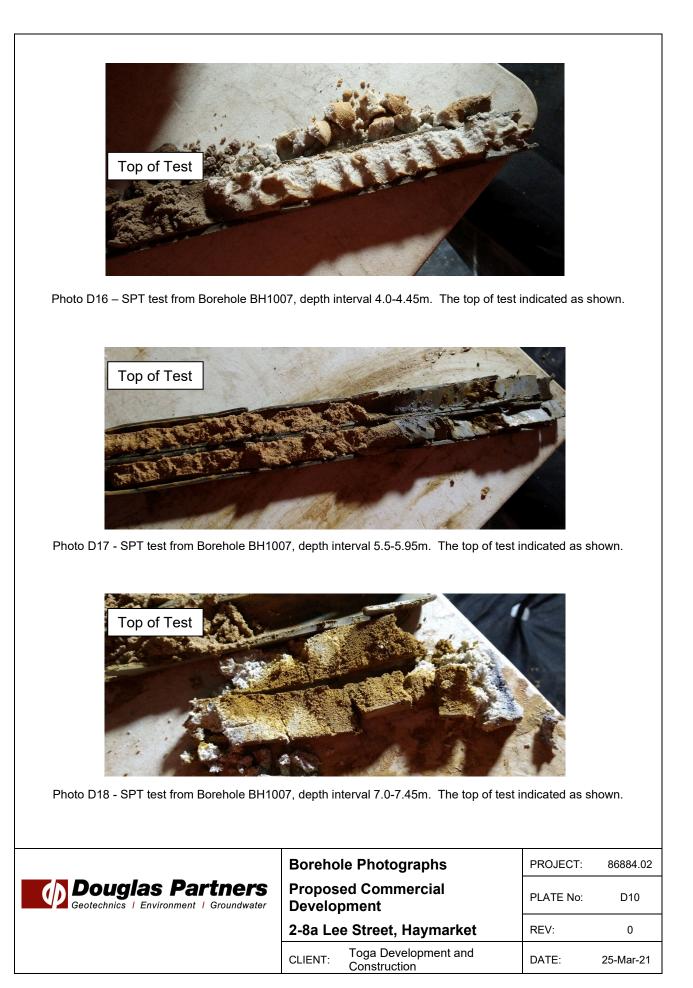
Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 EASTING: 333896 NORTHING: 6249263 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 4 OF 4

		Description	Degree Weather	of	,	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	In Situ Testing
R	Depth (m)	of		india:	- B	Ex Low Very Low Low Medium Very High Very High Very High Varter	Spacing (m)	B - Bedding J - Joint	e	re %.	RQD %	Test Results
	()	Strata	M M M M M M M M M M M M M M M M M M M	^{ᇝ ᇤ} ᅜ	5 -	Ex Lov Very L Mediu Very F	0.01	S - Shear F - Fault	Type	ပိမ္မိ	RC %	& Comments
	-	SANDSTONE: medium to coarse grained, pale grey, distinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>							с	100		PL(A) = 0.8
	- - - - 16 - - 16.2								С	100	97	PL(A) = 1.3
	- - -	Bore discontinued at 16.2m - Target depth reached										
	- -											
	- 17 - -											
-2	- - -											
	- - 18 - - -											
- · ·	- - - - 19											
	- - - -											
-4	-											


DRILLER: Excavac, Terratest RIG: NDD, hand tools, XC Drill CASING: HW to 1.7m, HQ to 9.2m **TYPE OF BORING:** Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m


LOGGED: JS

WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

SAM	PLIN	G & IN SITU TESTING	G LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)			
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			📕 Geotechnics Environment Groundwater
					-		

	BORE:	1007	PRO	DJECT: H	AYMAR	KET	MARCH	2021	
	Douglas eotechnics / Envir		1	BH II Depti Core	ct.No: 943 0: 1007 h: 9:50-14.00 Box No.: 1)m			1.1
- 10	HAYMARKET			9.50m					
		1							
8				9.5 – 1	14.0m				

Ceotechnics Environment Groundwater Environment Groundwater EDETH: 14-00-16-20 Core Box No.: 2	
EOH 16.20m	
FOH 16.20m	
Lun VII 194	

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 **EASTING:** 333896 **NORTHING:** 6249263 DIP/AZIMUTH: 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 1 OF 2

-	\	Description	Jic		Sam		In Situ Testing	ř	Well
	0epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.02 0.07	STONE TILE			0.2				
	0.2	SAND and CEMENT		_A/E*_	0.2		PID<1ppm		
		CONCRETE SLAB Between 0.14-0.15m: 8mm steel reinforcement		A/E	0.6 0.7		PID<1ppm		ŧ I 🕅
1		FILL/Clayey SAND: fine to medium, brown and grey, with sandstone gravel and cobbles, igneous rock cobble (railway ballast), concrete rubble and bricks, trace ash and							
		slag		_A/E_	1.5 1.6		PID<1ppm		
2					2.0 2.1		PID<1ppm		
	2.3-	FILL/SAND: medium to coarse, pale brown and grey, with pale grey and red-brown silty clay and fine to medium			2.5		4,6,6		
- 3		gravel, moist		S/E	2.95		N = 12 PID60 ppm		-3
	3.5 -	SAND SP: medium, pale grey, wet, dense, alluvial							
4				S/E*	4.0		8,16,25 N = 41	Ţ	-4 Backfill 0-0.5m
					4.45		PID16 ppm	16-03-21	
5		Below 5.0m: grading to loose							1 2 3 Backfill 0-0.5m
	5.7 -				5.5		pp = 100		E I 🕅
6	5.7	Silty CLAY CL-CI: low to medium plasticity, grey, trace fine gravel, w>PL, stiff to very stiff, alluvial		S	5.95		3,7,9 N = 16		6
	6.5	SAND SP: medium, brown, wet, medium dense, alluvial							
7	7.2				7.0		pp = 500		
		Silty CLAY CI-CH: medium to high plasticity, pale grey and brown, with ironstone gravel, w>PL, very stiff, residual soil		S	7.45		8,15,15 N = 30		-7
8	8.0-	Clayey SAND SC: medium to coarse, pale grey and brown, with silty clay layers, wet, medium dense, extremely weathered sandstone	<u> </u>		8.5				-8
				s	8.95		20,13,8 N = 21		
9	9.2	SANDSTONE: brown, very low strength, Hawkesbury	<u>, , , , , , , , , , , , , , , , , , , </u>		0.30			▼	9 Bentonite 8.5-9.5m
	9.5	Sandstone SANDSTONE: medium to coarse grained, brown,		с	9.5 9.52		PL(A) = 0.1	19-03-21	
	9.83 10.0-	_ indistinct bedding at 0-10°, very low strength, highly			,				

Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC TYPE OF BORING: WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

	SAM	IPLIN	G&INSITUTESTING	G LEG	END					
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_	_	_
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)					
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)					Iners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doug	7140		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test					
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	s I Envir	onment I	Groundwater
•						-				

CLIENT: Toga Development and Construction Pty Ltd PROJECT:

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD **EASTING:** 333896 NORTHING: 6249263 **DIP/AZIMUTH:** 90°/--

BORE No: BH1007 **PROJECT No: 86884.02** DATE: 11 - 17/3/2021 SHEET 2 OF 2

								1		
	Dept	Description	Graphic Log				& In Situ Testing	er	Well	
님	(m)	of	Loc	Type	Depth	Sample	Results & Comments	Water	Construction	
		Strata	U U	È		San		-	Details	
F	-	SANDSTONE: refer following page			9.96		PL(A) = 1.2	1	-	
ĒĒ	-	SANDSTONE: medium to coarse grained, pale grey,		с						
[-	distinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>								
	-	nactica, nawcesbury bandsone (continuea)			10.7				-	
	- - 11	$_{ m D}$ Below 10.87m: with 5-10% fine to medium grained beds,			10.94		PL(A) = 0.3		-11	
	-	and low to medium strength to 10.91m							-	
i i	-	Below 10.98m: medium strength to high strength, unbroken		с	11.44		PL(A) = 0.4			
FF	-									
-4										
	- 12								-12	
	-				12.28				-	
	-									
Ē	-									
Ē	- 13			с	12.96		PL(A) = 1.1		Sand filter	
									F 1	
									Slotted PVC pipe	
ţ ţ										
-~-	-				13.71					
E	- 14				13.94		PL(A) = 0.9		- 14	
									-	
				с					-	
ļ ļ	-			-						
Ē	- 15				14.95		PL(A) = 1.5		-15	
					15.27 15.3		PL(A) = 0.8		-	
i i	-									
	-			С						
	- 16				15.96		PL(A) = 1.3		- 16	
<u></u>	· 16	Bore discontinued at 16.2m			-16.2-			+	End Cap	┞┄╽╤╌╿╌╎
	-	- Target depth reached							ţ l	
F_	-									
E	- 17								-17	
	- "									
	-								-	
F F	-									
-9	-								[
ŧ E	- 18							1	18	
 	-									
 	-									
F_F	-								F	
Ē	- - - 19								-10	
EE	- 19								-19	
ţ								1	ţ l	
	-							1		
4	-								ţ	
t										

DRILLER: Excavac, Terratest LOGGED: JS RIG: NDD, hand tools, XC Drill CASING: HW to 1.7m, HQ to 9.2m **TYPE OF BORING:** Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

SAM	PLIN	G&INSITUTESTIN	G LEGI	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1	Γ	1 Douolas Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	¥	Water level	V	Shear vane (kPa)			📕 Geotechnics Environment Groundwater

Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

Toga Development and Construction Pty Ltd

Appendix E

Groundwater Monitoring and Permeability Test Results

t					
etails					
8					
					1997 B
					r tha é là thôisea
					1
	m bal				
		1			
Contraction of the second		1			
	in bgi				
*					
10/7/2	111 -		and the second second		
19/5/2	1 1900	0.	Crazger		
104					
1.70-		Page N			· ·
		() T L1.1	aboon rod:	arts	
Yes / No (interface / vis	ual). Thickness if	Juserveu.		
	L		1		
(tai	and the second	, min 3 well vol. or c	ary)	<u></u>	
	m bgl	2.18			
ails		1			
72/3	5/21 3				
				<u> </u>	
1.88	m bal				
100			16		
Yes / No (interface / vis	ual). Thickness if	observed:		
100 / 110 (
		1.			
		and the second second	1		
	hee		र्त्ति र हि	and the second	
			197 		
	Water Qual	ity Parameters			-
Temp (°C)		EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
		+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
0.1 0	1 0.0 mg/c	3111			
		1.		11.3.	a ang bar sa
		5			
	1	2			
		C. C. Barris			
DO % Sat	SPC	TDS			
	Samp	le Details			
	m bgl,				
	<u></u>				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1					
	I9 5 2 I-9 8- Yes / No ((tar ails 22 3 I.88 Yes / No (Temp (°C) 0.1° C	etails m bgl m bgl m bgl m bgl m bgl Yes / No (interface / vis L (target: no drill mud m bgl Yes / No (interface / vis L (target: no drill mud m bgl Yes / No (interface / vis L m bgl Yes / No (interface / vis L m bgl L Water Qual Temp (°C) DO (mg/L) 0.1° C +/- 0.3 mg/L DO % Sat SPC Samp	m bgl m bgl m bgl m bgl m bgl 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 1.9 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.12 3 2.1 3.13 3 2.1 3.14 3 2.1 3.15 3 2.1 3.15 3 2.1 3.15 3 2.1 3.15 3 2.1 3.14 3 2.1 3.14 3 2.1 3.15 3 2.1 3.15 3 2.1 3.16 3 2.1 3.17 3 2.1 3.18 3 2.1 3.18 3 2.1 3.18 3 2.1 3.19 4 2.1 3.19 4 2.1 3.19 4 2.1 3.19 4 2.1 3.19 4 2.1 3.10 5 2.1	m bgl m bgl m bgl m bgl m bgl Yes / No (interface / visual). Thickness if observed: L (target: no drill mud, min 3 well vol. or dry) m bgl ails 22-(3/21 3/21 3/2 3/2 3/2 4/3 y y m bgl L L Yes / No (interface / visual). Thickness if observed: L m bgl L Water Quality Parameters Temp (*C) DO (mg/L) EC (µS or mS/em) pH 0.1°C +/-0.3 mg/L +/-3% +/-0.1 Image: Sec (IS or mS/em) Image: Sec (IS or mS/em)	m bgl m yes / No (interface / visual). Thickness if observed: L (target: no drill mud, min 3 well vol. or dry) m m bgl m yes / No (interface / visual). Thickness if observed: L L m water Quality Parameters m Temp (*C) DO (mg/L) EC (us or m%/m) pH Temp (*C) DO (mg/L) EC (us or m%/m) pH Turbidity 0.1*C +/+ 0.3 mg/L +/- 3% +/- 0.1 +/- 10% u u u u u u u u u u u u u u u u

Geotechnics | Environment | Groundwater

Project and Bore Installation I	Details		and the second second			
Bore / Standpipe ID:	107	A	2428			
Project Name:						1
Project Number:						
Site Location:						
Bore GPS Co-ord:						
Installation Date:						
		m bgl				
GW Level (during drilling):		m bgl	(A)			<u></u>
Well Depth:		The second s	58			
Screened Interval:		m bgl		and a second second		
Contaminants/Comments:	L	in A				
Bore Development Details	1.01210	1 11:				
Date/Time:		(1(-0:	2			
Purged By:		JS.				
GW Level (pre-purge):	1.86	m bgl				
Observed Well Depth:	3.76	m bgl			and the second second	
PSH observed:	Yes / No (interface / vis	sual). Thickness if	observed:		
Estimated Bore Volume:	5	L		1		
Total Volume Purged:	7 (ta	- Top	l, min 3 well vol. of	dry) DK	Y (x2).	
GW Level (post-purge):	3.73	m bgl			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<u> 1818 - 1818 - 1818 - 1818</u>
Equipment:	Twister	-brub t	bales /	Wete:	dear v	10 thes
Micropurge and Sampling Det	ails					
Date/Time:	12/3/2	(1:30	<i></i>			
Sampled By:	24310	1 1150	m			
Weather Conditions:	Kaini					C to the prove
GW Level (pre-purge):	1.63	m bgl		and the state		
		A REAL PROPERTY OF THE PROPERT		1283		
Observed Well Depth:	3-76 Yes / No (m bgl interface / vis	sual). Thickness if	abconvod:		
PSH observed:	res / No (Intenace / Vis	sual). Thickness if	observeu.		
Estimated Bore Volume:		L d	Chevit			
GW Level (post sample):	3.75	m bgl	OLY)			
Total Volume Purged:	7	L		16		
Equipment:	<i>fenstal</i>	tic panj	. Ba	ler.		
	L	Water Qual	ity Parameters	1		
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
1.35 / 0-5	21.9		1463	6.06	Gar	109
	21.8	5.71			115	\$4
f			436		205	the second se
1.57 1.5	21.7	3.50	441	6.22	63	67
1-38 2.0	21.7	3.47	422	6.25	232	+
1:39 2.5	21.7	3.44	41.6	6.26	260	64.
			and the second second			
Latin Contraction of the						
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	1					
		Samp	le Details			
Sampling Depth (rationale):	3.0.	lm bal.				
Sample Appearance (e.g.		yellow-				
colour, siltiness, odour):	clearh	As silt,	no solo	2 MA	ihan	
Sample ID:	101	A. /		1 100		
	10 7					
QA/QC Samples:	nor	10.				
Sampling Containers and						
filtration:						*
And a second						
Comments / Observations:						
Comments / Observations:						
Comments / Observations:						

Rev March 2012

Groundwater Field She						
Project and Bore Installation I	Details	0				
Bore / Standpipe ID:	107	R T				
Project Name:						
Project Number:					:	
Site Location:	· · · · · · · · · · · · · · · · · · ·					
Bore GPS Co-ord:		i. maalikk	· · · · · · · · · · · · · · · · · · ·		1	
nstallation Date:		•				
GW Level (during drilling):		m bgl				
Vell Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:						
Bore Development Details						
Date/Time:	19/3	2021 1	:30		i.	
Purged By:	IR! 1			1		
GW Level (pre-purge):	2.16.	m bgl				
Observed Well Depth:	10,90	m bgl		21		
PSH observed:	Yes / No (ual). Thickness if	observed:		
Estimated Bore Volume:	2.5	1				· · · · · · · · · · · · · · · · · · ·
Fotal Volume Purged:		raet: no drill mud	, min 3 well vol. of	dry) DA	Y (x2)	
GW Level (post-purge):	10.88	m bgl	,	9 97	1 (5)	
avv Lever (post-purge).	<u></u>	M	- 1 I	10 10 - 1 1	- prosbuce.	1 silphe
Equipment:	Turiter 1	my Wat	ter: darle j darv 10	11.	- prensivel.	r supre
Aicropurge and Sampling Det	ails	1 20	/ au			
Date/Time:	2213	21 2:	30			
Sampled By:	IB		<u>.</u>			
Veather Conditions:	Raine					
	Ice	m bgl				
GW Level (pre-purge):	10.90.			1 1 ju		
PSH observed:	Yes / No (interface / vis	sual). Thickness if	observed		
Estimated Bore Volume:	25	L		0.0001100.		
	4.88					
GW Level (post sample):	7.00		3			
Fotal Volume Purged:	0	L		18		
Equipment:	Barler	, periste	The puny	?.		
	1	Water Qual	ity Parameters		<u></u>	
lime / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
	214	3.38	1379	6.13	862	TO.7
2-30 / 0.5					660	45.8
	21.6	J.71	351	6.22	501	
	21.0	3-66	377	6.29	610	27.5
1.31 115		5.61	381.7	6:27		
2:53 11. 20	21.5			1 - 1		
	21.5	3.58	384.1	6.26	594	53.6
2:53 11. 20			384.1	6.26	574	53.6
2:53 11. 20			384.1		224	53.6
2:53 11. 20			384.1		574	<u>53.</u> C
2:53 11. 20			384.1		574	53.0
2:53 / 20 2:34 / 2.5	21.5	3.58			574	\$3.6
Z:53 // 2.5 Z:34 / 2.5 Additional Readings Following			784.1 TDS		574	\$3.6
2:53 // 20 2:34 // 2.5	21.5	3.58 SPC	TDS		534	22.6
Additional Readings Following stabilisation:	24.5 D0 % Sat	3.58 SPC			224	\$3.6
Additional Readings Following stabilisation:	24.5 D0%Sat	3.58 spc <u>Samp</u> m bgl,	TDS le Details	4		
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	24.5 D0%Sat	3.58 spc <u>Samp</u> m bgl,	TDS le Details	4		
Z: 53 // 2.5 Z: 34 / 2.5 Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	24.5 D0%Sat	3.58 spc <u>Samp</u> m bgl,	TDS	4		
Z: 53 // 2.5 Z: 34 / 2.5 Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	24.5 D0%Sat	3.58 spc <u>Samp</u> m bgl,	TDS le Details	4		
Additional Readings Following	21.5 D0%Sat	3.58 spc <u>Samp</u> m bgl, m, - henslu 7 B.	TDS le Details	4		
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	24.5 D0%Sat	3.58 spc <u>Samp</u> m bgl, m, - henslu 7 B.	TDS le Details	4		
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	21.5 D0%Sat	3.58 spc <u>Samp</u> m bgl, m, - henslu 7 B.	TDS le Details	4		
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	21.5 D0%Sat	3.58 spc <u>Samp</u> m bgl, m, - henslu 7 B.	TDS le Details	4		
Z: 53 // 2.5 Z: 34 / 2.5 Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	21.5 D0%Sat	3.58 spc <u>Samp</u> m bgl, m, - henslu 7 B.	TDS le Details	4		
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	21.5 D0%Sat	3.58 spc <u>Samp</u> m bgl, m, - henslu 7 B.	TDS le Details	4		

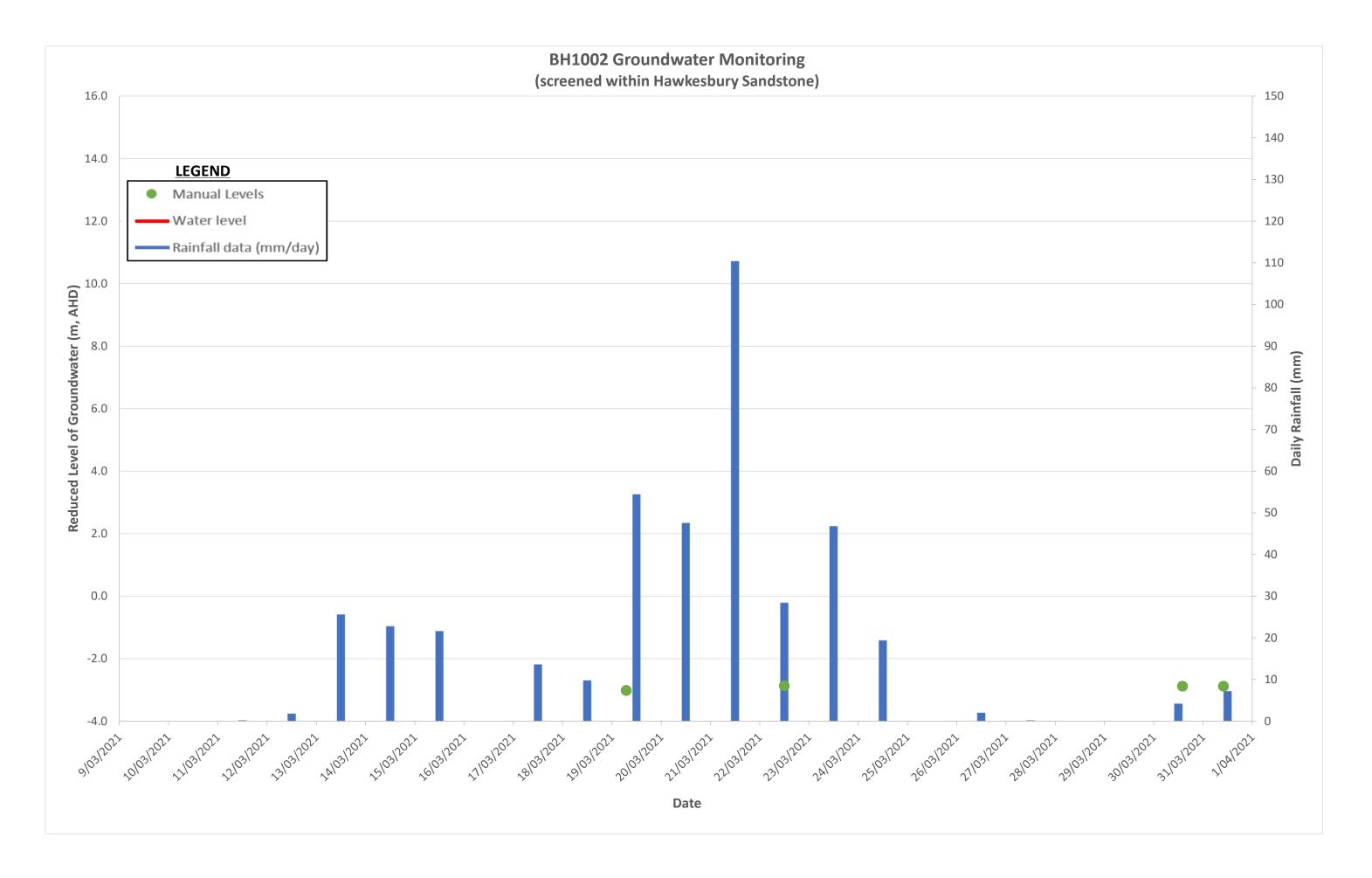
Rev March 2012

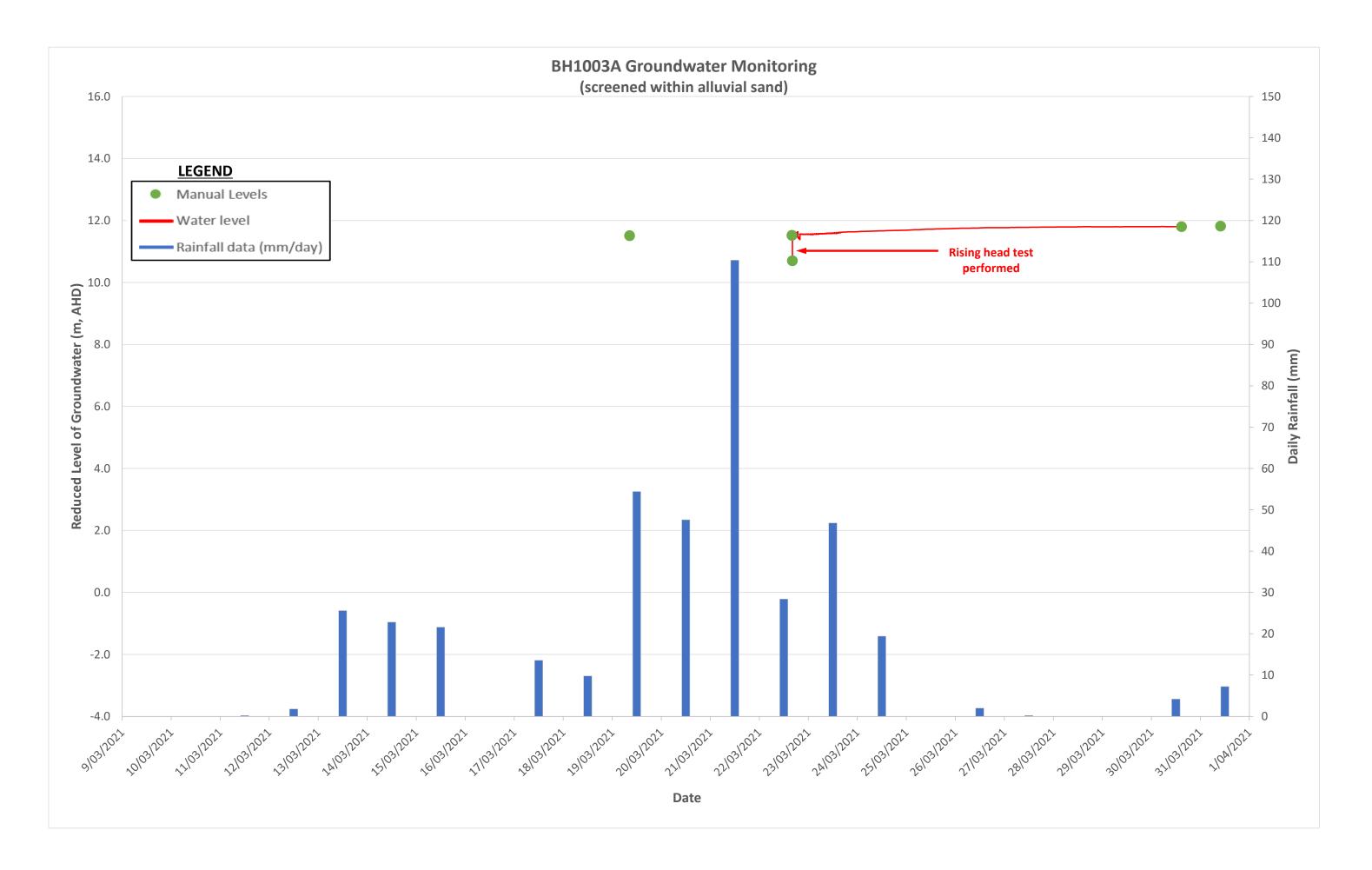
Groundwater Field She	et					
Project and Bore Installation						
Bore / Standpipe ID:	102					
Project Name:	0102					
Project Number:	86854	1.02	11			
Site Location:	lec	It, Koyn	reded			
Bore GPS Co-ord:		V				
nstallation Date:		•				
GW Level (during drilling):		m bgl				
Vell Depth:		m bgl	•			
Screened Interval:		m bgl				
Contaminants/Comments:						
Bore Development Details						
Date/Time:	1932	8.30.				
Purged By:	VB.					
GW Level (pre-purge):	3.32	m bgl				
Observed Well Depth:	7.02-	m bgl				
PSH observed:	Yes / No (interface / vis	sual). Thickness i	f observed:		
Estimated Bore Volume:	90	L 💣	and the second sec	2		
Fotal Volume Purged:		get: no drill mud	l, min 3 well vol. 📢	dry))	JRY.	
GW Level (post-purge):	6.98	m bgl	And Report Income			
Equipment:	Twoler	pump +	balor /	Water:	cloudy	greg,
llesses and the state of the	sile		11	10 übeer	100 000	Jun - My
Micropurge and Sampling Det		E				
Date/Time:	223	21 5:5	ne Ce			
Sampled By:	JB! !				-7-	
Weather Conditions:	Rainin			1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -		
GW Level (pre-purge):	2.97	m bgl				
Observed Well Depth:	7.02	m bgl		*		
PSH observed:	Yes / No (interface / vis	sual). Thickness	f observed:		
Estimated Bore Volume:	11	L				
GW Level (post sample):	6.90	m bgl				
Total Volume Purged:	7	L		10		
Equipment:	Perist	eltic pu	np +	beiler	•	
	I	Water Qual	lity Parameters			
Time / Volume (L).	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
		4.64	1202	5.29	879	113
	22.0	4.28	171	5.51	590	77
		3.65	183	5.62	531	56
5:12 1/ 1.5	L1-3		181	5.65	488	51
5:13 / 2.0	21.0	3.58			489	20
5114/ 25	21.0	3.50	178	5.66	401	30
						· · · · · · · · · · · · · · · · · · ·
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:			In Defelle			1
			le Details			,
Sampling Depth (rationale):	6.0	m bgl,				
	sale	brown/h	avlucent	10.5	Hined	no odanc
	pare	or own is	avialen	1000 01	that	no outr
colour, siltiness, odour):		22				
colour, siltiness, odour):	1 2					
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	1 2					
colour, siltiness, odour): Sample ID: QA/QC Samples:	2	2				
colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	1 2					
colour, siltiness, odour): Sample ID: QA/QC Samples:	1 2					
colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	1 2					
colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and						
colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:				(_{	
colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:			e fest	pertur	nd	

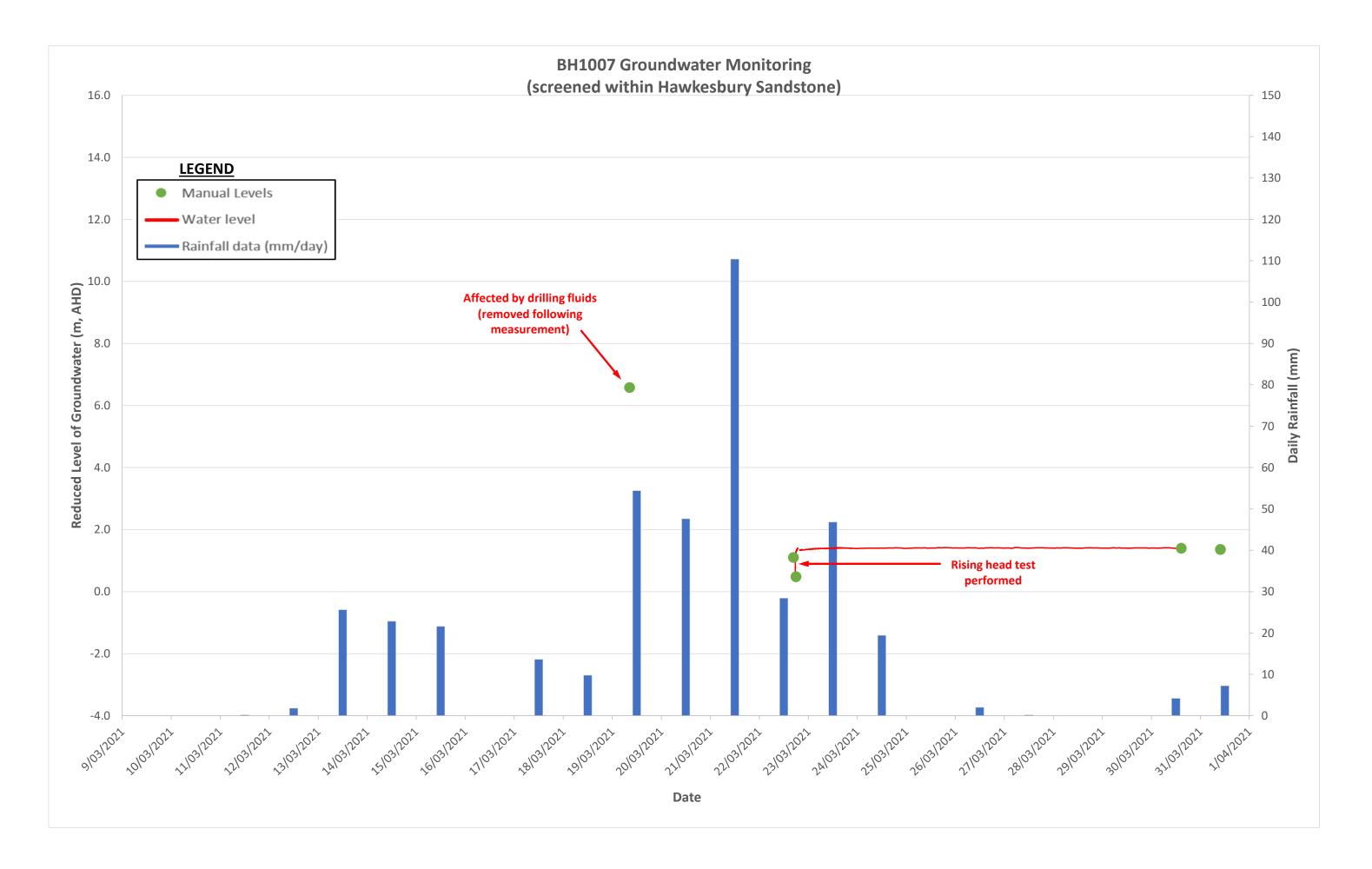
Rev March 2012

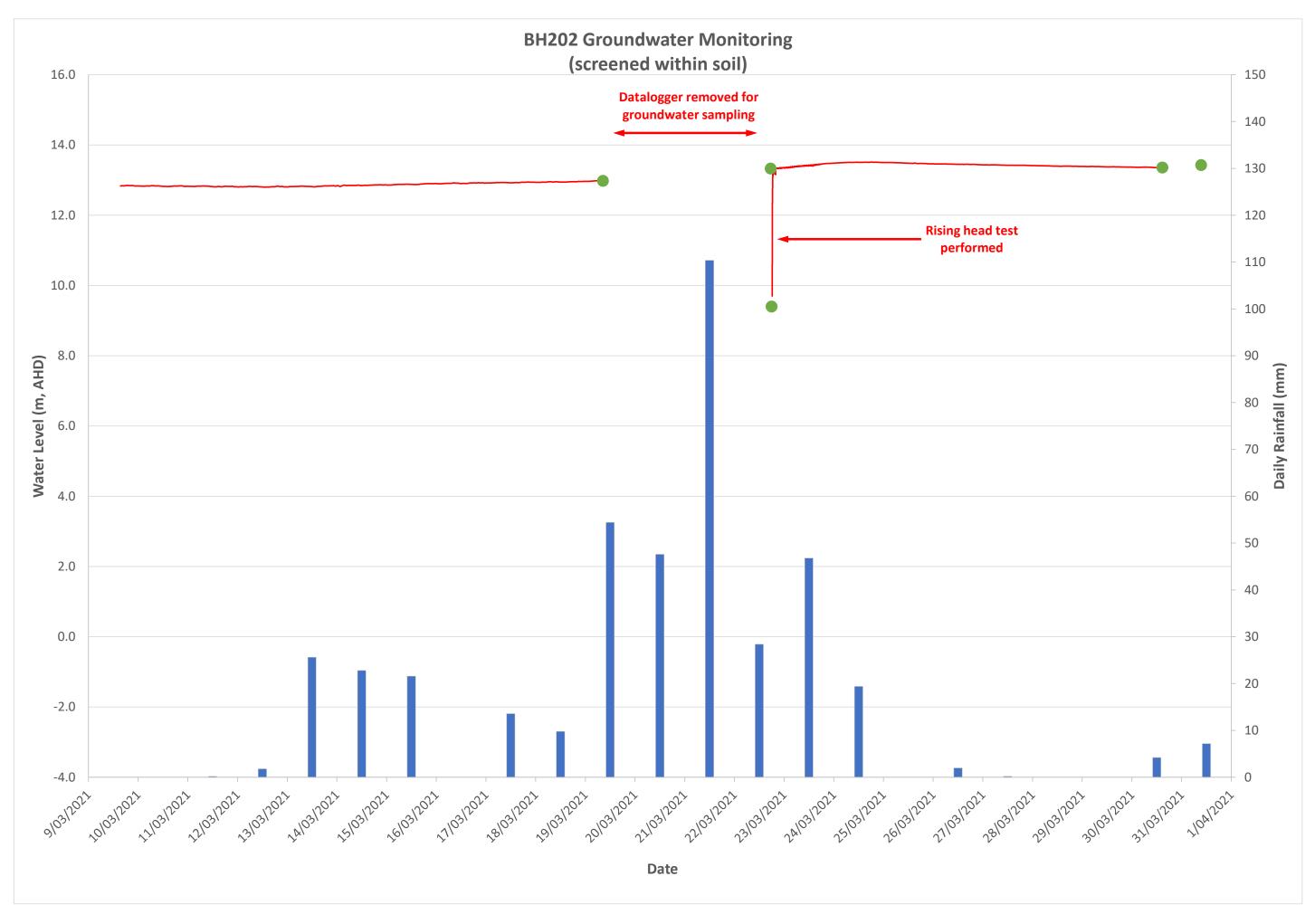
et						
Details					<	
1002						
					4	
8688	54.02 .					
100		ano bel				
LUE	1.1.				1	
			and the second			
	m hal					
· · · · · · · · · · · · · · · · · · ·	and the second se					
		•				
	in bgi					
*						
	1 7.00	•				
JB.					dir.	
16.42.	m bgl	10			19	
18.00	m bgl		8			
Yes / No (interface / vis	ual). Thickness it	f observed:			
4.5	L					
	rget: no drill mud	, min 3 well vol. or	dry)			
		mater: solo	lemus la	no halie	han	
Twister	pumpij	store pour	en no	adauc	9,20	
aile			1	N. M. N. M. N. Y.		
	12	22. 1				
221517	1 1000	pm 14	n.ny.		4	
015'-					(2m)	
long			194 A			
16:27	m bgl					
18.00			1			
Yes / No (interface / visual). Thickness if observed:						
165 / 100 (Interface / vis	idai /. 1110/0100001				
STRO	L	idar 7. Thiokness I				
5	L					
16.36	L	*	1.4		1925	
5	L m bgl L	*	16		18.2 1	
5	L m bgl L	(DP513)	16		* 	
5	L m bgl L Kic pump	*	16		190 	
5	L m bgl L Kic pump	; (DP513)	16		Redox (mV)	
5 16.36 B Penuta Temp (°C)	L m bgl L K c pump <u>Water Quali</u> DO (mg/L)	(DPS13) ity Parameters	+ Bai	ler,		
5 16.36 B Penstat Temp (°C) 0.1°C	L m bgl L Mf c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L	() 2 2 5 1 3) ity Parameters EC (µS or mS/cm) +/- 3%	рН +/- 0.1	Turbidity +/- 10%	Redox (mV) +/- 10 mV	
5 16.36 B Penutal Temp (°C) 0.1°C 21:1	L m bgl L # <i>C PUMP</i> <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3 - 94	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8	рн +/- 0.1 5.59	Turbidity +/- 10%	Redox (mV) +/- 10 mV	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2	L m bgl L <i>Water Quali</i> DO (mg/L) +/- 0.3 mg/L 3 - 9 - 4 3 - 3 - 8	() P 513) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5	рн +/- 0.1 5.55 5.64	Turbidity +/- 10% 537 614	Redox (mV) +/- 10 mV 2355 121	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2	L m bgl L <i>Water Quali</i> DO (mg/L) +/- 0.3 mg/L 3 - 9 - 4 3 - 3 - 8	() P 513) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5	рн +/- 0.1 5.55 5.64	Turbidity +/- 10% 537 614	Redox (mV) +/- 10 mV 2355 121	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penutat Temp (°C) 0.1°C 2t. 1 21.2 71.2	L m bgl L K c pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-94 3-58 3-37	$(DPS13)$ $\frac{(DPS13)}{EC(\mu S \text{ or } mS/cm)}$ $+/-3\%$ 410.5 341.3 342.3	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Benstal Temp (°C) 0.1°C 2t.1 21.2 71.2 21.2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 3 · 3 3 · 3 3 · 3 3 · 10	(DP513) ity Parameters EC (µS or mS/cm) +/-3% 410.8 341.5 342.3 348-9	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Benstal Temp (°C) 0.1°C 2t.1 21.2 71.2 21.2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 - 3 - 3 3 - 3 3 - 3 3 - 10 SPC	() P S 13) <u>ity Parameters</u> EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Renstat Temp (°C) 0.1° C 21.1 21.2 71.2 21.2 21.2 21.2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	(DP513) ity Parameters EC (µS or mS/cm) +/-3% 410.8 341.5 342.3 348-9	рн +/- 0.1 5.55 5.64 5.71	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Renutation Temp (°C) 0.1°C 2t.1 21.2 71.2 21	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Renutation Temp (°C) 0.1°C 2t.1 21.2 71.2 21	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Renutation Temp (°C) 0.1° C 2t.1 21.2 71.2 2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	Turbidity +/- 10% 537 614 577	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Benutal Temp (°C) 0.1° C 21.1 21.2 71.2 21.2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penstal Temp (°C) 0.1° C 21.1 21.2 71.2 2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 Renutation Temp (°C) 0.1° C 2t.1 21.2 71.2 2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penstal Temp (°C) 0.1° C 21.1 21.2 71.2 2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penstal Temp (°C) 0.1° C 21.1 21.2 71.2 2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 B Penstal Temp (°C) 0.1° C 21.1 21.2 71.2 2	L m bgl L Water Quali DO (mg/L) +/- 0.3 mg/L 3 · 3 · 3 3 · 3 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 4 5 · 7 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс, 	ler. Turbidity +/- 10% 537 614 537 532	Redox (mV) +/- 10 mV 231 121 109	
5 16.36 6 Penutat Temp (°C) 0.1° C 2t. 1 21.2	L m bgl L HC pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 5 - 7 4 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 5 - 7 5 5 - 7 5 5 5 - 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(DPS13) <u>ty Parameters</u> <u>EC (µS or mS/cm)</u> +/-3% <u>410, 8</u> <u>341.5</u> <u>342.3</u> <u>348-9</u> <u></u>	рн +- Вс; pн +/-0.1 S.55 S.64 S.71 S.79 S.79 S.79 ,	ler. Turbidity +/-10% S37 614 S37 532 0 . her.	Redox (mV) +/- 10 mV 235 121 109 105	
5 16.36 6 Penutat Temp (°C) 0.1° C 2t. 1 21.2	L m bgl L HC pump <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 5 - 7 4 3 - 3 8 3 - 3 7 3 - 10 5 - 7 4 5 - 7 5 5 - 7 5 5 5 - 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	() P S 13) ity Parameters EC (µS or mS/cm) +/- 3% 410, 8 341.5 342.3 348-9 	рн +- Вс; pн +/-0.1 S.55 S.64 S.71 S.79 S.79 S.79 ,	ler. Turbidity +/-10% S37 614 S37 532 0 . her.	Redox (mV) +/- 10 mV 235 121 109 105	
	19/3/2 19/3/2 18.00 Yes / No (4.5 18 (ta 16.71 Twiste ails 22/3/2 (any 16.27 18.00	Details 1002 86884.02. lee Street, M m bgl m bgl m bgl 19/3/21 7.00 JB. 16.42 m bgl 18.00 m bgl Yes / No (interface / vis 4.5 L 16.71 m bgl 16.71 m bgl 16.71 m bgl 16.71 m bgl 16.71 m bgl 16.71 m bgl 16.72 m bgl 16.73 m bgl 18.00 m bgl 18.00 m bgl	Details 1002 86884.02 lee freet, Meynolut m bgl m bgl m bgl $19/3/21 7.0018.00 m bglYes / No (interface / visual). Thickness in4.5 L18 (target: no drill mud, min 3 well vol. or 16.71 m bglTwister pumpif wohr: pole18 0 m bgl1002$	Details 1002 86884.02 lee Street, Meynobel m bgl m bgl m bgl 19/3/21 7.00 UB 16.42 m bgl 18.00 m bgl Yes / No (interface / visual). Thickness if observed: 4.5 L 18 (target: no drill mud, min 3 well vol. or dry) 16.71 m bgl Twister pumpil water : pale hown, la Share, no ails 22/3/21 No 0 pm Mary UB 18.00 m bgl	Details 1002 86884.02 lee freet, Meynohet. m bgl m bgl m bgl m bgl m bgl 19/3/21 7.00 JB 16.42 m bgl 18.00 m bgl Yes / No (interface / visual). Thickness if observed: 4.5 L IS (target: no drill mud, min 3 well vol. or dry) 16.71 m bgl Twister pumping water: pale known, low hurbid. $shear, no odowr.ails22/3/21 T2:00 pm Marry, Gary, m bgl18.00 m bgl$	

EC is in <u>MS</u> En.

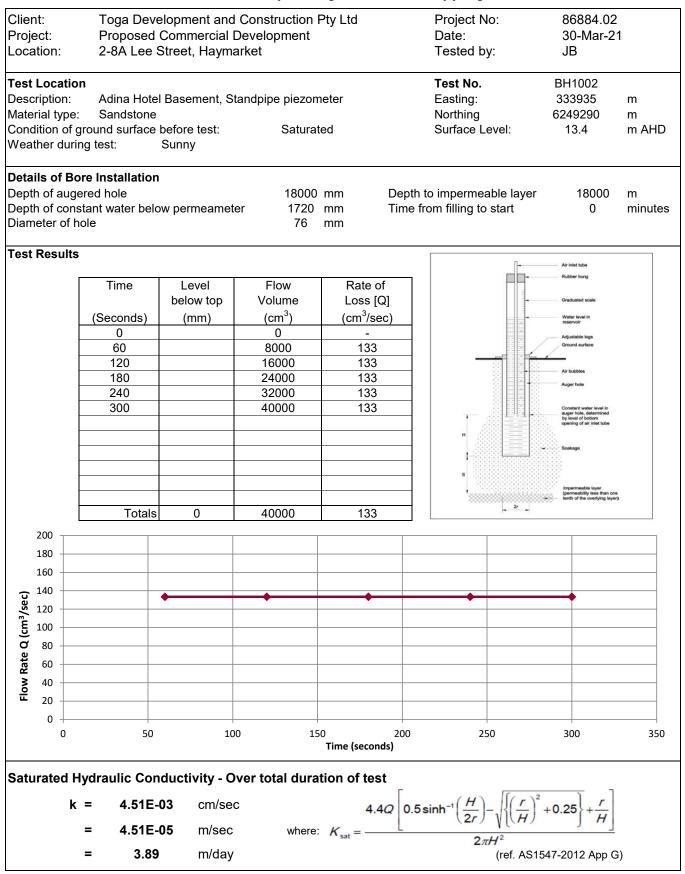

Rev March 2012


Froundwater Field Shee								
roject and Bore Installation D	etails							
ore / Standpipe ID:	1003	R .						
roject Name:				here a service		Sile Katalan da ba		
roject Number:								
ite Location:								
ore GPS Co-ord:								
stallation Date:		m bgl						
W Level (during drilling):								
Vell Depth:		m bgl						
creened Interval:		m bgl						
Contaminants/Comments:								
lore Development Details			1					
Date/Time:	19 37	1021 1	1-00 0M					
urged By:	UB!							
GW Level (pre-purge):	7.79.	m bgl						
Observed Well Depth:	3.93-	m bgl	A CONTRACTOR OF					
SH observed:	Yes / No (interface / visi	ual). Thickness i	f observed:				
stimated Bore Volume:	The second	L						
otal Volume Purged:	and (tar	aet: no drill mud.	min 3 well vol. or	r dry)				
GW Level (post-purge):	285	mbal			30			
Svi Level (post-puige).	for S - S		Woter : 0	-101. 100	in silter			
Equipment:	Twister	pump 1	Wober . C	10-2 600	av, O			
quipment		1 1 1	10	-25L: h	anthrent	peli 400		
licropurge and Sampling Det	ails	1				//		
Date/Time:	223	21 3:	00					
	IRISI	<u> </u>	-					
Sampled By:	12	2	\$					
Veather Conditions:	Kainin			17				
GW Level (pre-purge):	2.78	m bgl	97	- 194- 				
Observed Well Depth:	- Stand	m bgl 3 -	75	17 1				
PSH observed:	Yes / No (interface / vis	ual). Thickness	if observed:				
Estimated Bore Volume:	6	L	Å					
GW Level (post sample):	2.81 m bgl							
		in ogi						
Total Volume Purged:	10	L		1,c				
M	10			.a.lev	**			
Fotal Volume Purged:	10	L taltic pu		aler AS/cm.				
Fotal Volume Purged:	10 Peris	L taltic pu	imp" + L		Turbidity	Redox (mV)		
Fotal Volume Purged: Equipment: Fime / Volume (L)	10 Peris Temp (°C)	L Faltic pu <u>Water Quali</u> DO (mg/L)	inp + L	AS/cm.		Redox (mV) +/- 10 mV		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings)	Peris Temp (°C) 0.1°C	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L	ty Parameters EC (pS or mS/cm) +/- 3%	MS/cm. pH +/- 0.1	Turbidity +/- 10%			
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3 · · · · · · · · · · · · · · · · · · ·	10 Peris Temp (°C) 0.1°C 220	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-7-5	ty Parameters EC (p S or mS/cm) +/- 3%	<u>µS/см.</u> рн +/- 0.1 5-96	Turbidity	+/- 10 mV		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.9	10 Peris Temp (°C) 0.1°C 22-9 22-1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$	MS/CM. pH +/-0.1 5.96 6.19	Turbidity +/- 10%	+/- 10 mV 128 102		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3:10 / 0.5 3:11 / 1.5	10 Peris <u>Temp (°C)</u> 0.1°C 22-9 22-1 22-1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4.28	ty Parameters EC (pSormS/cm) +/-3% 1 202 2 3 2 2 3 3	MS/CM. pH +/-0.1 5.96 6.19 6.33	Turbidity +/- 10% 636 847 721	+/- 10 mV 128 102		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.5 7.12 / 1.5 7.13 / 2.0	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3:10 / 0.5 3:11 / 1.5	10 Peris <u>Temp (°C)</u> 0.1°C 22-9 22-1 22-1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4.28	ty Parameters EC (pSormS/cm) +/-3% 1 202 2 3 2 2 3 3	MS/CM. pH +/-0.1 5.96 6.19 6.33	Turbidity +/- 10% 636 847 721	+/- 10 mV 128 102		
Total Volume Purged: Equipment: Stabilisation Criteria (3 readings) 3.10 3.10 3.11 1.00 3.12 1.5 7.13	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Stabilisation Criteria (3 readings) $3 \cdot 10 / 0.5$ $3 \cdot 12 / 1.5$ $7 \cdot 13 / 2.0$	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) S. (1) S. (1) J. (2) J. (2) J. (2) J. (2) J. (2)	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) S. (1) S. (1) J. (2) J. (2) J. (2) J. (2) J. (2)	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Stabilisation Criteria (3 readings) 3.10 3.10 3.11 1.00 3.12 1.5 7.13	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) $3 \cdot 10 / 0 \cdot 5$ $3 \cdot 11 / 1 \cdot 0$ $3 \cdot 12 / 1 \cdot 5$ $3 \cdot 12 / 2 \cdot 0$ $3 \cdot 14 / 2 5$	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L <u>Water Quali</u> DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33	$\frac{\text{ty Parameters}}{\text{EC} (pSormS/cm)} + 1/-3\%$ $\frac{1}{2} + 1/-3\%$ $\frac{1}{2} + 2/-3\%$	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.5 3.12 / 1.5 3.14 / 2.5	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36	ty Parameters EC (pSormSrem) +1-3% 1 202 232 233 233 233 233 233	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) $3 \cdot 10$ / $0 \cdot 5$ $3 \cdot 10$ / $1 \cdot 5$ $7 \cdot 13$ / $1 \cdot 5$ $7 \cdot 13$ / $2 \cdot 0$ $7 \cdot 14$ / $2 \cdot 5$	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC	ty Parameters EC (pSormSform) + +1-3% 2-32 2-33 2-33 2-33 2-37 2-41 	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.5 3.12 / 1.5 3.14 / 2.5	10 Peris Temp (°C) 0.1°C 22.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-36 SPC Samp	ty Parameters EC (pSormSrem) +1-3% 1 202 232 233 233 233 233 233	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
otal Volume Purged: Equipment: Stabilisation Criteria (3 readings) 3.10 0.5 3.11 1.0 3.12 1.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 Stabilisation Criteria (3 readings) 3.12 2.0 3.14 2.5 3.14 2.5 Stabilisation: 2.5 Stabilisation: 3.14 Sampling Depth (rationale): 3.14	10 Peris <u>Temp (°C)</u> 0.1°C 22.0 22.1 22.1 22.1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC	ty Parameters EC (pSormSform) + +1-3% 2-32 2-33 2-33 2-33 2-37 2-41 	MS/CM. pH +/-0.1 5.96 6.19 6.33 6.33	Turbidity +/- 10% 636 843 721 706	+/- 10 mV 12 8 10 2 7 8		
otal Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.5 3.12 / 1.5 3.14 / 2.5 Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	10 Peris Temp (°C) 0.1° C 22.9 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 D0 % Sat	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-7-5 4-2.1 4-2.8 4-33 4-36 SPC SPC m bgl,	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33</td> <td>Turbidity +/- 10% 636 947 721 706 712</td> <td>+/-10 mV 128 [02 78 78 74</td>	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.5 3.12 / 1.5 3.14 / 2.5 Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	10 Peris Temp (°C) 0.1°C 22.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 b.00 mA	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC SPC Samp m bgl, Jilly,	ty Parameters EC (pSormSform) + +1-3% 2-32 2-33 2-33 2-33 2-37 2-41 	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
otal Volume Purged: Equipment: Simplification Criteria (3 readings) 3.10 0.5 3.11 1.0 3.12 1.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.6 3.14 2.5 Sampling Depth (rationale): 5 Sample Appearance (e.g. colour, siltiness, odour): 5 Sample ID: 5	10 Peris Temp (°C) 0.1° C 22.9 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 D0 % Sat	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC SPC Samp m bgl, Jilly,	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33</td> <td>Turbidity +/- 10% 636 947 721 706 712</td> <td>+/-10 mV 128 [02 78 78 74</td>	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3.10 / 0.5 3.11 / 1.5 7.12 / 1.5 7.13 / 2.0 3.14 / 2.5	10 Peris Temp (°C) 0.1°C 22.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 b.00 mA	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC SPC Samp m bgl, Jilly,	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33</td> <td>Turbidity +/- 10% 636 947 721 706 712</td> <td>+/-10 mV 128 [02 78 78 74</td>	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
Total Volume Purged: Equipment: Fime / Volume (L) Stabilisation Criteria (3 readings) 3:10 / 0.5 3:10 / 0.5 3:10 / 1.5 7:13 / 2.0 3:14 / 2.5 3:14 / 2.5 Stabilisation Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	10 Peris Temp (°C) 0.1°C 22.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 b.00 mA	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC SPC Samp m bgl, Jilly,	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33</td> <td>Turbidity +/- 10% 636 947 721 706 712</td> <td>+/-10 mV 128 [02 78 78 74</td>	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
otal Volume Purged: Equipment: Stabilisation Criteria (3 readings) 3.10 0.5 3.11 1.0 3.12 1.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 Sampling Depth (rationale): 5 Sample Appearance (e.g. colour, siltiness, odour): 5 Sample ID: 2 QA/QC Samples: 5 Sampling Containers and 5	10 Peris Temp (°C) 0.1°C 22.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 b.00 mA	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC SPC Samp m bgl, Jilly,	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33</td> <td>Turbidity +/- 10% 636 947 721 706 712</td> <td>+/-10 mV 128 [02 78 78 74</td>	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
Total Volume Purged: Equipment: Fime / Volume Stabilisation Criteria (3 readings) 3.10 0.5 3.11 1.0 3.12 2.0 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 3.14 2.5 Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and Sampling Containers and	10 Peris Temp (°C) 0.1°C 22.0 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.3 b.00 mA	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 SPC SPC Samp m bgl, Jilly,	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33</td> <td>Turbidity +/- 10% 636 947 721 706 712</td> <td>+/-10 mV 128 [02 78 78 74</td>	MS/ CM. pH +/-0.1 5.96 6.19 6.33 6.33 6.33	Turbidity +/- 10% 636 947 721 706 712	+/-10 mV 128 [02 78 78 74		
Total Volume Purged: Equipment: Fime / Volume (L) Stabilisation Criteria (3 readings) Stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	10 Peris 7emp (°C) 0.1°C 22-5 22-1 22-1 22-1 22-1 22-1 22-1 22-1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 spc <u>Samp</u> m bgl, Jilby J	ty Parameters EC (pSormStem) +1-3% 232 235 235 235 235 235 235 241 Details MO she	MS/CM. pH +/-0.1 5.96 6.13 6.33 6.33 6.35 	Turbidity +/- 10% 636 F47 721 706 712	+/-10 mV 12 \$ 0 2 7 8 7 4 7 4		
Total Volume Purged: Equipment: Time / Volume (L) Stabilisation Criteria (3 readings) 3:10 / 0.5 3:10 / 0.5 3:10 / 1.5 3:10 / 1.5 3:10 / 2.5 3:14 / 2.5 Stabilisation Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	10 Peris 7emp (°C) 0.1°C 22-5 22-1 22-1 22-1 22-1 22-1 22-1 22-1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 spc <u>Samp</u> m bgl, Jilby J	ty Parameters EC (pSormStem) +1-3% 232 235 235 235 235 235 235 241 Details MO she	MS/CM. pH +/-0.1 5.96 6.13 6.33 6.33 6.35 	Turbidity +/- 10% 636 F47 721 706 712	+/-10 mV 12 \$ 0 2 7 8 7 4 7 4		
Total Volume Purged: Equipment: Stabilisation Criteria (3 readings) 3 · 10 3 · 10 3 · 10 3 · 10 3 · 10 3 · 10 3 · 10 3 · 11 1 · 5 3 · 12 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 0 3 · 14 2 · 14 2 · 15 2 · 14 <	10 Peris 7emp (°C) 0.1°C 22-5 22-1 22-1 22-1 22-1 22-1 22-1 22-1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 spc <u>Samp</u> m bgl, Jilby J	ty Parameters EC (pSormStem) +1-3% 232 235 235 235 235 235 235 241 Details MO she	MS/CM. pH +/-0.1 5.96 6.13 6.33 6.33 6.35 	Turbidity +/- 10% 636 F47 721 706 712	+/-10 mV 12 \$ 0 2 7 8 7 4 7 4		
Total Volume Purged: Equipment: Stabilisation Criteria (3 readings) 3 . 10 3 . 12 3 . 12 1 . 5 3 . 14 1 . 5 3 . 14 2 . 0 3 . 14 1 . 5 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 0 3 . 14 2 . 15 3 . 14 2 . 14 2 . 14 2 . 14 2 . 14 2 . 14 2 . 15 3 . 14 <	10 Peris 7emp (°C) 0.1°C 22-5 22-1 22-1 22-1 22-1 22-1 22-1 22-1	L Vater Quali DO (mg/L) +/- 0.3 mg/L 3-75 4-21 4-28 4-33 4-36 spc <u>Samp</u> m bgl, Jilby J	ty Parameters EC (pSormS/cm) +/-3% 222 233 235 236 237 237 237 237 <td>MS/CM. pH +/-0.1 5.96 6.13 6.33 6.33 6.35 </td> <td>Turbidity +/- 10% 636 F47 721 706 712</td> <td>+/-10 mV 12 \$ 0 2 7 8 7 4 7 4</td>	MS/CM. pH +/-0.1 5.96 6.13 6.33 6.33 6.35 	Turbidity +/- 10% 636 F47 721 706 712	+/-10 mV 12 \$ 0 2 7 8 7 4 7 4		


Jodon


iher

roundwater Field Shee		and the second				
ore / Standpipe ID:	1007					
roject Name:						
roject Number:	86884	.02				
te Location:	Lee Jt		rel		' × A	
ore GPS Co-ord:		/ //				
stallation Date:						i
W Level (during drilling):		m bgl				
/ell Depth:		m bgl				
creened Interval:		m bgl				
ontaminants/Comments:						
ore Development Details						0
ate/Time:	19/3/2	021 Us	30			
urged By:						
W Level (pre-purge):	9.22	m bgl				
bserved Well Depth:	14-40	mbgl der		d at 15-8	1 poul de	uplopuest
SH observed:	Yes / No (interface / visu	ual). Thickness	if observed:	1	<u> </u>
stimated Bore Volume:	15	L				
otal Volume Purged:		get: no drill mud,	min 3 well vol. o	r dry)		
W Level (post-purge):	15.21	m bgl				
quipment:	Twiter P	may /		nun silf		on no si
icropurge and Sampling Det	aile		OVLAI	ican - hall	incent 1	J
		12021	4:00			
ate/Time:	22/3	12021	7:00			
ampled By:	UD.				T.A.	
/eather Conditions:	Rainin	m bgl		30.		
W Level (pre-purge):			5.87m	post pur	-re).	
bserved Well Depth:	15-81		Jal). Thickness	The second	J	
H observed:	Yes / No (interface / visi	uar). Thickness	ii observeu.		
stimated Bore Volume:	20					
W Level (post sample):	13-71		2			
otal Volume Purged: quipment:	Periste		np + L	ales	×	<*
		Water Quali	ty Parameters	> mS/cm		
me / Volume	Temp (°C)	DO (mg/L)	EC (µS <u>ormS/o</u> m) -	pH	Turbidity	Redox (mV)
abilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
1		4.33	1574	6.07	2524	122.6
10-5	20.3	4.26	445	612	1866	87.4
1.0	20.6	3.28		6.11	1204	83.2
1.5	20.7	3-17	477	6.13	981	78.9
1 2.0	20.7	and the second sec	462	615	970	76.0
	20.7	3.21			946	77.1
3.0	20.7	3.20		6.17		78.2
1 3.5	20.7	3.23	461	6.15	941	+0.2
		0.00	TDC			
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:			Defaile			
			e Details			
ampling Depth (rationale):	15.0	m bgl,				
ample Appearance (e.g.	brown	Jilty,	in ode		a la co	
olour, siltiness, odour):		1 0 11	10 01000	mr ph	o the	
ample ID:	1007	<u> </u>				
A/QC Samples:						
Sampling Containers and						
					1	1
Sampling Containers and Itration:	01	1	0	to a second	N. S.	le - Tr
	+ Shee	n on top	ol wa	ter pone	ding in 100	le gabe.
Itration:	* Shee	n on top	of he	ter pons	ding in 100	de gobe.
tration:	* Shee.	n on top winter p 1202	al wa	ter pons	ding intro	rt.gobe.



Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Constant Head Permeameter Test Report [AS1547-2012 App G]

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8A Lee Street, Haymarket					Project No: Test date: Tested by:		
Test Location Description: Material type:	Standpip	e in borehole and				Test No Easting Northin Surface	:	1003A 333900 6249274 14.3	m m m AHD
Details of We Well casing di Well screen d Length of well	iameter (2r) iameter (2R))	110 110 1.23	mm mm m			pefore test at start of test	2.77 3.53	m m
Test Results				_					
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
0	3.53	0.76	1.000	-					
0.05	3.40	0.63	0.829	1					
0.10	3.31	0.54	0.711						
0.20	3.12	0.35	0.461						
0.30	2.98	0.21	0.276	1.00					
0.40	2.9	0.13	0.171	1.00					
0.50	2.86	0.09	0.118						
0.60	2.84	0.07	0.092	_					
				Hung Ghung G	01		0.10		1.00
							o = 0.25 mins 15 secs		
Theory:	-	ad Permeability Le/R)]/2Le To	calculated	where r = ra R = radius o Le = length	dius of of well so of well s	casing creen screen	o 37% of initial	change	
Hydra	ulic Condu	ctivity	k =	2.5E	-04	m/sec			
			=	91.7	07	cm/ho	Jr		

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	evelopment ar ed Commercia e Street, Hayr	td	Project No: Test date: Tested by:		86884.02 22/3/202 JDB			
Test Locatio Description: Material type:	Standpip	e in borehole ne				Test No. Easting: Northing Surface Level:		1007 333896 6249263 15.8	m m m AHD
Details of Well casing d Well screen o Length of wel	liameter (2r) diameter (2R))	76 76 1.64	mm mm m		to water before te to water at start o		14.56 15.32	m m
Test Results	5								
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
0	15.32	0.76	1.000	-					
0.20	15.11	0.55	0.724						
0.40	15.01	0.45	0.592						
0.60	14.92	0.36	0.474						
0.80	14.83	0.27	0.355	1.0)				
1.00	14.75	0.19	0.250		, <u> </u>				
1.50	14.66	0.09	0.125	_					
				_			N		
				မှု					
				dh/					
				0 gatio				Σ	
				Head Ratio dh/ho	, <u> </u>				
				- P					
				_					
				0.0					
				_	0.01	0.10		1.00	10.00
				-		Time (m	inutes)		
				_					
				_		T 07	• •		
							8 mins 8 secs		
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radius Le = leng	radius of o s of well so h of well s	casing creen	initial cl	hange	
Hydra	ulic Condu		k =	3 5	E-05	m/sec			
riyura		Surviy							
			-	12	.750	cm/hour			

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	evelopment an ed Commercia e Street, Hayr	I Develop		td Project Test dat Tested	te:	86884.02 22/3/2021 JDB	
Test Locatio Description: Material type:	Standpip	e in borehole Sands and Clay	S		Test No Easting: Northing Surface		202 333941 6249253 16.3	m m m AHD
Details of We Well casing d Well screen d Length of wel	iameter (2r) liameter (2R) l screen (Le))	50 114 3.5	mm mm m	Depth to water be Depth to water at		2.94 6.6	m m
Test Results		Change in		7				
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho					
0	6.60	3.66	1.000					
0.1	6.44	3.50	0.956					
0.5	5.68	2.74	0.749					
1	5.05	2.11	0.577]
1.5	4.65	1.71	0.467	1.00				
2	4.41	1.47	0.402					
3	4.18	1.24	0.339	_				
4	4.04	1.10	0.301	_				
5	3.9	0.96	0.262	_				
10 20	3.41 3.08	0.47	0.128	ု ရ				
				Head Ratio		Time (minutes)	10.0	100.0
				-	То	= 2.4 mins 144 secs		
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radius Le = lengt	n by Hvorslev radius of casing of well screen h of well screen taken to rise or fall to	37% of initial c	change	
Hydra	ulic Condu	ctivity	k = =		E-06 m/sec 919 cm/hou	-		

Appendix F

Previous Field Work Results and Permeability Test Results

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

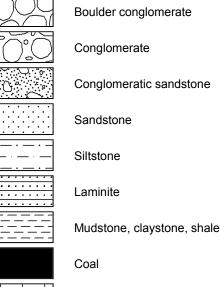
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

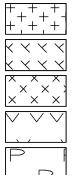
Metamorphic Rocks

 >
 >
 >

 >
 >
 >
 >

 +
 +
 +
 +
 +

 ·
 ·
 ·
 ·
 ·


 ·
 ·
 ·
 ·
 ·

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 2

\square		Description	Degree of Weathering	<u>io</u>	Rock Strength	Fracture	Discontinuities	Sa		-	n Situ Testing
Я	Depth (m)	of		Graphic Log	Very Low Very Low Medium Neddium Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore :. %	RQD %	Test Results &
	()	Strata	FIS & W & EW	Ū	Ex Lo Very I High Very I	0.01 0.10 0.50	S - Shear F - Fault	∣♪	ပိမ္စိ	8%	∝ Comments
	0.28 - 0.6 - · 1	CONCRETE SLAB: angular to subangular aggregate to 15mm, negligible voids, 10mm diameter steel reinforcement at 0.09m and 0.10m, plastic at lower interface Fill/Clayey SAND: fine to coarse grained sand, brown and yellow, 15% plastic fines, with fine gravel,						A/E			PID<1
	10	apparently moderately compacted, moist SAND SW: fine to medium grained sand, yellow, with clay, trace gravel, moist, alluvial soil					Unless otherwise specified, defects are B 0°, pl, ro				
	2 2.12	SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation		X			1.9m: CORE LOSS: 220mm 2.12m: Ds 270mm 2.49m: B 4°, st, ro 2.6m: B 0°, st, ro 2.61m: B 0°, st, sm 2.83m: B 0°, st, ro	с	82	20	PL(A) = 1.5
	· ³ 3.07 - 3.55 · ⁴ 4.13 -	SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation					2.93m: Ds 140mm 3.07m: CORE LOSS: 480mm 3.8m: Ds 60mm 3.92m: Cs 20mm	с	66	33	PL(A) = 0.15
	4.85-	SANDSTONE: medium grained, yellow-grey, medium then high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone SANDSTONE: medium grained, grey, high strength, fresh, unbroken,					4.29m: J 30°, pl, ro, open 4.37m: J 30°, pl, ro, open 4.79m: J 15°, pl, ro, clay 1mm 4.82m: B 10°, pl, ro, fe				PL(A) = 0.66
	· 6	Hawkesbury Sandstone					4.84m: B 5°, un, ro	с	100	100	PL(A) = 1.2
	.7										PL(A) = 1.3
	8						∖7.45m: B 0°, pl, sm 7.46m: B 0°, pl, sm ∖7.88m: B 0°, pl, sm 7.89m: B 0°, pl, sm				PL(A) = 1.9
	9						9.1m: Ds 20mm	С	100	100	PL(A) = 1.2
											PL(A) = 1.4

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAN	IPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Parmers
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 2 OF 2

\square		Description	Degree of Weathering ≧ ≩ ≩ § ღ ಱ	U	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
RL	Depth (m)	of	weathering	aphi og		Spacing (m)	B - Bedding J - Joint	e	e %	۵.	Test Results
	(11)	Strata	EW MW FR SW FR	ອ_	Ex Low Very Low High Kery High Very High		S - Shear F - Fault	Type	S S	RQD %	& Comments
4	- 11	SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 10.2-10.9m: dark grey, fine grained sandstone					**	С	100		PL(A) = 2.5
	- 12	Between 12.4-12.55m: carbonaceous laminations							100	100	PL(A) = 1.5
2	- 13						13.48m: Ds 20mm				PL(A) = 1.1
	- 14						13.77m: B 20°, pl, sm, cbs	с	100	100	PL(A) = 1.3
							clay co 2mm				
	-15 15.0	Bore discontinued at 15.0m									PL(A) = 1.3
	- 16										
	- 17										
	- 18										
	- 19										
-											

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

BORE: BH8	PROJECT: HAYMARKET	AUGUST 2019
Douglas Parti Geotechnics Environment Gro	Project No: 86767.00 BH ID: 848 Depth: 6-11 Core Box No.: Boy 2.5f 3	
6		
9		
	6m – 11m	

Photo D2 – View of concrete core from Borehole BH8. Two layers of reinforcement steel (10 mm diameter) were encountered at 0.09 m and 0.10 m depth, with a layer of plastic at the underside of the slab.

	Borehole Photographs	PROJECT:	86867.00
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development	PLATE No:	D2
	8-10 Lee Street, Haymarket	REV:	0
	CLIENT: Atlassian Pty Ltd	DATE:	15/08/2019

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 2

Depth (m) Description of Strata Sampling & In Situ Texting Well B CONCRETE SLAB: input to submyular appreptie to tenforcommant at 0.00m and 0.10m, plastic at lower interface Concentration (Concentration) Concentration) Concentration Concentration Concentration Concentration Concentration) Concentration Concentration <th></th> <th></th> <th></th> <th>DIF</th> <th>P/AZI</th> <th>MUTI</th> <th>H: 90°/</th> <th></th> <th>SHEET 1 OF 2</th>				DIF	P/AZI	MUTI	H: 90°/		SHEET 1 OF 2
$\begin{array}{ c c c } \hline CONCRETE SLAB could and the state of the transmission of the transmission of the transmission of transmission and t$		Description	lic		San		& In Situ Testing	-	Well
CONCRETE SLAB: angular to subangular aggregate to form diameter steel verificorement at 0.05m and 0.10m, plastic at lower interface. 0.2			Graph Log	Type	Depth	Sample	Results & Comments	Wate	Details
Fill/Clayey SAND: The to corresponded sand, thrown and ymoderately compacted, moist increased, apparently increately compacted, moist increased, apparently increately compacted, moist increased, and yellow, with clay, trace gravel, moist, alluvial soil 19 19 2 19 19 19 19 3.07 SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation 0 2.47 PU(A) = 15 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation 3.07 3.07 4 4.13 SANDSTONE: medium grained, grey, medium then high strength, moderately weathered, slightly meathered, fractured, Mittagong Formation 3.07 3.07 4 4.15 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 4.57 4.56 PL(A) = 0.60 5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 4.57 4.57 PL(A) = 1.2 6 6 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6.95 PL(A) = 1.2 6 7 7.89 PL(A) = 1.2 6 6 6.95 PL(A) = 1.9 6 8<		$_{\rm 15mm,\ negligible\ voids,\ 10mm\ diameter\ steel}$ $_{\rm 15mm,\ negligible\ voids,\ 10mm\ diameter\ steel}$		_A/E_			PID<1	-	
clay, trace gravel, moist, alluvial soil Image: clay, trace gravel, moist, alluvial soil Image: clay, trace gravel, moist, alluvial soil Image: clay, trace gravel, moist, alluvial soil SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation C 2.47 PL(A) = 1.5 Sand filer 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation 3.07 3.66 PL(A) = 0.15 4 4 A13 SANDSTONE: medium grained, yellow-grey, medium the high strength, fractured, Hawkesbury Sandstone 4.57 PL(A) = 0.66 -5 -6 4.85 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6.95 PL(A) = 1.2 -6 -7 -6 -7 -7 -7 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -9 Soluted PVC pipe -9 Soluted PVC pipe -9 Soluted PVC pipe	-1	yellow, 15% plastic fines, with fine gravel, apparently						-	-1
² 2.12 SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation ³ 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation ⁴ 4.13 SANDSTONE: medium grained, yellow-grey, medium then high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone ⁶ 4.85 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone ⁶ C ⁶ 5.96 PL(A) = 0.15 ⁶ 7.2 ⁶ PL(A) = 1.2 ⁶ 8.85 PL(A) = 1.2 ⁶ Slotted PVC pipe	-	SAND SW: fine to medium grained sand, yellow, with clay, trace gravel, moist, alluvial soil						-	
2-12 SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation C 2.47 PL(A) = 1.5 Sand filter 3 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation 3.07 3.07 C 2.47 PL(A) = 0.15 -3 -4 4.13 SANDSTONE: medium grained, yellow-grey, medium the high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone -4 4.57 4.66 PL(A) = 0.06 -5 -5 4.85 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone -6 -7 -6 -7 -6 -7 -8 -7 -7 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -7 -7 -7 -7 -7 -8 -7 </td <th>- 1.9-</th> <td></td> <td></td> <td></td> <td>1.9</td> <td></td> <td></td> <td>E</td> <td></td>	- 1.9-				1.9			E	
SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly wethered, fractured, Mittagong Formation 3.07 3.66 PL(A) = 0.15 4 4.13 SANDSTONE: medium grained, yellow-grey, medium fractured, Hawkesbury Sandstone 3.66 PL(A) = 0.15 5 4.85 SANDSTONE: medium grained, grey, high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone 4.57 4.57 6 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone C 5.95 PL(A) = 1.2 -6 -6 -7 -6 -7 -7 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -9 Stotted PVC pipe -8		to medium strength, with some very low strength bands,		с	2.47		PL(A) = 1.5	-	
3.55 weathered, fractured, Mittagong Formation 3.66 PL(A) = 0.15 4 4.13 SANDSTONE: medium grained, yellow-grey, medium tractured, hawkesbury Sandstone 4.57 4.66 PL(A) = 0.66 5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 4.57 4.66 PL(A) = 0.66 6 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6.95 PL(A) = 1.2 -6 7 6.95 PL(A) = 1.3 -7 -7 8	-3 3.07-	SANDSTONE: medium grained, orange and red, medium			3.07			-	3
SANDSTONE: medium grained, yellow-grey, medium fractured, slightly fractured, Hawkesbury Sandstone 4.57 4.57 4.66 PL(A) = 0.66 -5 -5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone C 5.95 PL(A) = 1.2 -6 -6 -6 -7 -6 -7 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -8 -7 -6 -7 -6 -7 -6 -7 -6 -7 -6 -7 -7 -6 -7 -6 -7 -7 -6 -7 -7 -6 -7 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	-	weathered, fractured, Mittagong Formation		с	3.66		PL(A) = 0.15	-	-4
SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone -6 -7 -7 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	4.13 -	then high strength, moderately weathered, slightly					PL(A) = 0.66	-	
-6 -7 -7 -8 -9 -9 		SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone						-	·5 · · · · · · · · · · · · · · · · · ·
7.2 7.2 7.8 7.2 7.8 7.2 7.8 7.2 7.89 PL(A) = 1.9 8 7.2 9 Slotted PVC pipe	-6			С	5.95		PL(A) = 1.2	-	6
-8 -8 -9 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	-7						PL(A) = 1.3	-	-7
-9 Botted PVC pipe	-8				7.89		PL(A) = 1.9	-	-8
	-9			С	8.95		PL(A) = 1.2		.9 Slotted PVC pipe
9.95 PL(A) = 1.4					9.95		PI(A) = 1.4	Ę	

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAM	IPLIN	G & IN SITU TESTING	LEG	END					
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-	_	_
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)					rtners
	3LK Block sample	U,	Tube sample (x mm dia.)	PL([D) Point load diametral test ls(50) (MPa)					
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			7.40		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		O to . to . !			0
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnic:	s i Envir	onment	Groundwater
-										

SURFACE LEVEL: 15.5 AHD **EASTING**: 333954 **NORTHING**: 6249289 **DIP/AZIMUTH**: 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 2 OF 2

					Sam	nling	& In Situ Testing			
RL	Dep	Description of	phic					Water	Well Construction	n
R	(m	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Ň	Details	ri
	-	SANDSTONE: medium grained, grey, high strength, resh, unbroken, Hawkesbury Sandstone (continued)		С	10.22				-	
- 2		Between 10.2-10.9m: dark grey, fine grained sandstone								
È	-								-	
E	- 11				10.95		PL(A) = 2.5		-11	
	-								-	
-4	-									
Ē	-			С	44.05					
E	- 12				11.95		PL(A) = 1.5		- 12	
-	-	Between 12.4-12.55m: carbonaceous laminations							-	
F	-	Detween 12.4-12.55m. Californaceous laminations								
Ē	- - 13				12.95		PL(A) = 1.1		-13	
ŀ	-				13.25					
-~	-									
ŀ	-								-	
Ē	- 14			с	13.95		PL(A) = 1.3		- 14	
È				•						
	-									
ŀ	- - -15 1				14.00		PL(A) = 1.3		- 15 End Cap -	
Ē	- 15 1 - -	Bore discontinued at 15.0m			-14.99- 15.0		FL(A) = 1.3			
-0	-									
Ē	-									
È	- 16								16	
ł	-									
	-									
Ē										
Ē	- 17								-17	
-2									ţ	
ŀ	-									
F	- - 18								- 18	
Ē	-								Ę	
-9-	-								Ę	
È									Ę	
E	- 19								-19 [
	-									
-4-										
Ē	-								-	

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAN	/IPLING	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
E	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/-- BORE No: BH107A PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 1 OF 1

	Description	ici		San		& In Situ Testing	5	Well	
Dep	n) of	Graph Log	Type	Depth	ample	Results & Comments	Wate	Construction Details	ı
	oth	e al	Type	San		_	05-06-20 i▲ Water		
				GGED		CASIN		-5	

TYPE OF BORING: SFA (TC-bit) to 3.9m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed: 0-3.4m Blank PVC pipe, 3.4-3.9m Slotted PVC pipe, End cap at 3.9m, Sand backfill 0-1.5m, Bentonite 1.5-3.2m, Sand filter 3.2-3.9m, Gatic cover at surface.

	SAM	IPLIN	G & IN SITU TESTING	LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
	3 Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
	3LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		A Douglas Parlners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		Or the basic of Environment 1 Or and the term
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-							

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT: **SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 1 OF 2

	Dauth	Description	Degree of Weathering		Rock Strength ត្រ	Fracture Spacing	Discontinuities			<u> </u>	n Situ Testing
Ч	Depth (m)	of		urapnic Log		(m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
	()	Strata	A M M M M M M M M M M M M M M M M M M M	פ	Ex Low Very Low Medium Very High Ex High	0.10	S - Shear F - Fault	È	ပိမ္ရ	RC %	Comments
	0.14	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.08 m depth						A A/E*			PID=4 PID=5
	-1-1	FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl,< td=""><td></td><td>\times</td><td></td><td></td><td></td><td>A/E</td><td></td><td></td><td>PID=2</td></pl,<>		\times				A/E			PID=2
-14	- 1.6	generally in a stiff condition Below 1.0m: grading to medium plasticity, dark grey, trace sandstone gravel, w~PL		\bigotimes				A/E			PID=2
	-2 -2 - 2.2	FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition		X	05-06-20 ▲			A/E			PID=2
-£		Sandy CLAY CL-CI: low to medium		./.	02-0			A/E			PID=1
	- 2.81	∫plasticity, pale yellow, fine to ∫medium, w~PL, apparently stiff to		<u> </u>				A/E			PID=2
	-3	Very stiff, residual Below 2.6m: yellow-brown SANDSTONE: fine to medium						с	100	10	PL(A) = 1.1
12	- 3.92	grained, pale grey and red-brown, high strength with very low then low strength bands, highly weathered, fractured, Mittagong Formation		\mathbb{N}			、3.81m: CORE LOSS:				PL(A) = 0.1
	4 4.03	SANDSTONE: fine to medium grained, pale grey and red-brown, medium then high strength, moderately weathered, fractured, Hawkesbury Sandstone					110mm 3.92m: Ds 80mm 4m: Cs 30mm 4.44m: J40°, pl, ro, fe stn 4.6m: B5°, pl, ro, cly co	с	93	75	PL(A) = 0.9
	- 4.94 - 5 	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone	- L ++++ - 				5mm 4.78m: B0°, pl, ro, cly co 5mm 4.83m: Ds 10mm 4.86m: B0°, ir, ro, cly co 5mm				PL(A) = 1.5
	-6							С	100	100	PL(A) = 1.1
	-7							с	100	99	PL(A) = 1.3
		Between 7.66m-8.10m: band of fine grained sandstone					7.66m: Cz 10mm				PL(A) = 1.6
	-9						~>	С	100	100	PL(A) = 1.1
-	-										

RIG: XC

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAMF	PLIN	3 & IN SITU TESTING	LEG	END		
A A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLK E	Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)		Douglas Parlners
C 0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
DD	Disturbed sample	⊳	Water seep	S	Standard penetration test	· /	
EE	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 2 OF 2

_											
		Description	Degree of Weathering ≞ ≩ ≩ ≳ ∞ ಱ	<u>.</u>	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
님	Depth (m)	of	liteationing	aph Log	Strength Alight High Ned Low Ned High Ned High N	Spacing (m)	B - Bedding J - Joint	e	Core Rec. %	Q .	Test Results
	(11)	Strata	FR SW HW SH FR	ଞ _	X High Lu	0.05	S - Shear F - Fault	Type	ပို့ပို	₿ 8 8	& Comments
	- 11	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone <i>(continued)</i>						с	100		PL(A) = 1.3
3	- 12	Between 12.60m-13.78m: band of					11.3m: B0°, pl, ro, cbs co	с	100	100	PL(A) = 1.1
	- 13	fine grained sandstone					13.74m: B5°, pl, ro, cly co 5mm				PL(A) = 1 PL(A) = 1.2
		Bore discontinued at 15.0m						с	100	100	
-0	- 16	- Target depth reached									
	- 17										
-2	- 18										
	- 19										
	-										

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		-
Е	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

		Y 2020	MAY 2	RKET	HAYMA	OJECT:	B PRC	ORE: 107	
86767.00 HAYMARKET 16.5.20 BH107B START 2.81m				78 7.00m Rox1	I ID: 8H10 pth: 2.81- pre Box No.	S BI	nt / Groundwater	echnics Environme	Gei
		50	utrin					1	-
	and the second sec	CORE LAS HOMO	K K		1	J.			
									SP

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT: **SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMI ITH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 1 OF 2

					DIF	P/AZII	MUTH	l: 90°/		SHEET 1 OF 2	
	_		Description	ic _		Sam		In Situ Testing	ř	Well	
RL	Dep (m		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
2	C).14 -	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.08 / m depth		A A A/E*	0.15 0.2 0.4		PID=4 PID=5		Gatic Cover and	
	- - - - - 1	_	FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, a="" generally="" in="" stiff<br="">condition</pl,>		A/E	0.5 0.9 1.0		PID=2		-1 Backfill and Blank PVC pipe	
-4-	-	1.6	^L Below 1.0m: grading to medium plasticity, dark grey, trace sandstone gravel, w~PL		A/E	1.4 1.5		PID=2		Backfill and Blank	
	-2		FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition		A/E_	1.9 2.0		PID=2	Ţ	2	
13	- - -	2.2	Sandy CLAY CL-CI: low to medium plasticity, pale yellow, fine to medium, w~PL, apparently stiff to very stiff, residual Below 2.6m: yellow-brown	· · · · · · · · · · · · · · · · · · ·	A/E	2.4 2.5 2.65		PID=1	05-06-20		X
	- 2	2.81 -	SANDSTONE: fine to medium grained, pale grey and red-brown, high strength with very low then low strength bands, highly weathered, fractured, Mittagong Formation		A/E C	2.8 2.81 2.94		PID=2 PL(A) = 1.1		-3	
12	- - - - 3	3.92		\sim		3.57 3.62		PL(A) = 0.1		Bentonite Seal	
		1.03-	SANDSTONE: fine to medium grained, pale grey and red-brown, medium then high strength, moderately weathered, fractured, Hawkesbury Sandstone		с	4.25		PL(A) = 0.9			
	-5 4	I.94 -	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone			5.0 5.12		PL(A) = 1.5		-5 Sand filter	
	- 6				с	6.0		PL(A) = 1.1			
	- - - - 7					6.59 7.0		PL(A) = 1.3			
	- - - -				с			(,)			
			Between 7.66m-8.10m: band of fine grained sandstone			8.0 8.12		PL(A) = 1.6		8	
	-									Slotted PVC pipe	
	-9				с	9.0		PL(A) = 1.1		9	
-9-	-					_10.0_		PL(A) = 1.3			

RIG: XC

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Buik sample P Piston sample P L(D) Point load avial test Is(50) (MPa) BLK Block sample U Tube sample PL(D) Point load avial test Is(50) (MPa) C Core drilling W Water sample p Pcoket penetrometer (kPa)	
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	Pariners.
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample Water level V Sthear vane (kPa)	nent Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 2 OF 2

				DIF	7/AZII	NUT	H: 90°/		SHEET 2 OF 2
\square		Description	.c.		Sam		& In Situ Testing	Ļ	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	- 11	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		С	11.02		PL(A) = 1.1		11 End Cap
- 4	- 12				11.07		PL(A) = 1.1		Bentonite Seal
		Between 12.60m-13.78m: band of fine grained sandstone		С					
2	- 13			· • • • • • • • • • • • • • • • • • • •	13.03		PL(A) = 1		- 13 Sand Back Fill
	- 14			C	14.0 14.08		PL(A) = 1.2		-14
	-15 15.0	Bore discontinued at 15.0m - Target depth reached	<u> :::::</u>		-15.0-				
 	- 16								- 16
-2	- 17								- 17 - 17
	- 18								- 18
	- 19								- 19

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)	1	1.	A Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
						-		

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 **NORTHING:** 6249311 **DIP/AZIMUTH:** 90°/-- BORE No: BH109B PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 1 OF 2

		Description	Degree of	0	Rock	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
님	Depth	of	Weathering	Graphic Log		Spacing (m)	B - Bedding J - Joint	ø	е%		Test Results
	(m)	_	H M M M M M M M M M M M M M M M M M M M	ц В П	Ex Low Very Low Medium High Very High Ex High		S - Shear F - Fault	Type	Core Rec. %	RQI %	& Comments
14 15 15	0.2 0.3	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement steel observed FILL/ GRAVEL: coarse, black, angular igneous gravel bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity,					1.05m: Ds 50mm 1.17m: B0°, un, ro, fe co	A/E A/E C	100	20	PID<1 PID<1 PL(A) = 1.8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 2.93	pale orange, w <pl, apparently="" stiff<br="">to very stiff, residual (possibly extremely weathered Mittagong Formation) SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, fractured, Hawkesbury Sandstone SANDSTONE: fine to coarse</pl,>					1.23m-1.25m: B0° (x3), pl, ro, fe stn 1.29m & 1.37m: B0°, pl, ro, fe stn 1.54m: Ds 10mm 1.55m: J80°, pl, ro, op 1.73m & 1.81m: B0°, pl, ro, fe co 1.92m: Cs 5mm 2.02m & 2.25m: J60°, pl, he 2.3m: Cs 10mm 2.4m-2.45m: B0° (x3),	с	100	40	PL(A) = 0.7
	4	grained, pale grey and pale yellow, moderately weathered then slightly weathered, medium strength, slightly fractured, cross-bedding 5°-10°, Hawkesbury Sandstone					2.40m2.40m b0 (x0), un, ro, fe co 2.56m: Ds 20mm 2.61m: B2°, un, ro, fe co 2.64m: B0°, un, ro, fe co 2.72m: Ds 10mm 2.79m: Ds 5mm 2.84m: Ds 2mm 2.9m: B2°, pl, ro, fe co 3.1m: Cs 2mm 3.16m: B0°, pl, ro, fe co 3.96m: Ds 20mm 4.02m: J45°, pl, ro, fe co	С	100	90	PL(A) = 0.5 PL(A) = 0.7
	4.9- 5	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone					4.2m: Ds 20mm	С	100	100	PL(A) = 0.9 PL(A) = 1
	6 7						>>	С	100	100	PL(A) = 0.7 PL(A) = 1.2
ĒĒ								с	100	100	
	8						7.86m - 7.89m: Cs 2mm (x2)				PL(A) = 1.8
	9						(x2)	с	100	100	PL(A) = 1.9
								с	100	100	

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 1.05m

TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m **WATER OBSERVATIONS:** No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	PLINC	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)	1		Loudias Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			📕 Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 **NORTHING:** 6249311 **DIP/AZIMUTH:** 90°/-- BORE No: BH109B PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 2 OF 2

_											
		Description	Degree of Weathering	<u>.0</u>		cture	Discontinuities				n Situ Testing
RL	Depth (m)	of	- Vocationing	aph	Spa	ncing m)	B - Bedding J - Joint	ЭС	re . %	Δ.	Test Results
	(11)	Strata	a ≩ ≹ ≳ o ⊭	ତ_	EX Lov Very Low Mediu EX High 0.01 0.01 0.00 0.00 0.00	0.50	S - Shear F - Fault	Type	S S	RQD %	& Comments
H	-					11			_		PL(A) = 1.4
-9	.	grained, pale grey, fresh, medium then high strength, slightly fractured						с	100	100	
F	.	then unbroken, cross-bedding				ii		C	100	100	
F	-	5°-10°, Hawkesbury Sandstone (continued)									
E	-11	(commuca)				ii i					PL(A) = 1.8
E	:										1 2(71) - 1.0
-4	.										
È						ii		С	100	100	
F											
E	-12					ii					PL(A) = 1.2
	-										
						ii.					
-	-										
Ē	- 13										PL(A) = 1.4
[- 13							С	100	100	PL(A) = 1.4
-7											
	-					- i i					
-	-										
Ē	-14					ii					PL(A) = 1.3
	_										
						ii		С	100	100	
-						++-	14.6m: Ds 10mm				
Ē	- - -15 15.0						^L 14.62m: J45°, st, he				
E	- 15 15.0	Bore discontinued at 15.0m									
-0	.	- Target depth reached				ii					
ŀ	.										
Ē	-										
[- 16										
ŀ	-										
F	.										
E	- 17										
ŀ											
-7	.					ii					
F	.										
E						11					
	- 18										
μ	-					11					
ŀ											
Ē						11					
	- 19										
E											
-4						11					
È	.										
E						1 i					

RIG: XC

CLIENT:

PROJECT:

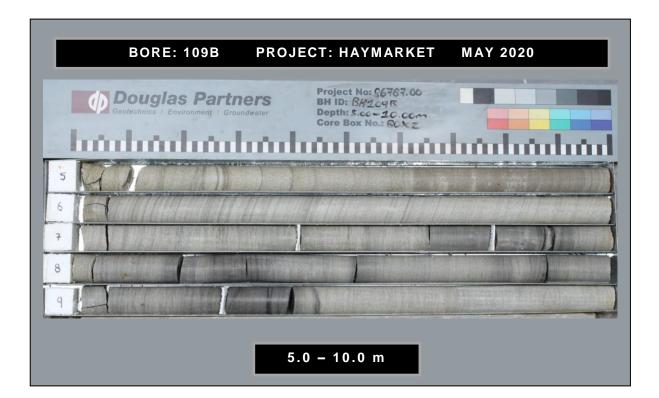
Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB


CASING: HWT to 1.05m

TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m **WATER OBSERVATIONS:** No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	PLIN	3 & IN SITU TESTING	LEGE	ND		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		Douglas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD EASTING: 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 1 OF 2

D	Description	. <u>9</u>		Sam		In Situ Testing	~	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
0.2 0.3	FILL/ GRAVEL: coarse, black, angular igneous gravel		A/E	0.4		PID<1		Gatic Cover and cap
¹ 1.05	bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity, pale orange, w <pl, apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation)</pl, 		A/E	· 0.9 · 1.05 1.16		PID<1 PL(A) = 1.8		Backfill and Blank PVC pipe
	SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, fractured, Hawkesbury Sandstone		с	1.10				
2			с	2.11		PL(A) = 0.7	09-06-20	-2
3 2.93	SANDSTONE: fine to coarse grained, pale grey and pale yellow, moderately weathered then slightly weathered, medium strength, slightly fractured, cross-bedding 5°-10°, Howkenbury Sandstone			3.1 3.11		PL(A) = 0.5		-3 Bentonite Seal
4	Hawkesbury Sandstone		С	3.92		PL(A) = 0.7		-4
4.9 5	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then			4.65 4.93 5.04		PL(A) = 0.9 PL(A) = 1		-5
6	unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		С	6.0		PL(A) = 0.7		Sand filter
			с					
7			с	7.0 7.4		PL(A) = 1.2		-7
8				7.75 8.0		PL(A) = 1.8		-8
9			С	9.0 9.25		PL(A) = 1.9		Slotted PVC pipe
			с			PL(A) = 1.4		

RIG: XC **DRILLER:** Terratest TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

SAM	IPLIN	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1	1.	Doudias Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
D Disturbed sample	Þ	Water seep	S V	Standard penetration test		Ľ	Geotechnics Environment Groundwat

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 2 OF 2

							H: 90 /		
	Donth	Description	hic				& In Situ Testing	۳	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	- 11	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		С	10.73		PL(A) = 1.8		
	-			С					End Cap
	- 12				12.0 12.38		PL(A) = 1.2		Bentonite Seal
2	- 13			С	13.0		PL(A) = 1.4		-13
	- 14			с	13.88 14.0		PL(A) = 1.3		14 Sand Back Fill
- 0	- 15 15.0 -	Bore discontinued at 15.0m - Target depth reached	<u> :::::</u>		-15.0-				
	- 16								-16
	- 17								- 17
	- 18 								- 18
- 4-	- 19 								- 19

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m CASING: HWT to 1.05m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	IPLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	October 1 Freedoment 1 October destant
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD EASTING: 333960 NORTHING: 6249314 DIP/AZIMUTH: 90°/-- BORE No: BH110 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Graphic Description Water Depth Log 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement <u>له</u> ک 0.2 0.2 FILL/ SAND: fine to coarse, pale orange, moist, generally А PID<1 0.3 0.3 \in a medium dense condition FILL/ Silty CLAY: medium to high plasticity, pale grey mottled orange, with fine to coarse sand and brick, 0.5 А PID<1 concrete and asphalt fragments, w<PL, generally in a stiff 0.6 0.6 \condition Bore discontinued at 0.6m - Termination on brick and concrete fragments 1 1 -2 -2 - 3 - 3 .₽ -4 - 4

 RIG:
 Hand tools
 DRILLER:
 Nick Ruha/NB

 TYPE OF BORING:
 Diatube (100mm) to 0.2m, then hand auger

 WATER OBSERVATIONS:
 No free groundwater observed whilst drilling

 REMARKS:
 Surface level taken from survey drawing provided

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

CASING: NA

ER OBSERVATIONS: No free groundwater observed whilst drilling ARKS: Surface level taken from survey drawing provided SAMPLING & IN SITU TESTING LEGEND

 SAMPLING & IN STIU 1ESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 16.4 AHD EASTING: 333944.3 NORTHING: 6249251.2 DIP/AZIMUTH: 90°/-- BORE No: BH201 **PROJECT No: 86767.07** DATE: 29/10 - 5/11/2020 SHEET 1 OF 2

\prod		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
RL	Depth (m)	of	Todationing	Graphic Log		Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results
	(,	Strata	T N N N N N N N N N N N N N N N N N N N	Ū	Very Low Medium Very High Ex High	0.01	S - Shear F - Fault	Ţ	ပိ မို	8 8	& Comments
F	0.02	TILE: 20mm thick, stone		۲۰۰۷							
16	0.25	CONCRETE SLAB: sub-angular fine sandstone and igneous aggregate within coarse sand matrix (0.02-0.10m), sub-angular fine igneous aggregate, trace voids (0.10-0.25m)						<u> </u>			
15	-2	FILL/Gravelly SAND: fine to medium sand, brown and dark grey, sub-angular to sub-rounded fine to coarse sandstone gravel, with thin clay bands (0.15-0.2m thick), trace sandstone cobbles and silt, moist, generally in a loose to medium dense condition						S			2,2,1 N = 3
14	-3	SAND SP: fine to medium, pale gey, moist, very loose to loose, alluvial									
13		Below 3.4m: grading to medium dense									
	-4	Below 4.0m: grading to wet and dense									
	4.7	Between 4.4-4.7m: grading to very dense, possibly cemented layer			05-11-20 ▲						
	-5	Silty CLAY CH: high plasticity, grey, w>PL, firm to stiff, residual			05-1						pp = 90-105
								S			5,6,6 N = 12
	-6										
	-7	Below 6.8m: pale grey, with fine sand, inferred stiff to very stiff									
- 6	7.17	SANDSTONE: medium to coarse grained, brown, high strength, moderately weathered, unbroken, Hawkesbury Sandstone						с	100	100	PL(A) = 1.6
	- 8 7.97 - - 9	SANDSTONE: medium to coarse grained, pale grey, 10%-30% fine grained laminations, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone						С	100	100	PL(A) = 1.2
	9.86 -						\9.71m: Cs, 20mm 9.75m: B5°, cly co 2mm, pl, ro	С	100	97	PL(A) = 1

RIG: Diatube, XC

DRILLER: TJ Core Cutting, TerratesLOGGED: KR

CASING: HQ to 5.4m TYPE OF BORING: Diatube (300mm) to 0.25m, hand-auger to 1.37m, SFA (TC-bit) to 7.17m, NMLC to 13.84m

WATER OBSERVATIONS: Groundwater observed at 4.5m **REMARKS:**

Vertical First Pty Ltd

Link Tunnel

LOCATION: 8-10 Lee Street, Haymarket

CLIENT:

PROJECT:

	SAM	PLING	& IN SITU TESTING	LEGE	ND]
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	Ι.
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)	
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	11

SURFACE LEVEL: 16.4 AHD **EASTING:** 333944.3 **NORTHING:** 6249251.2 **DIP/AZIMUTH:** 90°/-- BORE No: BH201 PROJECT No: 86767.07 DATE: 29/10 - 5/11/2020 SHEET 2 OF 2

			Dearee of		Rock	Fronture	Discontinuities			ng 0 1	
	Depth	Description	Degree of Weathering ≳ ≩ ≩ § ⊗ ღ ∰	ohic Vg	Strength High High High High High High High Hig	Fracture Spacing	Discontinuities			-	n Situ Testing Test Results
R	(m)	of		Grap		(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core	RQD %	&
$\mid \mid$		Strata SANDSTONE: fine to medium	X H M S H K	-		0.100 1.000 1.000 1.000			٣ ٣	<u>۳</u>	Comments
		grained, pale grey, 40%-50% fine grained lamination, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>						с	100	97	PL(A) = 1.1
	-11						10.92m: B0°, pl, ro, fg 10mm	С	100	99	PL(A) = 1.6
FF											
	- 13						12 25-00 00 40-000	с	100	97	PL(A) = 1.1
-~-							13.25m: Cs, 40mm				PL(A) = 1
ļ		13.51-13.54m: low strength seam									
	13.84 - • 14	Bore discontinued at 13.84m - Target depth reached									
-~											
[[ii ii					
ŀ											
ļ	- 15					ii ii					
Ē											
 											
Ęţ											
ĒĒ	- 16										
ţ ţ											
[°[
<u></u>											
ĒĒ	-17										
ţţ											
F 7											
ĘĘ											
ţţ	- 18										
ĒĒ											
<u>-</u> ∾-											
ţ ţ											
ĒĒ	- 19		<u>iiii</u>								
ţţ											
Ę.~											
E											
ţţ											

RIG: Diatube, XC

DRILLER: TJ Core Cutting, TerratesLOGGED: KR

CASING: HQ to 5.4m

TYPE OF BORING: Diatube (300mm) to 0.25m, hand-auger to 1.37m, SFA (TC-bit) to 7.17m, NMLC to 13.84m WATER OBSERVATIONS: Groundwater observed at 4.5m REMARKS:

Vertical First Pty Ltd

Link Tunnel

LOCATION: 8-10 Lee Street, Haymarket

CLIENT: PROJECT:

	SAN	IPLING	& IN SITU TESTING]		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)	1		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		/ / /	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			0
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Ge

BORE: BH201 P	PROJECT: HAYMARKET	NOVEMBER 2020
Contraction Contra	Indwater Depth: 7-17-11.00m Core Box No.: 2/2	
86767.07 Haymarke Start 7.17		
8		
10	7.17 – 11.00m	

BORE: BH201	PROJECT:	HAYMARKET	NOVEMBER	2020
BONE! BREVI				
Geotechnics Environment C	Groundwater	Project No: 86767:07 BH ID: BM 201 Depth: 11:00 - 13:54m Core Box No.: 2/2		
hadiadia	hundh	ուրարո	dundu	<u>uh</u> nd
			in a state	
12 (Merculante			
13		1 - 2/0		END OF HOLE 13:84m
	11.00m	- 13.84m		

SURFACE LEVEL: 16.3 AHD **EASTING:** 333940.8 **NORTHING:** 6249253.1 DIP/AZIMUTH: 90°/--

BORE No: BH202 **PROJECT No: 86767.07** DATE: 29/10 - 6/11/2020 SHEET 1 OF 2

			Description	De	egre	erina	<u>.0</u>	S	Rock	۲ th	5	Fracture		Discontinuities	Sa	amplii	ng & I	n Situ Testing
RL	Dep (m		of		Juli	ering	Log		ΠŤ		Water	Spacing (m)	ן י	B - Bedding J - Joint	e	. %e	۵.,	Test Results
	(.,	Strata	≥ ≥	Ŵ	N S R	Ū		Medium Medium	Very High Ex High			00.1	S - Shear F - Fault	Type	ပိမ္မိ	RQD %	& Comments
	- (0.02	\TILE: 20mm thick, stone /				Q.7											
-9	_	0.26	CONCRETE SLAB: sub-angular fine sandstone and igneous aggregate within a coarse sand												A/E			
	-	0.7	matrix (0.02-0.11m), sub-angular,	- !			\bowtie											
	- - - 1		fine igneous aggregate, trace voids (0.11-0.26m)				\otimes					 			A/E			
			FILL/Silty CLAY: medium plasticity,				\otimes											
-5	-	1.3	brown, with sub-angular to sub-rounded igneous and	11					ii				i		A/E			
	-		sandstone gravel, trace brick															
	-		fragments, w~PL, generally in a stiff condition	l i					İİ				i					
	-2		FILL/SAND: fine to medium, brown, with clay, moist, generally in a															
-4	-		medium dense condition															
	-		SAND SP: fine to medium, pale grey, moist, apparently loose,	l i									i					
t	-		alluvial															
	-3		Below 2.7m: grading to medium dense to dense	li.	ii	ii			ii	ii			i					
13	-		Below 3.3m: grading to dense	li		İİ			ii		Ţ							
Ē	-		Below 3.7m: grading to pale	1 į	ij	ij		l i i	ij	ii	09-11-20		i					
	- 4		yellow-brown, moist to wet	H							-60							
-∾	-			1	İİ	İİ			İİ	İİ			Ì					
Ē	-	4.5		l ¦							Ţ							
	-		Silty CLAY CH: high plasticity, grey, w>PL, apparently stiff to very stiff,								1-20							
Ē	- - -5	4.8	\alluvial /	1 i					ii		06-11-20		i					
	-		SAND SP: fine to medium, orange, wet, apparently medium dense,															
	-		alluvial	1 į	ij	ii		İİ	ij	ii			i					
	-																	
	-																	
Ē	- 6			i									i					
-9-	-																	
Ē	-	6.7		ļį	ij	ij		İİ	ij	ii.			i I					
	-	0.7	Silty CLAY CH: high plasticity, pale grey, trace fine sand, w>PL,															
ŧ	- /		apparently stiff to very stiff, residual				1/1											
	_ 7	7.24	SANDSTONE: medium to coarse grained, brown, medium strength,								$ \uparrow $				_	100	100	
ŧ	-		moderately weathered, unbroken,												С	100	100	PL(A) = 1.7
E	-		Hawkesbury Sandstone		ij													
ţ	-8 - 8	3.12			¦Ļ	 ++1												PL(A) = 1.4
	_		SANDSTONE: medium to coarse grained, pale grey, 10%-30% fine		İİ]	8.19m: B0°, cly vn, ir, ro				PL(A) = 1.2
	-		grained laminations, medium to high strength, fresh, slightly fractured to												С	100	100	
ţ	-		unbroken, Hawkesbury Sandstone															
E	-9																	
	- - c	9.32	0.24.0.22mm loss of a final of the first of t									╎ ╎╎ <mark>╷</mark> ┦		0.21m, D0° -h. 5				PL(A) = 1.1
Ē	-		\9.31-9.33m: low strength seam // SANDSTONE: refer following page										i	9.31m: B0°, cly co 5mm, pl, ro	C	100	97	PL(A) = 1.1
E	-											┊╺╾┯╼┛	¦	9.61m: B0°, cly co 1mm, pl, ro	С		91	
ŀ	- 1	10.0			ii			l i i i		i i			i h	9.63m: B0°, clv co 1mm.				

DRILLER: TJ Cutting, Excavac, Terrates GED: KR **RIG:** Diatube, Vacuum truck, XC

TYPE OF BORING: Diatube 0-0.04m (300mm diam.) and 0.04-0.26m (200mm diam.), NDD to 3.0m, SFA (TC-bit) to 7.24m, NMLC to 13.77m

WATER OBSERVATIONS: Groundwater observed at 4.5m

Vertical First Pty Ltd

Link Tunnel

LOCATION: 8-10 Lee Street, Haymarket

CLIENT: PROJECT:

REMARKS: Standpipe details: backfill 13.77-8.24m, bentonite 8.24-7.34m, fine sand 7.34-3.74m, bentonite 3.74-2.88m, backfill 2.88-0.2m, gatic cover 0.2-0.0m, Screen 7.24-4.24m, blank 4.24-0.1m

	SAM	PLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLI	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CASING: HWT to 7.2m

SURFACE LEVEL: 16.3 AHD **EASTING:** 333940.8 **NORTHING:** 6249253.1 **DIP/AZIMUTH:** 90°/--

BORE No: BH202 **PROJECT No: 86767.07** DATE: 29/10 - 6/11/2020 SHEET 2 OF 2

		Description	Degree of Weathering A ♣ ♣ ♣ क़ क़ क़	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
RL	Depth (m)	of		raph Log		Spacing (m)	B - Bedding J - Joint	oe	re .%	Q.,	Test Results
	(,	Strata	H M W K K K K K K K K K K K K K K K K K K	Ū	Ex Low Very Low Medium Very High Ex High O.01		S - Shear F - Fault	Type	ပိ မို	RQD %	& Comments
. 9	-	SANDSTONE: medium grained, pale grey, 40%-50% fine grained laminations, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone					∫pl, ro 9.92m: Cs, 20mm	С	100		PL(A) = 1.2
	-11						10.78m: B0°, cly co 5mm, pl, ro	С	100	100	PL(A) = 1
3	- 13							С	100	97	PL(A) = 1
-	-	13.52-13.55m: low strength seam					13.28m: Ds, 20mm				PL(A) = 1
	- 13.77 - 14	Bore discontinued at 13.77m - Target depth reached					pl, ro 13.52m: B5°, cly co 3mm, pl, ro				
-	- 14	- Target depth reached									
	- 15										
	- 16										
- 0	- - - -										
	- 17 - 17 										
	- 18										
	- 19										

DRILLER: TJ Cutting, Excavac, TerradesGED: KR CASING: HWT to 7.2m RIG: Diatube, Vacuum truck, XC TYPE OF BORING: Diatube 0-0.04m (300mm diam.) and 0.04-0.26m (200mm diam.), NDD to 3.0m, SFA (TC-bit) to 7.24m, NMLC to 13.77m

WATER OBSERVATIONS: Groundwater observed at 4.5m

Vertical First Pty Ltd

Link Tunnel

LOCATION: 8-10 Lee Street, Haymarket

CLIENT: PROJECT:

REMARKS: Standpipe details: backfill 13.77-8.24m, bentonite 8.24-7.34m, fine sand 7.34-3.74m, bentonite 3.74-2.88m, backfill 2.88-0.2m, gatic cover 0.2-0.0m, Screen 7.24-4.24m, blank 4.24-0.1m

SAMPLING & IN SITU TESTI	IG LEGEND	
A Auger sample G Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample BLK Block sample U. Tube sample (x mm dia	PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa)	Douglas Partners
C Core drilling W Water sample D Disturbed sample D E Environmental sample Water level	pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)	Geotechnics Environment Groundwater

BORE: BH202	PROJEC	T: HAYMARKET	NOVEMBER 2020
	Groundwater	Project No: \$6767:07 BH ID: BH 202 Depth: 7:24 - 11:00 Core Box No.: 1/2	houhouhouho
86767.07 HAYMARKET		- BH202	*
STAR1 7:24	o detti i	n ann ann ann Prìo	in al State de la service
8 CHINE		411/11/11/1	
9 6166 6 111	1 and	16	
10		A A	
	7.24	↓ – 11.00m	

П

	BORE: BH201	PROJECT:	HAYMARKET	NOVEMBER 2020	
Γ		Groundwater	Project No: 86767.07 BH ID: BH202 Depth: 11:00-13:17m Core Box No.: 2/2		
11			(
12	T				
13			M D.M	END OF HOLE 13.75	7.7
		11.00m	- 13.77m		

CLIENT:

PROJECT:

Vertical First Pty Ltd

Link Tunnel

LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 16.3 AHD **EASTING:** 333940.8 **NORTHING:** 6249253.1 **DIP/AZIMUTH:** 90°/-- BORE No: BH202 PROJECT No: 86767.07 DATE: 29/10 - 6/11/2020 SHEET 1 OF 2

		Description	. <u>ല</u>		Sam	npling &	& In Situ Testing	_	Well
ř	Depth (m)	of	Graphic Log	e	th	ple	Results &	Water	Construction
	()	Strata	ū	Type	Depth	Sample	Results & Comments	>	Details
-	0.02	TILE: 20mm thick, stone	Q.Q.						Gatic Cover and
16	0.26	CONCRETE SLAB: sub-angular fine sandstone and igneous aggregate within a coarse sand matrix (0.02-0.11m), sub-angular, fine igneous aggregate, trace voids (0.11-0.26m)		_A/E_	0.25 0.35				
19	1 1.3	FILL/Silty CLAY: medium plasticity, brown, with sub-angular to sub-rounded igneous and sandstone gravel, trace brick fragments, w~PL, generally in a stiff condition		_A/E_	0.9 1.0				
		FILL/SAND: fine to medium, brown, with clay, moist, generally in a medium dense condition		A/E	1.5				Backfill and Blank
	2	SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial							-2 Bentonite Seal
ŧ	3	Below 2.7m: grading to medium dense to dense							-3
2 -		Below 3.3m: grading to dense						-20 I	Bentonite Seal
	4	Below 3.7m: grading to pale yellow-brown, moist to wet						09-11-20	-4
	4.5	Silty CLAY CH: high plasticity, grey, w>PL, apparently stiff						20 20	
Ę	4.8	to very stiff, alluvial SAND SP: fine to medium, orange, wet, apparently						06-11-20	
	5	medium dense, alluvial							Sand filter
	6								
	6.7 7	Silty CLAY CH: high plasticity, pale grey, trace fine sand, w>PL, apparently stiff to very stiff, residual							
,- -	7.24	SANDSTONE: medium to coarse grained, brown, medium strength, moderately weathered, unbroken, Hawkesbury Sandstone		с	7.24		PL(A) = 1.7		End Cap
E	8				7.69 8.0		PL(A) = 1.4		Bentonite Seal
	8 8.12	SANDSTONE: medium to coarse grained, pale grey, 10%-30% fine grained laminations, medium to high strength, fresh, slightly fractured to unbroken,		с	8.34		PL(A) = 1.4 PL(A) = 1.2		
	9	Hawkesbury Sandstone	· · · · · · · · · · · · · · · · · · ·		0.40				-9
~[9.32	 □ \ 9 31-9 33m; low strength seam			9.19 9.21		PL(A) = 1.1		
		\9.31-9.33m: low strength seam / SANDSTONE: refer following page		с	9.46		PL(A) = 1.1		
-	10.0								

 RIG:
 Diatube, Vacuum truck, XC
 DRILLER:
 TJ Cutting, Excavac, Terr**bi@GED:** KR
 CASING:
 HWT to 7.2m

 TYPE OF BORING:
 Diatube 0-0.04m (300mm diam.) and 0.04-0.26m (200mm diam.), NDD to 3.0m, SFA (TC-bit) to 7.24m, NMLC to 13.77m

 WATER OBSERVATIONS:
 Groundwater observed at 4.5m

REMARKS: Standpipe details: backfill 13.77-8.24m, bentonite 8.24-7.34m, fine sand 7.34-3.74m, bentonite 3.74-2.88m, backfill 2.88-0.2m, gatic cover 0.2-0.0m, Screen 7.24-4.24m, blank 4.24-0.1m

SAN	IPLIN	G & IN SITU TESTING	LEG ن	END						
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_	_
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Doug			
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)						rners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test		11	O a start with a start	I Factor		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	I Envir	onment	Groundwater
					•					

CLIENT:

PROJECT:

Vertical First Pty Ltd

Link Tunnel

LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 16.3 AHD **EASTING:** 333940.8 **NORTHING:** 6249253.1 **DIP/AZIMUTH:** 90°/-- BORE No: BH202 PROJECT No: 86767.07 DATE: 29/10 - 6/11/2020 SHEET 2 OF 2

								h. 90 /		SHEET 2 OF 2
		D "	Description	ji L		Sam		& In Situ Testing	Sr.	Well
RL		Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
. 9			SANDSTONE: medium grained, pale grey, 40%-50% fine grained laminations, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone		с	10.34 10.61		PL(A) = 1.2		
- - - - - - - -		11			с	11.2		PL(A) = 1		-11 Sand Backfill
		12				12.22 12.4		PL(A) = 1		-12
· · · · · ·		13 13.7	13.52-13.55m: low strength seam Bore discontinued at 13.77m		С	13.33 -13.77-		PL(A) = 1		-13
2		14	- Target depth reached							- 14
-		15								- 15
		16								- 16
· · · · · ·		17								-17
		18								-18
		19								- 19
-	-									

 RIG:
 Diatube, Vacuum truck, XC
 DRILLER:
 TJ Cutting, Excavac, Terr**bi@GED:** KR
 CASING:
 HWT to 7.2m

 TYPE OF BORING:
 Diatube 0-0.04m (300mm diam.) and 0.04-0.26m (200mm diam.), NDD to 3.0m, SFA (TC-bit) to 7.24m, NMLC to 13.77m

 WATER OBSERVATIONS:
 Groundwater observed at 4.5m

REMARKS: Standpipe details: backfill 13.77-8.24m, bentonite 8.24-7.34m, fine sand 7.34-3.74m, bentonite 3.74-2.88m, backfill 2.88-0.2m, gatic cover 0.2-0.0m, Screen 7.24-4.24m, blank 4.24-0.1m

	SAMP	LINC	3 & IN SITU TESTING					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Ρ	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	1	1.	A Douglas Partners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Ľ.	Contractoria I Frankramment I Communication
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 4095

Results of Dynamic Penetrometer Tests

Client	Vertical First Pty Ltd	Project No.	86767.07
Project	Link Tunnel	Date	03-05/11/2020
Location	8-10 Lee Street, Haymarket	Page No.	1 of 2

Test Locations	BH201	BH202					
RL of Test (AHD)	16.4	16.3					
Depth (m)			Pene	etration F Blows/15	Resistanc ^{0 mm}	e	
0.00 – 0.15	Е	Е					
0.15 – 0.30	Е	Е					
0.30 - 0.45	Е	Е					
0.45 - 0.60	Е	E					
0.60 - 0.75	Е	Е					
0.75 – 0.90	Е	E					
0.90 – 1.05	7	E					
1.05 – 1.20	5	E					
1.20 – 1.35	5	E					
1.35 – 1.50	4	Е					
1.50 – 1.65	8	E					
1.65 – 1.80	7	Е					
1.80 – 1.95	8	Е					
1.95 – 2.10	3	Е					
2.10 – 2.25	8	Е					
2.25 – 2.40	7	Е					
2.40 - 2.55	4	Е					
2.55 – 2.70	4	E					
2.70 – 2.85	3	5/100					
2.85 - 3.00	3	13					
3.00 – 3.15	2	14					
3.15 – 3.30	3	16					
3.30 – 3.45	3	19					

Test Method Remarks

 $5\/\ 100\$ indicates 5 blows for 100 mm penetration,

SURFACE LEVEL: 16.3 AHD **EASTING:** 333937 NORTHING: 6249257.8 DIP/AZIMUTH: 90°/--

BORE No: BH203 PROJECT No: 86767.07 DATE: 29/10 - 4/11/2020 SHEET 1 OF 2

		Description	De	gree atheri	of	.c		Rock	th	2		acture		Discontinuities			-	n Situ Testing
R	Depth (m)	of				Graphic Log				Water	S	bacing (m)		B - Bedding J - Joint	be	see.	RQD %	Test Results
	(11)	Strata	∧ ∧ H	NN NS O	νĥ	<u>5</u>					10.0	0.50		S - Shear F - Fault	Type	ပိမ္မိ	₿ 8%	& Comments
	0.02	\TILE: 20mm thick, stone /			1	<u>.</u> 												
	0.25 - 0.32′	CONCRETE SLAB: sub-angular, fine sandstone and igneous aggregate within a coarse sand matrix (0.02-0.09m), sub-angular, fine igneous aggregate with 9mm diameter steel reinforcement at 0.22m depth (0.09-0.25m)																
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.74 -	FILL/Gravelly CLAY: low plasticity, grey-brown, sub-angular, fine igneous gravel, with fine sand and silt, w <pl, a="" generally="" in="" stiff<br="">condition</pl,>													A/E_			
	2.2 -	CONCRETE: sub-rounded to sub-angular, medium sandstone aggregate, possible former footing FILL/SAND: fine to medium, brown, with clay nodules, trace igneous													A/E			
13	3	gravel, moist, generally in a medium dense condition SAND SP: fine to medium, pale brown, moist, apparently loose, alluvial													A/E			
	4	Below 2.8m: pale grey																
	5 5.0 -	Silty CLAY CH: high plasticity, grey, w>PL, apparently firm to stiff, residual								04-11-20 🗚					A			
· · ·	6	Below 5.8m: pale grey, with fine sand, apparently stiff to very stiff													A			
· · ·	6.4 -	SANDSTONE: fine to medium grained, pale grey and orange-brown, very low and low strength with medium strength												6.42m: Cs, 100mm	с	100	73	PL(A) = 0.3 PL(A) = 0.3
	7	bands and clay seams, highly weathered, fractured, Mittagong formation												6.98m: Cs, 50mm 7.2m: Cs, 50mm 7.46m: Cs, 60mm				PL(A) = 0.07
	7.55 -	SANDSTONE: medium grained, pale grey and orange-brown, trace dark grey siltstone laminations, high then medium strength, highly												7.55m: B0°, cly co 3mm, cu, ro 7.55m: B0°, cln, pl, ro	С	100	47	PL(A) = 1.5
	8.65 -	weathered, slightly fractured, cross-bedded at 0-10°, Hawkesbury Sandstone Below 8.12m: grading to slightly																PL(A) = 0.6
	9	Vecathered SANDSTONE: medium grained, pale grey, medium strength with very low strength bands, slightly weathered with highly weathered bands, slightly fractured, Hawkesbury Sandstone											1	8.88m: B0°, cly vn, pl, ro 8.9m: J75°, cln, pl, ro 9m: Ds, 90mm	с	100	75	PL(A) = 0.8 PL(A) = 1.1
	9.86	า เฉพาตอมนา y อิสาเนรเปา เฮ	┤╎╉	<u> </u>			╞╷╧							9.82m: Ds, 40mm				

DRILLER: TJ Cutting, Excavac, TerradesGED: KR **RIG:** Diatube, Vacuum truck, XC CASING: HQ to 6.4m TYPE OF BORING: Diatube 0-0.04m (300mm diam.) and 0.04-0.25m (200mm diam.), NDD to 4.0m, SFA (TC-bit) to 6.4m, NMLC to 13.43m WATER OBSERVATIONS: Groundwater observed at 5.0m **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample Water seep Water seep Water level A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDE

CLIENT: **PROJECT:**

Link Tunnel LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

SURFACE LEVEL: 16.3 AHD **EASTING:** 333937 **NORTHING:** 6249257.8 DIP/AZIMUTH: 90°/--

BORE No: BH203 PROJECT No: 86767.07 DATE: 29/10 - 4/11/2020 SHEET 2 OF 2

			D (Deals							
	Donth	Description	Degree of Weathering ≳ ≩ ≩ § ∞ ⊯	nic D	Rock Strength	e _	Fracture Spacing	Discontinuities	Sa	amplii	ng & I	n Situ Testing
RL	Depth (m)	of		Loc	Strength Very Low Medium High Very High	Nat	(m)	B - Bedding J - Joint	Type	ore c. %	93 BOD B3	Test Results &
	. ,	Strata	W H M S L K N N N N N N N N N N N N N N N N N N	G	High Red	0.01	0.05 0.10 0.50 1.00	S - Shear F - Fault	È	U M	Ж °`	Comments
	-	SANDSTONE: medium grained,		::::					С	100	93	
-9	-	pale grey, medium to high strength, fresh, slightly fractured, Hawkesbury		::::		l li						PL(A) = 1.4
	-	Sandstone (continued)						10 E9m; Da 20mm				FL(A) = 1.4
-	-							10.58m: Ds, 30mm	С	100	93	
-	-11											
	-						╎┢═┛╎	11.22m: B0°, cly vn, pl,				PL(A) = 1.3
Ē	-					- Li		\ ro				FL(A) = 1.5
	-						═╪┱┛╎╎	└ 11.3m: B0°, cly co 5mm, │ pl, ro				
	-							^{11.58} m: Cs, 50mm				
È	- 12			::::				^L 11.75m: B0 [°] , cly co 10mm, pl, ro				
-4	-								С	100	96	PL(A) = 1.2
E	-					1						()
E												
ŀ	- 13		iiiii		iiiii	i	ii ii					
-	-								с	100	97	
-0	13.43					μ		13.24m: B0°, cly co 10mm, pl, ro		100	57	PL(A) = 1.5
-	-	Bore discontinued at 13.43m - Target depth reached						(<u>''''''''')</u>				
[raiget deparroaciou										
	- 14											
-~~	-											
	-					- Li						
F	-											
E	- 15					l li	ii ii					
	- 13											
	-					l li						
F	-											
	-											
[- 16					1						
-0	-											
	-					l li						
	-											
È	17											
[]	- 17											
-7	-											
È												
F	- 18					[i						
-~												
E						i	11 11					
E												
ţ												
ţ	- 19											
-~												
E						[į						
[
ŀ	-					_ L li						

DRILLER: TJ Cutting, Excavac, TerradesGED: KR **RIG:** Diatube, Vacuum truck, XC CASING: HQ to 6.4m TYPE OF BORING: Diatube 0-0.04m (300mm diam.) and 0.04-0.25m (200mm diam.), NDD to 4.0m, SFA (TC-bit) to 6.4m, NMLC to 13.43m WATER OBSERVATIONS: Groundwater observed at 5.0m **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND
 LEGEND

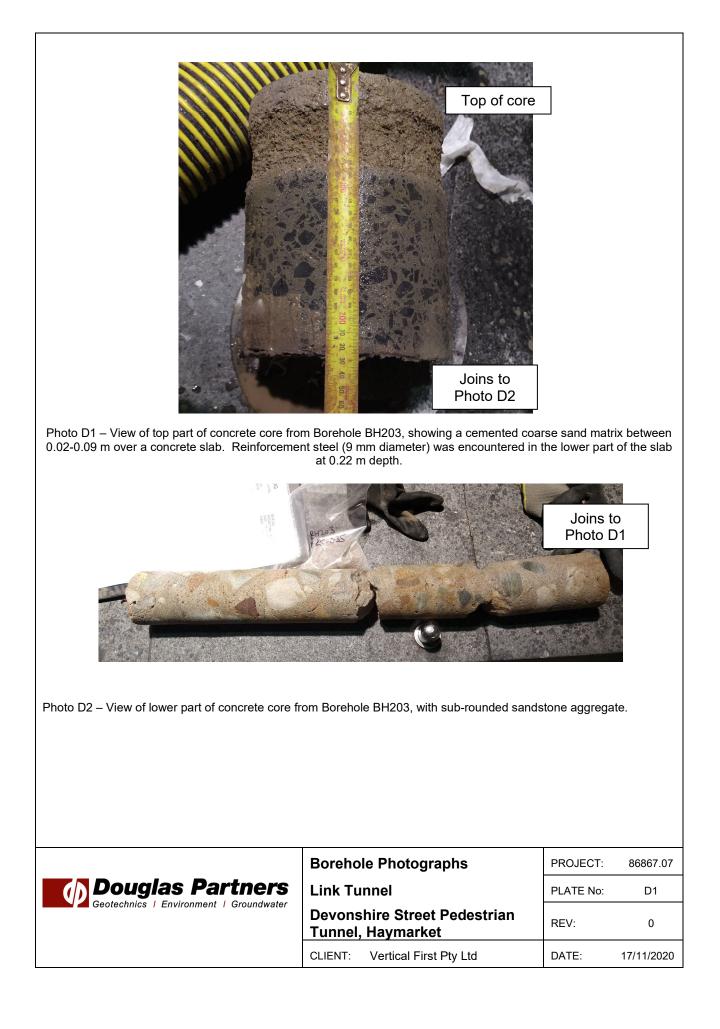
 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test


 V
 Shear vane (kPa)
 LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample Water seep Water seep Water level A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDE

CLIENT: **PROJECT:** LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

Link Tunnel

BORE: BH203	PROJECT:	HAYMARKET	NOVEMBER 2020
Geotechnics / Environment /	Groundwater	Project No: %6767-07 BH ID: BH 20-3 Depth: 6-40-11:00m Core Box No.: 1/2	
86707.07 Haymarket 4/11/20 BH			
8			
10/		i ji ji	
	6.40 -	- 11.00m	

BORE: BH203	PROJECT:	HAYMARKET	NOVEMBE	R 2020
	Groundwater	Project No: %676707 BH ID: <i>Bf/20.3</i> Depth: // <i>40 - 13 · 43 M</i> Core Box No.: 2 /2		o de o d
11				
13 44 11 11 11 12 -1-1		END OF HOLE	13-43m	
	11.00m	- 13.43m		

SURFACE LEVEL: 15.4 AHD **EASTING:** 333963 **NORTHING:** 6249315 **DIP/AZIMUTH:** 90°/-- BORE No: W2 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

					DIF	'AZII		H: 90°/		SHEET 1 OF 1
			Description	JC		Sam		& In Situ Testing	5	Well
RL	Depti (m)	h	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
\vdash	0.	05	ASPHALTIC CONCRETE			0.0	0)			
15	-	15 -			c c	0.35 0.55		PL(A) = 1.6		
ł	-					0.8				
-	- 1. -	03 - 12 -	Silty CLAY CI: medium plasticity, pale grey mottled dark red, w <pl, (possibly<br="" apparently="" residual="" stiff="" stiff,="" to="" very="">extremely weathered Ashfield Shale)</pl,>		С	1.15		PL(A) = 1.5		-1
-1-	1.: - -	33 –	SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, high strength, fractured, Mittagong formation Bore discontinued at 1.33m - Target depth reached			-1.33-				-
-	- 2 - 2									-2
	-									-
-	- - - 3 -									-3
-12-	-									
-	- - 4 -									-4
-1-	-									
-	-									

RIG: Hand Drill

TYPE OF BORING:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Nick Ruha Diatube (50mm) to 1.33m

LOGGED: NB

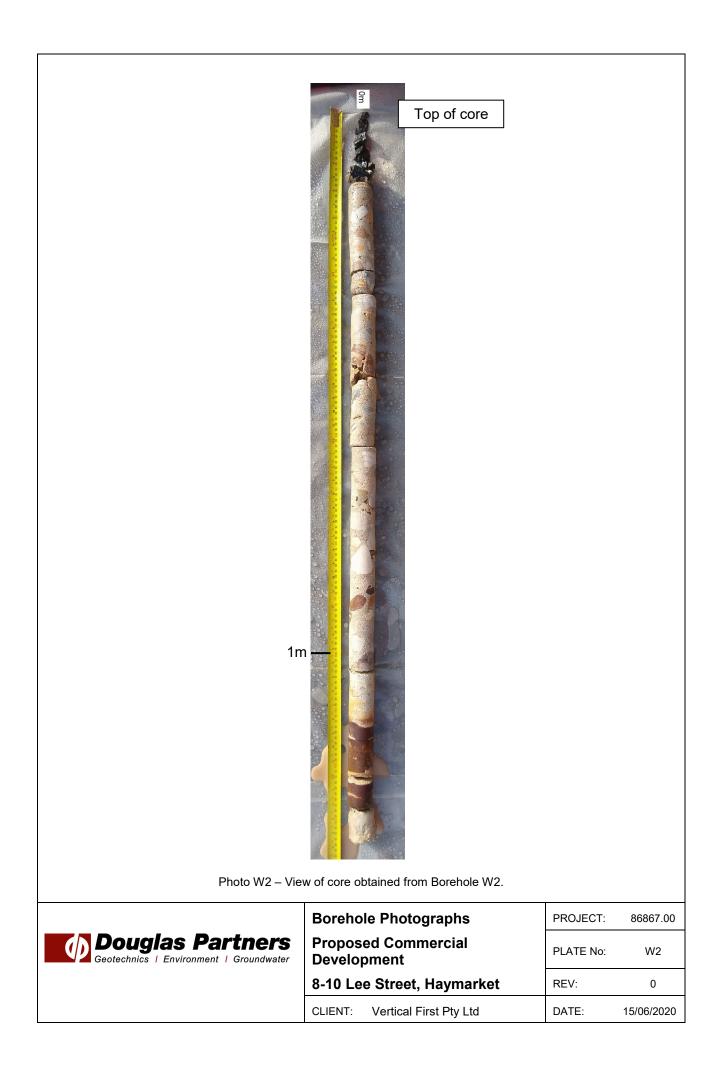
CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling REMARKS: Surface level taken from survey drawing provided

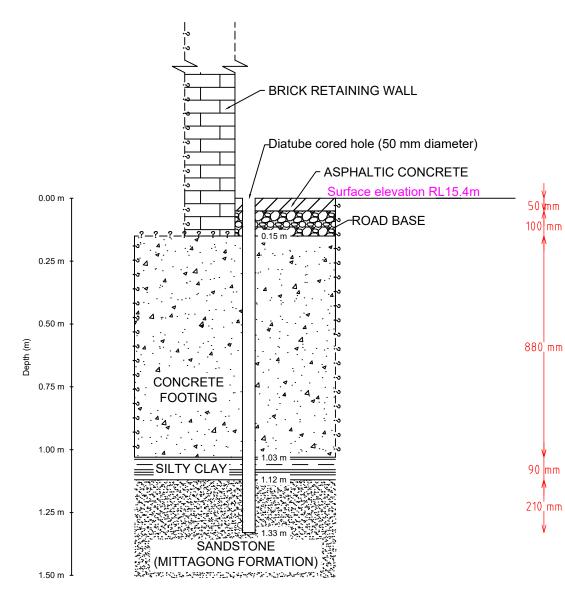
 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)


 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 C ore drilling
 W
 Water sample
 pp
 Pocket penetrometer (KPa)


 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CLIENT: Vertical First Pty Ltd							
OFFICE: Sydney	DRAWN BY: JDB						
SCALE: 1:15 @ A3	DATE: 15.6.2020						

SURFACE LEVEL: 13.4 AHD EASTING: 333954 NORTHING: 6249290 **DIP/AZIMUTH:** 70°/135°

BORE No: W3 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Sampling & In Situ Testing Description Well Graphic Log Water Depth Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata 0.0 SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, medium to high strength, fragmented, Mittagong С formation 0.46 С • 1 1 1.2 1.2 Bore discontinued at 1.2m - Target depth reached - 2 -2 3 - 3 4 - 4 DRILLER: Nick Ruha

RIG: Hand Drill TYPE OF BORING:

CLIENT:

PROJECT:

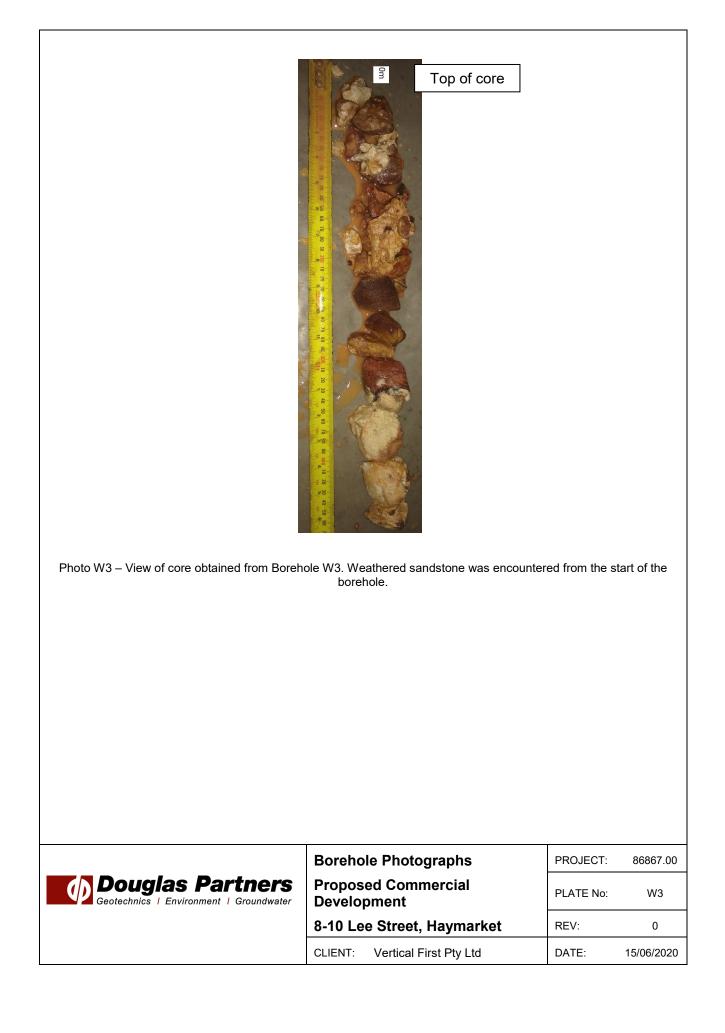
LOCATION:

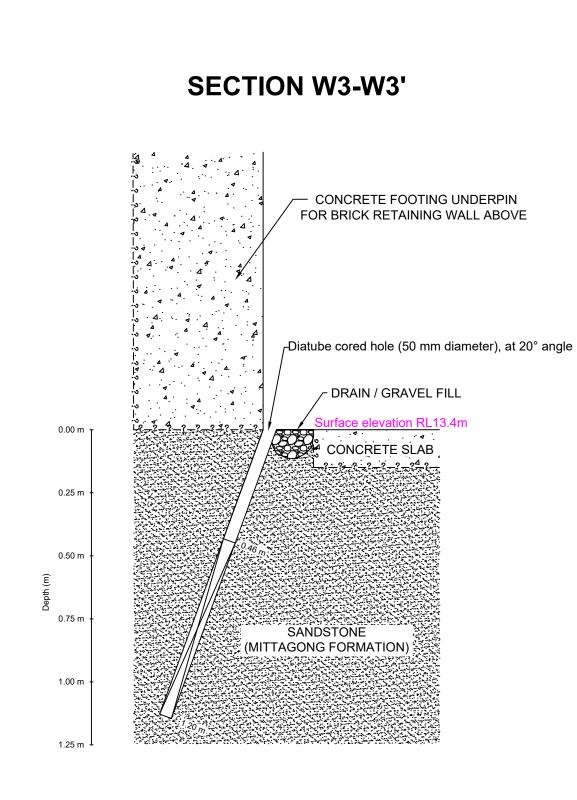
Vertical First Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

Diatube (50mm) to 1.2m


LOGGED: NB


CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

Note: Depth measurements are along the length of the hole.

CLIENT: Vertical First Pty Lt	d	TITLE:	W
OFFICE: Sydney	DRAWN BY: JDB		Pr
SCALE: 1:15 @ A3	DATE: 15.6.2020		8-′

BOREHOLE LOG

SURFACE LEVEL: 13.4 AHD **EASTING:** 333948 **NORTHING:** 6249282 **DIP/AZIMUTH:** 60°/135° BORE No: W4 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

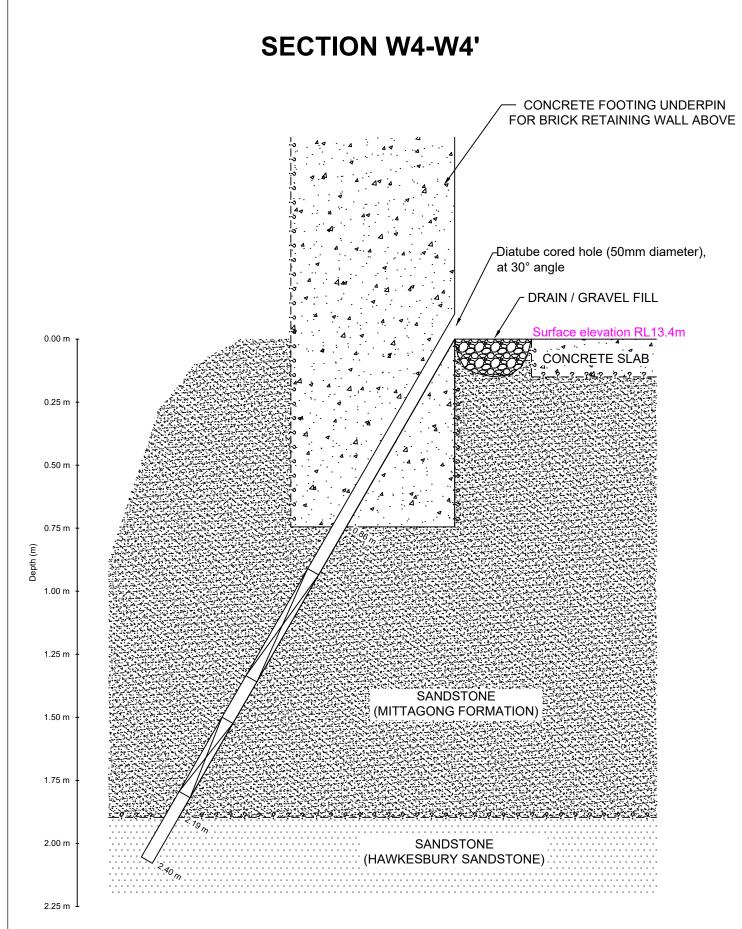
	Depth	Description	J J				& In Situ Testing	er	Well
	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-		CONCRETE: grey, with fine to coarse sub-rounded and sub-angular fragments of high strength sandstone, trace voids	0.0.0.0 0.0.0	С	0.0		PL(A) = 1.5		-
	0.86 -		0.0.0.0.0.0.0.0	С	0.4				
	1	SANDSTONE: fine grained, orange-brown, highly weathered, medium to high strength, fractured, Mittagong formation		С	0.9				-1
	1.57			С	1.5 1.7		PL(A) = 0.29		-
-	2 2.12 2.19 -			С	2.0		PL(A) = 0.99		-2
	2.4 -	SANDSTONE: fine to coarse grained, pale orange, highly weathered, medium to high strength, fractured, Hawkesbury sandstone Bore discontinued at 2.4m - Target depth reached			-2.4-		, ,		
	3								-3
•	4								-4
-	: Hand	Drill DRILLER: Nick Ruha			GED		CASIN		<u> </u>

WATER OBSERVATIONS: No free groundwater observed whilst drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd


LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

	SAM	PLIN	G & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partn	0 10
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)	1			IErs
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			Or shark the I Frederic and I Ores	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Grou	ındwater
						-			

Note: Depth measurements are along the length of the hole.

CLIENT: Vertical First Pty Lt	d	TITLE: W4 Cross Section
OFFICE: Sydney	DRAWN BY: JDB	Proposed Commer
SCALE: 1:15 @ A3	DATE: 15.6.2020	8-10 Lee Street, Ha

Douglas Partners Geotechnics | Environment | Groundwater

Bore Volume = caung volume + filter park

BH8

Eiold Shee	4			Born V	ohane = caung volum volume	1
oundwater Field Shee	L				$= \pi \mathbf{b} \cdot \mathbf{d}_{1} \cdot 4 + \mathbf{a} \mathbf{c}$	元·d. /4-,元, c 4)
ject and Bore Installation D	BH8 (TOP	- A)		Where	z = 3.24	
V/ VIII.					n = porouty (0.5 for	most filter pack
ject Name:	HAYMARK				material)	
ject Number:	86767.01	·····	<u></u>		h; = height of water d = cianxier of ann	column
e Location:					h = length of filter ;	pack
re GPS Co-ord:	·				$d_i = diamater of cause$	
tallation Date:				Bore	Voi Normaliy:	7.2*h
V Level (during drilling):		n bgl		<u> </u>		
ell Depth:		n bgl				
reened Interval:	r	n bgl				
ntaminants/Comments: -	•					
ore Development Details						
ate/Time:	23107/19	15:00	0			
irged By:	AS					
W Level (pre-purge):	Q.3 I	m bgl			·····	
	<u> </u>	m hal				
W Level (post-purge):		interface / vi	isual). Thickness	s if observed	<u>. </u>	
	100 1 (10)	m bgl				
bserved Well Depth:	62	1 * 0	ictual_bor	e volup	ne ~40L	lary Islowr
stimated Bore Volume:		mud min 3 WG	livel or(dry)			
Star volume r angent	(Larger, no chail	The interf	face meire	MARTHU	ne water	<u>cubes</u>
quipment:	billub barr	<u></u>	<u> </u>	<u></u>		
icropurge and Sampling De	tans		<u></u>			
ate/Time:	<u> </u>	<u></u>				
ampled By:	L					
/eather Conditions:			<u></u>			
W Level (pre-purge):		m bgl	<u></u>			
W Level (post sample):	[m bgl		ss if observed		
SH observed:	Yes / No (Interface ,	visual). Thicknes	SILODOULT		
bserved Well Depth:		m bgl				
stimated Bore Volume:	<u> </u>	L				
Total Volume Purged:	t	L				
<u></u>	1					
Equipment:						
	<u> </u>		y Parameters		1 ~bidity	Redox (mV)
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	+/- 10 mV
	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/~ 10 m v
Stabilisation Criteria (3 readings)	<u> </u>	+	1		<u> </u>	
		+	1		<u> </u>	<u></u>
	<u></u>	+	1			
		_ 	+		1	
			+			
				······································		
	DO % Sat	SPC	TDS			
Additional Readings Followin	Ig DO % Sat					
Additional Readings Followin stabilisation:	IG DO % Sat		TDS ie Details			
stabilisation:		Sampl				
stabilisation: Sampling Depth (rationale):		<u>Sampl</u> m bgl,	ie Details			
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.		<u>Sampl</u> m bgl,	ie Details	ULLIESS		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):		<u>Sampl</u> m bgl,		ULLIESS		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:		<u>Sampl</u> m bgl,	ie Details	LIFIESS		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:		<u>Sampl</u> m bgl,	ie Details	uriess		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:		<u>Sampl</u> m bgl,	ie Details	uriess		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	Yellow	<u>Sampl</u> m bgl, - browη	<u>ie Details</u> , Still, odo			
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	Yellow	<u>Sampl</u> m bgl, - browη	ie Details		Ping, wat	

æ.

Douglas Partners Geotechnics | Environment | Groundwater

ald Shoot

BHB

	oundwater Field Sheet						
roject and Bore Installation	Details		i Marine and Marine and Marine and Marine		a contraction and the internal	n(zh:d: /4-zh:d - 4)	
ore / Standpipe ID:	BH8 (TC	(GA)		When	e: π = 3.14		
roject Name:	HAYMAR	KET DSI				for most filter pack	
roject Number:	86767.0				material)		
ite Location:	001010				$h_s = height of was$ $d_s = diameter of as$		
ore GPS Co-ord:					h; = length of filts		
					$d_i = diameter of c$	aung	
stallation Date:		m bgl		Bore	Vol Normally	r: 7.2*h	
W Level (during drilling):		m bgl					
ell Depth:		and the second se					
reened Interval:	. /	m bgl					
ontaminants/Comments:	-						
ore Development Details			entitetti e deleta da no-	<u>,</u>			
ate/Time:	23/07/19	15:0	00	a de la constance de la constance de la constance de la constance de la constance de la constance de la constan			
urged By:	AS						
W Level (pre-purge):	2.3	m bgl					
W Level (post-purge):	8.9	m bgl		1000 C C			
SH observed:	Yes / No (interface /	visual). Thickne	ess if observed			
bserved Well Depth:	15.2	m bgl					
stimated Bore Volume:	G2		actualbo	ore voluc	0 × 401	- (dry/sk	
	(target: no drill	mud min 3 w	ell vol. or (dry)	1001		=	
otal Volume Purged:			face metre	hailosli	7010101	CUBES	
quipment:		ery, wer	FOLG WEFLE	, DOTTEL TU	IE, WITHEL	1106.3	
icropurge and Sampling De	tails		7 101				
ate/Time:	1500	30.3	F. 101				
ampled By:	JJN						
Veather Conditions:	overa	st (indoc	101				
GW Level (pre-purge):	203	m bgl					
W Level (post sample):	2.7	m bgl	~				
SH observed:	Yes / No (interface 1	visual). Thickn	ess if observed	:		
bserved Well Depth:	15.2	m bgl					
stimated Bore Volume:	93	L					
	3				hiq _s	-	
otal Volume Purged:		L		2	- 0	1 -	
quipment:	Perpy	, wan	1. Intert	ace not	er po	118	
	1 /	Water Quality	y Parameters		7		
ime / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
tabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
	120	3.51	329	574	41	189	
1515	18.2	2.97	327	5.4	28	184	
1516	19.9	2.53	315	5.4	28	160	
19 (7	19.2	2.28	313	5.4	29	157	
(5 18			311	5.4	29	150	
1319	19.2	1-94		7.4		137	
1520	19.3	1.62	317	5.4	24	151	
1521	19.3	1.43		5-4	25	150	
1522	19.3	1036	310	5.4	20	148	
14							
dditional Readings Following	DO % Sat	SPC	TDS				
stabilisation:							
Stabilloation		Sample	e Details				
Compling Dopth (rationale):	1	m bgl,					
Sampling Depth (rationale):		in bgi,					
Sample Appearance (e.g.	Vellow	- brown	, still, odc	ULLESS			
olour, siltiness, odour):	1						
Sample ID:							
QA/QC Samples:							
Sampling Containers and							
iltration:							
	0011 1	1011 1/ 2	10 (7) -	slow pump	Da. Wate	ſ	
Comments / Observations:				SIGNA barnh	ing i want		
	coming	outonto	FF			CI	
Part Calle An	100		dont	11.an	6 Was	W John	
Post Sample purg	e ~ 10	OL	(AL)	rlo-tim 1	0 0000	(//	
1 -11 1 1 0	1	1 M	0 1/00		1	v /	
1-Stalled lever	logar	ot All	In ISC	>)	Rev March 2	
17.1 RTEATH 45	1		0 - 1-		/	nev murch 2	
1							
at approx	1420						

Geotechnics / Environment / Groundwater

Groundwater Field She	et			Bo	re Volume = caung vol volume	iume + filter ; 11 ik
Project and Bore Installation	Details					-n(xh.d. /4-xh.a. 4)
Bore / Standpipe ID:	- BHIC	ปิก		<u></u>	etet %=3.14	-
Project Name:		nrket	551		a = porouty (0 3	for most filter pack
Project Number:	86767	<u> </u>	<u>}</u>		materiai)	-
Site Location:	00101				h; = height of wa	
Bore GPS Co-ord:					ರೈ∓ ಮುಜುನೀತ್ ಂಗೆ ತ ಗ್ರಿ ≈ length ರ್ಡ ಗೆಗ	
Installation Date:			· · · · · · · · · · · · · · · · · · ·		ದೆ,≕ರುಸಾ∞ೀಷ ಂೇ	
GW Level (during drilling):		m bgl		Bo	re Vol Normaily	/: 7.2*h
Well Depth:		m bgi		······		· · · · · ·
Screened Interval:		m bgl				
					·····	
Contaminants/Comments:	-					
Bore Development Details	· · · · · · · · · · · · · · · · · · ·					
Date/Time:						
Purged By:		······································	·····			
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (visual). Thickn	ess if observe	d:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		<u> </u>				
Total Volume Purged:	(target: no dril	l mud, min 3 v	vell vol. or dry)			
Equipment:						
Micropurge and Sampling De	etails					
Date/Time:		5120				
Sampled By:	AS					
Weather Conditions:	ΓŊ	10 M				
GW Level (pre-purge):	a.1	m bģi	data lono	aer reti	rieved L	0.30am
GW Level (post sample):	3.85	m bgl	data lab			nan
PSH observed:	Yes / (No) (interface /	visual). Thickn	ess if observe	d: /	
Observed Well Depth:	3.95	m bgl				
Estimated Bore Volume:	126	L				
Total Volume Purged:	~ 5	L				
······································	000010	NO MO	M . A1 0	VOLAC	· · ·	
Equipment:	Jeohn	nb · MO	11/1111 11	19491		
······································		Water Qualit	y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	*/- 3%	÷/- 0.1	+/- 10%	+/- 10 mV
12 07	18.8	3.23	<u> </u>	7.16	137,3	7.4
13:08	413	9.06	462	6.84	1271	12
12.09	22.1	1,68	125	6.78		67
	<u> </u>		<u> </u>	<u> </u>		
		· · · · · · · · · · · · · · · · · · ·				
·····						
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	00 % 05.	0.0				
Stabilisation.		Sample	Details		1	
Compliant Depth (rationale):	3.0	m bgl,	Details			
Sampling Depth (rationale):						·
Sample Appearance (e.g.	Grey-	odourie	55			
colour, siltiness, odour):	0111	<u>\-11\</u>				
Sample ID:	<u>15FL1(</u>) []-				
QA/QC Samples:	·····					
Sampling Containers and	See					
filtration:	and have have.	$\sim \sim \sim$				
Comments / Observations:	0010 - CI	amples	LOVOD DE	Incto V	YOM	
	1.010 S	a dila r	taken pr		IGNI FRCH	intop
	· · · · · · · · · · · · · · · · · · ·	J., <u> </u>			· ····································	J

Welldry after 3 readings

Douglas Partners Geotechnics | Environment | Groundwater

PROJE	CT MM Haymarket SSI	Job No_ <u>86167.03</u> Page_	of
1	ВНІОТЬ	1710512	0
	depth://m	AS	
a	WL: pre purge 1.85m (volu	me= 9.15× 7.2 = 65.8	L)
	WL: post purge 10.6m	NIBIL OF dry	
	clata logger installed to 10.5m	post purge at 10:	51 a m
	v purged: ~30L > well dry		
	Wwe equipment: twister pump		
	BH 107 a		
	depth: 4m		
	WL prepurge 3.2m (volume	= 5.76L)	
	WL post purge 4m (dry)	~15L ordry	•
	data logger instatled to 3.5m pos	+ purge (11:30am)	
	vpurged: V3L		•
	equipment: bailer		
Comps	By / / Checked By /	/ Approved By	-

Geotechnics / Environment / Grounawater

			Bare	Borz Volume = caung volume + filter ;: 1k			
Groundwater Field She					volume — rh.d.://i.i.r	: a(πh:d; /4-πh-c=4) ,	
Project and Bore Installation	the second second second second second second second second second second second second second second second s	<u>AT 0</u>			= 74; a; 4+1 o: $x = 3.14$	3(AU2)(0) 94-920-0 497 1	
Bore / Standpipe ID:	BHU	018	CC		a = potouty (0 3 h	or most filter pack	
Project Name:	Have	markel	<u>SSI</u>	·······	material)		
Project Number:	<u> </u>	57.03			h _i = height of wate	a column	
Site Location:					d,= diameter of an		
Bore GPS Co-ord:					$b_2 = length of filter d_1 = d_{AB} ster of C$		
Installation Date:					e Voi Normaliy		
GW Level (during drilling):		m bgl		BOL	e voi Normany		
Well Depth:		m bgl					
Screened Interval:		m bgl					
Contaminants/Comments:	-						
Bore Development Details							
Date/Time:							
Purged By:							
GW Level (pre-purge):		m bgl					
GW Level (post-purge):		m bgl					
PSH observed:	Yes / No (/isual). Thickn	ess if observed	•		
Observed Well Depth:		m bgl	<u> </u>				
Estimated Bore Volume:		1					
Total Volume Purged:	(target: no drill	L I mud, min 3 w	ell vol. or drv)		<u> </u>		
77	(target no uni					······	
Equipment:							
Micropurge and Sampling De							
Date/Time:	9.610	<u>55120</u>					
Sampled By:	[]	<u> </u>					
Weather Conditions:	<u> </u>	7101	V-la la			1:11	
GW Level (pre-purge):	<u>.</u> d.p			<u>ler retrie</u>			
GW Level (post sample):	5.3		$\frac{\alpha}{\alpha}$	ess if observed		114 11.00	
PSH observed:	Yes / (No) (visual). Thickn	ess II observed			
Observed Well Depth:	11.15	m bgl			······································		
Estimated Bore Volume:	61	<u> </u>					
Total Volume Purged:	~ 15						
Equipment:	aenourn	O, WQI	Th int.	neter			
	10010			in cive			
			/ Parameters	-11	Turbidity	Redox (mV)	
<u>Time / Volume</u>	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН			
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	*/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
13:07	19.3	3.47	<u> </u>	7.04	·····	12	
3:28	21.3	1.09	499	7.22		- 78	
13:39	22.1	0.62	ц <u>q</u> ц	7,19	82.2	-56	
13:30	28.3	0.33	<u> </u>	7.18	35.5	-68	
13:31	29.4	0.24	474	7.93	240	-75	
13:32	29.5	0.18	474	7.97	19.6	-77	
13:33	22.5	Ŏ,I4	472	7.24	16.8	-76	
in the second second second second second second second second second second second second second second second		-					
······································	1						
Additional Readings Following	DO % Sat	SPC	TDS				
stabilisation:	·						
		Sample	Details				
Sampling Depth (rationale):	8.0	m bgl,					
Sample Appearance (e.g.				<u>^</u>			
colour, siltiness, odour):	clear	- grey, (odourles	5			
Sample ID:	REIT	NTR					
QA/QC Samples:	1 13411						
	******			<u></u>			
Sampling Containers and	See	COC					
Literation (< 1 I I					
filtration:	300	and have					
filtration: Comments / Observations:		Service Service	., · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

BHIO9B

Groundwater Field Sheet Project and Bore Installation Details

Bore / Standpipe ID:

Bore Volume = casing volume + filter pack $= \pi h_{c} d_{c}^{-1/4} + n(\pi h_{c} d_{c}^{-1/4} + \pi h_{c} d_{c}^{-1/4})$ Where: x = 3.14n=porotity (0.3 for most filter pack

Project Name:						n = parotity (0)	3 for most filter pack
Project Number:						material)	
Site Location:						$\mathbf{h}_{0} = \operatorname{height} \operatorname{of} \mathbf{v}_{0}$	
Bore GPS Co-ord:						d = diameter of h _i = length of fi	
Installation Date:						d = danster o	
GW Level (during drilling):	NA ···	m bgl			Bore	Vol Normal	ly: 7.2*h
Well Depth:	1973	m bgl				······	·····
Screened Interval:		m bgl					
Contaminants/Comments:	-						
Bore Development Details						,,	
Date/Time:	21.05.20	20		80	1.1	-0 2.00-	lical
Purged By:	21.00.20	<u> </u>		sluw		es emp horge	II LEEN
GW Level (pre-purge):	7.78	m bgl		SION	160 0	noge.	
GW Level (post-purge):	11.4m.	m bgl					
PSH observed:	Yes / No (visual). Thickn	ess if obs	erved:		
Observed Well Depth:		m bgl	visual j. miolar				
Estimated Bore Volume:		1	, _, _, _, _, _, _, _, _, _, _, _,	D	ata	logar	84 @
Total Volume-Purged:	(target: no dri		vell vol. or dry)				
Equipment:	(target. no un		ven voi. or ary j		IIm		
Micropurge and Sampling De	taile				<u>'''''</u>	•	
Date/Time:							
Sampled By:							
Weather Conditions:							
GW Level (pre-purge):		m bgl					
GW Level (post sample):	Ver (Ne (m bgl	visual). Thickn	coo if oho	onyody		······································
PSH observed:	Yes / No (visual). Thickn	ess il obs	erveu.		
Observed Well Depth:		m bgl					
Estimated Bore Volume:							
Total Volume Purged:		L					
Equipment:							
	L	M-4 0	y Parameters				
			EC (µS or mS/cm)		T	Turbidity	Redox (mV)
Time / Volume	Temp (°C)	DO (mg/L)		pH	<u>+</u>		
Stabilisation Criteria (3 readings)	0.1 ° C	+/- 0.3 mg/L	+/- 3%	+/- 0.1		+/- 10%	+/- 10 mV
·						·····	
Additional Readings Following	DO % Sat	SPC	TDS				
stabilisation:	<u> </u>					· · · · · · · · · · · · · · · · · · ·	
	F		e Details	·			
Sampling Depth (rationale):		m bgl,					
Sample Appearance (e.g.							
colour, siltiness, odour):							
Sample ID:							
QA/QC Samples:							
Sampling Containers and							
filtration:							
Comments / Observations:			· · · · · · · · · · · · · · · · · · ·				

Geotechnics | Environment | Groundwater

Geotechnics Er	ivironment i	Grounowater			. .	22 1
Groundwater Field She	et			Bore	Volume = casur,	mue + filter ;: 1 uk a
Project and Bore Installation	Details				••••	n(shid, /4-shis 4)
Bore / Standpipe ID:		NAB		What	x = 3.14	
Project Name:		market	551		a = porouty (3.3)	for most filter pack
Project Number:	2676			<u></u>	material)	1
Site Location:	<u> </u>				$b_q = he$; get of wat	
Bore GPS Co-ord:			<u></u>		d,⇒ dianster े∫ a b, = length of file	
	· · · · · · · · · · · · · · · · · · ·				ರೆ.= ರುಸ್ರಾಗಿಡ ಂಗ ರ	
Installation Date: GW Level (during drilling):		m bgl		Bor	e Vol Normally	r: 7.2*h
Well Depth:		m bgl	······································			
Screened Interval:		m bgl				
		in bgi		······································		
Contaminants/Comments:						
Bore Development Details						
Date/Time:						
Purged By:			· · · · · · · · · · · · · · · · · · ·	·····		
GW Level (pre-purge):		m bgl				
GW Level (post-purge):	New / New /	m bgl	/isual). Thickn	ess if observed	·	
PSH observed:	Yes / No (nsuar j. micki	icas il Obselvet	4	
Observed Well Depth:		m bgl				
Estimated Bore Volume:	(target: no drill	L mud min 2 w	all vol or day)			
Total Volume Purged:	(target: no unii	mua, min 5 w	en voi. or ary)			
Equipment:			······································			
Micropurge and Sampling Do						
Date/Time:	961	05/20				· · · · · · · · · · · · · · · · · · ·
Sampled By:		<u>S</u>				
Weather Conditions:			Hold Losor		ed. 12:1	mgF
GW Level (pre-purge):	<u> <u> </u></u>		<u>Inta Imag</u>		(305)	12590M
GW Level (post sample):	10.9		<u>iaia tobo</u> visual). Thickr	er <u>pri 10</u> less if observed		10 STUR
PSH observed:	Yes / (No) (visual). Thicki	less il observed	1.	
Observed Well Depth:	$1^{1} a \cdot 0$	m bgl				
Estimated Bore Volume:		<u>L</u>				
Total Volume Purged:	~15	L	<u> </u>	*		<u></u>
Equipment:	geopump	i int me	ter, wat	1 ibailer		
			/ Parameters			
Time / Volume	Temp (°C)	DQ (ma/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Time / Volume Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	÷/- 0.1	÷/- 10%	+/- 10 mV
and the second second second second second second second second second second second second second second second			77.7	7.40		1 - 1
<u> </u>		3.16	764	720		-10
14:40	122.4	1,25		729	3.2	-21
	1 22.2			736	99.2	- 22
14:41	13.0	0.53	-71	7.42	110.5	-36
14.43	23.1	0.60	735	7.31		1-41
14:43		0,55	731	7 31	910	1-42
	- 33.1	1 0, 22		<u> Ł</u>		
			}	<u> </u>		
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	,		· · · · ·			
stabilisation.		Sample	e Details	<u>I</u>	<u>I.,</u>	
Campling Dopth (retionals):	1 10.5	m bgl,		<u> </u>		
Sampling Depth (rationale): Sample Appearance (e.g.					 I	1
colour, siltiness, odour):	WOrd	n - grei	1. slight	114 5111	y. oclou	irless
Sample ID:	BHIC		<u></u>			
QA/QC Samples:		/~1_/				
Sampling Containers and	+					
	see co	20				
filtration:						
Comments / Observations:						

Rev March 2012

Client: Project: Location:	Propose	n Pty Ltd d Commercial e Street, Haym		ment		Project No: Test date: Tested by:	86767.00 30-Jul-19 JJH	
Test Locatio Description: Material type:	Standpip	e in borehole ne				Test No. Easting: Northing Surface Level:	BH8 333954 6249289 15.5	m m m AHD
Details of We Well casing d Well screen o Length of wel	liameter (2r) liameter (2R))	76 76 12.1	mm mm m		to water before test to water at start of te	2.3 est 14.8	m m
Test Results Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho					
0 5 10 15 20	14.80 7.95 3.71 2.45 2.36	12.50 5.65 1.41 0.15 0.06	1.000 0.452 0.113 0.012 0.005	1.00 Head Ratio Hypo 1.00 Horo Head Ratio Hypo Horo Horo Horo Horo Horo Horo Horo Ho	0	1 Time (minu	10 tes)	
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = r R = radius	adius of of well s	casing creen		
Hydra	ulic Condu	ctivity	k = =	1.08	aken to r - 06	screen ise or fall to 37% of init m/sec cm/hour	ial change	

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayr		ment			Test	ect No: date: ed by:	86767.00 17-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne					Test Easti North Surfa	ng:	BH107A 333945 6249270 15.5	m m m AHD
Details of We Well casing d Well screen d Length of wel	iameter (2r) liameter (2R))	50 76 0.5	mm mm m		-		r before test r at start of test	2.13 3.75	m m
Test Results										
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho							
0	3.75	1.62	1.000	_						
5	3.72	1.59	0.981							
10	3.69	1.56	0.963							
20	3.63	1.50	0.926	1						
30	3.58	1.45	0.895	1	.00 〒					
40	3.52	1.39	0.858							
50	3.46	1.33	0.821							
60	3.39	1.26	0.778		-				Ž	
70	3.33	1.20	0.741	•						
80	3.27	1.14	0.704	ų, h						
90	3.22	1.09	0.673	tio						$\langle $
100	3.15	1.02	0.630	0 Rai	.10					\
150	2.9	0.77	0.475	Head Ratio dh/ho	_					
190.5	2.73	0.6	0.370		-					
200	2.7	0.57	0.352	_						
300	2.43	0.3	0.185	_						1 A
400 500	2.29 2.21	0.16 0.08	0.099	_	_					
600	2.21	0.08	0.049	-						
700	2.17	0.04	0.025	- 0	.01 + 0		1	10	100	1000
800	2.13	0.02	0.006	-	U		I			1000
936	2.13	0	0.000					Time (minutes)	1	
								To = 190.5 mins 11430 secs		
Theory:	-	ad Permeability [Le/R)]/2Le To	calculated	where r R = radi Le = len	= rad ius of igth o	ius of o well so f well s	casing creen creen	l to 37% of initial	change	
Hydra	ulic Condu	ctivity	k = =		.4E-(0.05 [,]		m/se cm/h			

Client:	Vertical	First Pty Ltd				Proje	ct No:	86767.0	0
Project:	Propose	d Commercia	l Develop	ment		Test	date:	26-May-	20
Location:		e Street, Hayn				Teste		AS	
	0 10 200	e street, nayn					- ~ .		
Test Locatio	n					Test I	No.	BH107A	
Description:		e in borehole				Eastir		333945	m
Material type:						Northi		6249270	m
Matorial type:	Canadia						ce Level:	15.5	m AHD
						ouna		10.0	
Details of We	ell Installatio	on							
Vell casing d	iameter (2r)		50	mm	Depth to	o water	before test	2.2	m
Nell screen d	liameter (2R)	76	mm	Depth to	o water	at start of test	3.8	m
_ength of wel			0.5	m					
est Results									
		Change in		7					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	2.0		1.000	-					
0	3.8	1.60		_					
5	3.72	1.52	0.950						
10	3.66	1.46	0.913	_					
20	3.56	1.36	0.850	_					
30	3.46	1.26	0.788	1.00	······································				
40	3.37	1.17	0.731						
50	3.29	1.09	0.681	_				14 A A	
60	3.22	1.02	0.638	_					
70	3.15	0.95	0.594	_				X	
80	3.08	0.88	0.550	0				\ \ \ \ \	
90	3.03	0.83	0.519	Head Ratio					
100	2.97	0.77	0.481	io					
120	2.87	0.67	0.419	ឆ្នា 0.10					<u> </u>
137	2.79	0.59	0.369	ead					
150	2.74	0.54	0.338	Ť					4
200	2.59	0.39	0.244						
300	2.39	0.19	0.119						
400	2.29	0.09	0.056						1
500	2.24	0.04	0.025						
600	2.22	0.02	0.013	0.01					<u> </u>
650	2.21	0.01	0.006		0	1	10	100	1000
687	2.2	0	0.000	1					
							Time (minutes))	
							To = 137 mins	6	
							8220 secs	3	
heory:	Falling He	ad Permeability	calculated i	using equation	by Hyorsle	ev.			
,.	-	Le/R)]/2Le To		where r = ra	-				
	[i iii(R = radius o		-			
				Le = length			to 070/ -f	ala a la ci -	
				i o = time ta	aken to rise	e or tall	to 37% of initial of	cnange	
Hydra	ulic Condu	ctivity	k =	2.0E	-07	m/see	0		
-		-	=	0.0	71	cm/ho	Jur		
				0.0		511/10			

Permeability Testing - Rising or Falling Head Test Report

Client:	Vertical	First Pty Ltd						Proj	ect	No:			8	8676	7.00)	
Project:	Propose	d Commercia	l Develop	mer	it			Test	dat	te:			1	7-M	av-2	20	
Location:		e Street, Hayr						Test	ed l	hv.				١B	1		
Looddon	0 10 200	o o li o o l, i la j i	indiritot							<i></i>							
Test Locatio		e in herehele						Test						1107			
Description:		e in borehole						East	-					394		m	
Material type:	Sandstor	le						Nortl Surfa			<u>.</u>			4927 15.5	2	m	AHD
								Suna	ace	Lev	ei.			15.5			АПО
Details of We		on															
Well casing d			50	mn	n		th to								65	m	
Well screen d	,		76	mn	n	Dep	th to	wate	er at	sta	rt of	test		10	.72	m	
Length of wel	l screen (Le)	1	5.5	m													
Test Results																	
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho														
0	10.72	8.07	1.000	1													
1	10.63	7.98	0.989														
2	10.53	7.88	0.976														
3	10.44	7.79	0.965	Г]
4	10.34	7.69	0.953														
5	10.25	7.60	0.942		1.00 -				.	***		~					
6	10.16	7.51	0.931						_								
7	10.07	7.42	0.919										À				
8	9.98	7.33	0.908)			
9	9.89	7.24	0.897		0									1			
10	9.8	7.15	0.886		Head Ratio dh/ho									٦,			
20	8.98	6.33	0.784		tio									ł			
30	8.16	5.51	0.683	_	20.10 -							_		- \			
40	7.36	4.71	0.584	_	leac												
50	6.56	3.91	0.485	_	-												
60	5.76	3.11	0.385	_													
61.5	5.64	2.99	0.371	_													
70 80	4.87 4.22	2.22 1.57	0.275	_													
90	3.73	1.57	0.195	-											\		
100	3.73	0.75	0.134		- 0.01 (1			10			100			1000
150	2.75	0.75	0.093		l	,		1			10			100			1000
200	2.73	0.06	0.007							Tim	e (mir	utes)				
300	2.69	0.04	0.005														
400	2.68	0.03	0.004														
500	2.66	0.01	0.001						То	=	61.5	min	s				
636	2.65	0	0.000								3690						
		·															
Theory:	•	ead Permeability (Le/R)]/2Le To	calculated	w	equation here r = ra	dius c	of cas	sing		_					_	_	
				L	e = length o = time ta	of wel	ll scre	een	ll to :	37%	of in	itial	char	nge			
Hydra	ulic Condu	ctivity	k =		7.7E			m/se									
			=	•	0.02	28		cm/ł	nour	r							

Client:	Vertical	First Pty Ltd				Proje	ct No:	86767.00)
Project:		d Commercia	l Develop	ment		Test		26-May-2	20
Location:		e Street, Hayn				Teste		AS	
Loodaon	0.010	o etteot, mayn				10010	a og.		
Test Locatio						Test N		BH107B	
Description:		e in borehole				Eastin		333945	m
Material type:						Northi		6249272	m
Material type.	Ganustor						e Level:	15.5	m AHD
						Sunac	e Level.	15.5	ΠΑΠΟ
Details of We	ell Installatio	on							
Well casing d	iameter (2r)		50	mm	Depth	to water	before test	2.22	m
Well screen d)	76	mm	-		at start of test	5.15	m
Length of well			5.5	m	·				
Test Results									
		Change in		1					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	5.15	2.93	1.000	1					
1	5.10	2.93	0.983	-					
2	5.06	2.00	0.969	-1					
3	5.08	2.81	0.969	-1					
3	5.03	2.81	0.959	_					
4	4.97	2.78	0.949	1.00 -		A	A A A A A A A A A A A A A A A A A A A		
				-			manager		
6	4.95	2.73	0.932	4					
7	4.92	2.70	0.922	4				<u> </u>	
8	4.89	2.67	0.911	4					
9	4.86	2.64	0.901	e e				<u> </u> \	
10	4.84	2.62	0.894	Head Ratio					
20	4.58	2.36	0.805	ti				1 1	
30	4.35	2.13	0.727	8 0.10				<u> </u>	
40	4.14	1.92	0.655	leac					
50	3.94	1.72	0.587						
60	3.77	1.55	0.529						
70	3.61	1.39	0.474						1 I
80	3.47	1.25	0.427	_					
90	3.35	1.13	0.386						Ţ
95	3.30	1.08	0.369	0.01 -					
100	3.25	1.03	0.352		D	1	10	100	1000
150	2.87	0.65	0.222				Time (minutes)		
200	2.65	0.43	0.147				Time (minutes)	1	
300	2.41	0.19	0.065						
400	2.31	0.09	0.031						
500	2.26	0.04	0.014				To = 95 min	8	
600	2.24	0.02	0.007				5700 secs	3	
Theory:	-	ad Permeability	calculated u	•	•				
	k = [r² ln(Le/R)]/2Le To		where r = ra R = radius c Le = length To = time ta	of well so of well s	creen	to 37% of initial o	change	
Hydra	ulic Condu	ctivity	k =	5.0E		m/sec		-	
,			=	0.0		cm/hc			
				0.0		011/110			

Client:	Vertical	First Pty Ltd				Projec	t No:	86767.00	
Project:		ed Commercia		ment		Test d		5-Jun-20	
Location:		e Street, Hayn		inone		Teste		NB	
Location.	0-10 Let	e otreet, nayn	laiket			163160	a by.		
Fest Locatior	1					Test N	0.	BH109B	
Description:		e in borehole				Easting		333970	m
Aaterial type:	Sandstor					Northir		6249311	m
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							e Level:	15.3	m AHD
Details of We	Il Inotaliatia								
Vell casing di			50	mm	Depth	to water	at end of test	2.17	m
Nell screen di)	76	mm	•		at start of test	0.13	m
_ength of well			5.6	m					
est Results									
		Change in		7					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	0.13	2.04	1.000						
1	0.27	1.90	0.931						
2	0.29	1.88	0.922						
3	0.31	1.86	0.912						
4	0.31	1.86	0.912						
5	0.33	1.84	0.902	1.00		A 4	• • • • • • • • • • • • • • • • • • •		
6	0.35	1.82	0.892						
7	0.37	1.80	0.882					****	
8	0.39	1.78	0.873					2	-
9	0.41	1.76	0.863						
10	0.43	1.74	0.853	Head Ratio					
20	0.61	1.56	0.765	io d					
30	0.8	1.37	0.672	0.10 🖁 					
40	0.95	1.22	0.598	ead					
50	1.05	1.12	0.549	Ť					
60	1.14	1.03	0.505					1	
70	1.21	0.96	0.471						
80	1.28	0.89	0.436						Ţ
90	1.36	0.81	0.397						
98.5	1.42	0.75	0.368	0.01					
100	1.43	0.74	0.363		0	1	10	100	1000
200	1.96	0.21	0.103				Time (minutes)		
300	2.08	0.09	0.044				nine (minutes)		
400	2.12	0.05	0.025						
500	2.15	0.02	0.010						
600	2.17	0	0.000			٦	$r_0 = \frac{98.5}{5010}$ mins		
600	2.17	0	0.000				To = 98.5 mins 5910 secs		
Гheory:	•	ead Permeability (Le/R)]/2Le To	calculated (where r = r R = radius Le = length	adius of c of well sc of well s	casing creen creen	o 37% of initial o	change	
Hydrau	ılic Condu	ictivity	k = =			m/sec cm/ho			

Client: Project: Location:	Link Tur	First Pty Ltd nnel e Street, Hayr	narket			Projec Test d Testec	ate:	86767.07 10-Nov-2 KR	
Test Locatio Description: Material type:	Standpip	e in borehole lay and sand u	nderlain by	/ residual cla	/	Test N Easting Northin Surface	j:	BH202 333941 6249253 16.3	m m m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	50 114.3 3	mm mm m			before test at start of test	3.46 6.57	m m
Test Results	;								
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho]					
0	6.57	3.11	1.000						
0.5	6.34	2.88	0.926						
1	6.14	2.68	0.862						
2	5.89	2.43	0.781						
3	5.6	2.14	0.688	1.00					
4	5.38	1.92	0.617	1.00					
5	5.19	1.73	0.556						
6	4.97	1.51	0.486	4					
7	4.82	1.36	0.437	4					
8	4.66	1.20	0.386	2					
8.25	4.61	1.15	0.370	Head Ratio					
8.5	4.56	1.10	0.354	Ę					
9	4.48	1.02	0.328	1 1 1 1 1 1 1 1 1 1					
10	4.35	0.89	0.286	Hea					
15	3.81	0.35	0.113	-					
20	3.63	0.17	0.055	-					
30 40	3.52 3.49	0.06 0.03	0.019 0.010	-					
40 50	3.49	0.03	0.010	-					
50	5.47	0.01	0.003	-					
				0.01	0		1	10	100
					Ũ		Time (minutes)		100
						т	o = 8.25 mins		
]			495 secs		
Theory:		ead Permeability (Le/R)]/2Le To	calculated u	where r = r R = radius Le = length	adius of cas of well scre of well scre	sing en een	o 37% of initial c	change	
Hydra	ulic Condu	ctivity	k =			m/sec			
			=	0.3	00	cm/ho	ur		

Client: Project: Location:	Link Tur	First Pty Ltd inel e Street, Hayr	narket				Projec Test c Teste	late:	86767.07 10-Nov-2 KR	
Test Locatio Description: Material type:	Standpip	e in borehole lay and sand u	nderlain by	[,] residua	l clay		Test N Eastin Northin Surfac	g:	BH202 333941 6249253 16.3	m m m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	50 114.3 3.5	mm mm m				before test at start of test	3.46 6.57	m m
Test Results	;									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho]						
0	6.57	3.11	1.000							
0.5	6.34	2.88	0.926							
1	6.14	2.68	0.862							
2	5.89	2.43	0.781							
3	5.6	2.14	0.688		1.00					
4	5.38	1.92	0.617		1.00					
5	5.19	1.73	0.556	_	-					
6	4.97	1.51	0.486	_						
7	4.82	1.36	0.437	_					R.	
8	4.66	1.20	0.386	2						
8.25	4.61	1.15	0.370	Head Ratio dh/ho						
8.5	4.56	1.10	0.354	atio						
9	4.48	1.02	0.328	р Д	0.10					
10	4.35	0.89	0.286	Hea	-					
15 20	3.81 3.63	0.35 0.17	0.113	-					1	
30	3.63	0.17	0.055	-						
40	3.49	0.08	0.019	-						
50	3.43	0.03	0.003	-	-					
50	0.47	0.01	0.000	-						
					0.01 +			1	10	100
								Time (minutes)	
				_				To = 8.25 mins		
								495 secs	3	
Theory:		ead Permeability [Le/R)]/2Le To	calculated u	where R = ra Le = le	r = rao dius o ength o	lius of ca well scr f well sc	asing een creen	to 37% of initial	change	
Hydra	ulic Condu	ctivity	k =		7.4E-		m/sec			
			=		0.26	7	cm/hc	our		

Client: Project: Location:	Link Tur	First Pty Ltd inel e Street, Hayr	narket		Project No: Test date: Tested by:	86767.07 12-Nov-20 KR
Test Locatio Description: Material type:	Standpip	e in borehole lay and sand u	nderlain by	residual clay	Test No. Easting: Northing Surface Level:	BH202 333941 m 6249253 m 16.3 m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	50 114 3.5	mm mm m	Depth to water before test Depth to water at start of tes	3.44 m t 6.06 m
Test Results				-		
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho			
0	6.06	2.62	0.998			
5	4.87	1.43	0.546			
10	3.97	0.53	0.203			
15	3.63	0.19	0.074]
20	3.53	0.09	0.035			
25	3.49	0.05	0.020	1.00		
30	3.47	0.03	0.012			
35	3.47	0.02	0.010			
40	3.46	0.02	0.007			
45	3.45	0.01	0.005			
50	3.45	0.01	0.004	h/h		
55	3.45	0.01	0.003	io d		
60	3.45	0.01	0.003	Head Ratio		
65	3.45	0.0064	0.002	ead		
70	3.45	0.0061	0.002	_		
75	3.45	0.0054	0.002			
80	3.44	0.0046	0.002	0.01	0 1 Time (minute	10 100 s)
				-	To = 6 mir 360 sec	
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated u	where r = ra R = radius Le = length	by Hvorslev adius of casing of well screen of well screen aken to rise or fall to 37% of initia	change
Hydra	ulic Condu	ctivity	k =	1.0E	-06 m/sec	
			=	0.3	68 cm/hour	

Appendix G

Laboratory Test Results

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264169-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86884.02, Haymarket</u>
Number of Samples	12 Soil
Date samples received	12/03/2021
Date completed instructions received	12/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	19/03/2021	
Date of Issue	19/03/2021	
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

<u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity				
Our Reference		264169-A-2	264169-A-3	264169-A-8
Your Reference	UNITS	BH1003A/0.8-0.9	BH1003A/1.9-2.0	BH1005/1.55- 1.65
Date Sampled		10/03/2021	10/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil
pH 1:5 soil:water	pH Units	8.9	8.2	9.5
Electrical Conductivity 1:5 soil:water	µS/cm	77	8	1
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	20
Sulphate, SO4 1:5 soil:water	mg/kg	20	<10	51

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	103	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	104	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	104	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Douglas Partners Geotechnics | Environment | Groundwater

Project No:	86884.02					Suburb: Haymarket				To: EnviroLab						
Project Name:	Haym	arket Conta	mination A	ssessment	Order N	lumber	_				12 As	hley Str	eet, Chat	tswood 2067		
				Sampler: Alyssa Spencer				Attn:	Attn: Aileen Hie							
Emails:	Huw.	Smith@dou	ith@douglaspartners.com.au			a.Spencer	@douglas	partners.c	om.au	Phone:	(02) 9	(02) 9910 6200				
Date Required:	Same	day 🛛	24 hours	0 48 hc	ours 🗆	72 hou	irs 🛙	Standar	A L	Email:	Ahie(@envir	olab.com	1.au		
Prior Storage:	🛛 Esky	🕺 Fridg	e_D Sh	elved	Do samp	les contai	n 'potentia	I' HBM?	Yes 🖄	No 🗆 (If YES, then	handle, t	ransport an	d store in accordance with FPM HAZID)		
		pled	Sample Type	Container Type					Analytes							
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Hd	EC	Sulphate	Chloride					1 1	Notes/preservation		
BH1003A/0.8-0.9	2	11/03/21	S	G/P	X	х	x	x						*aggressivity testing		
BH1003A/1.9-2.0	3	11/03/21	S	G/P	х	х	x	X								
BH1005/1.5-1.6	X	10/03/21	S	G/P	X .	Х	Х	х				-		,		
	<u> </u>															
														Envirolab Serviges		
												61	VIROLAB	12 Ashley St Chatswood NSW 2067		
			_					<u> </u>					u	Ph: (02) 9910 6209		
												J	ob No:	264169-A.		
					<u>ر</u> -								ate Rece	ived: 12/03/21		
						•						-	ime Rece			
												I	Received			
													Temp: Co	elicepack		
								<u> </u>				····· ·	Security:	tacusioken/None		
				_										<u> </u>		
· ·										+				· · · · · · · · · · · · · · · · · · ·		
PQL (S) mg/kg												ANZEC	C PQLs	req'd for all water analytes D		
PQL = practical Metals to Analys	se: 8HN	l unless sp	ecified he	re:			hod Dete	ction Lim	it	Lab Re	port/Refe	rence N	No: 2	64169-A		
Total number of				3 Relin		by:	AS	Transpo	rted to la	boratory I		Courier				
Send Results to	: D	ouglas Part	ners Pty Lt	d Addr	ess							Phone:		Fax:		
Signed:				Received by	y:	Em	13-0(a	<u>чЬ_</u>	γ		Date & Tin	ne: /	5/0	3/21 18:5		

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264455-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86884.02, Haymarket</u>
Number of Samples	5 SOIL
Date samples received	17/03/2021
Date completed instructions received	23/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	30/03/2021						
Date of Issue	29/03/2021						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

<u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity				
Our Reference		264455-A-3		
Your Reference	UNITS	1001/0.9-1.0		
Date Sampled		12/03/2021		
Type of sample		SOIL		
pH 1:5 soil:water	pH Units	5.4		
Electrical Conductivity 1:5 soil:water	µS/cm	29		
Chloride, Cl 1:5 soil:water	mg/kg	<10		
Sulphate, SO4 1:5 soil:water	mg/kg	32		
Resistivity in soil*	ohm m	350		

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	99	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	111	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	111	[NT]
Resistivity in soil*	ohm m	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

		:	
Ming To			
From:	David Holden <david.holden@douglasp< td=""><td>partners.com.au></td><td></td></david.holden@douglasp<>	partners.com.au>	
Sent:	Tuesday, 23 March 2021 1:06 PM		
ro: Subject:	Ming To RE: 264455 86884.02, Haymarket- Additi	ional Analysis	
Subject.	NE. 204455 00004.02, Huymuncer Addit		
CAUTION: This email origi	inated from outside of the organisation. Do not act on	instructions, click links or open	attachments
inless you recognise the send	der and know the content is authentic and safe.		
Sorry Ming,		Pot: 26445	5-A.
3		7A7: Standa	r-d.
Please go with 1001/0.9-2	1.0 is 264455-3.	Ref: 264455 7A7 : Standa Dre: 30/03/2	2021 MT
Thanks			
Dave		· · ·	
David Holden ∣ Environ	mental Scientist		
Douglas Partners Pty Lto	d ABN 75 053 980 117 www.douglaspartners.		
	Ryde NSW 2114 PO Box 472 West Ryde NSW 1 768 997 E: David.Holden@douglaspartners.co		
		:	รับปฏิจะต้องเป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น
			CLIEN
To find information on our	COVID-19 measures, please visit douglaspartne	ers.com.au/news/covid-19	2020
			Makas "Andar Palanda "Mammer"
This email is confidential. If you copying, distribution or use of th through emails not confirmed by	are not the intended recipient of this email, please notify us e contents of this information is prohibited. Please note that fax or letter.	; immediately and be aware that any t the company does not make any co	disclosure, nmitment
From: Ming To [mailto:M Sent: Tuesday, 23 March	-	· · ·	
To: David Holden Subject: FW: 264455 868	384.02, Haymarket- Additional Analysis	:	
		•	
Hi David,			
The sample 261155-1 is 11	001/0.25-0.3 and 1001/0.9-1.0 is 264455-3.		
	hich sample you would need the aggressivity su	ite on?	
Thanks,			
		· · ·	
F rom: David Holden <dav< td=""><td>id.Holden@douglaspartners.com.au></td><td>· • • • • • • • • • • • • • • • • • • •</td><td></td></dav<>	id.Holden@douglaspartners.com.au>	· • • • • • • • • • • • • • • • • • • •	
Sent: Tuesday, 23 March	2021 11:44 AM	·	
To: Aileen Hie < <u>AHie@env</u>			
Subject: 264455 86884.02	2, Haymarket- Additional Analysis		
	ated from outside of the organisation. Do not act on in der and know the content is authentic and safe.	nstructions, click links or open at	tachments
· ·	1		

: : :		
Ming To		
From: Sent: To: Subject: Attachments:	Aileen Hie Tuesday, 23 March 2021 12:30 PM Ming To FW: 264455 86884.02, Haymarket- Additional Analysis 264455-COC.pdf	
Follow Up Flag: Flag Status:	Follow up Flagged	
Sent: Tuesday, 23 March To: Aileen Hie <ahie@en< td=""><td>:</td><td></td></ahie@en<>	:	
	ated from outside of the organisation. Do not act on instructions, click links or open atta nder and know the content is authentic and safe.	achments
Hi Aileen,		
Could you please underta	ake aggresivity testing on sample 264455-1 (BH1001/0.9-1.0)	
Please run this as an 'A' j	ob. Standard TAT is fine.	
; Thanks		
Dave		
96 Hermitage Road West	nmental Scientist td ABN 75 053 980 117 www.douglaspartners.com.au Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 4 768 997 E: <u>David.Holden@douglaspartners.com.au</u>	
		CLIEN
To find information on ou	r COVID-19 measures, please visit <u>douglaspartners.com.au/news/covid-19</u>	2020 \
	u are not the intended recipient of this email, please notify us immediately and be aware that any dis he contents of this information is prohibited. Please note that the company does not make any comp y fax or letter.	
Sent: Wednesday, 17 Ma To: David Holden; Alyssa		
Please refer to attached for a copy of the COC/paperwo a copy of our Sample Recei Please open and read the S	rk received from you	
	1	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264957-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86884.02, Haymarket Contamination Investigation
Number of Samples	9 soil
Date samples received	23/03/2021
Date completed instructions received	23/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	30/03/2021		
Date of Issue	29/03/2021		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity				
Our Reference		264957-A-7	264957-A-8	264957-A-9
Your Reference	UNITS	BH1004A	BH1005	BH1007
Depth		4.5-4.95	7.0-7.45	8.5-8.95
Date Sampled		17/03/2021	15/03/2021	16/03/2021
Type of sample		soil	soil	soil
pH 1:5 soil:water	pH Units	6.1	6.4	6.3
Electrical Conductivity 1:5 soil:water	μS/cm	40	27	14
Chloride, Cl 1:5 soil:water	mg/kg	<10	10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	20	<10	<10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY CONTROL: Soil Aggressivity						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	7	6.1	6.0	2	101	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	7	40	42	5	99	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	7	<10	<10	0	111	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	7	20	22	10	108	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.