

SMEC INTERNAL REF. 30013038

Manildra – Port Kembla Bulk Liquid Terminal

Acid Sulfate Soils Management Plan

Client Reference No. 30013038-R03 Prepared for: Manildra Group Pty Ltd 6 May 2022

Through our specialist expertise, we deliver advanced infrastructure solutions for our clients and partners.

Leveraging our 70-year history of delivering nation-building infrastructure, we provide technical expertise and advanced engineering services to resolve complex challenges.

Through our network of global specialists collaborating with local partners, we connect you with the best teams and capabilities to deliver innovative and sustainable solutions.

We're redefining exceptional

Document Control

Document Type	Manildra – Port Kembla Bulk Liquid Terminal
Project Title	Acid Sulfate Soils Management Plan
Project Number	30013038
File Location	\\filer.nasuni.local\SMECANZ\Projects\300130\30013038 - Ethanol Tank Farm, Port Kembla\140 Data\Reporting\R03 ASSMP\Rev2\30013038-R03_Manildra ASSMP_Rev2.docx
Revision Number	Rev 2

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
Rev 1	29/10/2021	Alexander Williams	Manuel Fernandez	Alexander Williams
Rev 2	6/05/2022	Alexander Williams	Manuel Fernandez	Alexander Williams

Issue Register

Distribution List	Date Issued	Number of Copies
Manildra Group Pty Ltd	6/05/2022	1 PDF

SMEC Company Details

Approved by	Alexander Williams
Address	Level 2, 6-8 Regent Street, Wollongong NSW
Phone	+61 2 9900 7039
Email	alex.williams@smec.com
Website	www.smec.com
Signature	Alles Villian

The information within this document is and shall remain the property of: SMEC Australia Pty Ltd $% \mathcal{A}$

Important Notice

This report is confidential and is provided solely for the purposes of documenting an Acid Sulfate Soils Management Plan for Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 Foreshore Road, Port Kembla. This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Limited ("SMEC") and Manildra Group Pty Ltd, under which SMEC undertook to perform a specific and limited task for Manildra Group Pty Ltd. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Manildra Group Pty Ltd. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

The findings of this this report are the result of methodologies used in accordance with normal practices and standards. We consider that they represent a reasonable interpretation of the general conditions of the Site at the time they were assessed and at the time of writing this report, but under no circumstances, can it be considered that these findings represent the actual state of the Site in all areas.

In preparing this report, current guidelines for assessment and management of acid sulfate soils were followed. This work has been conducted in good faith in accordance with SMECs understanding of the client's brief and general accepted practice for environmental consulting.

Contents

Exec	utive S	ummary.		vii
1.	Intro	duction		1
	1.1	Genera	l	1
	1.2	Project	background	1
	1.3	ASSMP	Requirement	2
	1.4	Project	objectives	2
	1.5	Scope o	of work	2
2.	Site	informatio	on	3
	2.1	Site ide	entification and description	3
	2.2	Previou	ıs reports	5
	2.3	Site info	ormation	5
	2.4	Acid su	Ifate soils	7
	2.5	Acid su	Ifate soil extent	8
		2.5.1	Subsurface conditions	8
		2.5.2	Previous ASS laboratory soil data	
		2.5.3	ASS Extent	
		2.5.4	Groundwater	
	2.6		lwater wells	
3.	Envir	ronmenta	Il Activities, Impacts and Risks	12
	3.1	Propose	ed development	12
		3.1.1	Main terminal	12
	3.2	Pipeline	e route	13
	3.3	Constru	uction Details	14
		3.3.1	Construction Activities	
		3.3.2	Expected areas and scale of ASS disturbance	
		3.3.3	Identifying ASS	
	3.4		uction Environmental Impacts	
		3.4.1	Excavations	
		3.4.2	Dewatering	
4.	ASS I		nent Procedures	
	4.1		anagement Hierarchy	
	4.2	2 Excavations		
	4.3	ASS Tre	eatment Pad	
		4.3.1	Temporary Stockpiling	
		4.3.2	ASS Neutralisation and Liming Rates	
	4 4	4.3.3	Verification Testing	
	4.4		of treated ASS	
	4.5		in excavations	
	4.6		ering	
		4.6.1 4.6.2	Approvals and licencing	
	4.7		Dewatering	
			monitoring	
_	4.8		te and Water Liming	
5.	Man	anaging Compliance with ASSMP		

	5.1	Roles and Responsibilities	30
		Training and Awareness	
	5.3	Inspection, Surveillance and Monitoring	
	5.4	Reporting Requirements	
	5.5	Non-Conformance	
	5.6	Corrective Action Requests and Instructions	32
	5.7	Review and Improvement of the ASSMP	32
6.	Refe	rences	33

Appendices

Appendix A.	Figures
Appendix B.	Previous results
Appendix C.	Engineering logs
Appendix D.	Proposed design drawings
Appendix E.	Dewatering factsheet

Figures

Figure 2-1 Site portions for description purposes – Main terminal	4
Figure 3-1 Bulk earthworks plan (Drawing ref: 20399-SK108_B, dated 31.08.21 prepared by TFA Group Pty Ltd)	
Figure 4-1 Treatment pad design with treatment area and stockpile area	23
Figure 4-2 Cross section of land applied lime amended ASS	24

Tables

3
5
9
10
11
17
17
18
21
24
30

Executive Summary

Manildra Group Pty Ltd (Manildra) is proposing to construct an ethanol storage facility and pipeline located on Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla NSW (herein known as 'the Site').

This report presents the Acid Sulfate Soils Management Plan (ASSMP) prepared by SMEC Australia Pty Ltd (SMEC) in support of the State Significant Development application for the proposed redevelopment of Manildra - Port Kembla Bulk Liquid Terminal. This report is written to address the Secretary Environmental Assessment Requirements (SEARs) (and additional Council requirements) and specifically to provide advice for the proposed earthworks activities at the Site during construction. The Site is currently leased by Manildra from NSW Ports.

SMEC previously undertook a Preliminary Geotechnical and Contamination Investigation (main terminal) and Targeted Site Investigation (pipeline route) which included an assessment of the presence of acid sulfate soils. Acid sulfate soils were assessed to be present at the Site main terminal within natural estuarine soils beneath the fill and aeolian soil layers. Due to potential for disturbance during development of the main terminal, SMEC recommended an ASSMP be prepared for the management of acid sulfate soils during construction stage. Along the pipeline route, SMEC assessed that acid sulfate soils (if present) beneath the Site are unlikely to be intersected based on depth of proposed disturbance and therefore no further assessment or management measures are required.

Based on preliminary development details provided by Manildra, SMEC consider that the main development activities which could impact upon ASS are localised deep excavations for installation of stormwater features (including gross pollutant trap, underground storage tank) and linear excavation for installation of stormwater utilities.

This ASSMP includes proposed mitigation measures for excavations, treatment, reuse, dewatering and water quality monitoring during works which are likely to disturb ASS. An overview of the key roles and responsibilities for the implementation of the ASSMP are also provided.

Groundwater table drawdown can occur from excavation dewatering and affect acid sulfate soils as they can be exposed to oxygen and oxidise. This ASSMP considers dewatering activities will be required for installation of the proposed underground storage tank (Excavation 1), noting a dewatering strategy is current being assessed by SMEC. The dewatering strategy includes modelling to assess the radius of influence based on proposed rate of dewatering, characteristics of the surrounding aquifer and the required depth of sheet piling to minimise effects of groundwater drawdown in areas surrounding the excavation. Dewatering via 'sump and pump' techniques for relatively short duration are likely to be used, as compared to alternative dewatering techniques.

SMEC note that if retention systems such as sheet piles that limit impacts from drawdown are not used, then to address impacts of deeper dewatering, a further assessment of the implications of dewatering on ASS would need to be carried out. Where the results of assessment indicate further control measures beyond those described in this ASSMP, then an addendum will be required specifying the additional control measures during deep dewatering.

A standalone Groundwater Assessment and Management Report (*pending completion at the time of writing this ASSMP*) is being prepared to address SEARs requirements noting this would include further details on a construction water quality monitoring programme to comply with the planning conditions and NSW Ports specific requirements (refer to Section 11 Water Quality and Stormwater of Port Kembla Development Code – June 2021). An outline of water quality monitoring requirements is provided to be consistent with the National Acid Sulfate Soils Guidance pertaining to dewatering of acid sulfate soils in shallow groundwater environments.

1. Introduction

1.1 General

Manildra Group Pty Ltd (Manildra) is proposing to construct an ethanol storage facility and pipeline located on Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 Foreshore Road, Port Kembla NSW (herein known as 'the Site'). The Site locality is shown on Figure 1, Appendix A.

The proposed development will consist of installation of six above ground storage tanks, associated bunds and features, construction of a new proposed bridge crossing, a gravity retaining wall adjacent the existing stormwater channel, installation of buried stormwater infrastructure including an underground storage tank and two stormwater treatment devices, construction of service road and driveway pavements, drainage and grading features. Earthworks activities associated with the development are expected to include deep excavations for stormwater infrastructure, a network of linear utilities trenches and foundation excavations for gravity retaining wall, and shallow site recontouring and timber driven piles beneath bridge and tank structures. The development includes construction of a new pipeline route connecting to existing Jetty No. 4. The Site layout is shown on Figure 2, Appendix A.

This report presents the Acid Sulfate Soils Management Plan (ASSMP) prepared by SMEC Australia Pty Ltd (SMEC) in support of the State Significant Development application for the proposed redevelopment of Manildra - Port Kembla Bulk Liquid Terminal. This report is written to address the Secretary Environmental Assessment Requirements (SEARs) (and additional Council requirements) and specifically to provide advice for the proposed earthworks activities at the Site during construction. The Site is currently leased by Manildra from NSW Ports. The scope of works was carried out in general accordance with SMEC's Fee Proposal (ref: 1042321-P01 Rev1 dated 15/09/2021) and subsequent variation (ref: 30013038-V04 Rev 1 dated 16/02/2022).

1.2 Project background

SMEC has previously undertaken investigations at two portions of the Site (identified herein as 'main terminal' and 'pipeline route') to fulfil the planning process and requirements of NSW Ports Development Code, pertaining to acid sulfate soils assessment information for the proposed design. These include:

- Preliminary Geotechnical and Contamination Investigation (main terminal) in March 2021 (SMEC, 2021a, ref: 30013038-R01)
- Targeted Site Investigation (pipeline route) in April 2022 (SMEC, 2022, ref: 30013038-R05).

The Preliminary Geotechnical and Contamination Investigation (SMEC, 2021a) included an assessment of the presence of acid sulfate soils using soil sampling and analysis. Acid sulfate soils (ASS) were assessed to be present at the Site of the main terminal within natural estuarine soils beneath the fill. Due to potential disturbance during development of the main terminal, SMEC (2021a) recommended an ASSMP be prepared for the management of ASS during construction stage. SMEC (2021a) recommended that an ASSMP be prepared to manage site development activities where these soils are to be intersected via excavation or if dewatering will occur which could lower the water table and expose soils to oxidation. It is expected this would mainly apply to areas of deeper localised excavations associated with stormwater pipework, underground tank and gross pollutant traps. In areas where driven piles are used and essentially no ASS are brought to the surface, then minimal to no construction stage acid sulfate soil assessment and management would be required.

The Targeted Site Investigation along the pipeline route, included a review of desktop information and subsurface observations. The investigation concluded that acid sulfate soils (if present) beneath the Site are unlikely to be intersected based on the depth of proposed disturbance and therefore no further assessment or management measures are required.

1.3 ASSMP Requirement

This ASSMP is required to be prepared by a suitably qualified person in accordance with the NSW Acid Sulfate Soil Manual (1998) to fulfil the planning process and requirements of NSW Ports Development Code.

Specifically, Manildra were required to address the following specific requirements:

- Port Kembla Development Code June 2016: 'For all development an assessment of PASS¹ present on site is to be undertaken as part of the application for development. Where PASS could be encountered, mitigation measures are to be undertaken.' (NSW Ports, 2016, pp 29)
- Wollongong City Council –Application DE-2021/185: 'The EIS should be accompanied by an Acid Sulfate Soils Management Plan prepared in accordance with the Acid Sulfate Soils Manual, or alternatively, a preliminary assessment of the proposed works prepared in accordance with the Acid Sulfate Soils Manual indicating that an Acid Sulfate Soils Management Plan is not required for the works.' (Wollongong City Council, 21 December 2021).

This ASSMP specifically addresses mitigation and management of ASS, including Actual Acid Sulfate Soils (AASS) and Potential Acid Sulfate Soils (PASS). It is intended to act as a guide for construction planning, as ASS mitigation relies on co-operation from staff and sub-contractors in relation to ensuring preventative and treatment measures are being implemented and that awareness is maintained.

SMEC note that there are more recent national and interstate guidelines that build upon the NSW Acid Sulfate Soil Manual (1998) and where considered relevant these have also been utilised.

1.4 Project objectives

The overall objectives of the ASSMP are to:

- Describe measures to avoid adverse impacts on the local receptors that may result from disturbance of ASS materials due to construction of the development.
- Achieve compliance with regulatory requirements for the Project as they relate to ASS.

1.5 Scope of work

The ASSMP includes:

- A summary of the Site conditions and surrounding environment
- A summary of acid sulfate soil extent
- Disturbance of ASS
- Construction environmental impacts
- Management procedures (including excavations, treatment, reuse of ASS soils)
- Dewatering and monitoring requirements
- Compliance and reporting requirements.

¹ Potential Acid Sulfate Soil

2. Site information

2.1 Site identification and description

The proposed development is located at Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823Foreshore Road, Port Kembla, NSW. The Site consists of two portions identified as main terminal and pipeline route as shown on Figure 2, Appendix A.

Figure 1 and Figure 2, Appendix A show the Site locality and Site layout, respectively.

A summary of Site information is presented below in Table 2-1.

Table 2-1 Summary of Site information

Aspect	Details
Title identifier	Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 (pipeline route only)
Address	Foreshore Road, Port Kembla NSW
	 Main terminal Manildra supplied drawings showing a Site area of approximately 2.3ha (which excludes the stormwater channel). It is noted that the stormwater channel (approx. 0.14ha) is excluded from the lease. For Site description purposes, the Site has been divided into the three portions shown below on Figure 2-1 including: Western portion – Areas west of the stormwater channel (0.83ha)
Area	 Central portion – A centrally located area east of the stormwater channel (0.44 ha) differentiated by a historical property boundary
	 Eastern portion – An easterly located area east of the stormwater channel (1.02 ha). Pipeline route Manildra supplied drawings showing a proposed linear pipeline route of approximately 460m between the main terminal and Jetty No. 4 west to east with a 4m corridor along the route.
	The pipeline route occupies an area of approximately 0.18 ha.
Zoning	The Site is located within Port Kembla state significant precinct in NSW. The State Environmental Planning Policy (Three Ports) 2013 is the principal environmental planning instrument applying to the Site.
Current Land use	 Main terminal The Site currently consists of vacant industrial land previously used for storage of miscellaneous maritime/port equipment. An open concrete lined stormwater channel passes through the Site, which discharges to the Port Kembla Outer Harbour immediately north of the Site (but does not form part of the lease area). A relatively large crushed or coarse fill stockpile up to about 11m high above current land platform level currently occupies most of the eastern portion of the Site. The coarse fill stockpile appears to comprise largely coarse sandstone boulders up to about 1m diameter. Pipeline route The pipeline route part of the Site is currently unused part of industrial foreshore land in the vicinity of harbour jetty operations.
Proposed land use	The proposed land use is for a bulk liquid (beverage grade ethanol) storage facility and product pipeline route as described further in Section 3.1
Surrounding land use	 Main terminal The Site is presently surrounded by: Remaining NSW Ports foreshore land on Lot 6 (west) currently containing several large soil stockpiles Foreshore Road (south), then beyond this and further south various industrial facilities including:

Aspect	Details
	 Ixom (sulfuric acid plant)
	 Cleanaway waste recycling facility
	 Morgan Cement International Pty Ltd (cement manufacturing and grinding facility)
	Other former industrial facilities such as the former copper smelter and fertiliser production facilities
	Remaining stockpiled material and vacant land on Lot 6 (east)
	Port Kembla Outer Harbour shoreline (north).
	Pipeline route
	The Site is surrounded by:
	 Vacant foreshore land, a sandstone stockpile and paved road to former jetty No. 3 on Part of Lot 6
	 Vacant foreshore land, training conference centres, marine compounds/equipment stores and paved road/carparking areas on Part of Lot 2
	• An acid production pipeline route bisects the Site (Chainage 390m) and diverts in similar alignment towards Jetty No. 4 (Chainage 390m to 460m)
	• Port Kembla Outer Harbour shoreline is north approximately between 5m and 25m from the centreline of the pipeline route.
And the Andrew	

Figure 2-1 Site portions for description purposes – Main terminal

Manildra – Port Kembla Bulk Liquid Terminal Acid Sulfate Soils Management Plan Prepared for [Client Name] Client Reference No. 30013038-R03 SMEC Internal Ref. 30013038 6 May 2022

2.2 Previous reports

Background information contained in this ASSMP was sourced from the following previous reports:

- SMEC Australia Pty Ltd (2021a) Preliminary Geotechnical and Contamination Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R01, Revision 2, dated 05 May 2021
- SMEC Australia Pty Ltd (2021b) Detailed Site Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R04, Revision 1, dated 22 December 2021
- SMEC Australia Pty Ltd (2022) Targeted Site Investigation Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R05, Revision 1, dated 02 May 2022

A summary of relevant information from these reports are included in this ASSMP. SMEC (2021a) also previously undertook a review of several environmental reports pertaining to the Site and nearby surrounding areas. Reference should be made to the original reports for further detailed information.

2.3 Site information

Relevant Site information is summarised in Table 2-2 below.

Table 2-2 Site information

Aspect	Description
Topography	 Main terminal The Site terrain appears to have been filled and levelled with a surface elevation between 3.5-4.5m AHD. The Site surface is predominantly hardstand granulated slag material except for a concrete slab present in the central portion of the Site, and some localised grassed terrain. Other features of the Site include: A large rock stockpile with steep batters (to a height of approximately +14m AHD) within the eastern portion East and west of the channel there are localised steep slopes down to the edges of the concrete lined stormwater channel (approximately +2m AHD) A fill embankment is noted west of the stormwater channel approximately 1.5m to 2m above top of the stormwater channel, indicating the Site terrain appears to have been filled and levelled. Pipeline route Based on survey carried out by Masters Surveying (Drawing 64146-2), the Site is relatively flat with some slight undulations at elevations ranging between 2.9m AHD (Chainage 90) and 4.3m AHD (Chainage 340m).
Vegetation	Main terminal The Site contains a stand of mature trees on the southern Site boundary adjacent to Foreshore Road. Sparsely scattered trees were noted elsewhere, noting most of the Site is hardstand gravel and pavements with some patches of exotic grass vegetation. Pipeline route Except some minor areas of grass coverage, the Site is mainly hardstand gravel and pavements with little or no vegetation.
Geology	 The 1:100,000 scale geological series sheet of Wollongong to Port Hacking indicates that the Site is underlain by Quaternary quartz and lithic fluvial sand, silt and clay which most likely will overlay either or both the rock formations of: The Dapto Latite Member, comprising of a melanocratic coarse grained to porphyritic latite The Budgong Sandstone formation, comprising red-brown and grey volcanic sandstones. Reference to previous drilling in the area of Port Kembla Outer Harbour indicates that the Site is likely underlain by the Budgong Sandstone Formation. However, the Site is also located very close to

Aspect	Description
	the boundary between the overlying Dapto Latite and it is possible that some Dapto Latite could be encountered in some parts of this Site particularly towards the southern portion of the Site.
Soil Landscape	Reference to the 1:100,000 Soil Landscape Series Sheet for Central and Eastern NSW (OEH 2019) indicates the Site is within the disturbed terrain soil landscape.
	Reference to ASS risk mapping (NSW Government eSPADE, accessed 23/03/2021) indicates that the Site is located within areas mapped as 'disturbed terrain' with an unknown probability of ASS occurrence. Risk map guidance indicates that 'disturbed terrain may include filled areas, which often occur during reclamation of low-lying swamps for urban development. Other disturbed terrain includes areas which have been mined or dredged or have undergone heavy development or construction of dams or levees. Soil investigations are required to assess these areas for acid sulfate potential.'
	Figure 3, Appendix A shows the acid sulfate soils risk mapping for the Site and surrounding areas. The map indicates the following: Main terminal
	• The Site western, central and eastern portion is primarily underlain by disturbed terrain (X) at an elevation (2) of 2 to 4m AHD
	• A relatively smaller northern portion of the Site identifies disturbed terrain (X) at an elevation (1) of 1 to 2m AHD.
Acid Sulfate Soil	From preliminary investigation by SMEC (2021a), acid sulfate soils were assessed to be present at the main terminal portion of the Site within relatively thin layers of natural estuarine soils beneath the fill. Further consideration and management of acid sulfate soils was recommended where these soils are to be intersected via excavation or if dewatering will occur which could lower the water table and expose soils to oxidation.
	 Pipeline route Between Chainage 0 to 180m, the Site is underlain by disturbed terrain (X) at an elevation (2) of
	2 to 4m AHD
	• Between Chainage 180 to 430m, the Site is underlain by disturbed terrain (X) at an elevation (2) of greater than 4m AHD.
	Based on the Site topography and proposed disturbance depths (refer to Section 1.3), excavations depths were assessed as:
	 Base level 1.9 to 2.6m AHD (Above ground section of pipeline route - Shallow concrete footings, approximately 1m deep)
	 Base level 2.3 to 3.3m AHD (Underground section of pipeline route – Cut and cover trenching, approximately 1.8m deep).
	At these earthworks' levels, acid sulfate soils (if present) within the Site area were assessed to be greater than the depth of proposed disturbance.
	Main terminal
Groundwater	Based on previous groundwater monitoring that has occurred at the Site, groundwater depths beneath the Site were historically recorded typically between 1.5m and 3.0m below ground surface with an inferred groundwater flow in a north-easterly direction towards Port Kembla Outer Harbour. Groundwater depths and directions may vary based on Site specific conditions, including tidal influences.
	A search of the Department of Water and Energy Online Database [accessed 22 March 2021] was carried out to identify registered groundwater bores within the vicinity of the Site. The search indicated multiple registered bores are within industrial properties for monitoring purposes located within 500m of the Site including:
	 One registered bore (GW114085) located 100m south of the Site (within Morgan Cement International property)
	 Greater than 50 registered bores between 300m and 600m south of the Site (former Port Kembla Copper Smelter)
	• Six registered bores 450m south-east of the Site (Vesuvius manufacturing facility.

Aspect	Description
	Pipeline route Based on Site topography, the depth of groundwater along the pipeline route is expected to be at depths between 2-3m below ground level based on the proximity to the open harbour environment. Groundwater within the Site area is assessed to be greater than the depth of proposed disturbance.
Surface Water	Main terminal Surface water at the main terminal Site is likely to infiltrate into Site soils or shed as runoff partly to Foreshore Road (south), partly to Port Kembla harbour (north) and partly into the adjacent open concrete lined drain (west). The open drain receives stormwater from upslope areas offsite and runs through the Ixom sulfuric acid plant as an open drain, and underground beyond, including through the former copper smelter land further upslope. Pipeline route
	Surface water runoff from the Site (pipeline route) is likely to shed from hardstand areas directly towards Port Kembla harbour. At asphalt paved areas (Chainage 320 to 460m), surface water runoff is expected to enter urban stormwater drainage pits and pipework prior to discharge at the harbour.
Contamination	 From previous investigations by SMEC (2021a, 2021b and 2022), contamination was identified in soils and groundwater beneath the site including: Soil recorded elevated concentrations of heavy metals (including lead and arsenic) within fill and underlying natural soils at four test locations (TP5, TP6, TP13,TP14 and TP23 – main terminal) and one test location (BH06 – pipeline route) exceeding human health investigation levels for the proposed industrial land use. Depths of contamination appeared to be within fill/natural clayey soils (typically between 1m bgl and 2.2m bgl) except at one location (TP13) where elevated lead concentrations were recorded within natural sand at a depth of at least 3.0 mbgl (TP13) suggesting deeper lead impact in this area. The results of two groundwater monitoring events in March and October 2021 recorded elevated concentrations of heavy metals (including cadmium, copper, lead, nickel and zinc) and ammonia which exceeded adopted groundwater investigation levels for protection of marine aquatic ecosystems at the 95% species protection level. Existing soil contamination issues at the Site will be managed under the Remedial Action Plan (ref: 30013038-R02, Rev 1, dated 06 May 2022). A standalone Groundwater Assessment and Management Report (<i>pending completion at time of this ASSMP</i>) is being prepared to address SEARs requirements and would include further details on a construction water quality monitoring programme be carried out to comply with the planning conditions and NSW Ports specific requirements (refer to Section 11 Water Quality and Stormwater of Port Kembla Development Code – June 2021).

2.4 Acid sulfate soils

Acid sulfate soil (ASS) materials are naturally occurring soil and sediment, distinguished from other soil or sediment materials by having properties and behaviour that have either:

- 1. Been affected considerably by the oxidation of Reduced Inorganic Sulfur (RIS) (principally the mineral iron pyrite), or
- 2. The capacity to be affected considerably by the oxidation of their RIS constituents.

The factor common to all ASS materials is that RIS components have either had, or may have, a major influence on the properties or behaviour of these soil materials. These soils are typically found in low-lying coastal areas and saline inland areas; however, they have been identified in a wide range of environmental settings.

Acid sulfate soil materials include Potential acid sulfate soils (PASS or sulfidic soil materials) and Actual acid sulfate soils (AASS or sulfuric soil materials). These are often found in the same profile, with AASS overlying PASS. In summary:

• Potential acid sulfate soils (PASS) are soil materials which contain RIS such as pyrite. The field pH of these soils in their undisturbed state is usually more than pH 4 and is commonly neutral to alkaline (pH 7–9). These soil

materials are invariably saturated with water in their natural state. Their texture may be peat, clay, loam, silt or sand and is often dark grey in colour and soft in consistence, but these materials may also exhibit colours that are dark brown, or medium to pale grey to white.

• Actual acid sulfate soils (AASS) are soil materials which contained RIS such as pyrite that have undergone oxidation. This oxidation results in low pH (that is pH less than 4) and often a yellow (jarosite) and/or orange to red mottling (ferric iron oxides) in the soil profile. Actual ASS contains Actual Acidity, and commonly also contains RIS (the source of Potential Sulfuric Acidity) as well as Retained Acidity (Ref: Sullivan *et al*, 2018).

2.5 Acid sulfate soil extent

2.5.1 Subsurface conditions

The subsurface soil conditions across the Site have been summarised by SMEC (2021a, 2021b and 2022) with five main lithological units, summarised below.

Unit 1	Fill, which is divided into the following main subunits – Unit 1A (Filling Cemented slag), Unit 1B (General fill) within the main terminal, Unit 1C (Stockpile fill) over the eastern portion, Unit 1D (Inferred location of PAH contamination) localised in the western portion. Along the pipeline route, fill consisted of topsoil, Unit 1A (Cemented slag) and Fill (variable)
Unit 2	Aeolian Sands consisting typically of poorly graded, fine to coarse grained sand with some black carbonaceous and dark grey clay laminations, moist to wet. Prior to land reclamation, these materials are inferred to have been deposited in a combination of beach and dune environments. This unit is inferred to be generally in a loose to medium dense condition.
Unit 3	Estuarine soils (sand and clay) high plasticity, firm and loose to medium dense, fine to coarse grained sand with some black carbonaceous and dark grey clay laminations, moist to wetter than the plastic limit. Estuarine clays were typically encountered as a relatively thin layer (typically less than 0.3m thick) from depths of 1.2m bgl, whereas estuarine sands were typically encountered beyond depths of 2.4 m bgl.
Unit 5	Residual Soil which is clay/gravelly clay/sandy clay derived from in-situ weathered latite. The consistency of this unit ranges from very stiff to hard. This unit tends to grade from residual soil to extremely weathered rock with increasing depth.

Unit 6 Extremely weathered rock, consisting of extremely to distinctly weathered Latite.

Appendix C includes copies of engineering logs prepared by SMEC from previous investigations. Previous investigation borehole/test pit locations are shown within Figure 2, Appendix A.

2.5.2 Previous ASS laboratory soil data

SMEC (2021a) previously carried out soil sampling and testing to assess the potential for ASS within two suspected units based on geological origin; Unit 2 (Aeolian sands) and Unit 3 (Estuarine soils). SMEC assumed that less than 500m³ of soils would be disturbed requiring a minimum of three boreholes to meet sample densities outlined in the National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual (Sullivan *et al*, 2018). SMEC carried out soil sampling for ASS from a combination of test pits and boreholes used during the geotechnical investigation. These included:

- 13 test pitting locations (including TP01 to TP08, TP010 to TP13) with sampling to depths up to 3.5m bgl
- 2 boreholes (BH5 and BH7) with sampling to depths up to 7.65m bgl for acid sulfate soil testing.

Soil sampling locations for ASS are shown on Figure 4, Appendix A. SMEC consider a sufficient number of sampling locations were carried out to assess the Site considering the expected scale disturbance (refer to Section 3.3.2). The findings showed ASS were present at the Site within relatively thin layers of natural estuarine soils beneath the fill.

SMEC (2021b and 2022) undertook Site investigations via boreholes/test pits without sampling for ASS, noting these included relevant observations of subsurface observations.

Table B1, Appendix B includes a copy of laboratory summary table for ASS test results. Soil analytical results were assessed against the criteria in Table 3-3. The results of Chromium Reducible Sulfur (S_{CR}) testing confirmed PASS were likely to be present within:

- A relatively thin estuarine layer (Unit 3) described as dark grey/grey sandy clay/clay, encountered within TP10 and TP13 at depths between 1.9-2.2 m bgl. A similar layer of dark coloured clayey soils (typically less than 0.3m thick) was also encountered but not sampled at similar depths in other test pits (including at least TP3, TP7, TP14 and TP27*). *TP27 was excavated during subsequent DSI (SMEC, 2021b).
- Deeper estuarine sand layers (Unit 3) described as pale grey, medium to coarse grained sand encountered within BH5 and BH7 at depths of 6.0-6.45m bgl and 7.2-7.65 m bgl. Relatively high acid neutralising capacity was noted within these sands, suggesting the potential ASS may be self-buffering. Acid neutralising capacity can only be taken into consideration where this measure has been corroborated by other data (for example, slab incubation data) that demonstrates the soil material does not experience acidification during complete oxidation under field conditions.

The upper natural layers inferred to be Unit 2 (Aeolian sands) in origin (described as pale brown, fine to coarse grained) were not considered to be ASS, noting concentrations of chromium reducible sulfur were negligible (typically below laboratory detection limits) and net acidity did not exceed action criteria.

Table 2-3 below presents the range of values recorded for the respective units.

Table 2-3 ASS analytical result ranges.

Unit	Titratable Actual Acidity (TAA) (moles H+/t)	Chromium Reducible Sulfur (S _{cR}) (%w/w S)	Net Acidity (excl. acid neutralising capacity) (moles H+/t)
Unit 2 (Aeolian)	<2	<0.005 – 0.01	<5 - 8
Unit 3 (Estuarine - clay)	<2 - 940	0.52 – 2.80	1270 - 1702
Unit 3 (Estuarine - sand)	<2	0.009 - 0.052	8 - 35

2.5.3 ASS Extent

SMEC (2021a) previously recommended that further consideration and management of ASS should be implemented during Site development where the above soils are to be intersected via excavation or if dewatering will occur which could lower the water table and expose soils to oxidation.

Due to the expected reduced scale of the soil earthworks (refer to Section 3.3.2), delineation of ASS lateral extents was not assessed as part of SMEC's preliminary investigation. For the purposes of this ASSMP, the inferred extents of ASS have been assessed from previous investigation findings as follows:

- Horizontally: Site wide within the extent of works
- Vertically: At depths greater than 1.2m below ground level (m bgl) within estuarine clays and sands (Unit 3). Previous survey shows the top of Unit 3 (Estuarine soils) is expected to be in the general range of about +1.2 mAHD to 0 mAHD.

Figure 4, Appendix A shows the previous soil test locations and depths where criteria were exceeded.

2.5.4 Groundwater

Baseline groundwater quality and levels were assessed at the main terminal Site during two previous groundwater monitoring events; one in March 2021 during the preliminary investigation (SMEC, 2021a) and an additional groundwater monitoring event in October 2021.

During one or both rounds, contamination laboratory testing of groundwater samples was carried out at three wells (OHMW28, OHMW20 and SMW01) for potential contaminants of concern and additional 'baseline' monitoring parameters including:

• Heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)

- TRH, BTEX, PAH Phenols
- OCP, OPP, PCB
- Volatile halogenated compounds (VHCs)
- Nitrogen (ammonia, nitrate, nitrite)
- Reactive phosphorus
- Hardness, Total Dissolved Solids (TDS)
- Major cations (calcium, magnesium, potassium, sodium)
- Major anions (chloride, sulphate and fluoride)
- Alkalinity
- Dissolved heavy metals (aluminium, arsenic, cadmium, chromium (total), copper, iron, lead, mercury, nickel, selenium and zinc)
- Total heavy metals (aluminium, manganese and iron)
- Per and poly fluoro alkyl substances (PFAS)

Table B2, Appendix B includes a laboratory summary table for groundwater samples.

Groundwater table drawdown can occur from excavation dewatering and affect ASS as they can be exposed to oxygen and oxidise. The following is noted relevant to this ASSMP:

- Field measurements (water level, pH, specific electrical conductivity, temperature, redox potential and dissolved oxygen) were undertaken during both rounds. Table 2-4 below includes a summary of relevant field measurements during both groundwater monitoring events
- During monitoring events, each groundwater well appeared to recharge relatively quickly during purging and sampling
- Relatively lower electrical conductivity (between 1890 and 2960µs/cm) was recorded within groundwater well locations SMW01 and OHMW28 as compared with relatively higher conductivity (between 14,224 and 22,800µs/cm) at OHMW20
- Depths to standing water level appeared relatively consistent between monitoring rounds, noting:
 - 10 March 2021: SWL recorded 2.07m bgl (SMW01), 2.38m bgl (OHMW20) and 1.77m bgl (OHMW28). No apparent odours or sheens were noted during groundwater development and sampling
 - 21 October 2021: SWL recorded 2.11m bgl (SMW01), 2.44m bgl (OHMW20) and 1.86m bgl (OHMW28). In October, a distinct 'rotten egg' odour was noted during sampling at OHMW20 and OHMW28.
- Field pH values were recorded between 6 and 7 and appeared to be consistent between monitoring rounds (change by less than 0.5 pH unit).

Table 2-4 Groundwater field measurements

Groundwater	Standing wa	pH - field	EC – field	
monitoring event	Depth (m bgl)	Depth (m AHD)		µS/cm
10 March 2021	1.77 to 2.38 m bgl	0.50 to 0.64 m AHD	6.46 to 6.82	2019 to 14,224 (OHMW20)
21 October 2021	1.86 to 2.44 m bgl	0.45 to 0.55 m AHD	6.38 to 6.75	1,890 to 22,800 (OHMW20)

2.6 Groundwater wells

Twelve existing groundwater monitoring wells are onsite (including six historic wells and six new wells installed by SMEC 2021-2022). Eleven wells appear to be still useable for monitoring and one well was damaged and partially buried on side of stockpile inside a drum (Figure 2, Appendix A). Where previous survey was carried out to some of the monitoring wells, a summary of survey details are summarised in Table 2-5 below.

Table 2-5 Summary of groundwater wells onsite

	Inferred			Reduced Level (m AHD)		
Well no.	monitoring well ID	Easting	Northing	Ground level	Top of well casing	Details
1	MW316 (note 1)	307769.09	6183022.99	2.54	2.46	Gatic well - Hex-key metal gatic flush with ground surface
2	MW5 (Note 2)	NS	NS	NS	NS	Gatic well – 'Older style' metal gatic flush with ground surface
3	OHMW28 (Note 3)	307778.51	6182987.64	2.41	3.09	Monument Well
4	ID Unknown (Note 4)	307814.26	6183015.20	2.66	3.28	Monument Well
5	OHMW20 (Note 3)	307832.75	6183030.30	2.89	3.89	Monument Well
6	<i>MW Damaged</i> (Note 4)	307826.72	6183045.32	3.31	Not surveyed	Monument Well – Well damaged and partially buried on side of stockpile inside drum
7	SMW01	307771.69	6183048.65	NS	3.33	Monument Well
8	SMW02	307889.38	6183043.42	NS	3.63	Monument Well
9	SMW03	307881.90	6183114.52	NS	3.78	Monument Well
10	SMW04	307848.12	6183124.30	NS	3.61	Monument Well
11	SMW05	307825.76	6183134.07	NS	3.58	Monument Well
12	SMW06	307734.25	6183055.70	NS	4.17	Monument Well

Note 1: Well location MW316 was labelled on the well cap, noting this location was not formerly shown on historical monitoring reports.

Note 2: Well locations MW5 was inferred from were inferred from maps within contamination assessment (CMPS&F, 1996).

Note 3: Well location OHMW28 and OHMW20 were inferred from maps within historical groundwater monitoring report (DP, 2009 and SLR, 2011).

Note 4: Remaining well identification remains unknown.

NS - Not surveyed

Gatic well = well finished level with ground surface with a steel gatic type cover

Monument well = well finished above ground surface with a steel monument

3. Environmental Activities, Impacts and Risks

3.1 Proposed development

3.1.1 Main terminal

Manildra propose to lease and redevelop the Site into an ethanol storage facility. Based on information provided by Manildra, the proposed development is expected to comprise:

- Six above ground storage tanks (2.5ML to 5ML capacity for beverage grade alcohol) located inside a raised bunded area, plus two slops tanks
- Demolition of existing bridge and construction of one new proposed bridge crossing over the adjacent stormwater channel to the west, to connect to a service road with Foreshore Road
- A gravity retaining wall installed along the boundary with the stormwater channel (approx. 295m²) including either side of the proposed bridge. A second possible gravity retaining wall will be installed along the western Site boundary adjacent to the adjoining sewer pump station (offsite)
- New stormwater network including pipework, underground storage tank, two stormwater treatment devices and outlet structures
- Perimeter roadways/pavements
- Firefighting system including foam suppressant system and water supply tanks
- Ancillary features such as substation, workshop and sheds which would be small and single storey.

Figure 2, Appendix A shows the approximate position of proposed Site development features relative to the Site boundaries.

Appendix D includes a copy of the Site plan drawings showing the proposed layout of the development relative to the Site boundaries. Manildra supplied SMEC with a current set of 'tender only' design drawings (20399-C00 to C17, C20 and C21, dated 22/11/2021) prepared by TFA Group Pty Ltd. Relevant details pertaining to earthworks activities are summarised below:

- Site grading and drainage plan (20399-C02 & C03) A network of proposed stormwater pipework will be
 installed within linear trenches excavated beneath the ground surface (approximately 0.5m wide by 1m deep).
 Localised deep excavations are expected for two stormwater treatment devices (estimated 2.5m x 2.5m x 2m
 deep) will be installed prior to discharge outlets, and an underground storage tank (8m length x 3m diameter)
 will be installed near the entrance noting depths are expected to be approximately 4.5m below the existing
 ground level (refer to Figure 5, Appendix A). An open diversion swale would be constructed west of the
 proposed service road (minimum depth 0.4m deep, including gravel).
- Site pavement plan (20399-C11 and C12) The Site will comprise mostly paved surfaces including vehicle pavements (heavy and light), structural slabs and bund flooring, spray seal driveway/road, and gravel hardstand layer across the remaining areas of the Site. A narrow strip of land will comprise a landscaped area (approx. 700m²) along the southern boundary of the Site adjacent to Foreshore Road.
- Site retaining wall plan (20399-C20 & C21) A gravity retaining wall will be installed along the boundary with the stormwater channel (approx. 220m length) including either side of the proposed bridge and adjacent to the adjoining sewage pumping station lot (refer to Figure 5, Appendix A). Gravity retaining walls will involve linear trench excavation of concrete footing with dimensions (continuous approximately 1.3m wide by 1.0m depth below existing ground level, with multiple concrete backhoe piers 0.45m wide by 2.0m depth below existing ground level).
- Bulk earthworks plan (20399-C07) Site recontouring will require bulk earthworks activities involving cut (approx. 2,400m³) and fill (approx. 3,400m³) with the 1,000m³ balance to be sourced as imported fill or locally site-won from existing stockpiled material. On the western side of the stormwater channel, earthworks will include shallow 'cut' to 'fill' across the width of the service road portion, a proposed diversion swale and harbour foreshore access ramp, without disturbing remaining unoccupied areas within the Site. Figure 3-1 below shows the approximate layout cut (red) to fill (green).

SMEC understand that timber driven piles will be used for foundations of the tank structures. Except for minor disturbances at the surface, these are expected to result in minimal ground disturbance as soils are displaced laterally to accommodate the pile.

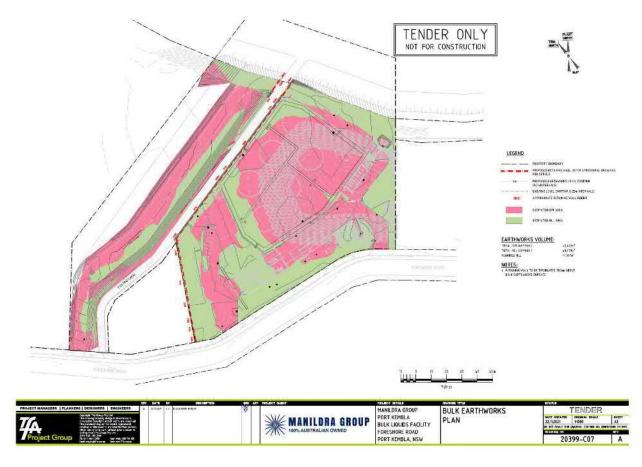


Figure 3-1 Bulk earthworks plan (Drawing ref: 20399-SK108_B, dated 31.08.21 prepared by TFA Group Pty Ltd)

3.2 Pipeline route

The Site boundary extends to the east of the main terminal along a 4m wide easement for construction of a new pipeline route connecting to existing Jetty No. 4, including a parcel of land within Part of Lot 2 DP 1182823 owned by Transport for NSW (TfNSW).

Appendix D includes a copy of the Site plan showing the proposed layout of the development relative to the Site boundaries. Based on the current set of design drawings (20399-DA-P01 to P05, dated 10 March 2022) prepared by TFA Group Pty Ltd., the pipeline route would consist of:

- Approximately 180m above-ground pipeline mounted on footings between the main terminal (Chainage 0m) and a dive thrust block (Chainage 180m). Along this portion, shallow foundation excavations are anticipated to be 1.0m deep (each 0.4m wide x 1.0m length) at regular intervals (roughly every 5-6m spacing)
- Approximately 280m underground pipeline between dive thrust block (Chainage 180m) and Jetty No. 4 (Chainage 460m) Trench excavations are anticipated to be 1.8m deep by 2.0m wide. Installation is expected to involve 'cut and cover' trenches reusing materials excavated during backfill (minimum 1.2m compacted backfill) and removal of surplus spoil material for reuse/containment within main terminal.

Figure 2, Appendix A shows the proposed layout of the pipeline route (including marking of Chainage 0 to 460m) relative to the Site boundaries.

3.3 Construction Details

3.3.1 Construction Activities

The Project's construction activities can have a direct impact on the environment and can contribute to a larger environmental change.

SMEC consider that the main development activities which could impact upon ASS are localised deep excavation for installation of stormwater features and linear excavation for installation of stormwater utilities.

3.3.2 Expected areas and scale of ASS disturbance

SMEC consider the following expected areas and scale of ASS disturbance based on preliminary drawings provided by Manildra:

- Three localised deeper excavations up to 4.5 m bgl for installation of stormwater treatment devices and an underground storage tank are likely to extend into Unit 3 (Estuarine soils). Based on information supplied to SMEC, preliminary estimated dimensions for excavations include:
 - Excavation 1 Proposed stormwater treatment unit (approximately 3m x 3m x 4.5m depth)
 - Excavation 2 Proposed stormwater treatment unit (approximately 3m x 3m x 4.5m depth)
 - Excavation 3 Proposed underground storage tank (approximately 10m x 5m x 4.5m depth).
- Multiple linear excavations up to 2 m bgl allowing for installation of gravity retaining wall foundations and underground stormwater pipework. Based on information supplied to SMEC, preliminary estimated dimensions for excavations include:
 - Gravity retaining wall excavation Linear trench excavation (approx. 220m) of concrete footing with dimensions (continuous approximately 1.3m wide by 1.0m depth below existing ground level, with multiple concrete backhoe piers 0.45m wide by 2.0m depth below existing ground level)
 - Stormwater pipework Linear trench excavation (approx. 600m) are anticipated to be 0.5m wide by 1m depth below existing ground level. Installation is expected to involve 'cut and cover' trenches reusing materials excavated during reburial, excluding surplus spoil material.
- The Bulk Earthworks Plan (Drawing 20399-C07, refer to Appendix D) provided by Manildra show the estimated cut to fill areas during site recontouring, noting the cut depths remain to be confirmed. Based on discussions with Manildra, it is understood the depths are unlikely to extend below 1 m bgl and are therefore unlikely to extend to depths that would intersect ASS. The management measures in this ASSMP would be adopted as a contingency should this occur in relatively localised areas.
- SMEC consider ASS intersected by timber driven piles (bridge and tanks) or steel posts (retaining walls) are not expected to be brought to the surface or require management.

Figure 5, Appendix A shows the indicative locations of deeper excavations. Disturbed spoil containing ASS are expected to be generated from these excavations which are required to be managed. For the purposes of management, it is estimated that the scale of ASS disturbance will be less than 1000 tonnes.

Other activities associated with excavations if they were to intersect ASS, such as ASS loading, transportation and storage and stockpiling, has the potential to generate acid leachate runoff if not properly managed.

Project areas which disturb ASS require management of all disturbed soils in accordance with the procedures outlined in this management plan.

3.3.3 Identifying ASS

In the context of the Site, soils that have previously been identified as ASS are referred to as Unit 3 (Estuarine Soils) in line with the previously developed geological model. Both Estuarine clay and sand will be classified as suspected ASS.

Typically, AASS and PASS would appear as indicated in the photos below from eastern Australian estuarine finegrained soils. Selected actual site photographs from previous test pit investigations are also included in Photo 3-1 to Photo 3-6.

Actual ASS (pH <4.0)

Potential PASS (pH >4.0)

Environmental Activities, Impacts and Risks

Photo 3-1 TP13 – Dark grey sandy clay Unit 3 (Estuarine) layer observed at 2.0-2.2m

Photo 3-2 TP13 – Dark grey sandy clay Unit 3 (Estuarine) layer observed at 2.0-2.2m

Photo 3-3 TP14 – Dark grey sandy clay Unit 3 (Estuarine) layer observed at 1.2-1.4m

Photo 3-4 Example of dark grey clayey sand Unit 3 (Estuarine soils) approximately greater than 2.2 m bgl.

Photo 3-5 Example of dark grey clayey sand Unit 3 (Estuarine soils) approximately greater than Unit 1 (fill) and soils) approximately greater than 2.4 m bgl. Unit 2 (Aeolian) layers sand

To supplement preliminary results and visual indicators, field pH screening may also be carried out to assist identifying ASS. The field screening procedure should be carried out as per Appendix A of the National Acid Sulfate Soil Guidance – National Acid Sulfate Soils Sampling and Identification Methods Manual (Sullivan *et al*, 2018). Table 3-1 and Table 3-2 provide guidance on the interpretation of results sourced from Sullivan *et al*, 2018.

Table 3-1 Interpretation of pHF Ranges

pH Value	Result	Comments
pHF ≤ 4, jarosite not observed in the soil layer/horizon	May indicate an AASS indicating previous oxidation of RIS or may indicate naturally occurring, non-ASS soils	Generally, not conclusive as naturally occurring, non-ASS soils, such as many organic soils (for example peats) and heavily leached soils, often also return pHF \leq 4
pHF ≤ 4, jarosite observed in the soil layer/horizon	The soil material is an AASS	Jarosite and other iron precipitate minerals in ASS such as schwertmannite require a pH < 4 to form and indicate prior oxidation of RIS
pHF > 7	Expected in waterlogged, unoxidised, or poorly drained soils	Marine muds commonly have a pH > 7 which reflects a seawater (pH 8.2) influence. Oxidation of samples with H_2O_2 can help indicate if the soil materials contain RIS

Table 3-2 Interpretation of pH_{FOX} Results

pH Value and Reaction	Result	Comments
Strong reaction of soil with H_2O_2	Useful indicator of the presence of RIS but cannot be used alone	Organic rich substrates such as peat and coffee rock, and soil constituents like manganese oxides, can also cause a reaction. Care must be exercised in interpreting these results. Laboratory analyses are required to confirm if appreciable RIS is present
pHFOX value at least one unit below field pHF and strong reaction with H ₂ O ₂	May indicate PASS	The difference between pH_F and pH_{FOX} is termed the ΔpH . Generally, the larger the ΔpH the more indicative of PASS. The lower the final pH_{FOX} the better the likelihood of an appreciable RIS content. For example, a change from pH_F of 8 to pH_{FOX} of 7 (that is a ΔpH of 1) would not indicate PASS, however, a unit change from pH_F of 3.5 to pH_{FOX} of 2.5 would be indicative of PASS. Laboratory analyses are required to confirm if appreciable RIS is present
pHFOX < 3, large Δ pH and a strong reaction with H2O2	Strongly indicates PASS	The lower the pH _{FOX} below 3, the greater the likelihood that appreciable RIS is present. A combination of all three parameters – pH _{FOX} , Δ pH and reaction strength – gives the best indication of PASS. Laboratory analyses are required to confirm that appreciable RIS is present
A pH _{FOX} 3–4 and Low, Medium or Strong reaction with H2O2	Inconclusive	RIS may be present; however, organic matter may also be responsible for the decrease in pH. Laboratory analyses are required to confirm the presence of RIS
pH _{FOX} 4–5	Inconclusive	RIS may be present in small quantities, or poorly reactive under rapid oxidation, or the sample may contain shell/ carbonate which neutralises some or all acid produced on oxidation. Equally, the pH_{FOX} value may be due to the production of organic acids with no RIS present. Laboratory analyses are required to confirm if appreciable RIS is present
pH _{FOX} > 5, small or no ΔpH, but Low, Medium or Strong reaction with H2O2	Inconclusive	For neutral to alkaline pH_F with shell or white concretions, the fizz test with 1 M HCl can be used to identify the presence of carbonates. Laboratory analyses are required to confirm if appreciable RIS is present and further testing is required to confirm that effective self-neutralising materials are present

Whilst field screening can be used as a guide, laboratory analysis should be carried out if there is ambiguity, is strongly recommended and required to verify screening results.

Table 3-3 provides the texture-based action criteria that laboratory samples are scrutinised against to determine the requirement for management of spoil material. Where soils containing concentrations at or above the action criteria are disturbed, management of spoil is required. As this project is expected to disturb spoil less than 1,000 tonnes, the two left hand columns should be used.

Table 3-3 Action criteria based on texture and volume of material disturbed

Type of Material			Criteria es disturbed	Action Criteria > 1000 tonnes disturbed		
	Approx.	Net Acidity*	Net Acidity*			
Texture range (McDonald et al. (1990)	clay content (%)	Sulfur trail Net acidity % S-equiv	Acid trail mol H+/tonne	Sulfur trail % S-equiv	Acid trail mol H+/tonne	
Fine light medium to heavy clays	> 40	≥ 0.10	≥ 62	≥ 0.03	≥ 18	
Medium clayey sand to light clays	5-40	≥ 0.06	≥ 36	≥ 0.03	≥ 18	
Coarse and Peats sands to loamy sands	<5	≥ 0.03	≥ 18	≥ 0.03	≥18	

Table Notes:

*All net acidity values are on oven dried basis and exclude acid neutralising capacity unless this measure has been corroborated by other data, for example slab incubation data

Source: Sullivan et al, 2018

A suitably experienced environmental consultant should be involved in the project to assist the Contractor identify ASS.

3.4 Construction Environmental Impacts

ASS occur within the Project footprint. The potential impacts from ASS if they are not managed may include:

- Generation of acidity from ASS disturbance
- Export of existing acidity upon disturbance and wetting
- Generation of low pH waters (surface water and groundwater) and potentially elevated dissolved metals
- Impacts on sensitive environments (flora and fauna)
- Potential for soil structural decline
- Potential for infrastructure decline due to aggressivity to structures (corrosion etc)
- Site owner perceptions of the project.

The following sections outline the Project activities during construction that have the potential to impact on ASS in the Site. Management procedures have been developed in order to mitigate these potential impacts and are outlined in Section 4.

3.4.1 Excavations

Deeper excavations up to 4.5m bgl such as proposed stormwater treatment devices (Excavation 1 and 2) and an underground storage tank (Excavation 3) could intersect ASS (locations shown on Figure 5, Appendix A). There is also potential for networks of linear trench excavations during installation of some stormwater pipework and backhoe piers used to found the gravity retaining wall to intersect ASS (refer to drawing in Appendix D). Site recontouring will involve sitewide shallow excavation (typically less than 1m bgl) and therefore intersecting ASS is unlikely.

Potential impacts of excavations due to ASS materials include:

- Excavation of ASS with the immediate ability to export acid and potentially dissolved metals upon wetting
- Excavation of PASS with the potential to generate acid upon exposure to oxygen and acidify
- Exposure of the cut faces of excavations to oxygen and water that may generate additional acidity or mobilise existing acidity
- Water quality reduction due to acid spikes and elevated dissolved metal concentrations
- Long term water quality issues (low pH, elevated total acidity, soluble sulfate, insoluble iron hydroxides and metals, principally AI, Fe, Mn and Zn). This especially applies to shallow drainage cut into ASS. Aesthetically, drains and water appear unclean and stagnant
- Seepage of affected water into the shallow groundwater which may affect a larger initial area of disturbance
- Shallow dewatering for leachate drains, box culverts and discharge of potentially acidic water into adjacent surface
 water bodies
- Associated water quality impacts on sensitive receptors (flora and fauna)
- Increased aggressivity towards concrete and steel structures that water flows against, and soil sits against. Steel would corrode quicker and the bonding of cement would break down faster to show underlying aggregate and possibly weaken structures over time.

3.4.2 Dewatering

Dewatering would be required for installation of the underground storage tank (Excavation 3) which occurs below groundwater levels (refer to Figure 5, Appendix A). This excavation is expected to be approximately up to 4.5m below the existing ground level, noting standing water levels are expected 1.8 m bgl based on previous groundwater monitoring near this proposed excavation. Dewatering would be required to be relatively 'short term' to facilitate excavation, installation/commissioning and backfilling following initial excavation to base depth (estimated between 2-5 days subject to confirmation of installer methods and requirements). Based on discussions with Manildra, temporary shoring/retention of the deep excavations would include sheet piles to reduce the groundwater ingress flowrate and reduce the effects of dewatering to a reduced radius of influence.

A dewatering strategy for Excavation 3 is currently being prepared as part of the Groundwater Assessment and Management Report (*pending completion at the time of this ASSMP*). Manildra has indicated a preliminary estimated duration for each excavation is between 2-5 days (subject to confirmation of installer methods and requirements). The dewatering strategy includes modelling to assess the radius of influence based on proposed rate of dewatering, characteristics of the surrounding aquifer and the required depth of sheet piling to minimise effects of groundwater drawdown in areas surrounding the excavation. Dewatering via 'sump and pump' techniques for relatively short duration are likely to be used, as compared to alternative dewatering techniques.

Dewatering is unlikely to be required for remaining installations of gross pollutant traps (Excavation 1 and Excavation 2) which occur below groundwater levels, noting these will be installed as 'wet installations' without the need for dewatering. Stormwater pipework excavations are not expected to extend below groundwater levels and do not require dewatering.

Potential impacts of dewatering are similar to those described for 'Excavations' (Section 3.4.1) along with the following additional items:

- Draw down of groundwater table below depths of PASS with the potential to generate acid upon exposure to oxygen and acidify
- Uncontrolled discharges of extracted groundwater via stormwater drains affecting surface water quality.

The following is noted in relation to ASS impacts:

- Unit 3 (Estuarine soil) clays/sandy clay were typically encountered at depths greater than 1.2m bgl, as compared to Unit 3 (Estuarine soil) sand encountered typically at depths below 2.4 m mbgl. Clayey soils have a reduced potential to oxidise upon dewatering, as compared to sandy soils (for short term dewatering). The National Acid Sulfate Soils Guidance states 'Sandy soil materials have traditionally been considered to pose a higher risk to soil water and groundwater than clays. This has been largely due to the ability of sands to dewater and oxidise quicker than clays, as well as less buffering capacity if the sands are clean and free of clays and especially carbonate.' (Shand P. et al, 2018, p9)
- Groundwater ingress flowrates are expected to flow rapidly through permeable sandy soils based on previous investigation observations during test pitting and soil types consisting of mainly coarse-grained sandy materials (SMEC, 2021a, 2021b).

Further mitigation and management measures are proposed to manage groundwater drawdown and its effect on nearby ASS (refer to Section 4.5). A construction water quality monitoring programme during dewatering is proposed consistent with National Acid Sulfate Soils Guidance (Sullivan et al 2018c) (refer to Section 4.5).

SMEC note that if retention systems such as sheet piles that limit impacts from drawdown are not used, then to address impacts of deeper dewatering, a further assessment of the implications of dewatering on ASS would need to be carried out. Where the results of assessment indicate further control measures beyond those described in this ASSMP, then an addendum will be required.

4. ASS Management Procedures

4.1 ASS Management Hierarchy

The management associated with projects located within ASS can be grouped into eight key principles described in Table 4-1.

Table 4-1 ASS Hierarchy

Principle Item	Summary of Principle
1	The disturbance of ASS should be avoided wherever possible.
2	 Where disturbance of ASS is unavoidable, preferred management strategies are: Minimisation of disturbance Neutralisation Hydraulic separation of sulfides either on its own or in conjunction with dredging Strategic reburial (re-interment). Other management measures may be considered but must not pose unacceptably high risks.
3	Works should only be performed when it has been demonstrated that the potential impacts of works involving ASS are manageable to ensure that the potential short- and long-term environmental impacts are minimised.
4	The material being disturbed (including in situ ASS) and any potentially contaminated waters associated with ASS disturbance, must be considered in developing a management plan for ASS and/or complying with general environmental due diligence.
5	Receiving marine, estuarine, fresh or brackish waters are not to be used as a primary means of diluting and/or neutralising ASS or associated contaminated waters.
6	Management of disturbed ASS is to occur if the ASS Action criteria is exceeded or reached.
7	Stockpiling of untreated ASS above permanent ground water table with (or without) containment is not an acceptable long-term management strategy. For example, soil that is to be stockpiled, disposed of, used as fill, placed as a temporary or permanent cover on land or in waterways, sold or exported off the treatment site or used in earth bunds, that exceed the Action Criteria should be treated and managed.
8	 The following issues should be considered when formulating ASS management strategies: The sensitivity and environmental values of the receiving environment. This includes the conservation, protected or other relevant status of the receiving environment (e.g. Fish Habitat Area, Marine Park, or protected/threatened species) Whether ground waters and/or surface waters are likely to be directly or indirectly affected The heterogeneity, geochemical and textural properties of soil on site The management and planning strategies of local government and/or state government, including Regional or Catchment Management Plans/Strategies and State and or Regional Coastal Policies/Plans.

The following sections provide environmental management measures to limit adverse impacts to the environment from disturbance of ASS. Disturbed ASS is proposed to be managed through neutralisation.

These mitigation and management measures would be further developed by the Principal Contractor and incorporated into their Construction Environmental Management Plan (CEMP), as required based on their specific works. Further onsite technical advice in relation to previous sampling locations, sample depths and results would be provided by the Environmental Consultant during construction works.

4.2 Excavations

Where excavations occur within or near the inferred extent of ASS, the following steps would be undertaken:

• Identify the location of disturbance against sampling locations and results

- Determine and document the construction activity, maximum depth of excavation and controls
- Determine approximate volume of materials that may be disturbed
- Carry out field screening and/or additional testing as required to confirm ASS extents
- Determine the liming rates required to neutralise all disturbed ASS materials
- To mitigate the impacts on the receiving waterways:
 - Excavations that could intersect ASS should be avoided during/after wet weather conditions when surface water acidity issues may be exacerbated
 - Soil cuttings generated from the excavations should be contained within the vicinity of the excavation
 - Water generated from dewatering the excavations should be contained to prevent runoff into creeks and drainage lines.
- Collect all excavated ASS impacted materials and place in a containment area for treatment
- Apply aglime to temporary excavated faces if ASS is likely to be left exposed, at a rate of 5kg/m² to limit acid generation. NB Not applicable for excavations where sheet piles are used
- Monitor any pooled water within the excavation for acidity issues daily is required. Monitoring for water quality parameters should include pH, Electrical Conductivity (EC), Dissolved Oxygen (DO) and turbidity
- Treat any water with acidity issues at rates indicated in the CEMP
- Monitor the disturbed area for any acidity issues.

4.3 ASS Treatment Pad

Due to the scale of excavations, the quantities of disturbed ASS are not expected to exceed 1000 tonnes. For treatment of large volumes of material (>1000 tonnes), neutralisation would be carried out on a designated treatment or liming pad.

All excavated ASS would be stockpiled in a low permeability bunded area capable of containing all materials and associated leachate that may be produced either by seepage (drying) or rainfall.

In summary, the following stockpile construction elements would be implemented:

- Stockpiles would be placed away from creek lines, flow lines, and any other type of water body
- A low permeability dense clay with minimal sand and coarse materials would be used for bunding and base materials
- Clay would be compacted to reduce permeability further and must be a minimum 0.5m thick (compacted)
- A base layer of >80-micron plastic sheeting or geo synthetic may be used to reduce permeability when suitable fill is unavailable. Alternatively, the base layer may consist of existing hardstand gravel (cemented slag), asphalt or concrete pavements where available
- Bunds must be high enough to contain all materials stockpiled and leave some room at the base for leachate to collect and drain to a low point, discharge point (sump) or attached holding pond
- Where ASS will remain permanently at its treatment location, a 'guard layer' of lime should be applied. The minimum guard layer rate beneath any treated-in-place ASS will be 5kg fine aglime per m² per vertical metre of fill. Where the highest detected sum of existing and potential acidity is more than 1.0% S-equivalent, the rate will be at minimum 10 kg fine aglime/m³.

A schematic cross-section of a treatment pad, including a compacted clay layer, guard layer, leachate collection system and containment with bunding is provided in Figure 4-1 and Figure 4-2.

The sketches provided are examples only. Other methods of containing and treating materials may be viable. In all cases, no untreated and monitored leachate should escape the stockpiling area and the placement of the treatment area would be on high ground with minimal potential for run-off into the area. Due regard for sensitive receptors and environmental risk would also be accounted for in design, transport and placement.

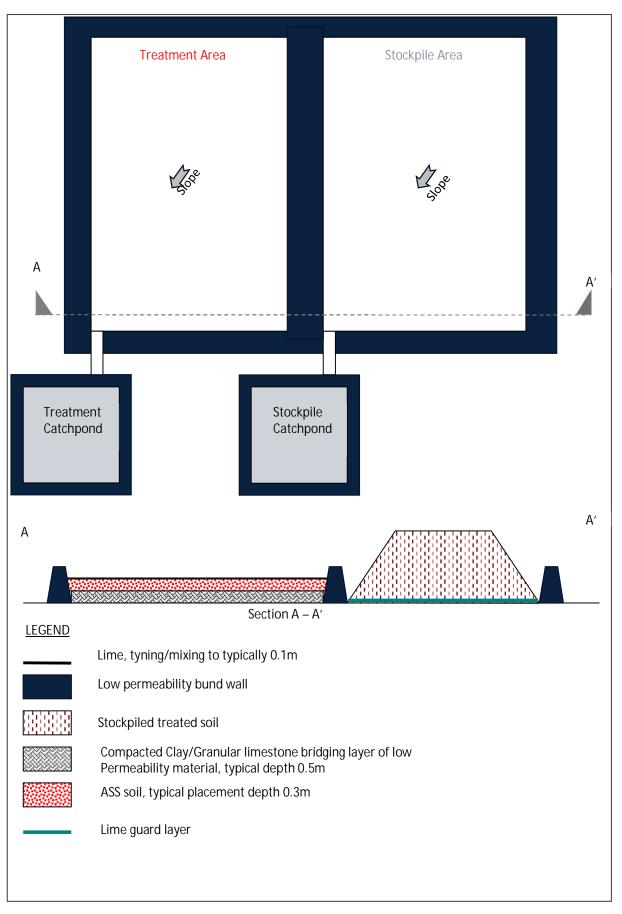


Figure 4-1 Treatment pad design with treatment area and stockpile area

Client Reference No. 30013038-R03 SMEC Internal Ref. 30013038 6 May 2022

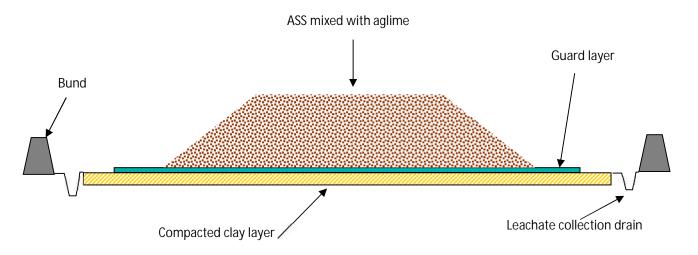


Figure 4-2 Cross section of land applied lime amended ASS

Examples of bunded treatment area for ASS and lime application Ref: Dear et al (2014)

4.3.1 Temporary Stockpiling

Short to medium term stockpiling of ASS would only be undertaken when transport to or treatment in the treatment area is not possible. In this case, stockpiling would be in accordance with Table 4-2.

Table 4-2 Stockpiling of ASS material (Ref: Dear et al (2014)

Type of Material		
Texture Range	Approx. Clay Content (%)	Maximum Duration of Stockpiling Prior to Treatment
Coarse Texture (sands to loamy sands)	<5	Overnight (18 hours)
Medium Texture (sandy loams to light clays)	5-40	2 nights (42 hours)
Fine Texture (medium to heavy clays and silt clays)	>40	3 nights (e.g. weekend – 66hrs)

4.3.2 ASS Neutralisation and Liming Rates

Soils assessed to be ASS which are excavated will require treatment with pure fine lime (CaCO₃) at a calculated liming rate. A mixing method that achieves thorough homogeneous mixing of the lime through the soil is to be employed at the Site which may include use of pug mill, special mixing attachments on excavators, rotivators or similar. Where soil

types are not amenable to these methods, mixing of lime by rigorous turning/mixing with an excavator until complete mixing is achieved can be utilised, but not preferred.

Careful tracking of materials is required with clearly designated storage areas defined as follows:

- Storage area for untreated materials A designated area where materials are stockpiled awaiting treatment (if such area is required)
- Treatment area A designated area to which materials will be mixed with lime
- Quarantine area A designated area where materials have been mixed with lime and awaiting validation results.

Preliminary liming rates were assessed based on site specific data obtained during the preliminary investigation (SMEC, 2021a). The liming rate assessment was based on the following:

- The amount of lime to be added was assessed based on the results of laboratory analysis (refer to Table B1, Appendix B) taking into consideration existing acidity, potential acidity, retained acidity, but excluding any existing acid neutralising potential. A minimum factor of safety of 1.5 was applied.
- For disturbances less than 1000 m³, the highest Net Acidity detected at the Site was used to calculate the amount of neutralising material needed.
- Aglime rate was calculated as per below:

$$Liming \ rate \ \left(\frac{kg \ Lime}{m^3}\right) = \ \frac{A \ \left(\frac{molH^+}{tonne}\right) x \ B \ \left(\frac{tonnes}{m^3}\right) x \frac{100}{NV} x \ FOS}{C \ \left(\frac{molH^+}{kg}\right)}$$

Notes:

- A = net acidity (includes retained acidity, but excludes any pre-existing neutralising capacity unless this measure has been corroborated by other data, for example slab incubation data)
- B = bulk density
- NV = Neutralisation value of the Aglime (min. 95)
- FOS = factor of safety (min. 1.5)
- C = Neutralising capacity of lime = 19.98mol/kg (assumes fine grained agricultural lime).

SMEC consider the calculated treatment liming rate would be 228kg lime /m³ for neutralising the Unit 3 (estuarine soils) excavated based on the following calculation inputs:

- Maximum net acidity (excluding acid neutralising capacity) of 1702mH⁺/t (equiv. 2.80 %S)
- Assumed soil bulk dry density 1.7t/m³ (assumes clay)
- Use of fine-grained agricultural lime with a min. 95% neutralising capacity
- Factor of safety 1.5.

If anticipated disturbed volumes are likely to significantly increase beyond current estimates, then further testing of soils to refine lime rates could be carried out.

4.3.3 Verification Testing

To verify that appropriate quantities of lime have been used during treatment, the following will be carried out:

- A lime register will be maintained by the Contractor. The register will list the amount of lime delivered to the site (verified by delivery dockets), and where/when the lime has been used.
- Verification testing should be carried out by an experienced ASS consultant and comprise the following:
 - Collection of 1 sample per 250m³ per stockpile/treatment batch, with a minimum of 2 samples if <250m³
 - Each sample is to be made from a composite of six individual samples to obtain better representation covering a grid across the stockpile/batch at varying depths

- Samples to be tested using the S_{CR} suite with full acid base accounting including retained acidity.
- Treatment batch sizes will be treated and verified according to the following:
 - The first batch of soil treated should be say no larger than 50m³ to trial the treatment process and verification
 - Based on the anticipated soil volume, subsequent batches should be verified at volumes of say no larger than 250m³.
- Soils will be deemed to have been adequately neutralised when:
 - pH_{KCl} ≥ 6.5
 - The Verification Net Acidity is less than zero, calculated as per below:

Verification Net Acidity = Potential sulfidic acidity + Actual Acidity + Retained Acidity – (post treatment Acid Neutralising Capacity – initial Acid Neutralising Capacity)

- Verification results should be checked for compliance. If compliance is not achieved, then the material will require additional lime neutralisation along with verification testing
- Earthworks processes may require adjustment to suit the requirements of processing and treatment of ASS
- A validation report is to be prepared and provided confirming soils have been adequately neutralised in accordance with this plan and demonstrated through the validation sampling results.

4.4 Reuse of treated ASS

Treated and verified material can be used on site as fill, subject to the material being:

- Geotechnically suitable for the intended use
- Suitable from a contamination perspective (see note 1)
- Placed above the water table (typically greater than 1.5 mbgl)
- Placed greater than 50m away from any receiving drainage or surface water feature unless approved otherwise by a suitably qualified environmental consultant.

Note 1: Treated ASS to be reused onsite within proposed 'fill' areas may also be contaminated and requires further management measures and validation as outlined within the Remedial Action Plan (ref: 30013038-R02, dated 6 May 2022). Should the treated ASS be validated suitable for reuse from a contamination perspective, then material may be reused onsite within proposed 'fill' areas.

Any offsite disposal should be carried out in accordance with guidelines applicable at the time, such as the NSW EPA (2014) Waste Classification Guidelines: Part 1 Classifying Waste and NSW EPA (2014) Waste Classification Guidelines: Part 4 Acid Sulfate Soils.

A soil tracking system is to be established to manage the movement of neutralised ASS. It may be important in future to be able to have clear documentation about areas of the Site where neutralised ASS have been used and areas where they have not been used. This may be particularly important if at a later stage during development, some soils require excavation (e.g. footings, services etc) as this will affect classification for offsite disposal.

4.5 Water in excavations

If rainwater accumulates within the excavation prior to the completion of remedial works, this will be disposed offsite appropriately which may include:

- Disposal via a licensed liquid waste contractor to an appropriate facility
- Disposal to stormwater under relevant guidelines and approval from Council or relevant Authority with any supporting testing and monitoring requirements.

All waste tracking and disposal dockets will be kept for inclusion in the validation report.

Groundwater ingress into deep excavations (Excavations 1 and Excavation 2) will not be removed noting high permeability sandy soils. The exception is for Excavation 3 where a dewatering strategy will be implemented as outlined in Section 4.6.

4.6 Dewatering

4.6.1 Approvals and licencing

A dewatering strategy would be implemented as documented within the Groundwater Assessment and Management Report (*pending completion at time of this ASSMP*) to be prepared to address SEARs requirements.

Dewatering activities should be carried out in accordance with the planning approval conditions. Details of proposed dewatering activities should be documented within the CEMP.

Dewatering activities are unlikely to trigger a need for licence/permits considering the anticipated construction dewatering volumes. WaterNSW website states construction dewatering may trigger the need for a water access licence (WAL), unless an exemption applies. The WaterNSW factsheet *Water access licence exemption for aquifer interference activities taking 3ML or less of groundwater per year*, Factsheet 250920 (copy in Appendix E) further outlines when a small volume of groundwater may be taken through certain aquifer interference activities without the need for a water access licence.

4.6.2 Dewatering

This ASSMP considers dewatering activities would be required at Excavation 1 as discussed in Section 3.4.2 noting potential impacts to ASS of groundwater drawdown would be minimised, subject to dewatering strategy (pending completion at time of this ASSMP).

The dewatering should be carried out in general accordance with mitigation and control measures outlined in the National Acid Sulfate Soils Guidance (Shand, P *et al.* 2018) Guidance of the dewatering of acid sulfate soils in shallow groundwater environments (Shand P. et al 2018).

In consideration of the potential impacts of dewatering (refer to Section 3.4.2), the adopted control measures proposed during dewatering include:

- Temporary shoring/retention below the groundwater table using sheet piling to required depth (assessed by the dewatering strategy), restricting groundwater ingress flowrates into the excavation.
- Dewatering activities to occur using a submersible 'pump and sump' for required duration only (i.e. to facilitate excavation, installation/commissioning and backfilling) prior to allowing water levels to return to original levels within the deep excavation. This may be achievable for relatively 'short term' installation of underground storage tank (i.e. estimated between 2-5 days), and subject to scheduling of installation materials and labour. This would potentially reduce the overall volume of dewatering required, limiting groundwater drawdown and its effect on nearby ASS.
- Discharge water into specific holding tanks and test holding tanks water quality to inform offsite disposal contractor
- Observe pit or excavated area for signs of acidity daily and lime non-vertical cut faces at a rate of 5 kg/m² to limit acid build up and leaching.
- Complete dewatering record forms as required.

SMEC note that if retention systems such as sheet piles that limit impacts from drawdown are not used, then to address impacts of dewatering, a further assessment of the implications of dewatering on ASS would need to be carried out. Where the results of assessment indicate further control measures beyond those described in this ASSMP, then an addendum will be required specifying the additional control measures during deep dewatering.

4.7 Water monitoring

Excavations including dewatering in areas where ASS could occur require that a monitoring program be implemented. A standalone Groundwater Assessment and Management Report (*pending completion at time of this ASSMP*) is being

prepared to address SEARs requirements noting this would include further details on a construction water quality monitoring programme and will be followed.

SMEC recommend that a construction water quality monitoring programme be carried out to comply with the planning approval conditions and NSW Ports specific requirements (refer to Section 11 Water Quality and Stormwater of Port Kembla Development Code – June 2021). The construction water quality monitoring programme should be developed and documented within the CEMP (or sub plan) along with monitoring criteria and response actions.

The water quality monitoring requirements should be in accordance with the National Acid Sulfate Soils Guidance: Guidance of the dewatering of acid sulfate soils in shallow groundwater environments (Shand P. *et al* 2018), and include the following relevant to ASS at a minimum:

- Collection of baseline groundwater data It is noted that previously baseline groundwater quality monitoring including field measurements and laboratory analysis has been carried out by SMEC on two events in March and October 2021 (refer to Section 2.5.4). Baseline parameters were general consistent with those recommended by the Guidelines.
- Water table monitoring Water level monitoring should be carried out to confirm water table changes are minimal during dewatering of ASS. This may be carried out using a combination of available onsite groundwater monitoring wells during dewatering activities (refer to Figure 2, Appendix A).
- Groundwater field measurements Frequent monitoring at short intervals during dewatering (e.g. daily)
 including pH, specific electrical conductivity, redox potential, alkalinity/acidity and olfactory (odour) observations
 of noxious gases. Continued measurements at longer intervals (e.g. weekly) is required until groundwater returns
 to original water level and no impacts observed. Comparison will be made to baseline groundwater data to
 assess potential for groundwater impacts.
- Sampling and testing- At least once during dewatering, groundwater sample collection and laboratory analysis including major cations (calcium, magnesium, potassium, sodium) and major anions (chloride, sulphate and fluoride), alkalinity, total acidity*, nitrogen (ammonia, nitrate, nitrite), total phosphorus*, soluble reactive phosphorus*, dissolved heavy metals (aluminium, arsenic, cadmium, cobalt*, chromium (total), copper, manganese, nickel, uranium*, zinc) and total unfiltered heavy metals* (aluminium, iron and manganese)*. Comparison will be made to baseline groundwater data to assess potential for groundwater impacts.

NB *Baseline parameters tested in October 2021 round

- Assessment of monitoring trends Carried out during and after dewatering operation for duration of monitoring including assessment of potential change from baseline conditions.
- Post works closure report Monitoring results to be collated and reported within the monitoring closure report along with discussion of the environmental impacts observed.

Due to proximity of works to Port Kembla Outer Harbour, the CEMP should also include regular visual monitoring inspections of sensitive nearby water receptors (including adjacent harbour, stormwater drains and onsite/nearby stormwater pits) to enable early detection of possible impacts. These should be carried out at frequent intervals (e.g. daily) during excavations, stockpiling, lime neutralisation/treatment where ASS is disturbed.

The CEMP (or subplan) should include contingency response actions for addressing any visual signs of unusual discolouration, odour or significant change to baseline water quality within sensitive nearby water receptors as a result of excavation activities where ASS is disturbed. It should also address any additional construction water quality monitoring requirements required by a licence or approval which are not specified here.

4.8 Leachate and Water Liming

Ponded leachate from excavated ASS materials should not be appreciably acidic, since the management protocols have been formulated to prevent build-up of significant acidity. However, heavy or sustained rainfall during excavation, especially over weekends, may produce leachate from excavated stockpiles, which have pH less than the receiving water, since they have not had sufficient time to contact and react with the neutralising agent. In accordance with principles (Ahern et al, 1998), the following steps would be undertaken:

• Contain all potentially 'polluted' water within the site boundary by ensuring sufficient bunding or levees (using non-ASS soils or materials)

- Treat waters to acceptable levels prior to discharge to surrounding environments and in line with existing approvals and conditions. Treatment measures most commonly include liming with hydrated lime but may include other measures if suitable
- Monitor water quality at the discharge point (minimum, pH and EC) and record in field documentation.

Further details of the construction water quality monitoring programme would be developed and documented in the CEMP along with monitoring criteria and response actions.

5. Managing Compliance with ASSMP

5.1 Roles and Responsibilities

The Project team's organisational structure and roles and responsibilities are to be detailed in the Principal Contractor's CEMP. An overview of the key roles and responsibilities for the implementation of the ASSMP are summarised in Table 5-1. Specific responsibilities in relation to mitigation measures are also to be included.

Table 5-1 Roles and Responsibilities

Role	Key Responsibilities
Client / Principal Contractor* (Manildra Group Pty Ltd)	 Provide ASSMP and related information pertaining to ASS as required Engage the Contractor to implement requirements Responsible for overall implementation of the ASSMP Provide induction, awareness, and training in accordance with this ASSMP Monitoring of compliance with the ASSMP.
Contractor	 All civil earthworks (excavation, lime neutralisation disposal etc) Liaise with the Consultant as required Provide delegation and instruction to subcontractors (i.e. earthworks operators) as required to implement the ASSMP Maintain site records and documentation (i.e. liming register, receipts).
Environmental Consultant	 Assist Contractor with initial briefing and toolbox talks (as required) to assist in compliance with the ASSMP Estimate the liming rates required to neutralise all disturbed ASS materials Verification soil sampling and testing Provide guidance and comment on ASS management activities Prepare final ASS validation report for Principal Contractor Implement water monitoring in accordance with the construction water quality monitoring programme documented within the Groundwater Assessment and Management Report (<i>pending completion at the time of this ASSMP</i>)

* Assumes Manildra is the Principal Contractor

The Contractor would also detail appropriate personnel for the following specific responsibilities relevant to ASS management for the Project and these responsibilities would be documented and communicated as part of site induction and training. These responsibilities include:

- Toolbox talks ASS issues relevant to the stages project works
- Site Induction Environmental Awareness (ASS)
- Ensure relevant personnel are aware of their responsibilities under the management plan
- Update of management plan as required
- Review and understanding of Management Plan/s
- Organise the appropriate storage of neutralising agent onsite
- Ensuring ASS management hierarchy principles are adopted
- Knowledge of ASS locations and extent(s)
- Administer the relevant controls and environmental management measures as per relevant sections of this management plan
- Liaise with Superintendent/Foremen to ensure all adequate environmental controls and management as per this management plan are in place and maintained

- Coordinate the testing of stockpiles and treated ASS in line with this management plan
- If treated ASS is reused on site, ensure it has passed verification testing and is in accordance with this management plan
- Record locations of ASS reuse for use within the Operational Management Plans
- Advise the Principal Contractor(s) if ASS incidents or unidentified ASS is encountered
- Organise the correct ordering, material quality and distribution of neutralising agent onsite
- Direct the mixing rates for neutralising agents and treatment of ASS throughout the project
- Ensure stockpiles and treatment areas for ASS are away from direct flows to waterways and drainage systems
- Ensure stockpile treatment pads are constructed in accordance with this management plan
- Ensure verification results for ASS are below the project set criteria
- Ensuring subcontractors comply with this management plan and procedures
- Assessment of physical controls in accordance with this management plan
- Water quality monitoring (surface and groundwater) in areas of ASS disturbance and reuse areas
- Dust suppression for ASS stockpiles
- Liaison with laboratory conducting verification testing during construction
- Documentation of all monitoring data and ASS verification records.

5.2 Training and Awareness

Training requirements would be defined in the Principal Contractor's CEMP. The Principal Contractor should appoint a representative to be responsible for managing ASS and be responsible for understanding the contents of this plan, the CEMP and implementing ASS management for the project.

Other project personnel, subcontractors and consultants would receive training in environmental obligations during the inductions and toolbox talks including ASS when there is potential for their work to intersect or be in areas with ASS. ASS management training would generally include:

- Unexpected discovery of ASS
- Location of known ASS within the alignment and the ASS treatment areas
- The requirements of the ASSMP.

Training records for Project personnel would be kept and maintained.

If required, a suitably qualified Environmental Consultant could be engaged to assist or train the Contractor in the identification of ASS.

5.3 Inspection, Surveillance and Monitoring

Daily visual inspections targeting the ASS management areas to identify actual or potential ASS concerns would be undertaken during construction by the Contractor. These inspections would form part of the Contractor's management and mitigation schedule in their CEMP of the ASSMP and be used to identify and rectify any ASS management issues.

ASS management issues identified through site inspections and monitoring of construction works would be managed in accordance with the Contractor's the CEMP.

Environmental inspections and monitoring events would be recorded and actioned to facilitate compliance with the ASSMP.

Discharge of water from treatment basins would be in accordance with the Contractor's CEMP. Prior to controlled discharge of water to the environment, sampling and testing would be undertaken by the Environmental Officer or

trained site delegates and laboratory confirmation would occur to ensure that the water quality criteria listed in CEMP are met. Reporting and documentation regarding water discharge would be in accordance with the CEMP.

5.4 Reporting Requirements

Project reporting would be undertaken in accordance with the Contractor's CEMP. The following reports would be prepared as part of the CEMP:

- A daily record would be maintained at all ASS sites and would include inspections, dates, times, sampling dates, locations and corrective actions if required.
- Dewatering records for all dewatering activities.
- An ASS validation report prepared by the Consultant to assess the effectiveness of the programs to treat and neutralise ASS in accordance with the ASSMP. The ASS validation report would include:
 - Details of treated ASS material Lime register (lime register to be provided by the Contractor)
 - Map showing stockpile location, volumes and existing controls (i.e. bunding and other erosion and sediment controls)
 - Results of verification sampling and testing
 - Summary of environmental inspections and monitoring
 - Incident reports and/or Corrective Action Request (if applicable)

Additional reporting required in relation to ASS management may be required in the event that unexpected finds of contamination or new ASS are encountered during works.

5.5 Non-Conformance

Any non-conformance with Environmental Procedures specified in the CEMP must be addressed in 48 hours and enacted as soon as practical. The personnel responsible for the non-conformance must be notified immediately for the purpose of issuing corrective action requests.

5.6 Corrective Action Requests and Instructions

Any non-conformance would be documented on an appropriate form stating the nature of the non-conformance and the mechanisms implemented to rectify the problem.

5.7 Review and Improvement of the ASSMP

During construction of the Project, it is anticipated that the management of ASS would be improved through a variety of mechanisms including:

- Reviewing past performance and identifying opportunities for improvement
- Monitoring current performance and evaluating against relevant project goals and objectives
- Identifying causes for non-conformances with goals and objectives
- Implementing actions to address deficiencies including corrective and preventative actions
- Ongoing monitoring to evaluate current effectiveness of changes.

6. References

Bowman, H.N. and Stewart T.R., Wollongong 1: 50,000 Geological Sheet 9028-1 (1974) Geological Survey of New South Wales, Sydney.

Dear, S-E., Ahern, C. R., O'Brien, L. E., Dobos, S. K., McElnea, A. E., Moore, N. G. & Watling, K. M., (2014). Queensland Acid Sulfate Soil Technical Manual: Soil Management Guidelines. Brisbane: Department of Science, Information Technology, Innovation and the Arts, Queensland Government.

Geological Survey of New South Wales, Department of Mines, Sydney (1985). - Geological Map of Wollongong – Port Hacking, 1:100,000

National Working Party on Acid Sulfate Soils (2000). National Strategy for the Management of Coastal Acid Sulfate Soils. NSW Agriculture, Wollongbar, NSW, Australia.

NSW EPA (2014) Classification Guidelines Part 1: Classification of waste

NSW EPA (2014) Waste Classification Guidelines Part 4: Acid sulfate soils

NSW Ports (2016) Port Kembla Development Code – June 2016, Port Kembla NSW

Office of Environment and Heritage (2019), Soil Landscapes of Central and Eastern NSW - v2, NSW Office of Environment and Heritage, Sydney.

SMEC Australia Pty Ltd (2021a) Preliminary Geotechnical and Contamination Investigation, Part Lot 6 DP 1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd (Ref: 30013038-R01, Rev 3 dated 19 October 2021)

SMEC Australia Pty Ltd (2021b) Detailed Site Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R04, Revision 1, dated 22 December 2021

SMEC Australia Pty Ltd (2022) Targeted Site Investigation – Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R05, Revision 1, dated 02 May 2022

SMEC Australia Pty Ltd (2022) Remedial Action Plan Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd (Ref: 30013038-R02)

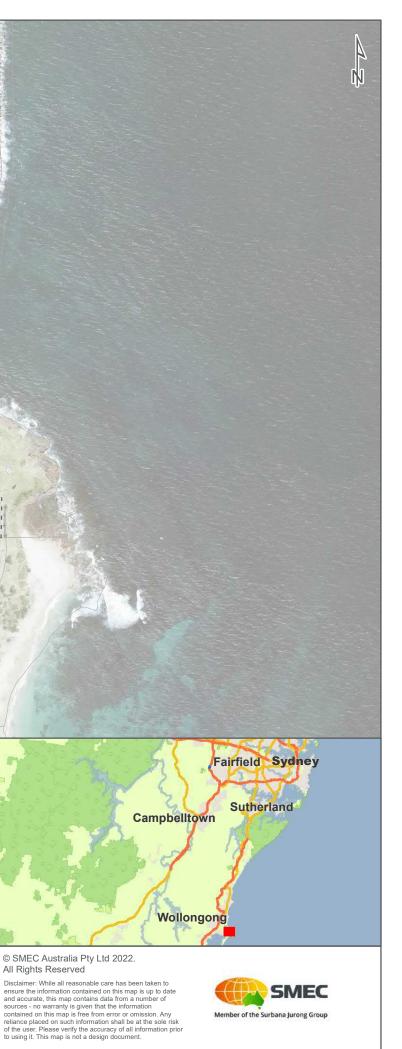
Stone Y, Ahern C R and Blunden B (1998). Acid Sulfate Soils Manual 1998. Acid Sulfate Soils Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia

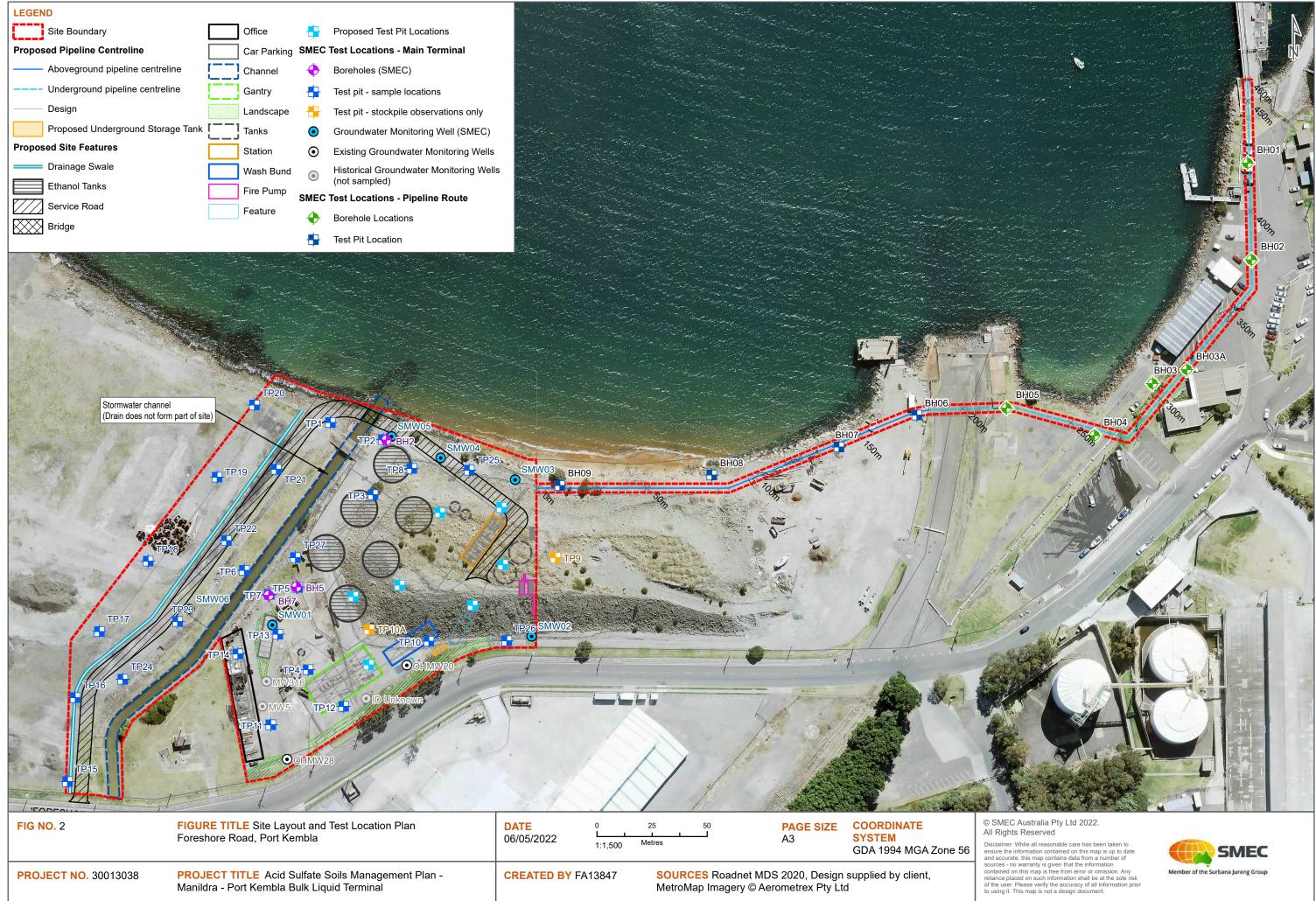
Sullivan, L, Ward, N, Toppler, N and Lancaster, G (2018), National Acid Sulfate Soils guidance: National acid sulfate soils sampling and identification methods manual, Department of Agriculture and Water Resources, Canberra ACT. CC BY 4.0.

Sullivan, L, Ward, N, Toppler, N and Lancaster, G (2018a), National Acid Sulfate Soils Guidance: National acid sulfate soils identification and laboratory methods manual, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.

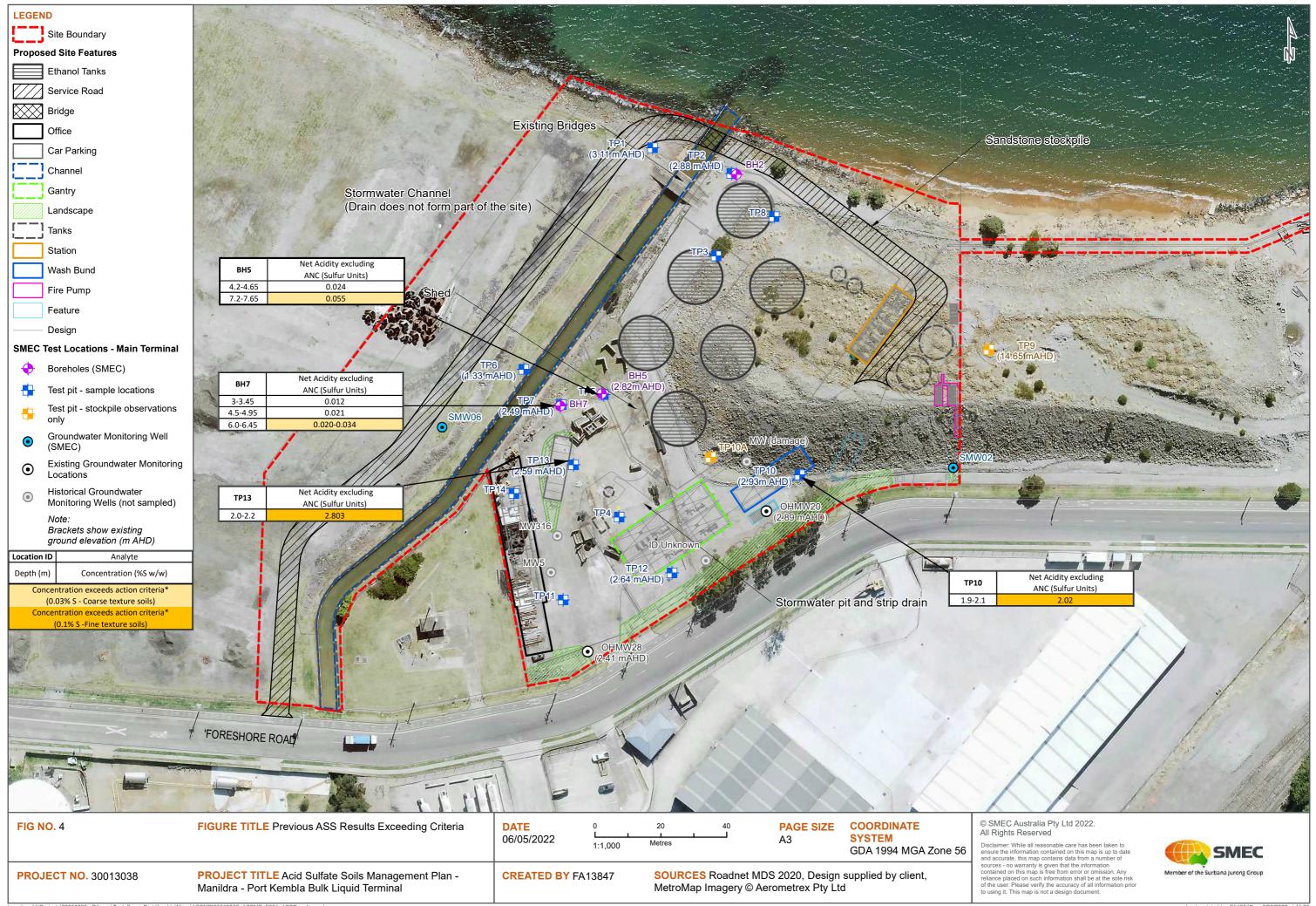
Shand, P, Appleyard, S, Simpson, SL, Degens, B, Mosley, LM (2018), National Acid Sulfate Soils Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0

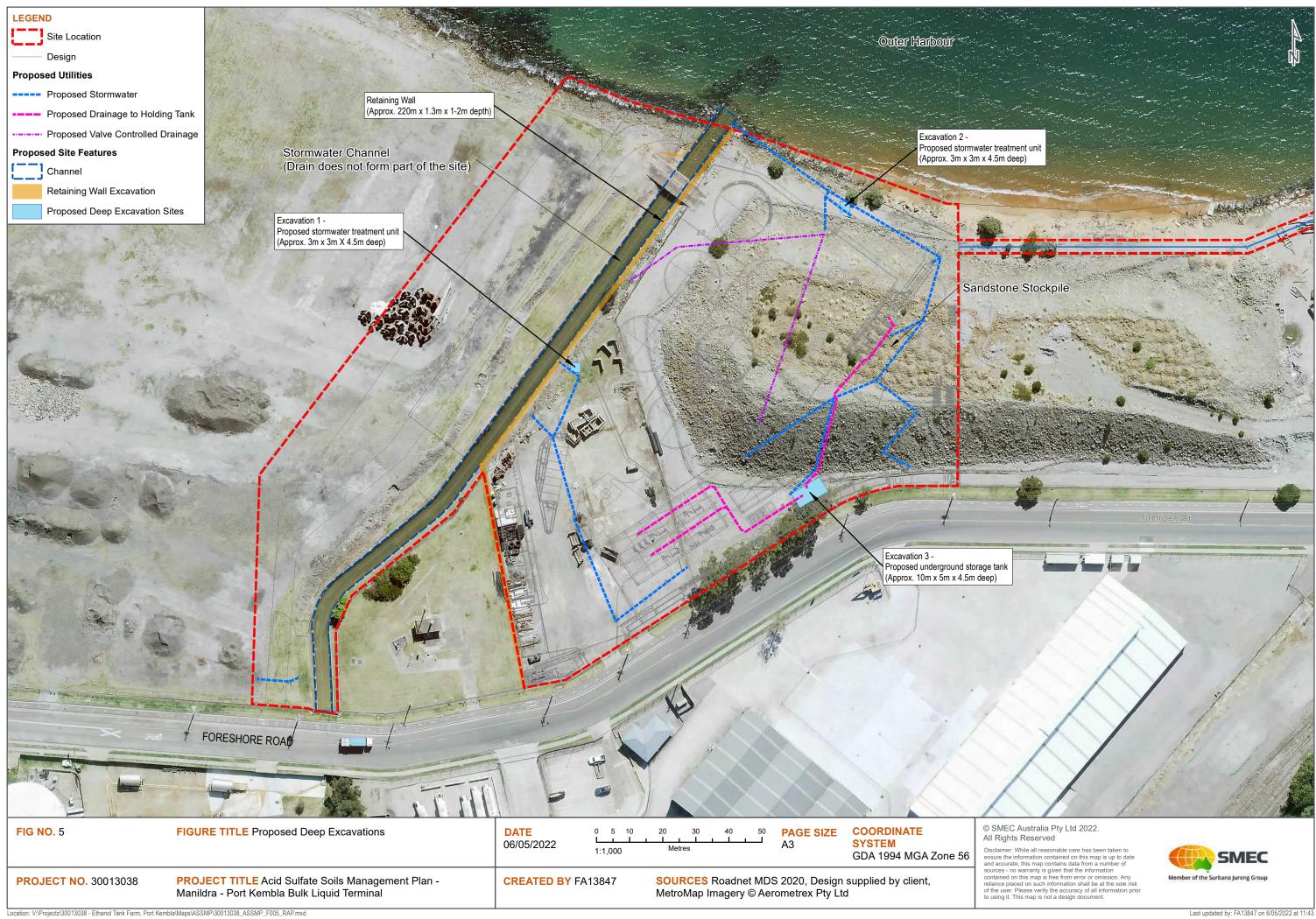
TFA Group Pty Ltd (2021), Civil Drawing Set – Issued for Tender, Drawing ref: 20399-C00 to C17, C20 and C21, dated 23.11.21


TFA Group Pty Ltd (2022), Proposed Pipeline Route – D.A Issue, Drawing ref: 20399-DA-P01 to P05, dated 11.03.2022


WaterNSW (2020) Fact Sheet, Water access licence exemption for aquifer interference activities taking 3ML or less groundwater per year, ref 250920, accessed 1 November 2021, URL <u>Construction dewatering - WaterNSW</u>

Appendix A. Figures


Location: V:\Projectz\30013038 - Ethanol Tank Farm, Port Kembla\Maps\ASSMP\30013038_ASSMP_F001_SiteLocality.mxd



Location: V:\Projectz\30013038 - Ethanol Tank Farm, Port Kembla\Maps\ASSMP\30013038_ASSMP_F003_AcidSulfate.mxd

Location: V:\Projectz\30013038 - Ethanol Tank Farm, Port Kembla\Maps\ASSMP\30013038_ASSMP_F004_ASSResults.mxd

Appendix B. Previous results

30013038 Acid Sulfate Soil Management Plan Part Lot 6 DP 1236743 Foreshore Road, Port Kembla NSW Drop i Field pH Reaction pH by Field pH after Chromium Suite Description descriptio calculatio oxidatio n Acid HCI Net Acid Net Acid Acid Reaction cid trail Sulfur Acid utrali HCI soluble sulfur soluble sulfur iffere ulfidic educible Net Acid Extractab hromiur leutralis descriptio Titratable KCI eutralisi g Capacity equivalent рНf pHfox pH-KCL Test Parameter e (pHf TAA equiv. Reducible Sulfur e Sulfur Extractabl soluble Capacity n *(See* Actual Extractabl g Capacity acidity (a ANCbt) S% pyrite Sulfur acidity Correctio Factor e Sulfur sulfur acidity equivaler pHfox) Acidity (ANCbt) S% pyrite (s-ANCbt) е legend) S% pyrite units units Units of moles H+/T % pyrite S moles H+/T moles H+/T moles H+/T pH Units pH Units pH Units pH Units % S % S Factor % S % S % S % CaCO3 % S measurement 2 0.003 0.005 3 0.02 1 Limit of reporting 0.1 0.1 0.1 0.1 0.02 0.02 10 0.02 0.01 0.02 ivan et al 1998 ction criteria (Coarse exture soils) tion criteria (Fine xture soils) Laboratory Report 778086 9.7 < 2 < 0.003 0.021 13 n/a 2 n/a n/a n/a n/a 27 5500 8.8 778086 9.5 < 2 < 0.003 0.052 33 n/a 2 n/a n/a n/a 38 7600 12 --n/a ------778086 ---------9.8 < 2 < 0.003 0.009 5.7 n/a 2 n/a n/a n/a n/a 22 4400 7 ---778086 9.7 < 2 < 0.003 0.018 11 n/a 2 n/a n/a n/a n/a 21 4200 6.7 9.7 778086 ------< 2 < 0.003 0.017 11 n/a 2 n/a n/a n/a n/a 18 3600 5.8 9.7 < 2 < 0.003 29 9.2 778086 --0.031 19 n/a 2 n/a n/a n/a n/a 5700 775286 9.3 7.5 1 1.8 --

n/a

n/a

n/a

n/a

n/a

n/a

n/a

--

n/a

n/a

n/a

n/a

n/a

--

n/a

n/a

n/a

n/a

n/a

n/a

n/a

N/A

N/A

--

n/a

N/A

n/a

--

--

2

2

2

2

2

2

6

< 3

3.3

6.7

< 3

330

Page 1 of 2

Sample

Location ID

BH5

BH5

BH7

BH7

BH7

QC4

TP1

TP1

TP2

TP2

TP3

TP3

TP4

TP4

TP5

TP5

TP6

TP6

TP7

TP7

TP8

TP8

TP10

TP10

TP11

TP11

Sample Depth

. (m)

4.2-4.65

7.2-7.65

3-3.45

4.5-4.95

6.0-6.45

(Duplicate of

BH7/6.0-6.45)

2.0-2.2

2.8-3

2.0-2.3

3.0-3.2

3.0-3.2

3.5-3.7

1.3-1.5

2.2-2.5

1.6-1.9

2.8-3.0

(*See note)

0.5-0.6

1.3-1.5

2.2-2.4

2.8-3.0

1.1-1.2

1.5-1.7

1.9-2.1

(*See note)

2.3-2.5

2.1-2.4

(*See note)

2.8-3.0

Sampling

. date

1/03/2021

1/03/2021

2/03/2021

2/03/2021

2/03/2021

2/03/2021

17/02/2021

17/02/2021

15/02/2021

15/02/2021

15/02/2021

15/02/2021

15/02/2021

15/02/2021

15/02/2021

15/02/2021

17/02/2021

17/02/2021

15/02/2021

15/02/2021

16/02/2021

16/02/2021

16/02/2021

16/02/2021

15/02/2021

15/02/2021

SOIL UNIT: Description

STUARINE?)

ESTUARINE?)

STUARINE?)

STUARINE?)

STUARINE?)

ESTUARINE?)

rown.

OW/D

range.

orange.

ea shells

EOLIAN)

AFOLIAN)

own

AFOLIAN)

SAND: medium to coarse grained, pale grey

AND: medium to coarse grained, pale grey.

SAND: fine to coarse grained, pale orange, pale

SAND: fine to coarse grained, pale orange, pale

SAND: fine to coarse grained, pale brown, pale

SAND: fine to coarse grained, pale brown, pale

SAND: fine to coarse grained, pale brown, pale

brange, with laminations of dark grey clay, trace AND: fine to coarse grained, pale brown, pale

brange, with laminations of dark grey clay, trace

SAND: fine to coarse grained, pale brown.

SAND: fine to coarse grained, pale brown.

SAND: medium to coarse grained, pale brown.

SAND: medium to coarse grained, pale brown.

SAND: fine to coarse grained, pale grey, pale

SAND: fine to coarse grained, pale grey, pale

SAND: fine to coarse grained, pale brown, with

SAND: fine to coarse grained, pale brown, with

black carbonaceous lamination. (ESTUARINE?)

SAND: fine to coarse grained, red, orange, brow

SAND: fine to coarse grained, red, orange, brow

LAY trace silt: high plasticity, grey, with dark

and pale grey laminations, trace fine to medium

SAND: fine to coarse grained, orange, pale

SAND: fine to coarse grained, pale brown.

SAND: fine to coarse grained, pale brown.

plack carbonaceous lamination

rained sand. (ESTUARINE?)

prown, trace sea shells.

7.5

9.3

9.4

7.5

8.4

9.3

7.6

8.7

7.4

9.5

7.4

7.7

6.9

2.4

5.9

7.3

7.4

1

4

4

1

4

4

4

4

1

4

1

1

4

4

1

1

1

1.8

-0.3

-0.3

1.3

-0.5

--

-0.2

0.8

0.2

1.8

-0.4

1.7

1.3

0.1

4.1

2.0

1.7

1.9

--

9.7

9.3

9.6

9.7

9.7

5.3

< 2

< 2

< 2

< 2

< 2

940

< 0.003

< 0.003

< 0.003

--

--

< 0.003

< 0.003

1.5

--

0.01

< 0.005

0.005

0.011

< 0.005

0.52

9.3

9.0

9.1

8.8

7.9

9.1

8.4

8.9

9.2

9.1

9.1

9.0

7.0

6.5

7.9

9.0

9.3

775286

775286

775286

775286 / 777212

775286

778145

778145

775286

775286

775286

775286

775286

775286 / 777212

775286

775286 / 778145

775286 / 777212

775286

775286

775286

			Extraneou	is Material		By calc.
CRS Suite - Net Acidity (Sulfur Units)	CRS Suite - Net Acidity (Acidity Units)	<2mm Fraction	>2mm Fraction	Analysed Material	Extraneo us Material	Net Acidity excluding ANC (Sulfur Units)
% S	moles H+/T	g	g	%	%	% S
0.02	10	0.005	0.005	-	-	0.02
						0.03
						0.1
< 0.02	< 10	46	< 0.005	100	< 0.1	0.024
< 0.02	< 10	17	< 0.005	100	< 0.1	0.055
< 0.02	< 10	52	< 0.005	100	< 0.1	0.012
< 0.02	< 10	85	0.19	100	0.2	0.021
< 0.02	< 10	83	< 0.005	100	< 0.1	0.020
< 0.02	< 10	47	< 0.005	100	< 0.1	0.034
< 0.02	< 10	39	< 0.005	100	< 0.1	0.013
< 0.02	< 10	76	4.8	94	6	<0.008
< 0.02	< 10	88	14	86	14	0.008
< 0.02	< 10	15	< 0.005	100	< 0.1	0.014
< 0.02	< 10	81	2	98	2.5	<0.008
2	1300	53	< 0.005	100	< 0.1	2.02

ANC

Fineness

Factor

Factor

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

--

1.5

1.5

1.5

3.1

0.47

3.1

6.6

2.8

n/a

9.5

1.5

9.7

--

21

8.7

n/a

1900

300

1900

4100

1700

n/a

--

--

n/a

n/a

n/a

n/a

n/a

n/a

--

30013038 Acid Sulfate Soil Management Plan Part Lot 6 DP 1236743 Foreshore Road, Port Kembla NSW

				Description	Field pH	Field pH after oxidation	Reaction descriptio n	Drop in pH by calculatio n					-			Ch	romium Su	uite	-		-	-	-	_	_		Extraneou	us Material		By calc.
				Test Parameter	pHf	pHfox	Reaction descriptio n <i>(See legend)</i>	Differenc e (pHf - pHfox)	pH-KCL	Acid trail - Titratable Actual Acidity	sulfidic - TAA equiv. S% pyrite	Chromium Reducible Sulfur	Chromium Reducible Sulfur - acidity units	Sulfur - KCl Extractabl e	HCI Extractabl e Sulfur Correction Factor	Extractabl	Net Acid soluble sulfur	Net Acid soluble sulfur - acidity units	soluble	Acid Neutralisin g Capacity (ANCbt)	Acid Neutralisin g Capacity acidity (a- ANCbt)	Acid Neutralisin g Capacity equivalent S% pyrite (s-ANCbt)	ANC Fineness Factor	CRS Suite Net Acidity (Sulfur Units)	CRS Suite Net Acidity (Acidity Units)	<2mm Fraction		Analysed Material	Extraneo us Material	Net Acidity excluding ANC (Sulfur Units)
				Units of measurement	pH Units	pH Units	-	pH Units	pH Units	moles H+/T	% pyrite	% S	moles H+/T	% S	Factor	% S	% S	moles H+/T	% S	% CaCO3	moles H+/T	% S	Factor	% S	moles H+/T	g	g	%	%	% S
				Limit of reporting	0.1	0.1	-	0.1	0.1	2	0.003	0.005	3	0.02	1	0.02	0.02	10	0.02	0.01	2	0.02	-	0.02	10	0.005	0.005	<u> </u>	<u> </u>	0.02
				Sullivan et al 1998, Action criteria (Coarse texture soils)																										0.03
				Sullivan et al 1998, Action criteria (Fine texture soils)																										0.1
Sample Location ID	Sample Depth (m)	Sampling date	SOIL UNIT: Description	Laboratory Report																										
TP12	1.2-1.4	17/02/2021	SAND: fine to coarse grained, pale brown, red brown, trace sea shells.	775286	8.9	9.0	4	-0.1																						
TP12	2.0-2.2	17/02/2021	SAND: fine to coarse grained, pale brown, red brown, trace sea shells.	775286	8.8	8.4	4	0.4																						
TP12	2.8-3.0	17/02/2021	SAND: fine to coarse grained, pale brown, red brown, trace sea shells.	775286	9.2	7.5	4	1.7																						
TP13	2.0-2.2	17/02/2021	Sandy CLAY: high plasticity, dark grey clay and sand, sand is fine to coarse grained, with hydrocarbon odour (ESTUARINE?)	778145					8	< 2	< 0.003	2.8	1700	N/A	2	n/a	n/a	n/a	n/a	9.8	2000	3.2	1.5	0.69	430	40	4.1	91	9.3	2.80
TP13	2.8-3.0	17/02/2021	SAND: fine to coarse grained, pale brown, pale grey.	775286	8.1	6.7	1	1.4																						
TP13	3.3-3.5	17/02/2021	SAND: fine to coarse grained, pale brown, pale grey.	775286	8.4	7.2	1	1.2																						
TP14	1.8-2.0	17/02/2021	SAND: fine to coarse grained, pale brown, pale orange.	775286	9.1	7.3	1	1.8																						
TP14	2.5-2.7	17/02/2021	SAND: fine to coarse grained, pale brown, pale orange.	775286	9.1	7.4	1	1.7																						
				Minimum	6.5	2.4	1	-0.5	5.3	940	1.5	0.0	3.3	0.0	2.0	0.0	0.0	0.0	0.0	1.5	300	0.5	1.5	0.7	430	15.0	0.2	86	0.2	0.0
				Maximum	9.3	9.5	4.0	4.1	9.8	940	1.5	2.8	1700	0.0	2.0	0.0	0.0	0.0	0.0	38	7600	12.0	1.5	2.0	1300	88	14	100	14	2.8
				Total	25	25	25	25	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13

Reaction description	Field Scre	en Rating
	1	No reaction to slight
	2	Moderate reaction

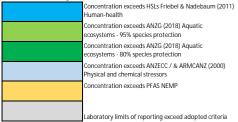

2	Moderate reaction
3	Strong reaction with persistant
4	Extreme reaction

Table Notes: Suble Notes: Sullivan et al (1998) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual, Table 5.4 Action criteria based on the texture and volume of material disturbed (assumes 1 to 1000 tonnes disturbed) n/a Not applicable Not tested * Asterix indicates samples for chromium reducible sulfur suite analysis were sub-sampled from the jar sample (refer to limitations in Section 7.5.1 of Report)

								Fiel	d parame	eters											Inorg	anics									
					Units of	fmeasurement	Н	式 Specific Conductivity (Ec @ 25°C) 副	ය් Temperature	% Dissolved Oxygen	Redox Potential	mg/L Mmonia as N	mg/r Mmonium as N	Mitrite as N	ball Nitrate as N	a Reactive Phosphorus as P T	W Total Phosphorus as P	b for the state of	e B Total Acidity as CaCO3	Total Dissolved Solids (Calc.)	Calcium M/Bw	Magnesium T	mg/L	mg/L	Chloride W@\/F	Bluoride Mary	by Sulphate as SO4 - Turbidimetric	Bicarbonate Alkalinity as CaCO3	a Carbonate Alkalinity as CaCO3	B Hydroxide Alkalinity as CaCO3	ea Total Alkalinity as CaCO3
				Limit of	reporting (A	ALS laboratory)	0.01	1	0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01	1	1	1	1	1	1	1	1	0.1	1	1	1	1	1
Assessment criteria			l	Limit of repo	orting (Eurol	fins laboratory)						0.01	0.01	0.02	0.02	0.01	0.01	5	10	10	0.5	0.5	0.5	0.5	1	0.5	5	20	10	20	20
Laboratory limits of repo																															
PFAS NEMP (2020) Ecolo Friebel & Nadebaum 201																															
Sand)																															
ANZG 2018 Default Guid	elines Values	for toxicants (N	Marine water – 95% Marine water – 80%	species pro	tection)							0.91																			
ANZECC & ARMCANZ (20 for slightly disturbed mar				nical stresso	rs for South	i-east Australia	7.0-8.5			80-110																					
Water Sample ID	Sample Date	Lab Batch	Observations		ng water vel Reduced Level (m AHD)																										
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	Ν	6.46	2,019	23.9	5.6	122.8	<0.01		1.03	1.3	<0.01		1120		1380	396	33	52	12	38	7.5	692	489	<1	<1	489
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111										<0.01		1.02	1.06	<0.01		1140		1370	401	34	53	12	38	7.3	701	505	<1	<1	505
OA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367																													
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	Ν	6.48	2,880	23.6	3.7	-72.6	0.99		<0.01	0.12	<0.01		1460		1960	503	50	108	29	45	7.4	1460	398	<1	<1	398
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	Ν	6.82	14,224	21.8	5.9	129.8	0.69		0.02	0.09	<0.01		1720		10100	227	279	2950	73	4770	3.2	1560	475	<1	<1	475
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	Ν	6.75	1,901	20.8	2.1	137	<0.01	<0.01	0.06	3.76	0.02	0.19	1070	44	1230	383	28	49	8	37	8.1	721	459	<1	<1	459
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.86	0.55	Ν	6.61	2,960	20.6	3.0	-75.4	0.85	0.81	<0.01	0.03	<0.02	0.22	1600	57	1880	567	46	102	29	38	6.6	1570	402	<1	<1	402
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160										0.85	0.81	<0.01	0.03	<0.02	0.21	1620	57	1880	572	46	102	29	36	6.9	1550	395	<1	<1	395
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054										1.3	1.4	< 0.02	0.04	0.01	0.24	1600	28	2700	560	48	100	30	44	6.2	1700	380	< 10	< 20	380
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	Ν	6.38	23,158	20.6	4.8	72.16	0.77	0.71	<0.01	0.05	<0.01	0.07	3040	53	14800	354	525	5000	95	7550	2.2	2080	428	<1	<1	428

Colour legend:

Table Notes: Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines

ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

^c Low reliability values adopted

^D Default guideline value assumes chromium (VI) ^E Default guideline value assumes m-xylene

30013038 Acid Sulfate Soils Management Plan Manildra - Port Kembla Bulk Liquid Terminal

										BTEXN					TRH -	1999 fra	ctions			т	RH - 201	3 fractior	ıs	
										0.2/14						. , , , , , , , , , , , , , , , , , , ,	- 110/15				201			
							Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Xylenes (total)	Naphthalene	ткн сь - с9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	Sum of TPH C10-C36	ткн с6 - с10	TRH C6 - C10 less BTEX (F1)	TRH >C10 - C16	TRH >C10 - C16 less Naphthalene (F2)	TRH >C16 - C34	TRH >C34 - C40
						measurement	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						LS laboratory)	0.001	0.002	0.002	0.002	0.001	0.002	0.005	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1
Assessment criteria			l	imit of repo	rting (Eurofi	ns laboratory)	0.001	0.001	0.001	0.002	0.001	0.003	0.01	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.05	0.05	0.1	0.1
Laboratory limits of repo						ing Dead at 1							0.005	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1
PFAS NEMP (2020) Ecolo Friebel & Nadebaum 201 Sand)			values (Table 5 Inte s for vapour intrusi			ies Protection) ial, 2-<4m	4.9	NL	NL			NL								6.2		NL		
ANZG 2018 Default Guid				species pro	tection)		0.7	0.18	0.08	0.075 ^E			0.050 ^B											
ANZG 2018 Default Guid ANZECC & ARMCANZ (20		for toxicants (N igger values fo		species pro nical stressor	tection) rs for South-	east Australia	1.3	0.33	0.16	0.15 ^E			0.120 ⁸											
for slightly disturbed man	rine ecosystem	ns, applying to	estuaries	-																				
Water Sample ID	Sample Date	Lab Batch	Observations	Depth (m bgl)	ig water vel Reduced Level (m AHD)	Evidence of oily sheen or NAPL?			1	1	1	r	1	1			r			1	1	1		1
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	Ν	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	0.02	<0.1	<0.1	<0.1	<0.1
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111					<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367					<0.001	<0.001	<0.001	<0.002	<0.001	<0.003	<0.01	<0.02	0.16	<0.1	<0.1	0.16	<0.02	<0.02	0.14	0.14	<0.1	<0.1
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	Ν	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.86	0.55	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160					<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054					< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.003	< 0.01	< 0.02	< 0.05	< 0.1	< 0.1	< 0.1	< 0.02	< 0.05	< 0.05	< 0.05	< 0.1	<0.1
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1

Colour legend:

luman-health

Table Notes: Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

aboratory limits of reporting exceed adopted criteria

centration exceeds HSLs Friebel & Nadebaum (2011)

Concentration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection

Concentration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection

Concentration exceeds PFAS NEMP

Concentration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical stressors

- ^D Default guideline value assumes chromium (VI) ^E Default guideline value assumes m-xylene

Table B2 - Summary of groundwater analytical results

 $^{^{\}rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects ^c Low reliability values adopted

30013038 Acid Sulfate Soils Management Plan Manildra - Port Kembla Bulk Liquid Terminal

											Hea	vy Metal	s (Dissolv	ved)							y Metals (Infiltered				PA	Hs			Pheno	olic comp	ounds
							uminium	senic	admium	rromium (total)	bbalt (filtered)	bper	6	pe	hercury	ckel	alenium	anium (filtered)	2	uminium	ю	anganese	thracene	enzo(a)pyrene	uoranthene	aphthalene	henanthrene	otal PAH*	sntachlorophenol	Ionol	Other Phenols
					Units of	f measurement	₹ mg/L	₹ mg/L	mg/L	mg/L	mg/L	o mg/L	mg/L	ت mg/L	≥ mg/L	z mg/L	ഗ് mg/L	⊃ mg/L	mg/L	₹ mg/L	mg/L	≥ mg/L	₹ µg/L	μg/L	π μg/L	z µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
						ALS laboratory)	0.01	0.001	0.0001	0.001	0.001	0.001	0.05	0.001	0.0001	0.001	0.01	0.001	0.005	0.01	0.05	0.001	0.1	0.05	0.1	0.1	0.1	0.1	0.05	0.1	0.05 to 0.1
Assessment criteria			l	Limit of repo	orting (Eurof	fins laboratory)	0.05	0.001	0.0002	0.001	0.001	0.001	0.05	0.001	0.0001	0.001	0.001	0.005	0.005	0.05	0.05	0.005	0.01	0.01	0.01	0.01	0.01	0.01			
Laboratory limits of report																															
PFAS NEMP (2020) Ecolo Friebel & Nadebaum 201																										NL					
Sand)																															
ANZG 2018 Default Guid		for toxicants (N for toxicants (N	Aarine water – 95% Aarine water – 80%		tection)				0.0007 ^B	0.0044 ^D		0.0013		0.0044 ^C	0.0001 ^B	0.007 ⁸			0.015				0.01 ^B	0.1 ^B	1.0 ⁸	50 ⁸	0.6 ^B		11 55	400	
ANZECC & ARMCANZ (20	000) Default ti	igger values fo	r physical and chem	shoolog bio	rs for South	n-east Australia			0.000	0.003		0.000		0.012	0.0014	0.00			0.043												
for slightly disturbed mar	nne ecosysten	is, applying to	esiuaries	Standin	ng water																										
Water Sample ID	Sample Date	Lab Batch	Observations		vel	Evidence of oily sheen or NAPL?		-	-		-					-		-							-	-	-				
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	Ν	0.03	0.044	0.0034	<0.001		0.019	0.57	0.016	<0.0001	0.127	0.05		0.494				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111					0.03	0.044	0.0033	<0.001		0.019	0.58	0.018	<0.0001	0.125	0.05		0.499				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367					<0.05	0.026	0.0041	0.001		0.022	0.12	0.007	0.0002	0.110	0.057		0.500				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	Ν	<0.01	0.066	<0.0001	<0.001		0.004	15.4	<0.001	<0.0001	0.019	<0.01		<0.005				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	Ν	<0.01	<0.001	0.0053	<0.001		<0.001	0.19	<0.001	<0.0001	0.010	<0.01		0.034				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	Ν	0.02	0.017	0.003	<0.001	0.008	0.036	0.18	0.014	<0.0001	0.094	0.06	0.008	0.849	0.66	2.38	0.072	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.86	0.55	Ν	<0.01	0.052	<0.0001	<0.001	0.006	<0.001	17.4	<0.001	<0.0001	0.027	<0.01	0.001	<0.005	0.07	20.2	1.15	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160					<0.01	0.053	<0.0001	<0.001	0.006	<0.001	17.0	<0.001	<0.0001	0.027	<0.01	0.001	<0.005	0.08	23.5	1.26	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054					< 0.05	< 0.001	< 0.0002	< 0.001	0.005	< 0.001	20.0	< 0.001	< 0.0001	< 0.001	< 0.001	<0.005	< 0.005	0.08	24	1.4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	Ν	<0.01	<0.001	0.0007	<0.001	0.137	0.026	4.31	<0.001	<0.0001	0.013	<0.01	<0.001	<0.005	0.130	4.78	6.71	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>

Colour legend:

Table Notes: Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

luman-health Concentration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection Concentration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection Concentration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical stressors Concentration exceeds PFAS NEMP aboratory limits of reporting exceed adopted criteria

centration exceeds HSLs Friebel & Nadebaum (2011)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines

ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

^c Low reliability values adopted

^D Default guideline value assumes chromium (VI) ^E Default guideline value assumes m-xylene

30013038 Acid Sulfate Soils Management Plan Manildra - Port Kembla Bulk Liquid Terminal

											0	СР						0	PP		PCBs		Halogen latile Org			1	PF	AS	
				Limit of		measurement	Чдці Hg/L 10.0	CHI or dane Chi or	<u>Ба</u> µg/L 0.01	Eudosulfan Hol/D	ереция радиция ид/L 0.01	Heptachion Hebtachion holina h	/6t Lindane	Methoxychlor 1/6H	Л Л Тохарћепе	0.005-0.1	Chlorpyrifos Chlorpyrifos Co.o	Legaritrothion Tentrothion 7	so ug/L 0.02	ено насо µg/L 0.2 to 10	Loga Total PCBS Total PCBS	5 Total Fumigants	HaloBenated Alibhatic Compounds	5 了何 月 月 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	201103) Trihalomethanes 2	о 94 µg/L 0.01	Sum of PFHXS and PFOS	е 04 µg/L 0.01	7) 70 100
						ins laboratory)																				0.01	0.01	0.01	0.05
Assessment criteria	sting adapt-	d aarooning la	al for Total Do	roblo Llud	orbono			1								1								1	1				
Laboratory limits of repo PFAS NEMP (2020) Ecolo						cies Protection)																				0.13		220	
Friebel & Nadebaum 201 Sand)	11 Table A2 G	roundwater HS	SLs for vapour intrus	ion (Comme	rcial /industr	rial, 2-<4m																							
ANZG 2018 Default Guid	lelines Values	for toxicants (M	Marine water – 95%	species pro	tection)		0.003 ^F	0.001 ^F	0.0004 ^F	0.005 ^B	0.004 ^B	0.0004 ^F	0.007 ^F	0.004 ^F	0.0006 ^F		0.009	0.001 ^F	0.05										
ANZG 2018 Default Guid ANZECC & ARMCANZ (20	delines Values	for toxicants (M	Marine water – 80%	species pro	tection)	oast Australia				0.05	0.02						0.3		3.6										
for slightly disturbed ma				11001 311 0330	13 101 300(11	east Australia																							
Water Sample ID	Sample Date	Lab Batch	Observations		ng water vel Reduced Level (m AHD)	Evidence of oily sheen or NAPL?									1														
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111					<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367																											
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td>0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td>0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td>0.08</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td>0.08</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td>0.08</td></lor<>	<5	<5	0.08	0.08	<0.01	0.08
OHMW28	21/10/2021	EW2104433 / ES2140160		1.86	0.55	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<>	<5	<5	<0.01	<0.01	<0.01	<0.01
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160					<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<>	<5	<5	<0.01	<0.01	<0.01	<0.01
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054																								0.02	0.02	< 0.01	< 0.05
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<>	<5	<5	<0.01	<0.01	<0.01	<0.01

Table Notes: Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines

ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

- ^c Low reliability values adopted
- ^D Default guideline value assumes chromium (VI) ^E Default guideline value assumes m-xylene

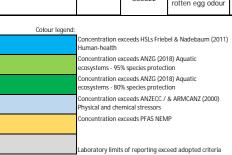


Table B2 - Summary of groundwater analytical results

Appendix C. Engineering logs

Explanatory Notes of Abbreviations and Terms

Used on Borehole and Excavation Logs

General

The "Geological and Engineering Log" presents data from drilling or excavation operations where material recovery is soil and or rock. Data presented is a combination of material recovered, regular sampling and insitu testing. Excavations may present data obtained on the subsurface profile from observations of natural or man-made excavations. Logs may contain scaled graphical presentations, photography, or downhole imagery results. Logs may not contain all data types presented in these notes.

The "Non Core Drill Hole Engineering Log" presents data from drilling operations where a core barrel has not been used. The material is penetrated using methods other than those designed to recover core and is commonly soil or extremely to highly weathered. The "Cored Drill Hole Engineering Log" presents data from drilling operations where a core barrel has been used. The "Excavation - Geological Log" presents data obtained on the subsurface profile from observations of excavations, either natural or anthropogenic.

As far as is practicable, the data contained on the log sheet is factual. Some interpretation is inevitable with respect to the:

- a. assessment of material boundaries in areas of partial sampling and recovery,
- b. location of areas of core loss,
- c. description and classification of material,
- d. estimate of field strength, and
- e. identification of drilling induced fractures.

Material description and classification is generally based on AS1726-2017 (as amended).

Drilling Method

Code	Description
ADT	Auger drilling with TC-bit
ADV	Auger drilling V-bit
AS	Auger screwing
AT	Air track
CA	Casing advancer
CC	Concrete core
CTR	Cable tool rig
DB	Wash bore drag bit
HA	Hand auger
HAND	Hand methods
HF	Hollow flight auger
HMLC	Diamond core 63.5 mm diameter
HQ/ HRQ	Wire line core barrel 63.5 mm diameter
HQ3	Wire line core barrel 61.1 mm diameter
NDD	Non destructive drilling
NMLC	Diamond core 51.9 mm diameter
NQ	Wire line core barrel 47.6 mm diameter
NQ3	Wire line core barrel 45.1 mm diameter
PT	Continuous push tube
PQ	Wire line core barrel 85.0 mm diameter
RAB	Rotary air blast
RC	Reverse circulation
RD	Rotary blade or drag bit
RR	Rock roller
RT	Rotary tricone bit
SD	Sonic drilling
TBX	Tube-X
VC	Vibro-core drilling
WB	Wash bore drilling

Drilling Penetration

Ease of penetration in non-core drilling

Term	Description
VE	Very easy
E	Easy
F	Firm
Н	Hard
VH	Very hard

Support and Casing

Code	Description	Code	Description
С	Casing	Hw	114.3 mm
Μ	Mud	Nw	88.9 mm
W	Water	PVC 150	150 mm

Core Run

Core lifts are identified by a line and depth with core loss per run as a percentage. Core loss is shown in the core run unless otherwise indicated.

Defect Spacing

The average distance between defects is measured parallel to the core axis in mm and may be expressed as a range or average.

Angle / Orientation

Angle from horizontal and orientation to magnetic north.

For inclined cored boreholes the Alpha and Beta angles are presented for orientated core. Alpha (α) is measured relative to the core axis, whilst Beta (β) is measured clockwise from the reference line looking down the core axis in the direction of drilling.

Excavation Method

Term	Definition
Ν	Natural exposure
Х	Existing excavation
BB	Tractor mounted backhoe bucket
EX	Hydraulic excavator
EH	Hydraulic excavator with hammer
В	Bulldozer blade
R	Ripper

Water / Drilling Fluid

The drilling fluid used is identified and loss of return to the surface is estimated as a percentage, generally of each core lift.

Symbol	Description
	Water inflow
	Water outflow
	Water level: during drilling or immediately after completion of drilling
	Groundwater level with date observed prior to introduction of fluids or after standpipe construction
Not observed	The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole / test pit.
Not encountered	The borehole / test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole / test pit been left open for a longer period.

Colour

The colour of a soil or rock is described in a moist/wet condition using simple terms, such as black, white, grey, red, brown, orange, yellow green or blue. These are modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours are described as a combination of these colours (e.g. orange-brown). Where a soil or rock consists of a primary colour with a secondary mottling it is described as (primary colour) mottled (first colour) and (secondary colour). Where colour is described outside of the material description it is for the interval.

Description of Soil

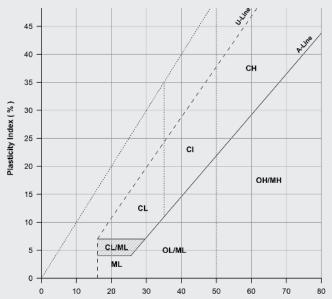
- vi. Soil name (BLOCK LETTERS)
- vii. Plasticity or particle size of soil
- viii. Colour (i.e. dominant colour of material)
- ix. Secondary soil components names & estimated proportions, including their plasticity / particle characteristics, colour
- x. Minor soil components name, estimated proportions, including their plasticity / particle characteristics, colour
- xi. Other minor soil components
- xii. Moisture condition
- xiii. Consistency / density
- xiv. Structure of soil, geological origin
- xv. Additional observations

Particle Size

Term		Grain Size	
Clay		< 2 µm	
Silt		2 – 75 µm	
	Fine	0.075 – 0.21 mm	
Sand	Medium	0.21 – 0.6 mm	
	Coarse	0.6 – 2.36 mm	
	Fine	2.36 – 6.7 mm	
Gravel	Medium	6.7 – 19 mm	
	Coarse	19 – 63 mm	
Cobbles		63 – 200 mm	
Boulders		> 200 mm	

Fine Grained and Coarse Grained Soils

Term	Description
Fine Grained Soil (cohesive)	More than 35% of the material less than 63 mm is smaller than 0.075 mm (silts and clays)
Coarse Grained Soil	More than 65% of the material less than 63 mm is larger than 0.075 mm (sands, gravels and cobbles)


Descriptive Terms for Secondary and Minor Components

	In coarse grained soils				In fine grained soils	
Designation of Components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand / Gravel	Terminology
	≤5	trace	≤ 15	trace	≤ 15	trace
Minor	> 5, ≤ 12	with	> 15, ≤ 30	with	> 15, ≤ 30	with
Secondary	> 12	prefix	> 30	prefix	> 30	prefix

Plasticity - Fine Grained Soils

Liquid Limit (LL) %	Description
≤ 35	Low plasticity (L)
$> 35 \text{ to} \le 50$	Medium plasticity (I)
> 50	High plasticity (H)

Plasticity Chart- Fine Grained Soils

Consistency Terms – Fine Grained Soils

Term	Undrained shear strength (kPa)	Indicative SPT (N) Blow Count	Field Guide to Co
Very Soft (VS)	< 12	0 – 2	Easily penetrated se squeezed in fist
Soft (S)	12 – 25	2 – 4	Easily penetrated se finger pressure
Firm (F)	25 – 50	4 – 8	Can be penetrated moulded between t
Stiff (St)	50 – 100	8 – 15	Readily indented by moulded by fingers
Very Stiff (VSt)	100 – 200	15 – 30	Readily indented by
Hard (H)	> 200	> 30	Indented with difficu
Friable (Fr)	-		Can be easily crum

Density Terms – Coarse Grained Soils

Term	Density Index (%)	SPT (N) Blow Count
Very Loose (VL)	< 15	0 - 4
Loose (L)	15 – 35	4 – 10
Medium Dense (MD)	35 – 65	10 – 30
Dense (D)	65 – 85	30 – 50
Very Dense (VD)	> 85	> 50

Particle Characteristics – Coarse Grained Soils

Term	Description
Well graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

Angularity – Coarse Grained Soils

Rounded
Sub-rounded
Angular
Sub-angular

Origin of Soil

Fill	Formed by anthropogenic activity
Aeolian	Formed by wind
Alluvial	Formed by streams and rivers
Colluvial	Formed on slopes (talus)
Estuarine	Formed in marine environments
Lacustrine	Formed in lakes
Residual	Formed by weathering insitu

Field Guide to Consistency
Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Readily indented by thumb nail, still very tough
Indented with difficulty by thumb nail, brittle
Can be easily an umblad or broken into amall piceas

an be easily crumbled or broken into small pieces

Soil Moisture

	Term	Code	Description
Coarse Grained	Dry	D	Looks and feels dry and free running
	Moist	М	Soil feels cool, darkened in colour, soils tend to stick together, soil grains do not run freely through fingers and no visible free water
	Wet	W	Soil feels cool, darkened in colour, soils tend to stick together, free water on remoulding
Fine Grained	Moist, Less than Plastic Limit	W < PL	Hard and friable or powdery, moisture content well below Plastic Limit
	Moist, Near Plastic Limit	W ≈ PL	Soil feels cool, darkened in colour, can be moulded, near Plastic Limit
	Moist, Wet of Plastic Limit	W > PL	Soil feels cool, dark, usually weakened, free water, moisture content well above Plastic Limit
	Wet, Near Liquid Limit	W ≈ LL	Soil exudes easily
	Wet, Wet of Liquid Limit	W > LL	Soil behaves as a liquid

Boundary Classifications

Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well graded gravel-sand mixture with clay binder.

Graphic Symbols

	Asphalt	$\begin{smallmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{smallmatrix}$	МН
	СН		ML
1/_	CI	(遼)(五 (四)(五)	ОН
	CL	17년 27년 1 37년 3	OL
	Concrete	17. 27. : 25. 7.	PT
***	Fill	1.	SC
	GC	\boxtimes	SM
1000 0900 0900	GM		SP
000	GP		SW
0.0	GW	<u>9.28</u> . <u>9.28</u> .	Topsoil

4 Revision 3, August 2019 SMEC Soil and Rock Logging Explanatory Notes.

Soil Classification

Soils are described in general accordance with AS1726-2017 as shown below.

GROUP PRIMARY FIELD IDENTIFICATION PROCEDURES SYMBOL NAME (Excluding particles larger than 63 mm and basing fractions on estimated mass) Wide range in grain size and substantial amounts More than 65% of the material is less than 63 mm and is larger than 0.075 GW GRAVEL <u>0</u> of all intermediate particle sizes, not enough fines **GRAVELS** More than half of coarse fraction i larger than 2.36 mm to bind coarse grains, no dry strength; \leq 5% fines **CLEAN GRAVELS** Predominantly one size or a range of sizes with (Little or no fines) more intermediate sizes missing, not enough fines GP GRAVEL to bind coarse grains, no dry strength; $\leq 5\%$ fines particle size of 0.075 is about the smallest size distinguishable to the naked eye GRAVELS w/ 'Dirty' materials with excess of non-plastic fines, GM SILTY GRAVEL **FINES** none to medium dry strength; $\geq 12\%$ silty fines (Appreciable amount of fines) 'Dirty' materials with excess of plastic fines, CLAYEY GC GRAVEL medium to high dry strength; \geq 12% clayey fines Wide range in grain size and substantial amounts <u>.ഗ</u> SW SAND SANDS More than half of coarse fraction smaller than 2.36 mm of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; \leq 5% fines **COARSE GRAINED SOILS CLEAN SANDS** Predominantly one size or a range of sizes with (Little or no fines) more intermediate sizes missing, not enough fines SP SAND to bind coarse grains, no dry strength; $\leq 5\%$ fines 'Dirty' materials with excess of non-plastic fines, SANDS w/ FINES SM SILTY SAND none to medium dry strength; \geq 12% silty fines (Appreciable amount of fines) 'Dirty' materials with excess of plastic fines, mm SC CLAYEY SAND medium to high dry strength; \geq 12% clayey fines **IDENTIFICATION PROCEDURES ON FRACTIONS** < 0.075 mm less than GROUP PRIMARY DRY STRENGTH DILATANCY TOUGHNESS SYMBOL NAME **SILTS AND CLAYS** Liquid Limit < 50% More than 35% of the material mm is less than 0.075 mm SILT None to low Slow to rapid I ow MI FINE GRAINED SOILS Medium to high ≥ 12% clayey fines Medium CL, CI* CLAY $\overline{\triangleleft}$ Low to medium Slow Low OL ORGANIC SILT Liquid Limit > 50% SILT Low to medium None to slow Low to medium MH SILTS AND СН High to very high None High CLAY CLAYS ORGANIC Medium to high Low to medium OH None to very slow 63 CLAY

HIGHLY ORGANIC SOILS: readily identified by colour, odour, spongy feel and frequently fibrous texture

* CL is low plasticity clay, Cl is medium plasticity clay

PT

PEAT

Description of Rock

- i. Rock name (BLOCK LETTERS)
- ii. Grain size and mineralogy
- iii. Colour (i.e. dominant colour of material)
- iv. Fabric and texture
- v. Features, inclusions, minor components, moisture content and durability
- vi. Strength
- vii. Weathering and/or alteration
- viii. Rock mass properties discontinuities and structure of rock
- ix. Interpreted stratigraphic unit
- x. Additional observations including geological structure

Simple rock names are used to provide a reasonable engineering description, rather than a precise geological classification. The rock name is chosen by considering the nature and shape of the grains or crystals, the texture and fabric of the rock material, the geological structure and setting, and information from the geological map of the area. Further guidance on the naming of rocks can be found in AS1726-2017, Tables 15, 16, 17 and 18. Typical rock types are described below, though subject to site specific variations.

Rock Type	Description	Example of Rock Name	
Sedimentary	Formed by deposited beds of sediments, have grains that are cemented together and often rounded. Significant porosity	COMMON: Conglomerate, Breccia, Sandstone, Mudstone, Siltstone, Claystone ≥90% CARBONATE: Limestone, Dolomite, Calcirudite, Calcarenite, Calcisiltite, Calcarenite, Calcisiltite, Calcilutite PYROCLASTIC: Agglomerate, Volcanic Breccia, Tuff	
Igneous	Formed from molten rock and have a crystalline texture. Typically massive and low porosity. Rock types are from coarse to fine grained.	HIGH QUARTZ CONTENT: Granite, Microgranite, Rhyolite MODERATE QUARTZ CONTENT: Diorite, Microdiorite, Andesite LOW QUARTZ CONTENT: Gabbro, Dolerite, Basalt	
Metamorphic	Formed when rocks are subject to heat and/or pressure and have typically have directional fabric. Typically have low porosity and crystalline structure. Rock types are from coarse to fine grained	FOLIATED: Gneiss, Schist, Phyllite, Slate NON-FOLIATED: Marble, Quartzite, Serpentinite, Hornfels	
Duricrust Formed as part of a weathering profile and show evidence of being cemented in situ. Cementation is typically irregular and exhibits replacement textures.		Ferricrete (Iron oxides and hydroxides) Silicrete (Silica) Calcrete (Calcium carbonate) Gypcrete (Gypsum)	

Note: () denotes dominant cementing mineralogy

Grain Size

Terms describing dominate grain size in sedimentary rocks.

Term Grain size	
Coarse Mainly 0.6 mm to 2.0 mm	
Medium Mainly 0.2 mm to 0.6 mm	
Fine	Mainly 0.06 mm (just visible) to 0.2 mm

Terms describing dominate grain size in igneous and metamorphic rocks

Term	Grain size
Coarse Mainly greater than 2 mm	
Medium 0.06 mm to 2 mm	
Fine	Mainly less than 0.06 mm (just visible) to 0.2 mm

Texture and Fabric

Sedimentary rocks

Thickness	Bedding Term
< 6 mm Thinly laminated	
6 – 20 mm Laminated	
20 – 60 mm	Very thinly bedded
60 – 200 mm	Thinly bedded
0.2 – 0.6 m	Medium bedding
0.6 – 2 m	Thickly bedded
> 2 m	Very thickly bedded

Igneous rocks

Term	Definition
Amorphous	Indicates that the rock has no obvious crystalline structure
Crystalline	A regular molecular structure, showing crystal structure and symmetry.
Cryptocrystalline	The texture comprises crystals that are too small to recognise under an ordinary microscope. Indistinctly crystalline.
Porphyritic	Indicates the presence of phenocrysts (relatively large crystals in a fine grained ground mass) in igneous rocks.
Flow banded	Indicates visible flow lines in volcanic rocks and some intrusive rocks
Glassy	Entirely glass like. No crystalline units and without crystalline structure.
Vesicular	A texture of volcanic rocks that indicates the presence of vesicles (small gas bubbles). Where the vesicles are filled with a mineral substance they are termed Amygdales and the texture is Amygdaloidal.

Metamorphic

Term	Definition		
Foliation	The parallel arrangement of minerals due to metamorphic process, which shall be defined by the terms in weak, moderate and strongly foliated.		
Porphyroblastic	A texture indicating the presence of porphyroblasts (larger crystals formed by recrystallization during metamorphism, such as garnet or staurolite in a mica schist).		
Cleavage	A type of foliation developed in fine grained metamorphic rocks such as slates.		

Bedding and Fabric Development

Туре	Definition
Massive	No obvious development of bedding – rock appears homogeneous
Poorly Developed	Bedding is barely obvious as faint mineralogical layering or grain size banding, but bedding planes are poorly defined.
Well Developed	Bedding is apparent in outcrops or drill core as distinct layers or lines marked by mineralogical or grain size layering.
Very Well Developed	Bedding is often marked by a distinct colour banding as well as by mineralogical or grain size layering.
Indistinct Fabric	There is little effect on strength properties
Distinct Fabric	The rock may break more easily parallel to the fabric

Rock Strength

Term (Code)	UCS (MPa)	ls ₍₅₀₎ (MPa)	Field Guide to Strength
Very Low (VL)	0.6 - 2	> 0.03 to ≤ 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low (L)	2 - 6	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium (M)	6 - 20	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High (H)	20 - 60	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High (VH)	60 - 200	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High (EH)	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock strength is assessed by laboratory Uniaxial Compressive Strength (UCS) testing and/or Point Load Strength Index (PLT) testing to obtain the $I_{S_{(50)}}$ the strength table implies a 20 times correlation between $I_{S_{(50)}}$ and UCS used for classification. Note however, multiplier may range from 4 (e.g. some carbonated and low strength rocks) to 40 (e.g. some igneous rocks and/or some high strength rocks). A site specific correlation based on testing, previous investigation or literature may be used where available. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

Visual Log

A diagrammatic plot of defects showing type, spacing and orientation in relation to the core axis.

Defects open in situ or clay sealed
 Defects closed in-situ
 Drill induced fractures or handling breaks
 Infilled seam

Rock Weathering and or Alteration Classification

Term (Code)		Definition	
Residual soil (RS)		Soil developed on extr rock. The rock mass s substance fabric are n but the soil has not be transported.	tructure and o longer evident
Extremely weathered (XW) Extremely altered (XA)		Rock is weathered to s that it has 'soil' proper disintegrates or can be but the texture of origi	ties, i.e, it either e remoulded in water,
Highly weathered (HW) Highly Altered (HA)	Distinctly weathered (DW)* Distinctly Altered (DA)	Whole rock material is discoloured usually by extent that iron staining or bleaching and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable	*Where is it not practical to distinguish between 'HW' and MW'. Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores
Moderately weathered (MW) Moderately Altered (MA)		Whole rock material is discoloured usually by staining that original colour of the fresh rock is no longer recognisable	
Slightly weathered (SW) Slightly altered (SA)		Rock is slightly discold or no change of streng	
Fresh rock (FR)		Rock shows no sign o staining.	f decomposition or

Rock Core Recovery

TCR = Total Core Recovery (%)

```
Length of Core Recovered
```

```
Length of Core run
```

SCR = Solid Core Recovery (%)

```
Sum Length of Cylindrical Core Recovered x 100
```

Length of Core run

RQD = Rock Quality Designation (%)

x 100

Length of Core run

Types of Defects

Term		Code	Description
Parting		PT	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (i.e. cleavage). May be opened or closed.
Joint		JT	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or to planar anisotropy in the rock material. May be open or closed.
Sheared Su	rface	SR	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.
Sheared Zor	ne	SZ	Zone of rock material with roughly parallel, near planar, curved, or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.
Crushed Zor	ne ^a	CZ	A zone of broken and disturbed ground containing more than one identifiable Crushed Seam.
Fracture Zone ^a		FZ	A zone of broken ground with parallel to opposing boundaries dominated by abundant, extremely closely to closely spaced defects, which may be intact or open, and planar, curved, undulating, irregular, or stepped, resulting in a dissected rock mass of angular trapezoidal, triangular or rectangular fragments.
Seam (SE)	Sheared Seam	SS	Seam of soil material with roughly parallel almost planar boundaries, composed of soil materials with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.
	Crushed Seam	CS	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.
	Infilled Seam	IS	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1 mm thick may be described as a veneer or coating on a joint surface.
	Extremely Weathered Seam	XS	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.
Fault ^b		FT	A fracture (defect) or fracture zone along which there has been an observable amount of displacement.
Vein ^C		VE	Any fracture that contains mineralized material. Veins can display either crack-normal extension or shear displacement coupled with crack-normal extension.
Vugh ^a		VG	An open void with secondary crystallisation which may be coated, partly or nearly completely filled.
Void ^a		VO	An open space created through natural or anthropogenic processes, including, but not limited to, caves, kettles, tunnels, mines, pipes, piping, landslides, faulting, shearing, dissolution, & erosion.
Mechanical Break		MB	A fracture or break induced or created by the sampling process (i.e. drilling (DB) handling (HB), drill lift (DL), excavation, or blasting).

All definitions as per AS1726-2017, except:

a SMEC Field Manual, b British Standard BS 5930:2015, and ^c Glossary of Geology (Fifth Edition - revised) (2011), American Geosciences Institute.

Defect Planarity

Code	Description
CR	Curved – A defect with a gradual change in orientation
IR	Irregular – A defect with many sharp changes in orientation
PL	Planar – Defect forms a continuous plane without variation in orientation
ST	Stepped – A defect with distinct sharp steps or step
UN	Undulose – A defect with undulations

Defect Roughness

Code	Description	
RO	Rough – Many small surface irregularities generally related to the grain size of the parent rock	
SM	Smooth – Few or no surface irregularities related to the grain size of the parent rock	
PO	Polished – Planes have a distinct sheen or a smoothness	
SL	Slickensided – Planes have a polished, grooved or striated surface consistent with differential movement of the parent rock along the plane	
VR	Very rough – many large surface irregularities, amplitude generally more than 1mm	

Type of Structures

Term	Code	Description
Bedding	BD	A layered arrangement of minerals parallel to the surface of deposition which has caused planar anisotropy in the rock substance.
Cleavage	CV	An alignment of fine grained minerals caused by deformation.
Schistosity	SH	A layered arrangement of minerals to each other
Foliation	FO	A planar alignment of minerals caused by deformation.
Void	VO	A completely empty space
Dyke	DK	Sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature
Sill	SL	A sill is an intrusion of magma that spreads underground between the layers of another kind of rock
Contact	CX	A contact between intrusive and stratigraphic units.
Boundary	BN	A distinct boundary between two stratigraphic units
Vugh	VG	An open void with crystalisation

Note: Drill breaks (DB) and handling breaks (HB) are not included as natural discontinuity.

Discontinuity Spacing

Spacing (mm)	Description
> 6000	Extremely Widely Spaced
2000 - 6000	Very Widely Spaced
600 - 2000	Widely Spaced
200 - 600	Medium Spaced
60 - 200	Closely Spaced
20 - 60	Very Closely Spaced
< 20	Extremely Closely Spaced

Infill Material

Code	ode Name		Name
Ар	Apatite	Ga	Galena
Са	Calcite	Gp	Gypsum
Ch	Chlorite	Mn	Manganese
CI	Clay	MnO	Manganese Oxide
Со	Coal	MS	Secondary mineral
Ep	Epidote	Py	Pyrite
Fe	Limonite/ Ironstone/ Goethite	Um	Unidentified mineral
FeO	Iron oxide	Qz	Quartz
Fs	Feldspar	X	Carbonaceous
		Ze	Zeolite

Discontinuity Observation

Term	Code	Description
Clean	CN	No visible coating or infill
Stain	SN	No visible coating or infill but surfaces are discoloured by mineral staining
Veneer < 1 mm	VN	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.
Coating > 1 mm to < 10 mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.
Filling (Filled) > 10 mm	FD	A visible filling of soil or mineral substance. Describe composition and thickness.

Discontinuity Orientation

Code	Description
VT	Vertical
НО	Horizontal
RL	Top right to bottom left
LR	Top left to bottom right

Samples and Field Tests

Code	Description
В	Bulk disturbed sample
BLK	Block sample
С	Core sample
CBR	CBR Mould Sample
CPTu	Cone Penetration Test (with pore pressure)
DT	Dilatometer
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
FP	Pressuremeter
G	Gas sample
Н	Hydraulic fracturing
HP	Hand penetrometer test
	Impression device
Is(50)	Point Load Index
К	Permeability
LB	Large bulk disturbed sample
Ν	Standard penetration test result (N* denotes SPT sample recovery)
0	Core orientation
Р	Piston sample
PID	Photoionisation detector reading in ppm
PP	Penetrometer
R	Hammer bouncing / refusal
SPT	Standard Penetration Test
U	Undisturbed push in sample
UCS	Uniaxial Compressive Strength
U50	Undisturbed tube sample (50 mm diameter)
U75	Undisturbed tube sample (75 mm diameter)
U100	Undisturbed tube sample (100 mm diameter)
VS	Vane shear test
• (A)	Axial Test
O (D)	Diametral Test
	Irregular Lump test

Laboratory Tests

Code	Description
ACM	Asbestos Containing Material
CD	Consolidated Drained
CU	Consolidated Undrained
LL	Liquid Limit
LS	Linear Shrinkage
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PBT	Plate Bearing Test
PI	Plasticity Index
PL	Plastic Limit
PSD	Particle Size Distribution
ρ_{b}	Bulk Density
ρ	Particle Density
ρ_{d}	Dry Density
UU	Undrained Unconsolidated

Backfill / Standpipe Detail

Symbol	Description	Symbol	Description
	Cement seal		Filter pack: sand filter
	Grout backfill GP -Cement BE - Bentonite Cement	$\begin{smallmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $	Filter pack: gravel filter
	Un-slotted pipe		Bentonite seal
Ξ	Slotted pipe	A REAL	Cutting – excavated material backfill
	Surface Completion: Monument Above Ground		Surface Completion: Gatic Ground Monument

Status

Code	Description
-2	Historic
-1	For information
0	Preliminary
1	Checked
2	Draft
3	Final

Completion Details

Туре	Description
Collapse	Exploratory hole collapsed before reaching planned depth
Equipment Failure	Boring or excavator equipment operational failure
Flooding	Flooding of excavation
Machine Limit	Limit of machine capability reached
Obstruction	Obstruction preventing further advancement
Operator Limit	Limit of operator limit/safety reached
Possible services	Indication of possible services below
Services present	Services encountered during exploratory hole
Squeezing	Hole squeezing boring equipment
Target Depth	Depth reached as planned
Target Depth (Instrumentation Installed)	Depth reached as planned instrumentation installed
Target Depth (Standpipe Installed)	Depth reached as planned open standpipe constructed
Material Refusal	Material preventing further advancement

10 Revision 3, August 2019 SMEC Soil and Rock Logging Explanatory Notes.

Engineering Log	ient Manildra Group Pty Ltd I te Port Kembla I	East 307823.6 m North 6183132.5 m Elevation 2.88 m Datum MGA94 Zone 56/AF		Contractor Numac Rig Type Comacchio 205 Mounting Track	Inclination 90° Azimuth North Survey	SMEC
Method Casing Support Strength Method Casing Strength Mun (TCR) R.00 Strength Mun (TCR) R.00 Strength Mun (TCR) R.00 Strength Mun (TCR) R.00 Permeability,	00 00 00 00 00 00 00 00 00 00	Moi sture Coondition Density Unopo Density	A Mearther A Mea	Defect tive Spacing ggth (mm) ଙ cock କ୍ଟିଡ୍ଡ୍ S Defect Descriptio		Borehole Identifier: BH2 Origin, Stratigraphic Unit & General Observations Installation
	29 CRAVEL: fine to medium grained, a pale grey, grey. FILL Gravelly SILT with sand: non p pale grey, pale orange, gravel is fine grained, angular, sand is fine to coa grained, trace boulders, trace brick.					CEMENTED SLAG
	0.5 2.4 2.18 FILL Clayey SAND trace slit: fine to grained, pale grey, orange, trace box	coarse Jiders.				
AbT ⁻¹ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1						
	1.3 SAND: fine to coarse grained, pale t 1.4 SAND: fine to coarse grained, pale t pale orange.	rown, M L - MD				AEOLIAN
	29 SP 					
	3.0 -0.1 SAND with gravel: fine to coarse gra gray, with brown, orange, white, gray grained, sub-angular to sub-rounded sea shells.	el is fine , trace				ESTUARINE?
		w				
Observations and Comments Blade TC bit refusal at 11.5m		Notes	Classifications compliant with AS172 Defect Log Abridged. Additional detai for Inclined Holes: Angles reported in Refer to explanatory notes for SMEC	- 2017: Geotechnical Site Investigations unless ott il in digital dataset. Lugeon: BS5930:1999 n defects are apparent dip from core horizontal unle logs for details of abbreviations or basis of descrip	herwise noted. Logged By ess as α or β . Approved B status	TH Date 02/03/2021 By SRM Date 31/03/2021 1 Page 1 of 3

Engineering Log	eliminary Geotechnical Investigation East anildra Group Pty Ltd North ort Kembla Elevation 0013038 Datum	6183132.5 m End Dat	te 02/03/2021 Rig Ty Mounti	ctor Numac pe Comacchio 205 ng Track	Inclination 90° Azimuth North Survey	SMI	EC
Method Scasing Support (Gain/Loss) Run (TCR) RQD Sampling Sampling Depth (m) Craphic Log Graphic Log	କୃତ୍ତ O ତ ଉ RL Soil / Rock Material Description	Moisture Condition Densistency naroty Meathering & Alteration Book Streadth	Inferred Brock Strength Point Load De Point Load De Point Coad O - Dametral Strength (m Soil-Rock Soil-Rock	fect acing m) ଜୁ Fabric, Structure & କ୍ଷୁଷ୍ଟ୍ରି Defect Description		Origin, Stratigraphic Unit & General Observations Install	BH2
	SAND with gravel: fine to coarse grained, pale grey, with brown, orange, white, gravel is fine grained, sub-angular to sub-rounded, trace sea shells. (continued)	W MD- D				ESTUARINE?	- - - 4.5 -
1 1							5.0
	SP						5.5 — - - - - 6.0 — -
CIULI CED 							6.5
3000							7.0
To The second se		Classificat	inos compliant with AS1726-2017. G	eotechnical Site Investigations unless other	arwise noted. Logged By	TH Date 02/03/2	7.5
Blade TC bit refusal at 11.5m		Defect Log	g Abridged. Additional detail in digital ed Holes: Angles reported in defects a	eotechnical Site Investigations unless othe dataset. Lugeon: BS5930:1999 are apparent dip from core horizontal unles letails of abbreviations or basis of descripti	ss as α or β. Approved B		/2021

	Geolo nginee	ering	I & Log _{Testing}	Project Client Site Job Numb	Man Port	ildra Grou Kembla	eotechnical Investigation Ip Pty Ltd	East North Elevatior Datum	307823 618313 2.88 m MGA94	6 m 2.5 m Zone 56/Al	End Date	02/03/2021 02/03/2021	Contractor Numac Rig Type Comac Mounting Track		Inclination 90° Azimuth North Survey	s	MEC
Method	Casing Support Water (Gain/Loss)	Run (TCR) RQ Sampling	l Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	<u>لام</u> م 8.0-	Graphic Log	S Code Depth RL			Moisture Condition Consistency Density	Colour	Weathering & Alteration Rock Strength	Inferred Rock Strengtl Point Load Is(50) O-Diametral	Defect Relative Spacing Strength (mm) ल	Fabric, Structure & Defect Description	Group Defects	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH2 Installation
2020-09-10				-5.1 8.5 -5.6		SP	SAND with gravel: fine to coar gray, with brown, orange, white grained, sub-angular to sub-rou sea shells. (continued)	, gravel is fine	W MD -							ESTUARINE?	- - - 8.5 - - -
0.7 2020-08-20 Prj: SMEC 2.10.8				9.0 - -6.1			Clayey SAND: fine to coarse g green, pale grey, trace silt.	rained, pale	W ≈ PL							RESIDUAL SOIL	- 9.0 — - - -
ELANDSCAPE 30013038 GINT GPJ <-DnawlingFile>> 01/04/2021 (92:39 10 02:00 04 DatigeTools LLb: SNEC 2.107 2020-92:20 P; SNEC 2.108 2020-9-10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				9.5 - -6.6		sc											- 9.5 - - -
> 01/04/2021 09:29 10.02.00.0				10.0 - -7.1													- 10.0 — - - -
3038 GINT.GPJ < <drawingfile></drawingfile>				10.5 - -7.6		<u>-10.50</u> -7.62 CI	Gravelly CLAY with sand: med pale green, motifed pale grey, white, sand is fine to coarse gr fine grained, angular.	brown. with	Н								10.5 — - - - -
30REHOLE LANDSCAPE 30013				11.0 - -8.1		<u>11.25</u> -8.37 11.50										EXTREMELY LOW TO VERY LOW STRENGTH WEATHERED ROCK AT TERMINATION DEPTH	11.0 — - - -
B.GLB Log_SMECHYBRID BOREHOL						11.50	Hole Terminated at 11.50 m Refusal										-11.5 <u>-11.5</u> - - - - -
22 Obs	servations a e TC bit refusal		ments	12.0_					<u> </u>	ote	Defect Log A For Inclined	bridged. Addition Holes: Angles rep	AS1726-2017: Geotechnical Si nal detail in digital dataset. Luge ported in defects are apparent d r SMEC logs for details of abbre	eon: BS5930:1999 dip from core horizontal unless	as α or β. Approved B	By SRM Date	02/03/2021 31/03/2021 3 of 3

Engineering Log	Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038	Elevation 2.77 m Datum MGA94 Zone 56/AH		acchio 205 Azimuth	SMEC
Method Method Strength Strength Strength Strength Mr and Strength	^Δ		Nnferred Nn Strength Point Load No. Strength No. Strength (mm) Strength (mm) Strength (mm) No. Strength (mm) No. Streng	Fabric, Structure & Group Defect Description Defects	Borehole Identifier: BH5 Origin, Stratigraphic Unit & General Observations Installation
Casing - HW (114.3 mm) mm	0.0 2.8 2.8 2.8 2.77 FILL Gravely CLAY with sam plasticity, dark grey, gravel is coarse grained, race cobbles 0.30 2.47 FILL Clayey GRAVEL with sam coarse grained, race cobbles 0.30 2.47 FILL Clayey GRAVEL with sam coarse grained, poorly gradet grey, sand is medium to coars 1.0 1.0	edium to s medium to race silt. 			FILL SE -
Inget tabes 3 (103/2021 17.22 10.02.00 M Burget Tools 1 LB: SMEC 2.10.7 202 	I.5 I.40 1.5 1.37 1.3 SAND: medium to coarse gra 1.3 Sand 1.3	ed, pale M L - MD			AEOLIAN 1.5
вся trag	0.3 2.70 2.70 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.0 0.07 3.5 0.07 3.5 0.07 3.5 0.07 3.5 0.07 3.5 0.07 3.5 0.07 3.5 0.07 3.5 0.07 3.6 0.07 3.7 0.07 3.8 0.07 3.9 0.07 3.9 0.07 3.9 0.07 3.9 0.07	ed, pale grey.			ESTUARINE?
Observations and Comments Difficulty drilling from 11m	4.0	i <mark>ote</mark>	Classifications compliant with AS1726-2017: Geotechnical : Defect Log Abridged. Additional detail in digital dataset. Lug For Inclined Holes: Angles reported in defects are apparent Refer to explanatory notes for SMEC logs for details of abb	geon: BS5930:1999 dip from core horizontal unless as α or B . Approved	y TH Date 01/03/2021 By SRM Date 31/03/2021 1 Page 1 of 4

				& Log Testir	C S Jo	roject lient ite ob Nu	M	eliminary G anildra Grou ort Kembla 1013038	eotechnical Investigation up Pty Ltd	East North Elevatior Datum	1 2.77 m	65.9 m	End Date	e 01/03/2021 e 01/03/2021	Ri	ontractor Num g Type Com ounting Trac	acchio 205	Inclination 90° Azimuth North Survey	s	MEC
ро	ort	(Gain/Loss) Run (TCR) RQD	oling	Strength SPT, DCF Is(50) (MP P (UCS kf SV (kPa		& Inflow	Elevation Graphic Log	epo Depth S RL			Moisture Condition Consistency	LT.	Weathering & Alteration Rock Strength	Inferred Rock Streng Point Load Is(50) ● - Axial O - Diametral	Relative	Defect Spacing			Borehole Identifier: Origin, Stratigraphic	BH5
Meth	Casir Supp Wate	(Gair Run (Sam	P`(UĆŠ kł SV (kPa	Pá), Ę	Level		Depth S RL	Soil / Rock Material D	escription	Moist Cond	Colour	Weat & Alto Rock	9 9 1 4 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Soil-Rock	Visual (mm)	Fabric, Structure & Defect Description	Group Defects	Unit & General Observations	Installation
	333	<u>0</u>	ES	SV (kPa 4.20m SPT 12, 15, 17 N=3 4.65m 5.70m SPT 10, 14, 18 N=3 5.15m	32	pserved		SP	Soil / Rock Material D SAND: medium to coarse grain (continued)			5					Defect Description	Defects	Observations ESTUARINE? 4.20: SPT Recovery: 0.45 m 5.70: SPT Recovery: 0.45 m	Installation
	Pervation	ns and	ES	7.20m SPT 5, 9, 10 N=19 7.65m		e - - 7 - - 7 -	1.5				M		Classificati	ns compliant with		1	1 Site Investigations unless othe	rwise noted. Logged By	7.20: SPT Recovery: 0.45 m	6.5 - - - - - - - - - - - - - - - - - - -
Difficu	ulty drilling	ng from 11	1m									Notes	Defect Log For Inclined Refer to ex	Abridged. Addition Holes: Angles replanatory notes for	onal detail in def eported in def or SMEC logs	digital dataset. Lu fects are apparer for details of ab	I Site Investigations unless othe ugeon: BS5930:1999 nt dip from core horizontal unles breviations or basis of descripti	s as α or β . Status	y SRM Date	31/03/2021 2 of 4

		g Log Testing		Number	Port Ke 300130	mbla	Pty Ltd	North Elevatior Datum	618306 1 2.77 m MGA94			Inferred	Rig Type Comac Mounting Track		Azimuth North Survey		MEC
Casing Support Water (Gain/Loss)	Run (TCR) R Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	Permeability, Level & Inflov	© Depth (m) ☐ <i>Elevation</i>	Graphic Log Soil Code	Depth RL	Soil / Rock Material D	escription	Moisture Condition Consistency		Weathering & Alteration Rock Strength	Rock Strengt Point Load Is(50) • - Axial o - Diametral	Defect Relative Spacing Strength (mm) Soil-Rock	Fabric, Structure & Defect Description	Group Defects	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH
		8.50m SPT 10, 11, 12 N=23	_	-5.2 -5.2 -5.7 -5.7	SP	8.30 -5.53	SAND: medium to coarse grain (continued) Clayey SAND trace gravel: fine grained, grey, mottled pale gre gravel is medium grained, ang	to medium en, brown,	MD							ESTUARINE? RESIDUAL SOIL	8.5 ·
		<u>8.95m</u>		9.0 -6.2	sc												9.0 · 9.5 ·
		10.20m SPT 4, 6, 9 N=15 10.65m PP=350kPa	Not Observed	10.0	G		CLAY with sand trace gravel: n plasticity, grey, mottled pale gr with white, sand is fine to coars gravel is fine grained, angular.	nedium een, brown, e grained,	Wne St PL	-						10.20: SPT Recovery: 0.45 m	10.0 -
		11.00m SPT 12, 22, 26 N=48 11.45m		11.0 -8.2 	CI		Gravelly CLAY with sand: med grey, mottled pale green, brown gravel is fine to medium grave sand is fine to coarse grained.	n, with white,	- н	_						11.00: SPT Recovery: 0.45 m	11.0 -
20% Loss				11.5 -8.7 - - - - - - - - - - - - - - - - -		<u>11.50</u> -8.73	CORE LOSS 0.60m (11.50-12	10)		Notes	Classification		AS1726-2017: Geotechnical Si nal detail in digital dataset. Luge ported in defects are apparent d r SMEC logs for details of abbre	te Investigations unless other	wise noted. Logged By	TH Date	01/03/2021

Geole Engine	eri	cal & ng Log _{Testing}	Project Client Site Job Nu	M P	reliminary G anildra Grou ort Kembla 0013038	eotechnical Investigation ıp Pty Ltd	East North Elevatior Datum	61830 1 2.77 n	32.7 m)65.9 m n 94 Zone 56/Al	End Date	te 01/03/202 e 01/03/202	1 R	Contractor Num Rig Type Com <i>N</i> ounting Trac	nacchio 205 sk	Inclination <mark>90°</mark> Azimuth North Survey	S	MEC
Method Casing Support Water (Gain/Loss)	Run (TCR) RQI	Strength DU SPT, DCP, Is(50) (MPa) E PP (UCS kPa SV (kPa)	Peřmeability, Level & Inflow	<i>Elevation</i> Graphic Log	- Oqe OO S RL	Soil / Rock Material D	escription	Moisture Condition Consistency	Colour	Weathering & Alteration Rock Strenath	Inferred Rock Streng Point Load Is(50) ● Axial O - Diametral	Relative	Defect Spacing h (mm) rems k 0000 k 2000 Sk 20	Fabric, Structure & Defect Description	Group Defects	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH5 Installation
	5 R11.00m 6 (40%) 32%		14		-9.33	CORE LOSS 0.60m (11.50-12. DAPTO LATITE: fine to mediuu green, speckled dark grey, oran	n grained, pale			XW SS HW VL L				-12.10-12.18: Weathered Zone, Infilled, XW.	CI	IGNEOUS - INTRUSIVE 12.23: Is(50) = 0 MPa 12.26: Is(50) = 0.02 MPa 12.39: Is(50 = 0.03 MPa 12.43: Is(50 = 0.09 MPa	- - - 12.5
EC 2.10.8 2020-09-10				- - -	-9.73	Hole Terminated at 12.50 m Target depth											-
Ske 2,10,7 200-09-20 PJ; Ske 2,108 200-09-10			-1	1.0													13.0
10.02.00.04 Datget Tools Lab. SM			-1	1.5													13.5
31/03/2021 17:22			-1														14.0
30013038 GINT.GPJ < <drawingfile>></drawingfile>			-1	5 													14.5 — - - -
I I I I				i.0 — 2.2 — — — —								 - - - -					15.0 — - - - -
GLB Log_SMECHVBRID BOREHOL			11	9.5 <u>-</u> 2.7 - - - -													15.5 — - - -
Difficulty drilling fr	and (rom 11r	Comments n	<u> </u>	i.0					Notes	Classification Defect Log For Inclined Refer to ex	Dns compliant wi Abridged. Addit Holes: Angles	ith AS1726-20 ional detail in reported in de	017: Geotechnica digital dataset. Lu efects are appare	I Site Investigations unless otherw ugeon: BS5930:1999 nt dip from core horizontal unless breviations or basis of description	rise noted. Logged B as α or β. Approved Status	By SRM Date	01/03/2021 31/03/2021 4 of 4

PointID : BH5 Depth Range: 11.50 - 12.50 m - 89277e28-d396-448a-b109-e6f0bb1b6f9d

Geological & Engineering Log	Preliminary Geotechnical Investigation Manildra Group Pty Ltd North Port Kembla Eleva nber 30013038 Datur	tion 2.49 m		io 205 Inclination 90° Azimuth North Survey	SMEC
Method Casing Support Water Water Run (TCR) ROD Sampling Sampling Sampling Cevel & Inflow Cevel & Inflow Cevel & Inflow		Moisture Condition Consistency Density	Linferred Bio Point Load Defect bio provint	Fabric, Structure & Group Defect Description Defects	Borehole Identifier: BH7 Origin, Stratigraphic Unit & General Observations Installation
L L L L L L L L L L L L L L L L L L L	2.49 FILL Bouldery SAND with gravel: fine to coarse grained, porty graded, dark grey, boulders are up to 0.8m in diameter, grave fine to coarse grained, angular to sub-angu	is			FILL E - - 0.5- - 0.5- - 1.0- - 1.0- - 1.0- - 1.0- - 1.5- - 1.5- - 1.5- - 1.5- - 1.5- - 1.5- - 2.0- - 2.15- -
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0				ESTUARINE?
ES 3.45m 3.45m 4.0					0.45 m
Observations and Comments	<u></u>	ote	Classifications compliant with AS1726-2017: Geotechnical Site I Defect Log Abridged. Additional detail in digital dataset. Lugeon: For Inclined Holes: Angles reported in defects are apparent dip i Refer to explanatory notes for SMEC logs for details of abbrevia	BS5930:1999 rom core horizontal unless as α or B . Approved	

Geological & Engineering Log	Project Preliminary Geotechnical In Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038			Contractor Numac Rig Type Comacchio 205 Mounting Track	Inclination <mark>90°</mark> Azimuth North Survey	SMEC
Method Rethod Casing Staten Mater Casing Cas			÷ o ⊂ O-Diametral Stre	Defect ative Spacing ength (mm) Rock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Structure Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock Sock		Borehole Identifier: BH7 Origin, Stratigraphic Unit & General Observations Installation
- 4.50m - 4.50m SPT 12, 15, 17 N=33 ES ES - 4.95m 4.95m		Inse grained, pale grey.				ESTUARINE?
ES 4.95m 4.95m 4.95m 4.95m 6.00m 5PT 12, 15, 20 N=3 5PT 12, 15, 20 N=3 F 6.45m 6.45m 6.45m	6.0 SP					6.00: SPT Recovery: 0.45 m
	7.5					7.5
Observations and Comments		Notes D C D C S	Classifications compliant with AS17 Defect Log Abridged. Additional dei for Inclined Holes: Angles reported Refer to explanatory notes for SME	*26-2017: Geotechnical Site Investigations unless ot tail in digital dataset, Lugeon: BS5930:1999 i n defects are apparent dip from core horizontal unl C logs for details of abbreviations or basis of description in the second statement of the second statement of the second rest of the second statement of the second statement of the second statement of the second statement of the second statement rest of the second statement of the	herwise noted. Logged By ess as α or β. Approved E otion. Status	TH Date 02/03/2021 3y SRM Date 31/03/2021 1 Page 2 of 4

Support Water (Gain/Loss)	CR) RQD	Testing Strength SPT, DCP,	_		r 30013			Datum	2		e 56/AF		Infer Rock Si Point I Is(5	rengt		Defect e Spacing			Survey	Borehole Identifier:	BH
Support Water (Gain/Lo	Run (TCR Sampling	Strength PSPT, DCP, Is(50) (MPa), PP (UCS kPa) SV (kPa)	Permea Level &	© Depth (m) Elevation	Graphic Log	Depth RL	Soil / Rock Material D	escription	Moisture Condition Consistenc	Density	Colour	Weathering & Alteration Rock Strength	A-A O-Dian 	netral	Strengt	n (mm)	2000 Visual	Fabric, Structure & Defect Description	Group Defects	Origin, Stratigraphic Unit & General Observations	Installation
				-5.5 -	s	P	SAND: fine to coarse grained, p (continued)	ale grey.							-					ESTUARINE?	
				- 8.5 -	· · · · · · · · · · · · · · · · · · ·	<u>8.50</u> -6.01				St					-					RESIDUAL SOIL	8
				-6.0 _			Sandy CLAY with gravel: mediu grey, mottled pale green, brown sand is fine to coarse grained, g grained, angular.	, with white,		51					-						
		9.00m SPT 5, 8, 14 N=22	-	- 9.0											-					9.00: SPT Recovery: 0.45 m	9
		9.45m 9.45m PP=450kPa	-	- 9.5 — - ^{7.0} —											-						9
						21									-						1
				- 10.5 — - ^{8.0} —											-						1
		11.20m		- 11.0 — - ^{8.5} —											-						1
		SPT 4, 6, 27 N=33		- - 11.5		11.50														11.20: SPT Recovery: 0.45 m	1
25 % Loss -		11.65m		-9.0 -		-9.01 11.70 -9.21	Gravely CLAY with sand: medi grey, motiled pale green, brown gravel is fine to medium grainer sand is fine to coarse grained. CORE LOSS 0.37m (11.70-12.0	, with white, I, angular,		1											

E			eri	cal 8 ng L		Projec Client Site Job Nu		Mani Port	ldra (Kemt	Group Sroup	otechnical Investigatior p Pty Ltd	East North Elevatior Datum	6183 1 2.49) m	.2 m Zone 56/AH	End [ID	Date	e 02/03/2021 02/03/2021		Contract Rig Type Mounting	Coma	acchio 205	Inclination 90° Azimuth North Survey	s	MEC
Method	Casing	Water (Gain/Loss)	Run (TCR) RQD	Sampling) Ad is) si is is	Strength PT, DCP, 50) (MPa), UCS kPa SV (kPa)	Permeability, Level & Inflow	0.5 UPPtin (m)	Graphic Log	Soil Code		Soil / Rock Material I	Description	Moisture Condition	Consistency Density	Colour	Weathering & Alteration	Rock Strength	Inferred Rock Streng Point Load Is(50) O-Diametral	Relat Stren	Defe ive Spaci gth (mm ock	ct Nisual	Fabric, Structure & Defect Description	Group Defects	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH7 Installation
-			12 R1 0.80m 15 (54%) 0%			1	-9.5		-9 CI 11	2.50	Gravelly CLAY with sand: me grey, mottled pale green, bro gravel is fine to medium grain sand is fine to coarse grained	vn, with white, ed, angular,		Н					-				, CI	RESIDUAL SOIL	
2020-08-20 Pr): SMEC 2.10.8 2020-09-10			R2 0.84m (40%) 0%			1	10.0 - - - - - - - - - - - - - - - - - -		1; CI 1;	3.00	CORE LOSS 0.50m (12.50-1) Gravelly CLAY with sand: me grey, mottled pale green, bro gravel is fine to medium grail sand is fine to coarse grained			Н		DW	VL]		EXTREMELY WEATHERED MATERIAL	- - - 13.0 —
Tools Lib: SMEC 2.10.7			13.34				3.5 — 11.0 —			<u>3.34</u> 0.85 \	grave is line to coarse grained DAPTO LATITE: fine to medi green with pink, speckled dari (red, white. Hole Terminated at 13.34 m Termination due to cave-in	w grained, pale grey, orange,										⊐—13.15-13.17: Softened Zone, DW.]—13.24-13.29: Softened Zone, DW.		(13.00: Is(50) = 0.01 MPa IGNEOUS - INTRUSIVE 13.19: Is(50) = 0.01 MPa	- -13.3
31/03/2021 17:22 10.02.00.04 Datgel							- 4.0 ^{11.5} -																		- - 14.0 — - -
< <drawingfile>></drawingfile>							- 4.5 ^{12.0} - - -																		
DLE LANDSCAPE 30013038 GINT.GPJ							- 5.0 ^{12.5} - - -												- - -						- 15.0 — - - -
3 Log_SMECHYBRID BOREHOL							- 5.5 ^{13.0} - - -																		_ 15.5 — _ _ _
SMEC 2.10.7.2 LIB.GLB	serva	itions	and	Commer	nts	<u> </u> 1	6.0								Notes 0 0	Classifi Defect I For Incl Refer to	catior Log A ined I o expl	ns compliant wit Abridged. Additio Holes: Angles re lanatory notes fe	h AS1726 onal detail eported in or SMEC	6-2017: Geo l in digital da n defects are logs for det	technical s ataset. Lug apparent ails of abbi	Site Investigations unless other reon: BS5930:1999 dip from core horizontal unless reviations or basis of descriptic	wise noted. Logged By s as α or β. n. Status	TH Date By SRM Date 1 Page	02/03/2021 31/03/2021 4 of 4

PointID : BH7 Depth Range: 11.70 - 13.34 m - 84780416-7c43-46e2-952b-9213f560e361

Geological & Engineering Log	Client Manildra Gro Site Port Kembla Job Number 30013038	Geotechnical Investigation East Sup Pty Ltd North Elevation Datum	307798.2 m 6183140.5 m 3.11 m MGA94 Zone 56/A		Contractor Ledacon Equipment Typ d-Iitachi 13 Mounting Track	Inclination 90° Azimuth North Survey	SMEC
Method Scasing Scasing Scasing Scasing Scand Mitter Mitter Scand Scand Scand Scasing S	(e ad e ad a ad a ad a ad a ad a ad a ad	th Soil / Rock Material Description	Moisture Condition Consistency Density Inoloo	We atthe Herein A We atthe We we we we we we we We we we we we we we We we we we we we we we We we we we we we we we we We we we we we we we we we we We we we We we	Defect Relative Spacing Strength (mm) To Soil-Rock S	abric, Structure & Group Defect Description Defects	Pit Identifier: TP01 Origin, Stratigraphic Unit & General Observations Installation
							CEMENTED SLAG
31032321 71:32 10 02:00 ou Royen Toole Lib: Shere 2:107 2020-04:30 Pri Shere 2:108 2020-04:10 	Perturbation 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	FILL SAND with gravel trace cobbles: fine to coarse grained, brown, gravel is fine to coarse grained, angular, iron slag, trace iron material.					
Avendar 10,2000 to 2000 to 200	2.0	SAND: fine to coarse grained, pale orange, pale brown.	M L- MD				AEOLIAN
200	3.0						
		Hole Terminated at 3.00 m Termination due to cave-in					
Observations and Comments			Notes	Classifications compliant with Defect Log Abridged. Addition For Inclined Holes: Angles rep Refer to explanatory notes for	AS1726-2017: Geotechnical Site Invest al detail in digital dataset. Lugeon: BS ported in defects are apparent dip from r SMEC logs for details of abbreviations	stigations unless otherwise noted. Logged B 5930:1999 core horizontal unless as α or β s or basis of description. Status	y TH Date 17/02/2021 By SRM Date 31/03/2021 1 Page 1 of 1

Engin		cal ng L	& _Og Testing	Proje Client Site Job N	t	Prelimi Manild Port Ke r 300130	ra Grou embla	eotechnical Investigation p Pty Ltd	East North Elevatior Datum		3132. m	8 m Ione 56/AF	End Date	 15/02/2021 15/02/2021 	E	Contractor Equipment Nounting	TypeHitad		Inclination 90° Azimuth North Survey	s	MEC
Method Casing Support Water	(Gain/Loss) Run (TCR) RQ	Sampling Ad sl	Strength SPT, DCP, (50) (MPa) V (UCS kPa SV (kPa)	Permeability, Level & Inflow	G Depth (m)	Graphic Log Soil Code	Depth RL	Soil / Rock Material Des	scription	Moisture Condition	Density	Colour	Weathering & Alteration Rock Strength	Inferred Rock Streng Point Load Is(50) • Axial O - Diametral	Relative	Defect Spacing (mm) k	Visual	Fabric, Structure & Defect Description		Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP02
	E	ES ES			2.9 - -		0.10 2.82	GRAVEL: fine to medium grained pale grey, grey. FILL Gravelly SILT with sand: pal orange, gravel is fine to coarse gr angular, sand is fine to coarse gra boulders, brick.	e grev, pale											CEMENTED SLAG	- TP02
-	E	≣S			0.5		<u>0.70</u> 2.22	FILL Clayey SAND trace silt: fine grained, pale grey, orange, trace	to coarse boulders.	-											0.5
				Not Observed	- - 1.5 — ^{1.4}		1.50 1.42	SAND: fine to coarse grained, pal pale orange.		м	L - MD									AEOLIAN	- - - 1.5 - -
- 00 - 00 - 1 - 1 - 1	E	ES		Not	- 2.0 — 0.9 -	SF	5														
- - - -					2.5 0.4 -		2.95								- - - -						2.5
-	E	≣S			3.0 -0.1 -	SF	-0.03	SAND: fine to coarse grained, pal pale orange.	le brown,											ESTUARINE?	3.0
▼ 					3.5 — -0.6 -			Hole Terminated at 3.40 m Target depth													-3.4 3.5 — - - -
Observation	ns and C	omme	ents		4.0							Notes	Classificatio Defect Log / For Inclined Refer to exp	Liiii			chnical Site set. Lugeor pparent dip s of abbrevi	Investigations unless othe 1: BS5930:1999 from core horizontal unless ations or basis of descripti	erwise noted. Logged By ss as α or β. Approved Status	TH Date By SRM Date 1 Page	15/02/2021 31/03/2021 1 of 1

Geological & Engineering Lo		Geotechnical Investigation East Sup Pty Ltd North Elevation Datum	307817.4 m 6183107.7 m 3.33 m MGA94 Zone 56/Al		Contractor Ledacon Equipment Type l itachi 1 Mounting Track	3t Azimuth North Survey	SMEC
Method Casing Support Water (Gain/Loss) Run (TCR) RQD Sampling $\mathcal{A}_{\overline{B}}^{T}$	Lendth (Kba) (Wba) (Mba) (Moisture Condition Consistency Density	÷ 0 v O-Diametral	Defect Relative Spacing Strength (mm)	Fabric, Structure & Group Defect Description Defects	Pit Identifier: TP03 Origin, Stratigraphic Unit & General Observations Installation
	0.5 2.8	pale grey, grey.					CEMENTED SLAG
ES							- - - 1.0 - - - - -
	2.5	³ SAND: fine to coarse grained, pale brown, pale orange, with laminations of dark grey clay, trace sea shells.	M L- MD				AEOLIAN 2.0 -
		3 Sand: fine to coarse grained, pale brown, pale	w				
	3.5 -0.2 	orange, with laminations of dark grey clay, trace sea shells. 9 Hole Terminated at 3.70 m Target depth					3.5
Observations and Comments	<u>40</u> <u>410</u> <u>5</u>	1	Notes	Classifications compliant with A Defect Log Abridged. Additiona For Inclined Holes: Angles rep Refer to explanatory notes for	AS1726-2017: Geotechnical Site Inve al detail in digital dataset. Lugeon: BS orted in defects are apparent dip from SMEC logs for details of abbreviation	stigations unless otherwise noted. (5930:1999) h core horizontal unless as α or β. s or basis of description. Logged B Approved Status	y TH Date 15/02/2021 By SRM Date 31/03/2021 1 Page 1 of 1

Engineering Log	Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038	East307788.0 mNorth6183028.5 mElevation2.44 mDatumMGA94 Zone 56/Ał		Contractor Ledacon Equipment Typ d-litachi 13t Mounting Track	Inclination 90° Azimuth North Survey	SMEC
Method Method Strength Sbport Sbport Sbport Sbport Mater Scressing	Perind Depth from Cap hic Log Cap hic Log Cap hic Log Cap hic Log Cap hic Log Cap hic Log Cap hic Log	Moisture Dondition Density Density Moistency Density	- Diametral	Defect Relative Spacing Strength (mm) ق Soil-Rock ق وم الا في Structure وم الا في		Pit Identifier: TP04 Origin, Stratigraphic Unit & General Observations Installation
	2.4 2.4 2.4 2.24 2.24 2.24 2.24 2.24 FILL Clayey GRAVEL trace sitt: coarse grained, angular, pale gre 0.20 2.24 FILL Cravelly CLAY with sand: r plasticity, dark grey, brown, red, in the coarse grained, angular medium to coarse grained, trace bricks.	ey, grey. 				FILL 50.02m Bonded Fibro - potential ACM 60.00 - 0.2m Bonded 7.00 - 0.2m Bonded 7.00 - 0.5 - 0.60: -0.8m Bonded 7.00 - 0.5 - 0.60: -0.8m Bonded 7.00 - 0.5 - 0.5 - 0.60: -0.8m Bonded 7.00 - 0.5
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	1.0 1.4 1.20 1.24 SAND: fine to coarse grained, pa	ale brown. M L - MD				
31(02/2021-17-22-10.02.00.04) Danget Troeke Lto 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	12700151 200-0-4 0-4 0-4 0-4 0-4	W				
30013028 GNT GPJ - <	2.5 2.50					2.5 2.5
Observations and Comments Hammer used to excavate top 0.2m (some ACM not some	4.0	Penetrometer Notes Type: DCP9 Blows per 100 mm	Classifications compliant with A Defect Log Abridged. Additional For Inclined Holes: Angles repo	S1726-2017: Geotechnical Site Investigations unless I detail in digital dataset. Lugeon: BSS930:1999 rede in defects are apparent dip from core horizontal I SMEC logs for details of abbreviations or basis of desc	otherwise noted. Logged By inless as α or β. Approved sription. Status	

Engineering Log	Project Preliminary Geotechnical Investigation lient Manildra Group Pty Ltd bite Port Kembla ob Number 30013038	East 307783.2 m North 6183065.7 m Elevation 2.82 m Datum MGA94 Zone 56/Ał		Contractor Ledacon Equipment Typ elit achi 13t Mounting Track	Inclination 90° Azimuth North Survey	s	MEC
Method Casing Strength Matter Strength Matter Watter Matte	Level Bandwy Level Bandwy Depth (m) Depth Caap Lic Log Code Code Code Code Code Code Code Code	Proposition Density Moisture Density Moisture Density Moisture	÷ 0 v O-Diametral St	Defect Pength (mm) I-Rock	& Group on Defects		TP05
ES +2 +2 +2 +3 -7 -7 -10 -10	2.8 FILL Gravelly CLAY with sand: provide the second seco	adium to medium to ace silt.				FILL AEOLIAN	ЗОДЦ – – – – – – – – – – – – – – – – – – –
	Ž 1.42 SAND: medium to coarse graine brown.	id, pale				AEOLIAN 20	1.5
	Hole Terminated at 2.60 m Hole Termination due to cave-in Termination due to cave-in 3.0						
Observations and Comments		Type: DCP9 😃 Blows per 100 mm	Defect Log Abridged. Additional de For Inclined Holes: Angles reporte	1726-2017: Geotechnical Site Investigations unless ot etail in digital dataset. Lugeon: BS5930:1999 ed in defects are apparent dip from core horizontal un EC logs for details of abbreviations or basis of descri	ess as α or β . Approved B		5/02/2021 1/03/2021 of 1

Geological & Engineering Log Testing	East 307759.1 m North 6183073.4 m Elevation 1.33 m Datum MGA94 Zone 56/A	End Date 17/02/2021	Contractor Ledacon Equipment Typ elitachi 13t Mounting Track	Inclination 90° Azimuth North Survey	MEC
Method Casing Statentry (Gathing Strendth Method Casing Strendth Method (Gathing Casin		Inferred Inferred Rock Strength Isf50 O Dametal Soli-Rock Soli-Roc	Defect Spacing h (mm) B * Second S	Defects Observations	TP06
FILL SAND with gravel trace- coarse grained, brow, dark g fine to coarse grained, angula	rey, gravel is			FILL	TP06
ES 12 0.5 0.83 SAND: fine to coarse grained brown.	pale grey, pale M L - MD				0.5
0 0	pale grey, pale			ESTUARINE?	1.0
ES 14 1.5 1.50 brown. 1.50					-1.5
a					2.0
					2.5
					3.0
					- 3.5 - -
Observations and Comments	Penetrometer Notes Type: DCP9 Blows per 100 mm	Defect Log Abridged. Additional detail in For Inclined Holes: Angles reported in d	017: Geotechnical Site Investigations unless other digital dataset. Lugeon: B55930:1999 efects are apparent dip from core horizontal unless gs for details of abbreviations or basis of description	as as α or β . Approved By SRM Date	17/02/2021 31/03/2021 1 of 1

Geological & Engineering Log	Project Preliminary Geotechnical Investigatio Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038 sting	North 6183062.6 m End Date 15/02/2 Elevation 2.56 m Datum MGA94 Zone 56/AHD	021 Equipment Typ 4-litachi 13t Mounting Track	Inclination 90° Azimuth North Survey
Method Method Scasing Scasing Water Water (Gain/Loss) Min (TCR) ROD Sam pling Sofn) dd Min (TCR) ROD Sam pling Sofn) Soft Soft Min (Soft) Sam pling Soft Min (Soft) Soft Soft Soft Soft Soft Soft Soft Soft	IPa), थ8 (1 tar : : : : : : : : : : : : : : : : : : :		rength ^{Sad} Defect ≩ Relative Spacing atral Strength (mm) ख ्या – this of the	on Defects Observations Installation
	2.56 FILL Bouldery SAND with gr coarse grained, dark grey, bo 0.8m in diameter, gravel is fi grained, angular to sub-angu	ne to coarse		FILL Control C
2320-06-30 LF Select 2 108 200-08	1.0 1.6 1.20 1.36 SAND: fine to coarse grained with black carbonaceous lam			0.70: -1.0m Bonded - Fibro - potential ACM - fragment observed - 1.0
310322811 1732 1022.00 ol Dalgei Toole Lib:: Skier 2.107 2020-08-30 Pri Skier 2.108 2020-09-10 P. V. J.	1.5			
ES ES		W Pale brown, with		
	- · · · · · · · · · · · · · · · · · · ·	n.		
B GLB Log_SNEC HYRID B OREHOLE				
Observations and Comments	<u>4.0</u>	O Classifications complia O Classifications complia O Defect Log Abridged. A O For Inclined Holes: And O For Inclined Holes: And O	twith AS1726-2017: Geotechnical Site Investigations unless of dditional detail in digital dataset. Lugeon: BS530:1999 les reported in defects are apparent dip from core horizontal un tes for SMEC logs for details of abbreviations or basis of descri	herwise noted. Logged By TH Date 15/02/2021 less as α or β. Approved By SRM Date 31/03/2021 Status 1 Page 1 of 1

Geological & Engineering Log	Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038	North 6183119.6 m End Da Elevation 3.79 m Datum MGA94 Zone 56/AHD	te 16/02/2021 Contractor Ledac Equipment Type-Ii Mounting Track		SMEC
Matter Strength SPT, DCP SPT,			Inferred Rock Strength Point Load Defect Is(50) Relative Spacing O Diametral Strength (mm) To Soli-Rock (mm) To Soli-Roc	Fabric, Structure & Group Defect Description Defects	Pit Identifier: TP08 Origin, Stratigraphic Unit & General Observations Installation
Lts: SMEC 2. 10.7 2020-09-30 Pt; SMEC 2. 10.8 2020-09-10 1	0.3 3.79 GRAVEL: fine to coarse gran pale grey; grey. 0.15 0.15 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 3.34 0.5 5.3 0.5 3.34 0.5 5.3 0.5 5.7 1.0 2.79 2.79 SAND: fine to coarse grained brown. 1.5 5.7 1.5 5.7	1: fine to medium lar, brown, red, is coarse city clay. clay: fine to ey, gravel is fine trace silt.			CEMENTED SLAG
	1.70 1.70 Hole Terminated at 1.70 m 2.0 1.8 2.5 1.3				1.7
GLB Log_SMIC FYRRID BORFHOLE LANDSCAPE 2001303 GINT FOY <					
Observations and Comments cave-in at 1.7m	4.0	Classifica Defect Lo For Inclin Refer to e	ions compliant with AS1726-2017: Geotechnical S Abridged. Additional detail in digital dataset. Luge d Holes: Angles reported in defects are apparent xplanatory notes for SMEC logs for details of abbre	Site Investigations unless otherwise noted. eon: BS5930:1999 dip from core horizontal unless as α or β. eviations or basis of description.	y TH Date 16/02/2021 By SRM Date 31/03/2021 1 Page 1 of 1

Engineering Log	Geotechnical Investigation oup Pty Ltd North a Elevatic Datum	307900.2 m 6183079.3 m n 14.64 m MGA94 Zone 56/A		Contractor Ledacon Equipment TypeHitac Mounting Track	chi 13t Inclination 90° Azimuth North Survey	SMEC
Method Cassing Swater (Water (Water (Bain/Loss) Run (TCR) ROD Sampling Run (TCR) ROD Sampling Pe ^{(b} (eAN) (05)sl Fevel & nflow Level & nflow Graphic Log Graphic Log	oth Soil / Rock Material Description	Moisture Condition Consistency Density	Weathering Weathering Reack Stration Ispector (105) Birke B	Defect Relative Spacing Strength (mm) ल	Fabric, Structure & Group Defect Description Defects	Pit Identifier: TP09 Origin, Stratigraphic Unit & General Observations Installation
	brown, boulders are up to 0.6m in diameter, extremely to highly weathered sandstone, onion ring weathering.					FILL 80 -
0.5- 1.0- 0.5- 1.1- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.1-	trace sand, boulders are up to 0.6m in diameter, moderately weathered to slightly weathered sandstone.					
2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-						- - 1.5 - - - - - - - - - - - - - - - - - - -
	0 Hole Terminated at 2.40 m					
	Target depth					
						3.0
Observations and Comments Sandstone stockpile testpit	1	Notes	Classifications compliant with Defect Log Abridged. Additto For Inclined Holes: Angles re Refer to explanatory notes for	h AS1726-2017: Geotechnical Site onal detail in digital dataset. Lugeon eported in defects are apparent dip or SMEC logs for details of abbrevia	Investigations unless otherwise noted. EBS5930:1999 from core horizontal unless as α or β. Approve Status	By TH Date 17/02/2021 d By SRM Date 31/03/2021 1 Page 1 of 1

Second Second	Geological & Engineering Log Testing		te 16/02/2021 Contractor Ledacon e 16/02/2021 Equipment TypeHitach Mounting Track	i 13t Inclination 90° Azimuth North Survey	SMEC
1 1 <th></th> <th>Material Description</th> <th>Deals Otranath</th> <th>Fabric, Structure & Group Defect Description Defects</th> <th>TP10 Origin, Stratigraphic Unit & General Observations Installation</th>		Material Description	Deals Otranath	Fabric, Structure & Group Defect Description Defects	TP10 Origin, Stratigraphic Unit & General Observations Installation
ES 0.33 SM0. The to coarse grained, orange, pale W 1	ES Construint of the second s	/ SAND: coarse grained, ravel is fine to coarse with iron slag and trace iron Y trace cobbles: high wn. red brown gravel is fine			FILL
- - - Hole Terminadia di 2.50 m -<	ES 250	rse grained, orange, pale W			
Observations and Comments Classifications compliant with AS1726-2017: Geotechnical Site Investigations unless otherwise noted. Logged By TH Date 16/02/2021 Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:1999 Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:1999 Approved By SRM Date 31/03/2021 Refer to explanatory notes for SMEC logs for details of abbreviations or basis of description. Status 1 Page 1 of	00/0000 2.0 0.4 0.4 - - 1 0.4 - 1 0.4 - 1 0.4 - 1 0.4 - 1 0.4 - 1 0.4 - 1 0.4 - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 2.0 - - 1 - - 1 - - 1 - - 2.0 - - 2.0	o cave-in			

Engineering Log Tratice Tratice Client Manildra Grou Site Port Kembla Job Number 30013038	up Pty Ltd North 618 Elevation 4.3	183046.7 m End	t Date 16/02/2021 Date 16/02/2021	Contractor Ledacon Equipment Typ d itachi 13 Mounting Track	t Azimuth North Survey	SMEC				
Method Support Calification (Gain/Loss) (Gain/Loss) (Gain/Loss) (Gain/Loss) (Craphing (Craphing) (C	en tig tig Soil / Rock Material Description	Condition Consistency Density Innoloo A Meathering & Atheration	Hoferred Rock Strength Point Load (\$500) Relation - Diametral Strength Stre	Defect ative Spacing ngth (mm) re Rock R R R R R R R R R R R R R R R R R R R	abric, Structure & Group efect Description Defects	Pit Identifier: TP10A Origin, Stratigraphic Unit & General Observations Installation				
	FILL BOULDERS with cobbles with gravel: boulder grained, poorly graded, angular to sub-angular, grey, pale grey, brown, pale brown, boulders up to 0.6m, extremely to highly weathered sandstone, onion ring weathering. FILL BOULDERS with cobbles trace gravel: grey, pale grey, brown, pale brown, boulders up to 0.6m in diameter, moderately weathered					FILL 40				
paves do table to tab	up to 0.6m in diameter, moderately weathered sandstone.									
	Hole Terminated at 2.00 m Target depth					2.0 2.0 -				
						3.0				
						3.5				
Observations and Comments	Observations and Comments Classifications compliant with AS1726-2017: Geotechnical Site Investigations unless otherwise noted. Logged By TH Date 16/02/2021 Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:1999 Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:1999 Date 31/03/2021 For Inclined Holes: Angles reported in defects are apparent dip from core horizontal unless as a or p . Status 1 Page 1 of 1									

Geological Engineering L	& Project Client Site Job Number	Preliminary Geotechnical Investigation Manildra Group Pty Ltd Port Kembla 30013038	North 6183003.4 m Elevation 2.38 m Datum MGA94 Zone 56/A		Contractor Ledacon Equipment Type litachi 13t Mounting Track	Inclination 90° Azimuth North Survey	s s	MEC
ethoc sing sing ater n (T n (T sing sing sing sing sing sing sing sing	Strength STRENGT, DCP, , STC, SC, SC, SC, SC, SC, SC, SC, SC, SC, S	b p p p o p o c b o c b c b c c c c c c c c c c c c c	Description O Colour	We	Defect Plative Spacing rength (mm)	Group Defects		TP11 Installation
A Dri Streec 2 108 2000-08-10	0.5 111 10 10 10 10 1.4	2.38 GRAVEL: medium to coarse grey, pale grey. 0.20 2.18 FILL Gravelly CLAY with san plasticity, dark grey, gravel is coarse grained, angular, san coarse grained, trace glass. 0.60 1.78 FILL Clayey SAND trace gra coarse grained, brown, pale I gravel is medium to coarse g 1.10 1.28 FILL SAND with cobbles: me	1: medium medium to is medium to el: medium to rown, orange, rained, angular.				FILL	
31032021 1733 10 02 00 to Pagei Tools Lib: Skie C 2 10 7 2020-08-20 Pt; Skie C 2 10 8 2020-09-10	10 13 12 14 15 0.9 2.0 0.4 1.5 0.9 1.5 0.9 1.5 0.9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	1.08 SAND: fine to coarse grained	obbles are w strength					
<pre><code: </code: </pre>	2.5	2.40 -0.02 SAND: fine to coarse grained	pale brown.				ESTUARINE?	- 2.5 - - - - - - - 0
UB GLB Log_SNECH WRIND BORE HOLE LINNDSCAPE		Target depth						3.5
Observations and Comme	ents		Penetrometer Notes Type: DCP9 Blows per 100 mm	Classifications compliant with AS Defect Log Abridged. Additional d For Inclined Holes: Angles reporte Refer to explanatory notes for SM	1726-2017: Geotechnical Site Investigations unless oth etail in digital dataset. Lugeon: BS5930:1999 ad in defects are apparent dip from core horizontal unle IEC logs for details of abbreviations or basis of descript	erwise noted. Logged By ss as α or β. ion. Status		5/02/2021 1/03/2021 of 1

Engineering Log	oject Preliminary Geotechnical Investigation ient Manildra Group Pty Ltd te Port Kembla bb Number 30013038	East307804.1 mNorth6183011.6 mElevation2.64 mDatumMGA94 Zone 56/Al	End Date 17/02/2021 Equi Moun	ractor Ledacon Inclinat prment Type-Iitachi 13t Azimut nting Track North Survey	
Method Casing Strendth Mater (Gain/Loss) Run (TCR) Rob SbL' (Doss) Run (TCR) Run (TCR) Run (TCR) Screen Screen Run (TCR) Screen Screen Screen Run (TCR) Screen Scre			The test is a selative s	Defect pacing (mm) ଟ୍ରାଁ Fabric, Structure & ସୁ କ୍ଷୁ କ୍ଷୁ ମ୍ଭୁଁ Defect Description	Pit Identifier: TP12 Origin, Stratigraphic Group Unit & General Defects Observations Installation
	2.6 CRAVEL: fine to coarse grained, GRAVEL: fine to coarse grained, graded, angular, grey, pale grey. FiLL Gravelly Silly SAND: fine to grained, dark brown, grey, gravel coarse grained, angular, iron slag 0.5 2.1 0.90 1.74 FILL GRAVEL with cobbles trace	coarse is fine to			CEMENTED SLAG P FILL - 0.5 - - - - -
31032021 1733 10.02 00 Al Dalgen Tools (Lib: State 2.10.7 20204-30 PJ; State 2.10.8 202049-10 	1.0 grained, poorly graded, angular, c iron siag, sand is coarse grained, material. 1.0 1.20 1.5 1.44 1.5 1.5 1.7 1.44 SP	tracë iron			AEOLIAN
	2.5 2.60 0.1 2.60 0.04 Sand: fine to coarse grained, pale brown, trace sea shells. 0.04 Sp 2.90 2.90	brown, red			ESTUARINE?
	3.0 Hole Terminated at 2.90 m -0.4 - -0.4 - - -				3.0
Cobservations and Comments hole abandoned at 2.9m due to cave-in	4.0	ote	Classifications compliant with AS1726-2017: Defect Log Abridged. Additional detail in digi For Inclined Holes: Angles reported in defect	Geotechnical Site Investigations unless otherwise note tal dataset. Lugeon: BSS930:1999 is are apparent dip from core horizontal unless as α or r details of abbreviations or basis of description.	ad.Logged ByTHDate17/02/2021β.Approved BySRMDate31/03/2021Status1Page10

Geological & Engineering Log	Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038	East307774.2 mStart Date17/North6183044.4 mEnd Date17/Elevation2.59 m2.59 mDatumMGA94 Zone 56/AHD	2/2021 Equipment TypeHitachi 13t Mounting Track	Inclination 90° Azimuth North Survey
Method Casing Scasing Scasing Scanport (Water Man (CS)si Sam pling Sam pling		Moisture Moisture Condition Densitency Density Neathering Rock Strengt	ferred Strength nt Load Defect \$(50) Relative Spacing Demote Strength (mm) m r γ ℓ Soil-Rock 8 8 ≥ ± ± ± 5 ± Defect Des	cription Defects Observations Installation
- ES	0.0 2.59 GRAVEL: fine to medium graine pale grey, grey. 0.20 0.20 0.10 0.20 0.5 0.50 2.1 2.09 FILL Sravely CLAY trace cobbin plasticity, dark grey, dark brown to coarse grained, angular, iron 0.5 0.50 2.1 2.09 FILL Sandy GRAVEL with clay: grained, poorly graded, brown, slag, sand is medium to coarse brick.	medium ravel is fine g. e to coarse e lo siron		CEMENTED SLAG
31002021 17:33 10 02 00 04 Darget Toole 1Leb: Skie C 2:10.7 20204.20 Prj. Skie C 2:10.8 20204.10				
	2.0 0.6 0.6 CH CH 2.00 CH CH 2.00 Sandy CLAY: high plasticity, da grey motified clay and sand, san coarse grained. 0.39 SAND: fine to coarse grained, p pale grey. 2.5 0.7 2.60 0.01 Sandy CLAY: high plasticity, da grey motified clay and sand, san coarse grained. 2.00 0.39 SAND: fine to coarse grained, p 0.39 SAND: fine to coarse grained, p	brown, L- MD		ESTUARINE?
ES	3.0			3.0
Bes	3.5 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9		Diant with AS1726-2017: Geotechnical Site Investigations ur 1. Additional detail in digital dataset. Lugeon: BSS90: 1999 Angles reported in defects are apparent dip from core horizo roles for SMEC logs for details of abbreviations or basis of	Iless otherwise noted. Logged By TH Date 17/02/2021 Approved By SRM Date 31/03/2021

Geological & Engineering Log	Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038		nd Date 17/02/2021	Contractor Ledacon Equipment Type-litachi 13t Mounting Track	Inclination 90° Azimuth North Survey	S	MEC
Method Casing SCasing SCasing SCasing Water Maner (Gain/Loss) Mater (Gain/Loss) Maner (Casin/Loss) Mater (Casin/Loss) Add (Casin/Loss) Mater (Casin/Loss) (Casin/			Linferred Brock Strength Point Load Strength Point Load Strength Point Load Strength Solution Point Load Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Solution Strength Strength Solution Strength Solution Strength Solution Strength Solution Strength Strength Solution Strength Solution Strength	Defect ve Spacing th (mm) ck Structure ck Structure Defect Description	& Group n Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP14
ES	2.4 GRAVEL: fine to medium graining graded, angular, pale grey, grey 0.20 2.20 FILL Gravelly CLAY trace sand: plasticity, brown, dark grey, grat 0.5 7.9 1.0	igh l is fine to				CEMENTED SLAG	1.0 −
ES ES ES ES ES ES	1.4 1.20 CH 1.20 SP 2.0 4 2.0 4 2.0 4 2.0 4 2.0 4 2.0 4 2.0 4 1.20 5 3 andy CLAY: high plasticity, da grey mottledwith some decomp material. 1.00 SAND: fine to coarse grained, p pale orange. 2.0 4 2.0 4 2.0 5 5 2.0 4 5 5 7 2.0 5 7 7 7 7 7 7 7 7 7 7 7 7 7					ESTUARINE?	- - 1.5 — - - - - - - - - - - - - -
- ES	2.5 2.40 2.5 2.5 -0.1 SP 2.70 Hole Terminated at 2.70 m Target depth Target depth	brown, pale				ESTUARINE?	- - - 2.5 2.7
							3.0
Observations and Comments hydrocarbon contaminated soil observed at 1.	4.0 <u></u>	Def For	fect Log Abridged. Additional detail Inclined Holes: Angles reported in	-2017: Geotechnical Site Investigations unless of in digital dataset. Lugeon: BS5930:1999 defects are apparent dip from core horizontal unle ogs for details of abbreviations or basis of descrip	ss as α or B . Approved E	By SRM Date	17/02/2021 31/03/2021 1 of 1

Engineering Log	ProjectDetailed Site InvestigationEastClientManildra Group Pty LtdNorthSitePort KemblaElevationob Number30013038Datum	MGA94 Zone 56/AHD	Inclination 90° Azimuth North Survey
Method Support Support Water (Water (Water (SainLoss) Run (TCR) ROD Sampling (Run (TCR) ROD Sampling (Kba) AS (Kba) Streubart (Run (TCR) ROD Sampling (Kba) Streubart Streubart (Kba) Streubart (SainLoss) Streubart (SainL	Depth Code	Linferred Rock Strength Point Load Defect Spacing O - Diametral Strength C - Diametral Strength (mm) B Spacing C - Diametral Soli-Rock Spacing C - Diametral Soli-Rock Soli-Rock Soli-Rock (mm) B Spacing C - Diametral Soli-Rock Soli-Soli Soli-Soli Soli-Soli Soli	Pit Identifier: TP15 Origin, Stratigraphic Group Unit & General Defects Observations Installation
	0.0 3.7 0.0 3.7 0.20 0.20 0.87 0.20 0.87 0.20 0.87 0.20 0.87 0.12 0.20 0.87 0.12		FILL
	0.5 2.6 0.60 m: becoming Clayey SAND, fine to medium grained, brown 0.90		0.5
301112021 1643 10 0200 04 Dagei Toole Like: SMEC 2 109 2021-08-30 Pri SMEC 2 108 2020-09-10 1 1 1	P 2.17 FILL SAND: medium grained, pale yellow orange, with coarse grained gravel and cobbles, trace boulders, trace foreign materials (concrete, reo wire).		FILL 1.0 1.0 1.20-1.40: a large fragment of reinforced
Not	D 1.40 1.5 1.67 SAND: medium grained, pale yellow.	M L I	concrete pipe (diameter ~1.2m) was observed
ES	2.0		
2001/1202	2.50 0.6 Hole Terminated at 2.50 m		2.20: observed collapsing sands
30013038 GINT GPJ <<			3.0-
SMEC HYDRIE DOREHOLE LANDSCAPE 30013038 GIAT CR-J			
Observations and Comments no odour throughout	4.0	Classifications compliant with AS1726-2017: Geotechnical Site Investigations unless otherwith Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:1999 For Inclined Holes: Angles reported in defects are apparent dip from core horizontal unless a Refer to explanatory notes for SMEC logs for details of abbreviations or basis of description.	se noted. Logged By ED Date 12/10/2021 s α or β. Approved By AW Date 30/11/2021 Status 3 Page 1 of 1

E	ngi	inee		al & g Log 	Proj Clie Site Job	nt	Man	ldra Groi Kembla	Investigation East up Pty Ltd North Elevation Datum	618 4.0	682.3 3015. 43 m A94 Z	.7 m	56/AF	End Dim	d Da nens	te ions	2/10 3.00	/2021 /2021 m x 0		Equ	lipmer	or Leda nt 13 T Trac	acon Pty Ltd [°] onne Excavator k	Inclination 9 Azimuth North Survey	0°	s	MEC
Method	Support	(Gain/Loss)	Sampling	Strength SPT, DCF Is(50) (MP PP (UCS kf SV (kPa	(a'a' b'a' Permeability, Level & Inflow	Depth (m)	Graphic Log	Soil Code Br		Moisture	Consistency Density	Alteration	Weathering	ock Stren	Roc P	Point L Is(50 ● - Ax D - Diam	engti bad) al stral	Rela Strei Soil-f	ative ngth Rock	Defe Spaci (mm	ect ing n)	Visual	Fabric, Structure & Defect Description	Grou Defe	up cts	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP16
10 0200 04 Dagel Toals Lib: SMEC 2.109 2021-08-30 Prj: SMEC 2.108 2020-08-10	No casing used		ES		Not Observed	4.0 0.5 - 3.5 1.0 - 3.0		4.04 - <u>0.30</u> 3.74 - <u>0.50</u> 3.54 - <u>1.60</u> 2.44	angular to sub-angular gravel. FILL Clayey GRAVEL: dark grey to black, gravel consisting of mainly coalwash, trace silt. FILL Clayey SILT: pale brown with mottled yellow, trace plastic, metal rod.																	FILL 0.30: distinct odour (sweet phenolic hydrocarbon) FILL (UNIT 1D) 0.50: strong odour (sweet phenolic hydrocarbon) 1.80: strong odour (sweet phenolic hydrocarbon)	
E LANDS CAPE 30013038 GINT.CPJ < <drawing fee=""> 07/12/2021 09:24</drawing>	ł		ES	-		2.0 - 2.0 - 2.5 - 1.5 - 3.0 - 1.0		2.70	2.60 m: increase in moisture, presence of slag and gravel Hole Terminated at 2.70 m Termination due to slow progress on dense material																		2.0
			nd Con	nments		3.5 - 0.5 4.0 -	-						lassific efect L or Incli efer to	ation: og At ned H expla			t with	AS172 ported r SMEC	26-201 ail in defo C logs	17: Gec igital da for det	Detechniq ataset. e appar	cal Site Lugeon rent dip abbrevia	Investigations unless otherwi ISS5930:1999 from core horizontal unless a ations or basis of description.	se noted. Logg s α or β. Appro Statu		By AW Date	- 3.5 - - - - - - - - - - - - - - - - - - -

En	gir		ing	I & Log _{Testin}	Proj Clie Site Job g	nt	Mani	dra Gro Kembla			618 4.03	693.2 3045. 33 m A94 Z	.7 m		En Dir	art Date 12/10 nd Date 12/10 mensions 3.00)/2021		edacon Pty Ltd 3 Tonne Excavator rack	Inclination 90° Azimuth North Survey	s	MEC
Method Casing	Support Water	(Gain/Loss) Run (TCR) RQ	Sampling	Strength SPT, DCP Is(50) (MPa PP (UCS kP SV (kPa)	i), ë <u>«</u> a).E •	Depth (m)		Soil Code Br		1	Moisture	Consistency Density	Alteration	Weathering	Rock Strength	Point Load Is(50) ● - Avida ○ Diametral	Relative	Defect Spacing (mm) Eng k (mm) Sing k Sing k Sing Sing Sing Sing Sing Sing Sing Sing	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP17 Installation
30 Pr; SMEC 2.108 2020-09-10			ES			0.5 3.5 1.0 3.0		4.03 - <u>0.20</u> 3.83		w, trace											CEMENTED SLAG 0.00-0.20: moderately cemented (dense to very dense cemented slag) FILL (UNIT 1D) 0.50-0.90: slight sweet phenolic hydrocarbon odour observed	
3011/2281164310.02.00.04 Darged Tools Lib. SNEC 2.109 2021-08-30 PJ; SNEC 2.108 2020-08-10	-No casing used		ES		Not Observed	1.5 2.5 2.0 2.0		_ <u>1.70</u> 2.33													FILL	
< <drawingfile>></drawingfile>			ES			2.5 1.5		<u>2.50</u> 1.53	FILL Sandy CLAY: dark grey brown, with black st from organic matter.	taining											2.50; strong Sweet phenolic hydrocarbon odour	_ 2.5 — _ _ _
CAPE 30013038 GINT.GPJ			ES			3.0 1.0		- <u>2.90</u> 1.13 <u>3.10</u>	SAND: medium grained, yellow brown.		M	L									AEOLIAN	3.0
IB. GLB Log _SMEC HYBRID BOREHOLE LANDS						3.5 0.5																- - 3.5 - - - - -
SMEC 2.10.10 LIE	vatio	ns and	l Com	ments		4.0							ΨС)efect	_oa A	Abridaed. Additio	nal detail in	digital dataset. Lug	Site Investigations unless otherw eon: BS5930:1999 dip from core horizontal unless a eviations or basis of description.		By AW Date	12/10/2021 30/11/2021 1 of 1

	Manildra Group Pty Ltd North Port Kembla Elevation	6183077.5 m End Date 12/10/2021 E 3.863 m Dimensions 3.00 m x 0.60 m M MGA94 Zone 56/AHD M M	Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator Mounting Track	Inclination 90° Azimuth North Survey						
Method Method State State Matter Mun (TCR) ROD Matter (Gain/Loss) Casing Sam pling (Gain/Loss) Casing (Gain/Loss) Casing (Gain/Loss) Casing (Gain/Loss) Casing (Gain/Loss) Casing Casing (Gain/Loss) Casing (Casing (Casing Casing (Ca	ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ຍ່ວຍ ວັສ ສ 🥵 🥵 Relative Sp	Defect pacing (mm) g Fabric, Structure & , R & R S S Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations Installation					
	3.60 FILL GRAVEL: angular to sub-angular, pale grey to black, gravel consisting of mainly slag. 0.20				FILL 0.5 -					
1.0- 2.9 1.5- 2.4 NO 1.5- 2.4 NO 1.5- 1.5 2.4 2.4 1.5- 1.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4					1.0 -					
2.5 1.4					2.0 -					
	3.00 0.86 SAND: medium grained, pale yellow. 3.20	M L			= = 3.0 -					
3.5 - 0.4 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					3.5 -					
Observations and Comments Classifications compliant with AS1726-2017: Geotechnical Site Investigations unless otherwise noted. Logged By ED Date 12/10/2021 Observations and Comments Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:1999 For Inclined Holes: Angles reported in defects are apparent dip from core horizontal unless as a or p . Approved By AW Date 30/11/2021 Refer to explanatory notes for SMEC logs for details of abbreviations or basis of description. Status 3 Page 1 of 1										

Engineering Log	iled Site InvestigationEastIdra Group Pty LtdNorthKemblaElevation3038Datum	307746.7 m 6183115.7 m 3.590 m MGA94 Zone 56/Ał	Dimensions 3.00 m x 0.60 m Mounting Tra HD	Tonne Excavator Azimuth	SMEC					
Method Scuppoint Water (Gain/Loss) Run (TCR) RoD Sam pling Sam pling (Gain/Loss) NA Sam pling (Gain/Loss) NA Sam pling (Gain/Loss) NA Sam pling (Gain/Loss) Correction (Neu (Neu) (Solos) (Sol	9 O <i>Depth</i> <i>RL</i> Soil / Rock Material Description	Moisture Condition Consistency Density Alteration Weathering	Inferred The Rock Strength Point Load 18(50) O Defect 18(50) O Defect Spacing O Defect O Defect Spacing O Defect Spacing	Fabric, Structure & Group Defect Description Defects	Pit Identifier: TP19 Origin, Stratigraphic Unit & General Observations Installation					
ES 0.5-	3.59 FILL Sandy GRAVEL: angular to sub-angular, dark brown to dark grey, gravel consisting of mainly coalwash.				FILL 0.00-1.70: coalwash - - - - 0.5 - - - - - - - - - - - - - - - - - -					
	SAND layer at 1.50m to 1.70m, medium grained, pale yellow to orange 1.89 FILL Clayey GRAVEL: angular to sub-angular and rounded, dark brown to red, trace sand throughout.				1.0					
	2.80									
	0.79 SAND: medium grained, pale yellow.	M MD			AEOLIAN					
	3.20 Hole Terminated at 3.20 m									
Observations and Comments										

Engineering Log	d Site Investigation East ra Group Pty Ltd North embla Elevation 038 Datum	6183148.4 m End	t Date 12/10/2021 Contractor Date 12/10/2021 Equipment ensions 3.00 m x 0.60 m Mounting Inferred	Ledacon Pty Ltd 13 Tonne Excavator Track	Inclination 90° Azimuth North Survey	s	MEC
	<i>Depth</i> RL Soil / Rock Material Description	oisture ondition onsistenc ensity teration eathering ock Stren	A cock Strength Point Load Defect Performed Provide	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP20
	3.44 FILL Sandy GRAVEL: fine to coarse grained, dark grey to black, gravel consisting of mainly coalwash. / 0.20 FILL SAND: fine to coarse grained, pale brown. / 3.29 FILL Gravelly CLAY: medium to high plasticity, orange brown mottled.					FILL 0.00-0.05: coalwash	-
	0.60 2.89 FILL SAND: medium grained, pale yellow with dark grey laminations.					0.60-1.00: reworked estuarine	0.5
	1.00	ML				AEOLIAN — — —	1.0 — - - -
	1.80 m: becoming pale yellow						1.5 — - -
	2.20 Hole Terminated at 2.20 m						2.0
							- 2.5 - - -
							3.0
							- - 3.5 - -
Observations and Comments		Classifications Defect Log Ab For Inclined H Refer to expla	compliant with AS1726-2017: Geotechnical ridged. Additional detail in digital dataset. Luoles: Angles reported in defects are apparer natory notes for SMEC logs for details of ab	al Site Investigations unless otherw ugeon: BS5930:1999 nt dip from core horizontal unless a bibreviations or basis of description	ise noted. Logged By as α or β. Status	By AW Date	12/10/2021 30/11/2021 1 of 1

		logic eerin		DOL	Proje Clien Site Job N	t	Manilo	dra Gro (embla	Investigation East up Pty Ltd Nort Elev Datu	h ation	6183 3.26	73.5 8119.3 8 m (94 Zo	3 m		End Dim	t Date 12/ Date 12/ ensions 3.	/10/20 00 m)21	Equip	ment	Ledacon Pty Ltd 13 Tonne Excavator Track	Inclination 90° Azimuth North Survey	s	MEC
Method Casing	Support Water	Run (TCR) RQD Samolind	n S Is(PP	Strength SPT, DCP, (50) (MPa), (UCS kPa) SV (kPa)	Permeability, Level & Inflow	Depth (m)	Graphic Log	000 To Depth			Condition	Consistency Density	Alteration	Weathering	ock Stren	Inferred Rock Stren Point Load Is(50) O- Diametral	ngth i F ∘ S ♀ So	Relative trength pil-Rock	(mm)	a	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP21
- - - -		ES	6			3.3 - -		3.27 	Clayey GRAVEL: angular to sub-rounded, pale gre with sand throughout. FILL Clayey GRAVEL: angular to sub-angular, pale to black, with cobbles, gravel consisting of mainly coalwash.														CEMENTED SLAG 0.00-0.30: weakly to moderately cemented slag FILL 0.30-1.60: coalwash	-
9 2021-04-30 PG; SMEC 2, 108 2020-04-10	p	E5	6			0.5 — 2.8 — — — — 1.0 — 2.3 — — — — —																		0.5
græss sum rizer no uzukun laggel konst Lie: Subs zizr-u-sam riserer zi na zuzu-u-sam EXEXEXEXEX		ES	5					- <u>1.60</u> 1.67															1.60-2.70: reworked estuarine soil	
						0.8 - - -		<u>2.70</u> 0.57 3.00	SAND: yellow, trace sub-angular to angular gravel.		М	L											AEOLIAN	-
	_							3.00	Hole Terminated at 3.00 m														3.00: water ingress	
						3.5 — -0.2 — - - - 4.0 —																		3.5
Obser Obser	vation	s and Co	mme	ents								Notes	Cla De Foi Re	issifica fect Lo r Inclin fer to	ations og Ab ed H expla	s compliant w pridged. Addi loles: Angles anatory notes	vith AS itional repor s for SI	01726-201 detail in d ted in defe MEC logs	I7: Geote igital data ects are a for detail	echnical aset. Lu apparen Is of abb	Site Investigations unless otherwigeon: BS5930:1999 t dip from core horizontal unless a breviations or basis of description	as α or β. Logged By Approved Status	By AW Date	12/10/2021 30/11/2021 1 of 1

				& Log Testing	Proje Clien Site Job N	t	Manil	ldra Grou Kembla	Investigation East up Pty Ltd North Elevation Datum	618 3.52	25 m	6.9 m	• 56/A	En Din	d Da nen	ate sions	12/10 3.00	0/202 0/202) m x		Ec	quipm	nent 1	Ledacon Pty Ltd 13 Tonne Excavator Track	Inclination 90° Azimuth North Survey		SMEC
Method	Support	(Gain/Loss) Run (TCR) RQD	Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	Permeability, Level & Inflow	0.0	Graphic Log	epool Depth RL		Moisture	Consistency	Alteration	Weathering	Rock Strength	Ro	Point I Is(5 • - A O - Diar	treng Load 0)	Re Str Soil	lative ength I-Rocł	Spa	fect acing nm)	Visual	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP22
-30 Pij SMEC 2.108 200-09-10	sing used		ES		Not Observed	3.5 - - - - - - - - - - - - - - - - - - -		3.53 - <u>0.50</u> 3.03																	FILL 0.50-1.80: coalwash	0.5
2021 1644 10.0200 00 Dangeal Tools I Lib: SNEC 2.109 2021-09-30 Pij: SNEC 2.108	No cas		ES		Not O	1.5 — 2.0 — 2.0 — 1.5 —		<u>1.80</u> 1.73	SAND: coarse grained, reddish yellow.	м	L														AEOLIAN	
t GINT.GPJ < <drawingfile>> 30/1</drawingfile>						2.5 — ^{1.0} -			Hole Terminated at 2.30 m									-								2.5
E LANDSCAPE 30013036						3.0 ^{0.5} -												-								3.0
0.10 LIB. GLB Log_SMEC HYBRID BOREHOI	ervation	ns and	Comr	nents		3.5						SS (Classif	catior		 	 	- - - - - - h AS1		- - - - - - - - - -	eotech	nnical {	Site Investigations unless other	rise noted. Logged B		- 3.5 - - - - - - - - - - - - - - - - - -
SMEC 2.10												Notes	Defect For Inc Refer t	Log A lined I o expl	Abrid Hole lanat	ged. A s: An ory n	Additio gles re otes fo	onal de eporte or SMI	etail in d in de EC log	digital fects a s for d	datase are ap letails (et. Lug parent of abbi	t dip from core horizontal unless previations or basis of description	as α or β. Approved Status	By AW Date	e 30/11/2021 ∋ 1 of 1

		ring	I & Log _{Testing}	Proje Client Site Job N		Manile Port k	dra Grou Kembla	nvestigation ıp Pty Ltd	East North Elevation Datum	618 3.42	728.8 33050.2 22 m A94 Zo	2 m	En Dir	art Date 1 Id Date 1 mensions	2/10/: 3.00 r	2021	Equipn	nent 13	dacon Pty Ltd Tonne Excavator ack	Inclination 90° Azimuth North Survey	s	MEC
Method Casing Support	Water (Gain/Loss) Run (TCR) RQD	Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	Permeability, Level & Inflow	Depth (m)	Graphic Log	epoo Deptr S RL		•		Consistency Density	Alteration	weathering Rock Strength	Inferre Rock Stre Point Lo Is(50) ● Axia O - Diame	ength ad tral	Relative	Defect Spacing (mm) <	²⁰⁰⁰ Visual	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP23
		ES			0.0		3.42	FILL Clayey GRAVEL: sub-angular to sub grey to black, low plasticity clay, with cobb consisting of mainly coalwash.	⊳-rounded, dark bles, gravel												FILL 0.00-2.10: coal wash	0.5
		ES			1.5 1.9 1.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		- <u>2.10</u> 1.32	FILL Clayey SAND: pale brown, low plasti bricks, ceramics, sub-angular gravel and s cobbles.	icity clay, with sub-rounded													- 1.5 — - - 2.0 — - - -
					2.5		3.00	2.60 m: concrete foundation pillar, bricks,	ceramics													2.5
					3.5 — 		3.00	Hole Terminated at 3.00 m Termination due to unstable edges													3.00: water ingress	3.0
Observat	tions and	d Com	nments		4.0	I					Notes	Clas Defe For Refe	ssificatio ect Log / Inclined er to exp	ns complian Abridged. Ad Holes: Angle lanatory not	t with / Iditiona es rep es for	AS1726-20 al detail in o orted in de SMEC logs)17: Geotec digital datas fects are ap s for details	hnical Site set. Lugec oparent di of abbrev	e Investigations unless otherwi n: BS5930:1999 p from core horizontal unless a viations or basis of description.	ise noted. Logged B as α or β. Approved Status	By AW Date	12/10/2021 30/11/2021 1 of 1

Enginee		Site			e Investigation East oup Pty Ltd North a Elevation Datum	61 3.3	7703.9 83024 96 m 6A94 2	.1 m		End Dim		0/2021	Contracto Equipmer) m Mounting	or Ledacon Pty Ltd nt 13 Tonne Excavator Track	Inclination 90° Azimuth North Survey	s	MEC
Method Casing Support Water (Gain/Loss)	Run (TCR) RQI Sampling Ad da SS(S) SS Sampling AS SA SA SA SA SA SA SA SA SA SA SA SA	trength (T, DCP, I JCS kPa), 100 (MPa), V (kPa) (kPa) (kPa)	Depth (m)	Graphic Log Soil Code Nad		Moisture	Condition Consistency Density	Alteration	Weathering	ock Stren	Inferred Rock Streng Point Load Is(50) O-Diametral	Relativ Strengt Soil-Roo	Defect e Spacing h (mm) ck	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP24
	ES		0.0 3.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.4	 FILL Clayey GRAVEL: sub-angular, red, well rounded nodules, gravel mainly appears well-rounded slag nodules. 0.80 m: wire rope (~15mm diameter) 											FILL	- - - 0.5 - - -
10 0200 04 Dagei Tools Lib: SMEC 2 108 2021-08-30 Pij: SMEC 2 108 2020-08-	ES	Not Observed	1.0 2.4 1.5 1.5														- 1.0 - - 1.5 - - -
2011/22021 08:24 10/2004 Dag	ES		2.0-1.4	24													- - 2.0 - - - -
30013038 GINT GPJ <<0mm/mg ² /k			-2.5 X	2.5	EILL Clayey SAND: pale brown to yellow, trace timber, sub-rounded cobble. Hole Terminated at 2.50 m Termination due to unstable pit												<u>- 2.5</u> - -
E LANDSCAPE			3.0														- 3.0 — - -
SGLB Log_SMEC HYBRID BOREHOL			3.5														- 3.5 - - - -
Observations ar	nd Comment	ts	4.0					Notes D E	lassific efect L or Inclir efer to	cations og Ab ned H expla	s compliant wit oridged. Addition oles: Angles r natory notes f	h AS1726-2 onal detail ir eported in d or SMEC lo	2017: Geotechni n digital dataset. lefects are appa gs for details of	cal Site Investigations unless otherw Lugeon: BS5930:1999 rent dip from core horizontal unless abbreviations or basis of description	ise noted. Logged By as α or β. Approved Status	By AW Date	12/10/2021 30/11/2021 1 of 1

Engineering Log	ient Manildra Group Pty Ltd N te Port Kembla E	orth 6183118.8 m End Date 12/10/2021 Equipmen evation 3.291 m Dimensions 3.00 m x 0.60 m Mounting atum MGA94 Zone 56/AHD	r Ledacon Pty Ltd Inclination 90° tt 13 Tonne Excavator Azimuth Track North Survey	SMEC
Method Method Method Casing Casing Casing Manuel Matter Manuel Matter Manuel Ma	E Soll / Rock Material Description		Fabric, Structure & Group	Pit Identifier: TP25 Origin, Stratigraphic Unit & General Observations Installation
	0.0 3.3 3.29 CEMENTED SLAG: recovered as gravelly sar grey. 0.3 0.30 9 FILL Clayey SAND: dark brown, with angular grave rootlets. 0.5 0.50 0.50 2.8 2.79 FILL SAND: coarse grained, yellow with grey I throughout, trace rootlets.			FILL
Dage Toole I be: SMEC 2 109 2021-08-20 04; SMEC 2 108 2020-08				
X 1002001 1921 1000 000 000 000 000 000 000 000 000	2.0			2.0-
COPE 3001 3038 GIVI / CP-1	2.5 0.89 SAND: pale brown to yellow, sub-angular to an cobbles and rocks. 0.8 2.8 0.8 2.80 0.3 0.49 SAND: pale brown to yellow.	Jular M L I <td></td> <td>AEOLIAN 2.5 - -</td>		AEOLIAN 2.5 - -
ES	- 3.5 			3.50: water ingress 3.5
Observations and Comments	4.0	Classifications compliant with AS1726-2017: Geotechni Defect Log Abridged. Additional detail in digital dataset. For Inclined Holes: Angles reported in defects are appa Refer to explanatory notes for SMEC logs for details of	cal Site Investigations unless otherwise noted. Lugeon: BS5930:1999 rent dip from core horizontal unless as α or β abbreviations or basis of description.	

Engineering Log	roject Detailed Site Investigation lient Manildra Group Pty Ltd te Port Kembla be Number 30013038	East 307878.1 m North 6183041.6 m Elevation 2.915 m Datum MGA94 Zone 56//	End Date 12/10/2021 Equipment 13 Dimensions 3.00 m x 0.60 m Mounting Tr HD	edacon Pty Ltd Inclination 90° 3 Tonne Excavator Azimuth rack North Survey	SMEC
Method Casing Casing Casing Casing Support Water Support Sampling Name Monte M	0.0 Depth (m) Depth (m) Elevation Code Saphic Log Not Vode Saphic Log Not Vode Saphic Log		Inferred Brock Strength Foint Load Strength Strength Strength Strength Strength Strength Strength Strength (mm) Strength S	Fabric, Structure & Group Defect Description Defects	Pit Identifier: TP26 Origin, Stratigraphic Unit & General Observations Installation
	0.0 2.9 2.9 2.92 2.92 2.92 CEMENTED SLAG: recovered grey. 2.72 FILL Sandy CLAY: low plasticit rootiets.				CEMENTED SLAG
Istat 10.02.00.04 Daget Tools I Like: SMEC 2.108 2027-08-30 Pri SMEC 2.108 2027-08-30 Pri SMEC 2.108 2027-08-30 Pri SMEC 2.108	Page 0 to sub-rounded gravel, lenses of the sub-rounded gravel, lenses of	to orange, with angular of coal wash throughout.			
1	2.0				2.0-
D013028 GINT GP J <- OntwingTile>	2.5 - Hole Terminated at 2.40 m				2.5
OLB Log					
Bot and a comments Observations and Comments	4.0 - 1 1 1	o Class Defec For In Z Refer	ications compliant with AS1726-2017: Geotechnical S Log Abridged. Additional detail in digital dataset. Lug lined Holes: Angles reported in defects are apparent to explanatory notes for SMEC logs for details of abbri-	ten Investigations unless otherwise noted. Logged E Approved dip from core horizontal unless as α or β . Approved Status	By ED Date 12/10/2021 i By AW Date 30/11/2021 3 Page 1 of 1

E	ngi	nee		I & Log	Proje Client Site Job N g	t	Mani	ldra Grou Kembla	Investigation East up Pty Ltd North Elevatio Datum	618 n 3.0		9.2 m	ו e 56/A	Eno Din		12/1	0/202	1		oment	Ledacon Pty Ltd 13 Tonne Excavator Track	Inclination 90° Azimuth North Survey	s	MEC
Method	Support	(Gain/Loss) (Gain/Loss)	Sampling	Strength SPT, DCP, Is(50) (MPa PP (UCS kPa SV (kPa)	Permeability, Level & Inflow	Depth (m)	Graphic Log	ode Deptr BL		Moisture	Consistency Density	Alteration	Weathering	k Stren	Rock Poir	Streng nt Load s(50) - Axial Diametral	Re Stre	lative ength -Rock	Defec Spacin (mm)	a	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP27
r); SMEC 2.10.8 2020-09-10			ES			0.5 - 2.5 1.0 - 2.0		3.05 - <u>0.20</u> 2.85		_													FILL 0.20-1.00: ACM fibre cement fragment observed in good condition, approx. three fragments of length 60-80mm	- - 0.5 - - - 1.0 -
00.04 Datgel Tools Lb: SMEC 2: 109 2021-09-30 Pr): SMEC 2: 108 2020-09- 			ES			1.5 — 1.5		_ <u>1.80</u> 1.25		M	L	_											1.30: ACM fibre cement fragment observed in good condition, single, length 40mm	- - 1.5 — - - - -
GPJ < <drawingfile>> 30111202116.44 10.02.00.04 Datgei</drawingfile>			ES		•	2.0 — 1.0 - - - 2.5 — 0.5 -		_ <u>2.50</u> 0.55	Clayey SAND: black.		_							-					ESTUARINE?	2.0
OREHOLE LANDSCAPE 30013038 GINT.GPJ						3.0 0.0 		<u>2.80</u> 0.15 	Clayey SAND: pale brown to pale yellow.															3.0
			Id Com	ments aper in the pit		3.5 — -0.5 - - - - - - - - - - - - - - - - - - -						Notes	Classif Defect For Inc Refer t	cation Log A lined H o expl	I I I	liant wi	th AS17 onal de for SME	// - / - / - / - / - / - / - / - / - /	17: Geote ligital data for detai	echnical aset. Lu apparer ils of abl	I Site Investigations unless otherw geon: BS5930:1999 ti dip from core horizontal unless breviations or basis of description	ise noted. Logged By as α or β. Approved Status	By AW Date	3.5 - - - - - - - - - - - - - - - - - - -

E	Ge Eng	eolo ine	ogica ering	l & Log	Site	ct Pipelin Manildi Port Ke Io 30013	e Route TSI ra Group embla 174					East North Elevatic Datum		Start Date 29/03/202 End Date 29/03/202	2 Rig	ntractor Epoca g Type Geoprobe unting Track	7822DT	<i>۲</i> ۱	nclinatio Azimuth North Survey		P	Member of the Surban	
			(s:	2	Г		Testing		L v	Ξr	6o-							lcy		бĹ		Borehole Identifier:	BH01
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water	Depth (m) Elevation	Graphic Log	ego Depth の RL	So	oil / Rock Material Des	scription		Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
-										0.0		4.14	ASPHALT: dark grey, black.									ASPHALT	_
F											∞	0.10	FILL Gravelly SAND: medium	grained, angular to sub-angu	ular, dark brow		-					FILL (ROADBASE)	
F							0.00			0.2													0.2
-09-10					ES		0.20m PID= 5.1ppm			3.9													_
0.8 2020				-																			_
SMEC 2.10.8 2020										0.4													0.4
Ë																							
10.9 2021-08-30													0.50: orange film (plastic)										-
SMEC 2.10.										0.6													0.6
I I											*	0.70		rained, pale brown, grey, trac			-					FILL	
jel Tools										0.8					0								- 0.8
0.04 Date					ES		0.80m PID= 4.3ppm			0.8 3.3													_
10.02.00.04				-					erved														_
22 17:43									Not Observed	1.0													1.0
29/04/20									z														-
In T																							-
< <drawi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2 2.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2</td></drawi<>										1.2 2.9													1.2
30013174.GPJ																							
L 30013																							- 1.4
ENV WO					ES		1.40m PID= 3.9ppm			1.4 2.7			1.40: sand is getting coarser (c	orange)									-
- SMEC																							
PE_SOII										1.6													1.6
										2.5													-
											\bigotimes												
										1.8													1.8
g_SME											\bigotimes		Hole Terminated at 1.95 m										_
I I I							-		-		××4	1.95	Refusal on suspected boulder				+						
10.13 LIB	serva	tions	and Com	ments						2.0			တွငlassification	s compliant with AS1726-2 bridged. Additional detail ir loles: Angles reported in d	2017: Geoteo n digital data	chnical Site Investigation	ons unles	s otherwis	e noted.	Logo			29/03/2022
SMEC 2.													Classification Defect Log Al For Inclined H Refer to expla	loles: Angles reported in d anatory notes for SMEC lo	defects are a ogs for details	pparent dip from core s of abbreviations or ba	norizontal asis of des	unless as	sαtorβ.	Appi Stati			27/04/2022 1 of 1

G Eng	iec gin	ologic neerin	al & g Log	Site	ct Pipelin t Manildi Port Ke lo 300131	e Route TSI ra Group embla 174					East North Elevatio Datum	308216.380 m 6183215.660 m on 4.260 m MGA94 Zone 56/A	Start Date 04/05/2022 End Date 04/05/2022 HD	Contractor Epoca Rig Type Geoprobe Mounting Track	97822DT	· /	nclinati Azimuth North Survey)°	Member of the Surban	
		(s	â	Г		Testing			<u>ک</u> ر	bo.						Icy		þ		Borehole Identifier:	BH02
Method	Support	Support Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Ir	 Depth (m) Elevation 	Graphic Log	Soil Code Soil Code RL	1	Soil / Rock Material Descrip	ption	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
-									0.0 - 4.3		4.26	ASPHALT: black, cemented	d.							ASPHALT	
						0.10m PID= 8.9ppm					<u> </u>	FILL Silty SAND: fine to me	edium grained, dark grey, with angul	lar to sub-angular gravel, moist.						FILL	
				ES		i ib oloppin			0.2												0.2 -
									4.1		0.30										
											3.96	FILL Gravelly SAND: fine to	o medium grained, brown, sub-angul	lar gravel, with clay.							
						0.40m PID= 12.6ppm			0.4 3.9												0.4 -
				ES																	
								served													
F								Not Observed	0.6 — 3.7												0.6
												0.70-0.80: less gravelly									
-									0.8 —		0.80										0.8 -
									3.5			FILL Gravelly Slity SAND: 1	fine grained, pale brown, medium gr	rained gravei.							
-				ES		0.90m PID= 11.2ppm															
									1.0 — 3.3												1.0 -
-																					
											1.20										
-									-1.2- 3.1			Hole Terminated at 1.20 m Refusal on suspected bould	ler								1.2 -
-																					
-									1.4 —												1.4 -
-									2.9												
-									1.6 — 2.7	-											1.6 -
$\left[\right]$										-											
- - - -										1											
F									1.8 — 2.5	1											1.8 -
									·												
-																					· ·
Observ	vatio	ns and Co	mments									Classificati Defect Log For Incline Refer to ex	ions compliant with AS1726-201 Abridged. Additional detail in dig d Holes: Angles reported in defe	7: Geotechnical Site Investigat gital dataset. Lugeon: BS5930	ions unles 1999	s otherwis	e noted.	Log			04/05/2022 27/04/2022
												Z For Incline Refer to ex	d Holes: Angles reported in defe cplanatory notes for SMEC logs f	ects are apparent dip from core for details of abbreviations or b	horizontal asis of de	unless as scription.	sαtorβ	Stat			1 of 1

C En	Geo gin	ologic neerin	al & g Log	Proje Client Site Job N	ct Pipelin Manildi Port Ke Io 300131						East North Elevatio Datum	308171.590 m 6183159.600 m 3.750 m MGA94 Zone 56/AH	Start Date 04/0 End Date 04/0 D)5/2022	Contractor Epoca Rig Type Geoprobe Mounting Track	7822DT	4 N	nclinatio Azimuth North Survey	n 90'		Member of the Surban	
		(s	8	Г		Testing		L Mellow	<u>ک</u> ر	bo.	0						Jcy		þ		Borehole Identifier:	BH03
Method	Casing	oupport Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Ir	Depth (m)	Graphic Log	ego Depth の RL	' s	oil / Rock Materi	al Descriptior	1	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
-									0.0 -	-888	3.75	FILL Silty CLAY: medium plas	sticity, dark brown, wit	h gravel, trace ro	otlets, moist, soft.						FILL (TOPSOIL)	_
SMEC 2.10.8 2020-09-10				ES		0.10m PID= 9.1ppm			0.2 - 3.6 0.4 - 3.4			0.30: timber (possibly sleeper)									0.2 —
				ES		0.60m PID= 6.3ppm 0.70m PID= 9.4ppm			0.6 - 3.2 0.8 - 3.0		. 0.60 3.15	FILL GRAVEL: fine to mediur 0.70-0.80: thin layer of clayey		Jack, with mulch,	 moist.						FILL (COALWASH) — —	
								Not Observed	1.0 - 2.8 1.2 - 2.6		- 1.20 2.55	FILL Sandy CLAY: medium p angular to sub-angular gravel	lasticity, brownish ora	nge, moist, sand	s coarse grained, with							1.0 — - - 1.2 —
-																						-
-				ES		1.40m PID= 12.9ppm			1.4 - 2.4													1.4
- - - -									1.6 - 2.2													- - - - - - -
									1.8 -			Hole Terminated at 2.00 m Target depth										1.8 —
Obser	vatio	ns and Co	nments	· · ·					<u> 2.0 </u>	<u>**///</u>		Classification	ns compliant with As Abridged. Additional Holes: Angles repor lanatory notes for S	S1726-2017: Ge detail in digital o ted in defects a MEC logs for de	otechnical Site Investigat dataset. Lugeon: BS5930 re apparent dip from core stails of abbreviations or b	ions unles: 1999 horizontal asis of des	otherwis unless as cription.	e noted. α or β.		oved E	By AW Date	04/05/2022 27/04/2022 1 of 1

	G Eng	ieo gin	logica eering	al & g Log	Site	t Pipeline Manildra Port Ken 3001317	nbla					East North Elevatio Datum	MGA94 Zone 56/Ał	Start Date 04/05/2022 End Date 04/05/2022 ID ID	Contractor Epoca Rig Type Geopro Mounting Track	be 7822D ⁻		nclinatio Azimuth North Survey I		URVE		MEC
	Method Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Testing PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Elevation	Graphic Log Soil Code	Depth		Soil / Rock Material Descr	iption	Moisture Condition	Consistency Density	Alteration	Weathering		Member of the Surbana Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH03A Installation
2.10.8 2020-09-10				-	ES		0.10m PID= 5.2ppm		Not Observed			0.06	ASPHALT: dark grey, ceme	nted. 	llar to sub-angular gravel, moist						ASPHALT	0.2
Datgel Tools Lib: SMEC 2.10.9 2021-08-30 Prj: SMEC 2	· · · · · · · · · · · · · · · · · · ·				ES		0.40m PID= 8.2ppm			-0.4	~~	0.40	Hole Terminated at 0.40 m Refusal on suspected concr	ete slab								0.4 - - 0.6 - - - - - - - -
gFile>> 29/04/2022 17:43 10.02.00.04 Datgel T										0.8												0.8
IL SMEC ENV WOL 30013174.GPJ < <drawin< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2 — - - 1.4 — - -</td></drawin<>										1.2												1.2 — - - 1.4 — - -
1 Log_SMEC HYBRID LOG LANDSCAPE_SOI										- 1.6 - - - 1.8 - - -												
SMEC 2.10.13 LIB.GLB	Obsen Moved h	/ation ole to a	s and Cor Iternate locat	nments ion BH03						_2.0			Classification Defect Log For Inclined Refer to ex	ons compliant with AS1726-20 Abridged. Additional detail in c Holes: Angles reported in def planatory notes for SMEC logs	17: Geotechnical Site Investi ligital dataset. Lugeon: BS59 fects are apparent dip from c s for details of abbreviations of	gations unles 30:1999 ore horizonta or basis of de	s otherwis unless as scription.	se noted. sα or β.	Logg Appro Statu		y AW Date	04/05/2022 27/04/2022 1 of 1

Ge Engi	ol ine	ogica eering	al & g Log	Client Site	ct Pipelin Manildi Port Ke lo 30013	e Route TSI ra Group embla 174					East North Elevati Datum		
Method Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Testing PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Depth (m) Elevation	Graphic Log	Soil Code Deptr RL		BH04
-				ES		0.10m PID= 4ppm			0.0 - 3.7 0.2 - 3.5		0.05 3.69	5 FILL SLAG: dark grey, loosely cemented. FILL (CEMENTED SLAG) 9 FILL Clayey SAND: dark grey, with angular to sub-angular gravel, with coalwash throughout, moist. FILL Clayey SAND: dark grey, with angular to sub-angular gravel, with coalwash throughout, moist.	0.2 -
· · ·				ES		0.50m PID= 8.6ppm		Not Observed	0.4 - 3.3		- 0.30 3.44		0.4 -
-								Not O	0.6 - 3.1 0.8 - 2.9		- 0.70 3.04		0.6 -
-						_			1.0 - 2.7		1.10	Hole Terminated at 1.10 m	1.0
-									1.2 - 2.5	-		Refusal on suspected boulder	1.2 -
-									1.4 - 2.3 1.6 - 2.1				1.4 · 1.6 ·
									1.8 - 1.9				1.8
Observati	ions	and Cor	nments										04/05/2022 27/04/2022

Er	Geo ngin	logica eerin	al & g Log	Proje Clier Site Job I	nt Manild	e Route TSI ra Group embla 174				Ele	orth	308105.270 m Start Date 04/05/2022 6183148.440 m End Date 04/05/2022 n 3.360 m MGA94 Zone 56/AHD	Contractor Epo Rig Type Geo Mounting Trac	probe 7822DT	<i>۱</i>	nclinatic Azimuth North Survey			Member of the Surbana	
		s)		Г		Testing		flow L	~ 6	20					cy		b		Borehole Identifier:	_
Method	Casing	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	60 Depth (m) Elevation		Depth RL	Soil / Rock Material Descrip	ption	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength		BH05 Installation
10.8 2020-08-10				ES		0.00m PID= 7.2ppm					3.36	FILL Silty CLAY: dark brown, with sand, trace rootlets and sand	stone gravel.						FILL (TOPSOIL)	- - - - - - - - - - - - - -
0.04 Dagel Tools ILb: SIMEC 2.10.9 2021-08-20 Pf: SIMEC 2.10.8				ES		0.40m PID= 9.3ppm		q	0.4 3.0 0.6 2.8 0.8 2.6		0.40 2.96	FILL Clayey SAND: brown, with sandstone gravel (rounded to s	ub-rounded).						FILL	0.4
30013174.GPJ <<07awingFile>> 29/04/2022 17.43 10.02.00.04								Not Observed				1.00: boulders encountered								- 1.0 - - - - 1.2 - - - - - - - - - - - - - - - - - - -
SMEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL				ES		1.40m PID= 8.4ppm			1.4 2.0 1.6 1.8 1.8 1.6											1.4
3.GLB Log _SMEC HYB				ES		1.80m PID= 11.3ppm			1.8 1.6 		1.90	Hole Terminated at 1.90 m Refusal on suspected boulder								1.8— - - - - -
SMEC 2:10.13 LIE	ervation	ns and Co	nments						2.0			Classifications compliant with AS1726-201 Defect Log Abridged. Additional detail in dir For Inclined Holes: Angles reported in defe Refer to explanatory notes for SMEC logs f	7: Geotechnical Site Inv gital dataset. Lugeon: B cts are apparent dip fro for details of abbreviatic	restigations unless of S5930:1999 m core horizontal u ons or basis of desc	otherwis nless as ription.	se noted. α or β.		oved E	By AW Date	04/05/2022 27/04/2022 1 of 1

		(\$	~	_		Testing		N		Ď							Ś		ס		Member of the Surban Borehole Identifier:	_
Method Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water ⁻ Level & Int	Depth (m)	Graphic Log	ode Soil Code <i>RL</i>	ı	Soil / Rock Ma	aterial Descripti	ion	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength		BH0 Installation
									0.0 - 3.4		3.42	0.00: shell fragments a FILL Sandy CLAY: dar	nd dried grass on surfa < brown, with angular to	ce o sub-angular gravel	H.						FILL	
				ES		0.10m PID= 1.7ppm			0.2 -													0.2
									3.2													0.2
									0.4 -													0.4
				ES		0.40m PID= 1.9ppm			3.0		0.50											0.
									0.6 -		2.92	FILL Clayey SAND: co	arse grained, reddish bi	rown, with minor coa	alwash.							0.
									2.8													0.
				ES		0.70m PID= 1.1ppm			0.8-		0.80	0.70: yellow hollow pip	e encountered									0.
								Not Observed	0.8 - 2.6	-	2.62	TILL Glayey SAND. III	dium grained, pale gre	y-brown.								0.1
				ES		0.90m PID= 2.9ppm		Not Ob	10-		2.52	FILL GRAVEL: fine to	nedium grained, black,	shiny, trace green	gravel.						FILL (COALWASH)	1.0
									1.0 - 2.4			1.00: metal cable (app	ox 30mm in diameter)									1.0
				ES		1.10m PID= 2.3ppm			1.2			1.10: boulder encounte	red (500mm)									
									1.2 - 2.2													1.2
									1.4 - 2.0			1.40: metal railway pla	e									1.4
									1.6 - 1.8													1.6
				ES		1.70m PID= 3.6ppm					1.80											
									1.6			Hole Terminated at 1.8 Refusal on boulders	0 m									1.8

Er	Geo ngir	ologi neeri	ical & ing L	& .og	Site	t Pipeline Manildr Port Ke o 300131	e Route TSI a Group embla 74					East North Eleva Datu	n ation	308029.280 m Start Date 04/04/2022 Contractor Ledt 6183130.770 m End Date 04/04/2022 Rig Type 6.51 2.850 m Mounting MGA94 Zone 56/AHD	acon F 300mm	Buck	et .	Inclinat Azimutl North Survey	h)°	Member of the Surbana	
			(s)	<i></i>			Testing		flow	Ê	bo						Icy		p		Borehole Identifier:	BH07
Method	Casing	Water	(Gain/Los	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Elevation	Graphic Log	Soil Code		Soil / Rock Material Description		Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength		Installation
-										0.0 - 2.9	-	2.	85	FILL Silty SAND: medium grained, dark brown-brown, rootlets.							FILL (TOPSOIL)	-
				-	ES		0.10m PID= 1.6ppm 0.20m PID= 2.8ppm			0.2 - 2.7		0.:		FILL Sandy CLAY: low plasticity, dark brown, black, moist, soft.							FILL	- - - 0.2
7j; SMEC 2.10.8 2020-0									ved	0.4 - 2.5				FILL Clayey SAND: medium grained, brown, angular to sub-angular gravel.								0.4
LID: SMEC 2:10.9 2021-08-30 PG; SMEC 2:10.8 2020-09-10									Not Observed	0.6 - 2.3				0.60: cobbles encountered, shell fragments								- - 0.6 - -
					ES		0.90m PID= 2.9ppm			0.8 - 2.1												
1 17:43		_					-		-	-1.0- 1.9		1.0	00	Hole Terminated at 1.00 m								1.0-
										1.2 - 1.7	-			Target depth								- - - 1.2 - - -
										1.4 - 1.5	-											- 1.4
										1.6 - 1.3	-											- - 1.6 - - -
										1.8 - 1.1	-											 1.8 - - -
Swec 2:10:13 IB:0EB	ervatio	ons and	Comme	nts						2.0	1			Classifications compliant with AS1726-2017: Geotechnical Site Inv Defect Log Abridged. Additional detail in digital dataset. Lugeon: B For Inclined Holes: Angles reported in defects are apparent dip fro Refer to explanatory notes for SMEC logs for details of abbreviatio	S5930:199 m core hor	99 rizontal	unless a	se noted s α or β	Арр		By AW Date	04/04/2022 27/04/2022 1 of 1

	G Eng	eol ine	ogica erinç	al & g Log	Client Site	Pipeline F Manildra Port Kem 30013174	Group bla					East North Eleva Datur	ation	307971.640 m 6183118.080 m 2.760 m MGA94 Zone 56/A	End Date	04/04/2022 04/04/2022	Contracto Rig Type Mounting	or Ledacon 6.5T 300m	m Bucke	et /	nclinatio Azimuth North Survey	on 90		HT.	MEC
			(s				Testing		low	~	bc									c		D		Member of the Surbana Borehole Identifier:	
	Method Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling		PP (kPa) VS (kPa) Peak / Remoulded		ater - evel & In	Depth (m)	Graphic Log	Soil Code La Code	oth						Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General	BH08
[Σ ΰ	ō	30	Ē		SPT	PID (ppm) 0.00m PID= 4.3ppm	DCP	23	0.0	ه			FILL Sandy CLAY: low pla: (100mm).		moist, with angular to		jravel, cobbles	ΣŬ	٥ă	₹	3	2.22	Observations FILL 0.00: ACM fragments observed on surface	Installation
(8 2020-09-10	- - - - -			-	ES		0.30m PID= 4.8ppm			0.2				(100mm).										0.20-0.40ir naginents observed on surface	- - 0.2 - - -
SMEC 2.10	-			-			0.40m		ved	0.4														0.35: ACM in pit 0.40: ACM in pit, glass fragments	0.4
8-30 Prj: 5	-			-	ES		PID= 2.7ppm		Not Observed	ľ														0.50: nylon rope	-
ib: SMEC 2.10.9 2021-0	-								Z	0.6															
.02.00.04 Datgei 100is L	- 									0.8															
le>> 29/04/2022 17:43 10										1.0	~~	0.9		Hole Terminated at 0.95 m Refusal on boulders											
13174.GPJ < <drawingh< td=""><td>- </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 1.2 ^{1.6} - -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 1.2 — - -</td></drawingh<>	- 									- 1.2 ^{1.6} - -															- 1.2 — - -
L SMEC ENV WUL JUI	-									1.4															1.4 — - - -
D LOG LANDSCAPE_SU	-									1.6															- 1.6 - - -
CLB Log_SMEC HYBRIL	-									1.8 1.0 - -															1.8 — - - -
:2.10.13 UB	Observa	ations	and Con	nments	I	I				2.0				O Classificat Defect Log For Incline Refer to e	ions compliant w Abridged. Addit	ith AS1726-2017: (ional detail in digita reported in defects for SMEC logs for	Geotechnical al dataset. Lu	Site Investigatio	ons unless 999	otherwis	e noted.		ged By roved E		04/04/2022 27/04/2022
SMEC														Ž Refer to e	c noies. Angles planatory notes	for SMEC logs for	details of abb	reviations or ba	isis of des	cription.	soc or pr	Stat		3 Page	1 of 1

(En	Geo Igir	ologi neeri	cal & ng Lo	bg g	Site	Pipeline Manildra Port Ke 300131	e Route TSI a Group mbla 74					East North Eleva Datu	n ation	Start Date 04/04/2022 End Date 04/04/2022 MGA94 Zone 56/AHD	F	Contractor Ledacon Rig Type 6.5T 300m Mounting	m Buck	et .	Inclinat Azimutl North Survey	h		YED S	
							Testing		low L	<u>-</u>	bo							cy		Ď		Borehole Identifier:	_
Method	Casing	Support	(Galintoss Run (TCR)	Sampling		SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water ⁻ Level & In	 Depth (m) Elevation 	Graphic Log	Soil Code	pth 2L	Soil / Rock Material Descrip	ription		Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	BH09
-										0.0 -	\bigotimes			FILL Silty SAND: medium to coarse grained, brown, with rootlets	ets.							FILL (TOPSOIL)	_
2 2/10/3 222-04-30 Pg SMEC 2/10/3 200-09-10				ES	_		0.10m PID= 0.9ppm 0.20m PID= 2.1ppm		Not Observed	0.2		0		FILL Silty Clayey SAND: black, with boulders (500mm).			-					FILE — — — — — — — —	0.2
				ES	3		0.90m PID= 1.9ppm			0.8		1.	00	0.80: more boulders and cobbles Hole Terminated at 1.00 m									
										- - - 1.2 - - - - -				Target depth									
										1.4 — - - - 1.6 — - -													1.4
										1.8													- - 1.8 - - - - - -
Swec 5:10:13	rvatio	ons and	Comment	S						2.0				Classifications compliant with AS1726-2017 Defect Log Abridged. Additional detail in dig For Inclined Holes: Angles reported in defec Refer to explanatory notes for SMEC logs for	17: Geo digital da fects ar/ s for det	otechnical Site Investigatic lataset. Lugeon: BS5930:1 re apparent dip from core h tails of abbreviations or ba	ons unles 999 lorizontal sis of de	s otherwis unless a scription.	se noted s α or β	Log App Stat	roved E	By AW Date	04/04/2022 27/04/2022 1 of 1

	Er	Ge ıgi	olo ne	ogica ering	l & Log	Projec Client Site Job N	Manil Port I	ne Route TSI dra Group Kembla 3174						East Nort Elev Datu	ation 2.570 m Mounting Track	icchio 20	5	Inclina Azimu North Surve	ith			MEC
				(~			Testing		N	~	ð					Ś		D		Member of the Surba Borehole Identifier:	_
	q	D	Ţ	Loss	l CR)	ling		PP (kPa)		& Inf	n (m)	ic Lo	ode			tion	stenc	tion	ierinį		Origin, Stratigraphic	SMW01
_	Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Eleva	Graphic Log		epth RL	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Unit & General Observations	Installation
	1										0.0 - 2.6			2.57 0.20	FILL GRAVEL: fine to medium grained, angular, pale grey, grey.						FILL (CEMENTED SLAG)	LL01
													-	2.37	FILL Gravelly CLAY trace cobbles: medium plasticity, dark grey, dark brown, gravel is fine to coarse grained, angular, iron slag.						FILL	- NE
C 2.10.8 2020-09-10	abt	3 mm)									1.0 —			0.50 2.07	FILL Sandy GRAVEL with clay: fine to coarse grained, poorly graded, brown, gravel is iron slag, sand is medium to coarse grained.							1.0
Tools Lib: SMEC 2.10.9 2021-08-30 Prj: SMEC	- Ab	——————————————————————————————————————									1.0 — 1.6											
3:28 10.02.00.04 Datgel 1										03/03/21	2.0 - 0.6		sc	2.00 0.57 2.50	Clayey SAND clay: fine to coarse grained, dark grey, black, material smelling of hydrocarbons.	M	L - MD				ESTUARINE?	- 20-
gFile>> 27/04/2022 10										-				0.07	SAND: fine to coarse grained, pale grey, grey, slight hydrocarbon odour.	W						
30013174.GPJ < <drawin< td=""><td>MB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0 -0.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawin<>	MB										3.0 -0.4											
SOIL SMEC ENV WUL													SP									
D LOG LANDSCAPE	-										4.0 - -1.4											4.0
HYBRI	<u> </u>	\dashv	+											4.50	Hole Terminated at 4.50 m							4.5
-B Log_SMEC															Target depth							
J B.G	Ohar		lone	and Carr	monto						5.0				Classifications compliant with A04700 0047. On the trained Office of the	iono (a others:		Loge	od Pre	TH Det	e 03/03/2021
SMEC 2.10.1.	Possib	le hvd	rocarb	and Corr oon contami nument cer	nants encour	ntered at 2-2 ce, 0.73m st	.5m. ick up above s	surface level.							 Classifications compliant with AS1726-2017: Geotechnical Site Investiga Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930 For Inclined Holes: Angles reported in defects are apparent dip from core Refer to explanatory notes for SMEC logs for details of abbreviations or to 	1999 horizontal	unless as	ο α orβ.	Appr Statu		By SRM Dat	e 31/03/2021 e 1 of 1

	G En	Geo gin	olo iee	gica ring	& Log	Project Client Site Job No	Pipelin Manild Port K 30013							East Nort Elev Datu	307889.380 mStart Date04/06/2022ContractorEpoca6183043.420 mEnd Date04/06/2022Rig TypeGeopre2.890 mMountingMounting	obe 782	2DT	Inclin Azim North Surve	I	90°		MEC
								Testing		Ň		-									Member of the Surba	na Jurong Group
	_	+	_	Water (Gain/Loss)	Run (TCR)	ē [Water Level & Inflow	Depth (m) Elevation	Graphic Log	de			e G	Consistency Density	Б	Weathering		Borehole Identifier:	SMW02
	Method	Support		iter ain/L	Ĕ	Sampling		PP (kPa) VS (kPa) Peak / Remoulded		iter /el &	evat	aphic	Soil Code	- "		Moisture Condition	nsist nsity	Alteration	athe	Rock Strength	Origin, Stratigraphic Unit & General	
_	Š	Š Č		Š G	Ru	Sar	SPT	PID (ppm)	DCP	Leva L	۵۵ - ۵۰		Soi	Depth <i>RL</i>	Soil / Rock Material Description	₽Ö	Del	Alte	We	Stre		Installation
											0.0 - 2.9			0.10	SLAG: grey, fine to coarse grained, angular sand matrix.	W <pl< td=""><td>VL VS</td><td>-</td><td></td><td></td><td>FILL (CEMENTED SLAG)</td><td>1002</td></pl<>	VL VS	-			FILL (CEMENTED SLAG)	1002
og _SWECHYBRID LOG LANDSCAFE_SOIL SMEC ENV WOL 30013174 6PJ < < DnawngFiles> Z704/2022 16/28 10 0200 04 Dagle Tools [Lb: SWEC 2/109 2021-09-30 PF] SMEC 2/108 2020-09-10	-										1.0 - 7.9 2.0 - 0.9 3.0 - -0.1			2.90 -0.07 4.00	CLAV: high plasticity, brown to black, trace fine to coarse grained sand, angular to rounded gravel. I increasing brown Clayey Silty SAND: fine to medium grained, sub-rounded, black, low plasticity clay. Total and the fine to medium grained, sub-rounded, black, low plasticity clay. Total and the fine to medium grained at 4.00 m pet Depth (standpipe installed)		L				FILL	
IB.GLE											L_5.0-											
	Obser PVC pip			nd Comi 74m	nents										 Classifications compliant with AS1726-2017: Geotechnical Site Investigation Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930: For Inclined Holes: Angles reported in defects are apparent dip from core Refer to explanatory notes for SMEC logs for details of abbreviations or based on the second sec	ons unles 1999 horizontal asis of de	s otherwis unless as scription.	se noted sα or β	Log App Stat		By AW Date	e 04/06/2022 e 27/04/2022 e 1 of 1

	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Testing PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Depth (m)	Graphic Log	Soil Code	Depth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	SMW0
Parita								20/04/22	1.0- 3.1 1.0- 2.1 2.0- 1.1			0.80 2.29 2.30 0.79	FILL Gravelly CLAY: low to medium plasticity, pale brown, fine to coarse grained, angular gravel, with fine to coarse grained sand, with cobbles (60-80mm) comprising sandstone. FILL Sandy CLAY: low to medium plasticity, brown mottled orange, fine to coarse grained sand, with fine to medium grained gravel. FILL Sandy CLAY: low to medium plasticity, brown mottled orange, fine to coarse grained sand, with fine to medium grained gravel. 2.00-2.30: SAND, medium grained, pale brown observed FILL Gravelly SILT: low plasticity, dark grey, fine to coarse grained gravel, with cobbles and boulders comprising latite (dark grey-black with shiny inclusions). 3.00-3.30: Boulder encountered/penetrated	- -	F				FILL 1.50: Driller noted some resistance 3.00-3.30: Driller cored	1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
												3.30 -0.21	SAND: medium grained, yellow-red.	_	L				through boulder	
									4.0 - -0.9		SP	4.50	4.00-4.50: becoming pale yellow							4.5
T										-			Hole Terminated at 4.50 m Target Depth (standpipe installed)							

Method Casing		Water (Gain/Loss)	Run (TCR)	Site Job N	Port k	dra Group Kembla 8174 Testing PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Depth (m)	Graphic Log		atum	6183124.300 m 2.960 m MGA94 Zone 56/AH Soil /	End Date 20/04/2022 D Rock Material Descripti	Mounting Track	Moisture Condition	Consistency Density	Arimur North Survey	y D		Member of the Surbar Borehole Identifier: Origin, Stratigraphic Unit & General Observations	SMEC SMW04 Installation
								2 004/22	3.0 1.0- 2.0- 1.0 3.0- 0.0 4.0- -1.0		2.96 - <u>1.00</u> 7.96 - <u>2.70</u> 0.26 SP 4.50	2.30- 2.30- 3.50- 3.50-	Sandy CLAY: low to medium um grained gravel.	a grained, brown, fine to coarse	arse grained sand, with fine to		F				FILL 1.00: Driller noted increased resistance (possible boulders) ESTUARINE	
PVC Pipe Developme	Stick ent M	ethod: Bailer;	le Flushed; Well Volume	~13.4L	ample collected -20L; pale brow	n, slightly cloudy 20-40	0L (improved c	larity)	5.0-				Defect Log Abrid For Inclined Hole	ged. Additional detail in digita s: Angles reported in defects	Geotechnical Site Investigati al dataset. Lugeon: BS5930: are apparent dip from core details of abbreviations or ba	1999 horizontal	unless a	se noted. s α or β.		oved B	y AW Date	20/04/2022 27/04/2022 e 1 of 1

Image: Control of the contro			(ss	R)	_в Г		Testing		L Inflow	Ê S	Log	e			~ -	ency	ç	ing	_	Member of the Surbar Borehole Identifier:	na Jurong SMV
1 23 0.00 FLL 20 mod y that using part days that was a part of grant, the stage of the stage state grant, the stage state grant state state state state grant, the stage state grant, the	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Peak / Remoulded	DCP	Water Level &	, Depth (Elevation	Graphic Log	Soil Cod	epth RL	Soil / Rock Material Description	Moisture Condition	Consiste Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installa
10 10<										0.0-				angular gravel	. ´ D		-			FILL (CEMENTED SLAG)	
1 1															_		-			pulverised cemented material	0.3 4 00
0 1/8 FLL Gravely GRAVEL: fire to coarse grained, sub-angular, tack, valiow brown, with sand. 0 0 2.0 2.0 1/8 FLL Gravely GRAVEL: fire to coarse grained, sub-angular, tack, valiow brown, with sand. 0 0 2.0 2.0 1/8 FLL Gravely GRAVEL: fire to coarse grained, sub-angular to ubit scale angular to										1.0 — 1.9			2.40		М	F				FILL	1.0
Purcense 2.0 2.0 2.0 1.0											×		1.10	FILL Clavey GRAVEL: fine to coarse grained, sub-angular, black, vellow brown, with sand.	D	-					
PLL caveling SAND. If the to costner grained, provin, the drown, the grained, sub-angular to M L sub-rounded gravel, trace publies, trace clay.	ing									2.0 — 0.9											
4.0	Cas												0.56	FILL Gravelly SAND: fine to coarse grained, brown, red brown, fine grained, sub-angular to sub-rounded gravel, trace pebbles, trace clay.	M	L					
4.0											Ň		-0.14	LATITE BOULDERS / COBBLES.	- w	VD				PULVERISED MATERIAL AROUND FRAGMENTS	
✓ -1.1 SP ✓ 4.50												SP	-0.34	SAND: fine grained, red, yellow, pale brown.	M	L				ESTUARINE (QUARTZ BASED)	1
-1.1 SP 4.50														SAND: fine grained, yellow, pale brown to pale grey.	w	-					
										4.0		SP									4.5
- Target Depth (standpipe installed)	*								+				4.50	Hole Terminated at 4.50 m Tarret Denth (standnine installed)					-		4.5

	Er	Ge 1gi	ol ne	ogic erin	al & g Log	Proje Clien Site Job I	nt	Pipeline F Manildra (Port Kem 30013174	Group Ibla						Eas Norl Elev Dati	th 6183055.700 m vation 3.410 m	Start Date 04/06/2022 End Date 04/06/2022 HD		Epoca Geoprobe 782	2DT	Inclina Azimu North Surve			AH .	MEC
	Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling 		Pe	Testing PP (kPa) VS (kPa) eak / Remoulded	D 0D	/ater evel & Inflow	© Depth (m)	Graphic Log	Soil Code	Depth		(Deels Meteric) Decovirtie		Moisture Condition	Consistency Density	Alteration	Weathering		Member of the Surban Borehole Identifier: Origin, Stratigraphic Unit & General	SMW06
g_SMCF/HBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ < <drawingfile>> Z7/04/2022 16:22 10.02.00.04 Dagel Tools [Lb: SMEC 2.10.9 2027-08-30 Prj: SMEC 2.10.8 2020-08-10</drawingfile>		č	ισ	× ©		ο Ο	SP		PID (ppm)	DCP		0.0- 3.4 1.0- 2.4 2.0- 1.4 3.0- 0.4 4.0- -0.6		SP	2.00 1.41	Soil FILL Silty SAND: grey, abundant, FILL Clayey SAND: fine to coarse FILL Silty Gravelly SAND: fine to FILL Salty Gravelly CLAY: red b rounded coarse furnace slag grav FILL Silty SAND: grey. SAND: fine to coarse grained, and SAND: fine to coarse grained, and Hole Terminated at 4.50 m Target Depth (standpipe installed	a grained, sub-rounded to sub-ang coarse grained, sub-rounded to s rown, fine to coarse grained, sub- el.	gular, grey, trace grave sub-angular, black, coa -angular to rounded sa	M H/ Iwash		All	M	25 X	Observations FILL (TOPSOIL) 0.00: 0.76m standpipe stick UP FIL AEOLIAN AEOLIAN	Installation
SMEC 2.10.13 LIB.GLB L	Obse PVC p	ervati ipe sti	ions ck up	and Co 0.76m	mments							5.0		<u> </u>		Defect Log Abrid	ompliant with AS1726-2017: (ged. Additional detail in digita s: Angles reported in defects tory notes for SMEC logs for	al dataset. Lugeon: E	S5930:1999					y AW Date	04/06/2022 27/04/2022 1 of 1

Appendix D. Proposed design drawings

BULK LIQUIDS FACILITY PORT KEMBLA, NSW

CIVIL WORKS DRAWINGS

CIVIL	
DRG. No.	DRAWING TITLE
20399-C01	GENERAL CONSTRUCTION NOTES, DRAINAGE & EARTHWORKS
20399-C02	SITE GRADING & DRAINAGE PLAN SHEET 1 OF 2
20399-C03	SITE GRADING & DRAINAGE PLAN SHEET 2 OF 2
20399-C04	STORMWATER PIT SCHEDULE & CONSTRUCTION DETAILS
20399-C05	PIT CONSTRUCTION DETAILS
20399-C06	DISCHARGE OUTLET CONSTRUCTION DETAILS
20399-C07	BULK EARTHWORKS PLAN
20399-C08	CONCEPTUAL EROSION & SEDIMENT CONTROL PLAN
20399-C09	EROSION & SEDIMENT PLAN CONSTRUCTION DETAILS
20399-C10	CONCRETE PAVEMENT LEGEND & CONSTRUCTION NOTES
20399-C11	SITE PAVEMENT PLAN SHEET 1 OF 2
20399-C12	SITE PAVEMENT PLAN SHEET 2 OF 2
20399-C13	SITE PAVEMENT DETAILS SHEET 1 OF 2
20399-C14	SITE PAVEMENT DETAILS SHEET 2 OF 2
20399-C15	SITE RETAINING WALL LONG SECTIONS
20399-C16	SECURITY FENCING DETAILS
20399-C17	PROPOSED DRIVEWAY CROSSOVER PLAN
20399-C20	RETAINING WALL DETAILS SHEET 1
20399-C21	RETAINING WALL DETAILS SHEET 2

TENDER ONLY

NOT FOR CONSTRUCTION

LOCALITY PLAN NOT TO SCALE

GENERAL NOTES:

- ALL DIMENSIONS AND CO-ORDINATES ARE TO BE VERIFIED ON SITE BEFORE WORK COMMENCES. FIGURED DIMENSIONS ARE TO TAKE PRECEDENCE OVER SCALE READINGS.
- DURING CONSTRUCTION, BARRIERS, LIGHTS & SIGNS SHALL BE MAINTAINED TO ENSURE SAFE PASSAGE OF TRAFFIC AND PEDESTRIANS IN ACCORDANCE WITH THE REQUIREMENTS OF THE LOCAL AUTHORITY. ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AUSTRALIAN STANDARDS BY-LAWS AND
- ORDINANCES OF THE RELEVANT LOCAL AUTHORITY, AND WORKPLACE HEALTH AND SAFETY REQUIREMENTS. THE CONTRACTOR SHALL MAKE GOOD, AT HIS COST, ANY DAMAGE TO ANY SERVICE IF SUCH DAMAGE OCCURS AS A RESULT OF HIS OPERATIONS.
- ALL DISTURBED VERGE AREAS MUST BE REINSTATED WITH TURF.
- ALTER ANY SERVICES WHEN THE RELEVANT AUTHORITY OR ASSESSMENT MANAGER DETERMINES THAT THE WORK ASSOCIATED WITH THIS DEVELOPMENT HAVE IMPACTED EXISTING SERVICES.
- THE SURVEY INFORMATION SHOWN MAY NOT ADEQUATELY REFLECT CURRENT SITE CONDITIONS. THE CONTRACTOR SHALL ASSESS SITE CONDITIONS PRIOR TO COMMENCING CONSTRUCTION, ANY DISCREPANCIES IN THE SURVEY NFORMATION SHALL BE REPORTED TO THE SUPERINTENDENT. REFER TO SURVEY FOR DETAILS.
- EXISTING SERVICES SHOWN HAVE NOT BEEN CONFIRMED ON SITE. THE CONTRACTOR SHALL DETERMINE THE LOCATION AND DEPTH OF SERVICES WITHIN OR ADJACENT TO THE WORKS BY CONTACTING THE RELEVANT SERVICE AUTHORITY AND APPROVED UNDERGROUND SERVICES LOCATOR A MINIMUM OF 14 DAYS PRIOR TO COMMENCEMENT OF WORKS. ADVISE THE SUPERINTENDENT OF ANY DISCREPANCIES AND CLASHES BEFORE PROCEEDING. THE CONTRACTOR SHALL BE REQUIRED TO COORDINATE AND PROGRAM WORKS TO RESOLVE ANY CLASHES WITH RELEVANT SERVICE AUTHORITIES PRIOR TO COMMENCEMENT OF ANY WORKS. RESOLUTION OF CLASHES SHALL BE APPROVED BY THE RELEVANT SERVICE AUTHORITIES. ALL NEW WORK SHALL BE JOINED NEATLY TO EXISTING. PROPOSED LEVELS FOR CONNECTING TO EXISTING WORKS
- MAY BE VARIED WHERE NECESSARY ON SITE BY THE SUPERINTENDENT TO ACHIEVE A SATISFACTORY SMOOTH FINISH
- 7. THE CONTRACTOR IS RESPONSIBLE FOR THE REMOVAL AND DISPOSAL OF ALL RUBBISH AND SPOIL FROM THE SITE.

STORMWATER DRAINAGE NOTES:

- ALL DIMENSIONS ARE TO BE CHECKED ON-SITE BEFORE WORK COMMENCES
- FIGURED DIMENSIONS ARE TO TAKE PRECEDENCE OVER SCALE READINGS.
- DURING CONSTRUCTION, BARRIERS, LIGHTS & SIGNS SHALL BE MAINTAINED TO ENSURE SAFE PASSAGE OF TRAFFIC AND PEDESTRIANS IN ACCORDANCE WITH THE REQUIREMENTS OF THE LOCAL AUTHORITY. ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH S.A.A CODES & BY-LAWS AND ORDINANCES
- OF THE RELEVANT LOCAL AUTHORITY, AND WORKPLACE HEALTH AND SAFETY REQUIREMENTS. CONTRACTOR TO VERIFY ALL INVERT LEVELS, SURFACE LEVELS, COVER OVER DRAINAGE LINES, AND MINIMUM
- FALLS ARE CORRECT & OBTAINABLE PRIOR TO COMMENCEMENT OF WORKS. PIPES Ø375 AND LARGER TO BE REINFORCED CONCRETE OR FRC CLASS 2' APPROVED SPIGOT AND SOCKET WITH
- RUBBER RING JOINTS U.N.O.
- PIPES UP TO Ø300 SHALL BE SEWER GRADE PVC-U MINIMUM CLASS SN6 WITH SOLVENT WELDED JOINTS. PIPES SHALL BE LAID AS PER TYPICAL PIPE TRENCH DETAIL AND IN ACCORDANCE WITH AS1289 5.2.1.
- FOR TRENCHES NOT UNDER PAVEMENTS WHERE EXCAVATED MATERIAL MAY BE USED FOR BACKFILL, MATERIAL SHALL BE COMPACTED TO THE SAME DENSITY AS THE UNDISTURBED MATERIAL EITHER SIDE OF THE
- WHERE TRENCHES ARE IN ROCK, THE PIPE SHALL BE BEDDED ON A MINIMUM OF 50mm CONCRETE BED (OR 75mm BED OF 12mm BLUE METAL) UNDER THE BARREL OF THE PIPE. 10
- 11. ENLARGERS, CONNECTORS AND JUNCTIONS TO BE PRECAST OR PROPRIETARY FITTINGS WHERE PIPES ARE LESS THAN Ø300
- 12. CARE IS TO BE TAKEN WITH LEVELS OF STORMWATER LINES. GRADES SHOWN ARE NOT TO BE REDUCED WITHOUT APPROVAL
- GRATES AND COVERS SHALL CONFORM TO AS 3996 ALL FINISHED SURFACE LEVELS SHOWN ON GULLY GRATES AND MANHOLES ARE LOCATED ON THE CAST IRON COVER UNLESS OTHERWISE SHOWN.
- ON COMPLETION OF PIPE INSTALLATION ALL DISTURBED AREAS MUST BE REINSTATED TO "AS FOUND" CONDITION THE CONTRACTOR SHALL MAKE GOOD, AT HIS COST, ANY DAMAGE TO ANY SERVICE IF SUCH DAMAGE OCCURS AS A RESULT OF HIS OPERATIONS
- CONSTRUCT STORMWATER LINES, PITS AND MANHOLES IN ACCORDANCE WITH RELEVANT LOCAL AUTHORITY 17. STANDARD DRAWINGS & SPECIFICATIONS IF NOT OTHERWISE DETAILED ON THE DRAWINGS
- ALL PITS/MANHOLES DEEPER THAN 1000mm TO BE FIXED WITH GALV. STEEL PROPRIETARY STEP IRONS
- ALL UNDERGROUND SERVICES ARE TO BE PROVEN ONSITE AND THE CONTRACTOR TO LIAISE WITH RELEVANT AUTHORITIES REGARDING ANY IMPACTS PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION WORKS..

EARTHWORKS NOTES:

SUBGRADE PREPARATION

- 1. AREAS UPON WHICH FILL IS TO BE PLACED SHALL BE CLEARED, GRUBBED AND STRIPPED. THE TOTAL AREA ON WHICH FILL IS TO BE PLACED SHALL BE FREE OF SOFT AREAS, WITH THE TOP 150mm OF THE NATURAL SUBGRADE MATERIAL COMPACTED TO 95% STANDARD MAXIMUM DRY DENSITY (MDD-S) COMPACTED AT OPTIMUM MOISTURE CONTENT (OMC) ± 3% PRIOR TO FILLING. THE AREA SHALL BE PROOF ROLLED IN THE PRESENCE OF THE SUPERINTENDENT TO DETERMINE POORLY COMPACTED, SOFT OR UNSTABLE AREAS WITH UP TO 4 PASSES OF EITHER: - MINIMUM 8 TONNE (STATIC WEIGHT) VIBRATING STEEL SMOOTH DRUM ROLLER,
- OPERATING UNDER FULL AMPLITUDE VIBRATION, ROLLING AT APPROXIMATELY 2KM/HR
- OR
- MINIMUM 20 TONNE (STATIC WEIGHT) RUBBER TYRED, ROLLER, WITH PRESSURE 900kPa MINIMUM, ROLLING AT 3-4KM/HF
- 2. WHERE DIRECTED BY THE SUPERINTENDENT, SOFT, WET OR UNSTABLE AREAS SHALL BE EXCAVATED AND THE UNSUITABLE MATERIAL REUSED ON SITE EITHER BY DRYING OUT OR FOR MIXING WITH IMPORTED MATERIAL TO ENABLE COMPACTION AS FILLING.
- 3. THE BOTTOM OF SUCH EXCAVATION SHALL BE COMPACTED WITH APPROVED EQUIPMENT TO 95% MDD-S, COMPACTED AT OMC ± 3% PRIOR TO
- BACKFILLING WITH APPROVED FILL MATERIAL.
- ON NO ACCOUNT SHALL ANY FILL BE PLACED BEFORE APPROVAL OF THIS AREA IS GIVEN BY THE SUPERINTENDENT.
 QUANTITIES OF UNSUITABLE MATERIAL NOT OTHERWISE APPARENT BY SITE INSPECTION AT TIME OF TENDER SHALL BE INSPECTED AND AGREED
- WITH THE SUPERINTENDENT WHEN ENCOUNTERED AT PROOF ROLLING. 6. WHERE SIGNIFICANT GROUND WATER IS ENCOUNTERED AFTER REMOVAL OF EXISTING FILL A GRANULAR BRIDGING LAYER SHALL BE PROVIDED PRIOR
- TO PLACING OF GENERAL FILL. THE BRIDGING LAYER SHALL BE 75mm MAX SIZE 'BALLAST' ROCK WITH A GEOSYNTHETIC SEPARATION LAYER BETWEEN ANY BRIDGING LAYER AND THE OVERLYING FILL. REFER ENGINEER FOR SPECIFIC DETAILS.

FILL MATERIAL

- 1. THE CONTRACTOR SHALL ALLOW TO IMPORT ALL FILL MATERIAL TO THE SITE IN EXCESS OF ON SITE CUT TO FILL. WITH HIS TENDER THE CONTRACTOR SHALL PROVIDE DETAILS OF ALL IMPORTED MATERIAL PROPOSED TO BE USED AS FILL INCLUDING, BUT NOT LIMITED TO, THE SOURCES OF FILL, PLASTIC INDEX, LINEAR SHRINKAGE, PARTICLE GRADINGS, CALIFORNIA BEARING RATIO (CBR). ANY MATERIAL TEST INFORMATION PROVIDED MUST BE CARRIED OUT BY A NATA REGISTERED LABORATORY. DURING TENDER NEGOTIATIONS MORE EXTENSIVE TESTING MAY BE REQUESTED TO CONFIRM THE QUALITY OF PROPOSED FILL FROM SPECIFIC SITES NOMINATED AS ORIGINS OF FILL AS WELL AS SITE INSPECTIONS.
- 2. QUALITY CONTROL TESTING OF IMPORTED FILL SHALL BE UNDERTAKEN BY A NATA APPROVED LABORATORY AS PART OF LEVEL '1' SUPERVISION TO ENABLE CERTIFICATION THAT ALL FILL MATERIALS MEETS THE MINIMUM STANDARDS ACCEPTED BY THE PRINCIPAL. THIS WILL INCLUDE PLASTIC
- INDEX, LINEAR SHRINKAGE, PARTICLE GRADINGS, CBR AS CONSIDERED NECESSARY. 3. GENERAL FILL QUALITY: WELL GRADED GRANULAR MATERIAL HAVING PROPERTIES AS FOLLOWS:

>15

- MAXIMUM PARTICLE SIZE: 75mm <15%
- PLASTICITY INDEX: <35%
- LIQUID LIMIT: - CBR

FILL CONSTRUCTION:

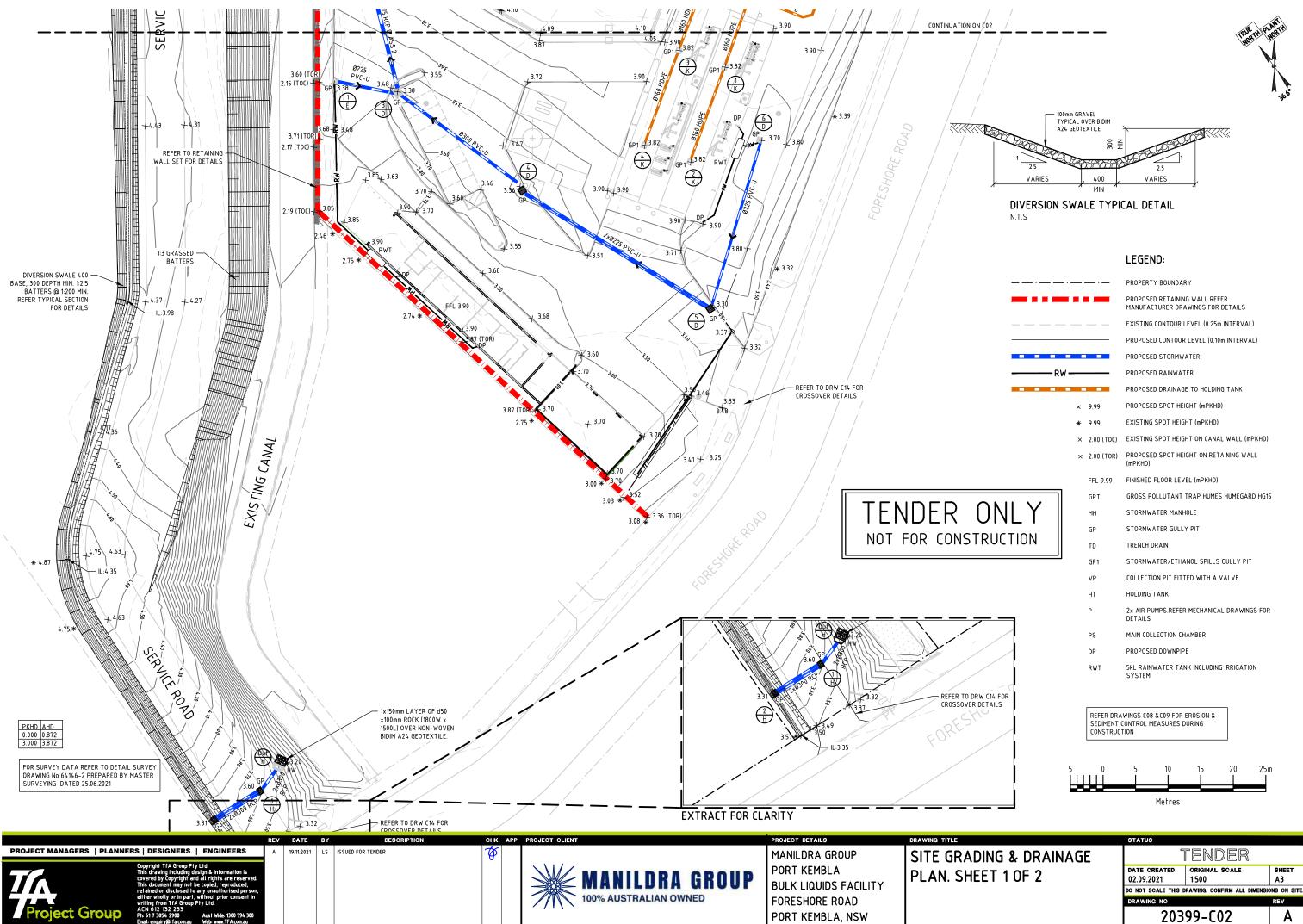
- 1. ALL FILL MATERIAL SHALL BE PLACED, SPREAD AND COMPACTED IN UNIFORM LAYERS NOT EXCEEDING 150mm COMPACTED THICKNESS. DURING PLACEMENT OF FILL. THE MOISTURE CONTENT SHALL BE CONTROLLED WITHIN -3% AND +1% OF OMC, EACH LAYER AS IT IS PLACED SHALL BE COMPACTED TO 98% MDD-S BEFORE THE FOLLOWING LAYER IS PLACED. FILL MATERIAL WHICH BECOMES EXCESSIVELY WET AFTER PLACEMENT SHALL BE DRIED OUT AND RE-COMPACTED TO 98% MDD-S, OR SHALL BE REPLACED WITH APPROVED MATERIAL AGAIN COMPACTED TO 98% MDD-S, AT THE CONTRACTOR'S EXPENSE.
- 2. DENSITY TESTS SHALL BE CARRIED OUT BY A NATA APPROVED LABORATORY. REWORK AND RETEST AREAS WHICH DO NOT ACHIEVE DENSITY UNTIL THAT DENSITY IS ACHIEVED AT THE CONTRACTOR'S EXPENSE.
- 3. TESTS SHALL BE CARRIED OUT AT NOT LESS THAN ONE TEST PER 500m³ OR ONE TEST PER LAYER PER 2500m² WHICHEVER REQUIRES THE MORE
- TESTS; DISTRIBUTE THE TESTS EVENLY THROUGHOUT THE FILL. 4. A COPY OF ALL TESTS RESULTS SHALL BE FAXED DIRECTLY TO THE SUPERINTENDENT BY THE LABORATORY IMMEDIATELY WHEN THE TEST RESULTS ARE AVAILABLE AND THEN TO THE CONTRACTOR. A REPORT OF ALL COMPACTION TESTING WILL BE REQUIRED WITH THE FILL CERTIFICATION DETAILING EXACT LOCATIONS AND LEVEL OF TESTS UNDERTAKEN AND ALL REMEDIAL WORK UNDERTAKEN AND RETESTED.
- 5. SUPERVISION OF FILLING OPERATIONS BY A NATA APPROVED LABORATORY WILL BE REQUIRED TO ENABLE CERTIFICATION THAT ALL FILL HAS BEEN PLACED AND COMPACTED IN ACCORDANCE WITH THIS SPECIFICATION TO LEVEL '1' IN ACCORDANCE WITH AS3798

GRADING TO FORMATION LEVEL:

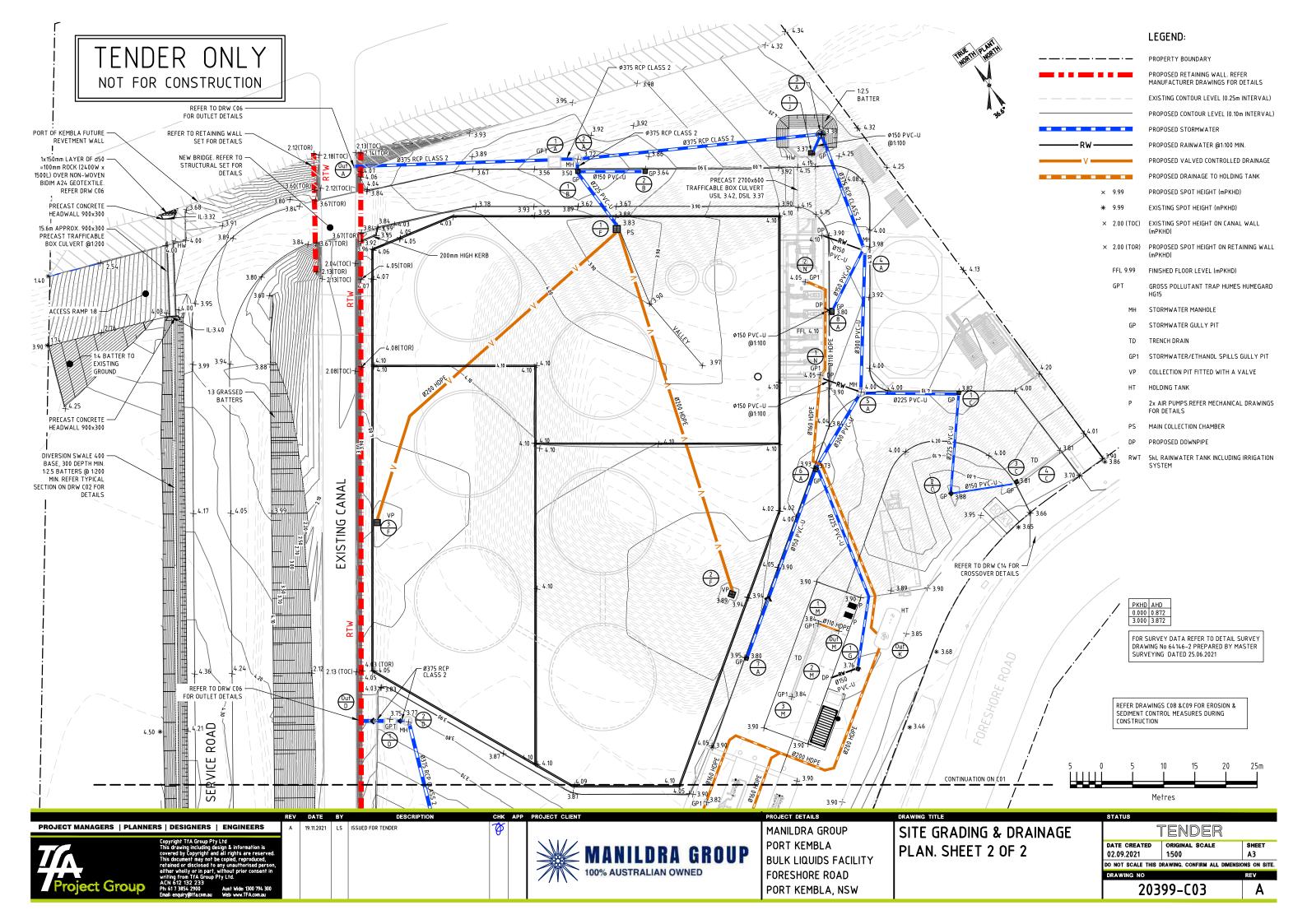
1. ON COMPLETION OF EXCAVATION OR FILLING AS SPECIFIED, THE FORMATION SHALL BE GRADED TO CONFORM ACCURATELY TO THE LINES, GRADES AND CROSS-SECTION SHOWN ON THE DRAWINGS CONFORMING TO A LEVEL TOLERANCE OF ± 20mm GENERALLY. PROVIDE EVEN GRADES GENERALLY BETWEEN SPOT LEVELS.

ENVIRONMENTAL PROTECTION:

- THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUPPLYING, ERECTING AND MAINTAINING EROSION AND SEDIMENT CONTROL DEVICES ON THE SITE AND ENTRY TO THE SITE TO COMPLY WITH ALL STATUTORY AND LOCAL GOVERNMENT REQUIREMENTS.
- 2. THIS MAY INVOLVE THE CONSTRUCTION OF SEDIMENT FENCES TO THE PERIMETER OF THE SITE TO PREVENT CONTAMINATED STORMWATER ENTERING WATERWAYS AND ALSO APPROPRIATE MEASURES TO PREVENT TRACKING OF MATERIALS ONTO PUBLIC ROADS. IN ADDITION THE CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO ELIMINATE DUST NUISANCE FROM THE SITE.



PROJECT MANAGERS PLANNERS DESIGNERS ENGINEERS	REV A	BY DESCRIPTION LS ISSUED FOR TENDER	СНК АР	PROJECT CLIENT	project details MANILDRA GROUP	GENERAL CONST
Copyright TfA Group Pty Ltd This drawing including design & information is covered by Copyright and all rights are reserved. This document may not be copied, reproduced, relatined or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. ACN 612 132 233 Ph: 617 3852 2000 Email: enquiry@tfa.com.au Aust Wide: 1300 794. 300 Email: enquiry@tfa.com.au				MANILDRA GROUP	PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	NOTES, DRAINAG & EARTHWORKS


TRUCTION	TENDER						
AGE	DATE CREATED 19.11.2021						
°C	DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SIT						
	DRAWING NO		REV				
	203	Α					

STATUS

STRUCTURE No	STRUCTURE DESCRIPTION	GRATE/LID TYPE	SL	IL US	IL
OUT/A ×	OUTLET THROUGH RETAINING WALL	N/A	-	2.14	2.
1/A	HUMES HUMEGARD HG15	CLASS 'B' LIDS BY HUMES	3.50	2.46	2.
2/A	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'B' GALV. OR C.I. LID & FRAME	3.72	FROM 3/A 2.50 FROM 1/B 2.66	2.
3/A	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'B' GALV. OR C.I. LID & FRAME	3.38	FROM 1/J & 4/A 2.79	2.
4/A	1200mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'D' GALV. OR C.I. LID & FRAME	3.98	2.96	2.
5/A	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'D' GALV. OR C.I. LID & FRAME	4.00	FROM 6/A 3.15 FROM 1/B 3.15	3.
6/A	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.73	3.04	3.
7/A	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.80	-	3.
8/A	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.80	-	3.
1/B	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.50	FROM 2/B 2.70 FROM 1/F 2.70	2.
2/B	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.64	-	2.
1/C	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	3.32	3.
2/C	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.88	3.42	3.
3/C	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.81	3.56	3.
4/C	8.5m OF ATCO SK2-00 POWER DRAIN SLOPED CHANNEL	CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.81 TO 3.81	3.61	3.
OUT/D *	OUTLET THROUGH RETAINING WALL	N/A	-	2.23	2
1/D	HUMES HUMEGARD HG15	CLASS 'D' LIDS BY HUMES	3.75	2.26	2.
2/D	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'D' GALV. OR C.I. LID & FRAME	3.77	2.29	2
3/D	900 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.38	FROM 1/E: 2.45 FROM 4/D: 2.45	2.
4/D	900x600 CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900x600 CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.36	2.64	2.
5/D	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.30	2.91	2.
6/D	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.70	-	3.
1/E	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.38	-	2.
1/F ××× ××××	1200mm SQ. CAST IN-SITU GULLY PIT FITTED WITH A ISOLATION VALVE	1200 SQ. CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.83	FROM 3/F: 2.78 FROM 2/F: 2.78	2.
2/F ××	900 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE FITTED WITH AN ISOLATION VALVE	900 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.89	-	3.
3/F ××	900 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE FITTED WITH AN ISOLATION VALVE	900 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.87	-	3.
1/G	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'B' GALV. OR C.I. GRATE & FRAME	3.76	-	3.
OUT/H	300 DIAM. PRECAST CONCRETE TWIN-CELL PIPE HEADWALL	N/A	3.39	2.55	2.
1/H	900x600 CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900x600 CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.60	2.64	2.
2/H	900x600 CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900x600 CLASS 'B' GALV. OR C.I. GRATE & FRAME	3.31	-	2.
1/J	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'B' GALV. OR C.I. GRATE & FRAME	3.37	-	2.

	STORMWATER	PIT/MANHOLE SCHEDULE			
STRUCTURE No	STRUCTURE DESCRIPTION	GRATE/LID TYPE	SL	IL US	IL DS
OUT/K	30kL DOUBLE WALLED FRP TANK ENVIROTANK MODEL DWT H30	LIDS BY ENVIROTANK	VARIES	FROM 1/K:2.74 FROM 1/N: 2.50	REFER TO P&IDS
1/K	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	3.17	3.15
2/К	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	-	3.32
3/К	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.38	3.24	3.22
4/K	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	-	3.39
OUT/M	ABOVE GROUND PUMP CONNECTION. REFER P&IDS FOR DETAILS	N/A	4.10	4.10	REFER TO P&IDS
1/M	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.84	3.58	3.58
2/M	300Wx300Hx12m LONG CAST IN-SITU TRENCH DRAIN WITH 200mm THICK WALLS & BASE	CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.84 TO 3.84	3.64	3.58
3/M	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.84	-	3.64
1/N	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	4.05	3.27	3.05
2/N	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	4.05	-	3.45

EXISTING LEVELS TO BE CONFIRMED ONSITE PRIOR TO START OF CONSTRUCTION WORKS

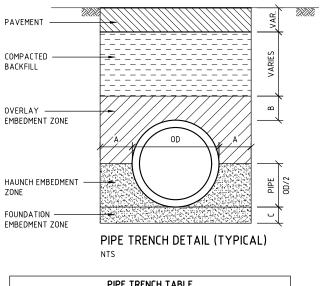
PIT TO BE FITTED WITH A 200mm WIDE x 200mm HIGH PENSTOCK VALVE MODEL ZWA INSTALLED STRICTLY AS PER MANUFACTURER RECOMMENDATIONS ××

PIT TO BE FITTED WITH A 225mm WIDE x 225mm HIGH PENSTOCK VALVE MODEL ZWA INSTALLED STRICTLY AS PER ××× MANUFACTURER RECOMMENDATIONS

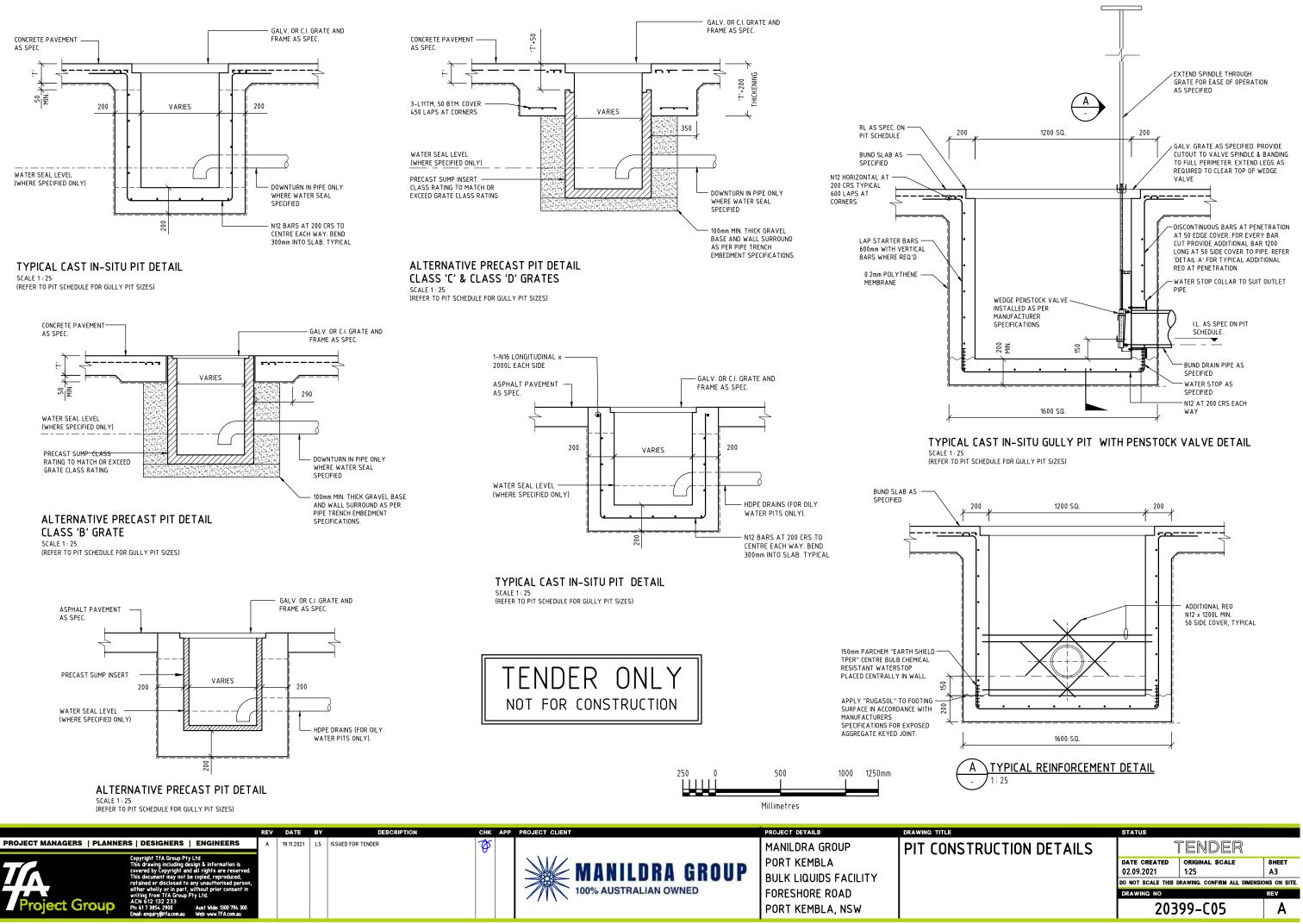
**** REFER TO MECHANICAL SET FOR ETHANOL SPILL LINE PUMP SYSTEM TO BE INSTALLED IN THIS PIT

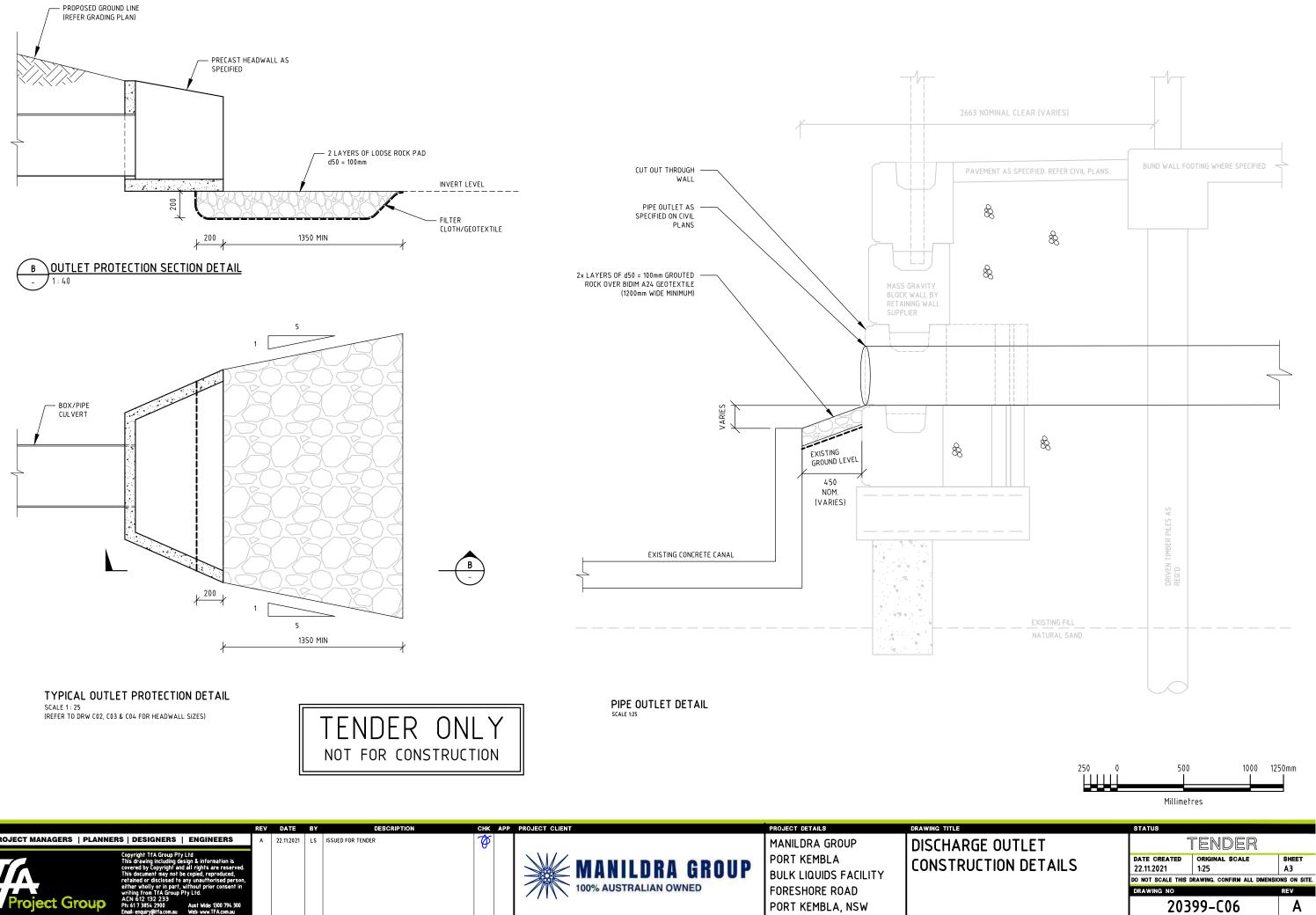
PIPE TRENCHING NOTES

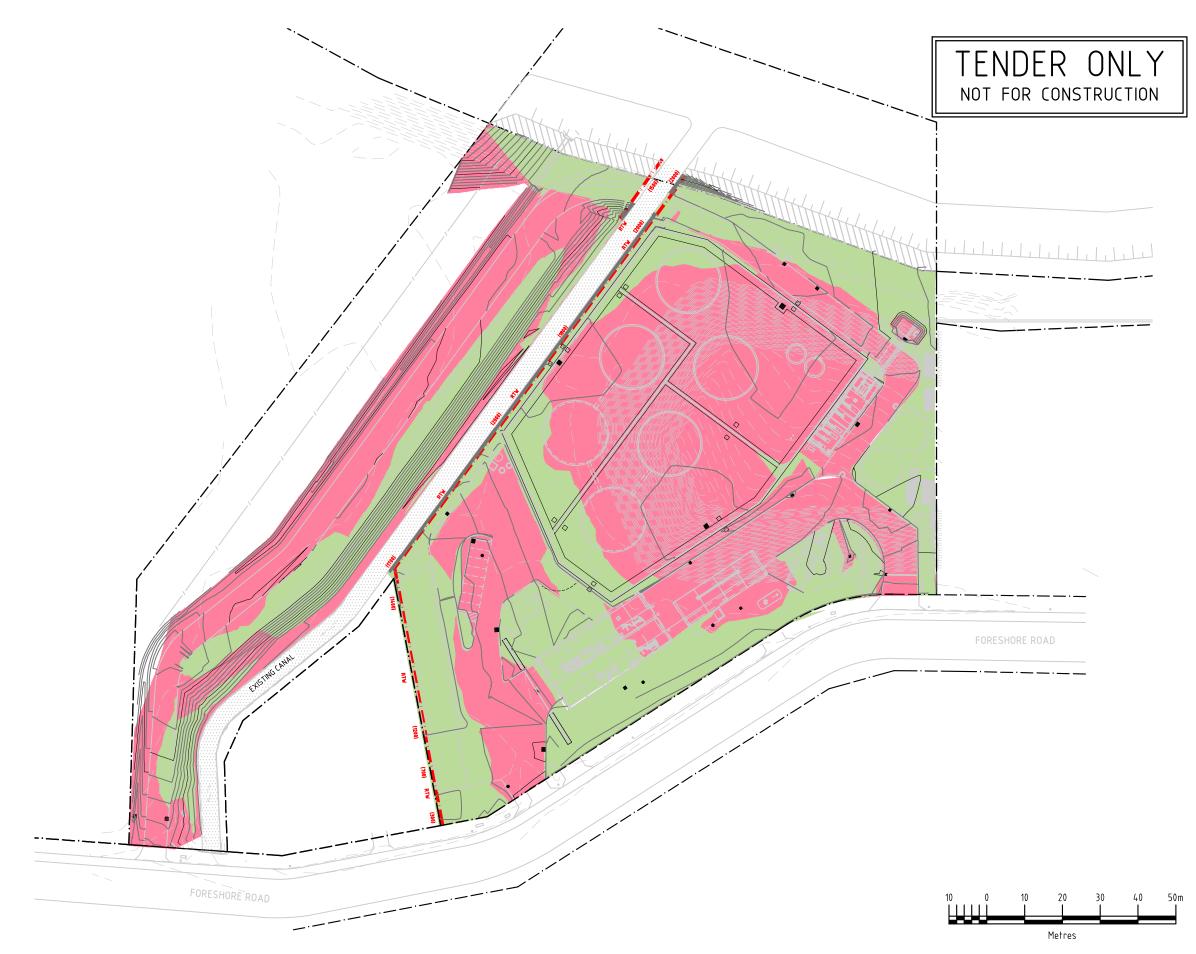
1	PE I KENUHI	IG NUTES:
	EMBEDMENT ZONE I	1ATERIAL: 5mm OR 10mm SCREENINGS, OR ALTERNATIVELY
	WASHED SCREENED	BEDDING SAND TO GRADING SPECIFIED BELOW TO BED ZONE.
	<u>SIEVE SIZE (mm)</u>	PASSING (% BY MASS)
	19.0	100
	2.36	40-100
	0.425	15–70
	0.075	3-30

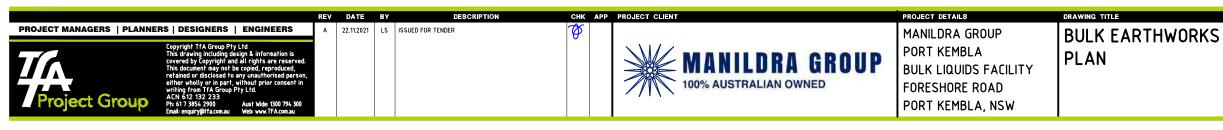

 BACKFILL TO CONSIST OF APPROVED SUBGRADE REPLACEMENT MATERIAL WITH A MINIMUM CALIFORNIA BEARING RATIO OF 15, PLACED IN 150mm LAYERS AND COMPACTED UNTIL THE DRY DENSITY IS NOT LESS THAN 98% STANDARD MAXIMUM DRY DENSITY

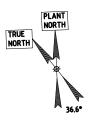
3. COMPACTED BACKFILL SHALL BE GRANULAR FILL COMPRISING CRUSHED ROCK (75mm MAXIMUM SIZE, NON PLASTIC OPEN GRADED MATERIAL) OR CRUSHER RUN RECYCLED CONCRETE. WHERE APPROVED UNDER SPECIAL CIRCUMSTANCES, STABILISED SAND (1 PART CEMENT TO 12 PARTS SAND BY VOLUME) OR CONTROLLED LOW STRENGTH MATERIAL OR LEAN MIX CONCRETE OR CLASS 3 MATERIAL MAY BE BE PERMITTED. COMPACTED BACKFILL UNDER FOOTPATHS AND BIKEWAYS: EXCAVATED MATERIALS


- 4 MAY BE USED PROVIDED ADEQUATE COMPACTION CAN BE OBTAINED. ALTERNATIVELY USE GRANULAR FILL OR SAND.
- WHERE APPROVED, SELECTED MATERIAL FROM EXCAVATIONS SHALL BE PLACED IN 150mm LAYERS & COMPACTED TO A MINIMUM CONSOLIDATION OF 98% STANDARD COMPACTION.
- 6. INCREASE EXCAVATION LOCALLY AT SPIGOT AND SOCKET JOINTS (RIGID PIPES) TO ENSURE MINIMUM BOTTOM COVER AS SHOWN.


TENDER ONLY NOT FOR CONSTRUCTION




PIPE TRENCH TABLE									
PIPEØ	A	В	С						
<u>></u> 75 <u><</u> 150	100	100	75						
>150 <300	150	150	100						
<u>></u> 300 <u>≺</u> 450	300	150	100						
>450 <u><</u> 900	300	150	100						
>900 <u><</u> 1500	300	200	100						
>1500 <u><</u> 4000	0.25 x OD	300	150						

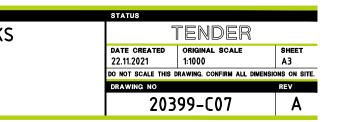


	REV	DATE	BY	DESCRIPTION		PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
PROJECT MANAGERS PLANNERS DESIGNERS ENGINEERS Copyright TfA Group Pty Ltd This drawing including design 4. information is covered by Copyright and 11 rights are reserved. This document may not be copied, reproduced, related or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. ACN 612 192 233 Ph: 617 3834 2900 Aust Wide: 180 794 300 Ph: 617 3834 2900 Aust Wide: 180 794 300	A	22.11.2021	LS	ISSUED FOR TENDER	Ø	MANILDRA GROUP	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	DISCHARGE OUT CONSTRUCTION I

<u>LEGEND</u>

3.50	
(800)	

- PROPERTY BOUNDARY PROPOSED RETAINING WALL. REFER STRUCTURAL DRAWINGS FOR DETAILS PROPOSED EARTHWORKS LEVEL CONTOUR (0.2m INTERVALS) EXISTING LEVEL CONTOUR (0.25m INTERVALS) APPROXIMATE RETAINING WALL HEIGHT


ESTIMATED CUT AREA

ESTIMATED FILL AREA

EARTHWORKS VOLUME:

TOTAL CUT (APPROX.)	=2,422m³
TOTAL FILL (APPROX.)	=3,429m³
REQUIRED FILL	=1,007m³

NOTES: 1. RETAINING WALL TO BE TERMINATED 150mm ABOVE BULK EARTHWORKS SURFACE

CONSTRUCTION EXIT – ROCK PAD MATERIALS:

- ROCK : WELL GRADED, HARD, ANGULAR, EROSION RESISTANT ROCK, NOMINAL DIAMETER OF 50 TO 75mm (SMALL DISTURBANCES) OR 100 TO 150mm (LARGE DISTURBANCES). ALL REASONABLE MEASURES MUST BE TAKEN TO OBTAIN ROCK OF NEAR UNIFORM SIZE.
- FOOTPATH STABILISING AGGREGATE : 25 TO 50mm GRAVEL OR AGGREGATE. GEOTEXTILE FABRIC : HEAVY-DUTY, NEEDLE -PUNCHED, NON-WOVEN FILTER CLOTH ('BIDIM' A24 OR EQUIVALENT).

INSTALLATION:

- CLEAR THE LOCATION OF THE ROCK PAD, REMOVING STUMPS, ROOTS & OTHER VEGETATION TO PROVIDE A FIRM FOUNDATION SO THAT THE ROCK IS NOT PRESSED INTO SOFT GROUND. CLEAR SUFFICIENT WIDTH TO ALLOW PASSAGE OF LARGE VEHICLES, BUT CLEAR ONLY THAT NECESSARY FOR THE EXIT. DO NOT CLEAR AD JACENT AREAS UNTIL THE REQUIRED FROSION & SEDIMENT CONTROL DEVICES ARE IN PLACE.
- OPEN-VOID ROCK.
- CAUSING STORMWATER RUNOFF TO FLOW TOWARD THE ROCK PAD, THEN FORM A MINIMUM 300mm HIGH FLOW CONTROL BERM ACROSS THE ROCK PAD TO DIVERT SUCH RUNOFF TO A SUITABLE SEDIMENT TRAP.
- PRACTICABLE, & AS WIDE AS THE FULL WIDTH OF THE ENTRY OR EXIT & AT LEAST 3m. THE ROCK PAD SHOULD COMMENCE AT THE EDGE OF THE OFF-SITE
- IF THE FOOTPATH IS OPEN TO PEDESTRIAN MOVEMENT, THEN COVER THE COARSE ROCK WITH FINE AGGREGATE OR GRAVEL OR OTHERWISE TAKE WHATEVER MEASURES ARE NEEDED TO MAKE THE AREA SAFE

SEDIMENT AND EROSION CONTROL NOTES:

ALL THE SEDIMENT & EROSION CONTROL MEASURES TO BE IN ACCORDANCE WITH LOCAL COUNCIL'S GUIDE LINES

PRIOR TO THE COMMENCEMENT OF CONSTRUCTION:

AVOID STRIPPING & EXCAVATING UNTIL READY TO BUILD INSTALL SEDIMENT FENCES

SPECIFICATION:

- SILT FENCE SHALL NOT BE REMOVED UNTIL SITE HAS BEEN PAVED & SURFACED. 2. BUND WALLS SHALL BE LOCATED AROUND ALL PITS & MAINTAINED
- UNTIL THE CATCHMENT AREA HAS BEEN PAVED. KERB DRAIN EXCLUDER SHALL INCORPORATE TRAFFIC CONTROL BARRICADES IN ACCORDANCE WITH AS1742.3 - 1985, & SHALL NOT BE PLACED UNTIL WORKS ARE BEING CARRIED OUT ON THE
- FOOTPATH AREA, OR AS OTHERWISE DIRECTED BY COUNCIL. ALL SEDIMENT TRAPS, EXCLUDERS, BUND WALLS SHALL BE INSPECTED & CLEANED AFTER EACH STORM EVENT. DAMAGED OR CLOGGED BUNDING ARE TO BE REMOVED AND REPLACED.
- THE BUILDER SHALL CARRY OUT ANY ADDITIONAL WORKS DEEMED NECESSARY AND DIRECTED BY COUNCIL TO BE CARRIED OUT.
 - THE SEDIMENT CONTROL PLAN SHALL BE IMPLEMENTED PRIOR TO ANY WORKS BEING CARRIED OUT ON SITE.

HOLD POINTS:

INSPECTION OF EROSION AND SEDIMENT CONTROL DEVICES MUST BE UNDERTAKEN BY THE SUPERVISING OR SUPERINTENDENT ENGINEER AT A MINIMUM AT THE FOLLOWING HOLD POINTS:

- PRIOR TO COMMENCEMENT OF BULK EARTHWORKS PRIOR TO LIVE CONNECTION OF NEW STORMWATER DRAINAGE TO THE EXISTING SYSTEM.
- PRIOR TO ANY IN STREAM WORKS
- PRIOR TO ON MAINTENANCE OR OFF MAINTENANCE INSPECTION.
- AT INTERVALS NOT EXCEEDING ONE MONTH COPIES OF INSPECTION REPORTS SHALL BE KEPT ON SITE.
- **SEDIMENT BARRIERS:** SEDIMENT FENCE
- INSTALL SEDIMENT FENCE(S) ALONG THE LOW SIDE OF THE SITE, AND IDEALLY ALONG A LINE OF CONSTANT LAND LEVEL TO PREVENT THE CONCENTRATION OF STORMWATER RUNDER IN AREAS WHERE IT IS EITHER UNDESIRABLE OR IMPRACTICAL TO BURY THE LOWER EDGE OF THE SEDIMENT FENCE, THE LOWER 200mm (MIN) PORTION OF THE FABRIC SHOULD BE PLACED 0 THE GROUND UP-SLOPE OF THE FENCE AND BURIED UNDER A 100mm (MIN)LAYER OF AGGREGATE.
- SEDIMENT FENCES ON BUILDING SITES CAN BE STAPLED TO APPROXIMATELY 40mm SQUARE HARDWOOD POSTS OR WIRE TIED TO STEEL POSTS. FIFLD INLET GULLIES
- SEDIMENT CONTROLS FOR STORMWATER INLETS LOCATED WITHIN THE PROPERTY BOUNDARIES MAY CONSIST OF GEOTEXTILE FABRIC PLACED EITHER DIRECTLY OVER THE GRATED INLET OR AROUND THE INLET SUPPORT BY A TIMBER FRAME, FIELD INLET PROTECTION IS NECESSARY WHERE INLETS DRAIN AREAS OF BARE AND UNPROTECTED SOIL. DURING STORMS, PONDING SHOULD BE ALLOWED TO OCCUR AROUND THE STORMWATER INLET TO ASSIST IN THE SETTING OUT OF SEDIMENTS.
- PAVEMENT INLET GULLY

ONSTRUCTION

REFER DRG C09

FOR DETAILS

FLOW DIVERSION BANK (300mm HIGH, TYP.) REFER

IECA STANDARD DRAWING FR-01 FOR DETAILS.

EXISTING CONTOUR LEVELS (0.25m INTERVALS)

EMULCH FILTER BANK REFER IFCA STD DRAWING

DIRECTION OF SURFACE FALL

MB-01 'MULCH FILTER BERM!

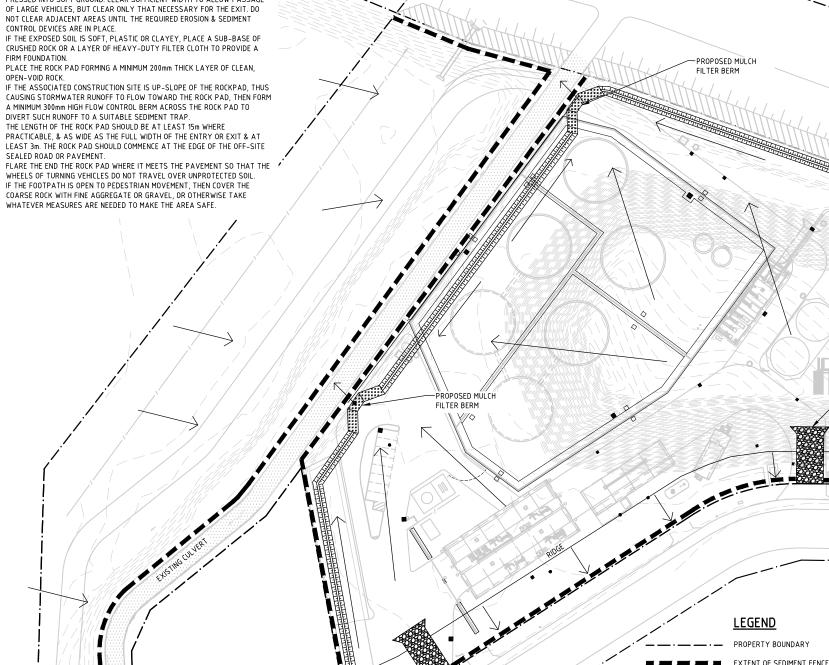
EXIT/ENTRY

A ROADSIDE INLET BARRIER IS TO BE INSTALLED, SO THAT IT SHOULD NOT BE ALLOWED TO FULLY BLOCK THE INLET STRUCTURE ON A HILLSIDE, SEDIMENT BARRIERS MAY CONSIST OF A TEMPORARY DAM CONSTRUCTED FROM SAND AND GRAVEL BAGS AT LEAST 4 METRES UP SLOPE FROM THE GULLY INLET.

BUILDING OPERATIONS:

- ERODABLE MATERIAL MISTAKENLY PLACED WITHIN THE ROAD RESERVE (INCLUDING ACCIDENTAL SPILLAGE AND TRACKING OF SUCH MATERIALS ONTO THE ROAD) THAT CAN NOT BE PREVENTED THROUGH REASONABLE MEANS, MUST BE: (a) REMOVED IMMEDIATELY IF RAINFALL IS IMMINENT OR OCCURRING.
- (b) REMOVED PRIOR TO THE END OF THE DAY'S WORK IF RAINFALL NOT EXPECTED. MATERIALS SHOULD BE SWEPT FROM THE ROAD, NOT WASHED DOWN THE GUTTER. ALL SOLID WASTE SHOULD BE STORED ON SITE IN SUCH A MANNER
- THAT IT IS PREVENTED FROM LEAVING THE SITE EITHER BY THE ACTION OF WIND OR WATER
- SMALLER MATERIALS, SUCH AS LITTER, SHOULD BE CONTAINED IN COVERED BINS OR LITTER TRAPS FORMED ON THREE SIDES BY A GEOTEXTILE WIND BREAK.
- CONCRETE WASTE WASTED FROM TRUCKS AND MIXERS UNITS SHALL BE CONTAINED ON SITE AND SHALL NOT BE PLACED IN A POSITION WHERE IT COULD REASONABLY BE EXPECTED TO WASH FROM THE SITE AND HARM THE ENVIRONMENT.
- DUST SUPPRESSION OPERATIONS SHALL BE UNDERTAKEN TO MINIMISE THE RISK OF DUST RISE, INCLUDING WATER TRUCKS. MULCHING, EROSION CONTROL BLANKETS, SOIL BINDERS, VEHICLE SPEED LIMITS & STOCKPILE STABILISATION

							•	
	REV D	ATE E	Y DESCRIPTION	СНК	APP	P PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
PROJECT MANAGERS PLANNERS DESIGNERS ENGINEERS Copyright TfA Group Pty Ltd This draving including design & information is covered by Looyright and all rights are reserved. This document may not be copied, reproduced, retained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. ACN 612 132 233 Aust Hide: 1300 794 300 Email: enguirg/effacon.au			S ISSUED FOR TENDER S SITE LAYOUT UPDATED	Ø		MANILDRA GROUP	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	CONCEPTUAL ER SEDIMENT CONTR


ONSTRUCTION

EXIT/ENTRY REFER DRG C09

FOR DETAILS

EROSION & SEDIMENT CONTROL PLAN

NOT TO SCALE

RELOCATED

N

BULK EARTHWORKS:

- AVOID STRIPPING & EXCAVATING UNTIL READY TO BUILD. CONSTRUCTION OF AN ENTRY/EXIT POINT TO THE SITE SHOULD BE
- MANAGED SO THAT SEDIMENT IS NOT TRACKED OFF THE SITE.
- TOP SOIL SHOULD BE STOCKPILED ON SITE FOR LATER USE. WHERE PRACTICABLE MAINTAIN KERB VEGETATION IN A HEALTHY STATE DURING THE CONSTRUCTION PROGRESS.
- WHEN UP SLOPE WATER IS DIVERTED AROUND A WORK SITE IT IDEALLY SHOULD BE DISCHARGED AS SHEET FLOW THROUGH AN UNDISTURBED AREA BESIDE THE WORKS.

STOCKPILES:

- STOCKPILES ARE NOT TO BE STORED ON THE FOOTPATH OR THE ROAD RESERVE WHERE NECESSARY STOCKPILE LOSSES CAN BE MINIMISED WITH THE USE OF 2
- COVERS. ALL STOCKPILES AND BUILDING MATERIAL SHOULD BE LOCATED WITHIN
- SEDIMENT CONTROL ZONE. TO MINIMISE EROSION AND THE LOSS OF SAND AND SOIL. STOCKPILES SHOULD BE NOT LOCATED WITHIN AN OVERLAND FLOW PATH. IF IT IS IMPRACTICAL TO AVOID STORMWATER RUNDER BEING DIRECTED. TO A STOCKPILE, THEN A PERIMETER BANK SHALL BE CONSTRUCTED UP SLOPE
- OF THE STOCKPILE TO DIRECT RUNOFF IN A CONTROLLED MANNER AROUND THE STOCKPILE.

GENERAL MAINTENANCE:

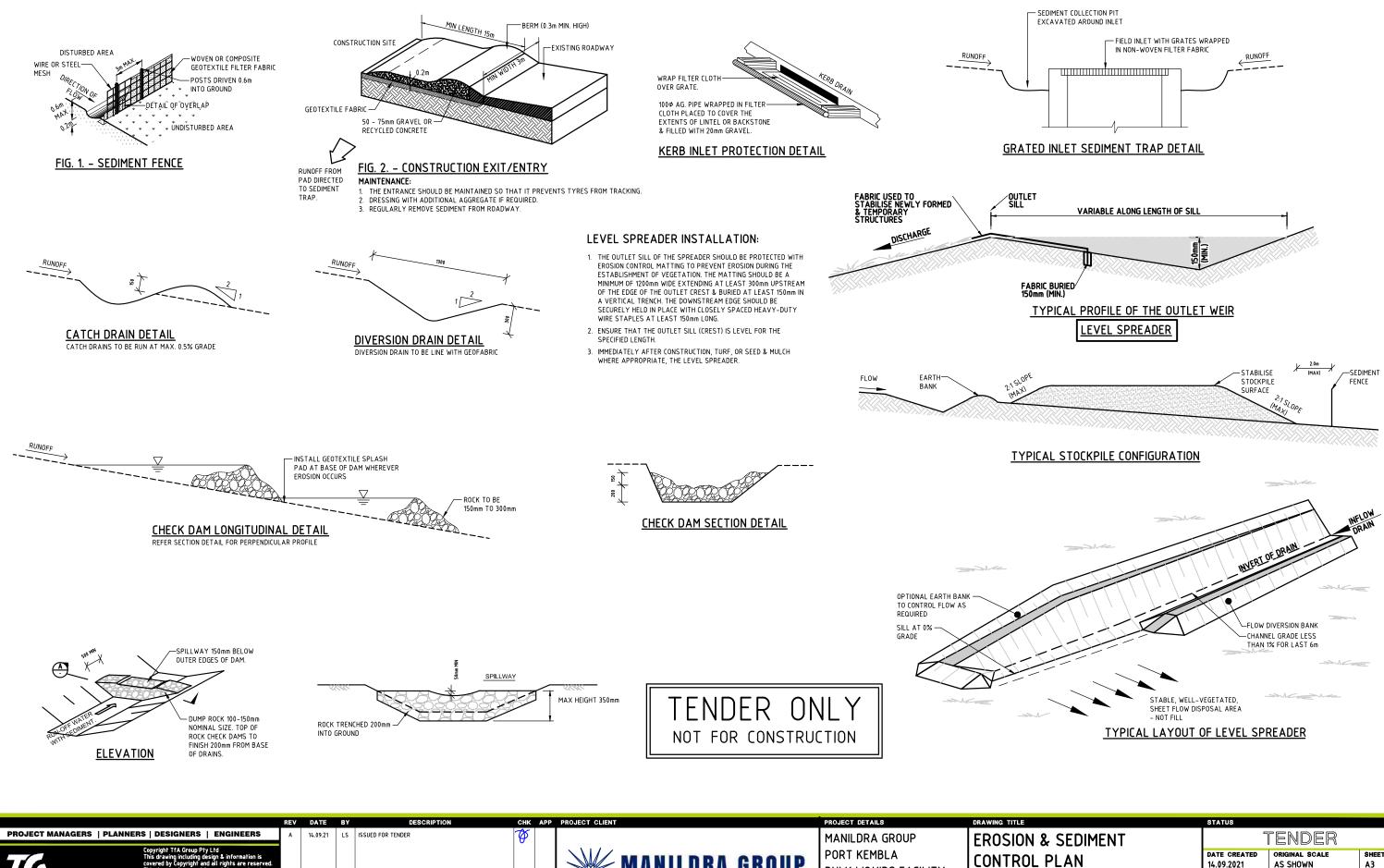
- SEDIMENT FENCES SHOULD BE REPLACED IF THE FABRIC IS RIPPED OR OTHERWISE DAMAGED. THE MAINTENANCE OF THE SEDIMENT FENCES INCLUDES THE REMOVAL OF SEDIMENT DEPOSITED UP SLOPE OF THE FENCE AND RETRENCHING THE FABRIC WHEN THE FENCE IS 25% FULL. FOLLOWING STORM EVENTS, THE ROAD RESERVE AND ALL SEDIMENT
- BARRIERS SHOULD BE INSPECTED AND ANY EXCESSIVE RESIDUE SHOULD BE APPROPRIATELY REMOVED.

SITE REHABILITATION:

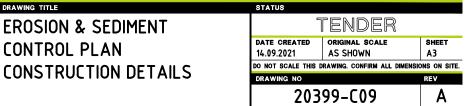
ALL GROUND DISTURBED BY THE CONSTRUCTION ACTIVITY SHOULD BE PROMPTLY AND PROGRESSIVELY STABILISED SO IT CAN NO LONGER ACT AS A SOURCE OF SEDIMENT

SERVICES TRENCHES:

TO AVOID UNNECESSARY SOIL EROSION, SERVICE TRENCHES SHOULD BE BACK FILLED, CAPPED AND COMPACTED TO A LEVEL AT LEAST 75-100mm ABOVE THE ADJOINING GROUND LEVEL.


OPERATION & MAINTENANCE

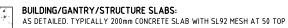
- EROSION & SEDIMENT CONTROL MEASURES SHALL BE INSPECTED: A. DAILY (WHEN WORK IS OCCURRING ON SITE) OR WEEKLY (WHEN WORK IS NOT OCCURRING ON SITE)
- B. WITHIN 24 HOURS OF EXPECTED RAIN
- C. WITHIN 18 HOURS OF A RAINFALL EVENT (ie AN EVENT OF SUFFICIENT INTENSITY AND DURATION TO CAUSE RUNOFF). TRIGERED WHEN THE CAPACITY OF THE MEASURES SHALL BE TRIGGERED WHEN THE CAPACITY OF THE MEASURE FALLS BELOW 75%. THE
- MAINTENANCE SHALL BE PERFORMED BY THE END OF THE DAY PRIOR TO LONG PERIODS OF SHUT DOWN (GREATER THAN 5 DAYS) THE SITE
- SHALL EITHER TO BE PROVIDED WITH TEMPORARY GROUND COVER (AT LEAST 70% EFFECTIVE COVER) OR HAVE ALL EROSION AND SEDIMENT CONTROL MEASURES TO BE CONTINUALLY OPERATED DURING THE SHUTDOWN, INCLUDING ONGOING MONITORING AND SEDIMENT BASIN CLEANOUTS.
- SHUTDOWN PERIODS IN EXCESS OF 3 MONTHS ARE TO HAVE 100% LONG TERM SITE COVERAGE SUCH AS HYDROMULCH OR GEOFABRIC. STORMWATER RELEASE LIMITS:
- ALL RELEASES OF STORMWATER CAPTURED ON-SITE UNLESS OTHERWISE NOTED MUST NOT EXCEED THE FOLLOWING LIMITS:
- A. 50mg/L OF TOTAL SUSPENDED SOLIDS (TSS) AS A MAXIMUM CONCENTRATION. E. TURBIDITY (NTU) VALUE LESS THAN 10% ABOVE BACKGROUND C. PH VALUE MUST BE IN THE RANGE 6.5 TO 8.5 EXCEPT WHERE, AND TO THE
- EXTENT THAT, THE NATURAL RECEIVING WATERS LIE OUTSIDE THIS RANGE WEATHER FORECASTS SHALL BE MONITORED AND IN THE EVENT OF HEAVY RAIN FORECAST ALL MAINTENANCE AND PREVENTION METHODS SHALL BE IMPLEMENTED


STOCKPILE MANAGEMENT

- SAND MATERIAL
- A. NO COVER REQUIRED WHEN WIND EROSION AND DUST CONTROL IS NOT AN ISSUE
- B. SYNTHETIC COVER IS REQUIRED WHEN THE CONTROL OF WIND EROSION IS REQUIRED FOR SAFETY, TO BE INSTALLED BY THE END OF THE DAY. SOIL MATERIAL
- A NO COVER REQUIRED WHEN WIND EROSION AND DUST CONTROL IS NOT AN ISSUE. B. MULCHING, CHEMICAL STABILISERS, SOIL BINDERS, IMPERVIOUS BLANKETS
- OR VEGETATIVE COVER IS REQUIRED WHEN: >28 DAY STOCKPILING OF DISPERSIVE SOILS
- >28 DAY STOCKPILING OF CLAYEY SOILS WHERE TURBIDITY CONTROL IS DESIRABLE
- >5/10 DAY STOCKPILING OF SOILS DURING MONTHS OF EXTREME/HIGH EROSION RISK (JAN, FEB, MAR, APR, NOV, DEC) ALL STOCKPILES OF CLAYEY SOILS WHEN TURBIDITY CONTROL IS
- ESSENTIAL

	STATUS								
EROSION &	TENDER								
NTROL PLAN	DATE CREATED 14.09.2021	original scale AS SHOWN	SHEET A3						
	DO NOT SCALE THIS D	DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SITE							
	DRAWING NO		REV						
	203	В							

MANILDRA GROUP BULK LIQUIDS FACILITY FORESHORE ROAD Group PORT KEMBLA, NSW



LEGEND:

K1 200mm HIGH KERB

150mm HIGH KERB BUND FLOOR: 150mm THICK CONCRETE SLAB WITH SL82 MESH AT 50 TOP & BTM. COVER ON 0.2mm POLYTHENE OVER 50mm CLEAN SAND BEDDING. JOINTS AT 5m CENTRES TYPICAL WITH "EARTHSHIELD T-PER REAR GUARD WATER STOPS. JOINT SEALANT AS PER TYPICAL DETAIL. APPROXIMATE AREA 3270m² GRAVEL HARDSTAND (REMAINDER OF SITE) 150mm THICK 20mm DRAINAGE GRAVEL ON GEOFABRIC LINER OVER COMPACTED SUBGRADE. APPROXIMATE AREA 2800m² HEAVY DUTY VEHICLE PAVEMENT: 200mm THICK CONCRETE SLAB WITH SL92 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK (BR45 BASE (DGS20) APPROXIMATE AREA 1490m² LIGHT DUTY VEHICLE PAVEMENT: 150mm THICK CONCRETE SLAB WITH SL82 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE (DGS20) APPROXIMATE AREA 1260m² 2-COAT SPRAY SEAL FOOTPATH 100 O/A THICKNESS: 2-COAT BITUMEN SPRAY SEAL WITH CHIP COAT (C170 20/7mm) ON 100mm CBR80 (SOAKED) BASE (DGB20) OVER APPROXIMATE AREA 661m² CROSSOVER PAVEMENT: HHH200mm THICK CONCRETE FOOTPATH CROSSOVER WITH SL92 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE (DGS20). APPROXIMATE AREA 120m² FOOTPATH: 100mm THICK CONCRETE SLAB (BROOM FINISH) WITH SL72 MESH AT 40 TOP COVER ON 0.2mm POLYTHENE OVER 50mm SAND BEDDING MATERIAL APPROXIMATE AREA 150m² 2-COAT SPRAY SEAL DRIVEWAY/ROAD: 250 0/A THICKNESS: 2-COAT BITUMEN SPRAY SEAL WITH CHIP COAT (C170 20/7mm) ON × × × × 、 100mm CBR80 (SOAKED) BASE (DGB20) OVER 150mm CBR45 (SOAKED) BASE (DGS20) APPROXIMATE AREA 2317m² BUND FOOTINGS AS DETAILED APPROXIMATE AREA 760m² LANDSCAPING: APPROXIMATE AREA 1353m²

۵. ۱۹

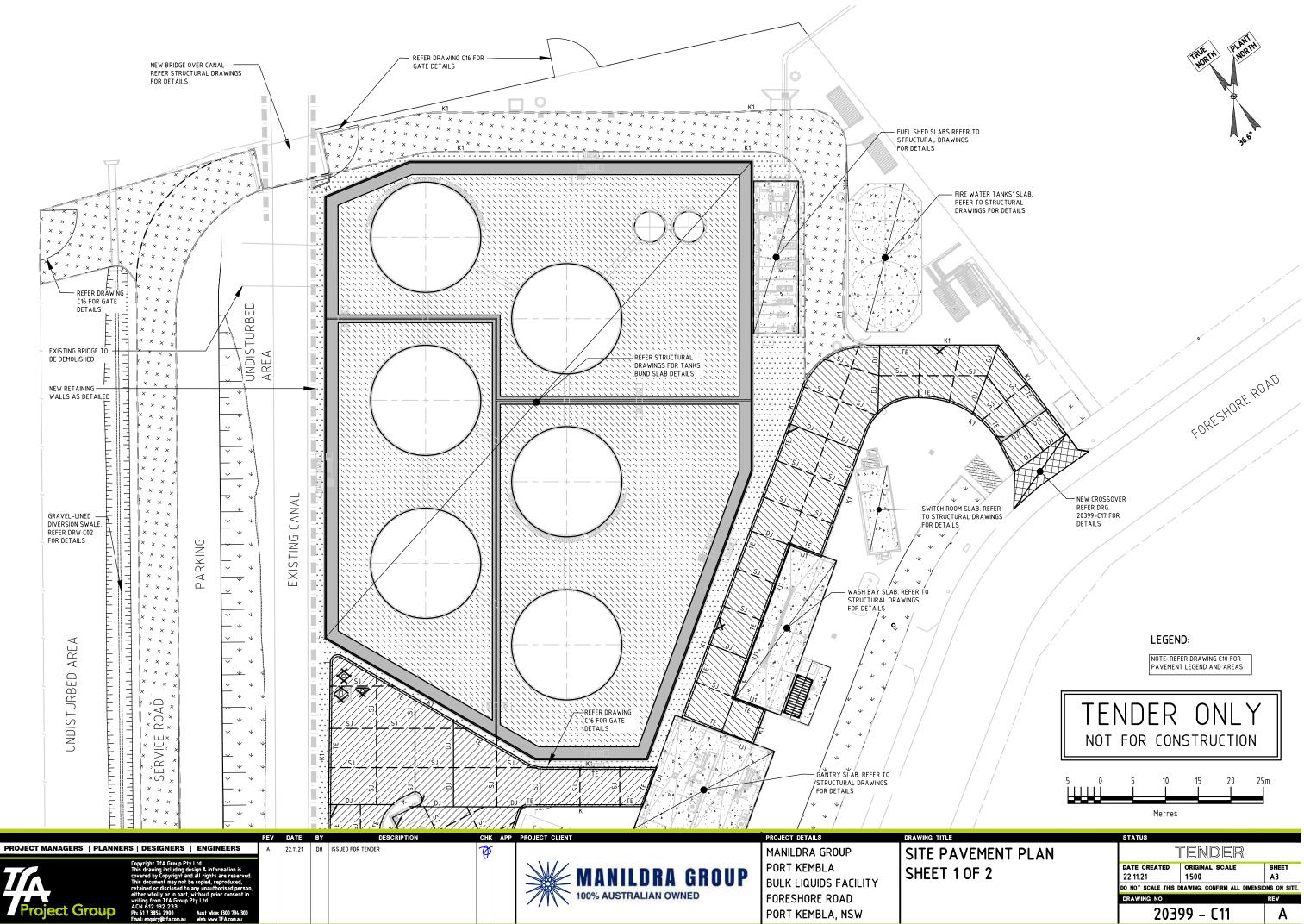
COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE 9DGS20). APPROXIMATE AREA 1560m²

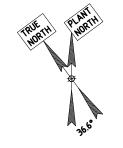
CONCRETE NOTES:

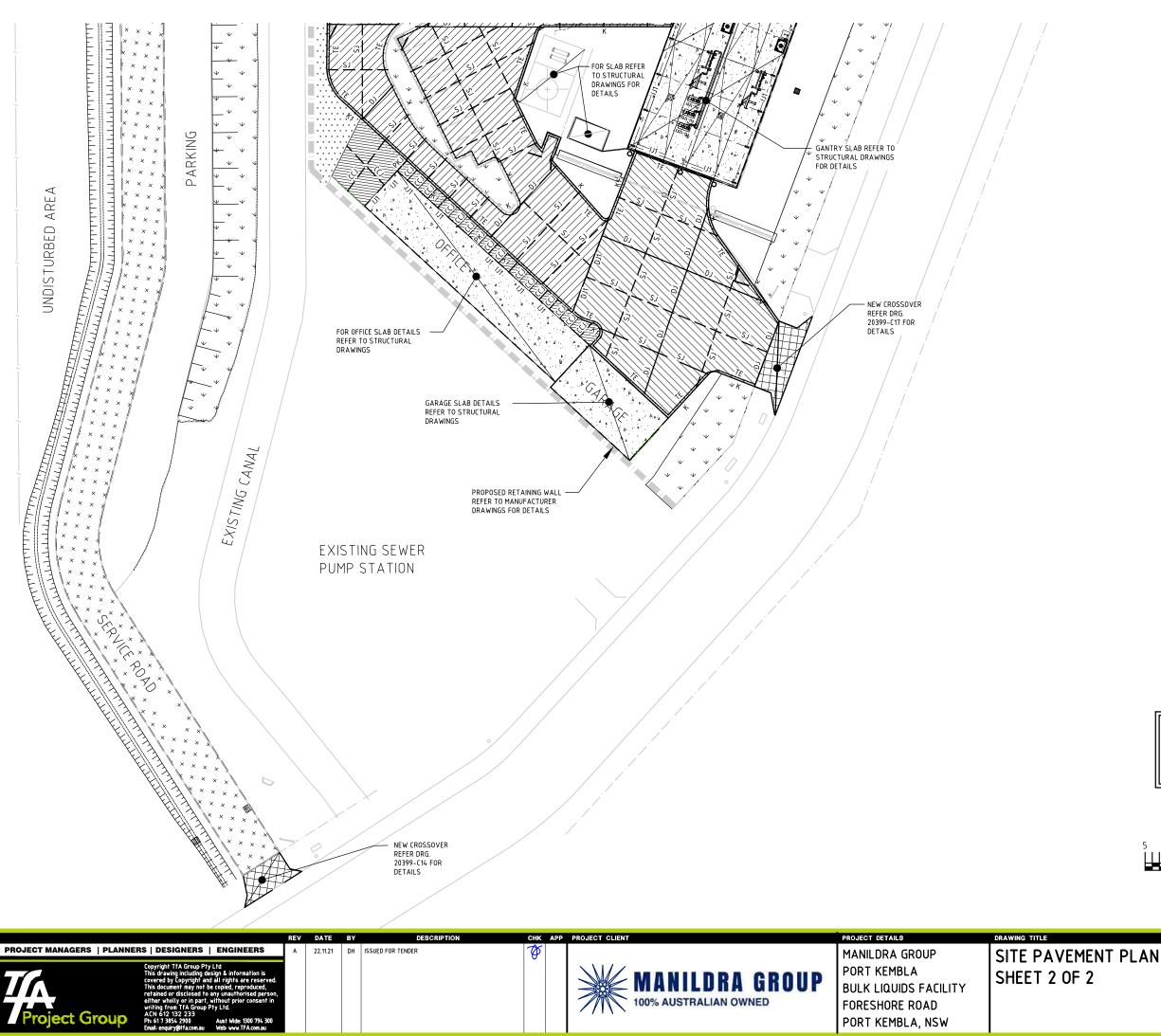
ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AS3600. CONCRETE QUALITY:

ELEMENT	SLUMP	MAX. SIZE AGG.	CEMENT TYPE	AS 3600 F'C	ADMIX
 BUILDING SLABS, FOOTINGS, PAVEMENTS	80	20	GP	N40	NIL
TANK BASES, BUND FLOOR/WALLS	80	20	GP	N40	XYPEX C-5000
MASS CONCRETE BLINDING	100	20	GP	N20	NIL

SIZES OF CONCRETE DO NOT INCLUDE THICKNESS OF APPLIED FINISHES. 3.

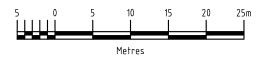

- CONSTRUCTION JOINTS WHERE NOT SHOWN SHALL BE LOCATED TO THE APPROVAL OF THE ENGINEER. 5.
- INVITUELS OR CHASES OTHER THAN THAT SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE MADE IN CONCRETE MEMBERS WITHOUT THE PRIOR APPROVAL OF THE ENGINEER. REINFORCEMENT IS REPRESENTED DIAGRAMMATICALLY. IT IS NOT NECESSARILY SHOWN OF TRUE 6.
- PRO JECTIONS. 7.
- SPLICES IN REINFORCEMENT SHALL BE MADE ONLY ON THE POSITIONS SHOWN. THE WRITTEN APPROVAL OF THE ENGINEER SHALL BE OBTAINED FOR ANY OTHER SPLICES. WHERE LAP LENGTHS ARE NOT SHOWN, THEY SHALL SATISFY THE REQUIREMENTS OF AS3600 OR AS FOLLOWS:-FABRIC - 1 SQUARE +25mm

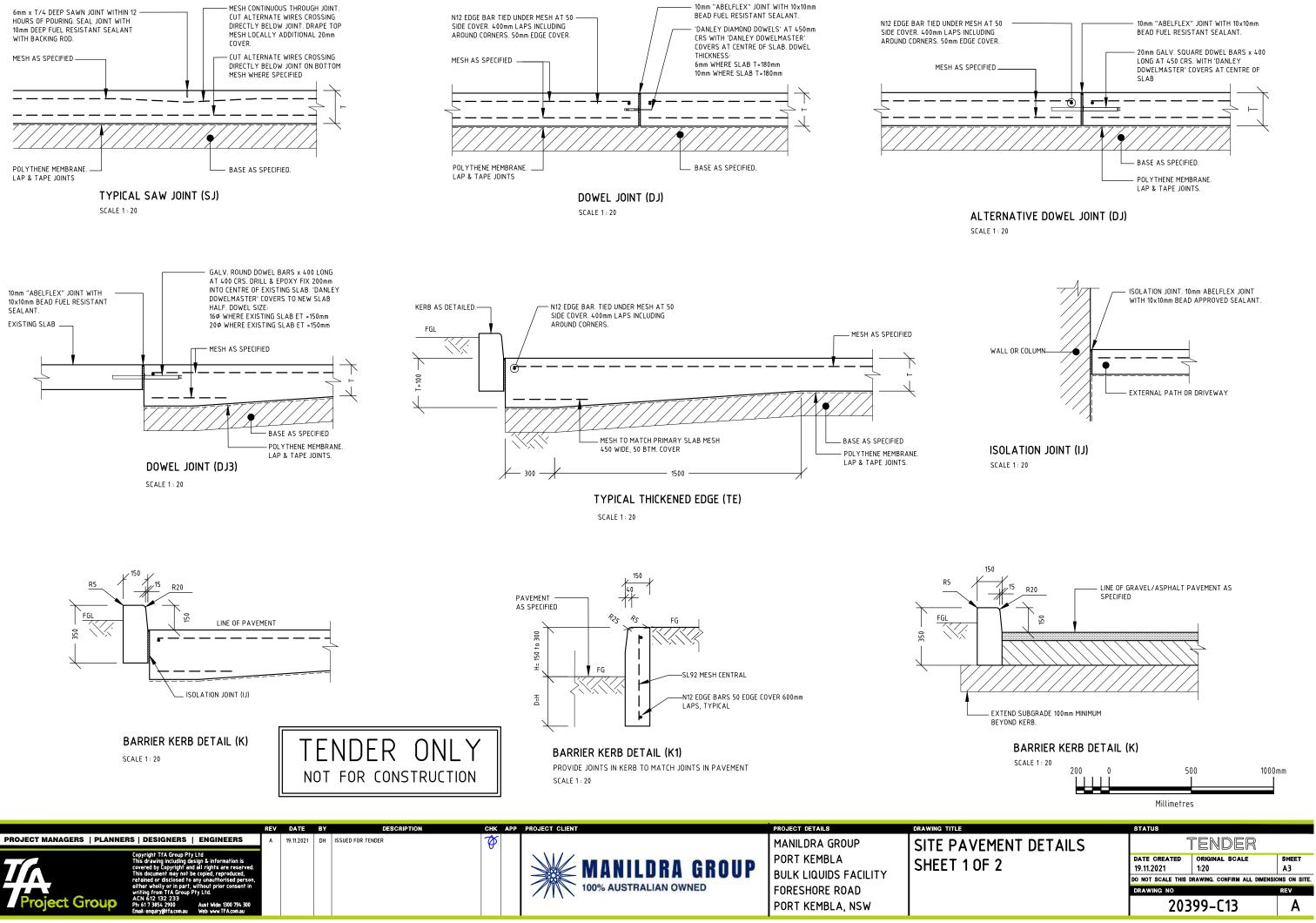

f'c	N12	N16	N20	N28	N32	
25	850	1150	1500	2200	2600	
32	750	1000	1300	1950	2300	
40	650	900	1150	1750	2100	

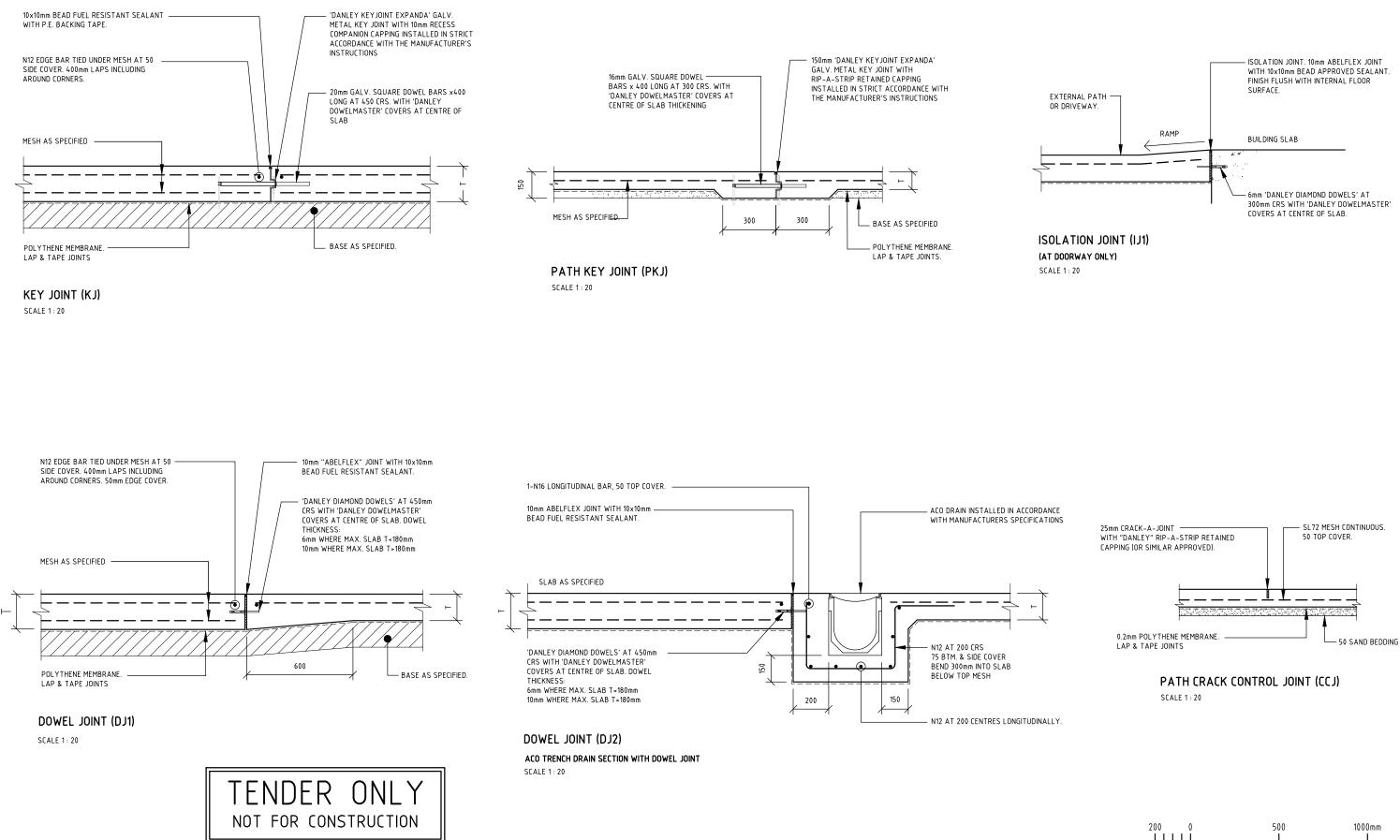

- PIPES OR CONDUITS SHALL NOT BE PLACED WITHIN THE CONCRETE COVER TO REINFORCEMENT WITHOUT THE APPROVAL OF THE ENGINEER. 8.
- ALL STEEL WIRE MESH SHALL BE SUPPLIED IN FLAT SHEETS. THE CONTRACTOR SHALL NOTIFY THE ENGINEER 24 HOURS BEFORE REINFORCEMENT IS 10 COMPLETED. THE CONTRACTOR SHALL ALLOW AFTER COMPLETION OF THE REINFORCEMENT, TWO HOURS FOR THE ENGINEERS INSPECTION.
- CONCRETE SHALL NOT BE ORDERED UNTIL REINFORCEMENT IS APPROVED BY THE ENGINEER. CONCRETE FINISHING, CURING AND STRIPPING TO BE IN ACCORDANCE WITH THE RELEVANT AUSTRALIAN STANDARDS. CONCRETE TO BE CURED A MINIMUM OF 7 DAYS AFTER POURING BY 12.
- EITHER APPLYING A SPRAYED MEMBRANE FORMING CURING COMPOUND COMPATIBLE WITH ANY SUBSEQUENT FINISHES TO BE APPLIED TO THE CONCRETE SURFACES, OR COVERING WITH POLYTHENE SHEETING SECURELY HELD IN POSITION. CLEAR CONCRETE COVER TO REINFORCEMENT SHALL BE AS INDICATED.
- 13.
- ALL REINFORCEMENT SHALL BE SUPPORTED ON APPROVED CHAIRS AT A MAXIMUM SPACING OF 1000mm CENTRES IN EACH DIRECTION TO PROVIDE THE CORRECT COVER. 14
- ATTHE SUPPLY, DELIVERY, SAMPLING AND TESTING OF CONCRETE SHALL BE IN ACCORDANCE WITH AS1379. RESULTS OF CONCRETE CYLINDER SAMPLE TESTING SHALL BE FORWARDED TO THE 15 ENGINEER FOR REVIEW & APPROVAL.

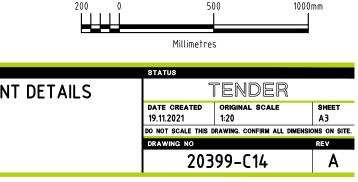
	REV	DATE	BY	DESCRIPTION	СНК	APP	PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
PROJECT MANAGERS PLANNERS DESIGNERS ENGINEERS Copyright TfA Group Pty Ltd This draving including design & information is covered by Copyright and all rights are reserved. This document may not be copied, reproduced, certained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person, either wholly or in part, writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person, either wholly or in part, writing from TfA Group Pty Ltd. Check Constrained or disclosed to any unauthorised person. Descriptioned Descripting Descriptioned De	A	22.11.21	DH	ISSUED FOR TENDER	Ø		MANILDRA GROUP	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	CONCRETE PAVE LEGEND & CONST NOTES

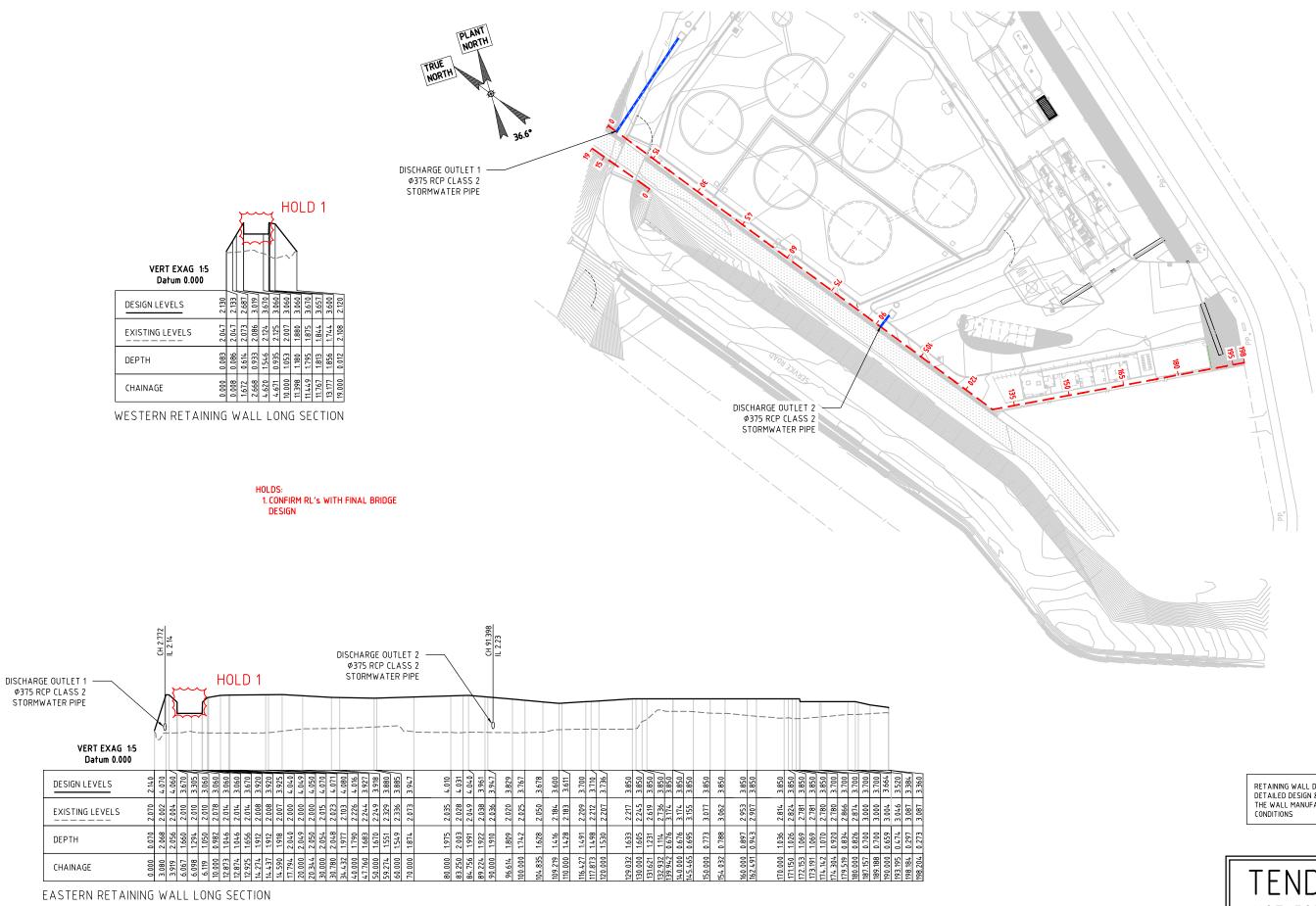
	STATUS								
VEMENT	TENDER								
NSTRUCTION	DATE CREATED 22.11.21	ORIGINAL SCALE NTS	SHEET A3						
	DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SIT								
	DRAWING NO		REV						
	203	20399-C10							



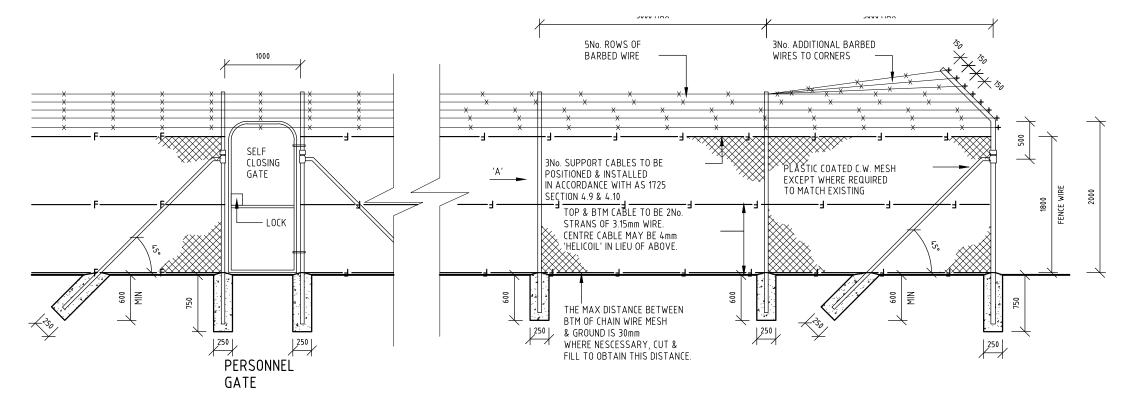

LEGEND:

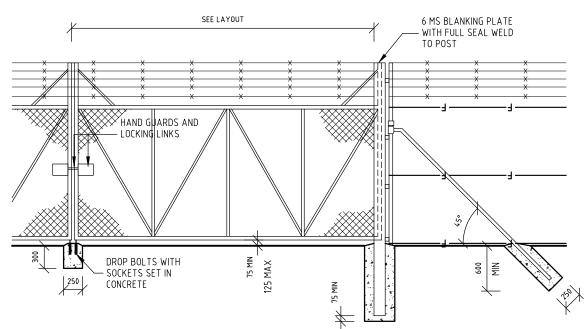

NOTE: REFER DRAWING C10 FOR PAVEMENT LEGEND AND AREAS




STATUS INT PLAN DATE CREATED 22.11.21 DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SITE. DRAWING NO REV 20399-C12 A

	REV	DATE	BY			APP	PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
PROJECT MANAGERS PLANNERS DESIGNERS ENGINEERS Copyright TfA Group Pty Ltd This drawing including design & information is covered by Copyright and all rights are reserved. This document may not be copied, reproduced, relatined or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. ACN 6f2 132 233 Web: www.TFA.com.au Web: www.TFA.com.au Aust Wide: 1300 794, 300	Α	19.11.2021	DH	ISSUED FOR TENDER	Ø		MANILDRA GROUP	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	SITE PAVEMENT SHEET 2 OF 2



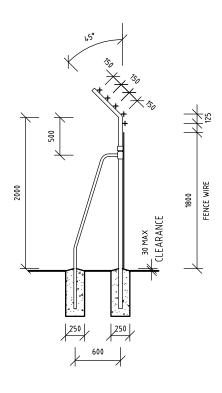

TENDER ONLY NOT FOR CONSTRUCTION

RETAINING WALL DESIGN IS FOR TENDER PURPOSES ONLY. A DETAILED DESIGN & CERTIFICATION SHALL BE OBTAINED FROM THE WALL MANUFACTURER TO SUIT THE PARTICULAR SITE CONDITIONS

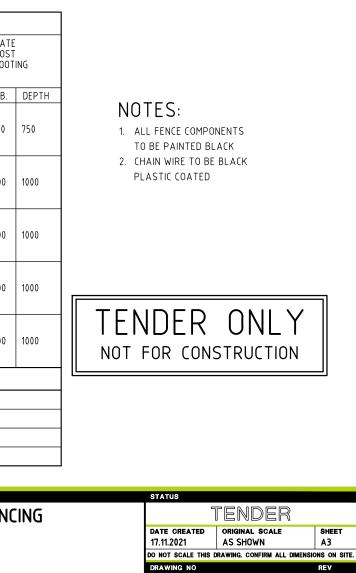
GATES

CORNER AND INTERMEDIATE PANELS

GATE OPENING	NOMINAL LEAF WIDTH	ТҮРЕ	OUTER FRAME TUBE	INNER FRAME TUBE	DIAGONAL BRACING		TOP DIAGONAL BRACING FOR WIRE	GATE POST	GAT POS FOO							
			N.B.	N.B.	0.D.	TYPE	N.B.	N.B.	N.B.							
1000	1000		25	25	-		15	50	250							
6000	3000		32	25	-		15	80	400							
6000 - 8000	³⁰⁰⁰ - A		32	25	25 x 5	GALV. CARB. STEEL FLAT	15	100	400							
8000 - 10000	4000 - 5000		40	25	26.9	2.6	15	150	400							
10000 - 12000	5000 - 6000		40	25	26.9	2.6	15	152 x 4.9 SHS	400							
FENCE	S	GALVANISED STEEL PIPE														
CORNER	POST		50 N.B. MEDIUM PIPE													
INTERME	DIATE POST		40 N.B. LIGHT PIPE													
DIAGONA	AL STAYS AND BRA	(CES	32 N.B. LIGHT PIPE													
VERTICA	L BRACES		25 N.B. LIG	iht pipe			25 N.B. LIGHT PIPE									

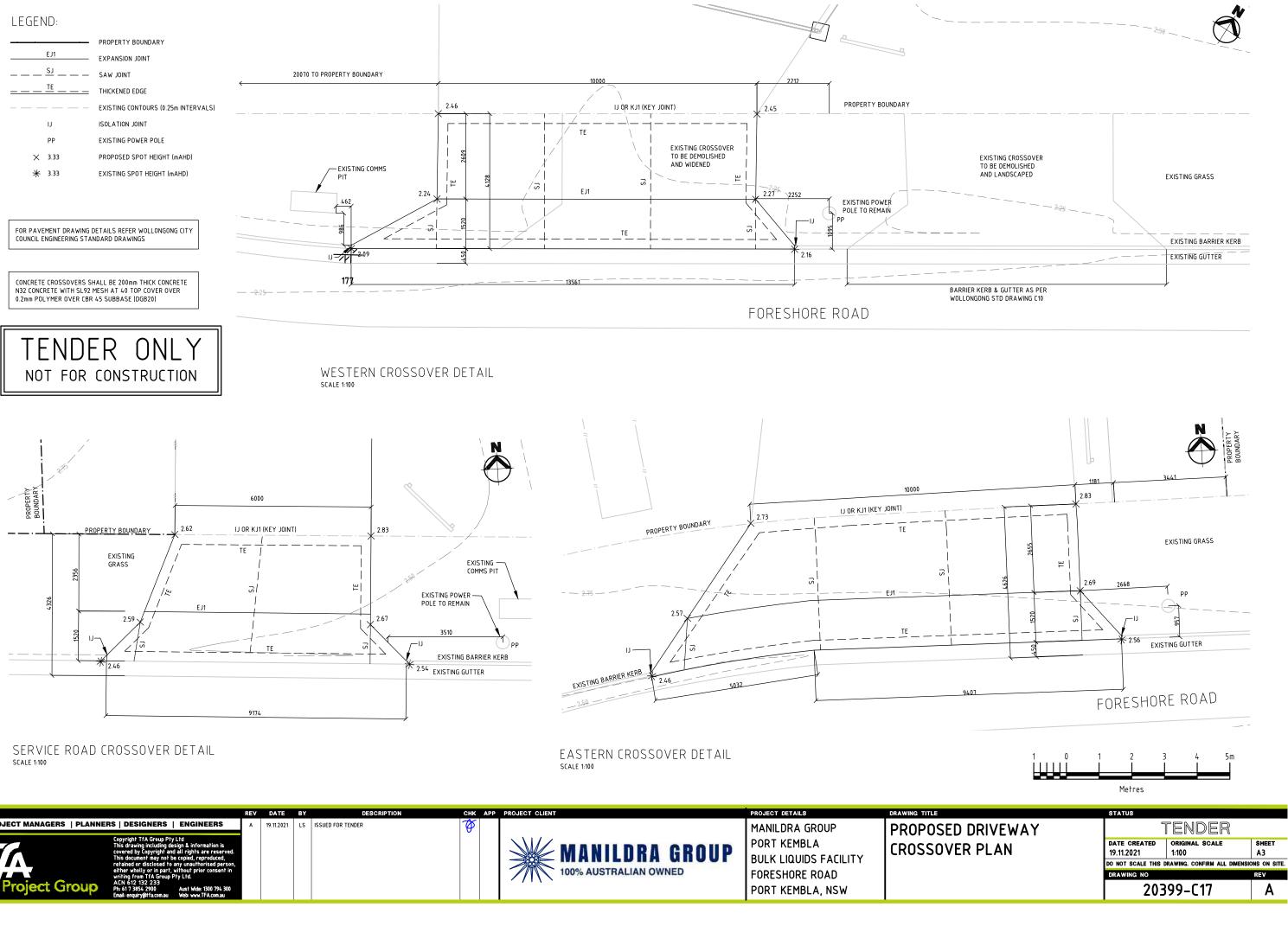

GALVANISED MEDIUM WEIGHT PIPE

LARGE GATES INTERNAL & EMERGENCY ACCESS ONLY

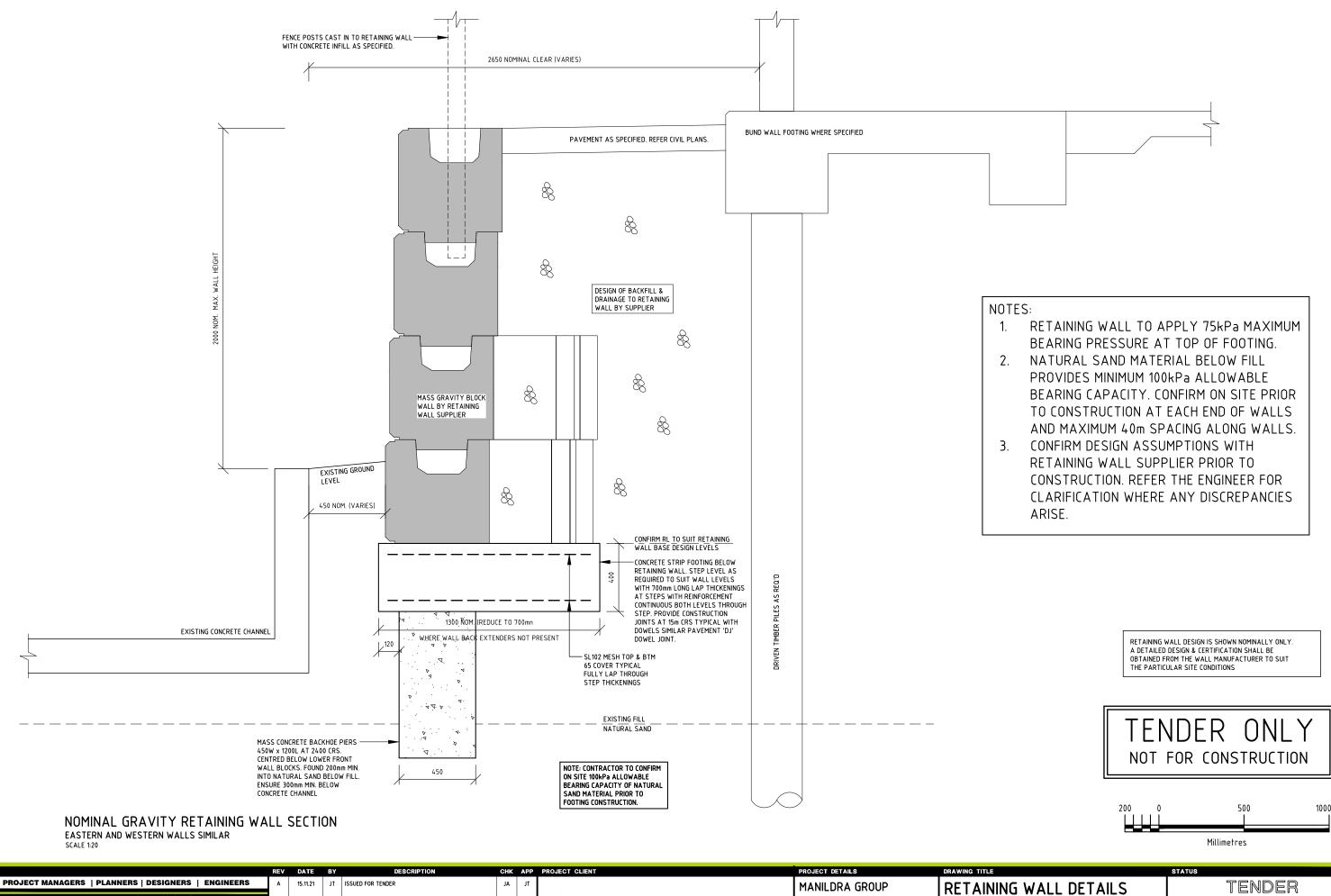

NOTE:

PALISADE GATES WITH SPIKES (MAIN TRUCK ENTRY/EXIT)

	REV DAT	E BY			P PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
Copyright TfA Group Pty Ltd This drawing including design & information is covered by Copyright and all rights are reserved. This document may not be copied, reproduced, retained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. ACN 612 132 233 Physical and any or stream of the	A 17.11.2	'21 LS	ISSUED FOR TENDER	5	MANILDRA GROUP	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	SECURITY FENC



VERTICAL BRACE VIEW 'A'



20399-C16

Α

PROJECT MANAGERS | PLANNERS | DESIGNERS | ENGINEERS

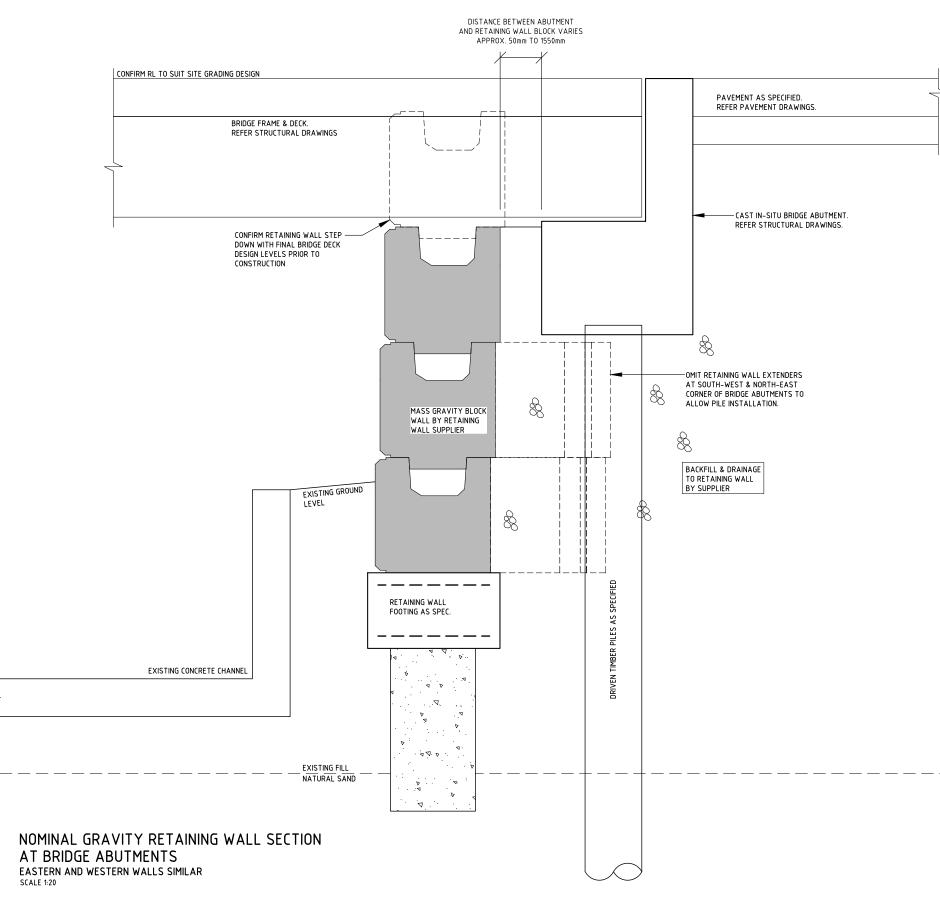
MANILDRA GROUP

100% AUSTRALIAN OWNED

Group

PORT KEMBLA

FORESHORE ROAD

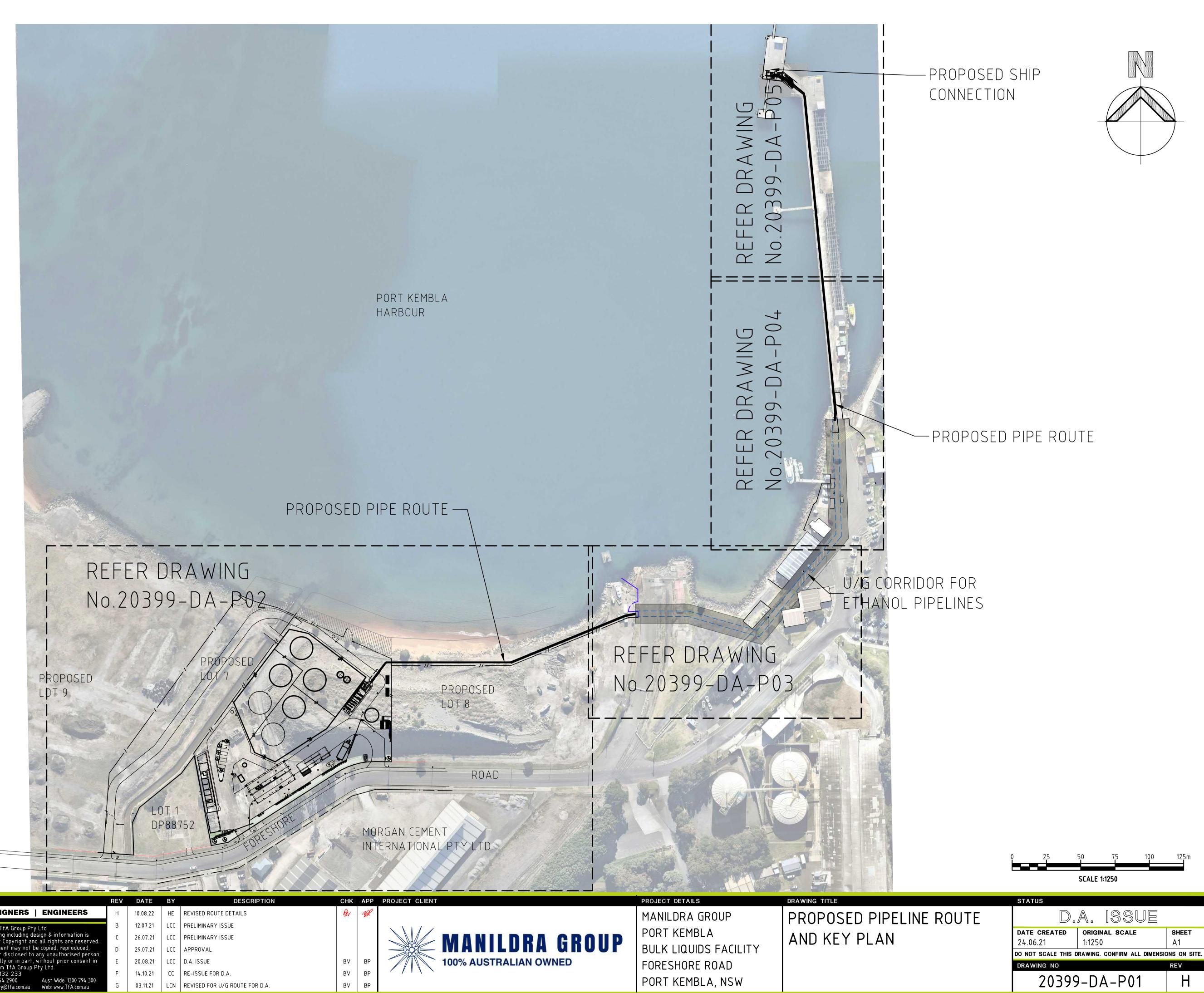

PORT KEMBLA, NSW

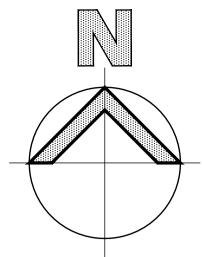
BULK LIQUIDS FACILITY

SHEET 2

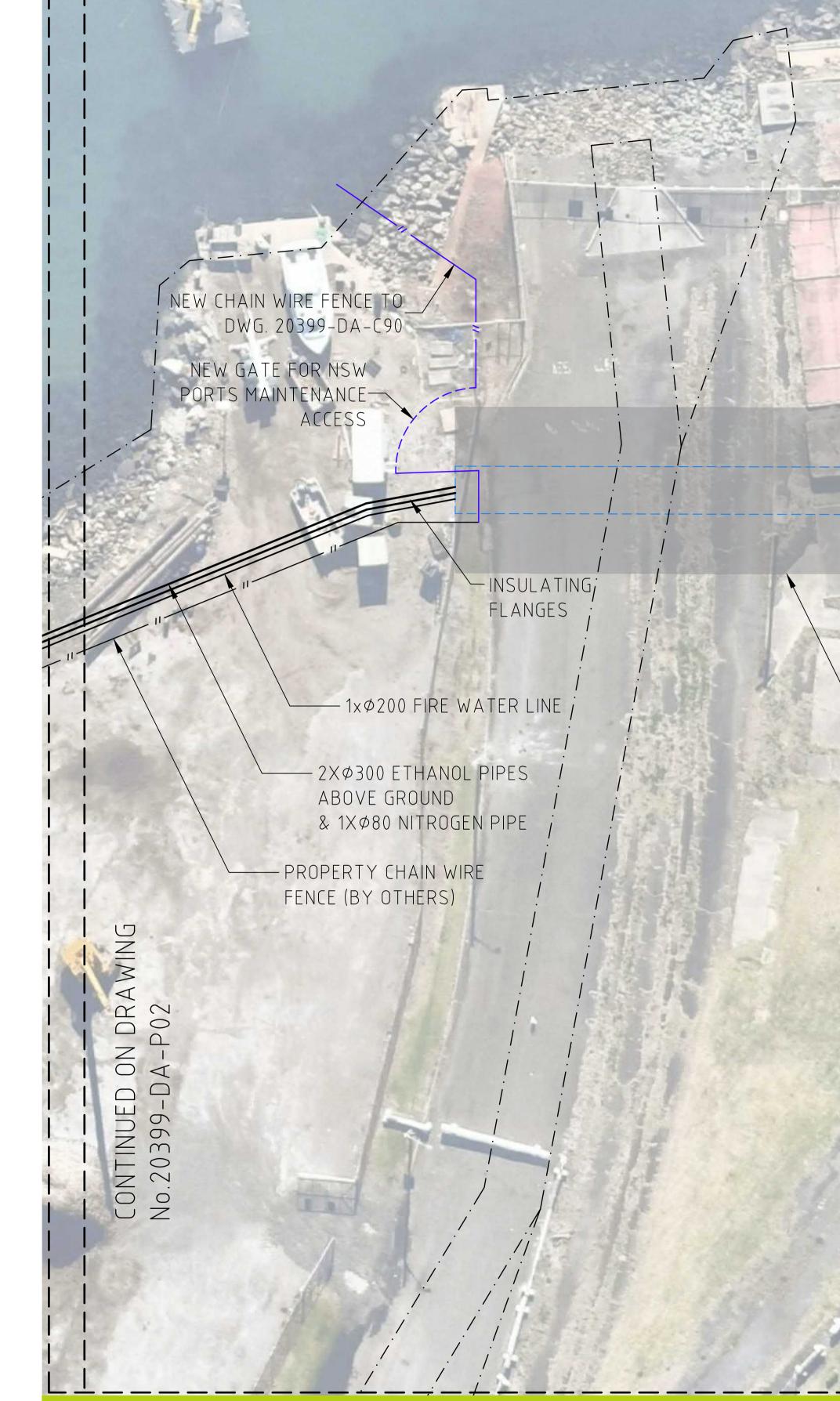
1000mm

	REV	DATE	BY	DESCRIPTION	снк	APP	PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
PROJECT MANAGERS PLANNERS DESIGNERS ENGINEERS Copyright TfA Group Pty Ltd This drawing including design & information is covered by Copyright and all rights are reserved. This document may not be copied, reproduced this document may not be copied, reproduced this document may not be copied, reproduced the cover document may not be copied and the cover document may not be copied. The cover document may not be copied to the cover document may not be cover document may not be copied to the cover document may not be c	A	15.11.21	TL	ISSUED FOR TENDER	AL	ΤL	MANILDRA GROUP	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	RETAINING WAL SHEET 2





RETAINING WALL DESIGN IS SHOWN NOMINALLY ONLY. A DETAILED DESIGN & CERTIFICATION SHALL BE OBTAINED FROM THE WALL MANUFACTURER TO SUIT THE PARTICULAR SITE CONDITIONS


		KEV	DATE	ΒY	DESCRIPTION
PROJECT MANAGERS PLANNE	RS DESIGNERS ENGINEERS	в	10.08.22	HE	REVISED ROUTE DETAILS
	Copyright TfA Group Pty Ltd	В	12.07.21	LCC	PRELIMINARY ISSUE
	This drawing including design & information i covered by Copyright and all rights are rese		26.07.21	LCC	PRELIMINARY ISSUE
	This document may not be copied, reproduced retained or disclosed to any unauthorised pe	d, D	29.07.21	LCC	APPROVAL
	either wholly or in part, without prior conservations from TfA Group Pty Ltd.		20.08.21	LCC	D.A. ISSUE
Project Group	ACN 612 132 233	F	14.10.21	СС	RE-ISSUE FOR D.A.
	Ph: 61 7 3854 2900 Aust Wide: 1300 794 Email: enquiry@tfa.com.au Web: www.TfA.com.a		03.11.21	LCN	REVISED FOR U/G ROUTE FOR D.A.

Project Group

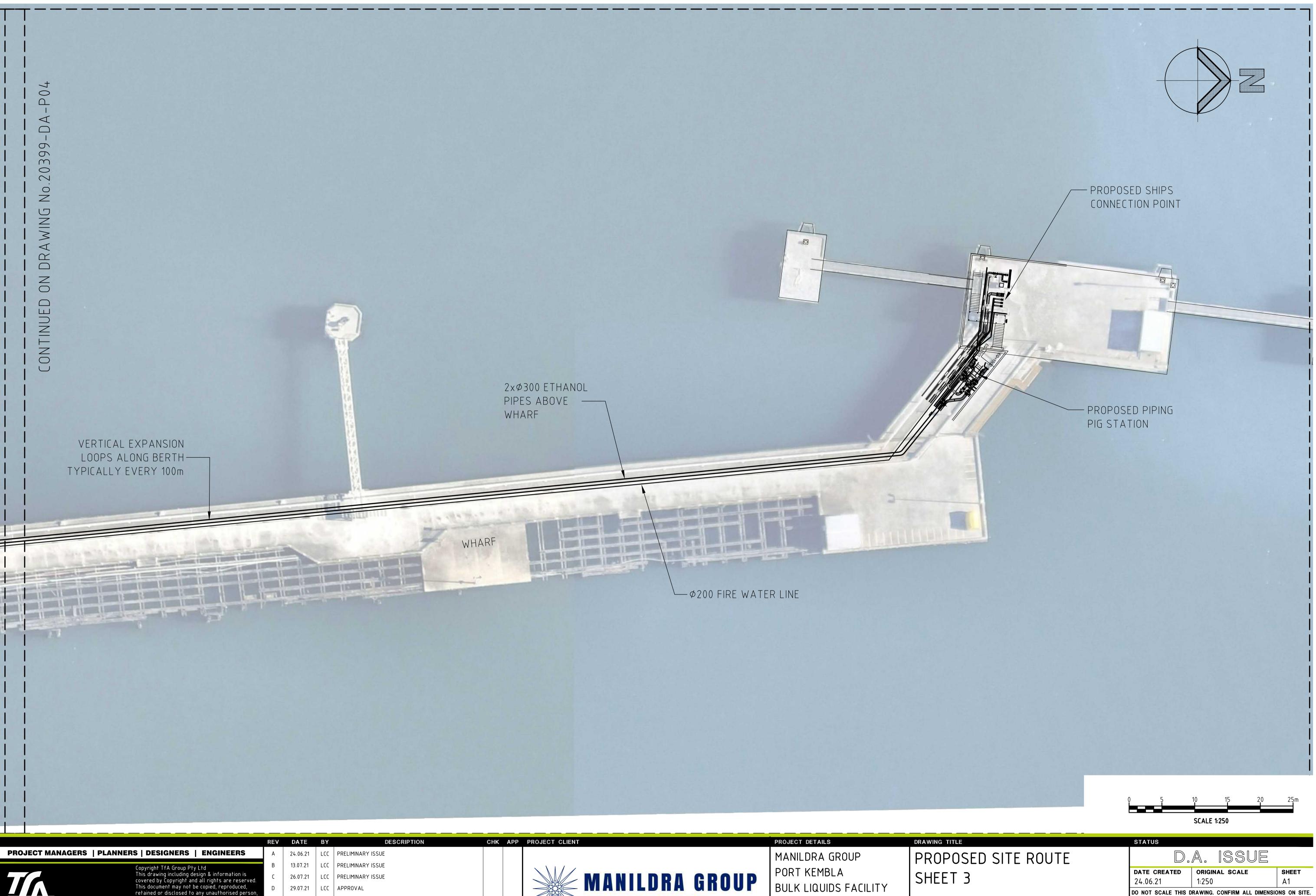
MANILDRA GROUP PORT KEMBLA	PROPOSE
BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	

		REV	DATE	ΒY	DESCRIPTION
PROJECT MANAGERS PLANNE	RS DESIGNERS ENGINEERS	Н	10.03.22	HE	REVISED ROUTE DETAILS
	Copyright TfA Group Pty Ltd	В	13.07.21	LCC	PRELIMINARY ISSUE
	This drawing including design & information is covered by Copyright and all rights are reserved.	C	26.07.21	LCC	PRELIMINARY ISSUE
	This document may not be copied, reproduced, retained or disclosed to any unauthorised person,	D	29.07.21	LCC	APPROVAL
	either wholly or in part, without prior consent in writing from TfA Group Pty Ltd.	E	20.08.21	LCC	D.A. ISSUE
Project Group	ACN 612 132 233	F	14.10.21	СС	RE-ISSUE FOR D.A.
	Ph: 61 7 3854 2900 Aust Wide: 1300 794 300 Email: enquiry@tfa.com.au Web: www.TfA.com.au	G	03.11.21	LCN	REVISED TO U/G ROUTE FOR D.A.

CONTINUED ON DRAWING No.20399-DA-P04

•PP

U/G CORRIDOR FOR ETHANOL PIPELINES 4m WIDE (2xØ300 PIPES, 1xØ80 NITROGEN PIPE, 1xØ250 FIRE WATER & 2xØ80 CONDUITS) REFER DETAIL 20399-DA-P04



FORESHOREROAD

STATUS					
D.A. ISSUE					
DATE CREATED	ORIGINAL SCALE	SHEET			
24.06.21	1:250	A1			
DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SITE.					
DRAWING NO	REV				
20399	-DA-P03	Н			

Project Group	ACN 612 132 233		F	14.10.21	CC	RE-ISSUE FOR D.A.
Froject Group	Ph: 617 3854 2900 Email: enquiry@tfa.com.au	Aust Wide: 1300 794 300 Web: www.TfA.com.au	G	02.11.21	LCN	REVISED TO U/G ROUTE FO

Project Group

Copyright TfA Group Pty Ltd This drawing including design & information is covered by Copyright and all rights are reserved. This document may not be copied, reproduced, retained or disclosed to any unauthorised person, either wholly or in part, without prior consent in writing from TfA Group Pty Ltd. ACN 612 132 233 Ph: 617 3854 2900 Aust Wide: 1300 794 300 Email: enquiry@tfa.com.au Web: www.TfA.com.au

29.07.21 LCC APPROVAL 20.08.21 LCC D.A. ISSUE 14.10.21 CC RE-ISSUE FOR D.A. 10.03.22 HE REVISED ROUTE DETAILS

снк	APP	PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE
bv Bv	BP BP	MANILDRA GROUP 100% AUSTRALIAN OWNED	MANILDRA GROUP PORT KEMBLA BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW	PROPOSED SIT SHEET 3

DRAWING NO

20399-DA-P05

REV

G

Appendix E. Dewatering factsheet

WaterNSW (2020) Fact Sheet, Water access licence exemption for aquifer interference activities taking 3ML or less groundwater per year, ref 250920, accessed 1 November 2021, URL Construction dewatering - WaterNSW

WaterNSW

Water access licence exemption

for aquifer interference activities taking 3ML or less of groundwater per year

In December 2019 the NSW government introduced an exemption in the Water Management (General) Regulation 2018 that allows a small volume of groundwater to be taken through certain aquifer interference activities without the need for a water access licence.

Exemption from needing a water access licence

Under the exemption, a person can take up to 3 megalitres of groundwater through an aquifer interference activity per authorised project per water year without needing to obtain a water access licence, provided:

- a) the water is not taken primarily for consumption or supply; and b) the person claiming the exemption keeps a record of the water taken under the
- b) the person claiming the exemption keeps a record of the water taken under the exemption and provides this to the Minister within 28 days of the end of the water year; and
- c) the records are kept for 5 years.

Examples of aquifer interference activities to which the exemption may apply include:

- quarrying, excavating, dredging or exploring for stone, aggregate, sand or gravel;
- exploring for minerals, (including coal) or petroleum;
- excavation to construct or maintain a building, road or infrastructure;
- remediation of groundwater contamination;
- conducting pumping tests to investigate bore capacity or groundwater system characteristics;
- sampling for water quality from monitoring bores;
- ongoing dewatering of basements;
- creation of an artificial lake that intersects with groundwater and allows evaporation from it;
- investigation of groundwater resources or geotechnical investigation;
- operation of ground source heating or cooling systems.

The exemption provides a consistent, volume-based approach for the take of small volumes of groundwater and reduces red tape, delays and costs for businesses undertaking these aquifer interference activities.

Three megalitres per year is similar to the volume taken by landholders in accordance with domestic and stock rights held under section 52 of the *Water Management Act 2000*, for which a water access licence is not required to be held.

For mining and petroleum (including coal seam gas) activities, the exemption only applies to groundwater taken at the exploration stage. It does not apply to water taken during the production stage of mining and petroleum activities.

Fact sheet | 250920 | Page 1

waternsw.com.au

Fact sheet

Water access licence exemption for aquifer interference activities taking 3ML or less of groundwater per year

Claiming the exemption

The exemption only applies where groundwater is taken incidentally so that the aquifer interference activity can occur. That is, the purpose of taking the water must not be for its consumption or supply. The groundwater taken may subsequently be used for other purposes, for example for dust suppression or mixing concrete.

No application is needed to rely on the exemption, however proponents must record the water taken under the exemption on the <u>approved recording and reporting form</u> at the end of each period of take no later than 24 hours after the water is taken, for each water year in which an exemption is claimed. The form must be provided to the Minister's representative within 28 days of the end of the water year in which the water was taken.

Proponents must record the following information:

- The total amount of groundwater taken per year per authorised project under the exemption.
- The date or dates on which the groundwater was taken.
- A description of the method used to measure the volume of groundwater taken.
- The groundwater source from which the water was taken.
- The authority under which the water is being taken, for example water supply work approval, licence under the Water Act 1912, development consent, complying development or an approval exemption under legislation.
- The details of the person taking water.
- A description of the activity taking water.
- The location of the activity taking water.

Proponents of activities should check whether an approval and an assessment of impacts are required to carry out the activity regardless of whether this water access licence exemption applies.

More information

See FAQs for this exemption.

If you have any questions, please contact one of our friendly Customer Service team on 1300 662 077 or email <u>Customer.Helpdesk@waternsw.com.au</u>

Authorised project is defined in clause 7(5) of Schedule 4 to the Water Management (General) Regulation 2018, being an activity -

a) that is the subject of a consent, approval or other lawful authority conferred by or under an Act, or

b) to which Division 5.1 of the Environmental Planning and Assessment Act 1979 applies, or

c) that is exempt development under that Act.

Fact sheet 250920 | Page 2

waternsw.com.au

SMEC

Level 2, 6-8 Regent Street, Wollongong NSW 2500 Phone: +61 2 4243 4400 Email: Wollongong@smec.com