

Report on Detailed Site Investigation (Contamination)

Proposed Multistorey Building Redevelopment 2-8a Lee Street, Haymarket

Prepared for Toga Development and Construction Pty Ltd

> Project 86884.05 July 2022

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86884.05	Document No.	R.002.Rev2
Document title	Report on Detailed Sit	e Investigation (Co	ntamination)
	Proposed Multistorey	Building Redevelop	oment
Site address	2-8a Lee Street, Haymarket		
Report prepared for	Toga Development and Construction Pty Ltd		
File name	86884.05.R.002.Rev2		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 1	Cathy Li	Mike Nash	06 July 2022
Revision 2	Cathy Li	Dean Woods	15 July 2022

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 1	1	-	David McLaren, Toga Development and Construction Pty Ltd
Revision 2	1	-	David McLaren, Toga Development and Construction Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	to the second	15 July 2022
Reviewer	pp //	15 July 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Executive Summary

This Detailed Site Investigation (DSI) has been prepared by Douglas Partners Pty Ltd (DP) to accompany a detailed State Significant Development (SSD) Development Application (DA) for the mixed-use redevelopment proposal at TOGA Central, located at 2-8a Lee Street, Haymarket (the Site). The Site is legally described as Lot 30 in Deposited Plan 880518 and Lot 13 in Deposited Plan 1062447. The site is also described as 'Site C' within the Western Gateway sub-precinct at the Central Precinct.

This report has been prepared to address the Secretary's Environmental Assessment Requirements (SEARs) issued for the SSD DA (SSD 33258337).

This report concludes that the proposed mixed-use redevelopment is suitable subject to the implementation of the following mitigation measures.

- Implementation of actions outlined in the Remediation Action Plan (RAP) (86884.05.R.003.Rev0) to render the Site suitable for the proposed development. Significant contamination identified during the remediation (including unexpected finds) may warrant an amendment or addendum to the RAP such that appropriate actions are managed and documented;
- Intrusive investigations (sampling and testing) within the footprints of the Adina Hotel, the Lee Street
 pedestrian tunnel and the containment cell in Henry Deane Plaza (currently occupied by tenanted
 retail spaces, this investigation can only occur post-approval once the building has been
 demolished) (See Drawing D.002 for proposed test locations). Further information on additional
 sampling recommendations, including sampling locations and rationale, is to be provided in the
 Remediation Action Plan (86884.05.R.003.Rev0);
- Following demolition works, additional investigation (site walkover, sampling and testing) of the footprints of any demolition works to prevent cross-contaminating the subsurface soils with hazardous building material such as asbestos;
- Following demolition works, additional soil sampling and testing, either using *in situ* or *ex situ* sampling methods, to provide a final waste classification for surplus soils requiring off-site disposal during the excavation stage of the project; and
- Further investigation of groundwater particularly to assess the presence of both dissolved and total metals across the Site prior to and during dewatering. It is also noted that a groundwater management plan is likely to be required as part of the application for a dewatering license.

Table of Contents

Page

1.	Introc	luction1	
	1.1	General1	
	1.2	Site Description	
	1.3	Site and Surrounding Area5	
2.	Scop	e of Work6	
3.	Site le	dentification and Description7	
4.	Envir	onmental Setting	
5.	Site H	listory10	
	5.1	Site History	
	5.2	NSW EPA Public Register11	
6.	Previ	pus Reports12	
	6.1	DP 2020	
	6.2	ERM 2001	
	6.3	JBS&G 202114	
7.	Conc	eptual Site Model15	
8.	Field	Rationale and Methods18	
	8.1	Data Quality Objectives	
	8.2	Data Quality Indicators	
	8.3	Soil Sampling Locations and Rationale18	
	8.4	Drilling and Soil Sampling Procedure19	
	8.5	Groundwater Well Installation and Sampling20	
9.	Site Assessment Criteria21		
10.	Field Work Results		
	10.1	Soil	
	10.2	Groundwater	
11. Laboratory Results		atory Results	
	11.1	Soil	
	11.2	Groundwater	
	11.3	Preliminary Waste Classification	
		11.3.1 Classification of Natural Soils	
12.	Recommendations and Conclusion		

13.	References	31
14.	Limitations	32

Appendices

- Appendix A: About this Report
- Appendix B: Site Drawings
- Appendix C: Results Tables
- Appendix D: Field Work Methodology
- Appendix E: Borehole Logs
- Appendix F: Site Assessment Criteria
- Appendix G: Data Quality Objectives
- Appendix H: Groundwater Field Sheets
- Appendix I: Chain of Custody, Sample Receipt Advice and Certificate of Analysis Documentation

Report on Detailed Site Investigation (Contamination) Proposed Multistorey Building Redevelopment 2-8a Lee Street, Haymarket

1. Introduction

1.1 General

Douglas Partners Pty Ltd (DP) has been engaged by Toga Development and Construction Pty Ltd to complete this Detailed Site Investigation (Contamination) (DSI) in accordance with the technical requirements of the Secretary's Environmental Assessment Requirements (SEARs), and in support of the SSD DA (SSD 33258337) for a mixed-use redevelopment proposal at TOGA Central, located at 2-8a Lee Street, Haymarket. The Site is shown on Drawing 1, Appendix B.

"The Minister for Planning, or their delegate, is the consent authority for the SSD DA and this application is lodged with the NSW Department of Planning and Environment (DPE) for assessment.

The purpose of the SSD DA is to complete the restoration of the heritage-listed building on the site, delivery of new commercial floorspace and public realm improvements that will contribute to the realisation of the Government's vision for an iconic technology precinct and transport gateway. The application seeks consent for the conservation, refurbishment and adaptive re-use of the Adina Hotel building (also referred to as the former Parcel Post building (fPPb)), construction of a 45-storey tower above and adjacent to the existing building and delivery of significant public domain improvements at street level, lower ground level and within Henry Deane Plaza. Specifically, the SSD DA seeks development consent for:

- Site establishment and removal of landscaping within Henry Deane Plaza.
- Demolition of contemporary additions to the fPPb and public domain elements within Henry Deane Plaza.
- Conservation work and alterations to the fPPb for retail premises, commercial premises, and hotel and motel accommodation. The adaptive reuse of the building will seek to accommodate:
 - Commercial lobby and hotel concierge facilities,
 - Retail tenancies including food and drink tenancies and convenience retail with back of house areas,
 - 4 levels of co-working space,
 - Function and conference area with access to level 7 outdoor rooftop space, and
 - Reinstatement of the original fPPb roof pitch form in a contemporary terracotta materiality.
- Provision of retail floor space including a supermarket tenancy, smaller retail tenancies, and back of house areas below Henry Deane Plaza (at basement level 1 (RL12.10) and lower ground (RL 16)).

- Construction of a 45-storey hotel and commercial office tower above and adjacent to the fPPb. The tower will have a maximum building height of RL 202.28m, and comprise:
 - 10 levels of hotel facilities between Level 10 Level 19 of the tower including 204 hotel keys and 2 levels of amenities including a pool, gymnasium and day spa to operate ancillary to the hotel premises. A glazed atrium and hotel arrival is accommodated adjacent to the fPPb, accessible from Lee Street.
 - 22 levels of commercial office space between : Level 23 Level 44 of the tower accommodated within a connected floor plate with a consolidated side core.
 - Rooftop plant, lift overrun, servicing and BMU.
- Provision of vehicular access into the Site via a shared basement, with connection points provided to both Block A (at RL 5) and Block B (at RL5.5) basements. Primary access will be accommodated from the adjacent Atlassian site at 8-10 Lee Street, Haymarket, into 4 basement levels in a splitlevel arrangement. The basement will accommodate:
 - Car parking for 106 vehicles, 4 car share spaces and 5 loading bays.
 - Hotel, commercial and retail and waste storage areas.
 - Plant, utilities and servicing.
- Provision of end of trip facilities and 165 employee bicycle spaces within the fPPb basement, and an additional 72 visitor bicycle spaces within the public realm.
- Delivery of a revitalised public realm across the Site that is coordinated with adjacent development, including an improved public plaza linking Railway Square (Lee Street), and Block B (known as 'Central Place Sydney'). The proposal includes the delivery of a significant area of new publicly accessible open space at street level, lower ground level, and at Henry Deane Plaza, including the following proposed elements:
 - Provision of equitable access within Henry Deane Plaza including stairways and a publicly accessible lift.
 - Construction of raised planters and terraced seating within Henry Deane Plaza.
 - Landscaping works within Henry Deane Plaza.
- Utilities and service provision.
- Realignment of lot boundaries.

The detailed development plan drawings are incorporated in Bates Smart Pty Ltd, SSDA Drawings, Project No. S12550.

This report has been prepared in response to the requirements contained within the Secretary's Environmental Assessment Requirements (SEARs) dated 17 December 2021 and issued for the SSD DA."¹

¹The text inside the quotation mark is sourced from Urbis Memo re: TOGA Central SSD DA Consultant Reports - Mandatory Inclusions.

Specifically, this report has been prepared to respond to the SEARs requirement issued below.

SEARs	Report Reference	
18. Contamination and Remediation: In accordance with SEPP 55, assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable (or will be suitable, after remediation) for the development.	 Preliminary Site Investigation (Summarised in Section 6.1 of this report); If required: Detailed Site Investigation (Sections 9-11); and Remedial Action Plan (Provided within a separate report prepared by Douglas Partners Ref: 86884.05. R.003.Rev0). 	

In addition to the above table, the SEARs require a Preliminary Long-term Environmental Management Plan. It is noted that the management plan is not required at this stage. It will be provided following the detailed design.

The DSI was undertaken in accordance with DP's proposal SYD201237 dated 27 January 2021.

The objectives of the DSI are to:

- Assess the suitability of the Site, from a contamination perspective, for the proposed commercial development; and
- Make recommendations for further investigations and / or remediation (if required) to render the Site suitable for the intended commercial development.

The assessment process, including approval of this DSI, is subject to a Site Audit by a NSW Environment Protection Authority (EPA) accredited Site Auditor, Mr Rod Harwood of Harwood Environmental Consultants Pty Ltd, under part 4 of the *Contaminated Land Management (CLM) Act* 1997).

This DSI has been conducted with reference to guidelines made or endorsed by the NSW Environment Protection Authority under the *Contaminated Land Management Act* 1997 (NSW EPA, 1997) including in particular the National Environment Protection Council *National Environment Protection (Assessment* of *Site Contamination) Measure* 1999 (amended 2013, NEPC 2013).

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

1.2 Site Description²

The Site is located within the City of Sydney Local Government Area (LGA). The Site is situated 1.5 km south of the Sydney CBD and 6.9 km north-east of the Sydney International Airport within the suburb of Haymarket.

²The site description (section1.2) is sourced from Urbis Memo re: *TOGA Central SSD DA Consultant Reports - Mandatory Inclusions.*

The Site is located within the Western Gateway sub-precinct, an area of approximately 1.65 ha that is located immediately west of Central Station within Haymarket on the southern fringe of the Sydney CBD. Immediately north of Central Station is Belmore Park, to the west is Haymarket (including the University of Technology, Sydney and Chinatown), to the south and east is rail lines and services and Prince Alfred Park and to the east is Elizabeth Street and Surry Hills.

Central Station is a public landmark, heritage building, and the largest transport interchange in NSW. With regional and suburban train services, connections to light rail, bus networks and to Sydney Airport, the area around Central Station is one of the most-connected destinations in Australia.

The Site is located at 2 & 8A Lee Street, Haymarket and is legally described as Lot 30 in Deposited Plan 880518, Lot 13 in Deposited Plan 1062447 and part of Lot 14 in Deposited Plan 1062447.

The land that comprises the Site under the Proponent's control (either wholly or limited in either height or depth) comprises a total area of approximately **4,159sqm**.

The location of the TOGA Central site is illustrated in **Figure 1**.

Figure 1: Site Identification Plan (sourced from Bates Smart)

The Site currently comprises the following existing development:

 Lot 30 in Deposited Plan 880518 (Adina Hotel building): the north-western lot within the Western Gateway sub-precinct accommodates a heritage-listed building which was originally developed as the Parcels Post Office building. The building has been adaptively re-used and is currently occupied by the Adina Hotel Sydney Central. The eight-storey building provides 98 short-stay visitor apartments and studio rooms with ancillary facilities including a swimming pool and outdoor seating at the rear of the Site.

Lot 13 in Deposited Plan 1062447 and part of Lot 14 in Deposited Plan 1062447 (Henry Deane Plaza): the central lot within the Western Gateway sub-precinct adjoins Lot 30 to the south. It accommodates 22 specialty food and beverage, convenience retail and commercial service tenancies. The lot also includes publicly accessible space which is used for pop-up events and a pedestrian thoroughfare from Central Station via the Devonshire Street Tunnel. At the entrance to Devonshire Street Tunnel is a large public sculpture and a glazed structure covers the walkway leading into Railway Square. This area forms part of the busy pedestrian connection from Central Station to Railway Square and on to George and Pitt Streets, and pedestrian subways.

The Site is listed as an item of local significance under Schedule 5 of the Sydney Local Environmental Plan 2012 'Former Parcels Post Office including retaining wall, early lamp post and building interior', Item 855.

The Site is also included within the Central Railway Station State heritage listing. This is listed on the State Heritage Register 'Sydney Terminal and Central Railway Station Group', Item SHR 01255, and in Schedule 5 of the Sydney Local Environmental Plan 2012 'Central Railway Station group including buildings, station yard, viaducts and building interiors' Item 824.

The Site is not however listed independently on the State Heritage Register. There is an array of built forms that constitute Central Station, however the Main Terminal Building (particularly the western frontage) and associated clocktower constitute key components in the visual setting of the Parcel Post building.

1.3 Site and Surrounding Area

The northern portion of the Site is occupied by the eight-storey Adina hotel building and the remainder of the Site consists of Henry Deane Plaza, an open space paved area surrounded by retail shops to the east and south, Adina Hotel and retail shops to the north, and steps leading up to Lee Street to the west. There is a fountain and seating areas within the Plaza, as well as a few mature trees.

The southern boundary of the Site extends to the rear of the retail stores (e.g., Priceline pharmacy) on the lower ground level, however, does not include the above stratum level. The eastern boundary, along the southern portion extends up to (but does not include) the retail stores, and along the central portion, includes the retails stores within the Devonshire Tunnel entrance. The eastern Site boundary extends further north, beyond the tunnel retail stores (i.e., beneath the level of the YHA building). The western site boundary fronts Lee Street and includes part of the Adina Hotel basement level, within the tunnel entrance.

To the east of the Adina building, there are steps leading up to the upper street level (i.e., entrance to the YHA building). It should be noted that the area to the east of the brick retaining wall, on the upper street level is not part of the Site. The passageway beneath the YHA building was observed to have concrete floors and some skip bins for rubbish. The area west of the brick retaining wall (upper street level) is part of the Adina building; and included a pool and landscaped areas.

The Adina building has a single level basement, a section of which is used as a car park.

A grease trap was observed within the north-western portion of the basement. One of the rooms in the basement is used as laundry with two large commercial washing machines and associated chemicals. The adjacent storage room is used to store various chemicals, likely cleaning / laundry products.

2. Scope of Work

The scope of works for the DSI comprised the following:

- A review of previous reports relevant to the proposed development and available to DP;
- Preparation of Safe Work Method Statements (SWMS) and Field Work Safety Environmental Plan (FWSEP);
- Completion of a Dial-Before-You-Dig (DBYD) underground services records search and scanning for underground services at sample locations;
- Drilling of twelve boreholes at the locations shown on Drawing 1 in Appendix B (Boreholes BH1001-BH1007, BH1003A, BH1004A, BH2001-BH2002, and BH2001A), and installation of groundwater monitoring wells into three of the boreholes (BH1002, BH1003A and BH1007) as part of the geotechnical investigation using hand tools and non-destructive digging vacuum excavation methods, then by a track-mounted drilling rig with auger, rotary drilling and NMLC coring techniques;
- Obtaining soil samples from ten boreholes (no soil samples were taken from BH1006 and BH2001 due to borehole refusal) at regular depth intervals based on field observations, upon signs of contamination and at changes in strata to approximately 0.5 m into natural soils or borehole termination (whichever is the lesser);
- Logging of encountered soil materials and pertinent field information;
- Screening of all samples collected with a photo-ionisation detector (PID) to measure the presence or absence of volatile organic compounds (VOC);
- Development of the monitoring wells (including three additional monitoring wells installed during previous DP investigations) following installation by removing a minimum of three well volumes or until all standing water was removed from the well;
- Collection of groundwater samples from six wells using a low-flow sampling pump. Measure and record physical parameters prior to sampling;
- Laboratory analysis of twenty-four (24) main soil samples at a NATA accredited laboratory for a combination the following common potential contaminants of concern:
 - o Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o BTEX (benzene, toluene, ethyl benzene, xylenes);
 - o Total recoverable hydrocarbons (TRH);
 - o Phenols;
 - o Organochlorine pesticides (OCP);
 - o Organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyl (PCB);

Page 7 of 33

- o Volatile Organic Compounds (VOC);
- o Cyanide;
- o pH;
- o Cation Exchange Capacity (CEC);
- o lons;
- o Hardness; and
- o Asbestos.
- Quality Assurance / Quality Control (QA / QC) sampling and analysis, including inter-laboratory replicates, intra-laboratory replicates, trip spikes and trip blanks; and
- Preparation of this DSI report.

3. Site Identification and Description

Site Address	2-8a Lee Street, Haymarket	
Legal Description	 Lot 13, Deposited Plan 1062447 (8a Lee Street, Haymarket); Lot 30, Deposited Plan 877478 (2 Lee Street Haymarket); and A portion of Lot 14 in DP1062447 	
Area	Approximately 4159 m ²	
Zoning	B8 Metropolitan Centre	
Local Council Area	City of Sydney	
Surrounding Uses	 North: Ramp driveway to YHA hostel, Ambulance Avenue, bus bay, an open space area, Pitt Street and commercial (office) buildings; East: YHA hostel, Central Station; South: retail spaces in Henry Deane Plaza and three adjoining commercial buildings; and West: Lee Street, Railway Square, George Street, commercial buildings. 	

At the time of field investigation, the Site was mainly divided into two areas: the 'Adina Hotel' to the north and the 'Henry Deane Plaza' to the south. Descriptions of the two areas of the Site are set out below:

- Northern area of the Site ('Adina Hotel'):
 - This area is occupied by an 8-level building, with a single basement level at an elevation of RL13.4 m which is partly occupied by retail space and partly by car parking spaces (accessed from Ambulance Avenue);
 - o A brick retaining wall is visible on the eastern side of the car parking section of the basement, together with a concrete underpin which extends from below the brick retaining wall to either just above or to below the basement floor;

- Based on the provided drawing (prepared by Synman, Justin and Bialek Architects, Drawing WG.05, dated 21 March 1998), the basement floor level is at an elevation of RL13.4 m;
- A retail tenancy space occupies the southern part of the Adina Hotel footprint, with the floor level of this area at approximately the same level as that of the nearby Henry Deane Plaza. This retail space has both a concrete floor and 'roof', which is supported by circular concrete columns and beams;
- o Above the 'roof' of the retail space is a ramp covered with stone tiles, which leads eastwards from the footpath of Lee Street down to the Devonshire Street pedestrian tunnel (i.e., it is a suspended slab); and
- o There is an entrance into the retail space at the eastern portal of the Lee Street pedestrian tunnel (which passes beneath Lee Street, to 'Railway Square' further to the west), as well as an entrance on the eastern side of the Site into a nearby access corridor and storage area.
- Southern area of the Site ('Henry Deane Plaza'):
 - o Most of the southern part of the Site is an open, tiled area which connects 'at-grade' with the Devonshire Street pedestrian tunnel to the east, up to Lee Street in the west (via either a ramp up or a single flight of steps), and down to the Lee Street tunnel via both a series of steps or a slightly sloped, tiled pedestrian ramp; and
 - o Mature trees, a fountain, and a single-level retail tenancy are present on the southern side of the Plaza, which is connected to the neighbouring commercial development at a higher elevation to the south via a series of steps.

A glass roof covers the pedestrian route / ramp between the Devonshire Street pedestrian tunnel and the Lee Street tunnel.

4. Environmental Setting

Regional Topography	The overall regional topography appears to slope down towards north and west of the Site.	
Site Topography	The Site topography varies from 14 m relative to the Australian height datum (AHD) to 20 m AHD as shown on published 2 m elevation contours.	
Soil Landscape	Reference to the Sydney 1:100 000 Soils Landscape Sheet indicates the Site is underlain by the Blacktown soil landscape (mapping unit bt) characterised by gently undulating rises on Wianamatta Group shales and Hawkesbury shale, with local relief to 30 m and slopes usually less than 5%. The natural undeveloped landscape is typically represented by broad rounded crests and ridges with gently inclined slopes. Soils range from shallow (<1 m) red-brown podzolic soils - comprising mostly clayey soils on crests and upper slopes - to deep (1.5 - 3 m) yellow-brown clay soils or lower slopes and areas of poor drainage. These soils are typically moderately reactive with low fertility, poor soil drainage and highly plastic	

Geology	Reference to the Sydney 1:100 000 Geological Series Sheet indicates that the Site is underlain by Triassic age Ashfield Shale overlying Hawkesbury Sandstone, and that the Site is located near Quaternary age alluvial sediments, including transgressive dune sands.		
	Although not specifically shown on the geological map, the Mittagong Formation is likely to be present at the transition between the Ashfield Shale and Hawkesbury Sandstone geological units.		
	The Quaternary sediments typically comprise medium to fine grained sand. The Ashfield Shale typically comprises black to dark grey shales and laminite. The Mittagong Formation consists of interbedded shale, laminite and fine grained quartz sandstone, and the underlying Hawkesbury Sandstone typically comprises horizontally bedded and vertically jointed, massive and cross-bedded, medium grained quartz sandstone with a few shale interbeds.		
	A former creek is shown on a plan from the year 1855 from the City of Sydney Archives. The Devonshire Street Pedestrian Tunnel is inferred to be aligned sub-parallel to and either co-incident with or adjacent to the former creek.		
	The geological map indicates the possible presence of igneous dykes near to and north of the Site, striking in a north-westerly direction. These dykes are commonly steeply dipping (often near-vertical) slabs of igneous rock which intrude through the bedrock, with measured widths in the Greater Sydney Region ranging between a centimetre or less to about 6 m (Ref. 3). These dykes could be associated with zones of closely spaced fractures within high strength rock. Although no evidence of dykes was found in the investigation there is a possibility that a dyke could cross the Site.		
	Site investigations during the present study encountered alluvial and residual soils, and sandstone bedrock consistent with the Mittagong Formation and Hawkesbury Sandstone.		
Acid Sulfate Soils	Reference to the published Acid Sulfate Soils Mapping indicates that the Site lies in a "Class B" area, where there is a low probability of occurrence of acid sulfate soils. Furthermore, given that the Site lies at an elevation of approximately 14 to 20 m AHD, the probability of ASS being present on site is considered extremely unlikely.		
0	Further assessment of acid suppate soil is not considered to be required.		
Surface Water	Surface water is anticipated to drain to the local stormwater system and follow the general regional topography.		

Groundwater	Groundwater is expected to flow in a north north-westerly direction towards Blackwattle Bay and Darling Harbour which is located approximately 1.1 km northwest of the Site. Inferred groundwater flow direction is shown on Drawing M1 in Appendix B. DP note that groundwater located in a shale profile can be saline in nature with elevated total dissolved solids.
	Review of the groundwater bore database maintained by the Department of Primary Industry indicates that there were 43 registered groundwater bores located to the southwest, within 500 m of the Site, however, standing water level (SWL) data only available for GW109500, GW109501, GW109502 and GW109503 with SWL at approximately 2.2 m to 2.3 m. The authorised purpose of the bores were reported to be for groundwater monitoring.

5. Site History

5.1 Site History

DP was commissioned by Toga Pty Ltd (Toga) to undertake a Preliminary Site (Contamination) Investigation (PSI) for the proposed commercial development at 2 and 8A Lee Street, Haymarket in 2020. The historical information for the Site and surrounding area was sourced from DP 2020.

Review of a historic map dated the year 1854 included in the Enviro-Screen report shows that the Site was occupied by Sydney Benevolent Asylum. Information obtained from the Sydney Benevolent Asylum website³ indicates that the asylum was established in 1818 and was demolished in 1901 to make way for the current Central Station. The website states that the asylum backed on to the Old Sydney Burial Ground (Devonshire Street Cemetery).

An article on Central Railway Station written by Mark Dunn⁴ was obtained through a search of *Trove, National Library of Australia.* The article indicates that construction work on the Central Railway Station commenced in June 1901, which corresponds to the year that the asylum was demolished. It is reported that the plan to construct Central Station required some major relocations including the cemetery, the Police Superintendent's residence in Pitt Street, Christ Church Parsonage, the Benevolent Society, the Police Barracks and some residential properties. The article states that material excavated from the Central Station site was used in the adjacent Prince Alfred and Belmore parks, and to form a ramp for an overhead tramway that approached the station from the city.

A building surveyors plan dated 1956 and a City of Sydney Planning Scheme map dated 1958 identifies the building located within the north-western portion of the Site as the Parcels Post Office and the shed along the southern boundary (observed in the 1930 to 1998 aerial - refer to Section 5.1) as a "carriage shed".

³ <u>http://www.sydneybenevolentasylum.com/index.php?page=what-was-the-sydney-benevolent-asylum</u>

⁴ https://dictionaryofsydney.org/entry/central_railway_station#ref-uuid=93db85ed-909c-1383-8ff9-5ccfa94cebd9

A historical title deeds dating back to 1855 were obtained for Lot 13, Deposited Plan 1062447 and Lot 30, Deposited Plan 877478. Review of the Title Deeds indicates that the Site was previously divided into three parts as shown on Figure 3 below. A summary of the Title Deeds, with reference to Figure 1 is provided below:

- Part tinted pink Rail Corporation of New South Wales (formerly The Commissioners for Railways) were the registered proprietors of the land from 1855 to the present day; and
- Part tinted yellow and blue Rail Corporation of New South Wales (formerly Railway Commissioners of New South Wales) were the registered proprietors of the land from 1901 to the present day.

Based on review of the Title Deeds, and together with the historical aerial photographs, it is inferred that the land use was commercial since 1855. It is noted that Toga Pty Ltd are the head lessee of the Leasehold title.

Figure 2: Cadastral Map, extracted from Title Deeds Report in DP 2020

5.2 NSW EPA Public Register

The EPA maintains a public database of contaminated sites under Section 58 of the CLM Act. The notices relate to investigation and / or remediation of site contamination considered to be significantly contaminated under the definition in the CLM Act.

Based on review of the Enviro-Screen report from DP 2020, the following is indicated:

• No notices or orders made under the CLM Act have been issued for the Site or adjacent properties;

- The Site has not been included in the list of NSW contaminated sites notified to EPA. However, the following sites located within 500 m of the Site have been notified as being contaminated to the NSW EPA:
 - o Frasers Development, located approximately 270 m south-west of the Site is currently under assessment by the EPA; and
 - o Ausgrid Road Reserve, located approximately 490 m north east of the Site is listed, however, it is noted that regulation under the CLM Act is not required.
- No licences under Schedule 1 of the POEO Act have been issued for the Site. However, it is noted that a licence for 'railway systems activities' has been issued for Laing O'Rourke Australia Construction Pty Ltd, Downer EDI Works Pty Ltd and Sydney Trains located immediately east of the Site. A penalty notice has been issued to Central Station for the fee-based activity, "deposit litter";
- No records were found relating to defence sites, James Hardie Asbestos Waste Contamination legacy sites, waste management facilities or sites that are part of the PFAS investigation program, within 500 m of the Site. It is noted that a former gasworks site, the Australian Gaslight Yard Co, is located approximately 300 m north-east of the Site and
- A former potentially contaminating activity (unknown name repair facility) is understood to be located within 50 m south-west of the Site. It is noted that a current potentially contaminating activity, Europcar Sydney Central (rental car facility) is located approximately 60 m south-west of the site.

6. **Previous Reports**

The following relevant reports were available for review:

The Site:

• DP Report on Preliminary Site (Contamination) Investigation, Proposed Multistorey Building Redevelopment, 2 & 8A Lee Street, Haymarket, Reference: 86884.01.R.001.Rev1, dated February 2020 (DP 2020).

Nearby Sites:

- Environmental Resources Management Pty Ltd (ERM), Environmental Management Plan (EMP), Henry Deane Park, Lee Street, Sydney, Reference: 98252RP9-EMP (ERM 2001); and
- JBS&G Australia Pty Ltd, Data Gap Investigation, 14 to 30 Lee Street, Haymarket, Reference: 59064 129805 (Rev1) (JBS&G 2021).

6.1 DP 2020

DP was commissioned by Toga Pty Ltd (Toga) to undertake a Preliminary Site (Contamination) Investigation (PSI) for the proposed commercial development at 2 and 8A Lee Street, Haymarket in 2020 to provide an indication of the risk and nature of potential contamination at the Site. The PSI comprised a review of site history information, a site walkover, and development of a preliminary conceptual site model (PCSM). The intrusive investigations were not undertaken as part of this PSI.

Based on the review of the site history information, it is evident that the Site and surrounds have been used largely for commercial land use since the 1800s. The Site was occupied by Benevolent Asylum, likely from the early 1800s until the building was demolished in 1901 - the year that construction works commenced on Central Station, located to the east of the Site. The Carriage Shed, formerly located within the southern portion of the Site, and likely constructed in the early 1900s was also subsequently demolished. Considering the age of the former structures, it is considered possible that hazardous building materials were used in the buildings. The demolition of the structures could therefore impact the area, especially if the demolition practices were poorly controlled.

In around 1911 to 1912, construction of the Parcels Post Office commenced, the heritage-listed building that currently occupies the north-western portion of the Site. The building is currently in use as Adina hotel. Given the current use as a hotel and the laundry / cleaning activities undertaken in the basement level, along with the retail stores that occupy Henry Deane Plaza, the current Site uses are considered to be a potential source of contamination, primarily through the groundwater pathway.

Based on review of the borehole logs in the vicinity of the Site, it is likely that fill has been placed on the Site, used for historical levelling purposes. Furthermore, it is considered possible that material excavated from Central Station during the construction stage, was used as fill at the Site. Off-site contamination from Central Station, located up-gradient to the Site is also considered to be a potential source of contamination to the Site, primarily though the groundwater pathway.

Overall, based on the site history information, the Site is considered to pose a moderate risk of contamination and the following assessments were recommended prior to development to confirm the contamination status of the Site:

- An intrusive soil and groundwater investigation should be conducted to assess the potential for contamination at the Site; and
- A pre-demolition hazardous building material survey⁵ in accordance with SafeWork NSW requirements was recommended to be conducted by an appropriately qualified occupational hygienist prior to the demolition of the existing structures. All demolition work should be undertaken by a licenced demolition contractor and a clearance certificate provided by an occupational hygienist for the ground surface post demolition.

⁵ DP noted that a Hazmat Survey has been prepared by SLR Consulting Australia Pty Ltd to accompany the SSA DA (the report was not provided to DP by the time of issuing this DSI report)

6.2 ERM 2001

Henry Deane Park site (HDP site) is located on Lee Street in Sydney (to the south-west of the subject site). The Site was part of the Central Station Complex which consisted of the former railway yards and a maintenance shed. In the past, the Site and surrounding area was extensively filled and levelled to enable construction of Station platforms in 1880 and sheds in 1908. The main use of the HDP site was for the cleaning of railway carriages between 1855 and the 1960s.

CMPS&F and ERM prepared a series of contamination reports for the HDP site. The contaminants of concern analysed included: heavy metals, TRH, BTEX, VOC and OCP. Lead and PAH concentrations were detected in all soil samples from the borehole locations, several of these samples exceeded the HIL (1996) criteria⁶ for PAH.

A cap and contain method for the containment of PAH and lead impacted soils was adopted at the time. The containment cell comprises of sandstone bedrock with stiff impermeable clay walls and base. The upper seal is the concrete slab of the development at the time. Below the slab is a marker horizon of sand several hundred mm thick. The boundary of the containment cell is depicted on Drawing 2 in Appendix B.

The vertical extent of the cell is anticipated to be between 2.6 m and 4 m thick with clay barrier walls and base and a sand marker layer (several hundred mm thick) below the concrete slab.

In the case of a partial breach in the clay barrier wall, this should be repaired with clay of similar composition and properties. If the concrete slab is breached it should be replaced and the sand marker layer below it reinstated. The cell should be subjected to moisture content tests and compaction tests (98%) and where possible permeability tests.

It should be noted that part of the containment cell is within this current investigation site as shown in Drawing 2 in Appendix B.

6.3 JBS&G 2021

JBS&G prepared a data gap (contamination) investigation at 14-30 Lee Street, Haymarket (to the southwest of the subject site). The scope of JBS&G (2021) investigation included collection and analysis of soil samples from 9 (nine) targeted boreholes across the neighbouring site. Two of the boreholes were converted into groundwater wells.

The soil samples were analysed for: heavy metals, PAH, TRH, BTEX, TOC, VOC, PCB, PFAS and asbestos. The groundwater samples were analysed for: heavy metals, PAH, TRH, BTEX, VOC and PFAS.

⁶ Superseded by NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) (NEPC, 2013)

The soil, groundwater and soil vapour investigations (including JBS&G 2019⁷) investigation did not identify any contamination at concentrations which would pose an unacceptable risk to human health or the ecology under a commercial/industrial land use scenario. The neighbouring site is considered suitable for the proposed development without remediation and site management subject to decommissioning of the known underground storage tanks (USTs).

Marginal copper and zinc exceedances were detected in groundwater sample (upgradient well), these reported concentrations were, however, considered to be typical background levels of localised groundwater. Groundwater is likely to be suitable for discharge to stormwater subject to treatment of groundwater for turbidity and pH.

Fill materials across the neighbouring site (including within the containment cell) are classified as general solid waste (non-putrescible). Natural soil materials in proximity of the USTs may contain hydrocarbon impacts, further sampling / analysis will be required.

An unexpected finds protocol (UFP) is recommended for the Site to guide appropriate actions during development in the event of unexpected finds of contamination.

It should be noted that JBS&G 2021 was conducted for the adjacent Site of this DSI therefore it has limited applicability to conditions within the current Site. However, two samples HA02 and HA03 from JBS&G collected from planter bed soil were within current DSI Site and the results is included in this DSI.

7. Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the Site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways).

Potential Sources

Based on the previous investigation reports reviewed, the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified and summarised in Table 1, below.

Potential Source	Description of Potential Contaminating Activity	Contaminants of Potential Concern
Fill and surficial soil (S1)	It is likely that fill was placed at the site to achieve the design levels. As the source of fill is unknown, there is potential for contaminants to be present in the fill.	Heavy metals, TPH, BTEX, PAH, PCB, OCP, OPP, phenols and asbestos.
	Furthermore, the site history search identified that the former asylum and the Carriage Shed were demolished. The demolition / deterioration of the structures (likely to contain hazardous building materials) may over time have impacted the fill / soil.	
Hazardous building materials in existing structures (S2)	Considering the age of the existing structure, it is considered likely that hazardous building materials were used in construction.	Asbestos, lead and PCB, SMF ¹ .
	More recent additions to the building constructed after 1990 are considered unlikely to contain some hazardous building materials such as asbestos.	
Current Site Uses (S3)	The site is currently occupied by various retail stores and a hotel building. The basement of the hotel building was used for laundry services associated with the hotel operation. Various cleaning chemicals were stored in the basement and a grease trap was also observed.	Heavy metals, TPH, BTEX, PAH, VOC, VCH ²
Previous and current offsite activities in the surrounding area (S4)	Central Station is located upgradient of the site, therefore, there is potential for contamination at the site from offsite sources.	Heavy metals, TPH, BTEX, PAH, VOC, per- and polyfluoroalkyl substances (PFAS) and cyanide
Containment Cell constructed in the late 1990s (S5)	Part of a historical containment cell, constructed in the late 1990s, appear to intersect the southern portion of the site, where the Henry Deane Plaza is located.	Lead, PAH and asbestos

Table 1: Summary of Identified Potential Areas of Environmental Concern

Notes:

1. SMF will be assessed by visual inspection only.

2. VOC screening contaminant for VCH.

Potential Receptors

The following potential human receptors have been identified:

- R1: Future site users (site workers and visitors);
- R2: Construction and maintenance workers;
- R3: Adjacent site users (site workers and visitors);

- R4: Terrestrial ecology;
- R5: Surface water (Blackwattle Bay and Darling Harbour; brackish water);
- R6: Groundwater; and
- R7: In-ground structures.

Potential Pathways

The following potential pathways have been identified:

- P1: Direct contact.
- P2: Ingestion and dermal contact;
- P3: Inhalation of dust and / or vapours;
- P4: Surface water run-off;
- P5: Leaching of contaminants and vertical migration into groundwater; and
- P6: Lateral migration of groundwater providing base flow to water bodies.

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The potential source - pathway - receptor linkages considered to be applicable to the site, shown below in Table 2.

Potential Source	Transport Pathway	Receptor
S1 to S5 COPC: Heavy metals, TPH, BTEX, PAH, PCB, OCP, OPP, phenols, VOC, cyanide and asbestos.	(P1) Direct contact (P2) Ingestion and dermal contact	(R1) Future site users(R2) Construction and maintenance workers
	(P3) Inhalation of dust and / or vapours	(R1) Future site users(R2) Construction and maintenance workers(R3) Adjacent site users
	(P4) Surface water run off (P6) Lateral migration of groundwater	(R5) Surface water
	(P5) Leaching and vertical migration into groundwater	(R6) Groundwater
	(P1) Direct contact	(R4) Terrestrial ecology
	(P1) Direct contact	(R7) In-ground structures

Table 2: Summary of Potentially Complete Exposure Pathways

8. Field Rationale and Methods

8.1 Data Quality Objectives

This DSI has been devised in general accordance with the seven-step Data Quality Objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- State the problem;
- Identify the decision;
- Identify inputs into the decision;
- Define the boundary of the assessment;
- Develop a decision rule;
- Specify acceptable limits on decision errors; and
- Optimise the design for obtaining data.

Referenced sections for the respective DQOs listed above are provided in Appendix G.

8.2 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of Data Quality Indicators (DQI) as defined by:

Precision:	A quantitative measure of the variability (reproducibility) of data;				
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value;				
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;				
Completeness:	A measure of the useable data from a data collection activity; and				
Comparability:	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.				

Further comments on the DQIs are presented in Appendix G.

8.3 Soil Sampling Locations and Rationale

Based on the CSM and data quality objectives (DQO) the following sampling rationale was adopted.

A systematic sampling strategy based on NSW EPA Contaminated Sites, Sampling Design Guidelines (NSW EPA, 1995) to determine borehole locations was adapted based on areas of access. Borehole locations are shown on Drawing 1, in Appendix B.

Table A of NSW EPA (1995) recommends a minimum of 11-12 sampling points for a site of approximately 0.42 ha with no known point sources for site characterisation purposes. Until the reporting date of this DSI, a total of 10 test locations were positioned across accessible areas of the site. It is understood that the data gap areas are currently occupied by:

- The basement level of Adina Hotel is on sandstone with no / minor fill (subbase layer); and
- Footprint of Lee Street pedestrian tunnel and footprint of the containment cell due to it was occupied by tenanted retail spaces and the drilling in Henry Deane Plaza encountered several underground services (in approximately 50% of the boreholes).

Two boreholes were located in the Adina Hotel basement near to the lifts (BH1001 and BH1002). Seven boreholes in the open-air portion of the Henry Deane Plaza between a retail tenancy on the southern side of the Plaza ('Priceline') and the northern side of a ramp leading down into the Lee Street pedestrian tunnel (i.e., Boreholes BH1003-BH1007, BH1003A and BH1004A). Three boreholes within a retail tenancy on the southern side of the Adina Hotel footprint, which is adjacent to the Lee Street pedestrian tunnel and beneath the ramp leading down eastwards into the Plaza from Lee Street (i.e., BH2001, BH2001A and BH2002).

It is noted that refusal on buried obstructions within rubble fill was encountered in Boreholes BH1003, BH1004, BH1006 and BH2001, with Borehole BH1006 abandoned in favour of a new location due to underground services (i.e., BH1007), whilst the other three boreholes were offset a short distance to new locations (i.e., BH1003A, BH1004A, BH20021A). It is noted that no soils samples were taken from BH2001.

Three boreholes from previous investigations found within the Site boundary were assessed in this DSI (i.e., Boreholes BH202 from the previous DP investigation and HA02 and HA03 from JBS&G 2019). BH202 located in the middle of the eastern boundary, however, was used for the groundwater assessment only (i.e., no soil samples were obtained).

Four nearby boreholes (i.e., Boreholes BH107A, BH107B, BH8 and BH110) along the eastern and northeastern boundary of the Site from previous DP investigations were also included in this DSI to compare findings with the current soil results. It should be noted that BH107A was used for groundwater assessment only (i.e., no soil samples were obtained).

Soil samples selected for analysis included at least one fill sample from each borehole. Additional fill samples were selected from boreholes which encountered large amounts of anthropogenic material and / or where several layers of fill were observed.

The general soil sampling methods are described in the field work methodology, included in Appendix D

8.4 Drilling and Soil Sampling Procedure

Following coring of stone paving tiles (Henry Deane Plaza only) and concrete slabs using a diatube, each of the boreholes was commenced within soils using either non-destructive digging (NDD) vacuum excavation methods (Henry Deane Plaza only), or hand tools (e.g., hand auger). The boreholes were extended through the soils to the top of the underlying rock by either a track-mounted or tripod-mounted portable drilling rig, using auger and rotary drilling techniques.

- Decontamination of re-useable sampling equipment using a 2% concentrated critical-cleaning liquid detergent (D90) and demineralised water prior to collecting each sample;
- Collection of soil samples directly from auger / push tube returns;
- Use of disposable sampling equipment including disposable nitrile gloves;
- Transfer of samples into laboratory-prepared glass jars and capping immediately with Teflon lined lids;
- Labelling of sampling containers with individual and unique identification, including project number, sample location and sample depth;
- Field screening of replicate soil samples collected in sealed plastic bags for VOC using a calibrated PID; and
- Placement of sample containers and bags into a cooled, insulated and sealed container for transport to the laboratory under chain-of-custody (COC) documentation.

Soil samples were collected from 10 boreholes, including replicates of 3 primary samples.

Selected samples of fill and natural soils were analysed for the chemicals of concern identified in the CSM (section 7). Samples were selected based on site observations (odour, composition, etc.) and field results.

Envirolab Services Pty Ltd, accredited by NATA, was employed to conduct the primary sample analysis. ALS, accredited by NATA, was employed to conduct the inter-laboratory analysis.

8.5 Groundwater Well Installation and Sampling

In order to assess the current groundwater contamination status at the Site and evaluate whether historical / current / off-site land uses have impacted on groundwater, three groundwater monitoring wells installed for the geotechnical investigation (BH1002, BH1003A and BH1007) along with three monitoring wells installed for previous DP investigations (BH202, BH107A, BH107B) were used for groundwater sampling.

Groundwater monitoring wells were installed to depths of between 3.76 m and 18 m bgl. The rationale behind the well placement and well depth was to evaluate the quality of groundwater from both the Mittagong and Hawksbury formations and to gain an understanding of the groundwater contamination status across the Site (i.e., at up-gradient and down-gradient parts of the Site).

Monitoring well locations are shown on Drawing 1, Appendix B. Well installation details are included on the borehole logs, Appendix E.

Groundwater sampling was performed with reference to standard operating procedures outlined in the DP field work methodology. All sampling data was recorded groundwater field sheets (Appendix H) and samples selected for laboratory analysis were recorded on DP COC sheets (Appendix I). The general groundwater sampling procedure comprised:

- Decontamination of re-useable sampling equipment using a 1% concentrated critical-cleaning liquid detergent (Liquinox) and demineralised water prior to use;
- Use of disposable sampling equipment including disposable tubing and filters;
- Measurement of the groundwater level using an interface meter;
- Development of groundwater wells by removing a minimum of three bore volumes or until all standing water was removed from the well. Purged water was collected in drums for disposal to a licenced waste water facility;
- Allowing the wells to stabilise for at least five days prior to sampling;
- Micro-purging of wells using a low-flow sampling pump until physical parameter (temperature, dissolved oxygen, electrical conductivity, turbidity, pH and oxidation / reduction potential) had stabilised;
- Collection of groundwater samples directly into appropriate sampling bottles, some of which contained preservatives, using the low-flow sampling pump;
- Filtration of the dissolved metals sample through a disposable 0.45 um filter;
- Labelling of sampling bottles with individual and unique identification, including project number and sample location; and
- Placement of sample bottles into a cooled, insulated and sealed container for transport to the laboratory under COC documentation.

Groundwater samples from each well were analysed for the chemicals of concern listed in the CSM (Section 7) including a replicate sample. Envirolab Services Pty Ltd, accredited by NATA, was employed to conduct the primary sample analysis.

The general groundwater sampling methods are described in the field work methodology, included in Appendix D.

9. Site Assessment Criteria

The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM (Section 7) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic commercial land use scenario. The derivation of the SAC is included in Appendix F and the adopted SAC are listed on the summary analytical results tables in Appendix C.

10. Field Work Results

10.1 Soil

The borehole logs for this assessment are included in Appendix E. The logs recorded the following general sub-surface profile:

STONE TILE (Henry Stone tiles (20-40 mm thick) laid over a layer of sand and cement Deane Plaza only): 0.05-0.08 m thick: over CONCRETE: Single concrete slab (steel reinforcement not observed in Boreholes BH1001, BH1002, BH2001, BH2001A and BH2002), thickness ranging between 0.08-0.24 m; over FILL: Gravel or gravel and bricks (110 mm thick: Boreholes BH1001 and BH1002 only), or layers of clayey sand, sand, silt, or sandy clay, with either silty clay and gravel, cobble or boulder-sized fragments of sandstone, siltstone, igneous rock (railway ballast), concrete and brick rubble, or other anthropogenic materials (e.g., plastic bottles), trace ash and slag. The boreholes within the Henry Deane Plaza included one or more layers of building rubble in a clayey sand matrix, to depths ranging between 1.2 m and 3.5 m (refusal to Boreholes BH1003, BH1004 and BH1006 within these materials); over ALLUVIAL SAND: Medium dense to very dense alluvial sand (absent in Boreholes BH1001, BH1002 and BH2001A), typically wet, 1.0-3.7 m thick, including a thin layer (0.8 m thick) of stiff to very stiff silty clay in BH1007; over ALLUVIAL SILTY CLAY: Very soft to very stiff alluvial silty clay (Boreholes BH1004A and BH1005 only), 1.0-1.6 m thick, with traces of either charcoal and fine gravel; over **RESIDUAL CLAY:** Firm to very stiff residual silty clay or sandy clay (absent in Borehole BH1004A), 0.18-1.8 m thick, with traces of fine sand and / or gravel; over **RESIDUAL CLAYEY** Medium dense to very dense residual clayey sand with occasional thin SAND or SANDY CLAY: clay bands or very stiff to hard sandy clay (present in Boreholes BH1003, BH1005, BH1007 and BH2002 only), with relict rock texture (extremely weathered sandstone); over SANDSTONE (MEDIUM Very low to medium strength, medium grained sandstone, with both clay GRAINED): seams and iron-cemented bands of up to medium to high strength (absent in Boreholes BH1005 and BH1007); over SANDSTONE (MEDIUM Medium or high strength, medium to coarse grained sandstone, typically TO COARSE GRAINED): with widely spaced extremely low or very low strength bands.

The medium grained sandstone is interpreted to be part of the Mittagong Formation, and the underlying medium to coarse grained sandstone is interpreted to be Hawkesbury Sandstone.

During drilling, no other visual or olfactory evidence of anthropogenic substances (e.g., staining or odours) was observed other than those materials listed above.

The PID screening recorded readings of less than 1 ppm for all samples with the exception of samples BH1007/2.5-2.95 and BH1007/4-4.45 which recorded values of 60 ppm and 16 ppm, respectively.

10.2 Groundwater

With the exception of Borehole BH1007, groundwater was not observed during auger drilling and prior to the commencement of rotary drilling or rock coring. Monitoring wells were installed in three boreholes BH1002, BH1003A and BH1007, comprising screened PVC pipe with gravel backfill, a bentonite pellet seal, and 'gatic' cover at ground level (refer to Borehole 'Well' Logs in Appendix E for specific details). It is noted that the screened intervals were selected to target either the medium or high strength sandstone (i.e., BH1002, BH1002, BH1007), or the alluvial sand (i.e., BH1003A).

Groundwater level observations for the installed monitoring wells and previous DP monitoring wells used for sampling are summarised in Table 3 and Table 4.

		Standing V	Vater Level Measurements in Boreholes			
Measurement	BH1002		BH1003A		BH1007	
Date	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ¹⁾
19/03/2021	16.4	-3.0	2.8	11.5	9.2	6.6
22/03/2021	16.3	-2.9	2.8	11.5	9.3	6.5

Table 3: Groundwater Observations in New Monitoring Wells

Notes: (1) Elevation (RL) in metres AHD.

	Standing Water Level Measurements in Boreholes					
Measurement	BH107A		BH107B		BH202	
Date	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ⁽¹⁾	Depth (m)	RL ¹⁾
19/03/2021	1.9	13.6	2.2	13.3	3.3	13.0
22/03/2021	1.6	13.9	1.9	13.6	3.0	13.3

Table 4: Groundwater Observations in Previous DP Monitoring Wells

Notes: (1) Elevation (RL) in metres AHD.

Based on the groundwater level measurements, groundwater is interpreted to be flowing in a north, north-westerly direction towards Blackwattle Bay and Darling Harbour which is located approximately 1.1 km north-west of the site. This was expected given the topography and the location of the down-gradient discharge point (i.e., Blackwattle Bay and Darling Harbour).

The stabilised groundwater field parameters recorded prior to sampling are shown on the groundwater field sheets included in Appendix E and are summarised in Table 5.

Well / Sample ID	Temp. (°C)	DO (ppm)	Turbidity	EC (µS/cm)	рН	Redox (mV)
BH1002	21.2	3.10	532	348.9	5.79	103
BH1003A	22.1	4.36	712	241	6.35	74
BH1007	20.7	3.23	941	461	6.15	78.2
BH107A	21.7	3.44	260	416	6.26	64
BH107B	21.5	3.58	594	384.1	6.26	33.6
BH202	21.0	3.50	489	178	5.66	50

 Table 5: Summary of Field Parameters (Groundwater and Surface Water)

Groundwater was observed to be clear-yellow (BH107A), clear-grey (BH107B) and clear-brown (BH202, BH1002, BH1003A and 1007). No light non-aqueous phase liquid LNAPL was observed whilst sampling.

11. Laboratory Results

The results of laboratory analysis are summarised in the following tables in Appendix C:

- Table C1: Summary of Results of Soil Analysis;
- Table C2: Summary of Soil VOC Analysis; and
- Table C3: Summary of Results of Water Analysis;
- Table C4: Summary of groundwater VOC Analysis; and
- Table C5: Summary of Waste Classification Assessment.

The laboratory certificate(s) of analysis together with the chain of custody and sample receipt information are provided in Appendix I.

11.1 Soil

A total of twenty-four (24) main soil samples and three replicate samples were submitted to a NATAaccredited laboratory for the analysis of heavy metals, PAH, TRH, BTEX, phenols, OCP, OPP, PCB, VOC and asbestos. Two soil samples from JBS&G 2019 (HA02 and HA03) were analysed for heavy metals, PAH, TRH, BTEX, OCP, PCB and asbestos.

Concentrations of BTEX, phenol, OCP and OPP were below the PQL and, hence, within the adopted SAC for commercial land use. Concentration of heavy metals, PAH, TRH and PCB were above the PQL but all within the adopted SAC.

The PQL was used for the initial screening of VOC. The results indicate that the VOC concentrations were below the PQL in the analysed sample from BH1003/0.25-0.3, BH1003A/0.8-0.9, BH1004/0.6-0.7 and BH1007/0.2-0.3.

Friable chrysotile asbestos was detected in sample BH1007/2.0-2.1 at a concentration of 0.0016% w/w, which is marginally above the adopted HSL-D criteria of 0.001% w/w. Except for BH1007/2.0-2.1, asbestos was not detected above the limit of reporting in the analysed samples and potential ACM was not observed in samples. It is noted that building rubble (such as brick and concrete) was observed in the fill and ACM can be associated with the building rubble in fill.

Current investigation results are consistent with the previous investigation results from nearby boreholes (i.e., 107B, BH8 and BH110).

11.2 Groundwater

Six groundwater samples were analysed for: heavy metals (dissolved and total), PAH, TRH, BTEX, OCP, OPP, PCB, VOC, hardness, dissolved ions and cyanide.

From all groundwater samples tested, all reported concentrations of contaminants including VOC were below the PQL, and hence below the adopted SAC with the exceptions of both dissolved and total heavy metals, as follows:

Total heavy metals:

- Cadmium in BH107A (0.8 μg/L), and BH 1007 (3.9 μg/L) which exceeded the hardness modified GILs of 0.2-0.6 μg/L;
- Chromium (III+VI) in BH107A (13 μ g/L), BH107B (41 μ g/L), BH1002 (20 μ g/L), BH1003A (21 μ g/L), and BH1007 (57 μ g/L) which exceeded the hardness modified GILs of 3.9-9.6 μ g/L as Cr(III) and 1.0 μ g/L as Cr(VI);
- Copper in BH107A (13 μg/L), BH107B (38 μg/L), BH1002 (37 μg/L), BH1003A (31 μg/L), and BH1007 (110 μg/L) which exceeded the GIL of 1.4 μg/L;
- Lead in BH107B (38 μg/L), BH1002 (45 μg/L), and BH1007 (81 μg/L) which exceeded the hardness modified GILs of 4.4-17.7 μg/L;
- Nickel in BH107B (100 $\mu g/L),$ and BH1007 (38 $\mu g/L)$ which exceeded the hardness modified GILs of 13.1-32.2 $\mu g/L;$ and
- Zinc in BH107A (95 μg/L), BH107B (190 μg/L), BH202 (42 μg/L), BH1002 (570 μg/L), BH1003A (370 μg/L), and BH 1007 (4300 μg/L) which exceeded the hardness modified GILs of 9.6-24.1 μg/L.

Dissolved heavy metals:

- Copper in BH1002 (2 μg/L), BH1003A (18 μg/L), and BD1/230321 (2 μg/L) (the replicate of BH1007) which exceeded the GIL of 1.4 μg/L; and
- Zinc in BH107A (25 μg/L), BH1002 (140 μg/L), BH1003A (86 μg/L), BH 1007 (110 μg/L), and it's replicate BD1/230321 (140 μg/L) which exceeded the hardness modified GILs of 9.6-24.1 μg/L.

It is noted that the concentration exceedances of heavy metals are mainly detected in the form of total metals rather than dissolved metals. For dissolved metals, the elevated concentrations were only detected for copper and zinc. The elevated concentrations of copper in BH1002, BH1003A, BH1007 and zinc in BH107A, BH1002, BH1003A, and BH1007 are considered to be within the normal range of background levels in heavily urbanised areas of Sydney and especially adjacent to Central Station railway.

Based on the Site topography, BH1002, BH1007, and BH107A can be considered 'up-gradient' wells which are most likely to be indicative of the groundwater condition in the greater surrounding area.

11.3 Preliminary Waste Classification

The following Table 6 presents the results of the six-step procedure outlined in NSW EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill (including surface soils) at the site, which do not meet the definition of VENM.

Step	Comments	Rationale
1. Is the waste special waste?	Yes - Henry Dean Plaza area	No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes.
		Chrysotile asbestos was detected by the analytical laboratory in sample (BH1007/2.0-2.1).
	No - Adina Hotel Basement Footprint	No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes. Asbestos was not detected by the analytical laboratory.
2. Is the waste liquid waste?	No	The fill comprised a soil matrix.
3. Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014). The natural material, if classified as VENM, is pre- classified as General Solid Waste (non-putrescible).
4. Does the waste possess hazardous waste characteristics?	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.

Table 6: Six Step Classification Procedure

Step	Comments	Rationale
5. Determining a wastes classification using chemical assessment	Conducted	Refer to Table C4 (attached).
Is the waste putrescible or non- putrescible?	Non- putrescible	The fill does not contain materials considered to be putrescible ^a .

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

The field and laboratory data quality assurance and quality control results for the samples have been reviewed and are considered to be acceptable. The laboratory certificates are attached. Reference should be made to DP (2021a) for further information on the data quality assurance and quality control assessment.

Concentrations of contaminants for the analysed soil samples in the Henry Dean Plaza area were within the contaminant thresholds (CT1) for General Solid Waste (GSW) with the exception of:

- Lead in BH1005/1.55-1.65, with a concentration of 210 mg/kg, exceeding the CT1 of 100 mg/kg;
- Nickel in BH2001A/0.15-0.2, with a concentration of 49 mg/kg, exceeding the CT1 of 40 mg/kg;
- Benzo(a)pyrene (B(a)P) in BH1003/0.25-0.3, BH1004/0.3-0.4, BH1004/ 0.6-0.7, BH1005/0.22-0.3, BH1005/0.5-0.6, BH1005/1.55-1.65 and BH1007/2.0-2.1. Exceedances ranged from 0.94 mg/kg to 8.4 mg/kg, exceeding the CT1 of 0.8 mg/kg; and
- Asbestos, which was detected in BH1007/2.0-2.1.

Toxicity characteristic leaching procedure (TCLP) analysis was undertaken on five samples with the highest B(a)P, nickel and lead contaminant concentrations to determine the leachability characteristics of the contamination. All concentrations were within specific contaminant concentration (SCC1) and TCLP1 for GSW.

Furthermore, samples with the highest concentrations of PAH, including B(a)P, and lead were observed to contain ash and slag, possibly the source of the contamination.

The NSW EPA Immobilisation of Contaminants in Waste 1999/05 is a general immobilisation approval for ash / coal-contaminated materials, whilst the NSW EPA Immobilisation of Contaminants in Waste 2009/07 is a general immobilisation for metallurgical furnace slag. These immobilisations allow waste classification for such materials based on their leachability concentration (TCLP) value alone. Given the low leachability of B(a)P and PAH in the samples analysed, it is considered the appropriate immobilisation approvals could be applied in the final waste classification to materials containing concentrations of B(a)P which exceed the GSW criteria where ash, clinker and / or slag are observed.

Sample BH1007/2.0-2.1 recorded a concentration of 0.0016% w/w of chrysotile asbestos. Given the observation of significant quantities of building rubble in the boreholes BH1003-BH1007, the fill within the Henry Dean Plaza area has been given a preliminary waste classification of **GSW (non-putrescible) Special Waste (Asbestos).**

The materials in the Adina Hotel basement footprint recorded lower concentrations of the contaminants in the fill soils than the Henry Deane Plaza footprint, with all analysed soil samples within the contaminant thresholds (CT1) for GSW. Therefore, the fill within the Adina Hotel basement footprint has been given a preliminary waste classification of **GSW (non-putrescible)**. It should be noted that brick was observed in BH1002 which (along with other building demolition materials) can be an indicator for the potential presence of asbestos, hence this should be considered for future waste classification investigations of the fill in this area.

Item	Description
Based on the observations at the time of sampling and the reported analytical results, the fill described as:	Layers of clayey sand, sand, silt, or sandy clay with gravel and cobble size fragments of sandstone, igneous rock (railway ballast), concrete, brick, building rubble, ash, slag and other anthropogenic materials (e.g., plastic bottles), with one or more layers of building rubble in a clayey sand matrix, to depths ranging between 1.2 m and 3.5 m in the Henry Dean Plaza area. Gravel and brick fill to a depth of 0.35 m in Adina Hotel footprint.
Within the Adina Hotel basement footprint area:	General Solid Waste (Non-Putrescible)
Within the Henry Dean Plaza area:	Special Waste (Asbestos) - General Solid Waste (non-putrescible)
The form of asbestos identified within the material was:	Chrysotile - Asbestos Fines / Friable Asbestos.

Table 7: Waste Classification Summary - Fill

It is noted that concentrations of contaminants for the analysed soil samples in the nearby boreholes (i.e., BH107B, BH110 and BH8) area were within the contaminant thresholds (CT1) for General Solid Waste (GSW) with the exception of Benzo(a)pyrene (B(a)P) exceed CT1 but within specific contaminant concentration (SCC1) and TCLP1 for GSW, which is consistent with the soils classification within Adina Hotel area.

11.3.1 Classification of Natural Soils

The following Tables 8 and 9 present the results of the assessment of natural soils and bedrock at the site with reference to the VENM definition in the POEO Act and the EPA⁸ website.

⁸ <u>https://www.epa.nsw.gov.au/your-environment/waste/classifying-waste/virgin-excavated-natural-material</u>

Table 8: VENM Classification Procedure

Item	Comments	Rationale
Is the material natural?	Yes	Natural materials logged in the boreholes as alluvial sand, alluvial silty clay, residual clay, residual clayey sand. These materials underlie the fill at the site.
Is the material impacted by manufactured chemicals or process residues?	Possibly	There were no visual or olfactory indicators of chemical contamination of the materials in the test pits. Concentrations of contaminants were considered to be typical of background concentrations (Table A1) with the exception of TRH (C10-C36) in BH1004A/3.1-3.55. B(a)P was detected in BH1005/2.8-2.95.
Are the materials acid sulfate soils?	No	Refer to section 4.
Are there current or previous land uses that have (or may have) contaminated the materials?	Possibly	Previous land use is likely the cause of B(a)P and TRH detections in the natural material, although leachability testing indicates that the leaching potential of the contaminants is low.

Concentration of the analysed natural soil samples were within the published concentrations in NSW EPA *The Excavated Natural Material Order 2014* except TRH (C10-C36) in BH1004A/3.1-3.55. However, some contaminants, including B(a)P, were detected above the laboratory practical quantitation limit (PQL) were detected in some shallow natural samples. It should be noted that shallow natural soils such as alluvium can contain PAH from historical bush fire residues or because it is directly beneath the fill which may be impacted by the overlying materials. It is therefore recommended that for project planning, the top 0.5 m of the natural soil profile is assumed to be General Solid Waste (non-putrescible), particularly in the Henry Dean Plaza area.

Table 9: Waste Classification Summary - Natural Soils

Item	Description
Based on the outcomes presented in Table 8, the natural soils and bedrock described as:	Alluvial sand, alluvial silty clay, residual clay, residual clayey sand and sandstone.
Within the area subject to classification as shown on Drawing 1, is classified as:	VENM (assume from below the upper 0.5 m of the natural soil profile).

It is noted that the information provided in this section does not constitute a final waste classification for off-site disposal purposes. Should excavated soils require off-site disposal during development further testing and a final waste classification assessment, which takes into consideration the information in this report, must be undertaken.

12. Recommendations and Conclusion

Based on the Site history, the potential sources of contamination include: uncontrolled fill, a historical containment cell, current and historical site uses, previous and current off-site activities in the surrounding area, and hazardous building materials in existing structures. The COPC from these sources include metals, TRH, BTEX, PAH, PCB, OCP, OPP, phenols, VOC, asbestos and cyanide.

Laboratory testing results from the current investigation confirms the presence of some of the COPC in the soil and groundwater. Friable chrysotile asbestos was detected in sample BH1007/2.0-2.1 at a concentration of 0.0016% w/w, which is above the adopted HSL-D criteria of 0.001% w/w. In groundwater, dissolved copper and zinc were detected at concentrations above the groundwater SAC.

The elevated levels of copper and zinc in groundwater are common in heavily urbanised areas and especially adjacent to Central Station. The source of copper and zinc is uncertain but could be linked to the copper and zinc concentrations in the fill layer on site, or to the services network at the Site or in proximity to the Site, as elevated levels of copper and zinc were identified in both the upgradient and downgradient groundwater wells. Considering that elevated levels of copper and zinc were not evident in the fill, the copper and zinc levels identified in the groundwater wells at the Site are likely to represent regional background levels rather than site-specific levels.

Given dewatering is required at the Site, further groundwater sampling is likely to be requested by the City of Sydney Council to assess for the quality and suitability of groundwater prior to stormwater discharge. Alternatively, groundwater can be discharged into sewer subject to approval from Sydney Water or disposal of groundwater to a licensed liquid waste facility. Further information on dewatering requirements can be found in DP, Report on Groundwater Modelling, Proposed Commercial Development 2-8a Lee Street, Haymarket, 21 June 2022 (86884.02.R.006.Rev01).

Results from the investigation indicates that fill is present across the Site at depths of between 0.35 m and 3.5 m bgl. The fill was deepest in BH1007 and BH1004. Excluding the boreholes located in Adina Hotel basement (BH1001 and BH1002), the shallowest fill was in BH1003A and BH1003. It is noted that the deeper fill was generally correlated with a higher surface level. This is likely due to fill being used across the Site historically for levelling purposes. The fill was underlain by alluvial sand, residual clay and Hawkesbury sandstone. Anthropogenic materials (typically traces of) were encountered sporadically in the fill at the majority of test locations. The anthropogenic material included brick fragments, plastic, ash and slag.

The fill within the Adina Hotel basement footprint area is preliminarily classified as General Soil Waste (non putrescible) with reference to NSW EPA (2014), whilst the fill within the Henry Dean Plaza area is preliminary classified as Special Waste (Asbestos) - General Solid Waste (non-putrescible). The natural soils below the upper 0.5 m of the natural soil profile is preliminarily classified as VENM.

Based on the results of this DSI, it is considered that the Site can be made suitable for the proposed commercial development as outlined in Section 1 subject to the following recommendations:

Implementation of actions outlined in the Remediation Action Plan (RAP) (86884.05.R.003.Rev0) to render the Site suitable for the proposed development. Significant contamination identified during the remediation (including unexpected finds) may warrant an amendment or addendum to the RAP such that appropriate actions are managed and documented;

- Intrusive investigations (sampling and testing) within the footprints of the Adina Hotel, the Lee Street
 pedestrian tunnel and the containment cell in Henry Deane Plaza (currently occupied by tenanted
 retail spaces, this investigation can only occur post-approval once the building has been
 demolished) (See Drawing D.002 for proposed test locations). Further information on additional
 sampling recommendations, including sampling locations and rationale, is to be provided in the
 Remediation Action Plan (86884.05.R.003.Rev0);
- Following demolition works, additional investigation (site walkover, sampling and testing) of the footprints of any demolition works to prevent cross-contaminating the subsurface soils with hazardous building material such as asbestos;
- Following demolition works, additional soil sampling and testing, either using *in situ* or *ex situ* sampling methods, to provide a final waste classification for surplus soils requiring off-site disposal during the excavation stage of the project; and
- Further investigation of groundwater particularly to assess the presence of both dissolved and total metals across the Site prior to and during dewatering. It is also noted that a groundwater management plan is likely to be required as part of the application for a dewatering license.

13. References

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater.* Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.

NSW EPA. (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

14. Limitations

Douglas Partners (DP) has prepared this report for this project at 2-8a Lee Street, Haymarket in accordance with DP's proposal dated 27 January 2021 and acceptance received from Toga Development and constructions Pty Ltd. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Toga Development and Construction Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has been detected by laboratory analysis in fill materials at the test locations sampled and analysed. Building demolition materials, such as brick rubble observed in the fill profile during the current field investigation, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions, or to parts of the site being inaccessible and not available for sampling. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP.

Douglas Partners Pty Ltd

Appendix A

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Site Drawings

NOTE:

- Base image from MetroMap, dated 30 July 2021
 Co-ordinate system relative to Map Grid of Australia 1994 (MGA94).

Ę	5 1	0 1	5

			1:500 @ A3
	CLIENT: Toga Development	and Construction Pty Ltd	TITLE: Site and Test Location Plan
Douglas Partners	OFFICE: Sydney	DRAWN BY: MG	Proposed Commercial Development
Geotechnics Environment Groundwater	SCALE: 1:500 @ A3	DATE: 01.07.2022	2-8A Lee Street, Haymarket

20

30

50m

40

Locality Plan

LEGEND

Approximate Previous Borehole Locations (JBS&G 2019) Previous DP Borehole Locations (DP 2021 a-c)

P Standpipe Piezometer

---- Site Boundary

PROJECT No: 86884.05

DRAWING No: **REVISION**:

1

0

NOTE:

- 1: 2:
- Base image from MetroMap, dated 30 July 2021 Co-ordinate system relative to Map Grid of Australia 1994 (MGA94).

1:750 @	A3

30

Douglas Partners Geotechnics Environment Groundwater
--

CLIENT: Toga Development	and Construction Pty Ltd	ΤI
OFFICE: Sydney	DRAWN BY: MG	
SCALE: 1:750 @ A3	DATE: 01.07.2022	

 ITTLE:
 Proposed Test Location and Existing Containment Cell Plan
 Proposed Commercial Development 2-8A Lee Street, Haymarket

75m

Locality Plan

LEGEND

Approximate Previous Borehole Locations (JBS&G 2019)

- Previous DP Borehole Locations (DP 2021 a-c)
- Proposed Borehole Locations
- P Standpipe Piezometer
 - Approximate Outline of The Containment Cell
- ---- Site Boundary

PROJECT No: 86884.05 DRAWING No: 2

REVISION:

0

	CLIENT:	Toga Developmer	nt and Constru	ction Pty Ltd	TITLE:	Existing Groundwater Table	PROJECT No:	86884.02
Douglas Partners	OFFICE:	Sydney	DRAWN BY:	DB		Proposed Commercial Development	DRAWING No:	M1
Geotechnics Environment Groundwate	SCALE:	NTS	DATE:	18 Nov 2021		2-8A Lee Street, Haymarket	REVISION:	А

Appendix C

Results Tables

Table C1: Summary of Laboratory Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, Asbestos

							Metals								TRH						BTEX					РАН		Phenol						OCP						c	PP	PCB				A	bestos			
			Ar servic	Cadmium	Total Choomian		output	lead	Mercury (Inorganio)	Nckel	Zin	TRH C6 - C10	TBH SCIOCIA	101-5010-016	1 ((C6-C10) BTEX)	P2 (>C10-C16 less Naphthalene)	P3 (hC16-C34)	F4 (>C34-C40)	Barzero	Tokiene	and the second se	E Fry Derutere	Total Xylenes	Naphthalana ^b	Benzo(a) pyrene (BaP)	erzo(A)p/rene TEQ	Total PAHs	Prenol	8	007+00E+000 ⁻⁰	100	bor	Adin& Diebhn	Total Chlordane	Endin	Total Bridosultan	Hereaction	Hexach Cocherg erve		Metocylator	Chopyriphos	Total PCB	Asbestos ID in sol s0.1g%g	Trace Analysis	Asbestos (50 g)	/abeatos ID in soll c01g/g1	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Asbestos (500 ml)
		PQL	4	0.4	1		1	1	0.1	1	1	25	5	50	25	50	100	100	0.2	0.5		1	1	1	0.05	0.5	0.05	5	0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1 0.1	0	.1 (0.1	0.1							<0.001	0.001
DP2021																																																— <u> </u>	Pr faulted	T
Sample ID	Depth	Sample Date	mgikg <4	mg/kg <0.4	9 mgi 4	ikg mi	9kg m 3	11	mg/kg <0.1	mg/kg	mg/kg 16	mg/kg <25	mg <5	3/kg 1 50	ngkg <25	ngkg <50	mg/kg <100	mg/kg <100	mgkg <0.2	- mgk	g mg	akg i	1 s1	mgikg <1	mgkg 0,1	ngkg <0.5	0,73	ngilg <5	- mg/k - <0.1	kg mg/kg 1 <0.1	mg/kg <0.1	- mg/kg - <0.1	- mg/kg <0.1	- mg/kg <0.1	- mg&	g mg8	g mgl	kg mg/kg	- mç 	94g m 0.1 <	9%9 0.1	<0.1					a	9	36(W/W)	
BH1001	0.25-0.3 m	1203/2021	3000	900	36	00 24	1000 1	500	730	6000	400000			50	260	NL	<100	<100	3	NL (05	N	4	230	NL.	:005	40	4000	660		3600			45	530	100	200	0 50	0 80	25	500 2	000	7	NAD	NAD	NAD				<u> </u>	
BH1001	0.5-0.6 m	12/03/2021	3000	900	36	00 24	000 1	500	730	6000	400000				260	NL			3	NL	N	۹.	230	NL		40	4000	660	-	3600			45	530	100	200	0 50	80	25	i00 2	000	7	•						<u> </u>	
BH1002	0.25-0.35 m	11/03/2021	3000	900	36	00 24	1000 1	500	730	6000	400000				260	NL			3	NL	N	۹.	230	NL		40	4000	660		3600			45	530	100	200	0 50	80	25	500 2	000	7	NAD	NAD	NAD		•		· · ·	· ·
BH1002	0.35-0.5 m	11/03/2021	3000	×0.4 900	36	00 24	s 1000 1	500	<0.1 730	<1 6000	400000	<25	-		260	KBU NL	<100	<100	3	<us NL</us) () () () () () () () () () () () () ()	a L	<1 230	<1 NL	-0105	40	4000	660		3600			45	530	100	200	0 50	0 80	25	300 2		7	NAD	NAD	NAD	NAD		-	NAD	
BH1003	0.25-0.3 m	10/03/2021	<4 3000	<0.4	6 36	00 24	7	40 500	0.2 730	4 6000	37 400000	<25 ·	-	50 ·	<25 260	<50 NL	170	<100	<0.2 3	<0.5	i e	d L	<1 230	<1 NL	0.94	40	9.3 4000	<5 660	<0.1	1 <0.1 3600	<0.1	-0.1	<0.1 45	<0.1 530	<0.1	<0.	1 <0. 0 50	.1 <0.1) 80	< 25	0.1 < 500 2	0.1	<0.1 7							<u> </u>	
BH1003A	0.8-0.9 m	10/03/2021	<4 3000	<0.4	36	00 24	8 1000 1	32 500	0.2 730	2 6000	35 400000	<25 ·	4	50 ·	<25 260	<50 NL	<100	<100	<0.2 3	<0.5	i A	d L	<1 230	<1 NL	0.73	1 40	8.9 4000	<5 660	<0.1	1 <0.1 3600	<0.1	-0.1	<0.1 45	<0.1 530	<0.1	<0.	1 <0. 0 50	.1 <0.1	d 2	0.1 <	0.1	<0.1 7	NAD	NAD	NAD	NAD		-	NAD	
BH1003A	1.9-2 m	10/03/2021	<4	<0.4	36	1 · · · · · · · · · · · · · · · · · · ·	:1 1000 1	1	<0.1 730	<1 6000	4	<25	4	50	<25 260	<50	<100	<100	<0.2 3	<0.5	i 4	d L	<1 230	<1 NL	<0.05	<0.5 40	<0.05 4000	- 660	-	3600			- 45	530	- 100	200		- 80	25	600 2		7	NAD	NAD	NAD			-	· · · /	
BH1004	0.3-0.4 m	11/03/2021	<4	<0.4	8	00 24	17	72 500	0.5 730	6 6000	82	<25	4	50	<25 260	₹ 0	170	<100	<0.2	<0.5	i e	d 4	<1 230	<1 N	2.9	42	34	-6	<0.1	1 <0.1 3600	<0.1	<0.1	<0.1 45	<0.1	<0.1	<0.	I <0. 0 50	.1 <0.1	4	0.1 <	0.1	<0.1	NAD	NAD	NAD				· · ·	
BH1004	0.6-0.7 m	11/03/2021	<4 3000	<0.4	6	i :	2	75 500	0.3 730	3	38	<25	4	50	<25 250	<50	<100	<100	<0.2	<0.5	i 4	4	<1 230	<1	1.2	1.8	15	- 660	-	3600		-	- 45	530	- 100	200	- 50	. 80	23			. 7	NAD	NAD	NAD				· · ·	
BH1004A	3.1 - 3.55 m	17/03/2021	<4	<0.4	2	24	6	5	<0.1	2	48	<25	32	20	<25	320	250	<100	<0.2	<0.5	i 4	4	<1	<1	<0.05	<0.5	<0.05			-					-						-								· ·	
BH1005	0.22-0.3 m	11/03/2021	<4	<0.4	7	1 3	19	59	0.3	6	68	<25	4	50	<25	<50	<100	<100	<0.2	<0.5		d	<1	<1	1.2	1.8	11															-	NAD	NAD	NAD				· ·	
BH1005	0.5-0.6 m	11/03/2021	5	<0.4	8	1 1	7	66	0.3	4	74	<25	4	50	-25	-50	200	<100	<0.2	<0.5		d	<1	<1	2.7	3.9	33	-6	<0.1	1 <0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.	1 40.	.1 <0.1	4	0.1 <	0.1	<0.1	NAD	NAD	NAD				· ·	
BH1005	1.55-1.65 m	11/03/2021	<4	<0.4	9	00 24 1 1	17 1	210	0.7	6	150	<25	4	50	-25	-50	320	<100	<0.2	<0.5	i 4	1	<1	9	8.4	12	160						-	-					-	•	-		NAD	NAD	NAD			. 1	· ·	
BH1005	2.8 - 2.95 m	15/03/2021	3000	900 <0.4	30	00 24i	4	15	730 <0.1	6000 1	400000	<25	4	50	280 <25	<u>►</u> <50	110	<100	3 <0.2	<0.5	i A	d	230 <1	<u>ال</u>	0.54	0.7	4000	660		3600		-	45	530	100	200	0 50	90 80	23	- 2	•	-							<u> </u>	
BH1007	0.2-0.3 m	11/03/2021	3000	900 <0.4	36	00 24	1000 1 14	500 53	730 0.3	6000 7	400000	×25	4	50	<25	NL 450	<100	<100	3 <0.2	<0.5	i A	<mark>د</mark> دا	NL <1	NL <1	0.3	40 <0.5	4000 2.7	660 45	<0.1	3600 1 <0.1	ح0.1	<0.1	45 <0.1	530 <0.1	<0.1	200 <0.	0 50 I <0.	.1 <0.1	2	00 2 0.1 <	0.1	7 <0.1	NAD	NAD		NAD			NAD	NAD
BH1007	2-2.1 m	16/03/2021	3000	900 <0.4	- 36 - 1:	00 24 1 :	13	500 51	730 0.2	6000 3	400000	<25	4	50	260 <25	NL <50	120	<100	3 ≺0.2	<0.5	i A	d.	<1	<mark>NL</mark> <1	1.5	40 2.1	4000	660		3600			45	530	100	200	0 50	0 80	25	500 <u>2</u>	-	7	NAD	NAD		Chrysotile		0.0169	0.0016	NAD
BH1007	25.295m	16/03/2021	3000	900 <0.4	36	00 24i	1000 1 2	8	730 <0.1	6000 1	400000	· <25	4	50	<25	<mark>NL</mark> <50	- <100	- <100	3 <0.2	×0.5	i e	<mark>د</mark> دا	NL <1	NL <1	0.2	40 <0.5	4000	-6	<0.1	3600 1 <0.1	<0.1	-0.1	45 <0.1	530 <0.1	<0.1	<0.	o <u>s</u> 1 ⊲0.	.1 <0.1	2	00 2 0.1 <	0.1	7 <0.1	NAD	NAD	NAD					+
BH1007	4.445 m	16/02/2021	3000	900 <0.4	36	00 24	:1	500 <1	730 <0.1	6000 <1	400000	×25	7		630 <25	NL 76	<100	<100	3 <0.2	<0.5	. N	e d	NL <1	4	- -0.05	40 <0.5	4000 <0.05	660		3600			45	530	100	200	0 50	80	25	500 2 ·	-	7							<u> </u>	-
BH1007 -		10001011	3000	900 <0.4	36	00 24	1000 1 B	500 27	730 <0.1	6000 2	400000				NL	NL.			3	NL	N		NL	NL		40	4000	660		3600			45	530	100	200	0 50	0 80	25	i00 2		7			-					-
[TRIPLICATE]	2.5 - 2.95 M	16/03/2021	3000	900	36	00 24	1000 1	500	730	6000	400000				630	NL			3	NL	N	L	NL.	NL.		40	4000	660		3600			45	530	100	200	0 50	0 80	25	500 2	000	7							<u> </u>	
BH1007	2 - 2.1 m	16/03/2021	3000	900	36	00 24	000 1	500	730	6000	400000				630	NL			3	NL	N		NL	NL		40	4000	660		3600	-		45	530	100	200	0 50	80	25	i00 2		7	•						· · · ·	
BH2001A	0.15-0.2 m	21/06/21	3000	<0.4 900	36	00 24	000 1	500	730	6000	400000				260	NL	-	-	3	<0.5	N		230	KI NL		40	4000	660		3600			45	530	100	200	0 50	08 0	25	500 2		7	•	•		NAD	•	· .	NAD	NAD
BH2001A	1.8-1.9 m	21/06/21	3000	<0.4	36	00 24	1000 1	500	<u.1 730</u.1 	2 6000	400000	<25		•	260	600 NL	<100	<100	<u.2 3</u.2 	<0.5 N.	N	L	<i 230</i 	<1 NL	0.65	40	4000	660	- 40.1	3600		- 40.1	45	<0.1 530	<0.1	200		<0.1	2	u.i <	0.1	7 7		-	-				· · ·	<u> </u>
BH2001A	1.0-1.1 m	21/06/21														-						•	-													-					•	-	•	-	-	NAD	•	-	NAD	NAD
BH2001A/1.8-1.9 [TRIPLICATE]	1.8-1.9 m	21/06/21	<4 3000	<0.4	36	00 24	4 1000 1	10 500	<0.1 730	2 6000	400000				260	NL	-		3	NL		L	230	NL		40	4000	660		3600			45	530	100	200	0 50	0 80	25	300 2		7	•					•	· ·	
BH2002	0.1-0.2 m	21/06/21	<4 3000	<0.4	36	l 00 24	5 1000 1	500	<0.1 730	4	7 400000	<25	4	50 ·	<25 260	<50 NL	<100	<100	<0.2	<0.5	i <	d 4	<1 230	<1 NL	0.06	<0.5 40	0.66 4000	-45	<0.1	1 <0.1 3600	<0.1	⊲0.1	<0.1 45	<0.1	<0.1	<0.	I ⊲0. D 50	.1 <0.1	< 25	0.1 <	0.1	<0.1 7	· ·	-		NAD			NAD	NAD
BH2002	0.9-1 m	21/06/21	<4 3000	<0.4		1 .	:1	<1	<0.1 730	<1 6000	<1 400000	<25	4	50	<25 260	<50 NL	<100	<100	<0.2 3	<0.5	i A	d 👢	<1 230	<1 NL	<0.05	<0.5 40	<0.05 4000	660		3600		-	45	530	100	200	0 50	. 80	25	. 2	000	7						-		
BD1/110321	0.2-0.3 m	11/03/2021	<5	<1 900	2	00 24	:5	-5	<0.1 730	<2 6000	7 400000	<10	4	50	<10	<50 NL	<100	<100	<0.2	<0.5	i d	0.5	<0.5 230	<1 NL	-	- 40	4000	- 660		3600		-	45	530	100	200			25	300 2		7				-			· ·	
BD3/100321	1.9-2 m	10/03/2021	<4	<0.4	<	1 24	2	8	<0.1	<1	4	<25	4	50	-25	-50	<100	<100	<0.2	<0.5		1	<1	<1	<0.05	<0.5	<0.05			350												. 7						-	· · ·	
BD1/160321	4 - 4.45 m	16/03/2021	<	<0.4	1		:1	<1	<0.1	<1	6	<25	4	50	-25	-50	<100	<100	<0.2	<0.5		d	<1	<1	<0.05	<0.5	<0.05		-			-										-		-					· ·	
JBSG2019				300		- 27										-	-	-		. ~		-		-	-	~										200	~ ~													<u> </u>
HA02	0-0.1 m	30/09/2019	2.4	<0.4	8.	4 24	4	11 500	<0.1 730	5.4 6000	42	<20	4	50	<20 260	<50 NL	<100	<100	<0.1 3	<0.1	4	0.1 L	<0.3 230	<0.5	<0.5	<0.5 40	<0.5 4000	660	-	3600		-	45	530	100	200	- 0 50	- 80	25	600 2		7	NAD	NAD	NAD	-	•	-	· .	•
HA03	0-0.1 m	30/09/2019	2.3 3000	<0.4 900	- 14 36	4 00 24	H 1000 1	18 500	<0.1 730	8 6000	97 400000	<20	4	50	<20 260	<50 NL	550	110	<0.1 3	<0.1	4	0.1	<0.3 230	<0.5	<0.5	<0.5 40	<0.5 4000	- 660	<0.0	05 <0.05 3600	<0.05	<0.05	<0.05 45	<0.05 530	<0.0 100	5 <0.0 200	5 <0.0	05 <0.05	<0 25	1.05 500 2		<0.1	NAD	NAD	NAD		-	-		-

Lub result
HL-HSL secondarces
HL-HSL are EL-ESL excendarces
HL-HSL are EL-ESL excendarces
HL-HSL of EL-ESL excendarces
HL-HSL of EL-ESL excendarce
Escel = Lab detectors -- Not tested or No HL-HSL-HE-ESL (secondarce) HSL of Excendarce
HL = Health Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Lab detectors
HL = Health Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
Escel = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health Secondarg CD_EEL = Ecological Investigation Invel
HSL = Health

Notes: a QA/QC replicate of sample loted directly below the primary sample b Reported replicate exhibition yresult obtained from BTEXN suite c Criteria applies to DDT only

Site Assessment Chiefre (BAC):
Refer to the SAC-sources and rationals. Summary information as follows:
EAC based on generic that case threadouts for Communical inductation 20
EAC based on generic that case threadouts for Communical inductation 20
EAC based on generic that case threadouts (NEERC, 2013)
HSL D Commencial inductation 20
EAC based on the SAC Document and based and test and t

Table C2: Summary of Laboratory Results - VOC

I able C2:	Summar	y of Laborat	ory Results	- VOC													
										VOC							
			carbon tetrachloride	Monochlorobenzene	Chloroform	1,2-dichlorobenzene	1,4-dichlorobenzene	1,2-dichloroethane	1,1-Dichloroethene	Styrene (vinylbenzene)	1,1,1,2- tetrachloroethane	1,1,2,2- tetrachloroethane	tetrachloroethene	1,1,1-trichloroethane	1,1,2-trichloroethane	1,1,2-trichioroethylene	Vinyl Chloride
		PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH1003/0.25- 0.3	0 m	10/03/2021	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH1003A/0.8- 0.9	0 m	10/03/2021	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH1004/0.6- 0.7	0 m	11/03/2021	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH1007/0.2- 0.3	0 m	11/03/2021	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	HIL/HSL	_	<pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>
Lab r	esult		HIL/HSL exc	eedance 📒 HIL	/HSL and EIL/ES	L exceedance	ML exceedance	ML and HIL/	ISL or EIL/ESL es	ceedance							
HIL/HSI	L value		Indicates that	t asbestos has be	en detected by the	e lab below the PC	L, refer to the lab	report Blue = D	C exceedance								

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:	
	Only samples analysed for VOC included in table
HIL/HSL/DC	NEPC, Schedule B1 - HIL D, HSL D, DC HSL D
ML	NEPC, Schedule B1 - ML C/Ind

QA/QC replicate of sample listed directly below the primary sample reported naphthalene laboratory result obtained from BTEXN suite a b

Table C3: Summary of Results of Groundwater Analysis (All results in $\mu g/L)$

				м	etals (disso	lved)							Metals	(total)						P	AH						TRH					BTE	X		P	СВ						(OCP										0	PP				_
Sample ID	Sample Date	Arsenic	Cadmium	Chromium (III + VI) Conner	Lead	Mercury	Nickel	Zinc	Iron	Arsenic	Cadmium	Chromium (III + VI)	Copper	Lead	Mercury	Nickel	Zinc	Iron	Napthalene	Antirracene Fluoranthene	Benzo(a)pyrene	Phenanthrene Total Positive PAH	F1 ((C6-C10)-BTEX)	TRH >C10-C16 less Naphthalene	TRH C6-C9	TRH C6-C10 C10-C14	TRH >C10-C16	C15.C28	C29-C36 TRH >C16-C34	TRH >C34-C40	Benzene	l oulene Eth ylbenzene	o-xylene	m+p-xylene	Aroclor 1242	Aroclor 1254 Other PCR	Aldrin	Dieldrin	gamma-Chlordane	alpha-Chlordane	pp-DDE	pp-DDT	Endosulfan I	Endosulfan II	Endrin	Heptachlor	Heptachlor Epoxide	Methoxychlor	Other OCP Azinphos-methvl	Bromophos-ethyl	Chlorpyrifos	Diazinon Dichlorovos	Dimethoate	Ethion	Fenitrothion	matathion Parathion	Methyl Parathion	Other OPP
																										Assess	ment Cr	iteria																														
Freshwater Defau (DGV) - 95% level :	It Guideline Values species protection ¹	24 as As (III); 13 as As(V)	0.2-0.6 ^a	3.9-9.6 as Cr (III) [#] ; 1.0 as Cr(VI)	4 4.4-17	.7 ^a 0.60 3	13.1- 9. 33.2 ^a	6-24.1	-	24 as As (III) 13 as As(V)	; 0.2-0.6 ª	3.9-9.6 as Cr (III) *; 1.0 as Cr(VI)	1.4 4.4	I-17.7 ° 0	0.60 13	3.1- 9.6 3.2 ^a	-24.1 a	-	16 0.	4* 1.4*	0.2	2.0 -	-		-		-			-	950 1	80* 80*	350 Xyli 2 Xyl	75 as ane (m); 00 as lene (p)	0.6 0	0.03 -	0.001	0.01*	0.08			0.01	0.2		0.02	0.09	-	0.005	- 0.0	2 -	0.01	0.01 -	0.15	-	0.2 0.	0.004	1 -	-
Health Screening groundwater 2 n	Level (HSL) - clay, n-<4 m / 4 m-<8 m	-	-		-	-	-	-	-	-	-	-		-	-	-	-				-		NL	NL							30000	IL NL	NL									-	-		-			-						-			-	
BH107A	23/03/21	<1	<0.1	<1 <	ı ⊲1	<0.05	12	25	78	2	0.8	13	13	13 🚽	0.05	18	95 :	2900	<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	-50	<10 <	:10 <50	-50	<100 <	100 <10	<100	<1	1 <1	<1	-2				-	-		-	-	-	-	-	-	-			-	-			-	-		-	
BH107B	23/03/21	<1	<0.1	<1 <	1 <1	<0.05	26	7	<10	7	0.2	41	38	38 0	0.09 1	100 1	190 3	9000	<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	-50	<10 <	:10 <50	-50	120 <	100 120	<100	<1	1 <1	<1	<2			-			-	-	-	-	-	-	-	-			-	-		-	-			-	
BH202	23/03/21	<1	<0.1	<1 <	ı ⊲1	<0.05	22	18	3000	2	<0.1	4	5	5 4	0.05	4	42 ;	7500	<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	⊲50	<10 <	<10 <50	-50	<100 <	100 <100	<100	<1	1 <1	<1	-2	<0.001 <	0.001 <0.0	01 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002 ·	<0.002	<0.001	<0.001	<0.001	<0.001 <	0.001 <0.0	2 <0.2	<0.009	<0.01 <0.3	<0.15	<0.2	-0.2 <0	.05 <0.004	, ⊲0.2 ·	<pql< th=""></pql<>
BH1002	23/03/21	4	0.2	<1 2	<1	<0.05	4	140	<10	6	0.3	20	37	45 ⊲	0.05	17	570 1	8000	<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	40	<10 <	:10 <50	-60	<100 <	100 <100	<100	<1	1 <1	<1	~	<0.001 <	0.001 <0.0	01 <0.001	<0.001	√0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001 <	0.001 <0.0	2 <0.2	<0.009	<0.01 <0.3	<0.15	<0.2	:0.2 <0	.05 <0.004	<0.2 €	<pql< th=""></pql<>
BH1003A	23/03/21	4	<0.1	<1 1	s <1	<0.05	4	86	12	1	0.1	21	31	13 d	0.05	8	370 8	3700	<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	40	<10 <	:10 <50	-60	<100 <	100 <100	<100	<1	2 <1	<1	~	<0.001 <	0.001 <0.0	01 <0.001	<0.001	√0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001 <	0.001 <0.0	2 <0.2	<0.009	<0.01 <0.3	<0.15	<0.2	:0.2 <0	.05 <0.004	<0.2	<pql< th=""></pql<>
BH1007	23/03/21	<1	<0.1	<1 <	1 <1	<0.05	3	110	850	7	3.9	57	110	81 0	0.11	38 4	300 4	7000	<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	-50	<10 <	<10 <50	-50	<100 <	100 <100	<100	<1	c1 <1	<1	-2												-											-	
BD1/230321	23/03/21	<1	0.2	<1 2	<1	<0.05	4	140	-	-	-	-			-				<0.2 <	0.1 <0.1	⊲0.1	<0.1 <0.	1 <10	-50	<10 <	:10 <50	-50	<100 <	100 <10	<100	<1	1 <1	<1	-2				-	-		-	-	-			-				-	-			-			-	
Rinsate	23/02/21	<1	<0.1	<1 2	1	<0.05	1	5	-	-			-	-					-		·		-		29 3	30 -	· ·			· ·	<1	1 <1	<1	<2			-		•	-			-			-	-	-		-	-		-	-			· .	-

Notes: PQL Practical Quantitation Limit NL Not Limiting Exceeds DGV

Table C4: Summary of Results of Groundwater Analysis (All results in µg/L)

														۷	00														Other
Sample ID	Sample Date	lsopropylbenzene	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	trans-1, 3-Dichloropropene	cis-1,3-Dichloropropene	Vinyl chloride	Tetrachloroethene	Trichloroethene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Chlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,2-Dichloroethane	1,1,2,2-Tetrachloroethane	Carbon tetrachloride	Chloroform	Bromodichloromethane	Dibromochloromethane	Bromoform	1,2-Dichloropropane	1,3-Dichloropropane	Other VOC	Cyanide
											As	sessm	ent Crite	eria															
Freshwater Defa (DGV) - 95% level	ult Guideline Values species protection ¹	30	-	-	-		-	-	-	-	10	170	160	260	60	-	270 *	6500	1900 *	400*	240*	770 *	-	-	-	900*	1100 *	-	7
Health Screening groundwa	g Level (HSL) - sand, ater 2 m-<4 m	-	-		-		-	-	-	-			-	-	-	-	-	-	-		-			-		-	-	-	-
Health Screening groundwater 2	g Level (HSL) - clay, m-<4 m / 4 m-<8 m	-	-		-		-	-	-	-		-	-	-	-	-	-	-	-		-			-		-	-	-	-
BH107A	23/03/21	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BH107B	23/03/21	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BH202	23/03/21	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	11	<1	<1	<1	<1	<1	<pql< td=""><td><0.004</td></pql<>	<0.004
BH1002	23/03/21	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td><0.004</td></pql<>	<0.004
BH1003A	23/03/21	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	<1	<1	<pql< td=""><td><0.004</td></pql<>	<0.004
BH1007	23/03/21	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BD1/230321	23/03/21	-	-	-	-	.	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-

Notes: PQL NL Practical Quantitation Limit

Not Limiting

BOLD Exceeds DGV

not defined/not analysed/not applicable

Table C5: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, VOC

									Ме	tals							TRH					BT	ΈX		
Image: book interm					Arsenic	Cadmium	Total Chromium	Copper	Lead	Lead TCLP	Mercury (inorganic)	Nickel	NickeiTCLP	Zinc	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (total)
Image <td></td> <td></td> <td>PQL</td> <td></td> <td>4</td> <td>0.4</td> <td>1</td> <td>1</td> <td>1</td> <td>0.03</td> <td>0.1</td> <td>1</td> <td>0.02</td> <td>1</td> <td>25</td> <td>50</td> <td>100</td> <td>100</td> <td>50</td> <td>0.2</td> <td>0.5</td> <td>1</td> <td>2</td> <td>1</td> <td>3</td>			PQL		4	0.4	1	1	1	0.03	0.1	1	0.02	1	25	50	100	100	50	0.2	0.5	1	2	1	3
Image <	Sample ID	Depth (m)	Sample Date	Material Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Price Si-4 Using Nom 4 Ait Ai	BH1001	0.25 - 0.3	12/03/2021	Fill	<4	<0.4	4	13	11	-	<0.1	4	-	16	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Image <	BH1001	0.5 - 0.6	12/03/2021	Natural	6	<0.4	7	4	7	-	<0.1	<1	-	5	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
PHOM Sing Nom Sing Nom Sing Nom Sing Nom Sing <	BH1002	0.25 - 0.35	11/03/2021	Fill	<4	<0.4	6	20	13	-	<0.1	4	-	28	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Image <td>BH1002</td> <td>0.35 - 0.5</td> <td>11/03/2021</td> <td>Natural</td> <td><4</td> <td><0.4</td> <td>6</td> <td>3</td> <td>4</td> <td>-</td> <td><0.1</td> <td><1</td> <td>-</td> <td>6</td> <td><25</td> <td><50</td> <td><100</td> <td><100</td> <td><50</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td><2</td> <td><1</td> <td><3</td>	BH1002	0.35 - 0.5	11/03/2021	Natural	<4	<0.4	6	3	4	-	<0.1	<1	-	6	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Image <	BH1003	0.25 - 0.3	10/03/2021	Fill	<4	<0.4	6	17	40	-	0.2	4	-	37	<25	<50	120	<100	170	<0.2	<0.5	<1	<2	<1	<3
Image 1.5.2 New 4.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 7.7 6. 8.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 7.7 7.8 7.	BH1003A	0.8 - 0.9	10/03/2021	Fill	<4	<0.4	7	8	32	-	0.2	2	-	35	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Berno 0.1.0 1000 Fi 6.4 6.4 6.4 6.4 6.4 7.4 7.4 6.4 6.4 6.4 7	BH1003A	1.9 - 2.0	10/03/2021	Natural	<4	<0.4	<1	<1	1	-	<0.1	<1	-	4	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
B B	BH1004	0.3 - 0.4	11/03/2021	Fill	<4	<0.4	8	37	72	-	0.5	6	-	82	<25	<50	110	<100	170	<0.2	<0.5	<1	<2	<1	<3
Image Norm	BH1004	0.6 - 0.7	11/03/2021	Fill	<4	<0.4	6	12	75	-	0.3	3	-	38	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Bit 00 02-01 1100201 Fit 64 0.40 64 700	BH1004A	3.1 - 3.55	17/03/2021	Natural	<4	<0.4	2	6	5		<0.1	2		48	<25	320	130	140	590	<0.2	<0.5	<1	<2	<1	<3
med med<	BH1005	0.22 - 0.3	11/03/2021	Fill	<4	<0.4	7	29	59		0.3	6		68	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Image <	BH1005	0.5 - 0.6	11/03/2021	Fill	5	<0.4	8	27	66		0.3	4		74	<25	<50	120	100	200	<0.2	<0.5	<1	<2	<1	<3
main field field <t< td=""><td>BH1005</td><td>1.55 - 1.65</td><td>11/03/2021</td><td>Fill</td><td><4</td><td><0.4</td><td>9</td><td>37</td><td>210</td><td>0.36</td><td>0.7</td><td>6</td><td></td><td>150</td><td><25</td><td><50</td><td>240</td><td>120</td><td>320</td><td><0.2</td><td><0.5</td><td><1</td><td><2</td><td><1</td><td><3</td></t<>	BH1005	1.55 - 1.65	11/03/2021	Fill	<4	<0.4	9	37	210	0.36	0.7	6		150	<25	<50	240	120	320	<0.2	<0.5	<1	<2	<1	<3
Image 1mage <	BH1005	2.8 - 2.95	15/03/2021	Natural	<4	<0.4	3	4	15		<0.1	1		14	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
HM07 2-21 660221t FI 4.4 0.4 11 20 51 - 64 - 7 64 - 64 <td>BH1007</td> <td>0.2 - 0.3</td> <td>11/03/2021</td> <td>Fill</td> <td><4</td> <td><0.4</td> <td>9</td> <td>24</td> <td>53</td> <td>-</td> <td>0.3</td> <td>7</td> <td>-</td> <td>50</td> <td><25</td> <td><50</td> <td><100</td> <td><100</td> <td><50</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td><2</td> <td><1</td> <td><3</td>	BH1007	0.2 - 0.3	11/03/2021	Fill	<4	<0.4	9	24	53	-	0.3	7	-	50	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
Berry 2 > 28 9900000 FI O O O O	BH1007	2-2.1	16/03/2021	Fill	<4	<0.4	11	23	51	-	0.2	3		49	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
BH1000 A.9.44 Maxif A.4 A.9.44 Maxif A.4 A.9.4 Maxif A.9.44 Maxif A.9.44 A.9.4 A.9.44 A.9.4	BH1007	25-295	16/03/2021	Fill	<4	<0.4	4	2	8	-	<0.1	1	-	11	<25	<50	<100	<100	<50	<0.2	<0.5	<1	-2	<1	-3
B0300001 19-20 1000001 04-00 1-0 1-0 1-0	BH1007	4.0-4.45	16/03/2021	Natural	<4	<0.4	1	<1	<1		<0.1	ء1		4	<25	76	<100	<100	80	<0.2	<0.5	<1		<1	<3
BD11 BD1 RR G C C C C </td <td>BD3/100321</td> <td>1.9 - 2.0</td> <td>10/03/2021</td> <td>Natural</td> <td><4</td> <td><0.4</td> <td><1</td> <td>2</td> <td>8</td> <td></td> <td><0.1</td> <td><1 <1</td> <td></td> <td>4</td> <td><25</td> <td><50</td> <td><100</td> <td><100</td> <td><50</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td></td> <td><1</td> <td></td>	BD3/100321	1.9 - 2.0	10/03/2021	Natural	<4	<0.4	<1	2	8		<0.1	<1 <1		4	<25	<50	<100	<100	<50	<0.2	<0.5	<1		<1	
BD1/60221 4.0-4.4i Indexi22i Numin 4.di 1 d-1	BD1/110321	0.2 - 0.3	11/03/2021	Fill	<5	<1	2	<5	<5		<0.1			7	<10	<50	<100	<100	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BD1/160321	4.0-4.45	16/03/2021	Natural	<4	<0.4	1	<1	<1		<0.1	<1		6	<25	<50	<100	<100	<50	<0.2	<0.5	<1		<1	<3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH2001A	0.15-0.2 m	21/06/21	Fill	-4	<0.4	22	32	11		c0.1	49	0.06	33	-25	<50	<100	<100		c0.2	<0.5		2	-1	
bit in the interpretation in the interpretatint interpretation in the interpretation interpretation in the i	BH2001A	1.8-1.9 m	21/06/21	Fill	<4	<0.4	4	4	12		<0.1	2		13	<25	<50	<100	<100		<0.2	<0.5	<1		<1	<3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH2001A	1-1 1 m	21/06/21	Fill		-					-					-					-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH2002	0.1-0.2 m	21/06/21	Fill	-4	<0.4	3	5	7		c0.1	4		7	-25	<50	<100	<100		c0.2	<0.5	-1	0	-1	3
Norm Norm <th< td=""><td>BH2002</td><td>0.9-0.1 m</td><td>21/06/21</td><td>Natural</td><td><4</td><td><0.4</td><td><1</td><td><1</td><td>د دا</td><td></td><td><0.1</td><td>د دا</td><td></td><td></td><td><25</td><td><50</td><td><100</td><td><100</td><td></td><td><0.2</td><td><0.5</td><td><1</td><td></td><td><1</td><td><3</td></th<>	BH2002	0.9-0.1 m	21/06/21	Natural	<4	<0.4	<1	<1	د دا		<0.1	د دا			<25	<50	<100	<100		<0.2	<0.5	<1		<1	<3
Image image <t< td=""><td>BH2001A -</td><td>1.8-1.9 m</td><td>21/06/21</td><td>Fill</td><td><4</td><td><0.4</td><td>4</td><td>4</td><td>10</td><td></td><td><0.1</td><td>2</td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	BH2001A -	1.8-1.9 m	21/06/21	Fill	<4	<0.4	4	4	10		<0.1	2		11							-				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[TRIPLICATE]	0.04.	20/00/2010		24	-0.4			11			- E 4		42											
nuos ob.1m 3000/2019 Pm 2.3 2.0 4.0 4.0 2.0 2.0 2.0 4.0 4.0 0.0	HAU2	0-0.1 m	30/09/2019	Fill	2.4	<0.4	0.4	14	11		<0.1	3.4		42	<20	<20	<50	<50	<00	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3
Water Understand Water Understand Water Understand Water Understand Water Understand C11 100 20 100 NC 100 NA 40 A 40 NC 650 NC NC No 100 120 120 NC 100 NC ND ND <td>HAU3</td> <td>0-0.1 m</td> <td>30/09/2019</td> <td>Fill</td> <td>2.3</td> <td><0.4</td> <td>14</td> <td>41</td> <td>18</td> <td></td> <td><0.1</td> <td>°</td> <td>-</td> <td>97</td> <td><20</td> <td><20</td> <td>450</td> <td>190</td> <td>640</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.2</td> <td><0.1</td> <td><0.3</td>	HAU3	0-0.1 m	30/09/2019	Fill	2.3	<0.4	14	41	18		<0.1	°	-	97	<20	<20	450	190	640	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3
Income Income<			T1		100	20	100	NC	100	N/A	4	40	NC	NC	650	NC	NC	NC	10000	Wast	e classification Cr	teria	NC	NC	1000
Sch Sch <td></td> <td>80</td> <td>11</td> <td></td> <td>100</td> <td>20</td> <td>100</td> <td>NC</td> <td>100</td> <td>N/A</td> <td>4</td> <td>40</td> <td>NC 4050</td> <td>NC</td> <td>650</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>10000</td> <td>10</td> <td>288</td> <td>600</td> <td>NC</td> <td>NC</td> <td>1000</td>		80	11		100	20	100	NC	100	N/A	4	40	NC 4050	NC	650	NC	NC	NC	10000	10	288	600	NC	NC	1000
NAME NAME <th< td=""><td></td><td>50</td><td></td><td></td><td>500</td><td>100</td><td>1900</td><td>NC</td><td>1500</td><td>N/A</td><td>DU N/A</td><td>1050</td><td>1050</td><td>NC</td><td>000</td><td>NC</td><td>NC</td><td>NC</td><td>10000</td><td>18</td><td>010</td><td>1080</td><td>NC</td><td>NC</td><td>1800</td></th<>		50			500	100	1900	NC	1500	N/A	DU N/A	1050	1050	NC	000	NC	NC	NC	10000	18	010	1080	NC	NC	1800
And Sector 400 400 400 400 400 400 400 400 400 4112 2400 ARC 4000 SC2 2000 400 760 NC 100 NC NC 2000 NC 4000 400 400 1152 2400 NC 4000 SC2 2000 400 7600 NC 0.00 NC 0.00 NC 0.00 700 NC 0.00 NC 0.00 700 0.00 0.00 700 0.00 700 NC 0.00 700 0.00 700 0.00 700		ICI	LF 1 T2		N/A	1	N/A	NG	N/A	5	N/A	N/A	2	NU	N/A	NG	NG	NG	N/A	0.5	N/A	N/A	NG	NG	N/A
Accord 2000 400 7600 NC 600 A200 4200 4200 NC 2600 NC MC MOD A320 MC MC 7200 Image: CLP2 N/A 4 N/A N/A N/A 200 N/A N/A <t< td=""><td></td><td>00</td><td>12</td><td></td><td>400</td><td>08</td><td>400</td><td>NC</td><td>400</td><td>N/A</td><td>16</td><td>160</td><td>NU</td><td>NC</td><td>2600</td><td>NC</td><td>NG</td><td>NC</td><td>40000</td><td>40</td><td>1152</td><td>2400</td><td>NC</td><td>NC</td><td>4000</td></t<>		00	12		400	08	400	NC	400	N/A	16	160	NU	NC	2600	NC	NG	NC	40000	40	1152	2400	NC	NC	4000
NA NA A NA NC NA A NA NA NA NA NA NA NC NA NA <td></td> <td>SC</td> <td>102</td> <td></td> <td>2000</td> <td>400</td> <td>7600</td> <td>NC</td> <td>6000</td> <td>N/A</td> <td>200</td> <td>4200</td> <td>4200</td> <td>NC</td> <td>2600</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>40000</td> <td>72</td> <td>2073</td> <td>4320</td> <td>NC</td> <td>NC</td> <td>7200</td>		SC	102		2000	400	7600	NC	6000	N/A	200	4200	4200	NC	2600	NC	NC	NC	40000	72	2073	4320	NC	NC	7200
Error Once (2014) maximum Concentration 20 0.5 /5 NC 100 NC 0.5 30 NC NC<	ENIN O	TCL	LP2	atration	N/A	4	N/A	NC	N/A	20	N/A	N/A	8	NC	N/A	NC	NC	NC	N/A ore	2	N/A	N/A	NC	NC	N/A
	ENM Ord	ler (2014) Maximi	um Average Concer	ntration	20	0.5	/5	NC	100	NC	0.5	30	NC	NC	NC	NC	NC	NC	250	NC	NC	NC	NC	NC	NC
		(2014) Ausolu			+0	-	130	NU	200	NU		30	110	NO	110	140	110	NO	500	0.0	- 55	20	int	NO	

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 🦰 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection 🔳 ENMOrder 2014

NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable

Notes:

a QA/QC replicate of sample listed directly below the primary sample

b Total chromium used as initial screen for chromium(VI).

c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen
- f All criteria are in the same units as the reported results
- PQL Practical quantitation limit

CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
- TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Table C5: Summary of Laboratory Results - MTable A1: Summary of Laboratory Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, VOC

						P	AH			Phenol	0	CP	OPP	PCB		Asb	estos		
				Benzo(a)pyrene (BaP)	Benzo(a)pyrene (BaP) TCLP	Naphthalene	Naphthalene TCLP	Total PAHs	Total PAHs TCLP	Phenol	Total Endosulfan	Total Analysed OCP	Total Analysed OPP	Total Analysed PCB	Traco Analysis	Asbestos ID in soll <0.1g/kg	Asbestos (50 g)	FA and AF Estimation	Total VOC
		PQL		0.05	0.001	1	0.001	0.05	-	5	0.1	0.1	0.1	0.1		<0.1		<0.001	1
Sample ID	Depth (m)	Sample Date	Material Type	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		g/kg		%(w/w)	mg/kg
BH1001	0.25 - 0.3	12/03/2021	Fill	0.1	-	<1	-	0.73	-	<5	<0.1	<0.1	<0.1	<0.1	NAD	-	NAD	-	-
BH1001	0.5 - 0.6	12/03/2021	Natural	<0.05	-	<1	-	<0.05	-	-		-	-	-	NAD	-	NAD	-	-
BH1002	0.25 - 0.35	11/03/2021	Fill	0.1	-	<1	-	0.65	-	-	-	-	-	-	NAD	-	NAD	-	-
BH1002	0.35 - 0.5	11/03/2021	Natural	<0.05	-	<1	-	<0.05	-	-	-	-	-	-	NAD	-	NAD	-	- 1
BH1003	0.25 - 0.3	10/03/2021	Fill	0.94	<0.001	<1	<0.001	9.3	NIL(+)VE	<5	<0.1	<0.1	<0.1	<0.1	NAD	<0.1	-	<0.001	<pql< td=""></pql<>
BH1003A	0.8 - 0.9	10/03/2021	Fill	0.73	-	<1	-	8.9	-	<5	<0.1	<0.1	<0.1	<0.1	NAD	<0.1	-	<0.001	<pql< td=""></pql<>
BH1003A	1.9 - 2.0	10/03/2021	Natural	<0.05		<1	-	<0.05	-	-		-			NAD	-	NAD		-
BH1004	0.3 - 0.4	11/03/2021	Fill	2.9	<0.001	<1	<0.001	34	NIL(+)VE	<5	<0.1	<0.1	<0.1	<0.1	NAD	-	NAD	-	-
BH1004	0.6 - 0.7	11/03/2021	Fill	1.2	-	<1	-	15	-	-	-	-	-	-	NAD	-	NAD	-	<pql< td=""></pql<>
BH1004A	3.1 - 3.55	17/03/2021	Natural	<0.05	-	<1	-	<0.05	-	-	-	-	-	-	-	-	-	-	-
BH1005	0.22 - 0.3	11/03/2021	Fill	1.2	-	<1	-	11	-	-	-	-	-	-	NAD	-	NAD	-	- 1
BH1005	0.5 - 0.6	11/03/2021	Fill	2.7	<0.001	<1	<0.001	33	0.001	<5	<0.1	<0.1	<0.1	<0.1	NAD	-	NAD	-	- 1
BH1005	1.55 - 1.65	11/03/2021	Fill	8.4	<0.001	9	0.097	160	0.25	-	-	-	-	-	NAD	-	NAD	-	-
BH1005	2.8 - 2.95	15/03/2021	Natural	0.54	-	<1	-	7	-	-	-	-		-	-	-	-		-
BH1007	0.2 - 0.3	11/03/2021	Fill	0.3	-	<1	-	2.7	-	<5	<0.1	<0.1	<0.1	<0.1	NAD	<0.1	-	<0.001	<pql< td=""></pql<>
BH1007	2 - 2.1	16/03/2021	Fill	1.5	<0.001	<1	0.27	17	3.8	-	-	-	-	-	NAD	AD	-	0.0016	-
BH1007	2.5 - 2.95	16/03/2021	Fill	0.2	-	<1	-	3.5		<5	<0.1	<0.1	<0.1	<0.1	NAD	-	NAD		· ·
BH1007	40- 4.45	16/03/2021	Natural	<0.05		<1	-	<0.05		-	-			-	· ·	· ·	-		- 1
BD3/100321	1.9 - 2.0	10/03/2021	Natural	<0.05		<1	-	<0.05		-				-			-		· ·
BD1/110321	0.2 - 0.3	11/03/2021	Fill	-		-	-	-		-	-			-	· ·	· ·	-		· ·
BD1/160321	40- 4.45	16/03/2021	Natural	<0.05		<1	-	<0.05		-				-			-		-
BH2001A	0.15-0.2 m	21/06/21	Fill	<0.05		<1	-	<0.05		-	-	-		-	NAD	<0.1	-	<0.001	-
BH2001A	1.8-1.9 m	21/06/21	Fill	0.65	<0.01	<1	-	7.2	NIL(+)VE	<5	<0.1	<0.1	<0.1	<0.1			-		· ·
BH2001A	1-1.1 m	21/06/21	Fill	-	-	-	-	-	-		•				NAD	<0.1		<0.001	-
BH2002	0.1-0.2 m	21/06/21	Fill	0.06		<1	-	0.66	-	<5	<0.1	<0.1	<0.1	<0.1	NAD	<0.1		<0.001	
BH2002	0.9-0.1 m	21/06/21	Natural	<0.05	-	<1	-	<0.05	-	-	-	-	-	-	-	-	-	-	-
BH2001A -	1.8-1.9 m	21/06/21	Fill	-		-	-	-	-	-	-	-	-	-	-	-		-	- 1
HA02	0-0.1 m	30/09/2019	Fill	<0.5	-	<0.5	-	<0.5	-	-					NAD		NAD		-
HA03	0-0.1 m	30/09/2019	Fill	<0.5	-	<0.5	-	<0.5	-		<0.05	<0.1		<0.1	NAD		NAD		-
		1	1					1	1										
	C	T1		0.8	N/A	NC	NC	200	N/A	288	60	<50	4	<50	NAD	NAD	NAD	NAD	N/A
	SC	CC1		10	N/A	NC	NC	200	N/A	518	108	<50	7.5	<50	NAD	NAD	NAD	NAD	N/A
	TC	LP1		N/A	0.04	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NAD	NAD	NAD	NAD	N/A
	C	T2		3.2	N/A	NC	NC	800	N/A	1152	240	<50	16	<50	NAD	NAD	NAD	NAD	N/A
	SC	002		23	N/A	NC	NC	800	N/A	2073	432	<50	30	<50	NAD	NAD	NAD	NAD	N/A
	TC	LP2		N/A	0.16	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NAD	NAD	NAD	NAD	N/A
ENM O	rder (2014) Maxim	ium Average Conce	ntration	N/A	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NAD	NAD	NAD	NAD	N/A
ENM O	rder (2014) Absolu	ite Maximum Conce	ntration	N/A	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NAD	NAD	NAD	NAD	N/A
														•		•			

TC1 exceedance TCLP1 and/or SCC1 exceedance CT2 exceedance TCLP2 and/or SCC2 exceedance Asbestos detection ENMOrder 2014

Notes: а

Notes:

- Total chromium used as initial screen for chromium(VI). b Total chromium used as initial screen for chromium(VI). b с Criteria for scheduled chemicals used as an initial screen d Criteria for scheduled chemicals used as an initial screen d
 Criteria for Chlorpyrifos used as initial screen
 e
 Criteria for Chlorpyrifos used as initial screen

 All criteria are in the same units as the reported results
 f
 All criteria are in the same units as the reported results

 Practical quantitation limit
 PQL
 Practical quantitation limit
 е f PQL
- CT1 SCC1
- TCLP1 CT2
- SCC2
- TCLP2

- NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable
- QA/QC replicate of sample listed directly below the primary a QA/QC replicate of sample listed directly below the primary sample
- Total recoverable hydrocarbons (TRH) used as an initial s c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- NSW EPA, 2014, Waste Classification Guidelines Part 1; CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste
- NSW EPA, 2014, Waste Classification Guidelines Part 1; SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- NSW EPA, 2014, Waste Classification Guidelines Part 1; TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- NSW EPA, 2014, Waste Classification Guidelines Part 1; CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- NSW EPA, 2014, Waste Classification Guidelines Part 1; SC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
- NSW EPA, 2014, Waste Classification Guidelines Part 1; TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Appendix D

Field Work Methodology

Appendix D Filed Work Methodology Detailed Site Investigation (Contamination) 2-8a Lee Street, Haymarket

D1.0 Guidelines

The following key guideline was consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

D2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collection of soil samples from all locations at the surface (where no pavement present), and then at regular intervals based on field observations, such as soil type and signs of potential concern;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Transfer of samples for asbestos analysis into snap-lock bags or laboratory-prepared glass jars. Approximate volumes of 40g or 500 mL will be collected as required for the proposed analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain-of-custody documentation.

D2.1 Field Testing

Field testing is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

Assessment of Subsurface ACM

- Collect at least one bulk (~10 L) soil sample;
- Weigh each bulk sample;
- Screen each bulk sample through a ≤7 mm aperture sieve;
- Weigh all retrieved potential ACM fragments; and
- Calculate the asbestos concentration (% w/w) in soil as per the procedure described in NEPC (2013).

D3.0 Groundwater Sampling

D3.1 Monitoring Well Installation

Monitoring wells are constructed using class 18 uPVC machine slotted screen and blank sections with screw threaded joints. The screened section of each well is backfilled with a washed sand filter pack to approximately 0.5 m above the screened interval. Each well is completed with a hydrated bentonite plug of at least 0.5 m thick and then bentonite to the surface, finished as a gatic cover at the surface.

D3.2 Monitoring Well Development

Groundwater monitoring wells are developed as soon as practicable following well installation. The purpose of well development is to remove sediments and/or drilling fluid introduced to the well during drilling and to facilitate connection of the monitoring well to the aquifer. The wells are developed by pumping / bailing to remove a minimum of five well volumes, or until dry.

D3.3 Groundwater Sampling

Peristaltic Pump

Groundwater sampling is carried out in accordance with DP standard operating procedures. Groundwater samples are collected using a low flow peristaltic pump via the micro-purge (minimal drawdown) method. The sampling method is described as follows:

- Measure the static water level using an electronic interface probe and record the thickness of any LNAPL (if encountered);
- Decontaminate the interface probe and cable between monitoring wells by rinsing in a diluted Decon-90 / Liquinox solution and then rinsing in demineralised water;
- Lower the well-dedicated tubing into the well then clamped at a level estimated to be 1 m below the top of the water column (provided the depth of the pump is within the screened section) or to the approximate mid-point of the well screen;
- Set the pump at the lowest rate possible to minimise drawdown of the water column;
- Measure physical parameters by continuously passing the purged water through a flow cell; and
- Following stabilisation of the field parameters, collect samples in laboratory-prepared bottles minimising headspace within the sample bottle and cap immediately.

Bailer

Groundwater sampling is carried out in accordance with DP standard operating procedures. Groundwater samples are collected using a well-dedicated bailer via the well stress / well-purge method. The sampling method is described as follows:

- Measure the static water level using an electronic interface probe and record the thickness of any LNAPL (if encountered);
- Decontaminate the interface probe and cable between monitoring wells by rinsing in a diluted Decon-90 / Liquinox solution and then rinsing in demineralised water;
- Estimate the volume of groundwater in the well, including the annulus and purge at least three well volumes from the well (or purge until dry);
- Measure physical parameters by continuously passing the purged water through a flow cell and record a stabilised reading (if possible) after stagnant water has been removed from the well; and
- Collect samples in laboratory-prepared bottles minimising headspace within the sample bottle and cap immediately.

Sample Handling, All Methods

The general groundwater sample handling and management procedures comprise:

- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number and sample location;
- Place the sample jars into a cooled, insulated and sealed container for transport to the laboratory; and

• Use chain-of-custody documentation.

D4.0 References

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix E

Borehole Logs

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1001 **EASTING:** 333923 NORTHING: 6249301 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 12/3/2021 SHEET 1 OF 3

_												
			Description	Degree of	U	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
=	ן ב	Depth	of	weathering	id B		Spacing	D. Daddina I. Jaint	0	% م	_	Test Results
ľ	-	(m)	Strata		Г П П П П		00 00 - س	S - Shear F - Fault	_∑	e č	ğ%	&
	_			N N N N N N N N N N N N N N N N N N N		HIGH COLOR	0.0			٣	ш. 	Comments
-	-	0.24	FILL/GRAVEL: coarse, brown, with						A/E*			PID<1ppm
-	- 13	0.35	fine to coarse sand, apparently in loose to medium dense condition									
-	-		Sity CLAY CI-CH: medium to high plasticity, orange-brown, trace fine to medium ironstone gravel and fine sand, w~PL (affected by diatube), apparently firm to stiff, residual soil						A/E			PID<1ppm
-	- -1								A/E			PID<1ppm
	12	4.54	Below 1.2m: relict rock texture, extremely weathered sandstone (Mittagong Formation)						с	100	20	
ł	-	1.54	SANDSTONE: medium grained, red-brown, orange-brown and pale gray, bedded at 0° 20° with					1.59m: B0°, pl, ro, cly vn				
ł	-	1.78 1.87	ironstone bands, very low strength to low to medium strength, highly				┝╱ <mark>╱</mark> ╞┾⊳ ┆╴┆ ┆┖┑ ┆	1.7m: CORE LOSS: 80mm				PL(A) = 0.3
ł	-2		Formation					2mm				PL(A) = 0.8
	11		grained, orange-brown and pale grey, bedded at 0°-20°, with ironstone bands, medium strength, highly weathered, fractured, Hawkesbury Sandstone					2.20-2.55m: J70°-80°, cu, ro, cbs	С	92	84	
	-							2.56m: Cs, 20mm 2.62m: B0°, pl, ro, cly co				
	-3	3.0	Below 2.7m: moderately to slightly weathered					15mm 2.68m: B0°, pl, ro, cly co 15mm 2.7m: B0°, pl, ro, cly co 5mm				PL(A) = 0.7
-	-	0.0	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 0°-20°, with 20% fine grained, grey to dark grey sandstone laminations and 5-10% carbonaceous				i ii ii I II II I II II I II II	2.93m: B0-5°, un, ro, fe stn 2.95 & 2.96m: B5-10° (x2), un, ro, fe stn	с	100	98	PL(A) = 0.8
-	- 10		laminations and flecks, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone				 					(, , , , , , , , , , , , , , , , , , ,
-	-											
-	-4											PL(A) = 0.8
-	б-								с	100	100	
	-											
					1:::::				1			PI(A) = 1.3

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 1.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-1.2m, NMLC Coring 1.2-14.22m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/120312 collected from 0.25-0.3m

	S	AMPL	NG & IN SITU TESTIN	G LEGEND	
A	Auger sample	(Gas sample	PID Photo ionisation detector (ppm)	
в	Bulk sample	1	P Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK	Block sample		J _x Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	Douglas Pariners
С	Core drilling	1	V Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	1	 Water seep 	S Standard penetration test	Oracterized I. Freeingenet I. Orace descharter
E	Environmental samp	ble	Water level	V Shear vane (kPa)	Geotecnnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1001 **EASTING:** 333923 NORTHING: 6249301 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 12/3/2021 SHEET 2 OF 3

		Description	Degree of	<u>o</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
RL	Depth (m)	of Strata	MHH SHAR	Graph Log	Ex Low Very Low Low Low High Ex High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	-	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 0°-20°, with 20% fine grained, grey						С	100	100	
	- - - - - - - - - - - - -	to dark grey sandstone laminations and 5-10% carbonaceous laminations and flecks, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					5.6m: B0°-5°, un, ro, cbs 5.75m: B0°-5°, un, ro, cbs 5.88m: B5°-10°, un, ro, cbs	С	100	100	PL(A) = 1.3
- - - - 9	- 7 - 7						6.72m: B0°, pl, un, cly vn	С	100	100	PL(A) = 1
-	- 8										PL(A) = 1
	9						**	С	100	100	PL(A) = 0.7
-	-							с	100	100	PL(A) = 1.3

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 1.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-1.2m, NMLC Coring 1.2-14.22m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/120312 collected from 0.25-0.3m

		SAMPI		3 & IN SITU TESTING	LEG	END						
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_		-		_
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)						o nt no no
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)		1.				arners
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample		⊳	Water seep	S	Standard penetration test	· · · ·	1.				
Е	Environmental sa	mple	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	I Envi	ronme	ent Groundwater
E	Environmental sa	mple	¥	Water level	V	Shear vane (kPa)			Geolechnics		ronme	ent i Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1001 **EASTING:** 333923 NORTHING: 6249301 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 12/3/2021 SHEET 3 OF 3

Γ		Description	Degree of	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
R	Depth (m)	of Strata	× callening ≥≥≥≥∞ μ	Graphi Log	Wate	Spacing (m) ରୁଞ୍ଜୁ ଜୁଣ୍ଡ	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
- - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 0°-20°, with 20% fine grained, grey to dark grey sandstone laminations and 5-10% carbonaceous laminations and flecks, medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					10.33m: B0°, pl, ro, cly co 5mm	С	100	100	PL(A) = 1
	- - - - - -						11.27m: B0°-5°, pl, ro, cly vn	C	100	100	PI (A) = 0.7
-	- 12 - - - - -						12.5m: B0°, pl, ro, cly co 2mm	0			
-	- 13 - 13 							С	100	95	PL(A) = 1.5
-	- - - 14 - 14.22	Pero dispertinued at 11 22m					13.66m: B10°, pl, ro, cly vn 14.15m: B0°-5°, pl, ro,				PL(A) = 1.2
-	- - - - -	- Target depth reached									

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 1.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-1.2m, NMLC Coring 1.2-14.22m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/120312 collected from 0.25-0.3m

SAM	PLIN	3 & IN SITU TESTING	S LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	N Douglas Dartnars
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa	A Douglas Partners
C Core drilling	W	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	
E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 NORTHING: 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 1 OF 4

Γ			Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
ā	ᅬᄗ	epth (m)	of		Log		Spacing (m)	B - Bedding J - Joint	be	ere . %	۵°	Test Results
		(,	Strata	E S W W W	Ū	Ex Lo Very Low Very F Ex High	0.01 0.10 0.50 1.00	S - Shear F - Fault	L	ပိမ္ရွိ	8~	∝ Comments
F			CONCRETE SLAB		4							
ŀ	-	0.04			۱. ۵. ۲. ۲.		i ii ii					
ł	ł	0.24	FILL/MIXTURE OF GRAVEL and BRICKS: coarse sandstone gravel						A/E			PID<1ppm
ł	- 13	0.00	and bricks, brown, apparently in		./.				A/E			PID<1ppm
Į	Ţ	0.53	Sandy CLAY CI: medium plasticity.		[0.53m: Cs, 30mm				PL(A) = 0.1
-	Ļ	0.67	pale grey with pale brown, with fine		:::::	┥╎┡┿┪╎╎│		(sandy clay) 0.63m: Cs, 40mm		100	60	
ł	ł		(affected by diatube), apparently							100	00	
ł	ł		very stiff, extremely weathered sandstone (Mittagong Formation)			│ ┆ ┖ ┿╅ ╎ ╎ │		0.87m: B0°, pl, ro, cly vn				PL(A) = 0.2
t	-1		SANDSTONE: medium grained,									
			bedded at 0°-10°, highly weathered,					a 1.17m: B0°, pl. ro, fe stn				PL(A) = 1.1
ŀ	+		very low to low strength, fractured, Mittagong Formation					1.19m: J10°-20°, un, ro,	С	100	95	
ł	-13		SANDSTONE: medium to coarse					1.21m: Cs, 40mm (with				PI(A) = 0.4
ł	ł		grained, red-brown and orange-brown with some pale grey,					Ironstone gravel)				1 = (7,1) = 0.4
ļ	[with ironstone bands, distinct and	╎╎╉┿┪╎╎╎		╽╎╎╎┖╗╎╎│						
ł	+		weathered, high strength with very									
ł	ł		fractured, Hawkesbury Sandstone					1.88m: B10°, pl, ro, cly				$PI(\Delta) = 1.9$
ł	-2		Below 1.67m: orange-brown and			╵╎╎╏╋╝╎╎		vn	С	100	100	1 E(71) = 1.5
ĺ	[slightly weathered									
ŀ	-						╎╎┎	2 29m; B10° pl ro clv				PL(A) = 0.6
╞	=-							vn				
ł	ł											
t	t							(x2), un, ro, cly co 2mm				PL(A) = 0.5
ŀ	-							∖ 2.62m: J20°, un, ti				
ŀ	ł							2.77m: B5°, pl, ro, cly vn 2.8m: B5°-10°, pl, ro, cly				
ł	-3	3.0	SANDSTONE: medium to coarse	┤╎╎┡┓╎╎		┤╎╎╵┖┿┓╎╎│		Vn 2.81m: B5° 10° nl ro				
ŀ	ł		grained, pale grey, cross-bedded at 10°-20° with 20% fine grained, grey					cly vn				
Ī	[to dark grey sandstone laminations,					fe stn, partially ti	С	100	86	
ŀ	6 -		weathered, slightly fractured to				i ii ii					
ł	ŀ		unbroken, Hawkesbury Sandstone									
ł	ł											
t	t											
-	Ļ											
ł	-4						i ii ii					PL(A) = 1.1
ŀ	ł											
ŀ	ł											
ļ	6		Below 4.36m: aradina to fresh					∖ 4.36m: B5°. pl. ro. fe stn				
$\left \right $	ł							4.39m: B5°, pl, ro, cly vn	с	100	98	FL(A) = 0.0
ŀ	ł											
ŀ	ł											
Į	Ţ											
												PL(A) = 1.2

RIG: XC Drill

TYPE OF BORING:

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SA	MPLING	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Dougloo Douteor
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1	Loudias Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		On the basis of English and the Organization to
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwate

CLIENT: PROJECT: LOCATION: Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket **SURFACE LEVEL:** 13.4 m AHD **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

BORE No: BH1002 PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 2 OF 4

Γ		Description	Degree of	Rock Strongth	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
ā	Depth	of	id a line line line line line line line line		Spacing (m)	B - Bedding J - Joint	e	e.%	۵.	Test Results
	(,	Strata	G G		0.01	S - Shear F - Fault	1 ₂	ပိ ခို	RO 80%	& Comments
	- - - - -	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (continued)				5.2m: B5°, un, ro, cly vn	с	100	98	
	- - - 6 -	Below 5.2m: distinct and indistinct bedding at 0°-20°, with 5-10% carbonaceous laminations and flecks				5.91m: Cz, 50mm 5.96m: B10°, pl, un, cly vn				PL(A) = 0.7
-							с	100	97	
-	- 7									PL(A) = 1.7
-	-									PL(A) = 1.3
						7.66m: B0°-5°, pl, ro, cbs	с	100	100	
-	- - 8 -									PL(A) = 1.2
-	- - Ω-					8.29m: B5°, pl, ro, cbs				PL(A) = 1.1
										PL(A) = 1
	4 - - - -						с	100	100	
	-									
ſ	[PL(A) = 1.6

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

 $\label{eq:water} \textbf{WATER OBSERVATIONS:} \quad No free groundwater observed whilst augering$

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 3 OF 4

Γ		Description	Degree of	<u>0</u>	Rock Strength ⊢	Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
RL	Depth (m)	of Strata		Graph Log	Ex Low Very Low Medium High Very High Ex High	Spacing (m) 5000 0001	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
2	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					10.12m: B5°-10°, un, ro, cly vn 10.82m: B0°, pl, ro, cly vn	С	100	100	PL(A) = 1.3
	- 12 - 12 						12.33m: B20°, pl, ro, cbs 12.48m: B5°, pl, ro, cly co 5mm	С	100	100	PL(A) = 0.8 PL(A) = 0.8
- - - - - - - - - - - - - - - - -	- 13 - - - - - - 14 - - - - - - - - - - - - - - - - - - -						14.12m: B0°-5°, un, ro, cbs 14.19m: B5°, pl, ro, cly co 5mm	C	100	95	PL(A) = 0.8
-	-							с	100	100	PL(A) = 2.6

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m

TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAMF	LIN	G & IN SITU TESTING	LEG	END	1		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Nouslaa Dautuara
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1	1.	N Doudias Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			Dougiao i ai titoio
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		!	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 4 OF 4

Γ		Description	Degree of Weathering .º	Rock Strength	<u> </u>	Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
R	Depth (m)	of	raph and raph		Vate	Spacing (m)	B - Bedding J - Joint	pe	ore . %	åD %	Test Results
		Strata	N H M S R H N N N N N N N N N N N N N N N N N N N	Very Low Medit		0.05	S - Shear F - Fault	Ţ	ပိမ္မိ	R S	α Comments
	-	SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					15.16m: B0°-5°, un, ro, cly vn	С	100	100	PL(A) = 1.2
	- 16 - - - - - - - - - - - - - - - - - - -						16.19m: B20°, pl, ro, cly vn 16.86m: B10°, un, ti	с	100	100	PL(A) = 1.3
-4-	-	Between 17.10-17.35m: siltstone clasts, up to 10mm					17.11m: B5°-10°, un, ro, cly vn 17.23m: fg/Cz, 70mm				PL(A) = 0.8
-	- - - - 18 - 18 1						17.43m: B0°, pl, ro, cly vn 17.55-17.80m: F80°, pl, ti, <5mm displacement 17.92-18.10m: J80°, pl, ro, cln	с	100	87	
- - - -		Bore discontinued at 18.1m - Target depth reached									
- - - - - -	-										
R	G: XC D	Drill DRILL	ER: Terratest		LOGO	GED: IT	CASING: HW	/T to	0.5m		

DRILLER: Terratest LOGGED: IT CASING: HWT to 0.5m TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-	
B	Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)				Doutrono
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	11.		125	Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Deag		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11			
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics	I Enviro	onment Groundwater
-									

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 1 OF 2

			Description	. <u>.</u>		San	pling	& In Situ Testing	L	Well	
님	Depth (m)		of	Log	be	pth	aldr	Results &	Nate	Constructi	on
			Strata	G	Ty	De	San	Comments	-	Details	
13	0.24 0.35 0.53		CONCRETE SLAB FILL/MIXTURE OF GRAVEL and BRICKS: coarse sandstone gravel and bricks, brown, apparently in loose to medium dense condition		A/E A/E	0.25 0.35 0.5 0.57		PID<1ppm PID<1ppm PL(A) = 0.1		Bentonite 0.0-1.3m	
2	- 0.07 - 1 - 1		Sandy CLAY CI: medium plasticity, pale grey with pale brown, with fine sandstone gravel and silt, w~PL (affected by diatube), apparently very stiff, extremely weathered sandstone (Mittagong Formation)		A/E C	0.9 0.91 1.0 1.18		PL(A) = 0.2 PL(A) = 1.1		-1 -1	
-	- - -	h	SANDSTONE: medium grained, orange-brown and pale grey, bedded at 0° - 10° , highly weathered, very low to low strength, fractured, Mittagong Formation			1.46 1.5		PL(A) = 0.4		-	
	-2		SANDSTONE: medium to coarse grained, red-brown and orange-brown with some pale grey, with ironstone bands,		с	1.96		PL(A) = 1.9		-2	
-=	- - -		high strength with very low strength bands, slightly fractured, Hawkesbury Sandstone			2.29		PL(A) = 0.6		-	
	-330		Below 1.67m: orange-brown and pale grey, moderately weathered to slightly weathered			2.67		PL(A) = 0.5		-3	
10 1	-		SANDSTONE: medium to coarse grained, pale grey, cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone		С						
F	-4				:	3.95 4.0		PL(A) = 1.1		-4	
-6	-		Below 4.36m: grading to fresh			4.42		PL(A) = 0.6		-	
	- - - 5 - -		Below 5.2m: distinct and indistinct bedding at 0° -20°, with		С	4.95		PL(A) = 1.2		- 5 - 7	
-	-		5-10% carbonaceous laminations and flecks			5.5					
	- 6 				С	5.96		PL(A) = 0.7		- 6	
Ē	-7					6.95 7.0		PL(A) = 1.7		7	
- 9	- - - -				С	7.19		PL(A) = 1.3			
	- 8					7.95		PL(A) = 1.2		-8 -8	
22	- - -					8.3 8.5		PL(A) = 1.1			
4	- 9 9 				с	8.96		PL(A) = 1		9	
-	- - - -					9.95		PL(A) = 1.6		Sand filter 1.3-18.0m Slotted PVC pipe	

RIG: XC Drill

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD1/110311 collected from 0.35-0.5m; Groundwater well installed: blank PVC 0.0-1.5m, screen PVC 1.5-18.0m, bentonite 0.0-1.3m, gravel 1.3-18.0m, backfill 18.0-18.1m, gatic cover at the surface; 100% water loss from 16.0-18.1m

	SAM	PLIN	G & IN SITU TESTING	i LEG	END			
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develoo Douteoro
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1	1.	Douglas Parliers
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
•						-		

Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

Toga Development and Construction Pty Ltd

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 13.4 m AHD BORE No: BH1002 **EASTING:** 333935 **NORTHING:** 6249290 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11/3/2021 SHEET 2 OF 2

Г					Sam	pling -	& In Situ Testing		147 P	
	Depth	Description	phic		ر د			ater	Well	
	(m)	01 Strata	Gra	Type	Dept	ampl	Results & Comments	Ň	Details	1
╞	-	SANDSTONE: medium to coarse grained, pale grey,			10.03	ű			1.5-18.0m	<u>=</u>
	- - - - - - - - - - - - - - - - - - -	cross-bedded at 10°-20°, with 20% fine grained, grey to dark grey sandstone laminations, medium or high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.92		PL(A) = 1.3		- 11	
-	- 12			С	11.95		PL(A) = 0.8		-12	
-	- 13				. 12.95 13.0		PL(A) = 0.8		-13	
	- 14			С	13.95		PL(A) = 1.4		-14	
	- 15			с	14.5 14.95		PL(A) = 2.6		- 15	
	- 16				. 15.95 16.0 16.38		PL(A) = 1.2 PL(A) = 1.3	Σ	- 16	
	- - - 17 - -	Between 17.10-17.35m: siltstone clasts, up to 10mm		С	17.38		PL(A) = 0.8	19-03-2	- 17	
-	- - 18 - 18.1	Bore discontinued at 18.1m		С	-18.1-					
	- 19	- I arget depth reached							- 19	

RIG: XC Drill

CLIENT:

PROJECT:

DRILLER: Terratest

LOGGED: IT

CASING: HWT to 0.5m TYPE OF BORING: Diatube (200mm dia.) to 0.24m, Solid Flight Auger (TC-bit) 0.24-0.53m, NMLC Coring 0.53-18.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develoo Dortmore
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1	1.	Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			Or the basis of English and the Original data to
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

SURFACE LEVEL: 14.3 m AHD BORE No: BH1003 **EASTING:** 333899 **NORTHING:** 6249275 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10/3/2021 SHEET 1 OF 1

Γ			Description	. <u>0</u>		Sam	pling &	& In Situ Testing		Well	
R	i De (r	pth n)	of	Graph Log	Type	Jepth	ample	Results & Comments	Wate	Constructio	n
14	-	0.04 0.09 0.25	STONE TILE SAND and CEMENT CONCRETE SLAB At 0.2m: 8mm steel reinforcement FILL/Clayey SAND: fine to medium, brown, with medium			0.25 0.3	S	PID<1ppm		-	
-	- - - -1		rubble, trace ash and slag		A/E	0.7 0.8		PID<1ppm		- - - - 1	
-6	2	1.3								-	
	-		Bore discontinued at 1.3m - Refusal on bricks (3 courses deep, minimum 4 bricks long)							-	
	-2									-2	
	- !-									-	
	-									-	
	-3									-3 - -	
-	-									-	
-	-4									-4	
-6	-									-	
-	-									-	

RIG: NDD and hand tools DRILLER: Excavac LOGGED: JS TYPE OF BORING: Diatube (200mm dia.) to 0.25m, Non-Destructive Digging 0.25-1.3m WATER OBSERVATIONS: No free ground water observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: Uncased

CLIENT: **PROJECT:**

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.3 m AHD **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

BORE No: BH1003A **PROJECT No: 86884.02** DATE: 10 - 19/3/2021 SHEET 1 OF 3

	Description	Degree of	ы U	Rock Strength	<u>۔</u>	Fracture	Discontinuities	Sa	amplir	ng & l	n Situ Testing
Deptł	h of	Wednering	aph Log		/ate	Spacing (m)	B - Bedding J - Joint	e	e%	D	Test Results
(11)	Strata	a ≩ ≷ ≥ o ⊮	ወ_	Addiu Addiu X High	> [0		S - Shear F - Fault	12	ပ်မှိ	R0 %	& Comments
0.0					l						001110110
0.1	12 SAND and CEMENT										
0.2	23 CONCRETE SLAB		$\overline{\mathbf{X}}$		li			A/E*	-		PID<1
<u>-</u> -	At 0.2m: 8mm steel reinforcement		\mathbb{K}						1		
1	FILL/Clayey SAND: fine to medium,		\bowtie								
f	cobbles, concrete and brick rubble		\bigotimes		li						
ſ	and bricks, trace ash and slag		\bigotimes		1						
[\bowtie								
			\bigotimes		li			A/E			PID<1
L_1			\bigotimes								
['			\bowtie		ľ						
- 1	2	iiiii	\boxtimes	iiiiii	i	ii ii					
2	SAND SP: medium, pale brown and			•							
Ļ	alluvial				li						
_								A/E			PID<1
ŀ											
ł					li						
-			 	1							
-					l				-		
-2				•	İ			AVE	-		PIDST
-											
-					li						
-					l						
ŀ											
-					li						
1											0.45.00
t i			ŀ		▼¦¦			s			8,15,22 N = 37
ſ	Below 2.8m: dense				5						
				•					-		
[¦ ≌						
-					ľ						
-		i i i i i		İİİİİİ	İ	ii ii					
ŀ			:.:·]							
ŀ											
ŀ											
ŀ											
ł					l						
-4 4	Silty CLAY CI-CH: medium to hiah						Unless otherwise stated,				
ŀ	plasticity, pale grey and brown, with		$ \rangle\rangle$				rock is fractured along				
ŀ	stiff to very stiff. residual soil		/1/1		İ		dipping 0-5°, with iron				
4	Clayey SAND SC: medium, brown,		<u>///</u>				staining or clay coating				
t	moist, apparently medium dense to		(l						5/0
	sandstone		(·//					S	1		refusal
4.5	SANDSTONE: medium grained,				T						PL(A) = 0.05
ſ	brown, pale grey and red-brown,				li				100	72	
4.8	⁸⁷ strength, highly weathered.	╡╡	::::	╡┫╧╧┙┥╎╎╎╎	ļ	═┿┙╎╎	4.83-4.87m: Ds 40mm			'	
5	5.0 \fractured, Mittagong Formation				Ľ						
									_		
3: ND	DD, hand tools, XC Drill DRILL	ER: Excava	c, Ter	rratest LC	GG	SED: JS	CASING: HV	V to 2	.0m,	HQ to	5.0m
PEOF	BORING: Diatube (200mm dia.) to (0.23m, Non-	Destr	ructive Digging ().23	-2.0m, Solid	I Flight Auger (TC-bit) 2.0	-4.58	m, NN	ALC (Coring 4.58-14.
E OF FER	BORING: Diatube (200mm dia.) to (OBSERVATIONS: No free groundwate S: *Field replicate BD2/100321 from (0.23m, Non- er observed v) 23-0.30m a	Destr vhilst	ructive Digging (augering).23 3/1(3-2.0m, Solid	I Flight Auger (TC-bit) 2.0	-4.58	m, NN	MLC (Coring 4.58

1.7m, screen PVC 1.7-4.0m, bentonite 0.5-1.5m and 4.0-6.0m, sand 1.5-4m, backfill 0-0.5m and 6.0-14.41m, gatic cover

CLIENT: PROJECT: LOCATION:

Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket **SURFACE LEVEL:** 14.3 m AHD **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

BORE No: BH1003A PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 2 OF 3

Γ		Description	Degree of	.u	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
R	Uepth (m)	of Strata		Graph Log	Ex Low Very Low Medium Very High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
- 0		SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone					5.03m: B20°, pl, ro, fe co 5.60-5.64m: Ds 40mm	С	100	73	PL(A) = 0.6
- - - -	-						6.61m: B10° (x2), pl, ro, ∖fe co 6.70-6.82m: Ds 120mm	С	100	80	PL(A) = 0.5
-	- 7 - 7 	Below 6.85m: pale grey, distinct and indistinct bedding at 0-10° with some cross-bedding, medium and medium to high strength, slightly weathered then fresh									PL(A) = 1
- - - -	- 8						7.62-7.67m: Ds 50mm 7.68m: J50°, pl, ro, cly co 7.9m: B5°, pl, ro, cly co 10mm	C	100	95	
-	9										PL(A) = 1
- - - -	-	Between 9.23-9.35m: grey, fine to medium grained band					9.28-9.31m: B10° (x3), pl, ro, cly co	С	100	82	PL(A) = 0.9

 RIG:
 NDD, hand tools, XC Drill
 DRILLER:
 Excavac, Terratest
 LOGGED:
 JS
 CASING:
 HW to 2.0m, HQ to 5.0m

 TYPE OF BORING:
 Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/100321 from 0.23-0.30m and field replicate BD3/100321 from 1.9-2.0m; Groundwater well installed: Blank PVC 0.0-1.7m, screen PVC 1.7-4.0m, bentonite 0.5-1.5m and 4.0-6.0m, sand 1.5-4m, backfill 0-0.5m and 6.0-14.41m, gatic cover

CLIENT: PROJECT: LOCATION:

Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.3 m AHD BORE No: BH1003A **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 3 OF 3

ſ		Description	Degree of Weathering .≌	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
ā	Depth (m)	of Strata	Graph Graph Graph	Log ery Low ery Low we high x High	Spacing (m) (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	- - 4 - -	SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>	<u>□ I ≥ 0 u u</u> 				С	100	82	PL(A) = 0.7
	- - - 11 	Between 10.93-11.14m: extremely weathered seam				10.93-11.14m: Ds 210mm				
-	-						С	100	86	PL(A) = 0.8
	- 12					12.35-12.40m: J50°, ir, ro, cln				
	- 13					`12.46-12.53m: J60°, ir, ro, cln, healed	С	100	91	PL(A) = 1
		Between 13.58-13.84m: grey, fine to medium grained bed, with 10% dark grey siltstone laminations				12 04 42 02-0 5-				PL(A) = 0.9
-	- 14 - 14					20mm	С	100	92	
-	- - - -	Bore discontinued at 14.41m - Target depth reached								

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.0m, HQ to 5.0m TYPE OF BORING: Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/100321 from 0.23-0.30m and field replicate BD3/100321 from 1.9-2.0m; Groundwater well installed: Blank PVC 0.0-1.7m, screen PVC 1.7-4.0m, bentonite 0.5-1.5m and 4.0-6.0m, sand 1.5-4m, backfill 0-0.5m and 6.0-14.41m, gatic cover

Toga Development and Construction Pty Ltd Proposed Commercial Development

2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 14.3 m AHD BORE No: BH1003A **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 1 OF 2

		Description	ic		San	npling a	& In Situ Testing	5	Well	
Ч	Depth (m)	of	brapt Log	/pe	epth	nple	Results &	Wate	Construction	n
	0.04	Strata	0	F	ă	Sar	Comments		Details	
È.	0.04	STONE TILE		- 	0.23		PID<1		- - Backfill 0-0.5m —	
Ē	- 0.23	SAND and CEMENT	\mathbb{K}	LAVE^_	0.3				-	
ł	-	At 0.2m; 8mm steel reinforcement	\bigotimes						-	
ŧ	-	FILL/Clavey SAND: fine to medium, brown, with	$ \rangle\rangle$	_A/E_	0.8 0.9		PID<1			
Ē	-1 [10	sandstone gravel and cobbles, concrete and brick rubble	\boxtimes						- 1 Bentonite 0.5-1.5m -	
-6	-	SAND SP: medium, pale brown and pale grey, moist			1.4		PID-1		-	
Ē	-	medium dense, alluvial			1.5		ויאטוא		-	
ł	-				1.9		PID<1			
E	-2			<u> </u>	2.0				-	
-5	-			ł	25				-	
-	-			s	2.5		8,15,22		- Cond filter	
Ē	-	Below 2.8m: dense			2.95		N = 37	21	1.5-4.0m	
ł	-			1				9-03-	- 1.7-4.0m	
-=	-			ł					-	
ł	-								-	
Ē	-4 4.0			ł					-4	
Ę		Silty CLAY CI-CH: medium to high plasticity, pale grey and brown, with ironstone gravel, w <pl, apparently="" stiff="" td="" to<=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td>End Cap -</td><td></td></pl,>		1					End Cap -	
Ę	- 4.3 -	very stiff, residual soil	V		4.5		5/0		-	
ŧ	- 4.58 [Clayey SAND SC: medium, brown, moist, apparently			4.58 4.6		PL(A) = 0.05			
ł	- 4.87 -5 5.0	SANDSTONE: medium grained, brown, pale grey and							- - 5 Bentonite fill	-
-0	-	highly weathered, fractured, Mittagong Formation		с					4.0-6m	
È	-	SANDSTONE: medium to coarse grained, brown, pale			5.51		PL(A) = 0.6		-	
ł	-	strength with extremely low and very low strength bands,							-	
Ē	-6	highly weathered, slightly fractured, Hawkesbury Sandstone			6.0				-6	
-∞	-				6.34		PL(A) = 0.5		-	
Ē										
ŀ	-			с						
E	-7	Below 6.85m: pale grey, distinct and indistinct bedding at 0-10° with some cross-bedding, medium and medium to							-7	
	-	high strength, slightly weathered then fresh							-	
Ē	-				7.48		PL(A) = 1		-	
È	-									
-	-8								-8	
-0				с						
ŧ	-								-	
Ē	-									
ŀ	-9				8.95		PL(A) = 1		-9	
-0	-	Between 9.23-9.35m: grey, fine to medium grained band								
ŧ	-			с					-	
Ē	-				9.86		PL(A) = 0.9		-	
L	L	1	1	1			1	1		

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.0m, HQ to 5.0m TYPE OF BORING: Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/100321 from 0.23-0.30m and field replicate BD3/100321 from 1.9-2.0m; Groundwater well installed: Blank PVC 0.0-1.7m, screen PVC 1.7-4.0m, bentonite 0.5-1.5m and 4.0-6.0m, sand 1.5-4m, backfill 0-0.5m and 6.0-14.41m, gatic cover

Toga Development and Construction Pty Ltd

Proposed Commercial Development

2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 14.3 m AHD **EASTING:** 333900 **NORTHING:** 6249274 **DIP/AZIMUTH:** 90°/--

BORE No: BH1003A PROJECT No: 86884.02 DATE: 10 - 19/3/2021 SHEET 2 OF 2

Γ		Description	. <u>0</u>		San	pling	& In Situ Testing		Well	
님	Depth (m)	of	laph	Se Co	th labeled	ple	Results &	Vatei	Construction	
	(,	Strata	ū	Typ	Dep	Sam	Comments	>	Details	
- + +	- - - - - -	SANDSTONE: medium to coarse grained, brown, pale grey and red-brown, cross-bedded at 0-20°, medium strength with extremely low and very low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>		С	10.56 10.66		PL(A) = 0.7		Backfill 6-14.41m	
- - - - -	- 11 - - - - -	Between 10.93-11.14m: extremely weathered seam		с	11.63		PL(A) = 0.8		-11	
2	- 12 - 12 				- 12.19				- 12	
-	- 13			С	12.93		PL(A) = 1		-13	
	- - - - - 14 -	Between 13.58-13.84m: grey, fine to medium grained bed, with 10% dark grey siltstone laminations		c	13.61 13.72		PL(A) = 0.9		-14	
-	- 14.41 - - - -	Bore discontinued at 14.41m - Target depth reached	1		-14.41-					KXXXXI
· · · ·	-									
	- - 16 - - - -								- 16	
	- - 17 - - - -								-17	
	- - - 18 - - -								-18	
	- 19 - 19 								- 19	
	-									

 RIG:
 NDD, hand tools, XC Drill
 DRILLER:
 Excavac, Terratest
 LOGGED:
 JS
 CASING:
 HW to 2.0m, HQ to 5.0m

 TYPE OF BORING:
 Diatube (200mm dia.) to 0.23m, Non-Destructive Digging 0.23-2.0m, Solid Flight Auger (TC-bit) 2.0-4.58m, NMLC Coring 4.58-14.41m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

REMARKS: *Field replicate BD2/100321 from 0.23-0.30m and field replicate BD3/100321 from 1.9-2.0m; Groundwater well installed: Blank PVC 0.0-1.7m, screen PVC 1.7-4.0m, bentonite 0.5-1.5m and 4.0-6.0m, sand 1.5-4m, backfill 0-0.5m and 6.0-14.41m, gatic cover

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004 **EASTING:** 333920 **NORTHING:** 6249261 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10/3/2021 SHEET 1 OF 1

Γ		Description	0		San	npling	& In Situ Testing			
	Dept	h of	inde og	۵	£	<u>e</u>		ater	Construction	
	· (m)	Strata	ы С	Typ	Dept	amp	Comments	8	Details	
\vdash	0.	04 STONE TILE				0				
ł	- 0.	11 SAND and CEMENT	<u></u>						-	
ł	T I		0.0						-	
ł	- C	D.3 CONORCE CEAD	\times	A/E*	0.3		PID<1ppm		-	
t	ſ	grey, with fine to medium sandstone and ironstone gravel,	$\times\!$		0.4				-	
f	Ī	brick rubble, sandstone boulders, and igneous rock	$\times\!\!\times$							
[[CObbles (railway ballast), trace ash and slag	$\times\!$	A/E	0.6		PID<1ppm			
	2 0	18	\sim		0.7				-	
Ľ	-	FILL: building rubble (concrete rubble, bricks, railway	$\times\!\!\times$						-	
ŀ	-1	ballast and sandstone boulders in a clayey sand matrix	$\times\!\!\!\times$						-1	
ł	- 1	1.1 Bara discentinued at 1 1m	XX							
ł	ł	- Refusal in fill							-	
ł	-								-	
ł	F								-	
ł	F								-	
ł	-								-	
ŀ.	T.								-	
12	-								-	
f										
ſ	²								-2	
[[
									_	
Ļ									-	
Ļ	-								-	
ŀ	-								-	
ł	-								-	
-4	2-								-	
ł	-								-	
ł	-3								-3	
ł	-								-	
ł	F								-	
ł	-								-	
ŀ	T								-	
t	T I								-	
f	Ī								-	
	.[[
									_	
	-4								-4	
Ļ	ļ.								-	
ŀ	-								-	
ŀ	-								-	
ł	ł									
ł	ł								-	
ł	-								-	
ł	ł								-	
÷	:-									
ł	ł								-	

RIG: NDD and hand tools DRILLER: Excavac LOGGED: JS TYPE OF BORING: Diatube (200mm dia.) to 0.30m, Non-Destructive Digging 0.30-1.1m WATER OBSERVATIONS: No free ground water observed **REMARKS:** *Field replicate BD2/10.03.21 collected from 0.3-0.4m.

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

CASING: Uncased

Toga Development and Construction Pty Ltd SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 NORTHING: 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 1 OF 4

Γ		Description	Degree of Weathering	<u>o</u>	Rock Strength	_	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
R	Depth (m)	of		raphi Log		Vate	Spacing (m)	B - Bedding J - Joint	be	ere . %	۵°	Test Results
	(,	Strata	A H M M H M M M M M M M M M M M M M M M	Ū	Ex Lo Very I Low High Very I Ex Hij		0.05	S - Shear F - Fault	Тy	ပိမ္မိ	SS ⊘%	∝ Comments
-	0.04 - 0.1 - 0.3 - 0.6	STONE TILE SAND and CEMENT CONCRETE SLAB At 0.26m: 8mm reinforcement steel FILL/Clayey SAND: fine to medium, brown, with silty clay, sandstone gravel and cobbles, igneous rock cobbles (railway ballast), concrete							A/E*			PID<1ppm
	- 1 - 1 	And brick rubble, bricks and rubbish (plastic bottles), trace ash and slag FILL: building rubble (concrete rubble, bricks, railway ballast, sandstone gravel, cobbles and boulders, in a clayey sand matrix)							A/E			PID<1ppm
	-2 -2.1 -2.2	FILL/SILT: low to non-plastic, grey, with sandstone gravel and bricks FILL: building rubble (concrete and bricks - possible footing)							A/E			PID<1ppm
-5	- 2.7	, FILL/SAND: medium, brown, moist		$\overset{\times}{\times}$								
-	-3 3.0	SAND SP: medium, pale grey, wet, medium dense to dense, alluvial		× ×					S/E			7,12,18 N = 30 PID<1ppm REC = 0.3m
	- 4 4.C	Silty CLAY CL-CI: low to medium plasticity, grey, trace charcoal, w>PL, very soft to soft, alluvial							S			pp = 50 2,0,0 N = 0
	-											REC = 0.2m

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed

REMARKS: *Field replicate BD4/110321 collected from 0.3-0.4m.

CLIENT:

PROJECT:

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SAM	PLIN	G & IN SITU TESTING	G LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	
E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 NORTHING: 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 2 OF 4

		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
R	Depth (m)	of Strata		Graph Log	A High	Spacing (m) (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	- - - - - 5.6	Silty CLAY CL-CI: low to medium plasticity, grey, trace charcoal, w>PL, very soft to soft, alluvial (continued)					Unless otherwise stated, rock is fractured along rough, planar bedding dipping 0-5°, with ironstaining or clay				Commente
-1-	- - - 6 6.0	medium strength, Mittagong Formation					coaung	, (S)			<u>10/10</u>
-	-	grained, brown, pale grey and red-brown, medium strength, highly weathered with 20-40% extremely weathered beds, slightly fractured, Mittagong Formation	P1				6.33-6.83m: Ds 500mm	с	100	60	PL(A) = 0.4
	- 7 - 7 - 7 7	SANDSTONE: medium to coarse grained, red-brown, orange and pale grey, medium strength, highly then moderately weathered, slightly fractured, Hawkesbury Sandstone	- P ,				7.41m; 130° pl ro cly				PL(A) = 0.8
- - - 80 -	- - -	Below 7.86m: grading to pale grey,					Vn 7.50-7.54m: Ds 40mm 7.80-7.83m: Ds 30mm				PI (A) = 0.6
-	- 8 - - - 8.36	SANDSTONE: fine to medium					8.33-8.36m: Ds 30mm	с	100	93	1 L(A) = 0.0
	- - - - - 8.93 - 9	grained, pale grey, indistinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone SANDSTONE: medium to coarse grained pale grey, distinct and					8.93m: B10°, pl, ro, cly co 10mm				PL(A) = 1.2
- - - - 9	-	indistinct bedding at 0-10°, cross-bedded, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone						с	100	100	PL(A) = 0.8

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed

REMARKS: *Field replicate BD4/110321 collected from 0.3-0.4m.

		SAMP	LIN	G & IN SITU TESTING	G LEG	END]			
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_		_
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develoo Dor	
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)		11.	LOUOIAS Par	
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample		⊳	Water seep	S	Standard penetration test			Controlucion I Environment I	One was divisited
E	Environmental sar	mple	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment	Groundwater
							-			

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 NORTHING: 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 3 OF 4

Γ		Description	Degree of	Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
R	Depth (m)	of Strata	Graphi 6 w s s s s		Spacing (m) ଅନ୍ମ ଜନ୍ମ	B - Bedding J - Joint S - Shear F - Fault	Type	Core tec. %	RQD %	Test Results &
-	-	SANDSTONE: medium to coarse grained, pale grey, distinct and indistinct bedding at 0-10°, cross-bedded, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					с	100	100	Comments
	11 11 						С	100	95	PL(A) = 0.7
-	- - - 12 -									PL(A) = 0.9
	- 13						С	100	100	PL(A) = 0.9
	- - - 14 - -					13.82m: B5°, pl, ro, cly co 5mm 14.31m: B10°, pl, ro, cly vn	С	100	99	PL(A) = 0.8
-	- - - -					14.91m: B10°, pl, ro, cly vn				PL(A) = 0.8

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed **REMARKS:** *Field replicate BD4/110321 collected from 0.3-0.4m.

	SA	MPLIN	G & IN SITU TESTING	G LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Baualaa Dautuara
BI	LK Block sample	U,	Tube sample (x mm dia.)	PL(C	0) Point load diametral test ls(50) (MPa)	1		1 Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		· /	Or the ball of the second of the or the second seco
E	Environmental sample	∋ ¥	Water level	V	Shear vane (kPa)			Geotecnnics Environment Groundwater
						_		

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1004A **EASTING:** 333921 **NORTHING:** 6249260 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 18/3/2021 SHEET 4 OF 4

Γ		Description	Degree of	υ	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
R	Uepth (m)	of Strata	Medulound WH W S R S R S R	Graph Log	Ex Low Very Low Medium High Very High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	- 16	SANDSTONE: medium to coarse grained, pale grey, distinct and indistinct bedding at 0-10°, cross-bedded, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 15.15-15.47m: extremely low strength, extremely weathered bed					15.15-15.47m: Ds 320mm 15.52-15.59m: J70°, pl, ro, cly vn, partially healed 15.83m: B10°, pl, ro, cly co 10mm 15.83-16.00m: J80°, ir, ro, cln, partially healed 15.96m: B10°, pl, ro, cly co 10mm	С	100	99	PL(A) = 0.9
	- - - - - - - -	Between 16.72-17.42m: cross-bedded at 0-10°, low strength, with extremely weathered seams, fractured					16.6m: B10°, pl, ro, cly co 5mm 16.72m: B10°, pl, ro, cly co 5mm 16.85m: B10°, pl, ro, cly co 5mm 16.95m: B10°, pl, ro, cly co 10mm 17.18m: B10°, pl, ro, cly co 5mm 17.29-17.42m: Ds 130mm	с	100	86	PL(A) = 0.3
-	- 18	Between 17.42-18.22m: cross-bedded at 0-10°, high strength, slightly fractured					17.7m: B10°, pl, ro, cly co 10mm 17.81m: B5°, ir, ro, cbs				PL(A) = 1.7
	- 19	Bore discontinued at 18.22m - Target depth reached									
-	t - -										

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.6m TYPE OF BORING: Diatube (200mm dia.) and Non-Destructive Digging (NDD) to 2.1m, NDD 2.1-2.3m, NMLC coring 2.3-3.1m, washbore 3.1-6.0m, NMLC coring 6.0-18.22m WATER OBSERVATIONS: No free ground water observed

REMARKS: *Field replicate BD4/110321 collected from 0.3-0.4m.

CLIENT:

PROJECT:

	SAM	PLIN	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Nouslas Bortras
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
-	· · · · ·				

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD BORE No: BH1005 **EASTING:** 333920 NORTHING: 6249246 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 16/3/2021 SHEET 1 OF 4

Γ		Description	Degree of	Rock Strength	Fracture	Discontinuities	Sam	pling &	In Situ Testing
Ā	Uepth (m)	of	raph Log		Spacing (m)	B - Bedding J - Joint	pe	»%	Test Results
		Strata	G B B B B B B B B B B B B B B B B B B B	Ex Lo Low Very Ex High	0.05 0.10 1.00 1.00 1.00 1.00 1.00 1.00	S - Shear F - Fault	r≥ ŭ	Rec Rec	Comments
ļ	0.02	SAND and CEMENT							
ł	0.22	2 CONCRETE SLAB: 3x plastic					A / E *		
ł	- 0.3	³ conduit (empty)					A/E"		PID< 1ppm
ł	-	reinforcement							
-	-	FILL/Clayey SAND: fine to medium, brown, with fine to medium gravel and concrete rubble, dry					A/E		PID<1ppm
ł	-	FILL: building rubble (concrete							
-4	2-	cobbles and boulders, railway							
ļ	[ballast, ash, slag, in sandy clay matrix)							
ŀ	-								
ł	- 1.3	FILL/Clayey SAND: fine to medium,							
ł	F	brown and grey, with sandstone and							
Į	[and brick rubble, trace ash and slag					A/F		PID<1ppm
ŀ	-								
ł	-								
-7	- 1								
ļ	[2								
ł	-								
ł	-								
t	Į								
ļ									
ł	-						S/E		8,15,15 N = 30
ŀ	- 2.8	⁸ SAND SP: medium, pale grey, wet,					A/F		PID<1ppm
Ę	-3	medium dense to dense, alluvial							
ŀ	ļ								
ł	-								
ł	ŀ								
ļ	[
ł	-								
ł	-								
Ì,	-								
Ţ	-4								
ł	-						۹ ۹		10,25
ł	- 4.2	2 SAND SP: medium, pale brown and							refusal
ţ	[red-brown, wet, dense to very dense, alluvial							
ŀ	-								
ł	ł								
ł	F								
	_								
T	-								1

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAM	PLIN	3 & IN SITU TESTING	LEG	END]		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develoo Douteoro
B	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1		Douolas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics Environment Groundwater

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD BORE No: BH1005 **EASTING:** 333920 **NORTHING:** 6249246 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 16/3/2021 SHEET 2 OF 4

Г		Description	Degree of	Rock	Fracture	Discontinuities	Se	molir	nu 8. I	n Situ Testina
	Depth		Weathering	Strength	Spacing	Discontinuities		piii	ig a l	Test Resulte
R	(m)	UI Strata		Aa	(m) ۵۰ ۵۰	B - Bedding J - Joint S - Shear F - Fault	[ype	Core ec. %	30D %	&
\vdash			₩ H M S S H		0.0 1.0 1.0			۳ ۳	-	Comments
-	- 5.2	Silty CLAY CI-CH: medium to high plasticity, grey, trace fine gravel and charcoal, w=PL, stiff to very stiff, alluvial								
- - - - -	- - - - 6 -						S			pp = 400 4,7,12 N = 19
- - - - - - - -	- 6.2 - - - - - - 7	Silty CLAY CI-CH: medium to high plasticity, pale grey and pale brown, with fine to medium ironstone gravel, w>=PL, stiff with some soft to firm layers, residual soil								
- - - - - - - -	-						S			pp = 200 5,6,6 N = 12
-	- 8 8.0 - - - -	Clayey SAND SC: medium, brown, dry, very dense, extremely weathered sandstone				Unless otherwise stated, rock is fractured along rough, planar bedding dipping 0-5°, with ironstaining or clay infill	S			15/100 refusal
	- 8.74 - 8.9 - 9 -	SANDSTONE: medium grained, orange-brown, very low strength, highly weathered, fractured, Hawkesbury Sandstone SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, medium to high strength, slightly								PL(A) = 0.9
	- - - -	weathered, slightly fractured to unbroken, Hawkesbury Sandstone					С	100	87	
۳							С	100	92	PL(A) = 0.9

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAM	PLIN	G & IN SITU TESTING	G LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		Doubles Parners
C	Core drilling	Ŵ	Water sample	aa '	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD BORE No: BH1005 **EASTING:** 333920 NORTHING: 6249246 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10 - 16/3/2021 SHEET 3 OF 4

Γ		Description	Degree of Weathering ·≌		Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
Ī	Depth	of		Log	Vate Nate	Spacing (m)	B - Bedding J - Joint	be	re . %	D,	Test Results
	()	Strata	M H M S S H N M N S S H Ω	פ	Ex Lo Very Low Very F Ex High	0.01 0.10 0.50	S - Shear F - Fault	Ţ	ပိမ္မိ	R 0 %	∝ Comments
	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, medium to high strength, slightly weathered, slightly fractured to unbroken, Hawkesbury Sandstone (<i>continued</i>) Between 10.13-13.05m: fresh					10.11-10.13m: Ds 20mm	С	100	92	PL(A) = 0.9
	- - - - - - - - - - - - - - - - - - -	Between 12.33-12.51m: fine to medium grained, grey						С	100	100	PL(A) = 0.9 PL(A) = 1.1
	- 13 13.05 - - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, indistinct bedding at 0-10°, very low then low strength, highly weathered with extremely weathered seams, fractured, Hawkesbury Sandstone SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, low to medium strength, slightly weathered, slightly fractured,				╶┠╼ ╌╶╶╌╌╶╶╢╌┰╌ ╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	13.05m: B 10°, pl, ro, cly co 13.31-13.33m: Ds 20mm 13.50-13.55m: Ds 50mm 13.60-13.6m: J40° (x2), pl, ro, cly co 10mm 13.84-13.86m: Ds 20mm 14.04m: B10°, pl, ro, cly co 10mm 14.1m: J60°, ir, ro, cly co 14.17m: J40°, ir, ro, cly co 14.21m: B10°, pl, ro, cly	С	100	31	PL(A) = 0.1 PL(A) = 0.3
-	- - -	Hawkesbury Sandstone Below 14.75m: medium or medium to high strength, fresh					vn 14.62-14.66m: Ds 20mm 14.72-14.75m: Ds 30mm	С	100	84	PL(A) = 0.8

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

ſ	SAM	PLIN	G & IN SITU TESTING	LEGEND	
	A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	N D ougloo D outroore
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
	C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
	D Disturbed sample	⊳	Water seep	S Standard penetration test	
	E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.9 m AHD **EASTING:** 333920 **NORTHING:** 6249246 **DIP/AZIMUTH:** 90°/--

BORE No: BH1005 **PROJECT No: 86884.02** DATE: 10 - 16/3/2021 SHEET 4 OF 4

	Description		Degree of Weathering ·⊇		egree of Strength	Fracture Discontinuities	Discontinuities	Sampling & In Situ Testing			
R	u Depth (m)	of Strata		Graphi Log	Very Low Very Low Medium High Very High Ex High	Spacing (m) 5000000000000000000000000000000000000	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-		SANDSTONE: medium to coarse grained, pale grey, bedded at 0-10°, low to medium strength, slightly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>						С	100	84	PL(A) = 1
	- 16	Bore discontinued at 15.85m - Target depth reached									
	- 17										
	- 18 - 18 										
	- 19 - 19 										

DRILLER: Excavac, Terratest RIG: NDD, hand tools, XC Drill LOGGED: JS CASING: HW to 2.3m TYPE OF BORING: Diatube (200mm dia.) to 0.22m, Non-Destructive Digging 0.22-1.65m, Solid Flight Auger (TC-bit) 1.65-8.74m, NMLC coring 8.74-15.85m WATER OBSERVATIONS: Groundwater not observed in open hole prior to auger drilling, due to surface water filling hole REMARKS: *Field replicate BD1/100321 collected from 0.22-0.30m. Sand collapse at 2.5m, possible water table level

	SAMP	LIN	G & IN SITU TESTING	LEG	END		
AA	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
BE	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Develoe Develoers
BLK E	Block sample	U,	Tube sample (x mm dia.)	PL(C	0) Point load diametral test ls(50) (MPa)		Douglas Partners
C (Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Deagine i ai tileit
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Or the bailer of Freedom and the Original states
EE	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotecnnics Environment Groundwater

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

SURFACE LEVEL: 15.7 m AHD BORE No: BH1006 **EASTING:** 333896 **NORTHING:** 6249252 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 10/3/2021 SHEET 1 OF 1

Γ		Description	. <u>c</u>		San	npling	& In Situ Testing		Well	
ā	Depth (m)	of	iraph Log	/pe	pth	nple	Results &	Wate	Construction	
L	0.02	Strata	Ű	Ê	å	Sar	Comments		Details	
-	- 0.02		0 						-	
ł	. 0.18								-	
ŀ	-	At 0.18m; 20mm conner water nine	\bigotimes						-	
t	[FILL : igneous rock cobbles (railway ballast) with fine to	\bigotimes							
-	-	medium grained sand and brick rubble	\bigotimes						-	
-ų	2-	At 0.4m: 8mm steel reinforcement fragment	\bigotimes						-	
ł	- 0.8	0.80-0.85m: 65mm and 100mm copper pipes (buried						-		
t	Ĺ,	services)							-	
	['	- Refusal on buried services								
-	-								-	
ł	-								-	
ŀ	ł								-	
l									-	
-	<u>r</u>								-	
ŀ	-								-	
ł	-								-	
t	[²								-2	
ŀ	-								-	
ł	-								-	
ł	ł								-	
ŀ	1								-	
_									-	
ŀ	-								-	
ł	-								-	
ŀ	-3								-3	
I	[-	
-	-								-	
ŀ	-								-	
ŀ	-								-	
Ĺ,	,									
-	-								-	
ŀ	-								-	
ŀ	-4								-4	
t	t									
Ţ	[
ł	ŀ									
ł	ł									
ł	ŀ								-	
Ę	ł									
F	ļ									
L										

RIG: NDD and hand tools DRILLER: Excavac LOGGED: JS TYPE OF BORING: Diatube (200mm dia.) to 0.18m, Non-Destructive Digging 0.18-0.80m WATER OBSERVATIONS: No free ground water observed **REMARKS:** Terminated on copper pipes

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: Uncased

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 EASTING: 333896 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 1 OF 4

Γ		Description	Degree of	Rock Strength	Fracture	Discontinuities	Sampling & I	n Situ Testing
R	Depth (m)	of	traph dr		Spacing (m)	B - Bedding J - Joint	pe ore c. % CD	Test Results
	0.02	Strata	M M M M M M M M M M M M M M M M M M M	Ex Low Nedi High Ex H	0.01	S - Shear F - Fault		Comments
-	- 0.2 - 0.2	SAND and CEMENT CONCRETE SLAB Between 0.14-0.15m: 8mm steel reinforcement FILL/Clayey SAND: fine to medium, brown and grey with sandstone					A/E*	PID<1ppm
15 - 15	- - - - - - - -	gravel and cobbles, igneous rock cobble (railway ballast), concrete rubble and bricks, trace ash and slag					A/E A/E	PID<1ppm PID<1ppm
14	- 2						A/E	PID<1ppm
13	- 2.3 	FILL/SAND: medium to coarse, pale brown and grey, with pale grey and red-brown silty clay and fine to medium gravel, moist					S/E	4,6,6 N = 12 PID60 ppm
	- 3.5	SAND SP: medium, pale grey, wet, dense, alluvial						
	-						S/E*	8,16,25 N = 41 PID16 ppm

RIG: NDD, hand tools, XC Drill DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 1.7m, HQ to 9.2m **TYPE OF BORING:** Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

	SAM	LIN	G & IN SITU TESTING	LEGEND]	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)			
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa			
BI	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S Standard penetration test			Constant in 1 Environment 1 Operations
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)			🖌 🛲 Geotecnnics Environment Groundwate

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 **EASTING:** 333896 **NORTHING:** 6249263 DIP/AZIMUTH: 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 2 OF 4

Г		_	Degree of	Rock	F ue et	Discontinuities				
.	Denth	Description	Weathering	Strength o	Fracture Spacing	Discontinuities	Sa	amplir	ng &	
R	(m)	of	jrap	Vat Nat	(m)	B - Bedding J - Joint	/be	ore c. %	Do%	l est Results &
		Strata	FR SW HW	Ex L Med Very Very	0.01 0.10 0.50 1.00	S - Shear F - Fault	ŕ	ပီရွိ	Ϋ́ς	Comments
-	-	SAND SP: medium, pale grey, wet, dense, alluvial <i>(continued)</i> Below 5.0m: grading to loose								
10	- 5.7 6 6	, Silty CLAY CL-CI: low to medium plasticity, grey, trace fine gravel, w>PL, stiff to very stiff, alluvial					S			pp = 100 3,7,9 N = 16
-	- - - 6.5 - -	SAND SP: medium, brown, wet, medium dense, alluvial								
-	-7 - 7.2 - -	Silty CLAY CI-CH: medium to high plasticity, pale grey and brown, with ironstone gravel, w>PL, very stiff, residual soil					S			pp = 500 8,15,15 N = 30
- 00	- - - 8 8.0 - - - -	Clayey SAND SC: medium to coarse, pale grey and brown, with silty clay layers, wet, medium dense, extremely weathered sandstone								
	-					Unless otherwise stated, rock is fractured along rough, planar bedding dipping 0-5°, with iron	S			20,13,8 N = 21
-	- 9 - 9.2 -	SANDSTONE: brown, very low strength, Hawkesbury Sandstone				staining or clay coating				
9	- 9.5 - - - 9.83	 SANDSTONE: medium to coarse grained, brown, indistinct bedding at 0-10°, very low strength, highly weathered, fractured, Hawkesbury Sandstone 					с	100	97	PL(A) = 0.1
L	10.0									PL(A) = 1.2
RI	G: NDE	D. hand tools. XC Drill DRILI	LER: Excavac.]	Terratest LOG	GED: JS	Casing: HW	' to 1.	.7m. l	HQ to	o 9.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

	SAM	PLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
E	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
E	ILK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT: LOCATION:

RIG: NDD, hand tools, XC Drill

Toga Development and Construction Pty Ltd Proposed Commercial Development 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 **EASTING:** 333896 NORTHING: 6249263 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 3 OF 4

Γ		Description	Degree of Weathering .º	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
ā	Depth (m)	of Strata	Graph Graph	Ex Low Very Low Low Medium Very High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	-	SANDSTONE: medium to coarse grained, pale grey, distinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>					с	100	97	
	o - - - 11 - - - - -	Below 10.87m: with 5-10% fine to medium grained beds, and low to medium strength to 10.91m Below 10.98m: medium strength to high strength, unbroken				10.87-10.91m: Ds 40mm 10.98m: B10°, pl, ro, cly co 10mm	С	100	88	PL(A) = 0.3 PL(A) = 0.4
-	* - - - 12 -									
	- - - - - - - - - - - - - - - - - - -						С	100	100	PL(A) = 1.1
	- - - - - - - - - - - - - -					14.64-14.68m: B5° (x5), pl, ro, cly co	С	100	97	PL(A) = 0.9

DRILLER: Excavac, Terratest LOGGED: JS CASING: HW to 1.7m, HQ to 9.2m

TYPE OF BORING: Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

CLIENT: PROJECT:

Toga Development and Construction Pty Ltd Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 EASTING: 333896 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 4 OF 4

RL	Depth		1 WVoothoring	0	Strength	Tradicito	Discontinuities	00	anpin	ig a	in Situ resting
	(m)	of Strata		Graphi Log	Very Low Very Low Medium High Ex High Ex High	Spacing (m) 5000 0301	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	-	SANDSTONE: medium to coarse grained, pale grey, distinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone (continued)						С	100	97	PL(A) = 0.8
- 0	- - - - 16 - - 16.2	Poro diccontinued at 16.2m						С	100	97	PL(A) = 1.3
-	-	- Target depth reached									
	- - - 17 -										
	- - - - - - - - - - - - - - - - - - -										
4	- - - - - - - - - - - - - - - - - - -										

DRILLER: Excavac, Terratest LOGGED: JS RIG: NDD, hand tools, XC Drill CASING: HW to 1.7m, HQ to 9.2m **TYPE OF BORING:** Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m

WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

	SAMP	LIN	G & IN SITU TESTING	LEG	END			
A Aug	ger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bull	k sample	Ρ	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Devalos Dortmore
BLK Blog	ck sample	U,	Tube sample (x mm dia.)	PL(E	0) Point load diametral test ls(50) (MPa)	1	1.	Douglas Parliers
C Cor	re drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Dist	turbed sample	⊳	Water seep	S	Standard penetration test			Or start in Fraincast 1 One and the frain
E Env	vironmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

Toga Development and Construction Pty Ltd

Proposed Commercial Development

LOCATION: 2-8a Lee Street, Haymarket

CLIENT:

PROJECT:

SURFACE LEVEL: 15.8 m AHD BORE No: BH1007 **EASTING:** 333896 **NORTHING:** 6249263 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/--

PROJECT No: 86884.02 DATE: 11 - 17/3/2021 SHEET 1 OF 2

D,	enth	Description	g		Sam	pling a	& In Situ Testing	e –	Well	
((m)	of Strata	Grap Lo	Type	Jepth	ample	Results & Comments	Wat	Construction	
	0.02					ű				X
	0.07 0.2	SAND and CEMENT		_A/E*_	0.2 0.3		PID<1ppm			Ŕ
		CONCRETE SLAB	\bigotimes	/= _	0.6					×
		Between 0.14-0.15m: 8mm steel reinforcement	\bigotimes	AVE	0.7		PID <ippm< td=""><td></td><td></td><td>×</td></ippm<>			×
		FILL/Clayey SAND: fine to medium, brown and grey, with sandstone gravel and cobbles, igneous rock cobble	\bigotimes						-1	×
		(railway ballast), concrete rubble and bricks, trace ash and slag	\bigotimes							
			\bigotimes	A/E	1.5 1.6		PID<1ppm			×
			\bigotimes						E l	Ŕ
			\bigotimes	A/E	2.0 2 1		PID<1ppm		-2	
	2.3	FILL/SAND: medium to coarse hale brown and drey, with	\bigotimes							X
		pale grey and red-brown silty clay and fine to medium	\bigotimes		2.5		4,6,6		-	Ŕ
		gravel, moist	\bigotimes	S/E	0.05		N = 12 PID60 ppm		E l	
			\bigotimes		2.95				-3	
			\bigotimes							Ŕ
	3.5	SAND SP: medium, pale grey, wet, dense, alluvial	$\langle \cdot, \cdot \rangle$							Ř
										X
				0/5*	4.0		8,16,25	T		Ŕ
				5/E"	1 15		PID16 ppm	-21 1	Backfill 0-0.5m	Ř
					4.45			16-03		
										Ŕ
		Below 5.0m: grading to loose							-5 [K
	5.7			G	5.5		pp = 100			Ŕ
	-	Silty CLAY CL-CI: low to medium plasticity, grey, trace fine gravel, w>PL, stiff to very stiff, alluvial		0	5.95		N = 16			Ř
			1/1/							Ø
	65									
	0.0	SAND SP: medium, brown, wet, medium dense, alluvial								Ŕ
					70				-7	Ř
	7.2	Silty CLAX CLOH, madium to high plasticity, polo gray		S			pp = 500 8,15,15			X
		and brown, with ironstone gravel, w>PL, very stiff, residual			7.45		N = 30			Ŕ
		SOI							E l	Ř
	8.0								-8	×
		Clayey SAND SC: medium to coarse, pale grey and brown, with silty clay layers, wet, medium dense,	(,						E l	Ŕ
		extremely weathered sandstone	·		8.5					Ř
			(· <i>.</i> , /, /,	S			20,13,8 N = 21		Ę I	V
			(., /.)		8.95				9 Bentonite 8.5-9.5m	V
	9.2	SANDSTONE; brown, very low strength. Hawkesbury	[<u>/ </u>					▼	[V
	9.5	Sandstone			9.5		PL(A) = 0.1	-03-21	ŧ l	1
	9.83 10.0-	SANDSTONE: medium to coarse grained, brown, indistinct bedding at 0-10°, very low strength, highly weathered, fractured, Hawkesbury Sandstone		с	9.52			19-	-	

Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger 1.6-8.5m, washbore 8.5-9.5m, NMLC I YPE OF BORING: coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

SAM	PLIN	G & IN SITU TESTING	6 LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Develoo	Douteono
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	4 1		Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doagiao	
D Disturbed sample	⊳	Water seep	S	Standard penetration test		Or a fact for the L. Free days	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotecnnics Enviror	nment I Groundwater

SURFACE LEVEL: 15.8 m AHD **EASTING:** 333896 NORTHING: 6249263 **DIP/AZIMUTH:** 90°/--

BORE No: BH1007 **PROJECT No: 86884.02** DATE: 11 - 17/3/2021 SHEET 2 OF 2

Γ		Description	<u>.</u>		Sam	pling	& In Situ Testing		Well	
R	Depth (m)	of	iraph Log	be	pth	nple	Results &	Wate	Constructio	n
		Strata	0	ŕ	ے م	San	Comments		Details	
-	-	SANDSTONE: refer following page / SANDSTONE: medium to coarse grained, pale grey, distinct bedding at 0-10°, high strength, fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>		с	9.96		PL(A) = 1.2		-	
	-11	Below 10.87m: with 5-10% fine to medium grained beds, and low to medium strength to 10.91m Below 10.98m: medium strength to high strength,			10.94		PL(A) = 0.3		- 	
4		unbroken		С	11.44		PL(A) = 0.4			
-	- 12				12.28				- 12 	
	- 13			С	12.96		PL(A) = 1.1		Sand filter — -13 9.5-16.2m Slotted PVC pipe — 10.2-16.2m	
	- - - 14 -				13.71 13.94		PL(A) = 0.9		- - - 14 -	
	- 15			С	14.95		PL(A) = 1.5		- 15	
-0	- 16			с	15.96		PL(A) = 1.3			
-	16.2	Bore discontinued at 16.2m - Target depth reached			-16.2-				End Cap	<u> :[= : </u>
	- 17								- 17	
	- 18								- 18	
-4	- 19								- 19	

DRILLER: Excavac, Terratest LOGGED: JS RIG: NDD, hand tools, XC Drill CASING: HW to 1.7m, HQ to 9.2m **TYPE OF BORING:** Diatube (200mm dia.) to 0.2m, Non-Destructive Digging 0.2-1.6m, Solid Flight Auger (TC-bit) 1.6-8.5m, washbore 8.5-9.5m, NMLC **WATER OBSERVATIONS:** Free groundwater observed at 4.2m depth whilst augering coring 9.5-16.2m WATER OBSERVATIONS: Free groundwater observed at 4.2m depth whilst augering

REMARKS: *Field replicates BD1/110321 from 0.2-0.3m and BD1/160321 from 4.0-4.45m; 20% water loss below 12.8 and 80% loss below 14.64m; Standpipe installed:- Blank PVC 0.0-10.2m, screen PVC 10.2-16.2m, bentonite 8.5-9.5m, sand 9.5-16.2m, backfill 0-0.5m, gatic

	SAM	PLIN	G&INSITUTESTIN	G LEGI	END			
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1	Γ	1 Douolas Pariners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			Or a familie I Frankraus at I Oracia dana familie
	E Environmental sample	¥	Water level	V	Shear vane (kPa)			Geotecnnics Environment Groundwater
1								

Proposed Commercial Development LOCATION: 2-8a Lee Street, Haymarket

Toga Development and Construction Pty Ltd

CLIENT: **PROJECT:** LOCATION:

Toga Development and Construction Pty Ltd **Proposed Commercial Development** 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.0 AHD **EASTING:** 333924.5 NORTHING: 6249271 DIP/AZIMUTH: 90°/--

BORE No: BH2001A **PROJECT No: 86884.02** DATE: 21 - 22/6/2021 SHEET 1 OF 3

Γ			Description	De	egree of	U	Rock Strength	۷.	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
Ī	ᆋ	epth	of	100	autoring	aph		/ate	Spacing (m)	B - Beddina J - Joint	e	e%	D	Test Results
		(11)	Strata	∧ ≯	N N N	ِّقً	Aligh Lov	\leq	01:05	S - Shear F - Fault	Ţ	Re O	RQ %	& Comments
F	4		CONCRETE SLAB: no steel			Q.7								
	[0.15	FILL (SAND: medium brown with					ľ			A/E			PID<1
ļ	-		sandstone gravel, cobbles and			\mathbb{X}								
ł	ł		boulders, trace concrete rubble, moist, generally in a very dense			\mathbb{X}		ľ						
ł	+		condition			\mathbb{N}								
ł	F					\mathbb{X}		l						
ł	F					\otimes								
	[l i i		\mathbb{X}		l						
	₽-1	1.0				\bigotimes								
ł	-		FILL/SAND: medium, brown and grey, with silty clay and sandstone,	l i i	İİİİ	\mathbb{K}		j			A/E			PID<1
ł	ŀ		siltstone and igneous gravel, wet,			\bigotimes		Ţ						
ł	F		condition			\mathbb{X}		06-2						
t	t					\bigotimes	5	5						
										Unless otherwise stated, rock is fractured along				
ł	ŀ					\bigotimes		l		rough, planar bedding				
ł	ŀ					\mathbb{X}				ironstaining or clay	AVE			PID<1
ł	ŀ			lij		\bigotimes				coating				
ľ	₽-2	2.0	Sandy CLAY CL-CI: low to medium			ľ. /.								
			sand, w>PL, inferred very stiff to	l i i	İİİİ	./.								
ł	+		hard, residual soil											
ł	ł					././								
ł	ł	2.5	SANDSTONE: medium grained,	t i i							С	100	0	
Į	Į		brown and red-brown with pale grey bands, medium strength, highly											
-	Ļ		weathered, slightly fractured, Mittagong Formation	l i i										
ł	+		Wittagolig Formation											PL(A) = 0.6
ł														
ł	F													
t	t													
ļ	Ļ			زلنها						0.40mm Dr. 00mm	с	100	79	
ł	+			╎┖┓╎						3.40m: DS, 90mm				
ł	+			Lili	İİİİ									
ł	F	3 78								3.60-3.70m: J80-90°, ir, ∖ ro. clv vn. he				
Į	Ī	5.70	SANDSTONE: medium to coarse							¹ 3.75m: Ds, 30mm				$\mathbf{P}(\mathbf{A}) = 0 \mathbf{C}$
	₽-4		cross-bedded and medium bedded,											PL(A) = 0.6
ł	·		weathered, fractured, Hawkesbury											
ł	+		Sandstone		iiii			i						
ł	ł													
t	t													
ſ										$458.460m \cdot P0.5^{\circ}/v^{2}$	с	100	97	
+	+	4.68		1 i i	i i L	:::::				pl, ro, fe co				
$\left \right $	ł													
ł	ł													PI(A) = 0.7

DRILLER: Tightsite

LOGGED: JS

CASING: HQ to 2.5 m

RIG: Proline TYPE OF BORING: Diatube (150mm dia) to 0.15m, hand auger to 1.8m, rotary washbore to 2.5m, NMLC coring to 12m WATER OBSERVATIONS: Free groundwater observed at 1.2m

Co-ordinates interpolated relative to site features. Surface level taken from Synman Justin Blalek **REMARKS:** Architects Pty Ltd, Job 4000, Drawing No. WD05, Rev D, dated 29 July 1989. Borehole re-instated

CLIENT: **PROJECT:** LOCATION:

Toga Development and Construction Pty Ltd **Proposed Commercial Development** 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.0 AHD **EASTING:** 333924.5 **NORTHING:** 6249271 DIP/AZIMUTH: 90°/--

BORE No: BH2001A **PROJECT No: 86884.02** DATE: 21 - 22/6/2021 SHEET 2 OF 3

Γ		Description	Degree of Weathering		Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
R	Uepth (m)	of Strata	WXH WMW SR WW SR R	Graph Log	Ex Low Very Low Low Medium Very High Ex High	5pacing (m) (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-	SANDSTONE: medium to coarse grained, pale grey, distinctly and indistinctly bedded at 0-10°, with fine to medium grained bands, medium strength, fresh, slightly fractured, Hawkesbury Sandstone (continued)					5 67mi Do 20mm	С	100	97	
- - «	- 6						5.07m. DS, 20mm				PL(A) = 0.7
	7	Below 6.4m: high strength, unbroken						С	100	100	PL(A) = 1.4
-	-	Below 7.33m: 1-5% carbonaceous laminations Below 7.6m: thinly to thickly bedded, medium to high strength									
- 4 - 4 - -	- 8 							С	100	100	PL(A) = 1.1
- - -											PL(A) = 0.8
-	-							С	100	100	
ŀ											PL(A) = 1.2

RIG: Proline

DRILLER: Tightsite

LOGGED: JS

CASING: HQ to 2.5 m

TYPE OF BORING: Diatube (150mm dia) to 0.15m, hand auger to 1.8m, rotary washbore to 2.5m, NMLC coring to 12m WATER OBSERVATIONS: Free groundwater observed at 1.2m

Co-ordinates interpolated relative to site features. Surface level taken from Synman Justin Blalek **REMARKS:** Architects Pty Ltd, Job 4000, Drawing No. WD05, Rev D, dated 29 July 1989. Borehole re-instated using cement grout.

_														
	SAMPLING & IN SITU TESTING LEGEND													
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
B	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)									
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

CLIENT: **PROJECT:** LOCATION:

Toga Development and Construction Pty Ltd **Proposed Commercial Development** 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.0 AHD **EASTING:** 333924.5 **NORTHING:** 6249271 DIP/AZIMUTH: 90°/--

BORE No: BH2001A **PROJECT No: 86884.02 DATE:** 21 - 22/6/2021 SHEET 3 OF 3

Γ		Description	Degree of	<u>ں</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
Ч	Depth (m)	of		raph Log		Spacing (m)	B - Bedding J - Joint	be	ore 2. %	۵۵ م	Test Results
L	. ,	Strata	X H H K K K K K K K K K K K K K K K K K	ڻ 	Ex Lo Very Very Very	0.05	S - Shear F - Fault	Ty	ပိမ္ရွိ	Я,	Comments
	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, pale grey, distinctly and indistinctly bedded at 0-10°, with fine to medium grained bands, medium strength, fresh, slightly fractured, Hawkesbury Sandstone (continued)						С	100	100	PL(A) = 1 PL(A) = 0.9
-~	-12 12.0 -	Bore discontinued at 12.0m				┝──┤┼──┤┼╶╇ │ │ │ │ │					
	- 13 										

DRILLER: Tightsite **RIG:** Proline LOGGED: JS CASING: HQ to 2.5 m TYPE OF BORING: Diatube (150mm dia) to 0.15m, hand auger to 1.8m, rotary washbore to 2.5m, NMLC coring to 12m

WATER OBSERVATIONS: Free groundwater observed at 1.2m

Co-ordinates interpolated relative to site features. Surface level taken from Synman Justin Blalek REMARKS: Architects Pty Ltd, Job 4000, Drawing No. WD05, Rev D, dated 29 July 1989. Borehole re-instated

	using		jiout.										
	SAMPLING & IN SITU TESTING LEGEND												
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)								
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test								
E	Environmental sampl	le 📱	Water level	V	Shear vane (kPa)								

CLIENT: **PROJECT:**

Toga Development and Construction Pty Ltd **Proposed Commercial Development** LOCATION: 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.0 AHD **EASTING:** 333933.5 NORTHING: 6249269 DIP/AZIMUTH: 90°/--

BORE No: BH2002 **PROJECT No: 86884.02** DATE: 21 - 23/6/2021 SHEET 1 OF 3

Γ			Description	Degree of	U	Rock		Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
RL	De	epth	of	weathering	aphi		/atel	Spacing (m)	B - Bedding J - Joint	e	e %	Δ	Test Results
		,	Strata		6	/ery Low /ery Low /ery High	2	0.01 0.105 0.10 0.10 0.10	S - Shear F - Fault	Typ	Re C	RQ %	& Comments
4		0.08	CONCRETE SLAB: no steel		<u> </u>								-
[[FILL (SAND: medium brown with		\mathbb{X}					A/E			PID<1
-	-		concrete, brick and ceramic tile		\mathbb{X}								
ł	-		gravel and cobbles (up to 130mm),		\mathbb{X}								
ł	ŀ		moist, generally in a medium dense		\mathbb{X}								FID
ł	ŀ	0.6	SAND SW: medium, pale grey and					i ii ii					
ĺ	[brown, moist, dense to very dense,										
-	-												
-6	-1		Below 0.95m: wet				₩ 		Unless otherwise stated	A/E			PID<1
ł	ŀ						1-06-1		rock is fractured along				
ł	ŀ		Below 1.2m: medium dense to very				Ň		dipping 0-10°, with				
Į	[dense						ironstaining or clay coating				
ļ	Ļ												
ł	ŀ	4.05											
ł	ŀ	1.00	Sandy CLAY CL-CI: low to medium		./.								
ł	ŀ		sand, w<=PL, very stiff, residual soil										
~	2	1.95	Sandy CLAY CL-CI: low to medium										
	-		plasticity, brown and red-brown, fine		/./								
ł	-		rock texture, extremely weathered		./.								
ł	ŀ		sandstone		./.			i ii ii					
ł	ŀ	2.47											
Į	[SANDSTONE: medium grained, brown, red-brown and pale grey,					5	2.51m: Ds, 50mm				
	-		very low strength with medium to						vn	С	100	0	PL(A) = 0.9
ł	ŀ		weathered with extremely weathered						C2.61m: B20°, pl, ro, cly				
ł	-		bands, fractured, Mittagong Formation						2.63m: Ds, 40mm 2 71m: Ds, 70mm				
-5	-3								3.00m: Ds, 240mm				
ĺ	[
ŀ	-	3.24	SANDSTONE: medium to coarse						3.24m: J70°, pl, ro, cly				
ŀ	ŀ		grained, pale grey and brown, low then medium to high strength, highly						 3.30-3.42m: J70°, pl, ro,				PI(A) = 0.2
ł	ŀ		weathered to slightly weathered,						∖ cly co 3.41m: Ds. 10mm				()
ł	ŀ		Sandstone										
ĺ	[
ļ	Ļ												PL(A) = 1.1
-e	-4							i ii ii	3.90m: DS, 2mm	с	100	48	
ł	ŀ												
ł	ŀ	4 28											
[[7.20	SANDSTONE: medium to coarse grained, with fine to medium grained										
	Ļ		bands, pale grey, distinctly and										
ł	ŀ		thinly to medium bedded, medium to										
ł	ŀ		high strength with bands of medium or high strength, fresh, slightly										
t	t		fractured to unbroken, Hawkesbury Sandstone								100	100	
[[U	100	100	PL(A) = 1

DRILLER: Tightsite LOGGED: JS CASING: HQ t Diatube (150mm dia) to 0.08m, hand auger to 1.0m, rotary washbore to 2.12m, NMLC coring to 12m **RIG:** Proline CASING: HQ to 2.1m TYPE OF BORING:

WATER OBSERVATIONS: Free groundwater observed at 0.95m

Co-ordinates interpolated relative to site features. Surface level taken from Synman Justin Blalek **REMARKS:** Architects Pty Ltd, Job 4000, Drawing No. WD05, Rev D, dated 29 July 1989. Borehole re-instated

	using cement grout.									
Γ		SAI	MPLING	& IN SITU TESTING	G LEGE	ND				
	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
	В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)				
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)				
	С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				

CLIENT: **PROJECT:** LOCATION:

Toga Development and Construction Pty Ltd **Proposed Commercial Development** 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.0 AHD **EASTING:** 333933.5 NORTHING: 6249269 DIP/AZIMUTH: 90°/--

BORE No: BH2002 **PROJECT No: 86884.02** DATE: 21 - 23/6/2021 SHEET 2 OF 3

Γ		Description	Degree of	Rock Strenath	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
ā	Depth (m)	of Strata	Graph Graph		(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	≫ - - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, with fine to medium grained bands, pale grey, distinctly and indistinctly cross-bedded at 0-10°, thinly to medium bedded, medium to high strength with bands of medium or high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					С	100	100	PL(A) = 0.8
	-									PL(A) = 1.5
-,	- 7						С	100	100	PL(A) = 0.9
	- - - - - - - - - -	Below 7.6m: medium to high strength, thinly to thickly bedded				7.61-8.11m: J80°, pl, ro, cly vn (partially healed)	с	100	100	
-	α - 9 -	Below 9.3m: high strength								PL(A) = 1.1 PL(A) = 1.5
	-	Doow o.om. nign suongut					С	100	100	1 L(n) - 1.3

DRILLER: Tightsite

LOGGED: JS

CASING: HQ to 2.1m

RIG: Proline TYPE OF BORING: Diatube (150mm dia) to 0.08m, hand auger to 1.0m, rotary washbore to 2.12m, NMLC coring to 12m WATER OBSERVATIONS: Free groundwater observed at 0.95m

Co-ordinates interpolated relative to site features. Surface level taken from Synman Justin Blalek **REMARKS:** Architects Pty Ltd, Job 4000, Drawing No. WD05, Rev D, dated 29 July 1989. Borehole re-instated

	using cement grout.									
	SA	MPLING	& IN SITU TESTING	G LEGE	ND					
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	• ¥	Water level	V	Shear vane (kPa)					

CLIENT: **PROJECT:** LOCATION:

Toga Development and Construction Pty Ltd **Proposed Commercial Development** 2-8a Lee Street, Haymarket

SURFACE LEVEL: 14.0 AHD **EASTING:** 333933.5 NORTHING: 6249269 DIP/AZIMUTH: 90°/--

BORE No: BH2002 **PROJECT No: 86884.02 DATE:** 21 - 23/6/2021 SHEET 3 OF 3

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng & l	n Situ Testing
ā	Dept ار (m)	h of		raph Log		Spacing (m)	B - Bedding J - Joint	pe	ore 5. %	مم م	Test Results
		Strata	W H M M M M M M M M M M M M M M M M M M	G	Kery Kery Kery	0.01 0.10 1.00	S - Shear F - Fault	Ту	ပိမ္မ	R S	∝ Comments
	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium to coarse grained, with fine to medium grained bands, pale grey, distinctly and indistinctly cross-bedded at 0-10°, thinly to medium bedded, medium to high strength with bands of medium or high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>						С	100	100	PL(A) = 1.3 PL(A) = 1.5
-	N - 12 1	Bore discontinued at 12.0m		::::							
	- - - - - - - - - - - - - - - - - - -										
•	-										

RIG: Proline

DRILLER: Tightsite LOGGED: JS CASING: HQ t Diatube (150mm dia) to 0.08m, hand auger to 1.0m, rotary washbore to 2.12m, NMLC coring to 12m CASING: HQ to 2.1m TYPE OF BORING: WATER OBSERVATIONS: Free groundwater observed at 0.95m

Co-ordinates interpolated relative to site features. Surface level taken from Synman Justin Blalek REMARKS: Architects Pty Ltd, Job 4000, Drawing No. WD05, Rev D, dated 29 July 1989. Borehole re-instated

	using cement grout.									
	SAME	LING	& IN SITU TESTING	G LEGE	ND					
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In the grained solis (>35% II	In	oils (>35% fines)	ne grained soils
-------------------------------	----	-------------------	------------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils	(>65% coarse)
- with coarser fraction	

Term	Proportion of coarser fraction	Example
And	Specify	Sand (60%) and Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

са	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	verv rouah

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

oo	
A. A. A. A A. D. A. A	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

อบเมอเ

Gneiss

Appendix F

Site Assessment Criteria

Appendix F Site Assessment Criteria 2-8a Lee Street, Haymarket

D1.0 Introduction

D1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).
- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018).

D1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: commercial / industrial;
- Corresponding to land use category 'D', commercial / industrial such as shops, offices, factories and industrial sites; and
- Soil type: clay, silt, and sand.

D2.0 Soils

D2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table2.

Contaminant	HIL-D		
Metals			
Arsenic 3000			
Cadmium	900		
Chromium (VI)	3600		
Copper	240 000		
Lead	1500		
Mercury (inorganic)	730		
Nickel	6000		
Zinc	400 000		
РАН			
B(a)P TEQ 40			
Total PAH 4000			
Phenols			
Phenol 240 000			
Pentachlorophenol	660		
OCP			
DDT+DDE+DDD	3600		
Aldrin and dieldrin 45			
Chlordane 530			
Endosulfan 2000			
Endrin 100			
Heptachlor 50			
HCB 80			
Methoxychlor	2500		
OPP			
Chlorpyrifos	2000		
РСВ			
РСВ	7		
VOC (various analytes)	-		

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HSL-D	HSL-D	HSL-D	HSL-D
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	4	6	9	20
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	NL	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH F1	310	480	NL	NL
TRH F2	NL	NL	NL	NL

Table 2: Health Screening Levels (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Contaminant	DC HSL-D	
Benzene	430	
Toluene	99 000	
Ethylbenzene	27 000	
Xylenes	81 000	
Naphthalene	11 000	
TRH F1	26 000	
TRH F2	20 000	
TRH F3	27 000	
TRH F4	38 000	

Table 3: Health Screening Levels for Direct Contact (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene IMW intrusive maintenance worker

D2.2 Ecological Investigation Levels

EIL and ESL - Schedule B5A of NEPC (2013) states that the aim of the EILs is that varying levels of protection will be provided to the following ecological receptors at all sites:

- o Biota supporting ecological processes, including microorganisms and soil invertebrates;
- o Native flora and fauna;
- o Introduced flora and fauna; and
- o Transitory or permanent wildlife.

Furthermore, Schedule B5A of NEPC (2013) states that *Commercial and industrial land, particularly in long-established industrial areas, is often heavily contaminated by past activities or fill materials used to level the area. In these cases, jurisdictions may determine that HILs are the most appropriate soil quality criteria and that EILs are not applicable.*

In determining the relevance of EILs and ESLs the presence or absence of sensitive ecological receptors must be considered. In this regard both the potential ecological receptors on and off-site must be considered and the current / proposed development.

The Site is located in a commercial / retail precinct. The following potential ecological receptors were identified:

- Darling Harbour and Blackwattle Bay 1 km NNW to NW of the Site;
- Belmore Park 300 m north-east of the Site; and
- Victoria Park 1,000 m west of the Site.

Based on the inferred assessment of the direction of groundwater flow (NNW) it is considered unlikely that these potential receptors would be impacted by soil contamination at the site.

The site is currently occupied by Adinal Hotel and Henry Deane Plaza (commercial/retail) with the surfaces covered with concrete or bitumen pavements. Furthermore, the proposed development will include excavation of basement levels across most of the site's footprint with minimal landscaping. The value of the Site for soil organisms and the risk of exposure of soil contamination to transitory wildlife are considered very low, and that human health risk screening levels are more appropriate, and EIL and ESL are not relevant to the current assessment.

D2.3 Asbestos in Soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 4.

Table 4: Health Screening Levels for Asbe		
Form of Asbestos	HSL-D	
ACM	0.05%	
FA and AF	0.001%	
FA and AF and ACM	No visible asbestos for surface soil *	

stos

Notes: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

D2.4 **Management Limits**

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

The adopted management limits are in Table 5.

Contaminant	Soil Type	ML-D
TRH F1	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	3500
TRH F4	Coarse	10 000

Table 5: Management Limits (mg/kg)

Notes: TRH F1 is TRH C6-C10 including BTEX TRH F2 is TRH >C10-C16 including naphthalene

D3.0 Soil Vapour

D3.1 Interim Soil Vapour Health Investigation Levels

Soil vapour interim HIL for specific chlorinated VOC were published by NEPC (2013) to assess the vapour intrusion exposure pathway.

The interim HIL for chlorinated VOC methodology employs a simple though conservative approach using an attenuation factor that relates the concentration of a volatile contaminant in indoor air to the concentration in soil gas immediately below a building foundation slab.

The interim health investigation levels (IHIL) derived from NEPC (2013) are in Table 6.

Chemical	IHIL-D
TCE	80
1,1,1–TCA	230 000
PCE	8000
cis-DCE	300
VC	100

Table 6: Soil Va	pour Interim Health	Investigation Levels	for Chlorinated H	vdrocarbons (ug/m ³)
		mit oonganon zoroio		

Notes: TCE Trichloroethene

1,1,1–TCA 1,1,1-trichloroethane PCE Tetrachloroethene cis-DCE cis-1,2-dichloroethene VC Vinyl chloride

D3.2 Health Screening Levels

Soil vapour HSL for petroleum hydrocarbons were published by NEPC (2013) to assess the vapour intrusion exposure pathway.

The HSL derived from NEPC (2013) are in Table 7.

Contaminant	HSL-D	HSL-D	HSL-D	HSL-D	HSL-D
CLAY	0-1 m	1-2 m	2-4 m	4-8 m	>8 m
Benzene	5000	80 000	230 000	530 000	1 100 000
Toluene	6 500 000	100 000 000	NL	NL	NL
Ethylbenzene	1 800 000	31 000 000	NL	NL	NL
Xylene Total	1 200 000	21 000 000	NL	NL	NL
Naphthalene	4000	85 000	240 000	560 000	1 200 000
TRH F1	1 000 000	19 000 000	55 000 000	130 000 000	270 000 000
TRH F2	800 000	NL	NL	NL	NL

Table 7: Soil Vapour Health Screening Levels for Vapour Intrusion (µg/m³)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The maximum possible soil vapour concentrations have been calculated based on vapour pressures of the pure chemicals. Where soil vapour HSL exceed these values, a soil-specific source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

D4.0 Groundwater

D4.1 Introduction

The groundwater investigation levels (GIL) used for interpretation of the groundwater data (as a Tier 1 assessment) have been selected based on the potential risks posed from contamination sourced from the site to receptors at or down-gradient of the site, as identified by the conceptual site model (CSM). The receptors, exposure points and pathways are summarised in Table 8.

Receptor	Location	Exposure Point	Exposure Pathway
Surface water aquatic ecosystem	Down-gradient from site.	Receiving surface water body at the groundwater discharge point.	Exposure to contaminants.
Occupants of buildings	On site and down- gradient from site.	Enclosed buildings (existing or proposed).	Inhalation of VOC (including TRH and BTEX) overlying VOC impacted groundwater via the vapour intrusion pathway.

Table 8: Summary of Potential Receptors and Potential Risks

The rationale for the selection of GIL is in Table 9.

Table 9: (Groundwater	Investigation	Level	Rationale
------------	-------------	---------------	-------	-----------

Receptor / Beneficial Use	GIL	Source	Comments / Rationale
Aquatic ecosystem	DGV	ANZG (2018)	Freshwater 95% LOP for non-bioaccumulative contaminants
Building occupants (vapour intrusion)	HSL	NEPC (2013)	2 m to <4 m / 4 m to <8 m / 8 m+

Notes: DGV default guideline value HSL health screening level

D4.2 Groundwater Investigation Levels for Aquatic Ecosystems

The DGV for the protection of aquatic ecosystems derived from ANZG (2018) are in Table 10.

Table 10: Groundwater Investigation Levels for Protection of	Aquatic Ecosystems (µg/L)
--	---------------------------

_		
Contaminant	Fresh Water	
Metals		
Arsenic	24 as As(III)	
	13 as As(V)	
Cadmium	0.2-0.6	

Contaminant	Fresh Water
Chromium (VI)	1
Copper	1.4
Lead	4.4-17.7
Manganese	1900
Mercury (inorganic)	0.6
Nickel	13.1-33.2
Zinc	9.6-24.1
РАН	
B(a)P TEQ	0.2
Total PAH	-
Naphthalene	16
Anthracene	0.4
Fluoranthene	1.4
Phenanthrene	2.0
втех	
Benzene	950
Toluene	180
Ethylbenzene	80
Xylene (o)	350
Xylene (p)	200
Xylene (m)	75
Phenols	
Phenol	320
Pentachlorophenol	3.6
OCP	
DDT+DDE+DDD	0.06
Aldrin and dieldrin	-
Chlordane	0.08
Endosulfan	0.2
Endrin	0.02
Heptachlor	0.09
Methoxychlor	0.005

Contaminant	Fresh Water
OPP	
Chlorpyrifos	0.01
РСВ	
Arochlor 1242	0.6
Arochlor 1254	0.03

D4.3 Health Screening Levels for Vapour Intrusion

The HSL to evaluate potential vapour intrusion risks derived from NEPC (2013) are in Table 11.

Contaminant	HSL-D	HSL-D	HSL-D	Solubility Limit
CLAY	2 m to <4 m	4 m to <8 m	8 m+	-
Benzene	30 000	30 000	35 000	59 000
Toluene	NL	NL	NL	61 000
Ethylbenzene	NL	NL	NL	3900
Xylenes	NL	NL	NL	21 000
Naphthalene	NL	NL	NL	170
TRH F1	NL	NL	NL	9000
TRH F2	NL	NL	NL	3000

Table 11: Groundwater Health Screening Levels for Vapour Intrusion (µg/L)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

D5.0 References

ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.* Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater.* Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

Page 10 of 10

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NHMRC. (2008). Guidelines for Managing Risks In Recreational Water.

NHMRC, NRMMC. (2016). *Australian Drinking Water Guidelines 6 2011, Version 3.2.* Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council.

Douglas Partners Pty Ltd

Appendix G

Data Quality Objectives

Appendix G Data Quality Objectives 2-8a Lee Street, Haymarket

G1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Step	Summary
1: State the problem	The objective of the investigation is to confirm the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land is to be redeveloped. The requirements of the regulator, City of Sydney Council, will also be considered by consulting their Development Control Plan (DCP), Local Environment Plan (LEP) and any other requirements based on our recent experience with Council on similar sites. A preliminary conceptual site model (CSM) has been prepared (Section 6) for the proposed development.
	The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, field staff.
2: Identify the decisions /	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 6). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Appendix F.
goal of the study	The decision is to establish whether or not the results fall below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective will be derived and a decision made on whether (or not) further assessment and / or remediation will be required.
3: Identify the information	Inputs to the investigation will be the results of analysis of samples to measure the concentrations of COPC identified in the CSM (Section 6) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Appendix F.
inputs	A photoionization detector (PID) will be used on-site to screen soils for VOC. PID readings will be used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix B. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 11.

Step	Summary
	The decision rule is to compare all analytical results with SAC (Appendix F, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.
5: Develop the	Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).
analytical approach (or decision rule)	Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL)) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix C.
	Baseline condition: Contaminants at the site exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).
	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.
6: Specify the performance	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:
or acceptance criteria	As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, i.e.: 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95%UCL shall subsequently be screened against the corresponding SAC.
	The statistical assessment will only be able to be applied to certain data-sets, such as those obtained via systematic sampling. Identification of areas for targeted sampling will be via professional judgement and errors will not be able to have a probability assigned to them.
 Optimise the design for obtaining data 	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.

G2.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data QA / QC procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included at the end of this appendix.

Item	DP's Adopted Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples; <30% RPD	PC
Inter-laboratory replicates	5% of primary samples; <30% RPD	PC
Trip Spikes	1 per sampling event; 60-140% recovery	С
Trip Blanks	1 per sampling event; <pql< td=""><td>С</td></pql<>	С
Rinsates	1 per sampling event; <pql< td=""><td>PC</td></pql<>	PC
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table 1: Field and Laboratory Quality Control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range based on DP's adopted evaluation criterion, with the exception of those indicated in Table QA1 and QA2. The exceedances are not, however, considered to be of concern given that:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred, particularly for groundwater;
- Actual results being less than five times the PQL which is not considered to be significant;
- Higher RPD results associated with replicate pair collected from fill soils which by its nature is heterogeneous;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the PQL;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA / QC parameters met the DQIs.

In summary, it is considered that the QC data would be of sufficient quality to be considered acceptable to inform future assessments.

G3.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement
Completeness	Selected target locations sampled.
	Preparation of borehole logs, sample location plan and chain of custody records.
	Preparation of field groundwater sampling sheets.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced samplers used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Table 2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

G4.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and would be considered useable for assessment purposes.

References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Table QA1: Relative Percentage Difference Results - Inter and Intra-laboratory Replicates (soil)

		1									1													
						Me	etals						т	RH				BT	EX			PA	н	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		1				1	1																	
BH1003A	1.9 - 2.0	10/03/2021	<4	<0.4	<1	<1	1	<0.1	<1	4	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	<0.05	<0.5	<0.05
BD3/100321	1.9 - 2.0	10/03/2021	<4	<0.4	<1	2	8	<0.1	<1	4	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	<0.05	<0.5	<0.05
[intra-lab]		Difference	0	0	0	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	0%	0%	0%	67%	156%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
				-	-																			
BH1007	40- 4.45	16/03/2021	<4	<0.4	1	<1	<1	<0.1	<1	4	<25	76	<25	76	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
BD1/160321	40- 4.45	16/03/2021	<4	<0.4	1	<1	<1	<0.1	<1	6	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
[intra-lab]		Difference	0	0	0	0	0	0	0	2	0	26	0	26	0	0	0	0	0	0	0	0	0	0
		RPD	0%	0%	0%	0%	0%	0%	0%	40%	0%	41%	0%	41%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
BH1007	0.2 - 0.3	11/03/2021	<4	<0.4	9	24	53	0.3	7	50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
BD1/110321	0.2 - 0.3	11/03/2021	<5	<1	2	<5	<5	<0.1	<2	7	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1	NT	NT	NT	NT
[inter-lab]		Difference	0	0	7	19	48	0.2	5	43	0	0	0	0	0	0	0	0	0	0	-	-	-	
		RPD	0%	0%	127%	131%	166%	100%	111%	151%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	-	-	-

Table QA2: Relative Percentage Difference Results – Intra-laboratory Replicates (groundwater)

					Metals -	dissolved								т	RH					BTEX				
		Arsenic	Cadmiu m	Total Chromiu m	Copper	Lead	Mercury (inorgan ic)	Nickel	Zinc	C6-C9	C6-C10	F1 ((C6- C10)- BTEX)	C10-C14	C15-C28	C29-C36	C10-C16	F2 (>C10- C16 less Naphtha lene)	F3 (>C16- C34)	F4 (>C34- C40)	Benzene	Toluene	Ethylben zene	m+p- xylene	o-xylene
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
				·																		-		
BH1007	23/03/21	<1	<0.1	<1	<1	<1	<0.05	3	110	<10	<10	<10	<50	<100	<100	<50	<50	<100	<100	<1	<1	<1	<2	<1
BD1/230321	23/03/21	<1	0.2	<1	2	<1	<0.05	4	140	<10	<10	<10	<50	<100	<100	<50	<50	<100	<100	<1	<1	<1	<2	<1
[intra-lab]	Difference	0	0.1	0	1	0	0	1	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RPD	0%	67%	0%	67%	0%	0%	29%	24%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table QA3: Trip Spike Results – Soils (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS	93	98	101	101	101

Table QA4: Trip Blank Results - Soils (mg/kg)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
ТВ	<0.2	<0.5	<1	<1	<2

Table QA5: Trip Spike Results – Water (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS	117	115	119	118	111

Table QA6: Trip Blank Results - Water (µg/L)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
ТВ	<1	<1	<1	<1	<2

Table QA7: Relative Percentage Difference Results – Intra-laboratory Replicates (groundwater)

		Metals - dissolved										TRH				BTEX				
		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	62-93	C6-C10	F1 ((C6-C10)- BTEX)	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Naphthalene		
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	mg/kg		
Rinsate	23/03/21	<1	<0.1	<1	2	<1	<0.05	1	5	29	30	30	<1	<1	<1	<2	<1	<1		

86884.05 July 2022

Appendix H

Groundwater Field Sheets

Groundwater Field She	et		in the			2		
Project and Bore Installation I	Details							
Bore / Standpipe ID:	107	A	Sec. 1					
Project Name:						. M		
Project Number:								
Site Location:						194		
Bore GPS Co-ord								
Installation Date:					11 A			
GW(Lovel (during drilling):		m hal						
Well Deaths		mbgi						
Sereened Interval:		m bal						
Screened Interval.		in by						
Contaminants/Comments.		A BR						
Bore Development Details	10/3/2	1 11 01	2					
Date/Time.	1-11-510	IR IS	1					
Purged By:	06	Jp.						
GVV Level (pre-purge):	1.00	m bgi						
Observed Well Depth:	5.76	m bgl	Thisland if					
PSH observed:	Yes / No	(interface / vis	sual). Thickness if	observed:				
Estimated Bore Volume:	5	5 L ²						
Total Volume Purged:	-+ (ta	7 (target: no drill mud, min 3 well vol. of dry)) $\mathcal{D}\mathcal{K}\mathcal{Y}$ ($\mathcal{K}\mathcal{L}$).						
GW Level (post-purge):	3.75	m bgl						
	Twiste	- pump +	baler //	Wete:	dear v	10 daes		
Equipment:		1 1	//		e	1		
			/		ne odou	1-		
Micropurge and Sampling Det	ails							
Date/Time:								
Sampled By:					34			
Weather Conditions:	1.11			geller -				
GW Level (pre-purge):		m bgl				<i>x</i>		
Observed Well Depth:		m bgl		4				
PSH observed:	Yes / No	(interface / vis	sual). Thickness if	observed:		-		
Estimated Bore Volume:		L						
GW Level (post sample):		m bgl		A				
Total Volume Purged:		L		1.2				
				14				
Equipment:		ν.	4					
						1 o		
		Water Qual	ity Parameters	•				
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)		
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV		
			3	Trans.		di Ti		
ta			and the second	1 and the second second second second second second second second second second second second second second se	41 T			
				100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar	1			
					1.50			
		1		100	and the second			
					AND A MARKED			
			and the second second		100 - 100			
					terition and the second			
Additional Readings Following	DO % Sat	SPC	TDS					
stabilisation	00 % Sat			2				
	2	Samo	le Detaile					
Sampling Depth (rotionala)		m hel						
Sample Appearance (a.r.		Ini byl,						
colour siltiness odour)				1				
Sample ID:								
				-				
QA/QC Samples:								
Sampling Containers and								
filtration:								
Comments / Observations			17					
					×.			

Groundwater Field She	et					
Project and Bore Installation I	Details					
Bore / Standpipe ID:	107	B T				
Project Name:						
Project Number:					1999 - St. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	
Site Location:			2-83		1000 Contraction (1990)	
Bore GPS Co-ord						
Installation Date:						
GW Level (during drilling):		m bal				
Well Denth:		m bal				
Screened Interval:		m bal				
Contaminants/Comments:						
Bore Development Details						
Dete/Time:	1017	12221	1.70	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Date/Time.	IR I	10001	1.00			
CW(Level (pro purge):	216	m bal				
Observed Well Depth:	1090	mbgl				
Dell cheerved	Vac / No	(interface / vi	sual) Thickness it	f observed:		
PSH observed.	Tes / NO		sual j. Thickness h	robacived.		
Estimated Bore Volume.	20	L praet: no drill mur	min 3 well vol or	dry)	an ()	-
	50 (12	m bal	a, min o wen voi. Q		mr (xL)	
Gvv Level (post-purge):	10.00	in byi			1 1 1	1 . 1 .
Equipment:	Initer	my // Wot	ter: dark]	reg ven	1 - trensluci	in suphero
		1 20	derir is	abeen	_	/ /
Micropurge and Sampling Def	ails		/			-
Date/Time:			, , , , , , , , , , , , , , , , , , ,			
Sampled By:						
Weather Conditions:						
		mbal				
Gvv Level (pre-purge).		mbgi		1.20		
	Vac / No	(interface / wi	sual) Thickness is	f observed:		
Fotime at a d Dana) (aluma)	165 / 140		suar). Thickness i	robserved.		
Estimated Bore Volume:		L .				
GVV Level (post sample):						
Total Volume Purged:		L		1		
Equipmont						
Equipment.						
		Water Qua	lity Parameters			
Time / Volume	Tamp (°C)		EC (uS or mS/cm)	nH	Turbidity	Redox (m\/)
Stabilization Oritoria (2 readings)		±/ 0.2 mg/l	±/ 29/	+/ 0.1	+/ 109/	+/ 10 mV
Stabilisation Criteria (3 readings)	0.1 C	+/- 0.3 mg/L	+/- 3 %	+/- 0.1	+/- 10 %	+/- 10 mv
			(
		1				
	1.15	1 Martines		-		
					1. K.	
	- 11					
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:				Maria Salara da		
		Samp	le Details			
Sampling Depth (rationale):		m bgl,				
Sample Appearance (e.g.						
colour, siltiness, odour):						
Sample ID:						
QA/QC Samples:						
Sampling Containers and				I STATE	1.100	
filtration:	100					
0			<u> </u>			
Comments / Observations:						
	1					

Groundwater Field She	et	Section Contractor	nda Nella				
Project and Bore Installation I	Details						
Bore / Standpipe ID:	102						
Project Name:							
Project Number:	8688 C	4.02					
Site Location:	100	St. Noys	redel		1		
Bore GPS Co-ord:	LEI	17/10/1			1		
Installation Date:				1			
GW Level (during drilling):		m bal		1			
Well Depth:		m bal				1.1	
Screened Interval:		m bal					
Contaminants/Comments:							
Bore Development Details							
Dote Development Details	10/3/0	1 0 70					
Date/Time.	19 22	-) 0.3					
	VD.	mhal					
Gvv Level (pre-purge).	5.52	mbgl					
Dellahaarvad	J.UL-	(interface / vir	ual) Thicknoss i	f obconvod:			
PSH observed:	res / No		sual). Thickness i	i observeu.			
Estimated Bore Volume:	1/ /	L drill more	min 2 woll wat	(Jup)	NAV		
	1000	arget. no ann muc	, min 5 weil vol. of	ury	HNY.		
Gvv Level (post-purge):	6.70	in bgi	1 7. 1		18 0		
Equipment [.]	Twiter	pump +	6a.10 /	Waters	U ondy	guy	
		1 .	11 1	10 Theer	, no an	bur . May	littly so
Micropurge and Sampling Det	ails				1	/ 10/	
Date/Time:							
Sampled By:				Rate de			
Weather Conditions:				to .			
GW evel (pre-purge):		m hal					
Observed Well Depth:		m bgl		-4			
PSH observed:	Ves / No	(interface / vis	sual) Thickness i	f observed:			
Estimated Bore Volume:			<u>, , , , , , , , , , , , , , , , , , , </u>				
GW Level (post sample):		m hal			. 7.8		
Total Volume Purged:		l	10100			35.	
Total volume r diged.	12.5	-		di .			
Equipment:						201	ø
		Water Qual	ity Parameters			da.	
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
			4				
				1.			
		-					
							1
	DO NO	000	700				
Additional Readings Following	DO % Sat	SPC	IDS				
stabilisation:		L					1. 1. 1.
	1	Samp	le Details				1000
Sampling Depth (rationale):		m bgl,					
Sample Appearance (e.g.							
colour, siltiness, odour):							
Sample ID:							1
QA/QC Samples:				******			1
Sampling Containers and							19 A.
filtration:							
Oceanie (Ol "				<i>Q</i>			
Comments / Observations:							

Groundwater Field She	et								
Project and Bore Installation I	Details					+==			
Bore / Standpipe ID:	1002								
Project Name:	1000								
Project Number:	\$1.89	24 07							
Site Location:	060	Direct- K	to an hel			-			
Bore GPS Co. ord:	Lee	street, 1	(CYNOTON)						
Installation Date:									
CW(Lovel (during drilling))		mbal							
Well Depth:		m bal							
Vveil Depth:		in pai							
Screened Interval:	-	m bgi							
Contaminants/Comments:	с.								
Bore Development Details									
Date/Time:	19/3/2	1 7.00							
Purged By:	JB.								
GW Level (pre-purge):	16.42.	m bgl				01			
Observed Well Depth:	18.00	m bgl	4						
PSH observed:	Yes / No (interface / vis	sual). Thickness if	observed:					
Estimated Bore Volume:	4.5	L							
Total Volume Purged:	18 (ta	(target: no drill mud, min 3 well vol. or dry)							
GW Level (post-purge):	16.71	m bgl		a ha a sa a sa a sa a sa a sa a sa a sa	1964 - State				
	TIL	1	Water: pale	known 1.	ow harbid!	14 10			
Equipment:	Iniste	pumiji		/	100 110	Jino			
	here and the second second second second second second second second second second second second second second	1 1/	Shee	n, no	odour.				
Micropurge and Sampling Det	ails	1							
Date/Time:		As							
Sampled By:		1			4.				
Weather Conditions:		12		18 . I	Contraction of the				
GW Level (pre-purge):		m bal			135.1				
Observed Well Depth:		m bal		4					
PSH observed:	Yes / No (interface / vis	sual). Thickness if	observed:					
Estimated Bore Volume	100	L							
GW Level (nost sample):		m hal							
Total Volume Purged:		l	5	1.2		1985 C			
		L		14 .					
Equipment:									
- derburger									
		Water Qual	ity Parameters						
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)			
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/l	+/- 3%	+/- 0 1	+/- 10%	+/- 10 mV			
otabilisation onteria (o readings)	0.1 0	17- 0.0 mg/L	1 0 10	.,					
	14	E per s							
Te de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction	14.JU	1							
						-			
					10				
Additional Readings Following	DO % Sat	SPC	TDS						
stabilisation:									
		Samp	le Details			· · · · ·			
Sampling Depth (rationale):		m bgl,							
Sample Appearance (e.g.		•							
colour, siltiness, odour):									
Sample ID:									
QA/QC Samples:									
Sampling Containers and									
filtration:									
				5 a					
Comments / Observations:					,				
	E								

1		Dougla	as Pa	rtners	
J	1	Geotechnics 1	Environment	I Groundwater	

vironment | Groundwater

Groundwater Field She	et		Same Press	5			
Project and Bore Installation I	Details	and the second second					
Bore / Standpipe ID:	1002	A.					
Project Name:							
Project Number:							
Site Location:							
Bore GPS Co-ord:							
Installation Date:							
GW Level (during drilling):		m ɓgl					
Well Depth:		m bgl					
Screened Interval:		m bgl			and share a figure		
Contaminants/Comments:							
Bore Development Details	1						
Date/Time:	10/21	2021	11 20 2				
Date/Time.	1º S	D21	1600 OM				
Purgea By:	UP.						
GW Level (pre-purge):	7.79.	m bgl					
Observed Well Depth:	3.93-	m bgl	the set of other	A A			
PSH observed:	Yes / No	(interface / vis	sual). Thickness if	f observed:			
Estimated Bore Volume:	Z.	L					
Total Volume Purged:	25 (t	arget: no drill mug	I, min 3 well vol. or	dry)			
GW Level (nost-nurge):	785	m hal		.,			
	1.00	11 291	1 liter a	101 /	1. JA		
Equipment:	I widter	pump 11	Waller . O.	- (UL: LA	nun, sitte	7	<u> </u>
Equipment.			10 -	-25L .	haddread	and have	110 -1
Micronurge and Sampling Det	taile				MAN MARKA	Then and	000 -
Wicropurge and Sampling Der						/ 1	1
Date/Time:)					
Sampled By:			S		1.		
Weather Conditions:				54			
GW Level (pre-purge):		m bgl					
Observed Well Depth:		m bal		7			
PSH observed:	Yes / No	(interface / vis	sual). Thickness it	f observed:			
Estimated Bore Volume:		1					
CW Lovel (post sample):	+	m hal					
Total) (aluma Dungadu		ii bgi	4				
Total Volume Purged:		L		1			
Equipment:							
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		Water Qual	ity Parameters				
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/l	+/- 3%	+/- 0 1	+/- 10%	+/- 10 mV	`
otabilisation ontena (o readiligs)	0.1 0	1/= 0.0 mg/L		.,- 0.1			
		1. m.					
	Sector Sector						
	and the second second						
						+	
			+			+	
	ł						
	8						
Additional Readings Following	DO % Sat	SPC	TDS	1 Second			
stabilisation:						1	
	L	Samn	le Details				
Sampling Denth (rationala):	T	m hal	T				
	<u> </u>	liii năi'					
Sample Appearance (e.g.							
colour, siltiness, odour):							
Sample ID:							
QA/QC Samples:							
Sampling Containara and	+						
Sampling Containers and							
nitration:							
Comments / Observations:	+		2 · · · · · · · · · · · · · · · · · · ·				
Commenta / Observations.							
						v	
						5 - C	
	1						

0 m

Groundwater Field She	et					
Project and Bore Installation	Details	all shares and			1	
Bore / Standpipe ID:	1007					
Project Name:	100			a second and		1
Project Number:	86881	1.07	5.			
Site Location:	100 11	- Houndard	bel		3	
Bore GPS Co-ord	Ver	Fleght			×	
Installation Date:		U				s
GW Level (during drilling):		m hal				
Wall Dopth:		m bgl				
Sereened Interval:		m bgl				1
Screened Interval.		ili bgi				
Contaminants/Comments.						
Bore Development Details	01-1		20			
Date/lime:	1915/2	1021 11.	2 500	- Indiana -	6	
Purged By:	12 2 7					
GW Level (pre-purge):	9.LL	m bgl	10	1 1	-	
Observed Well Depth:	14-410	mbgl der	Th meaning	1 at 15.	SI poul d	evelopment
PSH observed:	Yes / No (interface / vis	sual). Thickness if	observed:	1	1
Estimated Bore Volume:	15	L	1			
Total Volume Purged:	95 (ta	rget: no drill mud	I, min 3 well vol. or	dry)		
GW Level (post-purge):	15.21	m bgl				
	Trantor	oun, I	Infater la	NWA BU	n up and	on no line
Equipment:	invivo /	(//	Ductor), n	1010
			80L+: 56	Mi - has	shiest,	LEN DITY.
Micropurge and Sampling Det	ails				'	<u> </u>
Date/Time:	0					
Sampled By:					1	
Weather Conditions:						
GW Level (pre-purge):		m bgl		,		
Observed Well Depth:		m bgl	Sall reden sh	· +		
PSH observed:	Yes / No	(interface / vis	sual). Thickness if	observed:		
Estimated Bore Volume:		L		1 W	1.0	
GW Level (post sample):		m bgl	2	20 (B)		
Total Volume Purged:		L	5	1		
Equipment:				12		
		Water Qual	ity Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
			1	general de la serie		
				0.00		187. I.
						Store .
1						
-						
			+ +			
	100 A		+			
						+
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:					3	
		Samp	le Details			
Sampling Depth (rationale):		m bgl,				
Sample Appearance (e.g.						
colour, siltiness, odour):	2					
Sample ID:	680					
QA/QC Samples:						
Sampling Containers and filtration:				£		
Comments / Observations:	+ Shee	n on toj	o of hel	ter pon	ding in inc	de gate.

*.

Geotechnics | Environment | Groundwater

Groundwater Field She	et		in the second second second second second second second second second second second second second second second			
Project and Bore Installation I	Details	250 A.	and the second second			
Bore / Standpipe ID:	107	A	111185			
Project Name:						2
Project Number:						
Site Location:			,			
Bore GPS Co-ord						
Installation Date:						
GW Level (during drilling):		m bal				
Well Depth:		'm bal	8			
Screened Interval:		m bal				
Contaminants/Comments'						
Bore Development Details	L	1914				
Date/Time:	19/3/2	U VILO	2			
Purgod By:	1131	IK (1)				
GW Level (pre-purce):	186	mbal				
Observed Well Depth:	226	mbgl				
Deserved wen Deptn.	Van / No	(interface / vi	sual) Thickness if	observed:	and the second second second second second second second second second second second second second second second	
For observed.	Tes / NO		sual). Thickness h	observed.		
Estimated Bore Volume:	7 14	L/*	h min 2 wall wal of	C Cab	1/ (
Total Volume Purged:	7 (ta	arget: no arili mu	a, min 3 well vol. or	ury) DA	- Y (K L).	<u></u>
GW Level (post-purge):	3.75	m bgi	. 1 11			
Caulana anti	1 wiste	- pump 1	baler /	Weter:	dear v	10 rheen
Equipment:		1 1	//		no ada	/
Micropurge and Sampling Det	ails				er enve	<u></u>
Micropulge and Sampling Der	17/21.	1 1 2.				
Campled Bir	L'HSI	1 1:30	on			
Sampled By.	V.S.					
Weather Conditions:	Kaine	1 · · · · · · · · · · · · · · · · · · ·		and the second s		
Gvv Level (pre-purge).	1.63	III DYI		Chillion .		
Observed Well Deptn:	5.76	m bgi	augl) Thiskess H			
PSH observed:	Yes / No		sual). I nickness n	observed:		
Estimated Bore Volume:	6	L	(D. c.)			
GW Level (post sample):	5.7	m bgl	(OLY]			
I otal Volume Purged:	-	L				
Equipment	Penistal	tic pun,	o. Ba	ler.		
Equipment.		1.1	1			
	I	Water Qua	lity Parameters	3		
Time / Volume	Temp (°C)		EC (uS or mS/cm)	рН	Turbidity	Redox (mV)
Stabilization Criteria (2 readings)		+/ 0.3 mg/l	+1.2%	+/ 0.1	+/_ 10%	+/- 10 mV
stabilisation criteria (Sreadings)	0.7 0	+ 0.5 mg/L	11. 1 7	47-0.1	- 1076	47- TO IIIV
1:35 10-3	21.7	5.41	465	6.00	115	121
1:36 1.0	21.8	5.31	456	6.18	205	89
1. 37 1/ 1.5	21.7	5.50	441	6.22	2571	64
(-38 / 2.0	4.7	5.47	422	6.65	252	
1:39 / 25	21.7	3.44	41.6	6.20	260	69.
		*				
il no seconda de la companya de la companya de la companya de la companya de la companya de la companya de la c						
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	*					1000
		Samp	le Details			
Sampling Depth (rationale):	3.0	m bgl,				
Sample Appearance (e.g.	(]	yellow-			19. J. 19. 19.	
colour, siltiness, odour):	cleary	As silt,	no solo.	n no	1 hoos	
Sample ID:	10 F	A.		1		
QA/QC Samples:	40	AP				
Sampling Containers and	10	IN C I				
filtration:						
						1100
Comments / Observations:						
					5. t. (1997)	
			1			and the second second second second second second second second second second second second second second second

Rev March 2012

Groundwater Field She	et					
Project and Bore Installation	Details					
Bore / Standpipe ID:	107	B T				
Decise t Namo:		19				
Project Name.						
Project Number:						
Site Location:	-					
Bore GPS Co-ord;						
Installation Date:	-	• · · · · · · · · · · · · · · · · · · ·				
GW Level (during drilling):	e a ser e e s	m bgl				
Well Depth:		m bgl	•			
Screened Interval:		m bgl				
Contaminants/Comments:						
Bore Development Details	1					
Date/Time'	10/21	7 27-1 1	. 70			
Date/Time.	in 1					
	UD .	mhal		and a second second second second second second second second second second second second second second second	ing and the second second	
Gvv Level (pre-purge):	2.10.	mbgi				
Observed Well Depth:	10.90	mbgl				
PSH observed:	Yes / No (interface / Vis	sual). I nickness r	r observed:		
Estimated Bore Volume:	25	L	e se se de la construcción de la construcción de la construcción de la construcción de la construcción de la co			
Total Volume Purged:	50, (tar	get: no drill mud	, min 3 well vol. of	dry)) DA	Y (x2)	the set of the
GW Level (post-purge):	10.88	m bgl			~ /	
Equipment:	Twitter 1	my wat	ter: dart j	ky veni	- pensluce.	l sù phi
Micropurge and Sampling Det	ails	1 2	/ 41			
Dete/Time:	2.12	24 2	2~~			
Date/Time:	CLS	21 1:	10			
Sampled By:	JUS					
Weather Conditions:	Rainy	*		1.4		
GW Level (pre-purge):	1.85	m bgl				di Balanda an an an
Observed Well Depth:	10.90.	m bgl		1		
PSH observed:	Yes / No (interface / vis	sual). Thickness i	f observed:		
Estimated Bore Volume:	25	L	5 5 5 <u>5 5</u> 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
GW Level (post sample):	4.88	m bal				
Total Volume Purged:	<u> </u>	1	3			
Total volume ranged.	0		it	V.		
Equipment:	Barler	1 periste	ine pun	<i>°</i> .		
		Water Qual	ity Parameters			
Time / Volume	Temp (°C)	DO (ma/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilization Criteria (3 readings)	0.1%	±/-03mg/l	+/- 3%	+/-01	+/- 10%	+/- 10 mV
Stabilisation Chiena (S readings)	0.1 0	+/= 0.3 mg/L	1-578	1,-0.1	91070	
2-30 1. 0.5	1.9	5.58	557	6.13	062	20.7
2.31 / 1-0	21.6	5.71	331	6.22	660	45.8
1.36 1/ 15	21.6	5-66	379	6.27	201	24.2
2:53 11. 20	21.5	5.61	581.7	627	610	31.5
2:34 1/ 2.5	21.5	3.58	784.1	6.26	594	53.0
				-		
/						C
14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16						
		SPC	TDS			
Additional Readings Following	DO % Sat					
Additional Readings Following stabilisation:	DO % Sat		1.17.173	1 C		
Additional Readings Following stabilisation:	DO % Sat	Samp	le Details			· · · ·
Additional Readings Following stabilisation: Sampling Depth (rationale)	9-0	<u>Samp</u> m bgl.	le Details			
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	9-0	Samp m bgl,	le Details			1
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	9.0 grcy se	Samp m bgl, m', - hanlu	le Details cert, 10	odow, n	o the	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	9.0 grcy se	Samp m bgl, m' herslu	le <u>Details</u>	odor, n	o them,	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	9.0 grcy, se	<u>Samp</u> In bgl, Mi - herslu 7 B.	le Details	odor, n	o the	, low s.
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	9.0 grcy je	<u>Samp</u> m bgl, mi - herslu 7 B.	le Details	odor, n	o the	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	9.0 grcy, se	Samp m bgl, mi - herslu 7 B.	le Details Levent, NO	odor, n	o the	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	9.0 grcy, se	Samp In bgl, Mi handur 7-B.	le Details Levent, No a	odor, n	o the	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	9.0 grcy, se	Samp In bgl, Mi herslu Z - B.	le <u>Details</u> Let, NO	odsi, n	o the	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	9-0 grcy, se	Samp In bgl, Mi howlw 7-B.	le <u>Details</u> Let, No a	odor, n	o the	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	9-0 grcy, se	Samp In bgl, Mi howlw 7-B.	le <u>Details</u> Let, No a	odor, n	o shoen,	, low
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	9-0 grcy, se	Samp In bgl, Mi herstur 7-B.	le <u>Details</u> Let, No a	odor, n	o the	, low

Groundwater Field She	et						
Project and Bore Installation	etails						
Bore / Standpipe ID:	101						
Project Name:	1.11-						
Project Number:	GL8K4	.02 .					
Site Location:	1000	St. Maria	ented		S		
Bore GPS Co-ord:	LEI	1 /	Sector Sector Sector		1		
Installation Date:		• • • • • • • • •					
GW Level (during drilling):		m bgl					
Well Depth:		m bgl					
Screened Interval:		m bgl					
Contaminants/Comments:							
Bore Development Details							
Date/Time:	19 3 21	8.30.					
Purged By:	JB.			de de la com			
GW Level (pre-purge):	3.32	m bgl					
Observed Well Depth:	7.02-	m bgl					
PSH observed:	Yes / No (interface / vis	ual). Thickness if	observed:			
Estimated Bore Volume:	90	L 👘 🖞	Care				
Total Volume Purged:	16 (tar	get: no drill mud	, min 3 well vol. or	dry))	JRY.		-
GW Level (post-purge):	6.98	m bgl	147.60 E	Contraction of			
	Tunder	sump +	balov /	Waters	londy	guy.	
Equipment:	invid e.	1 1	1	0 12 000	An and	also also	dette alter
Missonurge and Complian Def	aile		<u> </u>	Uneer		Sure - My	
Poto/Time:	ans	21 6.	0				· · · · ·
Sampled By:	12/3/	<u>21 313</u>	~ pm				
Sampled By.	Jis	2					
CW(Lovel (pro purge))	2.92	m hal					
Observed Well Depth:	2.17	m bal		1.4			1
PSH observed	Yes / No (interface / vis	ual). Thickness if	observed:		-	
Estimated Bore Volume:	11	L					1
GW Level (post sample):	690	m bal]
Total Volume Purged:	7	L	5	10			
Equipment:	Periste	ellic pu	np +	beiler	•		
	<u> </u>	Water Qual	ity Parameters				1
Time / Volume (L)	Temp (°C)	DO (ma/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)	1
Stabilization Criteria (3 readings)		+/= 0.3 mg/l	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	1
Stabilisation criteria (Sreadings)	0.1 C	17- 0.5 mg/L	1 2 6 2	529	879	113	1 .
5.10 0.3	23.0	4.18	171	17.2	190	47	
5.11 1.5	1.0	7.) 5	187	5.62	+31	56	
F.12 11 2.2	21.0	82.5	181	5.65	488	51	1
514 1 25	71.0	02.5	128	5.66	489	50	1
	6]
	1021-001010-0224]
Additional Readings Following	DO % Sat	SPC	TDS				-
stabilisation:							
		Samp	le Details			<i>r</i>	-
Sampling Depth (rationale):	6.0	m bgl,					
Sample Appearance (e.g.	ale	bound	BALLICOL	10-1 11	Hines	no odow	no deen
colour, siltiness, odour):	P		and inclusion	1			
Sample ID:	6	2		•			-
QA/QC Samples:							-
Sampling Containers and filtration:							
Comments / Observations:							
			111	1	Ø		
	Rising	head	test	perhin	nor		

Rev March 2012

Groundwater Field She	et					
Project and Bore Installation	Details					
Bore / Standpipe ID:	1002					
Project Name:						
Project Number:	8688	54.02 .				
Site Location:	100	Areet M	anas bet			
Bore GPS Co-ord		/				A
Installation Date:						
GW Level (during drilling):		m hal				
Well Depth:		m bal				
Corporad Interval:		mbgl	4			
Contenied Interval.	2	in bgi				
Contaminants/Comments.						
Bore Development Details						
Date/Time:	19/5/2	1 1.00	•			
Purged By:	JB.					Net 1
GW Level (pre-purge):	16.42	m bgl			1 1	
Observed Well Depth:	18.00	m bgl				
PSH observed:	Yes / No (interface / vis	ual). Thickness if	observed:		
Estimated Bore Volume:	4.5	L	Carrier Carrier			
Total Volume Purged:	18 (tai	get: no drill mud	, min 3 well vol. or	dry)	· .	
GW Level (post-purge):	16.71	m bgl				*
	TIL	4	water: pale	Grown 1.	ow purbidi	14,10
Equipment:	Iwister	pumij		1		J
		1 17	She	in no	odour.	1.4
Micropurge and Sampling Det	ails					
Date/Time:	27 3 7	1 12:0	Opm Ro	ainy		
Sampled By:	dB'	1 ²		J.		CB Bac
Weather Conditions:	Calan				(
GW Level (pre-purge):	1672	m bal				
Observed Well Depth:	18.30	m bal				
PSH observed:	Yes / No (interface / vis	ual) Thickness if	observed:		
Estimated Bore Volume:	<	1	uur j. monnooo n			
CM(Level (past comple))	1(7)	mhal				
GVV Level (post sample).	10.56					
Total Volume Purged:	6	L	*	10		
Equipment:	Penstal	the pump	(00513)	+ Be.	iler.	
		Water Qual	ty Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1%	+/- 0.3 mg/l	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
Stabilisation offena (5 readings)	0.1 C		100.0	Cit	527	2 2
16:00 / 0.5	21:1	5.74	TIUNO	2.19	054	150
12.01/1.0	21.2	5.58	541.5	2.64	614	121
12:02 1.5	71.2	3.37	542.5	5.47	FES	109
12.03 1.0	21.2	3.10	348-9	5.79	535	103
		64 C				
	×					
100 A	n and the study					
						1000 000 0.840P
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
		Samp	e Details			1
Dentilian Dentile (antionale):	1-7	Jon hal	T			
Sampling Depth (rationale):	14.00	m bgi,	1.	4	7	
Sample Appearance (e.g.	pole tro	win, wow sil	tyness, no	odow, n	o then	
colour, siltiness, odour):	1		V '	/	•	
Sample ID:	1002	1				
QA/QC Samples:	RDI	202103	21			
Sampling Containers and						
filtration:						
			100			
Comments / Observations:	77/21-			1	1	Louis
	00/5/2	1, hote	: venu-	ner we	ery par	1
	1 1		no	fleen .	10 ala	-

EC is in <u>MS</u> EM.

Rev March 2012

Geotechnics | Environment | Groundwater

. **Groundwater Field Sheet** Project and Bore Installation Details 1003A Bore / Standpipe ID: Project Name: Project Number: Site Location: Bore GPS Co-ord: Installation Date: GW Level (during drilling): m bgl m bgl Well Depth: m bgl Screened Interval: Contaminants/Comments: **Bore Development Details** 11-00 OM 3 2021 Date/Time: Purged By: 11 79 GW Level (pre-purge): m bgl 7. 3.93 - m bgl ______ Yes / No (interface / Visual). Thickness if observed: Observed Well Depth: PSH observed: Estimated Bore Volume: 6. L (target: no drill mud, min 3 well vol. or dry) Total Volume Purged: 2.85 m bgl GW Level (post-purge): · O-IOL: Lowern, silty. Woter Twister pump Equipment: 10-25L: transherent 400 Micropurge and Sampling Details 22 3 21 3:00 Date/Time: Raining Sampled By: Weather Conditions: 2.78 m bgl GW Level (pre-purge): 93 Observed Well Depth: res / No (interface / visual). Thickness if observed: m bgl PSH observed: <u>δ</u> L 2. <u>SI m bgl</u> I Estimated Bore Volume: GW Level (post sample): 2. Total Volume Purged: Peristallic primp + Laller YX Equipment: Water Quality Parameters usicn. Redax (mV) DO (mg/L) pH Turbidity Time / Volume (L) EC (pS or mS/cm) Temp (°C)

+/- 10 mV +/- 0.1 +/- 10% +/- 3% Stabilisation Criteria (3 readings) 0.1°C +/- 0.3 mg/L 5.96 220 232 636 128 3.10 3-75 0.5 F47 721 102 4.21 6.19 22.1 232 3.11 1.0 233 6.33 4.28 22.1 3:12 1.5 78 706 22.1 3:13 2.0 241 712 74 4.36 6.35 2 22.1 7.14 5 TDS Additional Readings Following DO % Sat SPC stabilisation: Sample Details 3.5 Sampling Depth (rationale): m bgl, Sample Appearance (e.g. silta adorr. no brown NO sheen colour, siltiness, odour): 1003 A Sample ID: QA/QC Samples: Sampling Containers and filtration: ** additional 201 proped out using huister prope the nsing head test. Comments / Observations:

Jodon steen

Groundwater Field She	et	Star 1					
Project and Bore Installation)etails	Mag					
Boro / Standnine ID:	1007						
Broiget Name:	1001						
Project Number:	86ER4	.07		· · · · · · · · ·			
Site Location:	100 17	Hannad	el		tan I P		
Bore GPS Co-ord:	Ver	, Magazero					
Installation Date:		V	V				
GW/Level (during drilling):		m hal					
Well Depth:		m bal				11 11 11 11 11	
Sereened Interval:		mbal					
Contaminante/Commente:		in ogi			a 6 49 - 6 - 7		
Bore Development Details							
Dete/Time:	10/2/2	S21 11	20				
Date/Time.	PISC	on de	3.0				
	Q 17	m hal					
Gvv Level (pre-purge):	III HA	m bal	17	1 at 15 0	1	logical	
Observed Weil Deptn:	Ver / No /	interface / visi	In Mealure	fobserved.	pour de	Le logare ar	
PSH observed:	res / NO (Interface / visc	iai). Thickness	i observed.			
Estimated Bore Volume:	ALE (has	L	min 2 woll vol o	r dry)			
Total Volume Purged:	95 (tar	get: no anii mua,	min 5 well vol. 0	ruiy)			
GW Level (post-purge):	13-21	m bgl		1		1	
Equipment:	Inviter P	may /	Water: 4	NUM SIL	y, us add	in no sloe	n. *
Micropurge and Sampling Det	ails	/(A A A A A A A A A A A A A A A A A A A	in carry	J	
Date/Time:	2212	12021	4.00				
Compled But	6615	12021	1.00				
Sampled By:	UD				TA		
Weather Conditions:	lane	- hal				· · · · · · · · · · · · · · · · · · ·	
Gw Level (pre-purge):	7.50	the bal	- 07	soit ou	-re).		
Observed Well Depth:	15-51	m bgi	J.S.T.M	if obconvod:	12.		
PSH observed:	Yes / No (Interface / VISI	Jai). Thickness	li observeu.			
Estimated Bore Volume:	20	L					
GW Level (post sample):	15-71	m bgl	*				
Total Volume Purged:	10		\$	100			
Equípment:	Periste	the pur	np + L	ales.	ł	<*	· · · ·
		Water Qualit	ty Parameters	> MJ/cm	•		
Time / Volume	Temp (°C)	DO (mg/L)	EC (pS or mS/om)	рН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
1.0-5	20.3	4.33	1524	6.07	2524	122.6	
1.0	20.6	4.26	445	612	1566	87.4	
1.5	5.00	3.28	477	6.11	1204	83.2	
		and where the second second second second second second second second second second second second second second	1	0.7	981	283	
1 20	20.7	3-17	451	6.131	101	70-1	
2.0	20.7	3-17	451	6.15	970	76.0	
2.0	20.7	3.17	457 462	6.15	970	76.0	
7.0	20.7 20.7 20.7	3.17 5.21 7.20	451 462 467	6.15	970 946 941	76.0 77.1 78.2	
	20.7 20.7 20.7 20.7	3.17 3.21 3.20 3.23	451 462 467 461	6.15 6.17 6.15	970 946 941	76.0 77.1 78.2	
	20.7 20.7 20.7 20.7	3.17 3.21 3.20 3.23	451 462 467 461	6.15 6.15 6.15 6.15	970 946 941	76.0 77.1 78.2	
7.0 7.0 7.0 7.5	20.7 20.7 20.7 20.7	3.17 3.21 3.20 3.23	451 467 461	6.15 6.15 6.17 6.15	970 946 941	76.0 77.1 78.2	
<u> </u>	20.7 20.7 20.7 20.7	3.17 3.21 3.20 3.23	451 467 467	6.15 6.15 6.17 6.15	970 946 941	76.0 77.1 78.2	
Additional Readings Following	20-7 20-7 20-7 20-7 20-7 D0%Sat	3.17 3.21 3.20 3.23	451 467 467	6.15 6.15 6.17 6.15	970	76.0 77.1 78.2	
Additional Readings Following stabilisation:	20-7 20-7 20-7 20-7 20-7 20-7	3.17 3.20 3.20 3.23	451 467 467	6.15 6.15 6.17 6.15	970 946 941	76.0 77.1 78.2	
Additional Readings Following stabilisation:	20-7 20-7 20-7 20-7 20-7 D0%Sat	3 - 17 3 - 21 3 - 23 SPC Sample	451 462 467 461 TDS e Details	6.15 6.15 6.17 6.15	970	76.0 77.1 78.2	
Additional Readings Following stabilisation:	20-7 20-7 20-7 20-7 20-7 D0%Sat	3 - 17 3 - 21 3 - 20 3 - 23 SPC <u>SPC</u> <u>Sample</u> m bgl,	451 462 467 461 TDS e Details	6.15 6.17 6.17 6.15	970	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	20-7 20-7 20-7 20-7 20-7 D0%Sat	3 - 17 3 - 21 3 - 20 3 - 23 spc <u>Sample</u> m bgl,	451 462 467 461 TDS e Details	6.15 6.17 6.15	970	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	20-7 20-7 20-7 20-7 20-7 D0%Sat	3-17 3.21 3.20 3.23 spc <u>Sample</u> m bgl, <i>J.11</i> /4	457 467 467 TDS e Details No ode	6.15 6.17 6.17 6.15	970 946 941	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	20.7 20.7 20.7 20.7 20.7 Do%Sat	3-17 3.21 3.20 3.23 spc <u>Sample</u> m bgl, J.1144	457 467 467 TDS <u>e Details</u> No ode	6.15 6.17 6.17 6.15	970 946 941 0 vhee	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	20.7 20.7 20.7 20.7 20.7 D0%Sat	3-17 3.21 3.20 3.23 spc <u>Sample</u> m bgl, J.1144	457 467 467 TDS <u>e Details</u> No ode	6.15 6.17 6.17 6.15	970 946 941 0 vhee	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	20.7 20.7 20.7 20.7 20.7 00% Sat	3-17 3.21 3.20 3.23 spc <u>Sample</u> m bgl, J.1144	457 467 467 TDS <u>e Details</u> No ode	6.15 6.17 6.17 6.15	970 946 941 0 vhee	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	20.7 20.7 20.7 20.7 20.7 20.7 00% Sat	3-17 3.21 3.20 3.23 spc <u>Sample</u> m bgl, 1.1144	457 467 461 TDS <u>e Details</u> No ode	6.15 6.17 6.17 6.15	970 946 941 0 vhee	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	20.7 20.7 20.7 20.7 20.7 00% Sat	3-17 3.21 3.20 3.23 spc <u>Sampl</u> m bgl, 1.1144	USI UGZ UGT UGT UBI TDS <u>e Details</u> No odo	6.15 6.17 6.17 6.15	970 946 941	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	20.7 20.7 20.7 20.7 20.7 00% Sat	<u>3.17</u> <u>3.21</u> <u>3.20</u> <u>3.23</u> spc <u>Sampl</u> <u>m bgl</u> , <u>1.114</u>	451 462 467 461 TDS <u>e Details</u> Mo odo	6.15 6.17 6.17 6.15	o vhe	76.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	<u>3.17</u> <u>3.21</u> <u>3.20</u> <u>3.23</u> spc <u>Sampl</u> <u>m bgl</u> , <u>1.114</u> <u>1.114</u>	USI UGZ UGT UGT UBI TDS <u>e Details</u> No odo	6.15 6.17 6.17 6.15	o vhee	46.0 77.1 78.2	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	20.7 20.7 20.7 20.7 20.7 20.7 00% Sat	3-17 3.21 3.20 3.23 spc <u>Sampl</u> m bgl, <i>J. I. by</i>	USI UGZ UGT UGT UBI TDS <u>e Details</u> <u>No odc</u>	6.15 6.17 6.17 6.15	o vhee	46.0 77.1 78.2 	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	3.17 3.20 3.20 3.23 spc <u>Sampl</u> m bgl, 1.15 4.01 5p	USI UGZ UGZ UGZ UGZ UGZ UGZ NO ODO	6.15 6.17 6.17 6.15	o vhee	46.0 77.1 78.2 78.2	

Calibration & Service Report Gas Monitor

Active Environmental Solutions Hire	Manufacturer:	RAE Systems	Serial #:	592-915472
Aleks Todorovic	Instrument:	MiniRAE 3000	Asset #:	-
2 Merchant Avenue	Model:	PGM 7320	Part #:	-
Thomastown Vic 3074	Configuration:	VOC	Sold:	-
03 9464 2300 Fax : 03 9464 3421	Wireless:	-	Last Cal:	-
hire@aesolutions.com.au	Network ID:	-	Job #:	-
	Unit ID:	-	Cal Spec:	Std
	Active Environmental Solutions Hire Aleks Todorovic 2 Merchant Avenue Thomastown Vic 3074 03 9464 2300 Fax : 03 9464 3421 <u>hire@aesolutions.com.au</u>	Active Environmental Solutions HireManufacturer:Aleks TodorovicInstrument:2 Merchant AvenueModel:Thomastown Vic 3074Configuration:03 9464 2300 Fax: 03 9464 3421Wireless:hire@aesolutions.com.auNetwork ID:Unit ID:Line	Active Environmental Solutions HireManufacturer:RAE SystemsAleks TodorovicInstrument:MiniRAE 30002 Merchant AvenueModel:PGM 7320Thomastown Vic 3074Configuration:VOC03 9464 2300 Fax: 03 9464 3421Wireless:-hire@aesolutions.com.auNetwork ID:-Unit ID:	Active Environmental Solutions HireManufacturer:RAE SystemsSerial #:Aleks TodorovicInstrument:MiniRAE 3000Asset #:2 Merchant AvenueModel:PGM 7320Part #:Thomastown Vic 3074Configuration:VOCSold:03 9464 2300 Fax: 03 9464 3421Wireless:-Last Cal:hire@aesolutions.com.auNetwork ID:-Job #:Unit ID:-Cal Spec:

ltem	Test	Pass/Fail	Comments
Battery	Li Ion	✓	
Charger	Charger, Power supply	✓	
	Cradle	✓	
Pump	Flow	✓	>500 mL/min
Filter	Filter, fitting, etc	✓	
Alarms	Audible, visual, vibration	✓	
Display	Operation	✓	
PCB	Operation	✓	
Connectors	Condition	✓	
Firmware	Version	\checkmark	2.16
Datalogger	Operation	\checkmark	
Monitor Housing	Condition	\checkmark	
Case	Condition/Type	\checkmark	
Sensors			
Oxygen		-	
LEL		-	
PID	10.6eV	✓	
Toxic 1		-	
Toxic 2		-	
Toxic 3		-	
Toxic 4		-	
Toxic 5		-	

Engineer's Report

Setup, Service and Calibration for Hire

Calibration Certificate

Sensor	Туре	Serial No:	Span	Concentration	Traceability	CF	Read	ling
			Gas		Lot #		Zero	Span
0								
Oxygen								
LEL								
PID	10.6eV	1062R124396	Isobutylene	100 PPM	WO249617-27	1	0	100
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								

Calibrated/Repaired by:	Milenko Sisic		
Date:	08/03/2021		
Next due:	08/09/2021		
Head Office – Melbourne	NSW Office – Ashfield	WA Office - Malaga	QLD Office – Banyo

2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300 NSW Office – Ashfield Level 2, Suite 14, 6 - 8 Holden Street Ashfield NSW 2131 Australia T: +61 2 9716 5966 WA Office – **Malaga** Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663

QLD Office – **Banyo** Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

sales@aesolutions.com.au

c:\users\milenko\desktop\2019 calibration\pid water\592-915472\592-915472

douglas partners wr.docx

www.aesolutions.com.au

Calibration & Service Report Water Quality Meter

Company: Activ Address: Unit AUB	ve Environmental Solutions Hire 16, 191 Parramatta Road URN NSW 2144	e II	Manuf nstrument,	acture /Mode	r: YSI I: ProDSS Handh Water Quality	neld Cabl e Meter	Serial #: ELength:	18H1110 1 M	16
Phone: 02 9	716 5966 Fax : 02 9716 5988		Client Co	mpany	/:	Clie	nt Email:		
Email: <u>hire</u>	@aesoultions.com.au		Clien	t Name	2:	Clien	it Phone:		
ltem	Test		Pass	Comn	nents				
Battery	Charged		·						
	Battery Saver		✓	Autor	natically turns off a	fter 15 minutes if r	not used		
Connections	Condition		✓	Good	clean				
Cable	Condition		✓	Clean	no tears				
Display	Operation		✓	oroun	,				
Firmware	Version		✓	118					
Kevnad	Operational		✓	1.1.0					
Display	Screen		✓						
Unit	Condition seals and O-riu	nøs	✓						
Monitor housing	Condition		· ·	<u> </u>					
nH	Condition		L *	I					
Condition			1	Good	clean				
nul millivolta for nU7 a	alibration range $0 \text{ m}/(\pm E0 \text{ m})/$		•	GOOU	, Clean				
p = 1111110011s = 101 p = 7 c	and a total from 7 buffer m/(value)	_	•						
pH 4 mV range + 105 t		2	•						
			•						
Response time < 90 se	conds		•						
	ns to manufacturer's specificat	lons	•						
OKP Constitution				C I	- le su				
	de		•	Good	, clean				
Response time < 90 se	conds		•						
within ± 80 mV of refer	ence Zobell Reading		•						
Calibrated and conform	ns to manufacturer's specificat	lons	~	Variar	nce range ± 20mV				
					1				
Condition			✓	Good	, clean				
Calibrated and conform	ns to manufacturer's specifical	tions	✓	°C					
Turbidity									
Calibrated and conform	ns to manufacturer's specificat	ions	√						
Condition			✓						
Dissolved Oxygen									
Condition	. <u>.</u>		√	Good	, clean				
Calibrated and conforr	ns to manufacturer's specificat	tions	✓			-	[
Parameter	Standards	Re	terence		Calibration Point	Before	After		Units
Temperature	Center 370 Thermomete	r	Room Tem	np.	22.8	N/A		22.8	°C
pH	pH 4.00		349389		4.01	3.84		4.01	рН
pH	pH 10.00		344906		10.00	9.99		10.00	рН
pH	pH 7.00		349958		/.00	7.00		/.00	pH ,
Conductivity	2760 μs/cm at 25°C		354236	0555	2760	2790		2760	μs/cm
ORP (Ret. check only)	Zobell A & B	34	40526 & 34	10529	234.1	232.1		234.1	mV
Zero Dissolved Oxyger	NaSO3 in distilled water	2	83/62; V07	0819	0.0	0.9		0.0	%
100% Dissolved Oxyge	n 100% Air Saturation		Fresh Ai	r	100.6	97.5		100.6	%
Zero Turbidity	0 FNU	W	-54320-V07	/0819	0.00	-0.50		0.00	FNU
Turbidity	124.00 FNU		Z0H202903	164	124.00	123.79		124.00	FNU

Calibrated By: Mile

Milenko Sisic

Calibration Date:

16/02/2021

Calibration Due:

16/08/2021

Alemir International Pty Ltd t/a Active Environmental Solutions

Head Office – Melbourne 2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300 NSW Office – Auburn Unit 16, 191 Parramatta Road Auburn NSW 2144 Australia T: +61 2 9716 5966 WA Office – Malaga Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663 QLD Office – Banyo Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

ABN 14 080 228 708

sales@aesolutions.com.au

www.aesolutions.com.au

Appendix I

Chain of Custody, Sample Receipt Advice

and Certificate of Analysis Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264169

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden, Alyssa Spencer
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86884.02, Haymarket</u>
Number of Samples	12 Soil
Date samples received	12/03/2021
Date completed instructions received	12/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 19/03/2021

 Date of Issue
 19/03/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu, Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Ken Nguyen, Reporting Supervisor Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Authorised By

Nancy Zhang, Laboratory Manager

Steven Luong, Organics Supervisor

VOCs in soil				_	
Our Reference		264169-1	264169-2	264169-5	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1004/0.6-0.7	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	17/03/2021	17/03/2021	17/03/2021	17/03/2021
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1

VOCs in soil					
Our Reference		264169-1	264169-2	264169-5	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1004/0.6-0.7	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	108	90	112	106
Surrogate aaa-Trifluorotoluene	%	134	116	135	128
<i>Surrogate</i> Toluene-d ₈	%	113	102	118	114
Surrogate 4-Bromofluorobenzene	%	97	95	100	97

Client Reference: 86884.02, Haymarket

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		264169-1	264169-2	264169-3	264169-4	264169-5
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1003A/1.9-2.0	BH1004/0.3-0.4	BH1004/0.6-0.7
Date Sampled		10/03/2021	10/03/2021	10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	134	116	115	103	135

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		264169-6	264169-7	264169-8	264169-9	264169-10
Your Reference	UNITS	BH1005/0.22-0.3	BH1005/0.5-0.6	BH1005/1.55- 1.65	BH1007/0.2-0.3	BD3/100321
Date Sampled		11/03/2021	11/03/2021	11/03/2021	11/03/2021	10/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	17/03/2021	17/03/2021	17/03/2021	17/03/2021	17/03/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	9	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	103	108	95	128	87

Client Reference: 86884.02, Haymarket

vTRH(C6-C10)/BTEXN in Soil								
Our Reference		264169-11	264169-12					
Your Reference	UNITS	TS	ТВ					
Date Sampled		-	-					
Type of sample		Soil	Soil					
Date extracted	-	15/03/2021	15/03/2021					
Date analysed	-	17/03/2021	17/03/2021					
Benzene	mg/kg	93%	<0.2					
Toluene	mg/kg	98%	<0.5					
Ethylbenzene	mg/kg	101%	<1					
m+p-xylene	mg/kg	101%	<2					
o-Xylene	mg/kg	101%	<1					
Total +ve Xylenes	mg/kg	[NA]	<3					
Surrogate aaa-Trifluorotoluene	%	99	110					
svTRH (C10-C40) in Soil								
--	-------	-----------------	-----------------	-----------------	----------------	----------------	--	--
Our Reference		264169-1	264169-2	264169-3	264169-4	264169-5		
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1003A/1.9-2.0	BH1004/0.3-0.4	BH1004/0.6-0.7		
Date Sampled		10/03/2021	10/03/2021	10/03/2021	11/03/2021	11/03/2021		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021		
Date analysed	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	16/03/2021		
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50		
TRH C15 - C28	mg/kg	120	<100	<100	110	<100		
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100		
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50		
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50		
TRH >C ₁₆ -C ₃₄	mg/kg	170	<100	<100	170	<100		
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100		
Total +ve TRH (>C10-C40)	mg/kg	170	<50	<50	170	<50		
Surrogate o-Terphenyl	%	109	89	86	96	91		

svirkh (C10-C40) in Soil						
Our Reference		264169-6	264169-7	264169-8	264169-9	264169-10
Your Reference	UNITS	BH1005/0.22-0.3	BH1005/0.5-0.6	BH1005/1.55- 1.65	BH1007/0.2-0.3	BD3/100321
Date Sampled		11/03/2021	11/03/2021	11/03/2021	11/03/2021	10/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	120	240	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	100	120	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	200	320	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	200	320	<50	<50
Surrogate o-Terphenyl	%	88	96	107	90	83

PAHs in Soil						
Our Reference		264169-1	264169-2	264169-3	264169-4	264169-5
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1003A/1.9-2.0	BH1004/0.3-0.4	BH1004/0.6-0.7
Date Sampled		10/03/2021	10/03/2021	10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Acenaphthylene	mg/kg	0.2	0.2	<0.1	0.6	0.3
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.3	0.2
Phenanthrene	mg/kg	0.5	0.7	<0.1	2.9	2.0
Anthracene	mg/kg	0.2	0.2	<0.1	1.3	0.5
Fluoranthene	mg/kg	1.6	1.6	<0.1	5.6	2.6
Pyrene	mg/kg	1.7	1.5	<0.1	6.0	2.6
Benzo(a)anthracene	mg/kg	1.2	1.1	<0.1	3.3	1.5
Chrysene	mg/kg	0.8	0.8	<0.1	2.9	1.2
Benzo(b,j+k)fluoranthene	mg/kg	1	1	<0.2	4.2	2
Benzo(a)pyrene	mg/kg	0.94	0.73	<0.05	2.9	1.2
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	0.4	<0.1	1.1	0.5
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.4	0.2
Benzo(g,h,i)perylene	mg/kg	0.5	0.3	<0.1	2.0	0.6
Total +ve PAH's	mg/kg	9.3	8.9	<0.05	34	15
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.2	1.0	<0.5	4.2	1.8
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.3	1.1	<0.5	4.2	1.8
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.3	1.1	<0.5	4.2	1.8
Surrogate p-Terphenyl-d14	%	104	106	117	105	109

PAHs in Soil						
Our Reference		264169-6	264169-7	264169-8	264169-9	264169-10
Your Reference	UNITS	BH1005/0.22-0.3	BH1005/0.5-0.6	BH1005/1.55- 1.65	BH1007/0.2-0.3	BD3/100321
Date Sampled		11/03/2021	11/03/2021	11/03/2021	11/03/2021	10/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
Naphthalene	mg/kg	<0.1	0.3	8.3	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	0.5	1.9	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	0.1	2.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.4	4.1	<0.1	<0.1
Phenanthrene	mg/kg	0.5	3.6	35	0.1	<0.1
Anthracene	mg/kg	0.2	1.3	12	<0.1	<0.1
Fluoranthene	mg/kg	1.7	5.8	27	0.4	<0.1
Pyrene	mg/kg	1.9	5.6	25	0.5	<0.1
Benzo(a)anthracene	mg/kg	1.3	3.6	11	0.4	<0.1
Chrysene	mg/kg	1	2.7	9.5	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	2	3.8	11	0.5	<0.2
Benzo(a)pyrene	mg/kg	1.2	2.7	8.4	0.3	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6	0.9	3.8	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	0.3	1.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7	1.8	4.5	0.2	<0.1
Total +ve PAH's	mg/kg	11	33	160	2.7	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.8	3.9	12	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.8	3.9	12	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.8	3.9	12	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	110	104	108	116	116

Organochlorine Pesticides in soil						
Our Reference		264169-1	264169-2	264169-4	264169-7	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1004/0.3-0.4	BH1005/0.5-0.6	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	105	110	106	104

Organophosphorus Pesticides in Soil						
Our Reference		264169-1	264169-2	264169-4	264169-7	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1004/0.3-0.4	BH1005/0.5-0.6	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	105	110	106	104

PCBs in Soil						
Our Reference		264169-1	264169-2	264169-4	264169-7	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1004/0.3-0.4	BH1005/0.5-0.6	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	105	110	106	104

Acid Extractable metals in soil								
Our Reference		264169-1	264169-2	264169-3	264169-4	264169-5		
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1003A/1.9-2.0	BH1004/0.3-0.4	BH1004/0.6-0.7		
Date Sampled		10/03/2021	10/03/2021	10/03/2021	11/03/2021	11/03/2021		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date prepared	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021		
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021		
Arsenic	mg/kg	<4	<4	<4	<4	<4		
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4		
Chromium	mg/kg	6	7	<1	8	6		
Copper	mg/kg	17	8	<1	37	12		
Lead	mg/kg	40	32	1	72	75		
Mercury	mg/kg	0.2	0.2	<0.1	0.5	0.3		
Nickel	mg/kg	4	2	<1	6	3		
Zinc	mg/kg	37	35	4	82	38		

Acid Extractable metals in soil									
Our Reference		264169-6	264169-7	264169-8	264169-9	264169-10			
Your Reference	UNITS	BH1005/0.22-0.3	BH1005/0.5-0.6	BH1005/1.55- 1.65	BH1007/0.2-0.3	BD3/100321			
Date Sampled		11/03/2021	11/03/2021	11/03/2021	11/03/2021	10/03/2021			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date prepared	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021			
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021			
Arsenic	mg/kg	<4	5	<4	<4	<4			
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4			
Chromium	mg/kg	7	8	9	9	<1			
Copper	mg/kg	29	27	37	24	2			
Lead	mg/kg	59	66	210	53	8			
Mercury	mg/kg	0.3	0.3	0.7	0.3	<0.1			
Nickel	mg/kg	6	4	6	7	<1			
Zinc	mg/kg	68	74	150	50	4			

Misc Soil - Inorg						
Our Reference		264169-1	264169-2	264169-4	264169-7	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1004/0.3-0.4	BH1005/0.5-0.6	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference		264169-1	264169-2	264169-3	264169-4	264169-5
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1003A/1.9-2.0	BH1004/0.3-0.4	BH1004/0.6-0.7
Date Sampled		10/03/2021	10/03/2021	10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	15/03/2021	15/03/2021	15/03/2021	15/03/2021	15/03/2021
Date analysed	-	16/03/2021	16/03/2021	16/03/2021	16/03/2021	16/03/2021
Moisture	%	10	16	3.1	9.8	9.0
Moisture						
Moisture Our Reference		264169-6	264169-7	264169-8	264169-9	264169-10
Moisture Our Reference Your Reference	UNITS	264169-6 BH1005/0.22-0.3	264169-7 BH1005/0.5-0.6	264169-8 BH1005/1.55- 1.65	264169-9 BH1007/0.2-0.3	264169-10 BD3/100321
Moisture Our Reference Your Reference Date Sampled	UNITS	264169-6 BH1005/0.22-0.3 11/03/2021	264169-7 BH1005/0.5-0.6 11/03/2021	264169-8 BH1005/1.55- 1.65 11/03/2021	264169-9 BH1007/0.2-0.3 11/03/2021	264169-10 BD3/100321 10/03/2021
Moisture Our Reference Your Reference Date Sampled Type of sample	UNITS	264169-6 BH1005/0.22-0.3 11/03/2021 Soil	264169-7 BH1005/0.5-0.6 11/03/2021 Soil	264169-8 BH1005/1.55- 1.65 11/03/2021 Soil	264169-9 BH1007/0.2-0.3 11/03/2021 Soil	264169-10 BD3/100321 10/03/2021 Soil
Moisture Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS -	264169-6 BH1005/0.22-0.3 11/03/2021 Soil 15/03/2021	264169-7 BH1005/0.5-0.6 11/03/2021 Soil 15/03/2021	264169-8 BH1005/1.55- 1.65 11/03/2021 Soil 15/03/2021	264169-9 BH1007/0.2-0.3 11/03/2021 Soil 15/03/2021	264169-10 BD3/100321 10/03/2021 Soil 15/03/2021
Moisture Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	UNITS - -	264169-6 BH1005/0.22-0.3 11/03/2021 Soil 15/03/2021 16/03/2021	264169-7 BH1005/0.5-0.6 11/03/2021 Soil 15/03/2021 16/03/2021	264169-8 BH1005/1.55- 1.65 11/03/2021 Soil 15/03/2021 16/03/2021	264169-9 BH1007/0.2-0.3 11/03/2021 Soil 15/03/2021 16/03/2021	264169-10 BD3/100321 10/03/2021 Soil 15/03/2021 16/03/2021

Asbestos ID - soils								
Our Reference		264169-3	264169-4	264169-5	264169-6	264169-7		
Your Reference	UNITS	BH1003A/1.9-2.0	BH1004/0.3-0.4	BH1004/0.6-0.7	BH1005/0.22-0.3	BH1005/0.5-0.6		
Date Sampled		10/03/2021	11/03/2021	11/03/2021	11/03/2021	11/03/2021		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021	19/03/2021		
Sample mass tested	g	Approx. 60g	Approx. 45g	Approx. 55g	Approx. 55g	Approx. 65g		
Sample Description	-	White sandy soil	Brown coarse- grained soil & rocks					
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres		
Asbestos comments	-	NO	NO	NO	NO	NO		
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected		

Asbestos ID - soils		
Our Reference		264169-8
Your Reference	UNITS	BH1005/1.55- 1.65
Date Sampled		11/03/2021
Type of sample		Soil
Date analysed	-	19/03/2021
Sample mass tested	g	Approx. 75g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Ashestos comments	_	NO
Trace Analysis	-	No asbestos detected

Asbestos ID - soils NEPM				
Our Reference		264169-1	264169-2	264169-9
Your Reference	UNITS	BH1003/0.25-0.3	BH1003A/0.8-0.9	BH1007/0.2-0.3
Date Sampled		10/03/2021	10/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	17/03/2021	17/03/2021	17/03/2021
Sample mass tested	g	976.03	1,444.55	1,030.77
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Trace Analysis	-	No asbestos	No asbestos	No asbestos
		detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	_	-
FA and AF Estimation*	g	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Misc Inorg - Soil				
Our Reference		264169-2	264169-6	264169-8
Your Reference	UNITS	BH1003A/0.8-0.9	BH1005/0.22-0.3	BH1005/1.55- 1.65
Date Sampled		10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	17/03/2021	17/03/2021	17/03/2021
Date analysed	-	17/03/2021	17/03/2021	17/03/2021
pH 1:5 soil:water	pH Units	8.9	9.3	9.5

CEC				
Our Reference		264169-2	264169-6	264169-8
Your Reference	UNITS	BH1003A/0.8-0.9	BH1005/0.22-0.3	BH1005/1.55- 1.65
Date Sampled		10/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	18/03/2021	18/03/2021	18/03/2021
Exchangeable Ca	meq/100g	4.8	15	14
Exchangeable K	meq/100g	<0.1	0.2	0.2
Exchangeable Mg	meq/100g	0.22	0.29	0.15
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	5.1	15	15

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF) NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> </pql></pql></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: VOCs in soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			17/03/2021	1	17/03/2021	17/03/2021		17/03/2021	17/03/2021
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	92	121
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-023	<1	1	<1	<1	0	101	118
2,2-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	86	105
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	78	86
1,1-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	65	71
bromodichloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	84	92
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	85	91
1,2-dibromoethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	90	100
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]

QUALIT	TY CONTRO	L: VOCs	in soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264169-2
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
isopropylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
n-propyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
tert-butyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
sec-butyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-isopropyl toluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
n-butyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
hexachlorobutadiene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluorometha	%		Org-023	100	1	108	104	4	94	123
Surrogate aaa-Trifluorotoluene	%		Org-023	111	1	134	128	5	98	111
Surrogate Toluene-d ₈	%		Org-023	108	1	113	114	1	100	119
Surrogate 4-Bromofluorobenzene	%		Org-023	96	1	97	96	1	95	99

QUALIT	Y CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021			[NT]
Date analysed	-			[NT]	9	17/03/2021	17/03/2021			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Cyclohexane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	9	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	9	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	9	<2	<2	0		[NT]
styrene	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	9	<1	<1	0		[NT]

QUALI	Y CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
isopropylbenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
n-propyl benzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
tert-butyl benzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
sec-butyl benzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
4-isopropyl toluene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
n-butyl benzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluorometha	%		Org-023	[NT]	9	106	91	15	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	9	128	107	18	[NT]	[NT]
Surrogate Toluene-d ₈	%		Org-023	[NT]	9	114	103	10	[NT]	[NT]
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	9	97	96	1	[NT]	[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			17/03/2021	1	17/03/2021	17/03/2021		17/03/2021	17/03/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	90	95
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	90	95
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	87	87
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	91	108
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	94	96
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	88	92
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	92	97
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	111	1	134	128	5	98	111

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021		[NT]	[NT]
Date analysed	-			[NT]	9	17/03/2021	17/03/2021		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	9	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	9	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	9	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	9	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	9	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-023	[NT]	9	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	9	128	107	18	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			16/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	87	85
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	120	<100	18	86	91
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	70	78
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	87	85
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	170	<100	52	86	91
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	70	78
Surrogate o-Terphenyl	%		Org-020	89	1	109	89	20	86	90

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021		15/03/2021	
Date analysed	-			[NT]	9	16/03/2021	16/03/2021		16/03/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	9	<50	<50	0	86	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	9	<100	<100	0	88	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	9	<100	<100	0	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	9	<50	<50	0	86	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	9	<100	<100	0	88	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	9	<100	<100	0	92	
Surrogate o-Terphenyl	%		Org-020	[NT]	9	90	88	2	81	[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			16/03/2021	1	16/03/2021	16/03/2021		16/03/2021	16/03/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	94
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	112
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.5	1.2	82	117	78
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.4	67	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	1.6	1.8	12	109	#
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	1.7	2.0	16	109	#
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	1.2	1.4	15	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	0.9	12	106	84
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	1	2	67	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.94	1.0	6	112	80
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.4	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.5	0.5	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	109	1	104	98	6	99	105

QUALIT	Y CONTRO	L: PAHs	in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021		15/03/2021	
Date analysed	-			[NT]	9	16/03/2021	16/03/2021		16/03/2021	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	99	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	99	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	104	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	9	0.1	0.2	67	107	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	9	0.4	0.5	22	109	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	9	0.5	0.5	0	109	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	9	0.4	0.4	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	9	0.2	0.3	40	122	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	9	0.5	0.4	22	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	9	0.3	0.3	0	112	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	9	0.1	0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	9	0.2	0.1	67	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	9	116	128	10	112	

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			16/03/2021	1	16/03/2021	16/03/2021		16/03/2021	16/03/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	87
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	83
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	87
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	103
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	103
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	108
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	107
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	82
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	95
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	76
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	101	1	105	114	8	102	101

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021		15/03/2021	[NT]
Date analysed	-			[NT]	9	16/03/2021	16/03/2021		16/03/2021	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	104	[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	102	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	105	[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	112	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	110	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	113	[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	113	[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	104	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	106	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	109	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	9	104	109	5	110	[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			16/03/2021	1	16/03/2021	16/03/2021		16/03/2021	16/03/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	124	65
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	113
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	83
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	125	90
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	103
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	90
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	125	107
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	101	1	105	114	8	102	101

QUALITY CONTRO			Du	plicate		Spike Re	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021		15/03/2021	[NT]
Date analysed	-			[NT]	9	16/03/2021	16/03/2021		16/03/2021	[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	92	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	124	[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	91	[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	133	[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	113	[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	90	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	107	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	9	104	109	5	110	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264169-2
Date extracted	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			16/03/2021	1	16/03/2021	16/03/2021		16/03/2021	16/03/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	100	90
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	101	1	105	114	8	102	101

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			[NT]	9	15/03/2021	15/03/2021		15/03/2021	[NT]
Date analysed	-			[NT]	9	16/03/2021	16/03/2021		16/03/2021	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	100	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	9	104	109	5	110	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264169-2
Date prepared	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			16/03/2021	1	16/03/2021	16/03/2021		16/03/2021	16/03/2021
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	101	91
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	103	93
Chromium	mg/kg	1	Metals-020	<1	1	6	7	15	100	89
Copper	mg/kg	1	Metals-020	<1	1	17	13	27	97	96
Lead	mg/kg	1	Metals-020	<1	1	40	37	8	98	86
Mercury	mg/kg	0.1	Metals-021	<0.1	1	0.2	0.2	0	114	#
Nickel	mg/kg	1	Metals-020	<1	1	4	3	29	105	96
Zinc	mg/kg	1	Metals-020	<1	1	37	36	3	107	104

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	9	15/03/2021	15/03/2021		[NT]	
Date analysed	-			[NT]	9	16/03/2021	16/03/2021		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	9	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	9	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	9	9	9	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	9	24	31	25	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	9	53	48	10	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	9	0.3	0.2	40	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	9	7	8	13	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	9	50	45	11	[NT]	[NT]

QUALITY	QUALITY CONTROL: Misc Soil - Inorg Units PQL Method 11 - - 11 11 - - 11 11					Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264169-2
Date prepared	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Date analysed	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	15/03/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	100	99

QUALITY	CONTROL:	Misc Ino	rg - Soil	Duplicate Spike Record Blank # Base Dup. RPD LCS-4 17/03/2021 NT [NT] [NT] 17/03/2021 17/03/2021 17/03/2021 NT [NT] [NT] 17/03/2021 17/03/2021			covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			17/03/2021	[NT]		[NT]	[NT]	17/03/2021	
Date analysed	-			17/03/2021	[NT]		[NT]	[NT]	17/03/2021	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

QU.	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021	[NT]
Date analysed	-			18/03/2021	[NT]		[NT]	[NT]	18/03/2021	[NT]
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	107	[NT]
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	119	[NT]
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	110	[NT]
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	119	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 264169-2 has caused interference.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element in the sample. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied samples were sub-sampled for asbestos

analysis according to Envirolab procedures.

We cannot guarantee that these sub-samples are indicative of the entire sample.

Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 264169-3-8 were sub-sampled from jars provided by the client.

Douglas Partners

Project No:	86884	4.02			Subur	b:	Hayma	rket		To:	Env	viroLab			7
Project Name:	Haym	narket Conta	mination A	Assessment	Order	Number					12 /	Ashley Sti	eet, Cha	tswood 2067	
Project Manage	er: David	Holden			Sampl	er:	Alyssa	Spencer		Attn:	Aile	en Hie			
Emails:	Dav	id.Holden@d	ouglaspartr	ners.com.au	Alys	sa.Spence	r@douglas	partners.c	om.au	Phone:	(02)) 9910 620	00		
Date Required:	Same	eday □	24 hours	□ 48 h	ours 🗆	72 hoi	urs 🗆	Standard	d≱ _	Email:	<u>Ahi</u>	e@envir	olab.con	n.au	-
Prior Storage:	🕱 Esky	/¥1 Fridg	e 🗆 Sh	elved	Do sam	ples conta	in 'potentia	al' HBM?	Yes 💅	No 🗆	(If YES, th	en handle, f	ransport ar	nd store in accordance with FPM HAZID)	
		pled	Sample Type	Container Type					Analytes						
Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8A	Combo 3A	VOC	pH and CEC	Metal TCLP	PAH TCLP	Combo 3	500mL AF/FA	втех	Notes/preservation	
BH1003/0.25-0.3	(10/03/21			x		X					X		*aggressivity testing]
BH1003A/0.8-0.9	2	10/03/21			_ x		x	x	x	x		x			
BH1003A/1.9-2.0	ک	10/03/21				x									
BH1004/0.3-0.4	4	11/03/21			_ X		_							EDVIROLED	12 Ashley St
BH1004/0.6-0.7	5	11/03/21				. X	X							Char	tswood NSW 2067
BH1005/0.22-0.3	k	11/03/21				x		x	x	х				Job No:	264169
BH1005/0.5-0.6	7	11/03/21			x	L								Date Beceived	$-12(n^2/2)$
BH1005/1.55-1.65	8	11/03/21		<u> </u>		x		x						Time Received:	1,400,67
BH1007/0.2-0.3	9	11/03/21			x		x		x	х		x		Received By:	
BD3/100321	10	10/03/21									х				ient)
TS	11						_						x	Security: Intact/B	ken/None
ТВ	12	-											X]
					,										_
												<u> </u>			4
				· · · · · · · · · · · · · · · · · · ·		L						ļ			_
PQL (S) mg/kg						<u> </u>								reg'd for all water analytes	-
PQL = practical	quantit	ation limit.	lf none g	jiven, defaul	t to Labo	ratory Me	thod Dete	ction Limi	t l	Lab Dr					
Metals to Analy	se: 8HN	l unless sp	ecified he	re:							eport/Re	rerence l	vo:	264167	<u> </u>
Send Results to	r sampl	es in conta	ners Pty I t	12 Relii	nquished	l by:	AS	Transpo	rted to la	boratory	by:	Courier			
													/	Tax. In F	- 1 -
Signed: (///				Received b	y:	-Gh	AArol	ah-	$-\Lambda$	\sim \bot	Date & 1	lime:	12/	03/2/1.1/19.3	1/ .

e

.

1

~

×

୍ 🤤

 $\sigma_{\rm e^+}$

- 16- 7

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden, Alyssa Spencer

Sample Login Details	
Your reference	86884.02, Haymarket
Envirolab Reference	264169
Date Sample Received	12/03/2021
Date Instructions Received	12/03/2021
Date Results Expected to be Reported	19/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	12 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab	Services	Pty	Ltd
-----------	----------	-----	-----

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	Misc Inorg - Soil	CEC
BH1003/0.25-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
BH1003A/0.8-0.9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
BH1003A/1.9-2.0		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			
BH1004/0.3-0.4		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BH1004/0.6-0.7	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			
BH1005/0.22-0.3		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	\checkmark
BH1005/0.5-0.6		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BH1005/1.55-1.65		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	\checkmark
BH1007/0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
BD3/100321		\checkmark	\checkmark	\checkmark				\checkmark					
TS		\checkmark											
ТВ		1											

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264169-B

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86884.02, Haymarket</u>
Number of Samples	12 Soil
Date samples received	12/03/2021
Date completed instructions received	19/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	26/03/2021		
Date of Issue	26/03/2021		
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 264169-B Revision No: R00

Page | 1 of 9

TCLP Preparation - Acid					
Our Reference		264169-B-1	264169-B-4	264169-B-7	264169-B-8
Your Reference	UNITS	BH1003/0.25-0.3	BH1004/0.3-0.4	BH1005/0.5-0.6	BH1005/1.55- 1.65
Date Sampled		10/03/2021	11/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	9.6	9.5	9.3	9.5
pH of soil TCLP (after HCl)	pH units	1.8	1.8	1.7	1.8
Extraction fluid used	-	1	1	1	1
pH of final Leachate	pH units	5.2	5.2	5.1	5.3

PAHs in TCLP (USEPA 1311)					
Our Reference		264169-B-1	264169-B-4	264169-B-7	264169-B-8
Your Reference	UNITS	BH1003/0.25-0.3	BH1004/0.3-0.4	BH1005/0.5-0.6	BH1005/1.55- 1.65
Date Sampled		10/03/2021	11/03/2021	11/03/2021	11/03/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Naphthalene in TCLP	mg/L	<0.001	<0.001	<0.001	0.097
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001	0.007
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001	0.018
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001	0.026
Phenanthrene in TCLP	mg/L	<0.001	<0.001	0.001	0.076
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	0.011
Fluoranthene in TCLP	mg/L	<0.001	<0.001	<0.001	0.009
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	0.007
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE	0.001	0.25
Surrogate p-Terphenyl-d14	%	92	90	87	82

Metals in TCLP USEPA1311		
Our Reference		264169-B-8
Your Reference	UNITS	BH1005/1.55- 1.65
Date Sampled		11/03/2021
Type of sample		Soil
Date extracted	-	25/03/2021
Date analysed	-	25/03/2021
Lead in TCLP	mg/L	0.36

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONT	ROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	264169-B-4
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	70	80
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78	73
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	84	79
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	88	85
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	79	78
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	79
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	78
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	73	72
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	92	[NT]	[NT]	[NT]	[NT]	95	90

QUALITY CONTROL: Metals in TCLP USEPA1311						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/03/2021	[NT]		[NT]	[NT]	25/03/2021	[NT]
Date analysed	-			25/03/2021	[NT]		[NT]	[NT]	25/03/2021	[NT]
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]		[NT]	[NT]	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To			- : :
From: Sent: To: Subject:	Aileen Hie Friday, 19 March 2021 6:30 PM Ming To FW: 264169 86884.02, Haymarke	et- Additional TCLP	
Follow Up Flag: Flag Status:	Follow up Flagged	pef: 2.64.169 TAT:Standa Due: 26/03/2	7-B. 4-d. 2021 17
From: David Holden <dav Sent: Friday, 19 March 20 To: Aileen Hie <ahie@er Subject: 264169 86884.0</ahie@er </dav 	vid.Holden@douglaspartners.com.au> D21 6:24 PM ovirolab.com.au> I2, Haymarket- Additional TCLP		
CAUTION: This email origin unless you recognise the se	ated from outside of the organisation. Do no nder and know the content is authentic and	t act on instructions, click links or oper safe.	n attachments
Hi Aileen,			
Could you please underta - Sample 246169-4 - Sample 246169-4 - Sample 246169-4 - Sample 246169-8	ake additional TCLP analysis on the follov L (BH1003/0.25-0.3): TCLP – PAH 4 (BH1004/0.3-0.4): TCLP – PAH 7 (BH1005/0.5-0.6): TCLP – PAH 3 (BH1005/1.55-1.65): TCLP – PAH, lead	ving:	
reporting is fine.	prepped before wednesday dde to holdi	ing times, standard TAT on the anal	
Thanks			· ·
Dave			:
David Holden Environ Douglas Partners Pty L 96 Hermitage Road Wes P: 02 8878 0652 M: 041	nmental Scientist td ABN 75 053 980 117 www.douglasr t Ryde NSW 2114 PO Box 472 West Ry 4 768 997 E: <u>David.Holden@douglaspa</u>	partners.com.au de NSW 1685 artners.com.au	
f in			CLIENT
To find information on ou	r COVID-19 measures, please visit <u>dougl</u>	aspartners.com.au/news/covid-19	2020 W
This email is confidential. If yo copying, distribution or use of t through emails not confirmed b	u are not the intended recipient of this email, pleas he contents of this information is prohibited. Pleas y fax or letter.	e notify us immediately and be aware that a e note that the company does not make any	any disclosure, y commitment
From: Greta Petzold [ma Sent: Friday, 19 March 2	a <u>ilto:GPetzold@envirolab.com.au]</u> 2021 5:01 PM		

.

.

To: David Holden; Alyssa Spencer **Subject:** Results for Registration 264169 86884.02, Haymarket

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden

Sample Login Details	
Your reference	86884.02, Haymarket
Envirolab Reference	264169-B
Date Sample Received	12/03/2021
Date Instructions Received	19/03/2021
Date Results Expected to be Reported	26/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	12 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

Sample ID	TCLP Preparation - Acid	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	Lead in TCLP	On Hold
BH1003/0.25-0.3	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓		
BH1003A/0.8-0.9																				\checkmark
BH1003A/1.9-2.0																				\checkmark
BH1004/0.3-0.4	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
BH1004/0.6-0.7																				\checkmark
BH1005/0.22-0.3																				\checkmark
BH1005/0.5-0.6	✓	✓	✓	✓	✓	✓	√	✓	√	✓	✓	✓	✓	√	√	✓	✓	✓		
BH1005/1.55-1.65	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH1007/0.2-0.3																				\checkmark
BD3/100321																				\checkmark
TS																				\checkmark
ТВ																				\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264455

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86884.02, Haymarket</u>
Number of Samples	5 SOIL
Date samples received	17/03/2021
Date completed instructions received	17/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by	24/03/2021					
Date of Issue	24/03/2021					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17	7025 - Testing Tests not covered by NATA are denoted with *					

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil					_
Our Reference		264455-1	264455-2	264455-4	264455-5
Your Reference	UNITS	1001/0.25-0.3	1001/0.5-0.6	1002/0.25-0.35	1002/0.35-0.5
Date Sampled		12/03/2021	12/03/2021	11/03/2021	11/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	103	103	102

svTRH (C10-C40) in Soil					_
Our Reference		264455-1	264455-2	264455-4	264455-5
Your Reference	UNITS	1001/0.25-0.3	1001/0.5-0.6	1002/0.25-0.35	1002/0.35-0.5
Date Sampled		12/03/2021	12/03/2021	11/03/2021	11/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	20/03/2021	20/03/2021	20/03/2021	20/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	81	88	81

PAHs in Soil					
Our Reference		264455-1	264455-2	264455-4	264455-5
Your Reference	UNITS	1001/0.25-0.3	1001/0.5-0.6	1002/0.25-0.35	1002/0.35-0.5
Date Sampled		12/03/2021	12/03/2021	11/03/2021	11/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.73	<0.05	0.65	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	106	105	105

Organochlorine Pesticides in soil		
Our Reference		264455-1
Your Reference	UNITS	1001/0.25-0.3
Date Sampled		12/03/2021
Type of sample		SOIL
Date extracted	-	18/03/2021
Date analysed	-	19/03/2021
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	110

Organophosphorus Pesticides in Soil		
Our Reference		264455-1
Your Reference	UNITS	1001/0.25-0.3
Date Sampled		12/03/2021
Type of sample		SOIL
Date extracted	-	18/03/2021
Date analysed	-	19/03/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	110

PCBs in Soil		
Our Reference		264455-1
Your Reference	UNITS	1001/0.25-0.3
Date Sampled		12/03/2021
Type of sample		SOIL
Date extracted	-	18/03/2021
Date analysed	-	19/03/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	110

Acid Extractable metals in soil				_	
Our Reference		264455-1	264455-2	264455-4	264455-5
Your Reference	UNITS	1001/0.25-0.3	1001/0.5-0.6	1002/0.25-0.35	1002/0.35-0.5
Date Sampled		12/03/2021	12/03/2021	11/03/2021	11/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL
Date prepared	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Arsenic	mg/kg	<4	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	7	6	6
Copper	mg/kg	13	4	20	3
Lead	mg/kg	11	7	13	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	<1	4	<1
Zinc	mg/kg	16	5	28	6

Misc Soil - Inorg		
Our Reference		264455-1
Your Reference	UNITS	1001/0.25-0.3
Date Sampled		12/03/2021
Type of sample		SOIL
Date prepared	-	18/03/2021
Date analysed	-	18/03/2021
Total Phenolics (as Phenol)	mg/kg	<5

Moisture					
Our Reference		264455-1	264455-2	264455-4	264455-5
Your Reference	UNITS	1001/0.25-0.3	1001/0.5-0.6	1002/0.25-0.35	1002/0.35-0.5
Date Sampled		12/03/2021	12/03/2021	11/03/2021	11/03/2021
Type of sample		SOIL	SOIL	SOIL	SOIL
Date prepared	-	18/03/2021	18/03/2021	18/03/2021	18/03/2021
Date analysed	-	19/03/2021	19/03/2021	19/03/2021	19/03/2021
Moisture	%	13	13	12	10

Asbestos ID - soils			
Our Reference		264455-1	264455-4
Your Reference	UNITS	1001/0.25-0.3	1002/0.25-0.35
Date Sampled		12/03/2021	11/03/2021
Type of sample		SOIL	SOIL
Date analysed	-	19/03/2021	19/03/2021
Sample mass tested	g	Approx. 55g	Approx. 55g
Sample Description	-	Beige coarse- grained soil & rocks	Beige coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected

Misc Inorg - Soil		
Our Reference		264455-5
Your Reference	UNITS	1002/0.35-0.5
Date Sampled		11/03/2021
Type of sample		SOIL
Date prepared	-	22/03/2021
Date analysed	-	22/03/2021
pH 1:5 soil:water	pH Units	7.9

CEC		
Our Reference		264455-5
Your Reference	UNITS	1002/0.35-0.5
Date Sampled		11/03/2021
Type of sample		SOIL
Date prepared	-	23/03/2021
Date analysed	-	23/03/2021
Exchangeable Ca	meq/100g	8.7
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	1.2
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	10

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil				Duplicate S				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	[NT]
Date analysed	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	103	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	103	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	106	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	107	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	104	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	100	[NT]
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	108	[NT]
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	105	1	101	101	0	106	[NT]

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	
Date analysed	-			19/03/2021	1	20/03/2021	20/03/2021		19/03/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	111	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	77	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	111	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	77	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	92	
Surrogate o-Terphenyl	%		Org-020	83	1	82	81	1	100	[NT]

QUALITY CONTROL: PAHs in Soil						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]	
Date extracted	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	[NT]	
Date analysed	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	[NT]	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	[NT]	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	[NT]	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	[NT]	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	[NT]	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	100	[NT]	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	100	[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	108	[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.1	0.1	0	103	[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	106	1	102	101	1	101	[NT]	

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	[NT]
Date analysed	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	[NT]
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	[NT]
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	[NT]
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	[NT]
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	113	1	110	107	3	101	[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	
Date analysed	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	124	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	113	1	110	107	3	101	

QUALITY CONTROL: PCBs in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	[NT]
Date analysed	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	80	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	113	1	110	107	3	101	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	[NT]
Date analysed	-			19/03/2021	1	19/03/2021	19/03/2021		19/03/2021	[NT]
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	108	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	107	[NT]
Chromium	mg/kg	1	Metals-020	<1	1	4	5	22	104	[NT]
Copper	mg/kg	1	Metals-020	<1	1	13	13	0	105	[NT]
Lead	mg/kg	1	Metals-020	<1	1	11	10	10	102	[NT]
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	106	[NT]
Nickel	mg/kg	1	Metals-020	<1	1	4	4	0	105	[NT]
Zinc	mg/kg	1	Metals-020	<1	1	16	14	13	106	[NT]

QUALITY CONTROL: Misc Soil - Inorg						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	[NT]
Date analysed	-			18/03/2021	1	18/03/2021	18/03/2021		18/03/2021	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	102	[NT]
QUALITY	CONTROL:	Misc Ino		Du		Spike Recovery %				
-------------------	----------	----------	-----------	------------	------	------------------	------	------	------------	------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			22/03/2021	[NT]			[NT]	22/03/2021	
Date analysed	-			22/03/2021	[NT]			[NT]	22/03/2021	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU.	ALITY CONT	Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			23/03/2021	[NT]		[NT]	[NT]	23/03/2021	
Date analysed	-			23/03/2021	[NT]		[NT]	[NT]	23/03/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	120	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	130	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	120	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	123	[NT]

Result Definitions							
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 264455-1 & 4 were sub-sampled from jars provided by the client.

Douglas Partners

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86884.02 Suburb: Hay						Hayma	ket		To: Envirolab Services								
Project Name:	Haymarkert Contamination Investigation Order Number						12 Ashley Street, Chatswood 2067										
Project Manage	r:David	David Holden Sampler: AS/IT							Attn: Aileen Hie								
Emails:	<u>david.</u>	holden@do	uglaspartn	ers.com.au	alyss	a.spence	@dougla	spartners	.com.au	Phone: 9910 6200							
Date Required:	Date Required: Std Email: ahie@envirolab.com.au									.au							
Prior Storage:	Esky/F	ridge	·		Do samp	les contai	n 'potentia	I' HBM?	Yes								
		pled	Sample Type	Container Type		· .			Analytes				·.				
Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8A	Combo 8	Combo 3a	Combo 3	500 AF/FA	ph and CEC	on hold			Notes/preservation			
1001/0.25-0.3	1	12/03/21	S	G	X	.: *	•				:						
1001/0.5-0.6	_ Z	12/03/21	S	G				x									
1001/0.9-1.0	. 3	12/03/21	S	G				•			x			<u>,</u>			
1002/0.25-0.35	4	11/03/21	S	G ·			Х		•				· · · .				
1002/0.35-0.5	5	11/03/21	S	G		•••		x		. x	· •		· :				
BD1/110321	X	11/03/21	S	G				x			* :			Please forward for interlab			
	(24)	· · ·				:								analysis (Combo 3 - metals,			
							<u> </u>					Envirolab S 12 As	ervices hley St				
			-						· ·		caour Ch	atswood NS Ph: (02) 99	W 2067 10 6200				
			· · ·			.:				J	b No:			264455			
· · · :				:						Da	te Received	. 12	50	1713/2021			
			-				•			R	ceived By:	·P		11°C			
· · · · · · · · · · · · · · · · · · ·											mp: Ceol/An coling: Ice/ik	bient					
· · · ·			:			:	•			Se	curity Intact	Broken/Nor	ie				
										•							
PQL (S) mg/kg											,	ANZEC	C PQLs	req'd for all water analytes 🛛			
PQL = practical	PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No:																
Metals to Analyse: 8HM unless specified here:																	
Send Results to	r sample	ourias Part	ners Phyli		140151180 1986	by.		rianspo		buratory	<u>ыу.</u>	Phone:	<u> </u>	Fax:			
Signed	<u>7. D</u> DIH 17/3	3/21 10.45	inere rity Li	Received h	<u>033</u> . V:		<u>.</u>	- fran	<u> </u>		Date & T	ime: ।२	Bion	1250			

7

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden

Sample Login Details	
Your reference	86884.02, Haymarket
Envirolab Reference	264455
Date Sample Received	17/03/2021
Date Instructions Received	17/03/2021
Date Results Expected to be Reported	24/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 SOIL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	CEC	On Hold
1001/0.25-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
1001/0.5-0.6	\checkmark	\checkmark	\checkmark				\checkmark					
1001/0.9-1.0												\checkmark
1002/0.25-0.35	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			
1002/0.35-0.5	\checkmark	\checkmark	\checkmark				\checkmark			√	\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 264957

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86884.02, Haymarket Contamination Investigation
Number of Samples	9 soil
Date samples received	23/03/2021
Date completed instructions received	23/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 30/03/2021

 Date of Issue
 30/03/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Ridwan Wijaya Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor

Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil					_	
Our Reference		264957-1	264957-2	264957-3	264957-4	264957-5
Your Reference	UNITS	1004A	1005	1007	1007	1007
Depth		3.1-3.55	2.8-2.95	2.0-2.1	2.5-2.95	4.0-4.45
Date Sampled		17/03/2021	15/03/2021	16/03/2021	16/03/2021	16/03/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	67	81	82	79	77

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		264957-6
Your Reference	UNITS	BD1/160321
Depth		
Date Sampled		16/03/2021
Type of sample		soil
Date extracted	-	24/03/2021
Date analysed	-	25/03/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	74

svTRH (C10-C40) in Soil						
Our Reference		264957-1	264957-2	264957-3	264957-4	264957-5
Your Reference	UNITS	1004A	1005	1007	1007	1007
Depth		3.1-3.55	2.8-2.95	2.0-2.1	2.5-2.95	4.0-4.45
Date Sampled		17/03/2021	15/03/2021	16/03/2021	16/03/2021	16/03/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	24/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	320	<50	<50	<50	76
TRH C ₁₅ - C ₂₈	mg/kg	130	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	140	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	320	<50	<50	<50	76
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	320	<50	<50	<50	76
TRH >C ₁₆ -C ₃₄	mg/kg	250	110	120	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	590	<50	<50	<50	80
Total +ve TRH (>C10-C40)	mg/kg	570	110	120	<50	80
Surrogate o-Terphenyl	%	98	112	112	98	108

svTRH (C10-C40) in Soil		
Our Reference		264957-6
Your Reference	UNITS	BD1/160321
Depth		
Date Sampled		16/03/2021
Type of sample		soil
Date extracted	-	24/03/2021
Date analysed	-	25/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	107

PAHs in Soil						
Our Reference		264957-1	264957-2	264957-3	264957-4	264957-5
Your Reference	UNITS	1004A	1005	1007	1007	1007
Depth		3.1-3.55	2.8-2.95	2.0-2.1	2.5-2.95	4.0-4.45
Date Sampled		17/03/2021	15/03/2021	16/03/2021	16/03/2021	16/03/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	24/03/2021	25/03/2021
Naphthalene	mg/kg	<0.1	0.1	0.2	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.2	0.4	0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.1	0.3	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.9	2.0	0.4	<0.1
Anthracene	mg/kg	<0.1	0.3	0.6	0.2	<0.1
Fluoranthene	mg/kg	<0.1	1.2	2.8	0.6	<0.1
Pyrene	mg/kg	<0.1	1.1	2.6	0.6	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.6	1.6	0.4	<0.1
Chrysene	mg/kg	<0.1	0.5	1.3	0.3	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.8	2.1	0.4	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.54	1.5	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	0.8	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	0.8	0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	7.0	17	3.5	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.7	2.1	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.8	2.1	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.8	2.1	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	100	100	100	110	98

PAHs in Soil		
Our Reference		264957-6
Your Reference	UNITS	BD1/160321
Depth		
Date Sampled		16/03/2021
Type of sample		soil
Date extracted	-	24/03/2021
Date analysed	-	25/03/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	98

Organochlorine Pesticides in soil		
Our Reference		264957-4
Your Reference	UNITS	1007
Depth		2.5-2.95
Date Sampled		16/03/2021
Type of sample		soil
Date extracted	-	24/03/2021
Date analysed	-	24/03/2021
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	103

Organophosphorus Pesticides in Soil		
Our Reference		264957-4
Your Reference	UNITS	1007
Depth		2.5-2.95
Date Sampled		16/03/2021
Type of sample		soil
Date extracted	-	24/03/2021
Date analysed	-	24/03/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	103

PCBs in Soil		
Our Reference		264957-4
Your Reference	UNITS	1007
Depth		2.5-2.95
Date Sampled		16/03/2021
Type of sample		soil
Date extracted	-	24/03/2021
Date analysed	-	24/03/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	103

Acid Extractable metals in soil						
Our Reference		264957-1	264957-2	264957-3	264957-4	264957-5
Your Reference	UNITS	1004A	1005	1007	1007	1007
Depth		3.1-3.55	2.8-2.95	2.0-2.1	2.5-2.95	4.0-4.45
Date Sampled		17/03/2021	15/03/2021	16/03/2021	16/03/2021	16/03/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	3	11	4	1
Copper	mg/kg	6	4	23	2	<1
Lead	mg/kg	5	15	51	8	<1
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	2	1	3	1	<1
Zinc	mg/kg	48	14	49	11	4

Acid Extractable metals in soil			
Our Reference		264957-6	264957-10
Your Reference	UNITS	BD1/160321	1007 - [TRIPLICATE]
Depth			2.5-2.95
Date Sampled		16/03/2021	16/03/2021
Type of sample		soil	soil
Date prepared	-	24/03/2021	24/03/2021
Date analysed	-	24/03/2021	24/03/2021
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	1	8
Copper	mg/kg	<1	8
Lead	mg/kg	<1	27
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	<1	2
Zinc	mg/kg	6	13

Misc Soil - Inorg		
Our Reference		264957-4
Your Reference	UNITS	1007
Depth		2.5-2.95
Date Sampled		16/03/2021
Type of sample		soil
Date prepared	-	24/03/2021
Date analysed	-	24/03/2021
Total Phenolics (as Phenol)	mg/kg	<5

Moisture						
Our Reference		264957-1	264957-2	264957-3	264957-4	264957-5
Your Reference	UNITS	1004A	1005	1007	1007	1007
Depth		3.1-3.55	2.8-2.95	2.0-2.1	2.5-2.95	4.0-4.45
Date Sampled		17/03/2021	15/03/2021	16/03/2021	16/03/2021	16/03/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Moisture	%	19	9.0	11	8.6	17

Moisture		
Our Reference		264957-6
Your Reference	UNITS	BD1/160321
Depth		
Date Sampled		16/03/2021
Type of sample		soil
Date prepared	-	24/03/2021
Date analysed	-	25/03/2021
Moisture	%	15

Asbestos ID - soils NEPM		
Our Reference		264957-3
Your Reference	UNITS	1007
Depth		2.0-2.1
Date Sampled		16/03/2021
Type of sample		soil
Date analysed	-	25/03/2021
Sample mass tested	g	1,047.88
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	Chrysotile
ACM >7mm Estimation*	g	_
FA and AF Estimation*	g	0.0169
FA and AF Estimation*#2	%(w/w)	0.0016

Asbestos ID - soils		
Our Reference		264957-4
Your Reference	UNITS	1007
Depth		2.5-2.95
Date Sampled		16/03/2021
Type of sample		soil
Date analysed	-	26/03/2021
Sample mass tested	g	Approx. 30g
Sample Description	-	Red coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

CEC		
Our Reference		264957-3
Your Reference	UNITS	1007
Depth		2.0-2.1
Date Sampled		16/03/2021
Type of sample		soil
Date prepared	-	29/03/2021
Date analysed	-	29/03/2021
Exchangeable Ca	meq/100g	3.1
Exchangeable K	meq/100g	0.1
Exchangeable Mg	meq/100g	<0.1
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	3.3

Misc Inorg - Soil		
Our Reference		264957-3
Your Reference	UNITS	1007
Depth		2.0-2.1
Date Sampled		16/03/2021
Type of sample		soil
Date prepared	-	24/03/2021
Date analysed	-	24/03/2021
pH 1:5 soil:water	pH Units	9.8

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MS/MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	264957-4
Date extracted	-			24/03/2021	[NT]	[NT]	[NT]	[NT]	24/03/2021	24/03/2021
Date analysed	-			25/03/2021	[NT]	[NT]	[NT]	[NT]	25/03/2021	25/03/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]	[NT]	[NT]	[NT]	89	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]	[NT]	[NT]	[NT]	89	90
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]	[NT]	[NT]	[NT]	95	107
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]	[NT]	[NT]	[NT]	99	96
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	90	88
m+p-xylene	mg/kg	2	Org-023	<2	[NT]	[NT]	[NT]	[NT]	81	80
o-Xylene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	85	83
naphthalene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	92	[NT]	[NT]	[NT]	[NT]	91	88

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate Spi			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264957-4
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	25/03/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	116	117
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	93	117
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	102	105
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	116	117
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	93	117
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	102	105
Surrogate o-Terphenyl	%		Org-020	104	[NT]	[NT]	[NT]	[NT]	116	98

QUALI	QUALITY CONTROL: PAHs in Soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264957-4
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Date analysed	-			25/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	116
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	126
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111	114
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	117	98
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	124
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	124
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	116
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	113	106
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	103	[NT]	[NT]	[NT]	[NT]	116	111

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264957-4
Date extracted	-			24/03/2021	[NT]			[NT]	24/03/2021	24/03/2021
Date analysed	-			24/03/2021	[NT]			[NT]	24/03/2021	24/03/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	108	83
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	120	80
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	105	79
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	105	90
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	118	88
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	101	92
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	115	93
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	98	91
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	106	88
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	95	80
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]			[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	101	[NT]	[NT]	[NT]	[NT]	108	102

QUALITY CONTRO			Du		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264957-4
Date extracted	-			24/03/2021	[NT]	[NT]		[NT]	24/03/2021	24/03/2021
Date analysed	-			24/03/2021	[NT]	[NT]		[NT]	24/03/2021	24/03/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	108	106
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	105	93
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	111	107
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	114	116
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	120	105
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	98	100
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	109	135
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	101	[NT]	[NT]	[NT]	[NT]	108	102

QUALIT	Y CONTRO	L: PCBs i	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	264957-4
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	24/03/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	110	80
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-021	101	[NT]	[NT]	[NT]	[NT]	108	102

QUALITY CONT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			24/03/2021	4	24/03/2021	24/03/2021		24/03/2021	
Date analysed	-			24/03/2021	4	24/03/2021	24/03/2021		24/03/2021	[NT]
Arsenic	mg/kg	4	Metals-020	<4	4	<4	<4	0	107	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	4	<0.4	<0.4	0	110	
Chromium	mg/kg	1	Metals-020	<1	4	4	7	55	103	
Copper	mg/kg	1	Metals-020	<1	4	2	3	40	106	
Lead	mg/kg	1	Metals-020	<1	4	8	14	55	109	
Mercury	mg/kg	0.1	Metals-021	<0.1	4	<0.1	<0.1	0	91	[NT]
Nickel	mg/kg	1	Metals-020	<1	4	1	2	67	108	[NT]
Zinc	mg/kg	1	Metals-020	<1	4	11	13	17	110	[NT]

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	[NT]
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU.	Du	plicate	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			29/03/2021	[NT]		[NT]	[NT]	29/03/2021	
Date analysed	-			29/03/2021	[NT]		[NT]	[NT]	29/03/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	107	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	113	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	109	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	124	[NT]

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	[NT]
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							
Quality Control Definitions								
------------------------------------	--	--	--	--	--	--	--	--
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 264957-4 was sub-sampled from a jar provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 264957-3; Chrysotile asbestos identified in 0.0199g of fibrous matted material

pН

Samples were out of the recommended holding time for this analysis.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 264957-4 for Cr & Pb. Therefore a triplicate result has been issued as laboratory sample number 264957-10.

Douglas Partners Geotechnics | Environment | Groundwater

÷.

• ••

-

 ${}^{2}\mathcal{A}$

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86884.02 Suburb: Haymarket To					To: Envirolab Services								
Project Name:	Haymarkert Contamination Investigation Order Number						12 Ashley Street, Chatswood 2067							
Project Manage	r: David	Holden			Sample	er: 😤 👘	Í JS			Attn: Aileen Hie				
Emails:	david.	holden@do	uglaspartn	ers.com.au	alyss	a.spence	r@dougla	spartners	s.com.au	Phone:	Phone: 9910 6200			
Date Required:	Std					_				Email: ahie@envirolab.com.au				.au
Prior Storage:	Esky/F	ridge			Do samp	oles contai	n 'potentia	I' HBM?	Yes					
•		pled	Sample Type	Container Type				- -	Analytes					
Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3a	Combo 3	ph, CEC	-					Notes/preservation
1004A/3.1-3.55	1.1	17/03/21	S	G			x		•					
1005/2.8-2.95	2	15/03/12	S	G		· · · · · · · · · · · · · · · · · · ·	x					-	•	
1007/2.0-2.1	3	16/03/21	S	G		×		x						Asbestos - AF/FA 500 ml
1007/2.5-2.95	4	16/03/21	S	G	x									
1007/4-4.45	LT	16/03/12	S	G			. x		:		Envir	teb Services		
BD1/160321	6	16/03/21	S	G			·			CI MAD	d Chatswo	12 Astroy 3 od NSW 206		
										- Joh NG	Ph: ((G F7		
										<u>.</u>	- 20	23/0	3/21	
:	•									Date Re Time Re	ceived:	13-18	0	
	· .									Receive Temp-	aby Ambien			
										Cooling	Icericepaci	フ		
						· .				Securit		Chartenio		
	· .:			• • • •						۰.	. :*	. :		
<u>.</u>												•		
PQL (S) mg/kg		-								·		ANZEC	C PQLs I	req'd for all water analytes 🏾
PQL = practical	quantit	ation limit.	If none g	iven, default	to Labor	atory Met	nod Detec	tion Limi		Lab Re	port/Ref	erence No	o: フィ	4957
Metals to Analys	se: 8HN	l unless sp	ecified he	re:			<u></u>		<u></u>					· · / · / · · · · · · · · · · · · · · ·
Send Results to	sample	es in conta	ner: 0	Kelin	quisnea	by:	ן חוע	iranspo	rtea to la	poratory	by: E	Phone:	·	
Signed:	DIH 23/	3/21 10.45	icis ruy Ll	Received by	<u></u>	· · · · · · · · · · · · · · · · · · ·	Carr	Les la	h ~		Date & T	ime:	<u>s</u> 21	211 NOV
<u> </u>	Signed: DIF 25/5/21 10:45 Received by: Etwine (a) Date & Time: 25/3/21 (1-40)													

J

Douglas Partners Geotechnics | Environment | Groundwater dh

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86884	1.02	· · · · · ·	· · · ·	Suburb	:	Haymaı	ket		To: Envirolab Services					
Project Name:	Haym	arkert Cont	amination	Investigation	Order N	lumber	<u></u>		•	12 Ashley Street, Chatswood 2067					
Project Manage	r: David	Holden		·	Sample	Sampler: JS				Attn: Aileen Hie					
Emails:	david.	.holden@do	uglaspartr	ers.com.au	alyss	a.spence	r@dougla	spartners	.com.au	Phone:	9910) 6200			
Date Required:	Std	,								Email:	<u>ahie</u>	@envirc	olab.com	.au	
Prior Storage:	Esky/F	ridge			Do şamp	les contai	n 'potentia	I' HBM?	Yes						
··· · · ·		Date	Sample Type	Container Type	:		· • •	· .	Analytes	· · ·					
Sample ID	Lab ID	Sampling	S - soil W - water	G - glass P - plastic	Aggresivity	· · · · · · · · · · · · · · · · · · ·		· · ·		· · · · · ·				Notes/	preservation
BH1004A/4.5-4.95	7	17/03/21	S	P ¹¹¹	x					:- :: 	·		· · · · ·		
BH1005/7.0-7.45	ક	15/03/21	S,	Р	X								• • • •		
BH1007/8.5-8.95	O,	16/03/21	S	Р	X		:. <u></u>	· · ·						•••	
	l .									•			· .:		
							-					Eav	rolab Servic	es	
				· · · · ·	· · · ·		······································				ເກີເລັ).] Chatsu	12 Ashley ood NSW 20	St 57	
						· · ·			· · ·			Ph	(02) 9910 62 1 c Q h		
							· · ·		· · ·		000	- 20	4101	121	
	· · · · ·							••••••			Time F	eceived: Received:	17.	VU	11
											Receiv Terrer	ed By: N CocliAmbie	nt		· · · · · · · · · · · · · · · · · · ·
				- 			 . <u>.</u>				Coolin	g: lconcepa	P		· · · · · ·
							;	· · · · ·	<u>.</u>	· ··· ·· ···	Secui	.у. тасивн			
· . · ·			• :•					:	· · · · · · · · · · · · · · · · · · ·				•••		
	: .						· · · · ·								
	:*	······································	:						•			•			
PQL (S) mg/kg										· · ·		ANZEC	C PQLs	req'd for all w	ater analytes. 🗆
PQL = practical Metals to Analy	quanti se: 8HN	tation limit. A unless sr	If none g	iven, default ere:	to Labor	atory Met	hod Dete	ction Limit	t	Lab Re	eport/Ref	erence N	lo: 2	1-4950	7264957
Total number of	f sampl	es in conta	iner:	Relin	nquished	by:	DIH _ [Transpo	rted to la	boratory	by:	· · · · · · · · · · · · · · · · · · ·		Bonds	· · · ·
Send Results to): D	ouglas Parl	ners Pty L	td Add	ress							Phone		Fax:	
Signed:	<u>DIH 23/</u>	3/21 10:45)	Received b	y:	Ē	Wiro	(ab		n	Date & T	ime:	<u>3//</u>	$\frac{2}{2}$	13260
J	ME				. –	<u> </u>					-		1		

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden

Sample Login Details	
Your reference	86884.02, Haymarket Contamination Investigation
Envirolab Reference	264957
Date Sample Received	23/03/2021
Date Instructions Received	23/03/2021
Date Results Expected to be Reported	30/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	9 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	CEC	Misc Inorg - Soil	On Hold
1004A-3.1-3.55	\checkmark	✓	\checkmark				\checkmark						
1005-2.8-2.95	 ✓ 	\checkmark	✓				\checkmark						
1007-2.0-2.1	 ✓ 	✓	✓				✓			✓	\checkmark	✓	
1007-2.5-2.95	 ✓ 	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
1007-4.0-4.45	 ✓ 	✓	✓				\checkmark						
BD1/160321	✓	✓	✓				✓						
BH1004A-4.5-4.95													\checkmark
BH1005-0-7.45													\checkmark
BH1007-8.5-8.95													\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 264957-B

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86884.02, Haymarket Contamination Investigation
Number of Samples	9 soil
Date samples received	23/03/2021
Date completed instructions received	26/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	06/04/2021					
Date of Issue	01/04/2021					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Dragana Tomas, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 264957-B Revision No: R00

Page | 1 of 8

sTPH in Soil (C10-C40)-Silica				
Our Reference		264957-B-1	264957-B-2	264957-B-5
Your Reference	UNITS	1004A	1005	1007
Depth		3.1-3.55	2.8-2.95	4.0-4.45
Date Sampled		17/03/2021	15/03/2021	16/03/2021
Type of sample		soil	soil	soil
Date extracted	-	30/03/2021	30/03/2021	30/03/2021
Date analysed	-	30/03/2021	30/03/2021	30/03/2021
TPH C10 - C14	mg/kg	70	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100
TPH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
TPH >C ₁₀ -C ₁₆	mg/kg	75	<50	<50
TPH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TPH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	84	79	81

PAHs in TCLP (USEPA 1311)		
Our Reference		264957-B-3
Your Reference	UNITS	1007
Depth		2.0-2.1
Date Sampled		16/03/2021
Type of sample		soil
pH of soil for fluid# determ.	pH units	10.2
pH of soil TCLP (after HCI)	pH units	1.8
Extraction fluid used	-	1
pH of final Leachate	pH units	5.1
Date extracted	-	30/03/2021
Date analysed	-	30/03/2021
Naphthalene in TCLP	mg/L	0.27
Acenaphthylene in TCLP	mg/L	0.090
Acenaphthene in TCLP	mg/L	0.55
Fluorene in TCLP	mg/L	0.64
Phenanthrene in TCLP	mg/L	1.3
Anthracene in TCLP	mg/L	0.37
Fluoranthene in TCLP	mg/L	0.37
Pyrene in TCLP	mg/L	0.27
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	3.8
Surrogate p-Terphenyl-d14	%	73

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: sTPH in Soil (C10-C40)-Silica				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/03/2021	[NT]		[NT]	[NT]	30/03/2021	
Date analysed	-			30/03/2021	[NT]		[NT]	[NT]	30/03/2021	
TPH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	109	
TPH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	113	
TPH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	102	
TPH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	109	
TPH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	113	
TPH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	102	
Surrogate o-Terphenyl	%		Org-020	93	[NT]	[NT]	[NT]	[NT]	106	[NT]

QUALITY CONT	ROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			30/03/2021	3	30/03/2021	30/03/2021		30/03/2021	
Date analysed	-			30/03/2021	3	30/03/2021	30/03/2021		30/03/2021	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.27	0.27	0	70	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.090	0.090	0	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.55	0.64	15	73	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.64	0.74	14	77	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	1.3	1.4	7	82	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.37	0.37	0	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.37	0.37	0	76	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	0.27	0.27	0	79	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	<0.001	<0.001	0	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	<0.001	<0.001	0	82	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	3	<0.002	<0.002	0	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	<0.001	<0.001	0	72	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	3	<0.001	<0.001	0	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	<0.001	<0.001	0	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	3	<0.001	<0.001	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	95	3	73	76	4	89	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Mina Te		
Ning Io		
From:	Simon Song	
Sent:	Friday, 26 March 2021 1:43 PM	
To:	David Holden	
CC: Subject:	Ming To RE-264957-86884-02 Havmarket Con	tamination Investigation - Additional TCLP
Jubject.	analysis	
		N - MART-R
Follow Up Flag:	Follow up	Ret: 204-131 3
Flag Status:	Flagged	7AT: Standard.
		Dre: 06/04/2021
Will do		M7.
1		
: . :		
Kind Regards,		
Simon Song Senior Cu	stomer Service Envirolab Services	:
Great Science, Great Se	nvice	
Great Science. Great Se	TVICE.	
12 Ashley Street Chatswood NS 7 612 9910 6200	W 2067	м.
È <u>SSong@envirolab.com.au</u> W	/ www.envirolab.com.au	
Follow us on: LinkedIn	Facebook Twitter	
Samnles will be analyse	d per our T&C's.	
From: David Holden <dav< td=""><td>vid Holden@douglaspartners.com.au></td><td>and the second second second second second second second second second second second second second second second</td></dav<>	vid Holden@douglaspartners.com.au>	and the second second second second second second second second second second second second second second second
Sent: Friday, 26 March 20)21 1:09 PM	
To: Simon Song <ssong@< td=""><td>envirolab.com.au></td><td>1</td></ssong@<>	envirolab.com.au>	1
Subject: FW: 264957 868	84.02, Haymarket Contamination Investigation	n - Additional TCLP analysis
· · · · ·	1	;
CAUTION: This email origina	ited from outside of the organisation. Do not act o	n instructions, click links or open attachments
unless you recognise the ser	ider and know the content is authentic and safe.	
Licimon	'ř	
Fil Simon		
	following additional analysis for 264957 8688	4.02, Haymarket Contamination Investigatior
Could you please run the		
Could you please run the		
Could you please run the Sample 264957-1 (1004A)	/3.1-3.55): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A) Sample 264957-2 (1005/2 Sample 264957-3 (1007/2	/3.1-3.55): TPH Silica gel clean up. ?.8-2.95): TPH Silica gel clean up ?-2.1): TCLP PAH	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 1-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH I-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine.	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 1-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine.	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 1-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine.	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 1-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine. Thanks Dave	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 1-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine. Thanks	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 4-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine. Thanks	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 4-4.45): TPH Silica gel clean up.	
Could you please run the Sample 264957-1 (1004A Sample 264957-2 (1005/2 Sample 264957-3 (1007/2 Sample 264957-5 (1007/2 Standard TAT is fine. Thanks Dave	/3.1-3.55): TPH Silica gel clean up. 2.8-2.95): TPH Silica gel clean up 2-2.1): TCLP PAH 4-4.45): TPH Silica gel clean up.	

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden

Sample Login Details	
Your reference	86884.02, Haymarket Contamination Investigation
Envirolab Reference	264957-В
Date Sample Received	23/03/2021
Date Instructions Received	26/03/2021
Date Results Expected to be Reported	06/04/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	9 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	sTPH in Soil (C10-C40)-Silica	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	On Hold
1004A-3.1-3.55	\checkmark																						
1005-2.8-2.95	\checkmark																						
1007-2.0-2.1		✓	✓	\checkmark	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
1007-2.5-2.95																							\checkmark
1007-4.0-4.45	\checkmark																						
BD1/160321																							\checkmark
BH1004A-4.5-4.95																							\checkmark
BH1005-0-7.45																							\checkmark
BH1007-8.5-8.95																							\checkmark
1007 - [TRIPLICATE]-2.5-2.95																							\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order	ES2109750	Page	: 1 of 5
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	Environmental Division Sydney
Contact	: MR DAVID HOLDEN	Contact	: Sepan Mahamad
Address	: UNIT 1, 22 WALTHAM STREET	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 9809 0666	Telephone	: +61 2 8784 8555
Project	: 86884.02 Haymarket contamination Investigation	Date Samples Received	: 18-Mar-2021 15:30
Order number	:	Date Analysis Commenced	: 22-Mar-2021
C-O-C number	:	Issue Date	24-Mar-2021 23:46
Sampler	: AS/IT		Hac-MRA NAIA
Site			
Quote number	: EN/222		Accreditation No. 835
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD1/110321	 	
		Samplii	ng date / time	11-Mar-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2109750-001	 	
				Result	 	
EA055: Moisture Content						
Moisture Content		1.0	%	12.0	 	
EG005(ED093)T: Total Metals by ICP-A	LES					
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	2	 	
Copper	7440-50-8	5	mg/kg	<5	 	
Lead	7439-92-1	5	mg/kg	<5	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Zinc	7440-66-6	5	mg/kg	7	 	
EG035T: Total Recoverable Mercury b	y FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP080/071: Total Petroleum Hydrocart	oons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ıs			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD1/110321	 	
		Sampli	ng date / time	11-Mar-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2109750-001	 	
				Result	 	
EP080: BTEXN - Continued						
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	78.0	 	
Toluene-D8	2037-26-5	0.2	%	85.4	 	
4-Bromofluorobenzene	460-00-4	0.2	%	83.3	 	

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)				
Compound	CAS Number	Low	High		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	73	133		
Toluene-D8	2037-26-5	74	132		
4-Bromofluorobenzene	460-00-4	72	130		

QUALITY CONTROL REPORT

Work Order	: ES2109750	Page	: 1 of 5
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR DAVID HOLDEN	Contact	: Sepan Mahamad
Address	: UNIT 1, 22 WALTHAM STREET	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 9809 0666	Telephone	: +61 2 8784 8555
Project	: 86884.02 Haymarket contamination Investigation	Date Samples Received	: 18-Mar-2021
Order number	:	Date Analysis Commenced	: 22-Mar-2021
C-O-C number	:	Issue Date	24-Mar-2021
Sampler	: AS/IT		HOC-MRA INATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)				
EG005(ED093)T: Tot	al Metals by ICP-AES (QC I	₋ot: 3578659)											
ES2109679-005	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit				
		EG005T: Chromium	7440-47-3	2	mg/kg	7	9	18.4	No Limit				
		EG005T: Nickel	7440-02-0	2	mg/kg	14	22	40.0	0% - 50%				
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit				
		EG005T: Copper	7440-50-8	5	mg/kg	32	34	7.76	No Limit				
		EG005T: Lead	7439-92-1	5	mg/kg	10	8	20.2	No Limit				
		EG005T: Zinc	7440-66-6	5	mg/kg	26	34	27.4	No Limit				
ES2109732-022	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit				
		EG005T: Chromium	7440-47-3	2	mg/kg	11	11	0.00	No Limit				
		EG005T: Nickel	7440-02-0	2	mg/kg	8	8	0.00	No Limit				
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	5	0.00	No Limit				
		EG005T: Copper	7440-50-8	5	mg/kg	18	18	0.00	No Limit				
		EG005T: Lead	7439-92-1	5	mg/kg	11	13	12.6	No Limit				
		EG005T: Zinc	7440-66-6	5	mg/kg	29	29	0.00	No Limit				
EA055: Moisture Co	ntent (Dried @ 105-110°C)(QC Lot: 3578663)											
ES2109708-001	Anonymous	EA055: Moisture Content		0.1	%	16.4	16.0	2.63	0% - 50%				
ES2109750-001	BD1/110321	EA055: Moisture Content		0.1	%	12.0	11.6	2.66	0% - 50%				
EG035T: Total Reco	verable Mercury by FIMS(QC Lot: 3578660)											
ES2109679-005	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit				
ES2109732-022	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit				
EP080/071: Total Per	roleum Hydrocarbons (QC	Lot: 3576424)											
ES2109750-001 BC	BD1/110321	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit				
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit				
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit				

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP080/071: Total Pet	troleum Hydrocarbons	(QC Lot: 3576424) - continued								
ES2109679-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	150	190	23.4	No Limit	
		EP071: C29 - C36 Fraction		100	mg/kg	180	200	10.5	No Limit	
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit	
EP080/071: Total Pet	troleum Hydrocarbons	(QC Lot: 3576797)								
ES2109679-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit	
ES2109750-001	BD1/110321	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit	
EP080/071: Total Re	coverable Hydrocarbon	ns - NEPM 2013 Fractions (QC Lot: 3576424)								
ES2109750-001	BD1/110321	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit	
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit	
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit	
ES2109679-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	270	330	21.2	No Limit	
		EP071: >C34 - C40 Fraction		100	mg/kg	230	210	9.14	No Limit	
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit	
EP080/071: Total Re	coverable Hydrocarbon	ns - NEPM 2013 Fractions (QC Lot: 3576797)								
ES2109679-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit	
ES2109750-001	BD1/110321	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit	
EP080: BTEXN (QC	Lot: 3576797)									
ES2109679-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit	
ES2109750-001	BD1/110321	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit	

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005(ED093)T: Total Metals by ICP-AES (QCLot	: 3578659)									
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	94.5	88.0	113		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	110	70.0	130		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	101	68.0	132		
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	102	89.0	111		
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.1 mg/kg	93.9	82.0	119		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	94.1	80.0	120		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	76.6	66.0	133		
EG035T: Total Recoverable Mercury by FIMS (QC	CLot: 3578660)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.073 mg/kg	96.7	70.0	130		
EP080/071: Total Petroleum Hydrocarbons (QCLo	ot: 3576424)									
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	104	75.0	129		
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	97.3	77.0	131		
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	88.4	71.0	129		
EP080/071: Total Petroleum Hydrocarbons (QCLo	ot: 3576797)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	103	68.4	128		
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions (QCLo	ot: 3576424)								
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	99.8	77.0	125		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	95.0	74.0	138		
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	75.3	63.0	131		
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions (QCLo	ot: 3576797)								
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	100	68.4	128		
EP080: BTEXN (QCLot: 3576797)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	104	62.0	116		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	106	67.0	121		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	99.0	65.0	117		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	98.5	66.0	118		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	99.9	68.0	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	110	63.0	119		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	.imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: 1	Fotal Metals by ICP-AES (QCLot: 3578659)						
ES2109679-005	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	88.6	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	83.8	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	102	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	99.9	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	84.2	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	118	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	90.0	66.0	133
EG035T: Total Re	ecoverable Mercury by FIMS (QCLot: 3578660)						
ES2109679-005	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	77.2	70.0	130
EP080/071: Total	Petroleum Hydrocarbons (QCLot: 3576424)						
ES2109679-001	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	90.2	73.0	137
		EP071: C15 - C28 Fraction		2319 mg/kg	106	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	97.2	52.0	132
EP080/071: Total	Petroleum Hydrocarbons (QCLot: 3576797)						
ES2109679-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	84.0	70.0	130
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3576424)					
ES2109679-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	94.4	73.0	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	98.1	53.0	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	97.9	52.0	132
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3576797)					
ES2109679-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	86.2	70.0	130
EP080: BTEXN (C	QCLot: 3576797)						
ES2109679-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	82.3	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	86.6	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	84.6	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	81.5	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	88.0	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	96.8	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order	: ES2109750	Page	: 1 of 4
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR DAVID HOLDEN	Telephone	: +61 2 8784 8555
Project	: 86884.02 Haymarket contamination Investigation	Date Samples Received	: 18-Mar-2021
Site	:	Issue Date	: 24-Mar-2021
Sampler	: AS/IT	No. of samples received	: 1
Order number	:	No. of samples analysed	: 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055) BD1/110321	11-Mar-2021				22-Mar-2021	25-Mar-2021	1
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) BD1/110321	11-Mar-2021	22-Mar-2021	07-Sep-2021	1	23-Mar-2021	07-Sep-2021	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BD1/110321	11-Mar-2021	22-Mar-2021	08-Apr-2021	~	24-Mar-2021	08-Apr-2021	~
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) BD1/110321	11-Mar-2021	22-Mar-2021	25-Mar-2021	~	22-Mar-2021	25-Mar-2021	~
Soil Glass Jar - Unpreserved (EP071) BD1/110321	11-Mar-2021	22-Mar-2021	25-Mar-2021	~	23-Mar-2021	01-May-2021	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BD1/110321	11-Mar-2021	22-Mar-2021	25-Mar-2021	1	22-Mar-2021	25-Mar-2021	~
Soil Glass Jar - Unpreserved (EP071) BD1/110321	11-Mar-2021	22-Mar-2021	25-Mar-2021	4	23-Mar-2021	01-May-2021	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BD1/110321	11-Mar-2021	22-Mar-2021	25-Mar-2021	~	22-Mar-2021	25-Mar-2021	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	19	10.53	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2109750						
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental	Division Sydney			
Address	INR DAVID HOLDEN	Address	: Sepan Manam	au Inark Road Smithfield			
, latious	. UNIT 1, 22 WALTHAM STREET	, adiobo	2164				
E-mail	: david.holden@douglaspartners.com.	E-mail	: Sepan.Maham	pan.Mahamad@ALSGlobal.com			
Telephone	: +61 02 9809 0666	Telephone	elephone : +61 2 8784 8555				
Facsimile	: +61 02 9809 4095	Facsimile	: +61-2-8784 85	00			
Project	86884.02 Haymarket contamination Investigation	Page	: 1 of 3				
Order number	:	Quote number	umber : EM2017DOUPAR0002 (EN/222)				
C-O-C number	:	QC Level : NEPM 2013 B3 & ALS QC Standar					
Site	:						
Sampler	: AS/IT						
Dates							
Date Samples Receiv	ed : 18-Mar-2021 15:30	Issue Date	: 1	19-Mar-2021			
Client Requested Due Date	e : 25-Mar-2021	Scheduled Reporting) Date :	25-Mar-2021			
Delivery Detail	's						
Mode of Delivery	: Carrier	Security Seal	:	Not Available			
No. of coolers/boxes	: 1	Temperature	: '	10.9			
Receipt Detail	:	No. of samples rece	ived / analysed	1 / 1			

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- pH field/fox Analysis to be conducted by ALS Brisbane
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: SOIL

component	displayed in bra	ckets without	a ume	103 nt	Metals
Matrix: SOIL				EA055-1 Conte	3-05 EXN/8
Laboratory sample ID	Sampling date / time	Sample ID		SOIL - E Moisture	SOIL - S TRH/BT
ES2109750-001	11-Mar-2021 00:00	BD1/110321		✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE INVOICES

- A4 - AU Tax Invoice (INV)	Email	apinvoices@douglaspartners.com.a
ALYSSA SPENCER		ŭ
- *AU Certificate of Analysis - NATA (COA)	Email	Alyssa.Spencer@douglaspartners.c om
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Alyssa.Spencer@douglaspartners.c
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Alyssa.Spencer@douglaspartners.c om
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Alyssa.Spencer@douglaspartners.c om
- A4 - AU Tax Invoice (INV)	Email	Alyssa.Spencer@douglaspartners.c om
- Chain of Custody (CoC) (COC)	Email	Alyssa.Spencer@douglaspartners.c om
- EDI Format - ENMRG (ENMRG)	Email	Alyssa.Spencer@douglaspartners.c
- EDI Format - ESDAT (ESDAT)	Email	Alyssa.Spencer@douglaspartners.c
- EDI Format - XTab (XTAB)	Email	Alyssa.Spencer@douglaspartners.c
DAVID HOLDEN		om
- *AU Certificate of Analysis - NATA (COA)	Email	david.holden@douglaspartners.com .au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	david.holden@douglaspartners.com .au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	david.holden@douglaspartners.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	david.holden@douglaspartners.com
- A4 - AU Tax Invoice (INV)	Email	david.holden@douglaspartners.com
- Chain of Custody (CoC) (COC)	Email	david.holden@douglaspartners.com
- EDI Format - ENMRG (ENMRG)	Email	david.holden@douglaspartners.com
- EDI Format - ESDAT (ESDAT)	Email	david.holden@douglaspartners.com
- EDI Format - XTab (XTAB)	Email	.au david.holden@douglaspartners.com .au

Douglas Partners

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86884	02	·······	,	Suburb: Havmarket				To: Envirolab Services					
Project Name:	Havma	arkert Conta	mination I	nvestigation	Order N	umber	*	· · · ·		12 Ashley Street, Chatswood 2067				
Project Manage	r:David	Holden		`	Sampler: AS/IT			Attn: Aileen Hie						
Emails:	david.	nolden@do	uglaspartn	ers.com.au	.au alyssa.spencer@douglaspartners.com.au					Phone: 9910 6200				
Date Required:	Std				Email: <u>ahie@envirolab.com.au</u>						i.au			
Prior Storage:	Esky/Fr	idge	Do samples contain 'potential' HBM? Yes											
		oled	Sample Type	Container Type					Analytes					
Sample ID	Lab ID	Date Sami	S - soil W - water	G - glass P - plastic	Combo 8A	Combo 8	Combo 3a	Combo 3	500 AF/FA	ph and CEC	plon hold			Notes/preservation
1001/0.25-0.3	١	12/03/21	S	G '	x									<u> </u>
1001/0.5-0.6	2	12/03/21	S	G				x						
1001/0.9-1.0	3	12/03/21	S	G							x			
1002/0.25-0.35	ч	11/03/21	S	G			x							
1002/0.35-0.5	5	11/03/21	S	G				x	-	x				
BD1/110321	X	11/03/21	S	G			-	x		·				Please forward for interlab
	(24)													TRH BTEX PAH)
				Envir Sydn	onmenta ey	I Division				ΕŃ		Envirolati S 12 As atswood NS	ervices hiey St W 2067	
				Wo	rk Order Re	eference		· .		J	b No:	Fn: (02) 99	0 6200	264455
· · ·		*				0,00				D	ate Receiver	¢ (7)		1713/221'
		· · · ·					-			Ti R	ne Receiver ceived By:	R	<u> </u>	lic
·····										Te	mp: Ceel/A	nbient		
										Se	curity	Broken/Nor	e	
				Telephor	1e : + 61-2-8784	4 8555								
PQL (S) mg/kg												ANZEC	C PQLs	req'd for all water analytes 📋
PQL = practical	quantit	ation limit.	If none g	iven, default	to Labor	atory Met	hod Deteo	tion Limit		l ah P	enort/Ref	ference N	<u>.</u>	
Metals to Analy	se: 8HN	l unless sp	ecified he	ore:									.	· · · · · · · · · · · · · · · · · · ·
Total number o	t sampl	es in conta	iner: 6	Relin	nquished	by:		I ranspo	rted to la	aporatory	by:	DONOS		Eav:
Send Results to	ס: D	ouglas Part	ners Pty Li				8.1	RADA	<u> </u>	Т	Data 8 1		12 100	<u>гал.</u> 1 (24 D)
		0/21 10.40	0.1	ikd L	y: 5-(S. d. 1	1.400	- 11	10	18/212			1 s jur v	1
FPM - ENVID/Form C	PM-ENVID/Form COC 02 Page 1 of 1 RP(. Sco RAND 18/3/2/1530 C Rev4/October2016													
			-						v v C	-	(1)			

CERTIFICATE OF ANALYSIS 264947

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86884.02, Haymarket Contamination Investigation
Number of Samples	10 Water
Date samples received	23/03/2021
Date completed instructions received	23/03/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	30/03/2021			
Date of Issue	30/03/2021			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Greta Petzold, Senior Chemist Ken Nguyen, Reporting Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 264947 Revision No: R00

Page | 1 of 33
VOCs in water						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	26/03/2021	26/03/2021	26/03/2021	26/03/2021	26/03/2021
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	11	<1	6
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	2
1,3-dichloropropane	µg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Bromoform	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1	<1
o-xylene	µg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	101	102	101	101
Surrogate toluene-d8	%	98	99	99	100	99
Surrogate 4-BFB	%	98	99	99	100	100

VOCs in water		
Our Reference		264947-6
Your Reference	UNITS	1007
Date Sampled		22/03/2021
Type of sample		Water
Date extracted	-	25/03/2021
Date analysed	-	26/03/2021
Dichlorodifluoromethane	μg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	µg/L	<10
Bromomethane	µg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	4
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	µg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	µg/L	<1
Dibromomethane	µg/L	<1
1,2-dichloropropane	µg/L	<1
Trichloroethene	µg/L	<1
Bromodichloromethane	µg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	µg/L	<1
1,3-dichloropropane	µg/L	<1
Dibromochloromethane	µg/L	<1
1,2-dibromoethane	µg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	μg/L	<1

VOCs in water		
Our Reference		264947-6
Your Reference	UNITS	1007
Date Sampled		22/03/2021
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	µg/L	<2
Styrene	μg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	µg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	µg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	99

vTRH(C6-C10)/BTEXN in Water						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	26/03/2021	26/03/2021	26/03/2021	26/03/2021	26/03/2021
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	2
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	101	102	101	101
Surrogate toluene-d8	%	98	99	99	100	99
Surrogate 4-BFB	%	98	99	99	100	100

vTRH(C6-C10)/BTEXN in Water						
Our Reference		264947-6	264947-7	264947-8	264947-9	264947-10
Your Reference	UNITS	1007	BD1/230321	Trip Spike	Trip Blank	Rinsate
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	23/03/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	26/03/2021	26/03/2021	26/03/2021	26/03/2021	26/03/2021
TRH C ₆ - C ₉	µg/L	<10	<10	[NA]	<10	29
TRH C ₆ - C ₁₀	µg/L	<10	<10	[NA]	<10	30
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	[NA]	<10	30
Benzene	µg/L	<1	<1	117%	<1	<1
Toluene	µg/L	<1	<1	115%	<1	<1
Ethylbenzene	µg/L	<1	<1	119%	<1	<1
m+p-xylene	µg/L	<2	<2	111%	<2	<2
o-xylene	µg/L	<1	<1	118%	<1	<1
Naphthalene	µg/L	<1	<1	[NA]	<1	<1
Surrogate Dibromofluoromethane	%	100	100	102	101	100
Surrogate toluene-d8	%	97	97	100	99	98
Surrogate 4-BFB	%	99	100	100	98	99

svTRH (C10-C40) in Water						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	120	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	120	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	86	84	96	106	103

svTRH (C10-C40) in Water			
Our Reference		264947-6	264947-7
Your Reference	UNITS	1007	BD1/230321
Date Sampled		22/03/2021	22/03/2021
Type of sample		Water	Water
Date extracted	-	24/03/2021	24/03/2021
Date analysed	-	25/03/2021	25/03/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C15 - C28	μg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Surrogate o-Terphenyl	%	80	85

PAHs in Water - Low Level						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	24/03/2021	24/03/2021	26/03/2021	26/03/2021	26/03/2021
Naphthalene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	87	95	70	73	84

PAHs in Water - Low Level			
Our Reference		264947-6	264947-7
Your Reference	UNITS	1007	BD1/230321
Date Sampled		22/03/2021	22/03/2021
Type of sample		Water	Water
Date extracted	-	24/03/2021	24/03/2021
Date analysed	-	24/03/2021	24/03/2021
Naphthalene	μg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	80	87

OCPs in Water - Trace Level				
Our Reference		264947-3	264947-4	264947-5
Your Reference	UNITS	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water
Date extracted	-	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	26/03/2021	26/03/2021	26/03/2021
alpha-BHC	µg/L	<0.001	<0.001	<0.001
НСВ	µg/L	<0.001	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001	<0.001
gamma-BHC	µg/L	<0.001	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001	<0.001
Aldrin	µg/L	<0.001	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001	<0.001
gamma-Chlordane	μg/L	<0.001	<0.001	<0.001
alpha-Chlordane	µg/L	<0.001	<0.001	<0.001
Endosulfan I	µg/L	<0.002	<0.002	<0.002
pp-DDE	µg/L	<0.001	<0.001	<0.001
Dieldrin	μg/L	<0.001	<0.001	<0.001
Endrin	µg/L	<0.001	<0.001	<0.001
Endosulfan II	μg/L	<0.002	<0.002	<0.002
pp-DDD	µg/L	<0.001	<0.001	<0.001
Endrin Aldehyde	μg/L	<0.001	<0.001	<0.001
pp-DDT	µg/L	<0.001	<0.001	<0.001
Endosulfan Sulphate	μg/L	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001
Surrogate TCMX	%	64	68	70

OP in water Trace ANZECCF/ADWG				
Our Reference		264947-3	264947-4	264947-5
Your Reference	UNITS	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water
Date extracted	-	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	26/03/2021	26/03/2021	26/03/2021
Dichlorovos	μg/L	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05	<0.05
Chlorpyriphos	μg/L	<0.009	<0.009	<0.009
Parathion	μg/L	<0.004	<0.004	<0.004
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02
Surrogate TCMX	%	64	68	70

PCBs in Water - Trace Level				
Our Reference		264947-3	264947-4	264947-5
Your Reference	UNITS	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water
Date extracted	-	24/03/2021	24/03/2021	24/03/2021
Date analysed	-	26/03/2021	26/03/2021	26/03/2021
Aroclor 1016	µg/L	<0.01	<0.01	<0.01
Aroclor 1221	µg/L	<0.01	<0.01	<0.01
Aroclor 1232	μg/L	<0.01	<0.01	<0.01
Aroclor 1242	µg/L	<0.01	<0.01	<0.01
Aroclor 1248	μg/L	<0.01	<0.01	<0.01
Aroclor 1254	µg/L	<0.01	<0.01	<0.01
Aroclor 1260	µg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	64	68	70

Total Phenolics in Water						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Total Phenolics in Water			
Our Reference		264947-6	264947-7
Your Reference	UNITS	1007	BD1/230321
Date Sampled		22/03/2021	22/03/2021
Type of sample		Water	Water
Date extracted	-	25/03/2021	25/03/2021
Date analysed	-	25/03/2021	25/03/2021
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05

HM in water - dissolved						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Arsenic-Dissolved	µg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	0.2	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	<1	<1	2	18
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	12	26	2	4	4
Zinc-Dissolved	µg/L	25	7	18	140	86
Iron-Dissolved	µg/L	78	<10	3,000	<10	12

HM in water - dissolved				
Our Reference		264947-6	264947-7	264947-10
Your Reference	UNITS	1007	BD1/230321	Rinsate
Date Sampled		22/03/2021	22/03/2021	23/03/2021
Type of sample		Water	Water	Water
Date prepared	-	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021
Arsenic-Dissolved	µg/L	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	0.2	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1
Copper-Dissolved	µg/L	<1	2	2
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	3	4	1
Zinc-Dissolved	µg/L	110	140	5
Iron-Dissolved	μg/L	850	[NA]	[NA]

HM in water - total						
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5
Your Reference	UNITS	107A	107B	202	1002	1003A
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Date analysed	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Arsenic-Total	µg/L	2	7	2	6	1
Cadmium-Total	µg/L	0.8	0.2	<0.1	0.3	0.1
Chromium-Total	µg/L	12	41	4	20	21
Copper-Total	µg/L	13	38	5	37	31
Lead-Total	µg/L	13	38	5	45	13
Mercury-Total	µg/L	<0.05	0.09	<0.05	<0.05	<0.05
Nickel-Total	µg/L	18	100	4	17	8
Zinc-Total	µg/L	95	190	42	570	370
Iron-Total	µg/L	2,900	39,000	7,500	18,000	8,700

HM in water - total		
Our Reference		264947-6
Your Reference	UNITS	1007
Date Sampled		22/03/2021
Type of sample		Water
Date prepared	-	25/03/2021
Date analysed	-	25/03/2021
Arsenic-Total	μg/L	7
Cadmium-Total	µg/L	3.9
Chromium-Total	μg/L	57
Copper-Total	µg/L	110
Lead-Total	μg/L	81
Mercury-Total	μg/L	0.11
Nickel-Total	μg/L	38
Zinc-Total	μg/L	4,300
Iron-Total	μg/L	47,000

Cations in water Dissolved									
Our Reference		264947-1	264947-2	264947-3	264947-4	264947-5			
Your Reference	UNITS	107A	107B	202	1002	1003A			
Date Sampled		22/03/2021	22/03/2021	22/03/2021	22/03/2021	22/03/2021			
Type of sample		Water	Water	Water	Water	Water			
Date digested	-	26/03/2021	26/03/2021	26/03/2021	26/03/2021	26/03/2021			
Date analysed	-	26/03/2021	26/03/2021	26/03/2021	26/03/2021	26/03/2021			
Calcium - Dissolved	mg/L	16	22	7.7	23	24			
Magnesium - Dissolved	mg/L	10	14	4.3	8.5	3.2			
Hardness	mgCaCO 3 /L	82	110	37	93	72			

Cations in water Dissolved		
Our Reference		264947-6
Your Reference	UNITS	1007
Date Sampled		22/03/2021
Type of sample		Water
Date digested	-	26/03/2021
Date analysed	-	26/03/2021
Calcium - Dissolved	mg/L	6.3
Magnesium - Dissolved	mg/L	9.7
Hardness	mgCaCO 3 /L	55

Miscellaneous Inorganics									
Our Reference		264947-3	264947-4	264947-5					
Your Reference	UNITS	202	1002	1003A					
Date Sampled		22/03/2021	22/03/2021	22/03/2021					
Type of sample		Water	Water	Water					
Date prepared	-	25/03/2021	25/03/2021	25/03/2021					
Date analysed	-	25/03/2021	25/03/2021	25/03/2021					
Total Cyanide	mg/L	<0.004	<0.004	<0.004					

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	.: VOCs ii	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			25/03/2021	5	25/03/2021	25/03/2021		25/03/2021	[NT]
Date analysed	-			26/03/2021	5	26/03/2021	26/03/2021		26/03/2021	[NT]
Dichlorodifluoromethane	µg/L	10	Org-023	<10	5	<10	<10	0	[NT]	[NT]
Chloromethane	µg/L	10	Org-023	<10	5	<10	<10	0	[NT]	[NT]
Vinyl Chloride	µg/L	10	Org-023	<10	5	<10	<10	0	[NT]	[NT]
Bromomethane	µg/L	10	Org-023	<10	5	<10	<10	0	[NT]	[NT]
Chloroethane	μg/L	10	Org-023	<10	5	<10	<10	0	[NT]	[NT]
Trichlorofluoromethane	µg/L	10	Org-023	<10	5	<10	<10	0	[NT]	[NT]
1,1-Dichloroethene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	µg/L	1	Org-023	<1	5	<1	<1	0	110	[NT]
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Bromochloromethane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Chloroform	µg/L	1	Org-023	<1	5	6	6	0	112	[NT]
2,2-dichloropropane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	µg/L	1	Org-023	<1	5	<1	<1	0	108	[NT]
1,1,1-trichloroethane	µg/L	1	Org-023	<1	5	<1	<1	0	111	[NT]
1,1-dichloropropene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Cyclohexane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Carbon tetrachloride	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Dibromomethane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Trichloroethene	µg/L	1	Org-023	<1	5	<1	<1	0	120	[NT]
Bromodichloromethane	μg/L	1	Org-023	<1	5	<1	<1	0	111	[NT]
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Toluene	µg/L	1	Org-023	<1	5	2	2	0	[NT]	[NT]
1,3-dichloropropane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Dibromochloromethane	µg/L	1	Org-023	<1	5	<1	<1	0	109	[NT]
1,2-dibromoethane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Tetrachloroethene	µg/L	1	Org-023	<1	5	<1	<1	0	110	[NT]
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Chlorobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Ethylbenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Bromoform	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
m+p-xylene	µg/L	2	Org-023	<2	5	<2	<2	0	[NT]	[NT]
Styrene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Isopropylbenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Bromobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
n-propyl benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
2-chlorotoluene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
4-chlorotoluene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Tert-butyl benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Sec-butyl benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
4-isopropyl toluene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2-dichlorobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
n-butyl benzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Hexachlorobutadiene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluoromethane	%		Org-023	101	5	101	99	2	99	[NT]
Surrogate toluene-d8	%		Org-023	100	5	99	99	0	100	[NT]
Surrogate 4-BFB	%		Org-023	101	5	100	97	3	102	[NT]

QUALITY CONTR	ROL: vTRH((C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			25/03/2021	5	25/03/2021	25/03/2021		25/03/2021	
Date analysed	-			26/03/2021	5	26/03/2021	26/03/2021		26/03/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	5	<10	<10	0	115	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	5	<10	<10	0	115	
Benzene	µg/L	1	Org-023	<1	5	<1	<1	0	112	
Toluene	µg/L	1	Org-023	<1	5	2	2	0	110	
Ethylbenzene	µg/L	1	Org-023	<1	5	<1	<1	0	117	
m+p-xylene	µg/L	2	Org-023	<2	5	<2	<2	0	118	
o-xylene	µg/L	1	Org-023	<1	5	<1	<1	0	118	
Naphthalene	µg/L	1	Org-023	<1	5	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	101	5	101	99	2	99	
Surrogate toluene-d8	%		Org-023	100	5	99	99	0	100	
Surrogate 4-BFB	%		Org-023	101	5	100	97	3	102	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	118	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	102	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	118	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	102	
Surrogate o-Terphenyl	%		Org-020	86	[NT]	[NT]	[NT]	[NT]	81	[NT]

QUALITY CON	TROL: PAH	s in Wate	r - Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	
Naphthalene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	70	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	73	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	92	[NT]	[NT]	[NT]	[NT]	95	[NT]

QUALITY CON	TROL: OCPs	in Water	- Trace Level			Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/03/2021	[NT]			[NT]	24/03/2021	
Date analysed	-			26/03/2021	[NT]			[NT]	26/03/2021	
alpha-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	110	
НСВ	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
beta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	104	
gamma-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
Heptachlor	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	122	
delta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
Aldrin	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	108	
Heptachlor Epoxide	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	102	
gamma-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
alpha-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
Endosulfan I	µg/L	0.002	Org-022/025	<0.002	[NT]			[NT]	[NT]	
pp-DDE	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	126	
Dieldrin	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	92	
Endrin	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	108	
Endosulfan II	µg/L	0.002	Org-022/025	<0.002	[NT]			[NT]	[NT]	
pp-DDD	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	112	
Endrin Aldehyde	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
pp-DDT	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	90	
Endosulfan Sulphate	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
Methoxychlor	µg/L	0.001	Org-022/025	<0.001	[NT]			[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	71	[NT]	[NT]	[NT]	[NT]	73	[NT]

QUALITY CONTRO	L: OP in wat	er Trace	ANZECCF/ADWG			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	
Date analysed	-			24/03/2021	[NT]		[NT]	[NT]	24/03/2021	
Dichlorovos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	90	
Dimethoate	µg/L	0.15	Org-022/025	<0.15	[NT]		[NT]	[NT]	[NT]	
Diazinon	µg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	114	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	90	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	116	
Chlorpyriphos	µg/L	0.009	Org-022/025	<0.009	[NT]		[NT]	[NT]	100	
Parathion	µg/L	0.004	Org-022/025	<0.004	[NT]		[NT]	[NT]	90	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	71	[NT]	[NT]	[NT]	[NT]	73	[NT]

QUALITY CON	TROL: PCBs	in Water	- Trace Level			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/03/2021	[NT]			[NT]	24/03/2021	
Date analysed	-			24/03/2021	[NT]			[NT]	24/03/2021	
Aroclor 1016	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	[NT]	
Aroclor 1221	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	[NT]	
Aroclor 1232	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	[NT]	
Aroclor 1242	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	[NT]	
Aroclor 1248	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	[NT]	
Aroclor 1254	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	95	
Aroclor 1260	µg/L	0.01	Org-021	<0.01	[NT]			[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-021	71	[NT]	[NT]	[NT]	[NT]	73	[NT]

QUALITY CO	NTROL: Tot	al Phenol	lics in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	264947-2
Date extracted	-			25/03/2021	1	25/03/2021	25/03/2021		25/03/2021	25/03/2021
Date analysed	-			25/03/2021	1	25/03/2021	25/03/2021		25/03/2021	25/03/2021
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	101	92

QUALITY CC	ONTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	264947-2
Date prepared	-			25/03/2021	1	25/03/2021	25/03/2021		25/03/2021	25/03/2021
Date analysed	-			25/03/2021	1	25/03/2021	25/03/2021		25/03/2021	25/03/2021
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	101	100
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	98
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	97	95
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	100	95
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	96	89
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	104
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	12	13	8	103	101
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	25	30	18	102	103
Iron-Dissolved	µg/L	10	Metals-022	<10	1	78	78	0	100	104

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			25/03/2021	1	25/03/2021	25/03/2021		25/03/2021	[NT]
Date analysed	-			25/03/2021	1	25/03/2021	25/03/2021		25/03/2021	[NT]
Arsenic-Total	µg/L	1	Metals-022	<1	1	2	[NT]		104	[NT]
Cadmium-Total	µg/L	0.1	Metals-022	<0.1	1	0.8	[NT]		103	[NT]
Chromium-Total	µg/L	1	Metals-022	<1	1	12	[NT]		100	[NT]
Copper-Total	µg/L	1	Metals-022	<1	1	13	[NT]		102	[NT]
Lead-Total	µg/L	1	Metals-022	<1	1	13	[NT]		98	[NT]
Mercury-Total	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	
Nickel-Total	µg/L	1	Metals-022	<1	1	18	[NT]		105	[NT]
Zinc-Total	µg/L	1	Metals-022	<1	1	95	[NT]		108	[NT]
Iron-Total	µg/L	10	Metals-022	<10	1	2900	[NT]		105	[NT]

QUALITY COM	TROL: Catio	ons in wa	ter Dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	264947-2
Date digested	-			26/03/2021	1	26/03/2021	26/03/2021		26/03/2021	26/03/2021
Date analysed	-			26/03/2021	1	26/03/2021	26/03/2021		26/03/2021	26/03/2021
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	16	16	0	90	82
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	10	10	0	95	90
Hardness	mgCaCO 3 /L	3		[NT]	1	82	82	0	[NT]	[NT]

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			25/03/2021	[NT]		[NT]	[NT]	25/03/2021	[NT]
Date analysed	-			25/03/2021	[NT]		[NT]	[NT]	25/03/2021	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	[NT]	[NT]	[NT]	[NT]	98	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

.

Partners

CHAIN OF CUSTODY DESPATCH SHEET

	84	.02			Suburb: Haymarket				To: Envirolab Services							
Project Name:	Haymarkert Contamination Investigation Order Number									12 Ashley Street, Chatswood 2067						
Project Manage	r: David	Holden			Sample	r:	JB			Attn:	Aile	en Hie				
Emails:	<u>david.</u>	holden@do	uglaspartn	ers.com.au	alyssa.spencer@douglaspartners.com.au Phone: 9910 6200											
Date Required:	Std Email: <u>ahie@envirolab.com.au</u>															
Prior Storage: Esky/Fridge Do samples contain 'potential' HBM? No																
<u>.</u>		pled	Sample Type	Container Type		Analytes										
Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 4L	VOC	Metals (total)	iron (total & dissolved)	Trace OCP/OPP PCB	Cyanide	Hardness	TRH/BTEX		Notes/preservation		
107A	١	22/03/21	w	G/P	x	х	x	x			x					
107B	2	22/03/21	w	G/P	x	х	x	х			x			· 		
202	3	22/03/21	w	G/P	х	x	X	x	X	x	x					
1002	4	22/03/21	w	G/P	x	х	х	x	x	x	x			· · · · · · · · · · · · · · · · · · ·		
1003A	5	22/03/21	w	G/P	x	x	x	x	x	x	· x					
1007	6	22/03/21	w	G/P	х	x	х	х			x					
BD1/230321	7	22/03/21	w	G/P	x											
Trip Spike	8	22/03/21	w	G/P					· · · · · · · · · · · · · · · · · · ·			x				
Trip Blank	9	22/03/21	w	G/P			ENVÎ		12 Ash	vices ey St		x		·		
Rinsate	10	23/03/	IN				Job	No:	h: (02) 9910	2067 620 9	ļ					
			'					······ ·	649	4/				-		
<u>.</u>			;				Time	Received:	23	40	<i>1</i>					
							Recei Tem		V / S							
							Coolin	g: Ice/cepa								
								y: intact/Bro	ken/None							
PQL (S) mg/kg	-											ANZECO	C PQLs re	q'd for all water analytes 🏾		
PQL = practical Metals to Analy	quantit	ation limit.	If none g	iven, default	to Labora	atory Met	nod Deteo	tion Limit		Lab R	eport/Ref	erence No	»: Hu	(947		
Total number of	fsampl	es in conta	iner: 6	Relir	nquished	by:		Transpo	rted to la	boratory	by:	Bonds				
Send Results to): D	ouglas Part	ners Pty Li	d Addı	ress							Phone:		Fax:		
Signed: DIH 23/3/21 10:45 Received by: Employ (ab M Date & Time: 23/03/2/ / 3 4																

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden

Sample Login Details	
Your reference	86884.02, Haymarket Contamination Investigation
Envirolab Reference	264947
Date Sample Received	23/03/2021
Date Instructions Received	23/03/2021
Date Results Expected to be Reported	30/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	10 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	OCPs in Water - Trace Level	OP in water Trace ANZECCF/ADWG	PCBs in Water - Trace Level	Total Phenolicsin Water	HM in water - dissolved	HM in water - total	Cations in water Dissolved	Total Cyanide
107A	\checkmark	\checkmark	\checkmark	\checkmark				✓	\checkmark	\checkmark	\checkmark	
107B	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	
202	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	✓
1002	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
1003A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
1007	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	
BD1/230321		\checkmark	\checkmark	\checkmark				\checkmark	\checkmark			
Trip Spike		\checkmark										
Trip Blank		\checkmark										
Rinsate		✓							✓			

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.