

Manildra – Port Kembla Bulk Liquid Terminal

Remedial Action Plan

Reference No. 30013038-R02 Prepared for Manildra Group Pty Ltc 27 May 2022

Document Control

Document Type	Manildra – Port Kembla Bulk Liquid Terminal
Project Title	Remedial Action Plan
Project Number	30013038
File Location	\\filer.nasuni.local\SMECANZ\Projects\300130\30013038 - Ethanol Tank Farm, Port Kembla\140 Data\Reporting\R02 Remedial Action Plan\Rev2
Revision Number	Rev 3

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
Rev 1	29/10/2021	Alexander Williams	N/A	N/A
Rev 2	9/05/2022	Alexander Williams	Manuel Fernandez (CEnvP SC)	Alexander Williams
Rev 3	27/05/2022	Alexander Williams	Manuel Fernandez (CEnvP SC)	Alexander Williams
			CONTAINE STATES	

Issue Register

Distribution List	Date Issued	Number of Copies
Manildra Group Pty Ltd	27/05/2022	1 PDF

SMEC Company Details

Approved by	Alexander Williams
Address	Level 2, 6-8 Regent Street, Wollongong NSW
Phone	+61 2 9900 7039
Email	alex.williams@smec.com
Website	www.smec.com
Signature	Alex Valhans

The information within this document is and shall remain the property of: SMEC Australia Pty Ltd

Important Notice

This report is confidential and is provided solely for the purposes of documenting a Remedial Action Plan for Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla (referred to as 'the Site'). This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Limited ("SMEC") and Manildra Group Pty Ltd under which SMEC undertook to perform a specific and limited task for Manildra Group Pty Ltd. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Manildra Group Pty Ltd. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

The findings of this this report are the result of methodologies used in accordance with normal practices and standards. We consider that they represent a reasonable interpretation of the general conditions of the Site at the time they were assessed and at the time of writing this report, but under no circumstances, can it be considered that these findings represent the actual state of the Site in all areas.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with SMECs understanding of the client's brief and general accepted practice for environmental consulting.

Table of Contents

1	Introduction	1
1.1	General 1	
1.2	Background	1
1.3	Proposed development	2
1.4	Project objectives	3
1.5	Scope of work	4
2	Site information	5
2.1	Site identification and description	5
2.2	Previous reports	7
2.3	Site information	7
2.4	Site history summary	9
2.5	Site observations	10
2.6	Groundwater wells	17
3	Site characterisation	18
3.1	Areas of Environmental Concern	18
3.2	Site investigations	18
3.3	Subsurface conditions	18
3.4	Soil results	20
3.5	Groundwater	21
4	Conceptual site model	23
4.1	Overview 23	
4.2	Contamination sources	23
4.3	Exposure pathways	25
4.4	Potential receptors	25
4.5	Source pathway receptor linkages	25
5	Remedial Action Plan	27
5.1	Remediation goal	27
5.2	Actions required	27
5.3	Remedial options review	28
6	Additional investigations	31
7	Remediation works	32
7.1	Overview 32	

7.2	Roles and responsibilities.	32
7.3	Approvals, notifications, and licences	34
7.4	Site set up and controls	34
7.5	Asbestos removal.	34
7.6	Contamination management during earthworks activities	35
7.7	Offsite disposal (Asbestos waste)	40
7.8	Water in excavations	40
7.9	Excavation backfilling (as required)	41
7.10	Unexpected finds	41
7.11	Contingency plan	41
7.12	Remediation schedule	41
8	Validation Plan	42
8.1	Data Quality Objectives	42
8.2	Remediation criteria	43
8.3	Validation Plan	45
8.4	Validation Report	46
8.5	Long term Environmental Management Plan	47
9	Site management requirements	48
9.1	Site management	48
10	Work Health and Safety	54
10.1	Work health and safety requirements	54
10.2	Hazard assessment	54
10.3	Training 55	
10.4	Personal protective equipment	55
11	Conclusions	57
12	References	58

Appendices

Appendix A Site Figures

Appendix B Previous Results

Appendix C Engineering Logs

Appendix D Proposed design drawings

Appendix E Unexpected Finds Protocol

Appendix F Containment area calculations

Appendix G Data Quality Indicators

List of Tables (in text)

Table 1-1 Summary of issues required by SEARs	1
Table 2-1 Summary of Site information	5
Table 2-2 Site information	7
Table 2-3 Summary of asbestos observations and removal status	12
Table 2-4 Summary of groundwater wells onsite	17
Table 3-1 General Summary of Subsurface Conditions – Main terminal	19
Table 3-2 General Summary of Subsurface Conditions – Pipeline route	19
Table 4-1 Areas of environmental concern	24
Table 5-1 Remediation Options Evaluation	29
Table 6-1 Summary of proposed additional laboratory testing	31
Table 7-1 Roles and Responsibilities	32
Table 8-1 Remediation Criteria	45
Table 8-2 Validation Sampling Methodology	46
List of Figures (in text)	
Figure 1-1 Bulk earthworks plan (Drawing ref: 20399-SK108_B, dated 31.08.21 prepared	_
Figure 2-1 Site portions for description purposes – Main terminal	6 10

Executive Summary

Manildra Group Pty Ltd (Manildra) is proposing to construct an ethanol storage facility and pipeline located on Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla (herein known as 'the Site').

This report presents the Remedial Action Plan (RAP) prepared by SMEC Australia Pty Ltd (SMEC) in support of the State Significant Development application for the proposed redevelopment of Manildra - Port Kembla Bulk Liquid Terminal. This report is written to address the Secretary Environmental Assessment Requirements (SEARs) and specifically to provide advice for the proposed earthworks activities at the Site during construction. The Site is currently leased by Manildra from NSW Ports.

SMEC has previously undertaken investigations at the Site to fulfil the planning process and requirements of NSW Ports Development Code, pertaining to contamination assessment information for the proposed design. The contamination assessment was also undertaken for due diligence to provide a baseline condition assessment as part of lease documentation provided to NSW Ports. The findings of previous investigations identified soil contamination in the form of asbestos, heavy metals and polycyclic aromatic hydrocarbons within fill materials which have potential to pose risk to human health and ecological receptors during construction stage.

SMEC has prepared this RAP based on the findings of previous investigations noting not all areas of the Site could be assessed due to access. An additional stage of detailed site investigation remains to be completed within the eastern portion of the Site's main terminal once a sandstone stockpile is removed (expected June 2022).

The remediation goal is to manage pre-existing soil contaminant concentrations at the Site being leased such that redevelopment construction activities do not cause or further exacerbate contamination and that the Site:

- May be assessed to be suitable for its intended leased purpose (i.e. commercial/industrial ethanol storage facility and pipeline route)
- Does not pose an unacceptable risk to human health.

The RAP includes:

- A summary of the Site conditions and surrounding environment
- A summary of previous investigations
- Site Characterisation
- A Conceptual Site Model
- Remediation objectives
- · Extent of remediation required
- Remedial options and preferred approach
- Additional investigations
- Remedial/management activities
- Contingency measures
- Validation requirements
- Environmental safeguards required to complete the remediation in an environmentally acceptable manner
- Workplace health and safety requirements.

Whilst the RAP provides an outline of the remedial requirements, it should be noted that this document is not a specification.

The remediation options analysis identified that on-site containment and a long-term management strategy is a practical and cost-effective remedial option to address Site contamination encountered/disturbed during redevelopment of the Site. This was driven by the expected volume of ground disturbance, availability of fill areas within the redevelopment design earthworks levels and ongoing commercial industrial land use which would normally facilitate long-term environmental management measures.

Remediation works will involve the following general activities:

Set up Site controls

- Surface asbestos removal
- Contamination management during earthworks activities including:
- Deep and/or localised excavations (i.e. stormwater features and pipework, other structural footings and/or foundations such as retaining walls)
- Shallow widespread earthworks (Site recontouring as 'cut to fill')
- Onsite containment of contaminated soils
- Validation screening of excavated spoil to confirm suitability for onsite reuse (either restricted or unrestricted)
- Offsite disposal of asbestos wastes to a suitably licensed facility
- Preparing a validation report and long-term Environmental Management Plan (LTEMP).

Based on preliminary discussions with Manildra, four potential onsite containment areas have been identified noting these are required to be confirmed based on design requirements. Preliminary considerations on the design requirements of onsite containment areas include recommendations for minimum capping profile requirements and accessibility to buried utilities.

Groundwater remediation options are beyond the scope of this RAP. A standalone Groundwater Assessment and Management Report has been prepared to address SEARs pertaining to groundwater (SMEC, 2022c). Based on current DSI findings and due to limited groundwater interactions expected during the proposed development, remediation/management measures for groundwater contamination is not warranted.

SMEC considers the Site can be made suitable for the proposed development if the RAP is implemented. Subject to successful validation, restrictions would only apply to onsite containment areas of the Site if remediation is carried out as per the RAP and the contamination sources and extents are as per the current conceptual site model. Restrictions and ongoing management measures would be documented within a Long-Term Environmental Management Plan.

Abbreviations

Abbreviation / Acronym	Description	
ACM	Asbestos containing material	
AEC	Area of environmental concern	
AHD	Australian Height Datum	
ARCP	Asbestos Removal Control Plan	
ASLP	Australian standard leaching procedure	
ASSMP	Acids sulfate soils management plan	
BTEX	Benzene, toluene, ethylbenzene and xylenes	
CEMP	Construction Environmental Management Plan	
CoPC	Contaminants of Potential Concern	
CoC	Chain of Custody	
CSM	Conceptual Site model	
CT	Contaminant threshold	
DQI	Data Quality Indicators	
DQO	Data Quality Objectives	
DSI	Detailed Site investigation	
EC	Electrical Conductivity	
EIL / ESL	Ecological investigation / screening level	
EPA	Environment Protection Authority	
EPL	Environment Protection Licence	
HIL / HSL	Health investigation / screening level	
LCS	Laboratory Control Sample	
LNAPL	Light non-aqueous phase liquid	
LOR	Limit of reporting	
LTEMP	Long-term Environmental Management Plan	
m	Metres	
m bgl	Metres below ground level	
m BTOC	Metres below top of casing	
mg/kg	Milligrams per kilogram	
ML	Megalitres	
μS/cm	micro siemens per centimetre	
NEPC	National Environment Protection Council	
NEPM	National Environment Protection (Assessment of Site Contamination) Measure	
OCP	Organochlorine pesticides	
OPP	Organophosphorus pesticides	
PAH	Polycyclic Aromatic Hydrocarbons	
PCB	Polychlorinated biphenyls	
PID	Photoionisation detector	

Abbreviation / Acronym	Description
POEO Act	Protection of the Environment Operations Act
PPE	Personal protective equipment
PSI	Preliminary Site Investigation
RAP	Remedial Action Plan
RPD	Relative percent difference
SCC	Specific contaminant concentration
SOP	Standard Operating Procedure
SRA	Sample Receipt Advice
SWL	Standing Water Level
SWIMS	Safe work method statement
TEQ	Toxic Equivalency Quotient
TRH	Total recoverable hydrocarbons
TPH	Total Petroleum Hydrocarbons
VHC	Volatile halogenated compounds
UCL	Upper confidence limit
VENM	Virgin excavated natural material

1 Introduction

1.1 General

Manildra Group Pty Ltd (Manildra) is proposing to construct an ethanol storage facility and pipeline located on Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla (herein known as 'the Site'). The Site locality and layout is shown on Figure 1 and Figure 2, Appendix A.

This report presents the Remedial Action Plan (RAP) prepared by SMEC Australia Pty Ltd (SMEC) in support of the State Significant Development application for the proposed redevelopment of Manildra - Port Kembla Bulk Liquid Terminal. This report is written to address the Secretary Environmental Assessment Requirements (SEARs) and specifically to provide advice for the proposed earthworks activities at the Site during construction. The Site is currently leased by Manildra from NSW Ports (Part of Lot 6 only), with proposed lease along pipeline route to be arranged. The scope of works was carried out in general accordance with SMEC's Fee Proposal (ref: 1042321-P01 Rev1 dated 15/09/2021) and subsequent variation (ref: 30013038-V04 Rev 1 dated 16/02/2022).

1.2 Background

SMEC has previously undertaken investigations at two portions of the Site (identified herein as the 'main terminal' and 'pipeline route') to fulfil the planning process and requirements of NSW Ports Development Code, pertaining to contamination assessment information for the proposed design. These include:

- Detailed Site Investigation (main terminal) in December 2021 (SMEC, 2021b, ref: 30013038-R04)
- Targeted Site Investigation (pipeline route) in April 2022 (SMEC, 2022, ref: 30013038-R05)

The contamination assessments were also undertaken for due diligence to provide a baseline condition assessment as part of lease documentation provided to NSW Ports. The findings of the investigations identified soil contamination in the form of asbestos, heavy metals and polycyclic aromatic hydrocarbons (PAHs) within fill material which have potential to pose risk to human health and ecological receptors during construction stage.

SMEC (2021b) previously made recommendations including, but not limited to, the following:

- Additional contamination investigation to supplement existing data and allow characterisation of the Site as a whole (noting inaccessible areas due to a large rock stockpile)
- Preparation of remedial action plan (RAP) outlining remediation and management strategies to manage risks posed to human health and ecological receptors during the Site development.

The Planning Secretary's Environmental Assessment Requirements (SEARS) were issued on 23 December 2021. The SEARs have identified several key issues pertaining to soils and contamination which are outlined in Table 1-1. This RAP was written to address the Secretary Environmental Assessment Requirements (SEARs) and specifically to provide advice for the proposed earthworks activities at the Site during construction.

Manildra are also required to comply with relevant environmental obligations outlined within the lease agreement with NSW Ports and requirements of NSW Ports Development Code.

Table 1-1 Summary of issues required by SEARs

Item	Key Issues required by SEARS	Where addressed
19	Contamination – a site contamination assessment in accordance with the Managing Land Contamination Planning Guidelines: SEPP 55 – Remediation of Land (DUAP, 1998), including:	
19.1	characterisation of the nature and extent of any contamination on the site and surrounding area	SMEC (2021a, 2021b and 2022)
19.2	a Remedial Action Plan.	This report

1.3 Proposed development

1.3.1 Main terminal

Manildra propose to lease and redevelop the Site into an ethanol storage facility. Based on information provided by Manildra, the proposed development is expected to comprise:

- Six above ground storage tanks (2.5ML to 5ML capacity for beverage grade alcohol) located inside a raised bunded area, plus two slops tanks
- Demolition of existing bridge and construction of one new proposed bridge crossing over the adjacent stormwater channel to the west, to connect to a service road with Foreshore Road
- A gravity retaining wall installed along the boundary with the stormwater channel (approx. 295m2) including either side of the proposed bridge. A second possible gravity retaining wall will be installed along the western Site boundary adjacent to the adjoining sewer pump station (offsite)
- New stormwater network including pipework, underground storage tank, two stormwater treatment devices and outlet structures
- Perimeter roadways/pavements
- Firefighting system including foam suppressant system and water supply tanks
- Ancillary features such as substation, workshop and sheds which would be small and single storey.

Figure 2, Appendix A shows the approximate position of proposed Site development features relative to the Site boundaries.

Appendix D includes a copy of the Site plan drawings showing the proposed layout of the development relative to the Site boundaries. Manildra supplied SMEC with a current set of 'tender only' design drawings (20399-C00 to C17, C20 and C21, dated 22/11/2021) prepared by TFA Group Pty Ltd. Relevant details pertaining to earthworks activities are summarised below:

- Site grading and drainage plan (20399-C02 & C03) A network of proposed stormwater pipework will be installed within linear trenches excavated beneath the ground surface (approximately 0.5m wide by 1m deep). Localised deep excavations are expected for two stormwater treatment devices (estimated 2.5m x 2.5m x 2m deep) will be installed prior to discharge outlets, and an underground storage tank (8m length x 3m diameter) will be installed near the entrance noting depths are expected to be approximately 4.5m below the existing ground level (refer to Figure 5, Appendix A). An open diversion swale would be constructed west of the proposed service road (minimum depth 0.4m deep, including gravel).
- Site pavement plan (20399-C11 and C12) The Site will comprise mostly paved surfaces including vehicle pavements (heavy and light), structural slabs and bund flooring, spray seal driveway/road, and gravel hardstand layer across the remaining areas of the Site. A narrow strip of land will comprise a landscaped area (approx. 700m²) along the southern boundary of the Site adjacent to Foreshore Road.
- Site retaining wall plan (20399-C20 & C21) A gravity retaining wall will be installed along the boundary with the stormwater channel (approx. 220m length) including either side of the proposed bridge and adjacent to the adjoining sewage pumping station lot (refer to Figure 5, Appendix A). Gravity retaining walls will involve linear trench excavation of concrete footing with dimensions (continuous approximately 1.3m wide by 1.0m depth below existing ground level, with multiple concrete backhoe piers 0.45m wide by 2.0m depth below existing ground level).
- Bulk earthworks plan (20399-C07) Site recontouring will require bulk earthworks activities involving cut (approx. 2,400m³) and fill (approx. 3,400m³) with the 1,000m³ balance to be sourced as imported fill or locally site-won from existing stockpiled material. On the western side of the stormwater channel, earthworks will include shallow 'cut' to 'fill' across the width of the service road portion, a proposed diversion swale and harbour foreshore access ramp, without disturbing remaining unoccupied areas within the Site. Figure 1-1 below shows the approximate layout cut (red) to fill (green).

SMEC understand that timber driven piles will be used for foundations of the tank structures. Except for minor disturbances at the surface, these are expected to result in minimal ground disturbance as soils are displaced laterally to accommodate the pile.

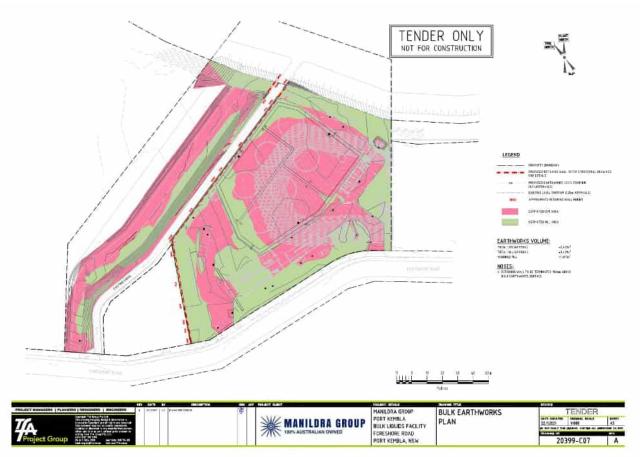


Figure 1-1 Bulk earthworks plan (Drawing ref: 20399-SK108_B, dated 31.08.21 prepared by TFA Group Pty Ltd)

1.3.2 Pipeline route

The Site boundary extends to the east of the main terminal along a 4m wide easement for construction of a new pipeline route connecting to existing Jetty No. 4, including a parcel of land within Part of Lot 2 DP 1182823 owned by Transport for NSW (TfNSW).

Appendix D includes a copy of the Site plan showing the proposed layout of the development relative to the Site boundaries. Based on the current set of design drawings (20399-DA-P01 to P05, dated 10 March 2022) prepared by TFA Group Pty Ltd., the pipeline route would consist of:

- Approximately 180m above-ground pipeline mounted on footings between the main terminal (Chainage 0m) and a dive thrust block (Chainage 180m). Along this portion, shallow foundation excavations are anticipated to be 1.0m deep (each 0.4m wide x 1.0m length) at regular intervals (roughly every 5-6m spacing);
- Approximately 280m underground pipeline between dive thrust block (Chainage 180m) and Jetty No. 4
 (Chainage 460m) Trench excavations are anticipated to be 1.8m deep by 2.0m wide. Installation is expected to
 involve 'cut and cover' trenches reusing materials excavated during backfill (minimum 1.2m compacted backfill)
 and removal of surplus spoil material for reuse/containment within main terminal.

Figure 2, Appendix A shows the proposed layout of the pipeline route (including marking of Chainage 0 to 460m) relative to the Site boundaries.

1.4 Project objectives

The overall objectives of the RAP are to:

Set remediation objectives

• Document the process to remediate/manage the identified soil contamination as part of the bulk earthworks (only within the areas of the Site that will be disturbed by the development) to make the Site suitable for the proposed development so that it does not present an unacceptable risk to human health.

The objectives above have been set in discussions with Manildra and subject to review and consultation with NSW Ports as the landowner.

Further updates to the RAP may occur subject to the findings of additional investigation beneath the stockpile, finalisation of design, construction planning and/or NSW EPA consent conditions.

1.5 Scope of work

The RAP includes:

- A summary of the Site conditions and surrounding environment
- A summary of previous investigations
- Site Characterisation
- A Conceptual Site Model (CSM)
- Remediation objectives
- · Extent of remediation required
- Remedial options and preferred approach
- Additional investigations
- Remedial/management activities
- Contingency measures
- Validation requirements
- Environmental safeguards required to complete the remediation in an environmentally acceptable manner
- Workplace health and safety requirements

Whilst the RAP provides an outline of the remedial requirements, it should be noted that this document is not a specification.

2 Site information

2.1 Site identification and description

The proposed development is located at Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, located on Foreshore Road in Port Kembla, NSW. The Site consists of two portions identified as main terminal and pipeline route as shown on Figure 2, Appendix A.

Figure 1 and Figure 2, Appendix A show the Site locality and Site layout, respectively.

A summary of Site information is presented below in Table 2-1.

Table 2-1 Summary of Site information

Aspect	Details
Title identifier	Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 (pipeline route only)
Address	Foreshore Road, Port Kembla NSW
Area	 Main terminal Manildra supplied drawings showing a Site area of approximately 2.3ha (which excludes the stormwater channel). It is noted that the stormwater channel (approx. 0.14ha) is excluded from the lease. For Site description purposes, the Site has been divided into the three portions shown below on Figure 2-1 including: Western portion – Areas west of the stormwater channel (0.83ha) Central portion – A centrally located area east of the stormwater channel (0.44 ha) differentiated by a historical property boundary Eastern portion – An easterly located area east of the stormwater channel (1.02 ha) Pipeline route Manildra supplied drawings showing a proposed linear pipeline route of approximately 460m between the main terminal and Jetty No. 4 west to east with a 4m corridor along the route.
	The pipeline route occupies an area of approximately 0.18 ha.
Zoning	The Site is located within Port Kembla state significant precinct in NSW. The State Environmental Planning Policy (Three Ports) 2013 is the principal environmental planning instrument applying to the Site.
Current Land use	Main terminal The main terminal part of the Site currently consists of vacant industrial land previously used for storage of miscellaneous maritime/port equipment. An open concrete lined stormwater channel passes through the Site, which discharges to the Port Kembla Outer Harbour immediately north of the Site (but does not form part of the lease area). A relatively large crushed or coarse fill stockpile up to about 11m high above current land platform level currently occupies most of the eastern portion of the Site. The coarse fill stockpile appears to comprise largely coarse sandstone boulders up to about 1m diameter. Pipeline route The pipeline route part of the Site is currently unused part of industrial foreshore land in the vicinity of harbour jetty operations.
Proposed land use	The proposed land use is for a bulk liquid (beverage grade ethanol) storage facility and product pipeline route as described in Section 1.3.
Surrounding land use	 Main terminal The Site is presently surrounded by: Remaining NSW Ports foreshore land on Lot 6 (west) currently containing several large soil stockpiles Foreshore Road (south), then beyond this and further south various industrial facilities including: Ixom (sulfuric acid plant)

Aspect	Details
	- Cleanaway waste recycling facility
	 Morgan Cement International Pty Ltd (cement manufacturing and grinding facility).
	 Other former industrial facilities such as the former copper smelter and fertiliser production facilities
	 Remaining stockpiled material and vacant land on Lot 6 (east)
	Port Kembla Outer Harbour shoreline (north).
	Pipeline route
	The Site is surrounded by:
	 Vacant foreshore land, a sandstone stockpile and paved road to former jetty No. 3 on Part of Lot 6
	 Vacant foreshore land, training conference centres, marine compounds/equipment stores and paved road/carparking areas on Part of Lot 2
	 An acid production pipeline route bisects the Site (Chainage 390m) and diverts in similar alignment towards Jetty No. 4 (Chainage 390m to 460m)
	 Port Kembla Outer Harbour shoreline is north approximately between 5m and 25m from the centreline of the pipeline route.

Figure 2-1 Site portions for description purposes – Main terminal

2.2 Previous reports

Background information contained in this RAP was sourced from the following previous reports:

- SMEC Australia Pty Ltd (2021a) Preliminary Geotechnical and Contamination Investigation, Part of Lot 6
 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, Ref: 30013038-R01, Revision 2,
 dated 05 May 2021
- SMEC Australia Pty Ltd (2021b) Detailed Site Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R04, Revision 1, dated 22 December 2021
- SMEC Australia Pty Ltd (2022) Targeted Site Investigation Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R05, Revision 1, dated 02 May 2022

A summary of relevant information from this report is included in this RAP. SMEC (2021a) also previously undertook a review of several environmental reports pertaining to the Site and nearby surrounding areas. Reference should be made to the original reports for further detailed information.

2.3 Site information

Relevant Site information is summarised in Table 2-2 below.

Table 2-2 Site information

Aspect	Description
Topography	 Main terminal The Site terrain appears to have been filled and levelled with a surface elevation between 3.5-4.5m AHD. The Site surface is predominantly hardstand granulated slag material except for a concrete slab present in the central portion of the Site, and some localised grassed terrain. Other features of the Site include: A large rock stockpile with steep batters (to a height of approximately +14m AHD) within the eastern portion East and west of the channel there are localised steep slopes down to the edges of the concrete lined stormwater channel (approximately +2m AHD) A fill embankment is noted west of the stormwater channel approximately 1.5m to 2m above top of the stormwater channel, indicating the Site terrain appears to have been filled and levelled. Pipeline route Based on survey carried out by Masters Surveying (Drawing 64146-2), the Site is relatively flat with some slight undulations at elevations ranging between 2.9m AHD (Chainage 90) and 4.3m AHD (Chainage 340m).
Vegetation	Main terminal The Site contains a stand of mature trees on the southern Site boundary adjacent to Foreshore Road. Sparsely scattered trees were noted elsewhere, noting most of the Site is hardstand gravel and pavements with some patches of exotic grass vegetation. Pipeline route Except some minor areas of grass coverage, the Site is mainly hardstand gravel and pavements with little or no vegetation.
Geology	The 1:100,000 scale geological series sheet of Wollongong to Port Hacking indicates that the Site is underlain by Quaternary quartz and lithic fluvial sand, silt and clay which most likely will overlay either or both the rock formations of: • The Dapto Latite Member, comprising of a melanocratic coarse grained to porphyritic latite • The Budgong Sandstone formation, comprising red-brown and grey volcanic sandstones. Reference to previous drilling in the area of Port Kembla Outer Harbour indicates that the Site is likely underlain by the Budgong Sandstone Formation. However, the Site is also located very close to the boundary between the overlying Dapto Latite and it is possible that some Dapto Latite could be encountered in some parts of this Site particularly towards the southern portion of the Site.

Aspect	Description
Soil Landscape	Reference to the 1:100,000 Soil Landscape Series Sheet for Central and Eastern NSW (OEH 2019) indicates the Site is within the disturbed terrain soil landscape.
Acid Sulfate Soil	Reference to ASS risk mapping (NSW Government eSPADE, accessed 23/03/2021) indicates that the Site is located within areas mapped as 'disturbed terrain' with an unknown probability of ASS occurrence. Risk map guidance indicates that 'disturbed terrain may include filled areas, which often occur during reclamation of low-lying swamps for urban development. Other disturbed terrain includes areas which have been mined or dredged or have undergone heavy development or construction of dams or levees. Soil investigations are required to assess these areas for acid sulfate potential.' Figure 3, Appendix A shows the acid sulfate soils risk mapping for the Site and surrounding areas. The map indicates the following: Main terminal • The Site western, central and eastern portion is primarily underlain by disturbed terrain (X) at an elevation (2) of 2 to 4m AHD • A relatively smaller northern portion of the Site identifies disturbed terrain (X) at an elevation (1) of 1 to 2m AHD. From preliminary investigation by SMEC (2021a), acid sulfate soils were assessed to be present at the main terminal portion of the Site within relatively thin layers of natural estuarine soils beneath the fill. Further consideration and management of acid sulfate soils was recommended where these soils are to be intersected via excavation or if dewatering will occur which could lower the water table and expose soils to oxidation. Pipeline route • Between Chainage 0 to 180m, the Site is underlain by disturbed terrain (X) at an elevation (2) of 2 to 4m AHD • Between Chainage 180 to 430m, the Site is underlain by disturbed terrain (X) at an elevation (2) of greater than 4m AHD. Based on the Site topography and proposed disturbance depths (refer to Section 1.3), excavations depths were assessed as: • Base level 2.3 to 3.3m AHD (Underground section of pipeline route - Shallow concrete footings, approximately 1 m deep) • Base level 2.3 to 3.3m AHD (Underground section of pipeline route - Cut and cover trenching, approximately 1 m deep)
Groundwater	 Main terminal Based on previous groundwater monitoring that has occurred at the Site, groundwater depths beneath the Site were historically recorded typically between 1.5m and 3.0m below ground surface with an inferred groundwater flow in a north-easterly direction towards Port Kembla Outer Harbour. Groundwater depths and directions may vary based on Site specific conditions, including tidal influences. A search of the Department of Water and Energy Online Database [accessed 22 March 2021] was carried out to identify registered groundwater bores within the vicinity of the Site. The search indicated multiple registered bores are within industrial properties for monitoring purposes located within 500m of the Site including: One registered bore (GW114085) located 100m south of the Site (within Morgan Cement International property) Greater than 50 registered bores between 300m and 600m south of the Site (former Port Kembla Copper Smelter) Six registered bores 450m south-east of the Site (Vesuvius manufacturing facility. Pipeline route Based on Site topography, the depth of groundwater along the pipeline route is expected to be at depths between 2-3m below ground level based on the proximity to the open harbour environment. Groundwater within the Site area is assessed to be greater than the depth of proposed disturbance.

Aspect	Description
Surface Water	Main terminal Surface water at the main terminal Site is likely to infiltrate into Site soils or shed as runoff partly to Foreshore Road (south), partly to Port Kembla harbour (north) and partly into the adjacent open concrete lined drain (west).
	The open drain receives stormwater from upslope areas offsite and runs through the Ixom sulfuric acid plant as an open drain, and underground beyond, including through the former copper smelter land further upslope.
	Pipeline route
	Surface water runoff from the Site (pipeline route) is likely to shed from hardstand areas directly towards Port Kembla harbour. At asphalt paved areas (Chainage 320 to 460m), surface water runoff is expected to enter urban stormwater drainage pits and pipework prior to discharge at the harbour.

2.4 Site history summary

SMEC (2021a, 2021b and 2022) presented the following summary of the site history based on desktop information reviewed at the time.

Onsite - Main terminal

Pre 1938, the Site was likely a former estuarine beach/lagoon environment and part of Tom Thumb lagoon. In 1923, it is understood that the Site was purchased to permit construction of break wall and extensions associated with creation of Port Kembla Harbour. Based on aerial photographs, it appears that land reclamation may have commenced sometime between 1948 and 1961, during which time an open stormwater drain which runs through the Site was straightened and concrete lined (as per current alignment). Further filling occurred post 1961 and 1977 associated with harbour front land reclamation.

Prior to 1977, development activities had commenced at the Site, including operation of a former Franke scrap metal yard and a former quarantine facility on open concrete slab (central portion) and timber sale yard (eastern portion), noting remaining areas appeared unused.

Since 1993, the central portion appeared to continue to be used for various equipment laydown yards until present. In 2001, a small bridge was installed in the north of the Site over the open drain. Additional filling of coalwash and granulated slag materials occurred in the western and eastern portion of the Site and then used for bulk storage of steel until 2011. Once vacant, the western portion of the Site appeared to be used for temporary stockpiles, and a large stockpile of sandstone rock materials appeared in the eastern portion (circa 2014 to present).

During a previous 'baseline' contamination assessment carried out by CMPS&F Environmental (October 1994), it was noted that the western portion of the Site included a part of Lot 6 which was identified by Illawarra Port Authority as a known contaminated area. Anecdotal information reported that 'wastes containing tars' were dumped there and contamination investigations were carried out by Biological and Chemical Analytical Services (University of Wollongong, 1991 - report not available) to assess the extent of contamination (identified as 'Known PAH site contamination area' on Figure 2-2. Following assessment, the report indicated that contamination remains in-situ beneath a capping material that was placed. The inferred area appears to overlap the Site south-western corner as shown on Figure 1 and Figure 4, Appendix A.

Onsite - Pipeline route

Pre 1938, the land along the pipeline route was partly within a former estuarine beach/lagoon environment and partly reclaimed land associated with former No. 4 Jetty (originally built 1908), noting two former building structures were present (Chainage 300 to 350m). In the 1948-1951 aerial photograph, the Site appears to have been filled during land reclamation, construction of No. 3 Jetty and No. 4 Jetty (reconstructed, new alignment) and associated railway lines. Several building structures were constructed at the Site and Jetty operations appear to have occurred between the 1960s to 1990s, at which point railway line activities ceased. Progressive demolition of building structures appears to have occurred in early 1990s and 2000s, prior to construction of the existing buildings at the Site.

Offsite

Land surrounding Port Kembla harbour has a history of heavy industrial activities, originally commencing with coal export and later expanding to copper smelting, steel making, acid/fertiliser production, metal manufacturing and ancillary industries. A coke works was located to the south-east of the Site (operated from about 1899-1926). Since

1948/1951, nearby industrial activities opposite side of Foreshore Road upslope of the Site appear to have commenced including but not limited to an acid production plant, fertiliser manufacturing and copper smelter (within 50m-300m of the Site).

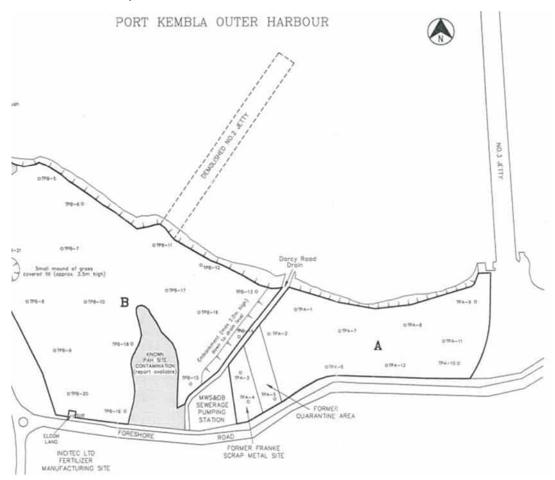


Figure 2-2 Extract from historical Contamination Assessment (CMPS&F, 1996)

2.5 Site observations

SMEC (2021a, 2021b and 2022) presented a summary of the Site conditions based on observations made at the time. During multiple investigation stages between March 2021 and April 2022, an Associate Environmental Engineer from SMEC visited the Site to identify potentially contaminating activities or previous land uses. Selected photos from the Site visit are included in Photo 2-1 to Photo 2-21 below. Site features are shown on Figure 2, Appendix A.

The following relevant Site observations were made:

Main terminal

- A concrete lined tidal stormwater channel bisects the Site dividing the western portion (west of the channel) and central and eastern portion (east of the channel) (Photo 2-3). The stormwater channel is noted to be excluded from the Site
- The majority of the central and eastern portion of the Site was covered with an unbound granular slag wearing course (Photo 2-1). A concrete slab (approximately rectangular) was noted in the central portion of the Site (Photo 2-2). Strip drains were observed adjoining the southern edge of the concrete slab with a stormwater pit (Photo 2-5)
- The majority of the western portion of the Site was exposed fill/grass covered with some irregular areas of granular slag wearing course (Photo 2-11 and Photo 2-12)

- The Site appears to have been filled and levelled over the western and central portions, excluding steep batter slopes immediately east and west of the stormwater channel. A large stockpile of coarse fill prevented observations at the surface of the majority of the eastern portion of the Site
- At the time of this RAP, the eastern portion of the Site and offsite areas to the east was being utilised for stockpiling a large amount of excavated material (~11m high), noting materials were proposed to be crushed and removed from the Site by NSW Ports (commencing late April 2022)
- Sporadic mature trees were present along the southern perimeter of the Site. Some isolated grass covered areas were observed on the western portion of the Site
- A small steel structure bridge was in the eastern portion of the Site (towards the north) crossing the stormwater channel
- The Site perimeter was enclosed by a chain wire fence with an entrance gate to the south, leading to Foreshore Road (Photo 2-6)
- An existing seawall runs along the Site's northern shoreline and comprised of cobble to boulder sized igneous
 rocks with some bulk concrete and broken concrete slabs interspersed within the rocks in a random pattern,
 presumably to act as an erosion protection facing to protect the filled shoreline area. Some precast concrete
 reinforced panels placed from Site level down to below the water line were noted in the vicinity of the creek
 channel outlet.

Pipeline route

- The Site consisted of hardstand comprising of granulated furnace slag (Chainage 0 to 180m), asphalt paved unused road (Chainage 180 to 220m), grassed covered vacant area (Chainage 220m to 260m), granulated furnace slag across unused rail line (Chainage 260m to 270m), grassed covered landscaped area (Chainage 270m to 320m), asphalt pavement (Chainage 320m to 460m). Example of each of the ground surfaces observed are shown in Photo 2-13 to Photo 2-15. The Site was partially inaccessible due to large sandstone stockpile between Chainage 70m to 100m (Photo 2-17). Investigation location BH08 in this portion of the Site was shifted slightly north
- Two rail lines were observed near borehole location BH04 (Chainage 260 to 270m) (Photo 2-15)
- A concrete bunded area containing coarse gravels (possibly inferred location of former No. 3 Jetty substation) was noted approximately 10m north of the Site near test pit location BH06 (Chainage 180m) (Photo 2-16)
- Multiple timber poles were observed to be stockpiled in the vacant parcel of Lot 6 between Chainage 90 m and Chainage 150m (Photo 2-20). The timber poles were covered with shells and had been removed from marine timber structures associated with the former harbour jetty. Evidence of stockpiles of shredded timber were noted (Photo 2-21).

SMEC also noted several locations where bonded asbestos containing materials (ACM), in 'good' condition, was observed at the ground surface during previous investigations. It is noted that some have since been removed and asbestos clearances issued. A summary of removal status and clearance documentation available is provided in Table 2-3 below.

Table 2-3 Summary of asbestos observations and removal status

Location and description	Date observed (Document reference)	Current Status
Central portion - Multiple surface fragments on ground surface in good condition	March 2021 (SMEC, 2021a)	Removed and clearance issued (Clearsafe Environmental Solutions on 22/10/2022)
Central portion - ACM fascia noted on an existing shed structure onsite.	March 2021 (SMEC, 2021a)	Building demolished. Removed and clearance issued (Clearsafe Environmental Solutions on 22/10/2022)
Central portion - ACM fascia noted on an existing shed structure onsite.	March 2021 (SMEC, 2021a)	Removed and clearance issued (Clearsafe Environmental Solutions on 22/10/2022))
Central portion - Buried ACM pipe was observed at the stormwater channel bank (Photo 2-9)	March 2021 (SMEC, 2021a)	Remains onsite (identified by Clearsafe Environmental Solutions on 22/10/2022))
Western portion - Small fibre cement sheet fragment	October 2021 (SMEC, 2021a)	Removed upon sampling. Clearance not completed in Western portion
Pipeline route (Chainage 70m to 100m) - Multiple surface fragments on ground surface in good condition over an area of approximately 30m length by 4m wide area (Photo 2-17). Protruding fragments were also observed on walls of heavily eroded embankment along the harbour foreshore (Photo 2-18 and Photo 2-19), and several fragments were noted to have fallen amongst break wall boulders.	April 2022 (SMEC, 2022)	Removed and clearance issued (Clearsafe Environmental Solutions on 5/04/2022))
Pipeline route (Chainage 210m) - Three ACM fragments in 'good' condition were observed on the grassed ground surface; two located approximately 5m west and one located 10m north of borehole location BH05 (Chainage 210m).	April 2022 (SMEC, 2022)	Remains onsite
Eastern portion – ACM fragments observed protruding walls of heavily eroded embankment along harbour foreshore (Photo 2-10)	April 2022 – additional observation	Remains onsite

2.5.1 Main terminal photos

Photo 2-1 Looking north east towards stockpile (March 2021)

Photo 2-2 Looking south west along concrete slab area (March 2021)

Photo 2-3 Looking north along the stormwater channel (March 2021)

Photo 2-4 Looking west at surface of stockpile (March 2021)

Photo 2-5 Looking west showing strip drains at edge of concrete slab (March 2021)

Photo 2-6 Looking north east along southern perimeter fence (March 2021)

Photo 2-9 Buried ACM pipe observed on channel bank (March 2021)

Photo 2-10 Evidence of ACM observed along eroded bank near stormwater outlet (April 2022)

Photo 2-11 Areas west of the channel facing north-east towards harbour (October 2021)-

Photo 2-12 Areas west of the channel facing south-west towards Foreshore Road (October 2021)

2.5.2 Pipeline route photos

Photo 2-13 Looking south across asphalt carparking area near BH02 (Chainage 380m)

Photo 2-14 Looking east across grassed area near BH05 (Chainage 210m)

Photo 2-15 Two rail lines near BH04 (Chainage 260m to 270m)

Photo 2-16 Concrete bunded area offsite north of BH06 (Chainage 180m)

Photo 2-17 ACM observed across area immediately north of Site near BH08 (Chainage 70m to 100m)

Photo 2-18 ACM observed within eroded embankment wall north of BH08 (Chainage 80m)

Photo 2-19 Example of ACM fragment observed protruding from eroded embankment wall near BH08 (Chainage 80m)

Photo 2-20 Timber poles stockpiled near BH07 (Chainage 110m)

Photo 2-21 Stockpile of shredded timber poles (Chainage 110m)

2.6 Groundwater wells

Twelve existing groundwater monitoring wells are onsite (including six historic wells and six new wells installed by SMEC 2021-2022). Eleven wells appear to be still useable for monitoring and one well was damaged and partially buried on side of stockpile inside a drum (Figure 2, Appendix A). Where previous survey was carried out to some of the monitoring wells, a summary of survey details are included in Table 2-4 below.

Table 2-4 Summary of groundwater wells onsite

Well	Inferred			Reduced Level (m AHD)			
no.	monitoring well ID	Easting	Northing	Ground level	Top of well casing	Details	
1	MW316 (note 1)	307769.09	6183022.99	2.54	2.46	Gatic well - Hex-key metal gatic flush with ground surface	
2	MW5 (Note 2)	NS	NS	NS	NS	Gatic well – 'Older style' metal gatic flush with ground surface	
3	OHMW28 (Note 3)	307778.51	6182987.64	2.41	3.09	Monument Well	
4	ID Unknown (Note 4)	307814.26	6183015.20	2.66	3.28	Monument Well	
5	OHMW20 (Note 3)	307832.75	6183030.30	2.89	3.89	Monument Well	
6	MW Damaged (Note 4)	307826.72	6183045.32	3.31	Not surveyed	Monument Well – Well damaged and partially buried on side of stockpile inside drum	
7	SMW01	307771.69	6183048.65	NS	3.33	Monument Well	
8	SMW02	307889.38	6183043.42	NS	3.63	Monument Well	
9	SMW03	307881.90	6183114.52	NS	3.78	Monument Well	
10	SMW04	307848.12	6183124.30	NS	3.61	Monument Well	
11	SMW05	307825.76	6183134.07	NS	3.58	Monument Well	
12	SMW06	307734.25	6183055.70	NS	4.17	Monument Well	

Note 1: Well location MW316 was labelled on the well cap, noting this location was not formerly shown on historical monitoring reports.

Note 2: Well locations MW5 was inferred from were inferred from maps within contamination assessment (CMPS&F, 1996).

Note 3: Well location OHMW28 and OHMW20 were inferred from maps within historical groundwater monitoring report (DP, 2009 and SLR, 2011).

Note 4: Remaining well identification remains unknown.

NS - Not surveyed

Gatic well = well finished level with ground surface with a steel gattic type cover

Monument well = well finished above ground surface with a steel monument

3 Site characterisation

3.1 Areas of Environmental Concern

Based on the desktop review and Site observations, a preliminary conceptual site model was developed, and eight potential areas of environmental concern were identified including:

- AEC 1 Sitewide fill of unknown origin and quality during historical land reclamation activities
- AEC 2 Former scrap metal yard (western portion) and former quarantine area (central portion) (circa 1980s)
- AEC 3 Former timber yard (eastern portion) circa 1977 to 1993
- AEC 4 Groundwater beneath the Site from surrounding industrial land uses
- AEC 5 Inferred location of PAH site contamination identified in previous report
- AEC 6 Historic railway line to Jetty No. 3 and Jetty No. 4
- AEC 7 Acid production pipeline
- AEC 8 Former building structures associated with Jetty operations including demolition

AECs are shown on Figure 4, Appendix A.

3.2 Site investigations

A Detailed Site Investigation (SMEC, 2021b) was undertaken in March 2021 and October 2021 and included soil contamination sampling at 26 test pits (TP01 to TP8, TP10 to TP27), targeting the identified areas of environmental concern. Additional observations only of stockpiled material were made at two test pits (TP9 and TP10A). Two baseline groundwater quality monitoring events were undertaken within three onsite monitoring wells (OHMW20, OHMW28 and SMW01) within the proposed main terminal. Laboratory testing was carried out for soil and groundwater for potential contaminants of concern.

Targeted Site Investigation (SMEC, 2022) was undertaken in March 2022 and April 2022 and included soil contamination sampling at nine boreholes/test pits (BH01 to BH09), located at approximately 50m intervals along the pipeline route targeting the identified areas of environmental concern. Additional observations only were made at one alternate borehole location (BH03A). Laboratory testing was carried out of soil for potential contaminants of concern.

Figure 2, Appendix A shows the previous test locations.

During each investigation, contamination laboratory testing of soil samples was carried out for potential contaminants of concern:

- Heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
- TRH, BTEX, PAH
- OCP, OPP, PCB
- Asbestos identification in soil

Due to depth and variability of fill encountered (up to 3.0m depth), laboratory testing was typically carried out between 2-3 soil samples per test location, selected based on subsurface conditions.

3.3 Subsurface conditions

Subsurface conditions summarised below are based on previous investigations by SMEC (2021a, 2021b, and 2022). In summary, the test locations encountered ground conditions comprising iron slag gravel (or topsoil), filling, aeolian sand and/or deeper estuarine sand deposits, overlying residual soil and weathered rock. A general summary of the subsurface conditions encountered during this Site investigation is shown below in Table 3-1 (main terminal) and Table 3-2 (pipeline route). Appendix C includes copies of engineering logs prepared by SMEC from previous investigations. Previous investigation borehole/test pit locations are shown within Figure 2, Appendix A.

Table 3-1 General Summary of Subsurface Conditions – Main terminal

Geotechnical Unit	Material Description	Depth to Top of Unit below surface level (m)		
<u>Unit 1</u> A: Filling (Cemented Slag)	Gravel: moderately cemented, fine to coarse grained, angular	0 (all locations except - TP04- TP07, TP09, TP10A, TP15, TP16, TP19, TP20, TP22, TP24 and TP27)		
<u>Unit 1B:</u> General Filling (Variable fill)	eneral Filling Sandy Gravel, medium to high plasticity, fine to coarse grained, poorly			
<u>Unit 1C:</u> Filling (Stockpile Fill)	Variable: boulders with gravel and cobbles, to boulders, angular to subangular, boulder diameters up to 0.6 m, extremely to slightly weathered sandstone. Fill thickness up to ~11m in highest areas.	0 (encountered in TP09 and TP10A only)		
Unit 1D: Fill (Inferred location of PAH contamination)	Clayey Silt, grey, brown or dark brown, mottled pale yellow, with trace gravel and anthropogenic materials (brick, plastic, wood bark, metal rod, copper pipe). Observed to contain some hydrocarbon odours (sweet phenolic)	0.2 -0.5 (encountered in TP15, TP16 and TP17 only)		
<u>Unit 2</u> : Sand (Aeolian)	Typically, loose to medium dense, poorly graded, fine to coarse grained sand with some black carbonaceous and dark grey clay laminations, moist to wet	0.5 – 3.0 (all locations except - SMW01, TP09, TP10A, TP16, TP23, TP24 and TP26)		
Unit 3: Sand and Clay (Estuarine)	Variable: Clay to Sand, high plasticity, firm and loose to medium dense, fine to coarse grained sand with some black carbonaceous and dark grey clay laminations, moist to wetter than the plastic limit	1.2 – 3.3 (encountered in TP02, TP03, TP06, TP07, TP10-TP14 and TP27)		
Unit 4: Clay/Gravelly Clay/Sandy Clay (Residual)	Variably Clayey Sand, Clay to Gravelly Clay, fine to coarse grained gravel, medium plasticity, angular gravel, fine to coarse grained sand, trace silt, stiff to hard, wet equal to the plastic limit moisture condition	8.5 – 9.0 (encountered in BH2, BH5 and BH7 SMEC (2021a))		
Unit 5: Weathered Rock - Latite (Dapto Latite)	Latite: fine to medium grained, extremely to distinctly weathered, soil strength to low strength	12.1 – 13.1 (encountered in BH2 and BH3 SMEC (2021a))		

Table 3-2 General Summary of Subsurface Conditions – Pipeline route

Geotechnical Unit	Material Description	Depth to Top of Unit below surface level (m)
Asphalt	Dark grey/black, cemented.	0.0 (BH01 and BH02, BH03A only)
Fill (Cemented slag)	GRAVEL; pale grey to dark grey, weakly cemented, fine to coarse grained, angular	0.0 (BH04 only)

Topsoil Fill	Silty CLAY/Silty SAND, dark brown to brown, with rootlets and fine to medium grained sand and gravel	0.0 (BH03, BH05, BH07 and BH09 only)
Fill (Variable)	Gravelly SAND, Silty SAND, GRAVEL (Coalwash), Clayey SAND, Sandy CLAY, fine to coarse grained, including trace gravel, cobbles and boulders. Black coalwash gravel was observed at BH03, BH04 and BH06. Anthropogenic materials noted included timber sleeper (BH03), yellow pipe, metal objects (BH06), and ACM fibrocement fragments and nylon rope (BH08) Fill comprising natural sands and clays showed no obvious indicators to suggest fill was dredged estuarine soils (such as odours, presence of seashells).	0.0-2.0

3.4 Soil results

Copies of tables from previous reports which summarise the laboratory results for soil are included in Appendix B. Figure 4, Appendix A shows the soil test locations where criteria were exceeded.

The following sections discuss the results of soil investigations pertaining to the various portions of the Site. Asbestos is discussed for the whole Site in Section 3.4.3. Based on the conceptual site model, soil contamination may pose a risk to human health during development activities, including to construction workers, surrounding users and ecological receptors. Soil contamination requires remediation and/or management for the proposed redevelopment.

3.4.1 Main terminal

Subsurface observations recorded two main fill units across the central and eastern portion of the Site; namely Unit 1A: Upper Cemented Slag layer (typically 0.2m thickness) and Unit 1B: General Fill (variable depths between 0.5 and 3.0 m bgl), which likely concur with the historical placement of fill. Within the western portion of the Site, a localised area of fill was also observed as Unit 1D Fill at the inferred location of PAH contamination based on Site history information (refer to Section 2.4).

Soil samples collected and tested within Unit 1A (including TP2/0.0-0.1, TP14/0.0-0.2 and TP21/0.0-0.3) recorded contaminant concentrations below adopted investigation levels. Considering the relatively 'newer' placement of Unit 1A and relatively homogenous composition, this fill unit is unlikely to pose unacceptable contamination risk with respect to the industrial development.

Soil analytical results indicated Unit 1B recorded elevated concentrations of heavy metals (including lead and arsenic) above the adopted health-based soil investigation levels. Five sampling locations recorded heavy metal impacts (TP5, TP6, TP13, TP14 and TP23) located within the western and central portion of the Site as shown on Figure 4, Appendix A. Samples typically represented both fill gravel and sand (TP5, TP6, TP13 and TP23), estuarine sandy clay (TP13, TP14) and natural aeolian sand layer (TP13). Typically, soil contamination appeared to be within fill/natural clayey soils at depths between 1m bgl and 2.3m bgl, or in shallow fill at 0.2m bgl (TP6 only). The exception was for one location (TP13) where elevated lead concentrations were recorded within natural sand at a depth of at least 3.0 mbgl (TP13) suggesting deeper lead impact in this area. Heavy metal impacts recorded at these locations were assessed to potentially be attributed to fill material quality (AEC1) or previous Site land use activities (AEC2).

Assessment of the Unit 1C: Stockpiled material was beyond the scope of contamination assessment as this material will be removed from Site, but visually appeared to be an excavated sandstone material. Further geotechnical discussion is included within the preliminary investigation (SMEC, 2021a).

Soil analytical results representing Unit 1D fill recorded elevated concentrations of PAH (recorded as benzo(a)pyrene TEQ) above the adopted health-based soil investigation levels. Three soil sampling locations recorded PAH contamination (TP15, TP16 and TP17) located within the western portion of the Site as shown on Figure 4, Appendix A. Soil contamination appeared to be within layers described as clayey silt, brown/dark brown mottled yellow (TP15, TP16 and TP17) or deeper sandy clay dark grey brown black staining from organic matter (TP17). Contamination indicators in these soil layers included strong hydrocarbon odours (described as 'sweet phenolic type' odours) during test pit excavations.

Based on desktop review, the inferred location of PAH site contamination (CMPS&F, 1994) appears the likely source of PAH and TRH contamination recorded in soil within identified test pits (TP15, TP16 and TP17) located within the

western portion of the Site. Considering the material was noted to have been capped, SMEC assessed there was a high likelihood for soil contamination within this area (AEC5) as outlined within the CSM. The contamination appears localised to the Unit 1D soil layer, noting soil contamination /fill type was not observed within remaining test pits (TP18 to TP24) located within the western portion of the Site.

Contamination potential within the former timber yard (AEC3) can only be assessed at a preliminary level noting this area was occupied by the existing stockpiled materials. One test pit (TP10) located within this area indicated contaminants of concern were below the adopted investigation levels. Further assessment is required to confirm whether contamination has occurred within AEC3, to be carried out during a supplementary stage of investigation once this area becomes accessible.

3.4.2 Pipeline route

Soil analytical results representing fill soils described as mainly black 'coalwash' gravel recorded elevated concentrations of lead above the adopted health-based soil investigation levels at one location BH06 at depths between 0.9m and 1.8m (refer to Figure 4, Appendix A). A similar layer was also logged at locations BH03 (0.6m) and BH04 (0.3m), noting slightly elevated lead concentrations albeit below adopted criteria.

3.4.3 Sitewide - Asbestos

Bonded asbestos containing materials (ACM) were observed at various locations on the Site surface (refer to Section 2.5) and within fill soils at four test pit locations (TP4, TP7, TP27 and BH08). Loose asbestos fibre bundles were also detected within shallow fill soils at one test pit location (TP27), noting the remaining sixty-one (61) soil samples tested at the Site did not detect the presence of asbestos. The source of the subsurface ACM is not known and could be associated with the quality of the fill. Considering the variable quality of the fill across the Site and some limitations of borehole observations along the pipeline route (BH01 to BH05), there remains a potential of bonded ACM to be encountered elsewhere on the Site.

Asbestos contamination identified at the Site may pose risks to workers at construction stage during ground engagement activities. In accordance with Work Health and Safety terminology, asbestos contamination encountered in the immediate vicinity of TP27 would be considered 'friable' due to presence of loose asbestos fibre bundles. At remaining areas of the Site, the results did not record the presence of 'friable' forms of asbestos within fill soils tested and bonded ACM was observed in 'good condition' (i.e. not easily broken or crumbled by hand pressure). Further management of asbestos exposure risks to workers (including an area of 'friable' asbestos near TP27) should be documented within asbestos management plans and unexpected finds protocols during construction stage.

3.5 Groundwater

Baseline groundwater quality and levels were assessed at the main terminal Site during two previous groundwater monitoring events; one in March 2021 during the preliminary investigation (SMEC, 2021a) and an additional groundwater monitoring event in October 2021.

During one or both rounds, contamination laboratory testing of groundwater samples was carried out for potential contaminants of concern and additional 'baseline' monitoring parameters:

- Heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
- TRH, BTEX, PAH Phenols
- OCP, OPP, PCB
- Volatile halogenated compounds (VHCs)
- Nitrogen (ammonia, nitrate, nitrite)
- Reactive phosphorus
- Hardness, total dissolved solids,
- Major cations (calcium, magnesium, potassium, sodium)
- Major anions (chloride, sulphate and fluoride),
- Alkalinity

- Dissolved heavy metals (aluminium, arsenic, cadmium, chromium (total), copper, iron, lead, mercury, nickel, selenium and zinc)
- Total heavy metals (aluminium, manganese and iron)
- Per and poly fluoro alkyl substances (PFAS)

Appendix B includes a laboratory summary table for groundwater samples.

The results of groundwater monitoring events in March and October 2021 recorded elevated concentrations of heavy metals (including cadmium, copper, lead, nickel and zinc) and ammonia which exceeded adopted groundwater investigation levels for protection of marine aquatic ecosystems at the 95% species protection level.

The exceedances recorded in groundwater were in general terms similar to those previously recorded in historical monitoring within this Site. Heavy metal exceedances have also been recorded in the broader Port Kembla foreshore lands. The groundwater quality is likely to be a regional issue from long term historical industrial activities and land reclamation with poorer quality fill in Port Kembla, including beneath and surrounding the Site. The quality of the groundwater is not likely to have an impact to the proposed development itself, but there is potential for impact to downslope ecological receptors.

Based on preliminary information at the time of this assessment, the development is unlikely to alter the current groundwater regime where conditions would be made worse to the surrounding environment. The proposed filling of the Site with clean fill and use of less permeable surface coverings (e.g. pavements) would likely reduce infiltration and potentially improve groundwater conditions. SMEC recommended NSW Ports should be made aware of the results of the groundwater quality and as the landowner, they should confirm their acceptance of the development given these groundwater conditions.

A groundwater assessment was not carried out in the western portion of the main terminal Site, noting limited groundwater interactions are expected from the proposed development in this portion. It cannot be concluded whether there are existing and future risks posed to the environment from possible groundwater impacts associated with the identified soil contamination in this area. We understand the pre-existing groundwater contamination (if any) is the responsibility of NSW Ports and may be required to be assessed or managed at a later stage.

Along the pipeline route, groundwater was not intersected and is unlikely to be intersected as part of the proposed development based on Site topography and subsurface observations, therefore an assessment was not carried out or considered relevant.

A standalone Groundwater Assessment and Management Report has been prepared to address SEARs pertaining to management of groundwater impacts during construction and operational phase (SMEC, 2022c).

4 Conceptual site model

4.1 Overview

The objective of the conceptual Site model (CSM) is to summarise pertinent information derived from the studies undertaken at the Site and surrounding areas into a document which identifies the following, and how they interrelate:

- The history of activities and land development at the Site and surrounding properties, including potentially contaminating activities and land uses.
- The environmental setting at the Site and surrounding affected properties.
- The inferred sources, nature and extent of contamination, including the various media affected by the contamination.
- The mechanisms for transport and attenuation of the contaminants, and exposure of identified receptors to the contamination.
- The potential health and environmental risks which the identified contamination is inferred to pose; and
- The potential contamination threat to the proposed development based on current and previous investigation work.

Based on the findings of the desk-based review, areas of potential environmental concern and associated contaminants of potential concern have been identified previously by SMEC (2021b and 2022). As the CSM is iterative, further revision to the CSM is expected be carried out based on the findings of additional detailed site investigation activities (refer to Section 6).

A CSM has been prepared which presents potential source(s), pathway(s) and ecological/human receptor(s) linkages. For a risk to exist all three components (source, pathway, receptor) of the CSM must exist. The CSM should form the basis for decisions regarding the scope of works for further assessment and the ongoing contamination management and remediation options.

The CSM is made up of contaminants of potential concern (CoPC) and receptors that could be exposed to the CoPC.

4.2 Contamination sources

Areas of Environmental Concern (AEC) and Contaminants of Potential Concern (CoPC) were assessed based on Site history information and Site observations. Identified AEC and CoPC are summarised in Table 4-1 below and shown on Figure 4, Appendix A.

Table 4-1 Areas of environmental concern

No.	AEC	Part of Site	Likelihood of Contamination*	Media Potentially affected	COPC
AEC1	Sitewide fill of unknown origin and quality during historical land reclamation activities (whole Site)	Main terminal and pipeline route	High (Unit 1B and general fill described as 'Coalwash' in pipeline route) Low (Unit 1A Cemented slag layer)	Soil and groundwater	Heavy metals TRH, BTEX, PAHs, OCP, OPP, PCB, asbestos
AEC2	Former scrap metal yard and former quarantine area (central) (circa 1980s)	Main terminal (Central)	Medium (Unit 1B)	Soil and groundwater	Heavy metals TRH, PAHs, Phenols, OCP, OPP, PCB, VHC
AEC3	Former timber yard (eastern portion) circa 1977 to 1993	Main terminal (Eastern)	Medium (to be assessed)	Soil and groundwater	Heavy metals TRH, PAHs, OCP, OPP, PCB
AEC4	Groundwater beneath the Site from surrounding industrial land uses	Main terminal	High (Heavy metals and inorganic compounds) Low (remaining PCOCs) Refer to SMEC (2021b)	Groundwater	Heavy metals TRH, BTEX, PAHs, Phenols, OCP, OPP, PCB, VHC Sulfur/nitrogen compounds, ammonia Acidity (low pH)
AEC5	Inferred location of PAH site contamination identified in previous report (CMPS&F, 1994) (within the western portion)	Main terminal (Western)	High	Soil and groundwater	Heavy metals TRH, PAHs, Phenols
AEC6	Historic railway line to Jetty No. 3 and Jetty No. 4	Pipeline route	Medium	Soil	Heavy metals Asbestos TRH, OCP, OPP
AEC7	Acid production pipeline	Pipeline route (Chainage 390m to 460m)	Low	Soil	Acidity (low pH)
AEC8	Former building structures associated with Jetty operations including: weathering of hazardous building materials and/or ineffective demolition practices Chemical usage/storage/spillage (unknown potential)	Pipeline route	Medium	Soil	Heavy metals TRH, BTEX, PAHs, OCP, OPP, PCB, asbestos

^{*}Notes: This is a qualitative assessment of likelihood of contamination being detected from the data reviewed, not financial or other risk associated if contamination were to be detected (Low, moderate or high).

Heavy Metals (Arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRH (Total Recoverable Hydrocarbons), BTEX (benzene, toluene, ethylbenzene, xylene), PAH (Polycyclic Aromatic Hydrocarbons), OCP

(Organochlorine pesticides), OPP (Organophosphate pesticides), PCB (polychlorinated biphenyl's), VHC (Volatile halogenated compounds), VOC (Volatile organic compounds)

4.3 Exposure pathways

The pathways of exposure could consist of:

- A transport mechanism
- A route of exposure.

Based on Site information, there is potential for the following contamination pathways to exist at the Site:

- Disturbance of potential soil contamination and exposure by ingestion, dermal contact or inhalation
- Air transport of particulates (dust) and exposure by inhalation
- Vapour intrusion and inhalation
- Surface water runoff
- Leaching into (vertical) and migration of (lateral) contaminated groundwater.

4.4 Potential receptors

4.4.1 Human receptors

Based on the information available, and the proposed land use as industrial bulk ethanol storage facility and pipeline route the potential human receptors have been assessed to include:

- Site workers during future construction works or future maintenance activities
- Site workers during operation of the storage facility (main terminal only)
- Surrounding industrial Site occupants and workers.

SMEC consider that groundwater beneficial users are unlikely for a coastal port area, noting registered groundwater bores are for monitoring purposes. Groundwater would be saline.

4.4.2 Ecological receptors

Based on the information available, and the current and proposed land use the potential ecological receptors could comprise of:

• Downgradient aquatic ecosystems within marine harbour environment

For a proposed industrial ethanol storage facility and pipeline route, onsite ecological receptors such as terrestrial organisms and plants are not considered relevant for this Site.

4.5 Source pathway receptor linkages

Potential source-pathway-receptor linkages are where contaminated media (e.g. soil, surface water and/or groundwater) (if present) has the potential for adversely impact on human health or ecological values for the Site via complete exposure pathways. For a risk to exist all three components (source, pathway, receptor) of the CSM must exist.

The following is considered:

- During redevelopment of the ethanol storage facility and pipeline route, plausible linkages may occur for construction workers, surrounding users and ecological receptors in adjacent waterways during development/disturbance of the Site. Soil disturbance may cause potential exposure via dermal contact, inhalation of dusts and/or ingestion of soils/groundwater and sediment mobilisation into waterways.
- During operation, there are unlikely to be potential source-pathway-receptor linkages to human receptors where potential contamination remains buried beneath a capping layer of suitable fill materials. Exposure scenarios would be limited to intrusive maintenance workers for which long term management measures would apply.

• Groundwater exposure pathways are plausible to human health receptors during construction at the main terminal only (i.e. intersected during earthworks for piles installation, installation of stormwater tanks and gross pollutant traps, and/or trenching for underground utilities trenches). Plausible exposure pathways are not considered during operation with human receptors. Due to proximity to the Port Kembla Outer Harbour, plausible exposure pathways are possible with marine aquatic ecosystems upon groundwater discharge to the receiving harbour. Groundwater quality beneath the Site has the potential to vary based on groundwater flow directions, climatic influences and other migration of other offsite industrial contamination sources.

5 Remedial Action Plan

5.1 Remediation goal

The remediation goal is to manage pre-existing soil contaminant concentrations at the Site being leased such that redevelopment construction activities do not cause or further exacerbate contamination and that the Site:

- May be assessed to be suitable for its intended leased purpose (i.e. commercial/ industrial ethanol storage facility and pipeline route)
- Does not pose an unacceptable risk to human health.

A standalone Groundwater Assessment and Management Report has been prepared to address SEARs pertaining to groundwater (SMEC, 2022c). Based on current findings and due to limited groundwater interactions expected during the proposed redevelopment, remediation/management measures for groundwater contamination is not considered warranted. As outlined in the lease agreement with NSW Ports (ref Item 25 Environmental Obligations), it is understood that NSW Ports as landowners accept the current pre-existing groundwater conditions at the Site. This agreement requires Manildra not to cause or exacerbate any contamination or pollution as a result of the redevelopment.

5.2 Actions required

Based on the CSM presented in Section 4 and with reference to the conclusions and previous recommendations by SMEC (2021a, 2021b and 2022), the following further investigation and remediation is required at the Site:

5.2.1 Further investigations

Additional contamination investigations are required to supplement existing data and allow characterisation of the Site including within previously inaccessible areas of the main terminal (eastern portion) due to the large sandstone stockpile.

The objective will be to further assess if contamination potentially poses an unacceptable risk to human health and/or has the potential to preclude development of the Site for the proposed use. The findings of this investigation would also be used to assess whether there is a material change to preferred remedial options requiring a subsequent update to this RAP. Further details with respect to the investigations outlined above are presented in Section 6.

5.2.2 Remediation/management

Based on the current Site characterisation (Section 3) and conceptual site model (Section 4), soil fill materials described as Unit 1B (General Fill) in selected areas of the Site are impacted with:

- Heavy metals (arsenic and lead)
- Asbestos

Further, soil fill materials described as Unit 1D (Inferred location of PAH contamination) within the western portion of the Site are impacted with:

Polycyclic aromatic hydrocarbons (PAHs)

These soil contaminants were assessed to require remediation/management with respect to the proposed development. Although observed in selected areas of the Site, variability in ground conditions is expected, particularly for asbestos. On this basis, this RAP considers remediation/management is required for all soil fill materials described as Unit 1B (General Fill) and pipeline route fill, where required to be disturbed, and would be subject to validation screening during earthworks stages (Refer to Section 8.3.2).

Other occurrences of surface bonded ACM fragments and a buried asbestos pipe are also required to be remediated (refer to Section 2.5).

Remediation/management is not required for Unit 1A (Cemented slag) as this is considered to have a low likelihood for contamination and would be managed under an unexpected finds protocol.

Note: The above remediation/management strategy may need to be amended subject to the findings of further investigations results which remain to be completed across the whole Site.

Further details with respect to the remediation/management outlined above are presented in Section 7.

5.3 Remedial options review

5.3.1 NSW EPA remediation management hierarchy

The ASC NEPM Toolbox (Key Principles for the Remediation and Management of Contaminated Sites) outlines the preferred hierarchy of options for site clean-up and/or management as follows:

- On-site treatment of the soil so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level
- Off-site treatment of excavated soil so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level, after which the soil is returned to the Site.

If the above is not practicable, then other options for consideration should include:

- Removal of contaminated soil to an approved site or facility followed by, (where necessary) replacement with clean fill
- Isolation of the contamination on-site in an appropriately designed and managed containment facility
- A less sensitive land use to minimise the need for remedial works which may include partial remediation
- Leaving contaminated material in-situ providing there is no immediate danger to the environment or community and the Site has appropriate management controls in place.

ASC NEPM (1999) also indicates that:

- Clean-up should not proceed if the process is likely to create a greater adverse effect than leaving the Site undisturbed. This decision would need to be revised in the light of new technologies or clean-up strategies becoming available
- Sustainability of options should be considered.

5.3.2 Remediation Options Evaluation

CRC CARE has prepared a set of guidelines which form a National Framework for Remediation and Management of Contaminated Sites in Australia. Guidance is available on remediation options assessment, various remediation technologies and for implementation and post remediation.

The primary drivers for remediation on the Site are asbestos, heavy metals (arsenic and lead) and polycyclic aromatic hydrocarbons as they exceed health criteria, therefore the discussions that follow focus on these contaminants.

Table 5-1 below provides an appraisal of the above soil remedial options.

Table 5-1 Remediation Options Evaluation

Remedial Option	Discussion
On-site treatment and reuse	On-site treatment technologies for inorganic contaminated soils (such as arsenic and lead) or semi-volatile organic compound (including PAHs) could include chemical immobilisation and solidification. This involves mixing reagents into the contaminated soils to alter its physicochemical properties or by physically encapsulating the contaminants (for example within cement matrix). On-site treatment technologies for asbestos contaminated soils could include tilling/turning of the soils to facilitate removal. This involves mechanical disturbance to the depth of fill and systematic removal. The above on-site treatment technologies are usually employed for widespread contamination applications and require specific plant and equipment. Treatments can also be costly, have long time frames and may not reach end points. As the Site will be mostly covered by pavements/hardstand, potential exposure to the inorganic/asbestos contaminants will be prevented in the long-term suggesting treatment is unlikely to be required.
Off-site treatment and reuse back on-site	Like above. There are unlikely to be nearby offsite treatment facilities that would be cost effective.
On-site containment	Contaminated soils (including heavy metals, asbestos and/or PAHs) could be excavated and reused onsite beneath paved areas of the development. The bulk earthworks plan (SK-108B) shows several areas where there are opportunities for containment within proposed 'filled' areas beneath pavements. At the time of this RAP, concept designs are being developed as part of documentation for approval by the planning authority, Wollongong City Council. Where contamination impacts are widespread, the onsite containment option is expected to be more cost effective in comparison to removal offsite and replacement option. Some costs are expected to be associated with the design, construction and documentation of the intended placement area, implementation of environmental management measures during construction stage and ongoing administrative measures under a long-term environmental management plan.
Removal offsite and replacement	Contamination is removed from Site with no residual impacts. Removal offsite may also reduce the risk of secondary contamination by soil leaching into the underlying groundwater, which is noted to be approximately between 1.5-2.4 metres below ground level at the Site. This option is more suited for relatively smaller contaminated areas (or smaller excavations), noting cost-benefits depend mainly on the quantity of spoil and offsite disposal costs to landfill. Site characterisation indicated soil contamination may be associated with historic fill and/or former land uses suggesting a potential for widespread impacts. Variability in fill composition across the Site reduce certainty of assessed extents of soil contaminated layers. Therefore, this option is likely to be less cost effective in comparison to onsite containment option.
Management Strategy	Contaminated soils could involve adoption of a less sensitive land use or controls on Site activities in the contaminated area. For this option, administrative controls would be documented within an Environmental Management Plan. Like 'On-site containment', this option is preferred for widespread contamination impacts. For this Site, the relative cost-benefit from additional management measures within an ongoing industrial land use setting is likely to outweigh alternative remedial options.

5.3.3 Preferred Remedial Option

Based on the remedial options evaluation, a review of specific technologies is not considered warranted. The remedial option of on-site containment and long-term management strategy has been selected as the preferred option as this is seen as practical and cost-effective remedial option to address the Site contamination in consideration of the site specifics, these being:

• The Site is only being leased by Manildra

- Potential for widespread contaminated areas and larger soil volume (subject to ongoing assessment)
- Ongoing commercial industrial land use which would normally facilitate long term environmental management measures
- The bulk earthworks plan shows several areas where there are opportunities for containment within proposed 'filled' areas beneath pavements.

The preferred option has been selected in consultation with Manildra. It is recommended the preferred Site remedial strategy be discussed and agreed with NSW Ports as part of the review of this RAP.

6 Additional investigations

Additional stages of detailed site investigation have not been completed at the time of this RAP. SMEC propose to undertake the additional investigations using test pitting investigation techniques immediately following removal of the existing sandstone stockpile (estimated by June 2022).

For the main terminal Site, the NSW EPA (1995) Sampling Design Guidelines recommends a minimum of 33 sample locations to characterise a Site of this size. Therefore, it is proposed for 7 additional contamination investigation locations to supplement previous 26 investigation test pits. Soil samples will be tested for the identified contaminants of potential concern consistent with the previous investigation (refer to Section 3.2).

Figure 2, Appendix A shows the proposed additional test pit locations. Table 6-1 below outlines the proposed number/depth of additional test locations and outlines the proposed additional laboratory testing.

Sampling will be from test pits with soil samples collected at regular intervals, major changes in stratigraphy and any zones/layers with visual/olfactory evidence of contamination. Samples will be collected in duplicate and screened for volatile contaminants using a Photoionisation detector (PID).

Table 6-1 Summary of proposed additional laboratory testing

Indicative timing	Proposed no. of additional test locations (Depth)	Proposed no. of laboratory tests*	Contaminants of potential concern
After stockpile removal (June 2022)	7 test pits within the footprint of the stockpile once removed (Depth ~2.0m below ground level, or 0.5m below base of fill) Targeting AEC3 and areas of propose 'cutting' within the development	17 primary soil samples (7 locations)	Heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH, BTEX, PAH OCP, OPP, PCB Asbestos identification in soil

^{*} Indicative minimum number and subject to field observations and screening. At least 2-3 samples per location targeting major layers or visual contamination indicators as described earlier.

The DQOs that will be employed for this additional investigation are described in Section 5.1 of Detailed Site Investigation (SMEC, 2021b), and adopted DQIs are included in Appendix G.

7 Remediation works

7.1 Overview

The remedial works that are required to be carried out are described in the following subsections. Remediation works will involve the following general activities:

- Set up site controls
- Surface ACM removal
- Contamination management during earthworks activities including:
- Deep and/or localised excavations (i.e. stormwater features and pipework, other structural footings and/or foundations such as retaining walls))
- Shallow widespread earthworks (i.e. site recontouring as 'cut to fill')
- Pipeline route excavation (i.e. 'cut and cover' trenches and surplus material reuse/onsite containment)
- Onsite containment of contaminated soils
- Validation screening of excavated spoil to confirm suitability for onsite reuse (either restricted or unrestricted)
- Offsite disposal of asbestos wastes to a suitably licensed facility
- Preparing a validation report and long-term Environmental Management Plan (LTEMP).

7.2 Roles and responsibilities

An overview of the key roles and responsibilities for the implementation of the RAP are summarised in Table 7-1.

Table 7-1 Roles and Responsibilities

Role	Key Responsibilities	
Client / Principal Contractor* (Manildra)	Overall responsibility for the project Community consultation / stakeholder engagement Engaging a remediation contractor and environmental consultant Principal Contractor responsibilities Workplace safety Service location and disconnection Site security Site environmental management Incident response Site amenities	
Remediation Contractor (and licenced asbestos removal contractor)	All remedial works (excavation, disposal, survey etc) Prepare and implement Asbestos Removal Control Plan	
Guiding extent of remedial/management activities Validation observations, sampling, and analysis Environmental Consultant Provide advice if unexpected finds encountered Validation reporting Preparing LTEMP for onsite containment areas		

^{*} Assumes Manildra is the Principal Contractor

7.2.1 Responsibilities of asbestos removalist

7.2.1.1 Licensing and permits

Work Health and Safety (WHS) regulations place obligations on licence holders to ensure that asbestos work is performed in a manner that reduces the risk to the health of both asbestos workers and the public.

Asbestos removal works is required to be carried out by a contractor with an NSW asbestos removal licence. Friable asbestos removal requires a Class A licence. Based on previous observations, the asbestos observed/detected at the Site was primarily in bonded form, except for single soil sample (TP27/0.2-1.0) which detected 'fragments and loose fibre bundles' within fill soils (SMEC, 2021b).

SafeWork NSW is to be notified five calendar days before undertaking licenced asbestos removal work using the appropriate online notification form.

A copy of the licence must be displayed at the place of work.

7.2.1.2 Asbestos removal control plan

The asbestos removalist must develop an Asbestos Removal Control Plan (ARCP), specific to the Site, before commencing any asbestos removal work. The ARCP shall be based on the removal requirements contained within this RAP. The purpose of the ARCP is to help ensure the removal is well planned and carried out in a safe manner and shall address all details relevant to the removal job.

The asbestos removalist shall consult with the primary works contractor to finalise the ARCP, and Manildra shall be provided with a final copy of this plan.

The presence or likelihood of other hazards associated with the asbestos removal work shall be assessed by the asbestos removalist.

7.2.1.3 Supervisory personnel

The asbestos removalist must ensure the removal is adequately supervised and is carried out in a safe manner by ensuring that a nominated supervisor recognised by SafeWork NSW is always on site when licensed work is being carried out.

Appropriate qualifications generally include successful completion of SafeWork NSW recognised courses in asbestos work and asbestos supervision, appropriate experience in asbestos work, and the ability to demonstrate safe work methods.

The asbestos removalist shall ensure all supervisory personnel have a detailed knowledge of the precautions and procedures outlined in this technical specification.

The supervisory personnel shall ensure that the primary works remediation contractor and Manildra are reliably and regularly informed of the progress of the removal work.

The licence holder must notify SafeWork NSW in writing of any changes to the nominated supervisor within seven working days.

7.2.1.4 Competence

All persons involved in the removal of ACM must be competent for the tasks allocated to them. The licence holder must ensure asbestos workers have had training in safe work methods in asbestos work.

7.2.1.5 Training and information for asbestos removal workers

Persons carrying out asbestos removal work shall be trained so they can carry out this work safely and without risk to their own health or the health of others.

This training must reflect the specific type of asbestos work to be undertaken.

Asbestos removalists shall keep a written record of all training provided to each of their asbestos removal workers and ensure these records are readily accessible.

Asbestos removalists shall also provide the following information to all their asbestos removal workers and to all applicants for employment as an asbestos removal worker:

• The health risks associated with exposure to asbestos

• The need for, and details of, health surveillance, including medical examinations in accordance with the Guidelines for Health Surveillance [NOHSC: 7039 (1995)].

7.3 Approvals, notifications, and licences

State Environmental Planning Policy No 55 - Remediation of Land under the Environmental Planning and Assessment Act 1979 indicates that remediation is categorised as:

- Category 1 requiring consent; or
- Category 2 not requiring consent (and giving Council 30 days' notice).

The proposed development has been submitted for approval to NSW Department of Planning and Environment via a State Significant Development (SSD) application. We understand that remedial works will fall under the requirements of the application. This remedial action plan will form part of the approval process for the whole of the development and is therefore captured under Category 1.

Asbestos removal works is required to be carried out by a contractor with an NSW asbestos removal licence. Friable asbestos removal requires a Class A licence. SMEC (2021b and 2022) assessed the asbestos found at the Site in the investigation phase was primarily occurred in bonded form, except for single soil sample (TP27/0.2-1.0) which detected asbestos as 'loose fibre bundles' within fill soils (SMEC, 2021b).

SafeWork NSW is to be notified five calendar days before undertaking and licenced asbestos removal work using the appropriate online notification form.

An Environment Protection Licence may be also required to facilitate the lawful materials transport of excavated surplus materials from the pipeline route via Foreshore Road (offsite) for reuse/onsite containment within the main terminal Site (refer to Section 9.1.7.1). Further clarification is being sought from NSW EPA on this matter.

7.4 Site set up and controls

A remediation contractor will set up the Site with appropriate temporary fencing, access, and environmental controls. These are described in more detail in Section 9.1.

7.5 Asbestos removal

7.5.1 Surface ACM removal

SMEC (2021a, 2021b and 2022) previously identified several fragments of bonded ACM at the ground surface (refer to Section 2.5 and Figure 4, Appendix A) and recommended removing all surface asbestos prior to any development works commencing. Prior ACM removal activities have already occurred by NSW Ports and asbestos clearance documentation recorded and provided to Manildra (refer to Section 2.5).

Additional inspections and clearances of surface ACM are required for remaining Site areas prior to any development works commencing including, but not limited to:

- Main terminal Western portion
- Pipeline route (Chainage 180 to Chainage 460m) (non-paved areas only)

Unless carried out by the landowner, Manildra's appointed remediation contractor should arrange for remaining surface ACM fragments to be removed from the ground across the remaining areas of the Site prior to any earthworks.

Asbestos removal is to be carried out by a suitably licenced asbestos removalist under an asbestos removal control plan prepared by them. Disposal dockets are to be retained for the validation report. A clearance inspection is to be carried out by a competent person following asbestos removal works and successful clearance obtained prior to demolition/earthworks commencing.

Where occurrences of ACM are observed by Manildra at the surface, these should also be removed in accordance with the stated requirements. A clearance certificate is to be issued confirming this has occurred.

7.5.2 Location and removal of asbestos pipes

SMEC (2021a and 2021b) previously identified a buried asbestos pipe within the sub-surface in the central portion of the main terminal Site (refer to Figure 5, Appendix A). The depth and extent of this pipe is not yet confirmed however based on proposed earthworks; this pipe has potential to be disturbed during the development. Other existing pipes not yet observed have potential to contain asbestos.

The asbestos removal contractor will develop a methodology to safely expose and remove the pipe, including exposing in all directions to terminus and safe removal. The pipe(s) could extend a significant distance and could have branches. The methodology should avoid any cutting or damage to avoid generation of smaller fragments/dust, with the pipe to be removed in segments at joins (or similar).

Where the pipe is encountered in a fragmented state or the act of excavation inadvertently breaks up the pipe, the pieces should be picked out of the trench and validation should comprise visual inspection and soil sampling. If the pipe can be excavated as a whole piece, then visual clearance only may be adequate.

Exposing pipes at any other stormwater related surface drains onsite should also be carried out to check if they are ACM and if so, removed as described above. Dust suppression techniques e.g. water misting should be used during pipe removal works (refer to Section 9.1.10).

7.6 Contamination management during earthworks activities

7.6.1 General

Earthworks activities will be carried out assuming fill soils are 'contaminated' until such time as they are either segregated or confirmed to be 'uncontaminated' with strict material management and tracking protocols. 'Contaminated' soils will be temporarily stockpiled separately before being placed in onsite containment areas and capped using a suitable capping profile. Once confirmed by validation screening, 'uncontaminated' soils will be permitted for reuse onsite without restrictions.

As outlined in the remedial goals (Section 5.1), Manildra will not remediate/manage pre-existing contamination issues which will not be disturbed during redevelopment within the Site (including at depths beneath or areas beyond proposed disturbance) and/or are outside the Site study boundary.

Figure 5, Appendix A shows the proposed earthworks extents and onsite containment areas identified within the Site. These areas described in the following sections of this RAP.

Excavation works must be carried out in manner that reduces the potential for contamination of soils in other areas of the Site or cross-contamination of remediated areas. Excavation will be carried out in line with the following general items and more specifics for certain areas are provided in sections below:

- Locate and disconnect all underground utilities entering the Site
- Disconnection and/or measures to protect overhead utilities (if any) should be considered if they could interfere with the proposed works
- All earthworks activities will be carried out under asbestos removal controls for the duration of the earthworks at
 the Site. Any 'contaminated' soils are required to be segregated for onsite containment under asbestos removal
 controls. Any occurrences of bonded ACM fragments which are observed/encountered on surface of disturbed
 areas are required to be progressively removed for offsite disposal (refer to Sections 7.5.1 and 7.7). Once
 confirmed by validation screening, 'uncontaminated' soils may be permitted for reuse onsite without
 restrictions.
- Suitable machinery to be selected for the works based on the Site constraints. Geotechnical implications will also be considered by the remediation contractor as necessary such as effects on adjacent structures from vibration or undercutting near stormwater channel.
- Excavation works to be carried out with care to reduce potential for cross contamination. Excavation works will avoid machinery tracking back into remediated areas. If re-tracking into clean areas is required, machinery must be decontaminated before entering clean areas
- 'Contaminated' soils will be segregated and stockpiled separately from 'uncontaminated' soils for reuse onsite subject to the results of validation screening (also refer to Section 8.3.2). 'Contaminated' soils will be restricted

for reused within onsite containment areas only, whereas 'uncontaminated' soils will be permitted for unrestricted reuse onsite.

- An environmental consultant with suitable experience will be present onsite to guide the excavation of
 contaminated soils. The excavations will be extended to pre-determined limits or further if there is visual or
 olfactory evidence of impact
- Adequate protection will be provided around the perimeter of the excavations that are left open such as temporary fencing or barriers, along with warning signs, in accordance with SafeWork NSW requirements.

Further details on specific requirements for proposed excavations are included below.

7.6.2 Deep excavations

Deeper excavations (typically greater than 1.0m below ground level) will be carried out at selected areas of the Site for installation of stormwater treatment units, pipework and preparation of gravity retaining wall foundations. Deep excavations will also be carried out along the underground section of the pipeline route to No. 4 Jetty between Chainage 180m and Chainage 460m. Some temporary vertical shoring or terracing/benching is likely to be required to facilitate deeper excavations and installations, subject to further geotechnical assessment.

Figure 5, Appendix A shows the indicative locations of deeper excavations. Based on information supplied to SMEC, preliminary estimated dimensions for excavations include:

- Excavation 1 Proposed stormwater treatment unit (approximately 3m x 3m x 3.0m depth)
- Excavation 2 Proposed stormwater treatment unit (approximately 3m x 3m x 3.3m depth)
- Excavation 3 Proposed underground storage tank (approximately 10m x 5m x 4.5m depth)
- Gravity retaining wall excavation Linear trench excavation (approx. 220m) of concrete footing with dimensions (continuous approximately 1.3m wide by 1.0m depth below existing ground level, with multiple concrete backhoe piers 0.45m wide by 2.0m depth below existing ground level).
- Stormwater pipework Linear trench excavation (approx. 600m) are anticipated to be 0.5m wide by 1m depth below existing ground level. Installation is expected to involve 'cut and cover' trenches reusing materials excavated during reburial, excluding surplus spoil material.
- Pipeline route excavation Linear trench excavations (approx. 280m) are anticipated to be 2.0m wide by 1.8m depth below existing ground level. Installation is expected to involve 'cut and cover' trenches reusing materials excavated during backfill (minimum 1.2m compacted backfill), excluding surplus spoil material.

The Site investigation previously identified mainly bonded asbestos (i.e. fragments of ACM fibre cement sheeting in good condition), except for location TP27 (depth between 0.2 and 1.0 m bgl) where loose asbestos fibre bundles were detected in a single soil sample (i.e. one of 61 samples tested). Asbestos at TP27 is considered 'friable' in accordance with Work Health and Safety terminology (Section 3.4.3). Heavy metal impacts were also detected within fill and underlying natural soils at selected locations of the main terminal (Section 3.4.1) and pipeline route (Section 3.4.2).

The following will apply to deep excavations:

- Deeper excavations will be carried out under the guidance of an environment consultant to visually monitor for
 evidence of contamination and undertake initial segregation of fill and natural soils. This will include separation
 of fill layers Unit 1A (Cemented slag) from Unit 1B (General fill) and other suspected contaminated layers.
- Deeper excavations will be carried out in the presence of an asbestos removalist (refer to Section 7.2.1) in accordance with the ARCP. Controls will be adopted as follows:
 - Excavation 1 and vicinity: The whole of Excavation 1 will be carried out under supervision of a Class A licensed asbestos assessor and specifically including airborne fibre monitoring during disturbance activities (refer to Section 9.1.10.2). To account for potential risks in surrounding areas, the same control applies to shallow earthworks cuts within a minimum diameter of 31m around TP27 (based on NSW EPA 1995 Sampling Design Guidelines Table 1 minimum hot spot diameter (31 metres) based on the approximate grid size for the Site of the main terminal).
 - Remaining Site excavations: Bonded asbestos contamination was identified within soils across some areas
 of the Site main terminal and pipeline route (refer to Section 3.4.3). Remaining Site excavations through
 general fill are considered 'suspected ACM' subject to visual screening during earthworks. Therefore, Site

excavations will be carried out in accordance with the controls suitable for 'bonded asbestos' (generally excluding air monitoring, following initial precautions - See Section 9.1.10.2).

- Fill soils from Unit 1A (cemented slag) will not require remediation/management measures and are permitted for unrestricted reuse.
- Fill soils from Unit 1B (General fill) and topsoil/fill along the pipeline route are required to be visual screened and undergo validation sampling carried out to assess their quality (including asbestos and heavy metals) and suitability for unrestricted reuse (Section 8.3.2). 'Contaminated' soils will be restricted for reuse to containment areas.
- Any occurrences of bonded ACM fragments which are observed/encountered on surface of disturbed areas are required to be progressively removed for offsite disposal (refer to Sections 7.5.1 and 7.7).
- Natural soils including thin estuarine layer (dark coloured clayey soils) and aeolian sand are required to undergo validation sampling to assess their quality (including heavy metals only) and suitability for unrestricted reuse. 'Contaminated' soils will be restricted for reuse to containment areas. Where applicable, soil treatment and verification of possible acid sulfate soil layers would be managed by the Acid Sulfate Soils Management Plan (SMEC, 2022b) (refer to Section 9.1.6)
- Once confirmed by validation screening, 'uncontaminated' soils will be permitted for unrestricted reuse, including as deep excavation/trench backfill material subject to geotechnical requirements.

7.6.3 Shallow excavations

Shallow earthworks (typically less than 1.0m) will be carried out across widespread areas of the Site to achieve site recontouring and preparation retaining walls. The Bulk Earthworks Plan (ref: 20399-C07, copy included in Appendix D) indicates red shaded areas of proposed 'cutting' and green shaded areas of proposed 'filling'. The Site Grading and Drainage plan (ref: 20399-C07, copy included in Appendix D) indicates a diversion swale 'cutting' and stormwater pipe in the western portion of the Site will involve excavation through areas identified within AEC 5 (Inferred location of PAH site contamination).

Figure 5, Appendix A shows the indicative extent of shallow excavations. Due to relatively shallower depth and widespread area, Manildra are proposing to use earthworks machinery suited for site recontouring (i.e. front-end loader, graders or similar).

Shallow excavations which only disturb less than the depth of Unit 1A (Cemented slag) will not require remediation/management measures. Shallow excavations which have potential to intersect layers of Unit 1B (General fill) will require the similar management protocols for fill materials as for deep excavations, with some modifications.

The following will apply to shallow excavations:

- Shallow excavations will be carried out under the guidance of an environment consultant to visually monitor for evidence of contamination. The environmental consultant will consider findings of both previous and additional contamination investigations, to inform segregation of fill within certain 'suspect' areas of the Site.
- Fill soils excavated from Unit 1B (General fill) are required to be visually screened and undergo validation sampling carried out to assess their quality (including, at a minimum, asbestos and heavy metals) and suitability for unrestricted reuse (refer to Section 8.3.2). 'Contaminated' soils will be restricted for reuse to containment areas.
- Any occurrences of bonded ACM fragments which are observed/encountered on surface of disturbed areas are required to be progressively removed for offsite disposal (refer to Sections 7.5.1 and 7.7).
- Once confirmed by validation screening, 'uncontaminated' soils will be permitted for unrestricted reuse, including within filling areas of the Site.

In addition, the following will apply to shallow excavations (involving diversion swale 'cutting' and stormwater pipe excavation) through areas identified within AEC 5 (Inferred location of PAH site contamination):

At design stages, the primary strategy will be to redesign these drainage features to avoid and minimise
disturbance of the contaminated layer of PAH impacted fill soils below 0.3m below ground level (refer to Figure
4, Appendix A). At the time of this RAP, Manildra were seeking to redesign/relocate the diversion swale away
from this portion of the Site.

- Where unable to avoid disturbance, shallow excavations which expose the layer of Unit 1D (Fill within the
 inferred location of PAH contamination) are required to be carried out to a depth enabling replacement of
 minimum 0.3m thick 'clean' cover. The objective will be to restore the same minimum depth cover as existing
 over the identified Unit 1D (Fill) layer, and beneath proposed development features (i.e. diversion swale, service
 road)
- Fill soils excavated from Unit 1D (Fill within inferred location of PAH contamination) are required to be visually screened and undergo validation sampling to assess their quality (including PAHs) and suitability for unrestricted reuse (Section 8.3.2). 'Contaminated' soils will be restricted for reuse to containment areas.

7.6.4 Onsite containment areas

Preliminary considerations on the proposed locations and requirements of onsite containment areas are outlined in the sections below. These may be subject to change based on the outcomes of review and development during consultation with the landowner (NSW Ports). Updated and/or confirmed details on requirements for onsite containment would be documented within subsequent revision of this RAP or validation report. Any changes are to follow the general principles as described in the following sections.

Proposed onsite containment areas are shown on Figure 5, Appendix A.

7.6.4.1 Location and depth requirements

Onsite containment areas are required to be confirmed based on project design requirements. Preliminary areas have been identified and are described below. The location and depth of onsite containment areas will be considered based on the following aspects and general criteria. Containment areas will:

- Be in general fill areas (i.e. not within areas of proposed cut)
- Be beneath proposed paved areas
- Be in non-structural fill areas (this can be permitted but subject to assessment of geotechnical suitability)
- Include a capping profile made of non-contaminated material with a minimum covering (refer to Section 7.6.4.3)
- At a minimum be able to accommodate 0.5m thickness (on average) of impacted soil to achieve sufficient capacity (refer to Section 7.6.4.2)
- Avoiding areas of buried utilities and structures (i.e. pipework tanks). Alternatively, dedicated service conduits free of impacted material will be incorporated (Refer to Section 7.6.4.4).
- Be designed so that impacted soils are not placed in proximity to or below groundwater table (i.e. no deeper than 1.5m depth or below 1m AHD whichever is shallower)
- Avoid areas immediately adjacent to surface water (i.e. at least 10m from stormwater channel and harbour). This set back requirement may be reduced where fill is placed against a suitably designed impermeable bund.
- Be in defined and surveyed areas able to be accessed/relocated in future by the landowner (Refer to Section 7.6.4.5)
- Specifically, 'friable asbestos' impacted soils (where applicable) should be placed together, kept separate from other soils and placed immediately within the pre-prepared containment area so as to reduce the need for temporary stockpiling and increased exposure from generation of airborne dusts during materials handling.

Based on discussions with Manildra, four potential onsite containment areas have been identified and shown on Figure 5, Appendix A. These include:

- Area A (550m²) Beneath proposed office and workshop This is a preferred location in terms of the above criteria
- Area B (650m²) Beneath proposed tank bund area This area is least accessible, but generally satisfies the remaining criteria
- Area C (550 m²) Adjacent existing filled terrain embankment within a constructed cell This area would be
 above ground level adjacent existing filled terrain and suitable constructed bund adjacent the existing
 stormwater channel. Except for closer proximity to stormwater channel, this generally satisfies the remaining
 criteria.

Area D (250m²) (Contingency only) – Beneath hardstand areas adjacent to harbour – This area is noted to be
close in proximity to surface water and groundwater receptors and is unlikely to be suitable/practical for soil
contaminants of heavy metals and PAHs. This area is nominated as contingency only for validated soils with
asbestos impacted soils only.

7.6.4.2 Required capacity

The onsite containment area capacity requirements have been assessed at a preliminary level based on estimated calculations of surplus spoil material volumes.

Table F1, Appendix F includes a calculations sheet of surplus spoil material volumes based on assumed excavation dimensions and geometry of proposed 'deep' excavations, (subject to confirmation). Shallow excavations during site recontouring (i.e. cut to fill) have been excluded from the calculations sheet, assuming that soils are 'uncontaminated'. In summary:

- Estimated volume of surplus spoil material is approximately up to 1,200m³ surplus spoil material generated from deeper excavations.
- Estimated volume of 'contaminated' spoil material (i.e. requiring containment) is approximately 600m³ based on assumed proportion of 50% of all spoil generated. This was a conservative assumption made based on Site characterisation in Section 3, and in discussions with Manildra regarding the further opportunities for contamination management as outlined within the contingency plan (Section 7.11).
- Assuming approximately 50% of surplus spoil is 'contaminated', the required containment area capacity would be approximately up to 1,200m² assuming an average 'contaminated fill' thickness of 0.5m.

Based on the above preliminary estimates, the required containment area capacity would be approximately up to 1,200m² assuming an average 'contaminated fill' thickness of 0.5m, noting this area may change subject to actual depth requirements and other constraints. It is expected that this capacity may be achieved where 'uncontaminated' soils (including selected fill and natural) are able to be segregated for unrestricted reuse, thus reducing surplus spoil volume for onsite containment.

- A preferred combination of Area A, Area B and Area C (Combined area 1,750m²) is expected to have sufficient containment area capacity. If required, Area B (second preference) would provide contingency areas.
- Where additional capacity is required during construction phase, Area D (least preferred) would provide additional contingency onsite containment areas. Due to proximity to harbour foreshore, Area D contingency area may be used for 'asbestos only' contaminated soils which a validated suitable for other contaminants of concern.

It is noted the proposed containment areas in this RAP are subject to changes (size, dimensions and layout) based on further design changes and Site earthworks requirements.

7.6.4.3 Minimum capping profile requirements

The cap on this site is primarily to provide a separation layer between users and the contamination in a heavy industrial setting and prevent future access and disturbance. Considering the Site will mostly be comprised of a paved and hardstand final cover, SMEC recommend the capping profile be made of non-contaminated material with a minimum covering as follows:

- In paved areas (e.g. asphalt/concrete) minimum 0.3m below finished level (with a marker layer) (thicker if design levels permit)
- Hardstand areas minimum 0.5m below finished level with a marker layer
- Where filling capacities allow, thicker caps greater than minimum 0.5m below finished level will be designed to reduce the future likelihood of needing to intersect impacted material due to maintenance requirements.

A geotextile marker layer is required to provide warning of presence of soil contamination and provide full coverage across the containment area. The selected geotextile should be water permeable, high visibility, and durable for the expected lifespan. Alternatively, a layer of crushed rock above contaminated soils may be used as a visible marker layer. Other aspects such as geotechnical suitability for the proposed areas are required to be assessed.

7.6.4.4 Accessibility to buried utilities

A brief review of Dial Before You Dig drawings shows the indicated onsite containment areas are typically away from existing utilities, except for communications cable (Telstra, and NBN, possibly redundant) indicated within Area A near the boundary of the sewage pump station.

A review of proposed development drawings shows proposed utilities including:

- Area A: Proposed rainwater pipeline beneath proposed office and workshop adjacent the Site boundary. Other
 potential utilities drawings (i.e. comms, electrical, sewer) were not made available at the time of this RAP
 revision, albeit likely to be required at Area A. The possibility of overhead connections to utilities remains to be
 confirmed.
- Area B and Area C: No proposed or existing utilities are present within these areas.
- Area D: Proposed stormwater pipework, gross pollutant trap and associated structures are within Area D near the harbour foreshore

As recommended by WA DoH (2009), SMEC recommend further consideration be given to location, size and layout of existing/future buried utilities within the onsite containment area (particularly Area A) to maintain accessibility to these utilities for future repairs/maintenance.

7.6.4.5 Survey

Upon completion, a survey of the actual position of onsite containment area(s) will be carried out by a registered Surveyor. The survey will include easting, northing and reduced levels at each of the corners of the cell (additional locations for irregular features) to an anticipated accuracy of about ±0.1 m referenced to the Map Grid of Australia (MGA2020). The containment area location details and diagram are required to be included within validation reports and long-term environmental management plan (LTEMP). The containment area contaminants of concern (including, for example, where 'friable' asbestos contaminated soils are buried) are required to be specified in the LTEMP.

7.7 Offsite disposal (Asbestos waste)

Bonded asbestos waste removed from surface and/or excavated contaminated soils excavated within the proposed remediation extents will require disposal offsite to a licensed solid waste facility.

Bonded asbestos waste must be removed in whole pieces where possible and double wrapped in 0.2mm thick plastic bags and sealed with tape and adequately labelled. The plastic wrapped waste should then be loaded onto a truck for off-site disposal.

The waste classification of bonded asbestos pre-classifies as 'Asbestos Waste (special waste)' in accordance with NSW EPA (2014) Waste classification guidelines, Part 1 Classifying waste. Where bonded asbestos is intermixed with soils, the soil waste would need to be chemically assessed prior to disposal offsite to a licensed waste facility.

Potential facilities licensed to accept the waste materials (including potential asbestos wastes) would be confirmed by the remediation contractor. All waste disposal documentation and consignments will be retained for inclusion in the validation report.

7.8 Water in excavations

If rainwater accumulates within the excavation prior to the completion of remedial works, this will be disposed offsite appropriately which may include:

- Disposal via a licensed liquid waste contractor to an appropriate facility
- Disposal to stormwater under relevant guidelines and approval from Council or relevant Authority with any supporting testing and monitoring requirements.

All waste tracking and disposal dockets will be kept for inclusion in the validation report.

Groundwater ingress into deep excavations (Excavations 1 and Excavation 2) will not be removed noting high permeability sandy soils. The exception is for Excavation 3 where a dewatering strategy will be implemented as documented within the Groundwater Assessment and Management Report (SMEC, 2022c).

7.9 Excavation backfilling (as required)

Deep excavations are expected to generate surplus spoil, with potential to be reused as backfill subject to validation. Shallow excavations involving site recontouring are expected to require additional backfill, noting the bulk earthworks plan requires approximately 1,000m³ additional fill to achieve the design Site level (refer to Section 1.3). This earthworks balance shortfall may be supplemented by:

- Approximately 650m³ surplus excavated materials which are expected to be generated from pipeline route excavations (refer to Table F1, Appendix F)
- Balance to be imported fill.

The following will apply to excavation backfilling:

- Where 'uncontaminated' soils are to be reused as backfill, no backfilling will be permitted until the receipt of validation results which have met adopted remediation criteria. Validation of imported material is further discussed in Section 8.3.2.
- Where 'contaminated' soils are to be placed within onsite containment areas, backfilling must adhere to the minimum capping profile requirements including adequate cover and placement of marker layers (refer to details within Section 7.6.4).
- Imported material will be assessed suitable for use on the Site from a contamination and geotechnical perspective prior to use. Validation of imported material is further discussed in Section 8.3.3.
- The excavations will be backfilled and compacted to a standard acceptable for the proposed development.

Copies of all imported materials dockets will be retained to confirm the source, type, and quantities of materials for inclusion in the validation report.

7.10 Unexpected finds

Unexpected finds of potential contamination onsite may be identified by visual appearance and/or olfactory evidence during earthworks. An unexpected finds protocol has been developed and is included in Appendix E which will be followed in the event of an unexpected find.

Contamination issues already identified at the Site (e.g. trace occurrences of bonded ACM in soil) will not be regarded as unexpected finds and can be managed via the methods described in this RAP.

7.11 Contingency plan

The proposed remediation option of onsite containment and long-term management strategy has a high likelihood of meeting the remediation goals and it would be unusual for this method not to be successful. Alternatives are not considered warranted at this stage. Should the findings of additional investigations carried out result in a material change to the remedial strategy, this RAP would be amended for suitable alternative. These changes have the potential to include:

- Avoiding ground disturbance through amending design levels (where practicable)
- Excavation and offsite disposal of contaminated soils unsuitable for onsite reuse or containment.

Any changes to remedial strategy would be made in consultation with the landowner NSW Ports or TfNSW (as relevant) and be documented within a subsequent revision of this RAP.

7.12 Remediation schedule

A remediation schedule will be developed by the remediation contractor based on their work methodology.

8 Validation Plan

8.1 Data Quality Objectives

Data quality objectives (DQO) were developed for this project and are based on the requirements described in ASC NEPM (1999). Data Quality Indicators (DQIs) are included in Appendix G.

Step 1 State the problem

The primary objectives of the validation are to confirm that areas identified as requiring remediation have been successfully remediated.

The main considerations are:

- How many samples should be collected?
- What sample layout should be used to achieve the above objectives?
- What analytes should be tested?

Step 2 Identify the decisions / goal of the study

As per the remediation goal in Section 5.1.

Step 3 Identify information inputs

The following are the information inputs for the validation:

- A review of previous reports undertaken at the Site
- Field observations
- Laboratory results
- Applicable NSW EPA endorsed guidelines
- Data quality indicators and data validation.

Step 4 Define the study boundaries

Horizontally, the study boundaries are the defined by the extent of the earthwork's activities within the Site boundary as shown on Figure 5, Appendix A. Remaining undisturbed areas within the Site boundary are excluded.

Vertically, the study boundary is defined as the depth of the earthworks activities which is expected to vary from 0.5m to 4.5m depth.

Step 5 Develop the analytical approach (decision rule)

The decision rule for soil will be as follows:

- If contaminant concentrations for each sample are below the remediation criteria, then soils will be 'uncontaminated' and permitted for unrestricted reuse within the Site.
- Exceedances outside the above will consider the soils to be 'contaminated' and restricted to reuse only within containment areas where they will be covered by a suitable cap and managed under a Long-Term Environmental Management Plan.

Step 6 Specify performance or acceptance criteria

We have assumed the following to be true in the absence of contrary evidence (i.e. the null hypothesis):

Contamination at the Site currently poses a potential risk to human and/or environmental receptors.

The possibility exists of making the following decision errors based on the data obtained during this investigation:

- Type 1 error Deciding the above null hypothesis is false, when it is true.
- Type 2 error Deciding the above null hypothesis is true, when it is false.

The consequence of making a Type 1 error is more detrimental as it can result in adverse consequences or may include material impact to human and environmental health. The consequence of making a Type 2 error may result in an overly conservative assessment of risk and unnecessary expense of additional remediation.

The potential for decision errors will be minimised by completing a robust quality control program and by completing an investigation that has an appropriate sampling and analytical density for the purposes of the investigation. The QA/QC program will conclude if the data collected is useable, partially useable with some limitations, or unusable in forming conclusions to the assessment. The assessment will be carried out as per the DQIs (completeness, comparability, representativeness, precision and accuracy) in Appendix G.

Step 7 Optimise the design for obtaining data

Sampling will be carried out in accordance with the validation plan in Section 8.3.

8.2 Remediation criteria

8.2.1 General

Remediation criteria has been selected from investigation levels from the following references:

- The National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM 1999)
- Friebel and Nadebaum (2011) CRC Care Technical Report No. 10 Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater.

ASC NEPM requires consideration be given to Health-based Investigation Levels (HIL), Health-based Screening Levels (HSL) for petroleum hydrocarbons, Ecological Investigation Levels (EIL), Ecological Screening Levels (ESL) for petroleum hydrocarbons, Management Limits, and aesthetic issues.

At this stage, the driver for remediation on this Site is heavy metals (lead, arsenic), bonded asbestos (except for single location of 'friable asbestos' TP27) and polycyclic aromatic hydrocarbons noting the previous investigations did not identified exceedances of other contaminants of potential concern. Other potential contaminants of concern may be encountered as unexpected finds or during additional stages of investigation as part of this RAP (Section 6). The adopted relevant remediation criteria include HILs, EILs and aesthetic criteria as outlined below.

8.2.2 Human health criteria

Health investigation levels (HIL) are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1 or 'screening') of an assessment of potential risks to human health from chronic exposure to contaminants. Soil HILs apply to the first three metres below the surface for residential use. They are intentionally conservative and are based on a reasonable worst-case scenario for four generic land use settings.

The relevance of Health Screening Levels (HSLs) depends upon potential petroleum hydrocarbon contamination. HSLs also consider vapour intrusion for chemicals in groundwater, and soil-vapour.

Based on the assumed development details, HIL D criteria (commercial/industrial) is considered relevant. Adopted human health Site assessment criteria for this Site is included within previous results in Appendix B and sourced from NEPM (1999) Schedule B1:

- NEPM (1999) Table 1A (1) Health-based investigation levels Commercial / Industrial (HIL D)
- NEPM (1999) Table 1A (3) Soil HSLs for vapour intrusion Commercial / Industrial (HSL D)

In addition, adopted assessment criteria for assessing the soil contaminants have been sourced from CRC Care Technical Report No. 10 (Friebel and Nadebaum 2011):

- Table B3 Soil HSLs for vapour intrusion Intrusive maintenance worker
- Table B4 Soil HSL for direct contact Commercial / Industrial (HSL D) and Intrusive maintenance worker

Based on the proposed development, HIL D criteria (commercial/industrial) is considered relevant for this Site.

8.2.3 Ecological criteria

Ecological investigation levels (ElLs) are relevant where ecological receptors are likely to be present and exposure pathways are complete.

In majority of the areas of the Site, ecological soil criteria are not applicable considering the surface will be mostly paved or hardstand. Minor exceptions to this include:

- A proposed narrow landscaped area (5m buffer) adjacent to Foreshore Road.
- Batter slopes of the proposed service road adjacent to the western side of the stormwater channel. It is
 understood these are to be permanently stabilised with grass.

Excavated fill soils are unlikely to be reused within these portions of the Site, which would consist of imported fill soils suitable for growing media application.

Alternatively, if reuse of excavated topsoils from the pipeline route is considered, ecological criteria will need to be derived and assessed by the environmental consultant. Site specific EIL input values should be calculated by incorporating soil physiochemical parameters (% clay, pH, and CEC) of a sample of fill material.

8.2.4 Management limits

Management Limits have been considered as investigation levels. The purpose of these is to avoid or minimise potential effects of petroleum hydrocarbons. The ASC NEPM Schedule B (1) identifies these effects as:

- Formation of observable light non-aqueous phase liquids (LNAPL)
- Fire and explosive hazards
- Effects on buried infrastructure.

8.2.5 Asbestos criteria

The adopted Site screening level in accordance with NEPM (1999) includes no visible asbestos for surface soil. From preliminary investigation, SMEC adopted asbestos criteria from WA DoH (2009) guidelines and NEPM (1999) HSL Commercial/industrial D applicable for sites contaminated with 'bonded ACM' only. This assumption is subject to the findings of additional investigations confirming the nature of asbestos at the Site.

During excavation activities, Site soils will be assessed for suitability for reuse with respect to health screening levels adopted from NEPM (1999) HSL Commercial/industrial D including:

- 0.05% w/w Bonded ACM
- 0.001 %w/w FA and AF (friable asbestos)
- No visible asbestos at the ground surface

Upon completion of earthworks activities (including backfilling), the Site will be assessed for effective validation including:

- ACM contaminated soils will be covered with minimum capping profile of uncontaminated soils and visible marker layer (as per requirements in 7.6.4)
- No visible ACM on surface of final level of soils within the Site boundary.

The Site characterisation identified primarily bonded ACM within some areas of fill soils, except for a single location (TP27) noted to contain 'loose asbestos fibre bundles' within fill soils. Additional WHS controls precautions will be adopted for the whole of Excavation 1 and shallow earthworks cuts within a minimum diameter of 31m around TP27. Additionally, as a precaution, asbestos airborne fibre monitoring will be carried out during initial days of bulk earthworks in non-friable areas – refer to 9.1.10.2.

In accordance with NEPM (1999), assessment for the presence/absence of free fibres is only required if observations of greater than 10% of the total bonded ACM in 'poor' condition (i.e. that is, present as small pieces less than 7mm x 7mm and/or can be crushed/crumbled with hand pressure, considered to be friable). Where friable asbestos is suspected/detected during construction, a further assessment would be required to quantify the risks to sensitive receptors.

8.2.6 Aesthetic criteria

Aesthetic criteria are not considered relevant for a commercial/industrial land use and noting most areas will be covered by pavements/hardstand areas.

8.2.7 Adopted remediation Criteria

The relevant criteria for additional investigation will be consistent with the preliminary contamination investigation (2021a). Adopted human health Site assessment criteria for this Site is included within previous soil results table in Appendix B and sourced from NEPM (1999) Schedule B1.

The relevant remediation criteria for known contaminants are summarised in Table 8-1 and the adopted criteria selected is the lowest of all relevant criteria.

Table 8-1 Remediation Criteria

Contaminant	HIL-D / HSL-D	Adopted Criteria
Arsenic	3,000	3,000
Lead	1,500	1,500
Benzo(a)pyrene (as TEQ)	40	40
Sum of PAHs	4,000	4,000
Asbestos (bonded ACM)	<0.05% w/w Bonded ACM 0.001% w/w/ AF and FA (friable asbestos No visible ACM at the surface	Refer to Section 8.2.5

Note: All concentrations are in mg/kg

8.3 Validation Plan

Validation works will be carried out with reference to relevant sections of ASC NEPM (1999) and NSW EPA guidelines.

8.3.1 Validation of excavations

Validation of excavations are not proposed as part of this RAP, noting excavations are not being carried out primarily for remediation purposes.

Visual assessment of excavations will be carried out to check for evidence of contamination in the walls and base (e.g. ACM). If evidence of potential contamination is observed, then photographs/field documentation will be noted and/or samples will be collected to confirm suspect zones/material.

Before clearance is granted for an asbestos work area to be re-entered, there must be a thorough clearance inspection of the final surface.

The clearance inspection must be conducted by a competent person who is independent from the person responsible for the removal work. The protective barrier fence between the asbestos work area and public areas shall remain intact until completion of all asbestos removal work and successful completion of the clearance inspection.

8.3.2 Validation of spoil materials

Excavated spoil material will be visually assessed during excavation and temporarily stockpiled adjacent to the excavations. Validation sampling of spoil will be undertaken in general accordance within WA DoH (2009) Guidelines (refer to Table 7 Summary of stockpile sampling method).

Validation of spoil materials will include:

- Visually inspect the surface of the stockpile for presence of bonded ACM.
- Soil sampling will be undertaken evenly through the stockpile in accordance with sampling frequency outlined within Table 8-2.
- Soil sampling for bonded ACM will be undertaken using 'gravimetric sampling' techniques including includes:
 - Collection of one 10L soil sample from each sampling location
 - Weighing the weight of the 10L sample

- Field screening by sieving via 7mm aperture or spreading out on coloured plastic
- Collection of suspected ACM fragments retained on sieve and record condition
- Weighing of identified bonded ACM to calculate asbestos soil concentration (at the laboratory)
- Collection of a 500ml sub sample of soil from the sample location (not from the sieved material)
- Submission of collected samples for laboratory analysis in accordance with WA DoH (2009)
- Recording presence/absence of ACM on field logs and sample summary registers.

The concentration of asbestos in soil for bonded ACM were calculated using the principals of the formula in the WA DoH (2009) Guidelines:

Asbestos in soil (% w/w)= (Asbestos content (%)×Bonded ACM weight(q))/(Soil Volume (L) x Soil Dry Density (q/L)

If the stockpiles are visually assessed to be suitable for validation sampling (i.e. no ACM observed), soil samples will be collected from the given stockpile volume. The validation purpose is to distinguish soils impacted with contaminants of potential concern for either unrestricted onsite reuse or restricted to onsite containment.

Validation sampling will be as per Table 8-2:

Table 8-2 Validation Sampling Methodology

Location	Validation	Analysis
Stockpiled fill	Fill stockpiles 1 soil sample every 25m³ Minimum of 3 samples for stockpiles less than 75m³	 General fill (minimum – note 1): Heavy metals (Arsenic and lead) Asbestos (ACM and AF/FA) (w/w %) Unit 1D soils only within western portion of main terminal Site only: PAHs
Note 1 – Minimum analysis specified noting additional contaminants of potential concern may be included		

subject to Site observations of suspected contamination in accordance with unexpected finds protocol.

8.3.3 Validation of imported fill

If imported fill is required to backfill excavations as part of the excavations works of the project, then the material will comply with the following:

- The material must be permitted to be transported to Site within the provisions of the POEO Act. This requires the material to (at a minimum):
 - Meet the definition of Virgin Excavated Natural Material (VENM); or
 - Meet the requirements of a suitable Resource Recovery Order and Exemption (e.g. The Excavated Natural Material Order and Exemption); or
 - Meet an EPA approved site-specific Resource Recovery Order and Exemption
- The material must be suitable for the proposed development and land use.

The environmental consultant will review the source and type of material to be imported to Site and confirm there is adequate evidence of the suitability of the material for use on the Site with respect to the above. The need for additional verification sampling will be based on this review and to be assessed by the environmental consultant at the time. At a minimum, the environmental consultant will observe the material delivery to Site to check that it is consistent with the material source and documentation.

Documentation with adequate validation of the imported fill will be included in the validation report including delivery dockets.

8.4 Validation Report

At the completion of the field activities, a validation report will be prepared in accordance with relevant sections of ASC NEPM (1999) and NSW EPA (2020) guidelines. The report will:

Describe the remedial works undertaken, the validation carried out and the final condition of the Site

- Confirm that the Site complies with the set remediation criteria
- Include information confirming (as relevant) that EPA and other regulatory authorities' licence conditions and approvals have been met
- Documentary evidence to confirm that waste management has been carried out in accordance with relevant regulatory requirements.

8.5 Long term Environmental Management Plan

A long-term Environmental Management Plan (LTEMP) will be prepared in accordance with NSW EPA (2020) Consultants Reporting on contaminated land, Contaminated land guidelines.

This plan will be appended to and form part of the overarching Environmental Management Plan required by NSW Ports lease agreement as part of Manildra's environmental obligation (Ref 25.9 Environmental Management Plan). This will act as a notification mechanism for recording the existence of the LTEMP.

NSW EPA (2017) Site Auditor Guidelines NSW EPA (Third edition) indicates that an LTEMP which includes a proposed containment area should recommend 'a notification mechanism to ensure that the capped and/or contained areas are protected from any unintentional or uncontrolled disturbance that could breach the integrity of the physical barrier.' SMEC recommend that NSW Ports and Manildra will record the existence of the LTEMP onto their property information systems to enforce the LTEMP.

9 Site management requirements

9.1 Site management

9.1.1 General

The appointed remediation contractor will prepare relevant documentation to manage environmental issues during the works, such as in a site-specific Construction Environmental Management Plan (CEMP). Any other requirements imposed by Council or relevant planning authority to comply with development consent conditions will also be addressed and take precedence over general measures described in subsequent sections. The CEMP will provide measures to reduce the potential for adverse impacts to health or the environment from items including (but not limited to):

- Site security and signage
- Stormwater, erosion, and sediment
- Asbestos removal
- Soil management and material tracking
- Vegetation/tree management
- Noise
- Dust
- Odour
- Traffic.

The hazards associated with unacceptable exposure to potential contamination during works will be managed as follows:

- Work to be performed and overseen by a suitably qualified remediation contractor
- Establishing environmental controls
- Management of soils including excavation and off-site disposal
- Implementing environmental monitoring during the development.

The following sections provide a guide for the remediation contractor to develop the CEMP. The remediation contractor will be responsible for administering site controls and monitoring as per the approved CEMP.

9.1.2 Site Security and Signage

The remediation contractor will provide site security through fencing or other means to prevent unauthorised access to the Site and equipment.

Relevant signage in accordance with SafeWork NSW and Australian Standards will be provided to the Site. Contact information will be displayed onsite as per Council requirements.

9.1.3 Vegetation/ tree management

Several mature trees are existing along the boundary with Foreshore Road. Relevant vegetation/trees are to be managed and protected as per the approved design and Council DA consent conditions.

9.1.4 Stormwater, Erosion and Sediment Control

The remedial excavation works are estimated to take place over several weeks. Where practicable, works should be programmed during favourable weather to avoid potential issues with runoff.

Additional care will be undertaken for works along the pipeline route excavations which are in closest proximity to the harbour foreshore and include surrounding asphalt paved areas.

Erosion and sediment controls are to be established at the Site prior to commencement of any site disturbance. These may include silt fencing or other approved measures. These should include preventive measures in nearby street stormwater drains. Adopted measures should also prevent stormwater entering adjacent properties. Controls will be based on Landcom's, Managing Urban Stormwater – Soils and Construction, 2004.

Due to the proximity to Port Kembla Outer Harbour/stormwater channel, and soil contaminants concentrations, stockpiling areas are required to have at a minimum:

- Silt fencing and/or perimeter bunding along the low side of excavation and around temporary stockpiles, particularly near nearby surface water receptors (i.e. foreshore, stormwater channel)
- Covering of temporary stockpiles with impermeable material (such as builders' plastic) to prevent erosion
- Other approved control measures as deemed appropriate based on Landcom's, Managing Urban Stormwater Soils and Construction, 2004.

Adequate monitoring will be carried out of sediment and erosion control measures and documented in the CEMP.

9.1.5 Asbestos removal controls

The following controls will be adopted at a minimum in relation to asbestos removal works as they relate to site management. Additional controls are described for health and safety in Section 10.

- The Remediation Contractor/licenced asbestos removalist is to set up appropriate exclusion zones across the work area to define asbestos removal areas. Where practicable 10m exclusion zones should be set up and clearly demarcated with appropriate physical barriers and warning signage
- Care shall be taken in selecting tools for asbestos removal tasks. In addition to having to be suitable for these tasks, all tools shall prevent or minimise the generation and dispersion of airborne asbestos fibres as much as possible.
- An equipment decontamination area is to be set up to wash down equipment entering asbestos impacted areas.
 This may include excavator (bucket and tracks) and truck wheels (if needed). The form of the decontamination
 method is to be described in the Asbestos Control Plan prepared by the licenced removalist but may include a
 small excavated area covered with geofabric and bunding. At works completion the geofabric is to be disposed
 with other asbestos waste
- No equipment is to be permitted to leave the Site without adequate decontamination
- Dust suppression will be carried out as discussed in Section 9.1.10. For friable asbestos removal only, airborne fibre monitoring will be carried out as discussed in Section 9.1.10.2
- Trucks used for transport of asbestos waste are to be leak proof design. Where this is not provided, trucks are to be lined with 0.2mm plastic sheeting
- Loading of soils onto trucks is to be carried out carefully and supervised so that soil spillage does not occur. Any spillage is to be cleaned up immediately. All loading is to be carried out within the exclusion zone and within the Site boundary
- Trucks used for asbestos disposal are to have automatic load covers so that the driver is not potentially exposed to impacted soils.

9.1.6 Acid Sulfate Soils

Acids sulfate soils (if encountered and disturbed) are subject to additional management measures which are documented within a separate standalone Acid Sulfate Soils Management Plan (SMEC, 2022b).

9.1.7 Soil Management and Material Tracking

All excavated soils are expected to be retained onsite and managed in accordance with this RAP and the following tracking requirements:

• Temporary stockpiling areas (if used) would be designated for the 'contaminated' soils which are segregated from other stockpiles and materials. Signage, flagging and/or hoarding will be used to prevent unintentional mixing or contamination

- Observations will be made of the material during excavation, stockpiling and/or backfilling to check that only those materials approved for unrestricted reuse are reused within the Site
- A material tracking register will be employed.
- The remediation contractor and environmental consultant will be responsible for recording the location of where materials from the source are placed in accordance with environmental consultant. Soil management and material tracking will be documented via the following methods:
- Stockpile diagrams
- Site photographs
- Materials tracking spreadsheet.

Documentation will be summarised and included within the validation report.

9.1.7.1 Pipeline route

Surplus excavated materials generated during excavations along the pipeline route would be transported to the main terminal, via Foreshore Road (offsite) in accordance with the conditions of approval and any required permits or licences (Section 7.3). During pipeline route excavations, the following will be carried out:

- Vehicle access to the Site will be stabilised so that access can be gained on/offsite and reduce sediment tracking onto roads
- Excavated 'contaminated' (or unvalidated soils) would be loaded directly into trucks for onsite containment/ temporary stockpiling within the main terminal. The indicative materials transport is shown in Figure 9-1 below.
- All waste/contaminated soil will be loaded into leak-proof trucks with a canopy cover
- Adequate measures will be installed at the Site entry to remove soil from truck wheels before they leave the Site.
 Suitable methods of soil removal from truck and vehicle tyres entering/exiting the Site may include a cattle grid or designated washdown area
- A material tracking register of all loads leaving the Site boundary, including quantities, number of trucks, truck
 registrations, and days and times of contaminated soil loading and transfer to the landfill would be kept. The
 material tracking register would be independently monitored by environmental consultant to demonstrate the
 effective and complete transportation of excavated spoil via trucks along Foreshore Road (offsite) into the main
 terminal.

• Beyond the above, materials will not be permitted to leave the Site, except where suitably waste classified for offsite disposal (refer to Section 9.1.8).

Figure 9-1 Indicative materials transport via Foreshore Road between Pipeline route and Main Terminal

9.1.8 Soil waste disposal (if required)

Should there be insufficient capacity for onsite containment, contaminated soils are required to be taken offsite for disposal to licensed landfill. A soil waste classification will be carried out in accordance with NSW EPA (2014) Waste classification guidelines, Part 1 Classifying Waste.

The following will be carried out:

- Vehicle access to the Site will be stabilised so that access can be gained on/offsite and reduce sediment tracking onto roads
- Excavated contaminated soils should be loaded directly into trucks for offsite disposal where further waste classification is not deemed necessary
- All waste/contaminated soil will be loaded into leak-proof trucks with a canopy cover
- Adequate measures will be installed at the Site entry to remove soil from truck wheels before they leave the Site.
 Suitable methods of soil removal from truck and vehicle tyres entering/exiting the Site may include a cattle grid or designated washdown area
- A register of all loads leaving the Site, including quantities, number of trucks, truck registrations, and days and times of contaminated soil loading and transfer to the landfill should be kept
- Waste disposal will be compliant with The Protection of the Environment Operations (Waste) Regulation 2014 (the Waste Regulation). The Waste Regulation makes it an offence to transport waste generated in NSW by motor vehicle for disposal more than 150 kilometres from the place of generation, unless the waste is transported to one of the two nearest lawful disposal facilities to the place of generation (even if that facility is located more than 150 kilometres from its place of generation).
- Documentation of disposal and tracking will be as described in Section 9.1.7
- Temporary stockpiling should be avoided to prevent double handling and increase risk of generating dust
- Stockpiles if created will require additional sediment and erosions controls as per Section 9.1.4

• Stockpiling or spillage of spoil onto areas not requiring remediation/management should be avoided. If this occurs it should be cleaned up as quickly as possible. The environmental consultant will assess the need to validate the surface of un-remediated areas based on the manner of the remedial works.

9.1.9 Noise

As the Site is in industrial harbour foreshore areas at some distance from nearest residential areas (>1km), noise is unlikely to pose a constraint on the works. All remedial works will be carried out in compliance with Council regulations on noise and conditions of approval, including any restrictions on working days/hours.

9.1.10 Dust

9.1.10.1 General

Dust will be controlled during the remedial works so that there is no observable dust movement offsite and to prevent airborne fibres. The following management measures will be implemented to prevent dust impacts:

- High density weave shade cloth will be placed around the remediation work zone
- Visual monitoring will be carried out and dust suppression such as light water sprays will be used to supress dust
 during excavation and loading. Dust is a potential transport mechanism for contaminated material to move from
 site and impact adjacent public receptors, therefore it is important that adequate controls are in place. Water
 sprays should be controlled so that excessive water is not applied where soil becomes saturated and create a risk
 of runoff.
- All 'contaminated' soil stockpiles are required to be temporary stored at a designated area onsite within asbestos exclusions area. Stockpiles will be placed onto a suitable hard surface or polyethylene sheeting (2-ply HDPE) and covered with similar sheeting, tapped and weighted down.
- In the event nuisance dust is generated, works will stop, and dust suppression techniques reviewed, with alternative dust suppression techniques applied.

9.1.10.2 Airborne Fibre Monitoring

Based on investigation findings by SMEC (2021a, 2021b and 2022), asbestos at the Site is assumed to be primarily bonded ACM only in good condition, except in the vicinity of test location (TP27) which would be considered 'friable' due to presence of loose asbestos fibre bundles. The following is proposed:

- For Excavation 1 and shallow earthworks cuts within a minimum diameter of 31m around TP27), airborne fibre monitoring will be carried out for excavation and removal of 'friable asbestos' impacted soils.
- For soil excavations across the remainder of the Site, bonded asbestos removal works would generally not be carried out with airborne fibre monitoring. Airborne fibre monitoring is not a mandatory requirement to be carried out during asbestos removal works in accordance with SafeWork NSW (2019) Code of Practice. Airborne fibre monitoring would be adopted out as follows:
 - Should evidence of friable asbestos be identified then additional controls will be required including a Class A removalist and airborne fibre monitoring.
 - As an additional precaution, we recommend that during the initial first 3-5 days of bulk earthworks disturbing Unit 1B (Fill variable), airborne fibre monitoring be carried out <u>within</u> and in close proximity to the main work zone to assess and demonstrate a suitable work environment with respect to airborne fibres for workers. This should also be repeated during bulk earthworks disturbing general fill in the pipeline route area.

Air monitoring devices will be placed at a minimum of four locations on the boundaries of the designated work areas. The sample collection and analysis will be conducted in accordance with the National Occupational Health and Safety Commission (NOHSC) "Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Dust [NOHSC: 3003 (2005)].

The analysis is to be performed by a NATA accredited laboratory. The concentration of fibres at the Site boundaries is to be <0.01 fibres/mL of air. Concentrations of asbestos fibres shall be dealt with as follows:

- <0.01 fibres/mL. Action: Continue with control measures;
- Between 0.01 fibres/mL and 0.02 fibres/mL. Action: Review control measures; and

• Greater than or equal to 0.02 fibres/mL. Action: Stop work until the cause of the elevated concentrations is remedied. For work classified as Class A work, the licenced asbestos removalist must order removal work to stop and notify SafeWork NSW immediately if respirable asbestos fibre levels exceed 0.02 fibres/ml in the removal area.

These results will be made available to all onsite employees.

9.1.11 Odour

As volatile contaminants were not previously recorded at elevated concentrations, odour is not likely to be an issue for the Site.

Some strong odours (described as 'sweet phenolic' type) were noted during the site investigations at test pits which intersected Unit 1D (Fill within PAH contamination area) however these occurred at depths beyond proposed disturbance (refer to Figure 4, Appendix A). The contaminants identified were not volatile. If odours are unexpectedly encountered, then contingency measures such as covering soil or use of odour suppressants could be considered.

9.1.12 Traffic

Adequate traffic management controls may need to be employed for the works due to the movements of plant and trucks onto and off Foreshore Road. A suitable traffic management plan may be required by Council.

9.1.13 Community Consultation / Stakeholder Engagement

Neighbouring landowner/occupiers are likely to be informed of the intended remedial works as part of the development application process. There may also be requirements for specific consultation as part of the development consent conditions. At a minimum these conditions should be complied with.

Guidance on community engagement and risk communication remediation advice can be found in:

- National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1). Schedule B8, Guideline on Community Engagement and Risk Communication
- Institute for Sustainable Futures, Step-By-Step Guide for Creating Stakeholder Engagement Plans for Contaminated Sites In NSW

9.1.14 Working Hours

Working hours for onsite remedial works will be completed in accordance with Wollongong City Council requirements and as stated in the final development consent conditions.

10 Work Health and Safety

10.1 Work health and safety requirements

Work health and safety (WHS) considerations of the Site during the remedial works will be the responsibility of the appointed Principal Contractor (which could be the Remediation Contractor). Prior to commencement of remediation works the remediation contractor will develop a site-specific Work Health and Safety Plan. This plan will include Safe Work Method Statements (SWMS) to detail activities to be conducted, associated hazards, an assessment of risk and measures to control the risk.

Work associated with the remediation of the Site will conform, at a minimum, to the requirements of:

- Work Health and Safety Act 2011
- Work Health and Safety Regulation 2017
- Other relevant SafeWork NSW regulations and codes, such as (but not limited to):
- SafeWork NSW (2019) Code of Practice: How to Manage and Control Asbestos in the Workplace
- SafeWork NSW (2019) Code of Practice: How to Safely Remove Asbestos

Typically, the safety plan will contain but not be limited to addressing the following issues:

- Regulatory requirements
- Hazard assessment and control
- Chemical/contaminant hazard control
- Sample and chemical handling procedures
- · Personal protective equipment
- Monitoring requirements
- Work zones
- Decontamination procedures
- Training and responsibilities
- Evacuation and emergency response plans
- Contingency plans
- Incident management and reporting.

The plan will be periodically reviewed and updated based on changing activities and Site conditions.

Any subcontractors will prepare their own site-specific SWMS for their activities with consideration of the overall site conditions and hazards.

Visitors to the Site will be required to be inducted to the relevant sections of the plan and sign on.

10.2 Hazard assessment

The safety plan and SWMS will identify health and safety hazards and appropriate controls.

In relation to the chemical contamination that is being remediated, the relevant contaminants that need to be considered in the safety plan are:

- · Lead, arsenic
- Asbestos
- Polycyclic aromatic hydrocarbons (PAHs)

The safety plan and SWMS will identify health and safety hazards and appropriate controls.

10.3 Training

The following is recommended for workers (including the asbestos removalist contractor):

- Asbestos awareness training (Nationally recognised training i.e. 10314 NAT Course in Asbestos Awareness, or equivalent)
- Understanding of the nature and extent of site-specific asbestos contamination
- Controls and notifications to be followed
- How to prevent exposure to contamination including:
- Dust control measures
- Handling and disposal procedures
- Selection and use of personal protective equipment and clothing
- · Personal and equipment decontamination procedures
- · Emergency procedures.

The Principal Contractor shall ensure site specific inductions are carried out familiarise all workers with the requirements outline within this RAP and the site-specific Work Health and Safety Plan.

10.4 Personal protective equipment

Workers should avoid coming into contact with contaminated soils, but where this is not practical, wearing of appropriate personal protective equipment (PPE) will be required. The level of PPE required to control risk of contact with contaminated soil will depend on site conditions, but at a minimum should include the following over and above other PPE:

- P2 class respirator or higher (i.e. minimum half-face, particulate filter (cartridge) respirator for bonded ACM removal)
- P3 class respirator or higher (i.e. minimum full-face, particulate filter (cartridge) respirator for friable asbestos removal)
- Disposable coveralls
- Disposable nitrile gloves
- Safety glasses/goggles
- Lace less work boots or disposable boot covers.

The above will apply within the remediation exclusion zone.

10.4.1 Respiratory protective equipment

The selection use and maintenance of respirators shall be in accordance with AS/NZS1715-1994 Selection Use and Maintenance of Respiratory Protective Devices.

Respirators shall be issued to individuals for their exclusive use. A system of regular cleaning, inspection and maintenance shall be provided for respirators on extended personal issue, and records of all respirators issue and uses shall be established and maintained.

Workers shall receive instruction and training in the correct method of using their respirators, the importance of a correct facial fit and the requirements of the system of regular cleaning, inspection and maintenance.

All workers shall undergo a 'fit test' in order to determine their suitability to wear negative pressure respirators. Persons with beards or other facial hair or stubble will not be protected properly by 'negative pressure' respirators that require a facial seal, so all asbestos removal workers using respirators that require a facial seal shall be clean-shaven.

All filters used while working with asbestos shall be disposed of as asbestos waste.

10.4.2 Protective clothing and footwear

Protective clothing shall be provided and worn at all times during all work in the asbestos work area prior to the final clearance inspection.

Protective clothing shall be made from materials which provide adequate protection against fibre penetration. Coveralls shall not have external pockets or Velcro fastenings because these features are easily contaminated and difficult to decontaminate.

Disposable coveralls are preferred. They shall never be reused and must be disposed of as asbestos waste.

The use of protective gloves shall be determined by a risk assessment. If significant quantities of asbestos fibres may be present, disposable gloves shall be worn. Protective gloves can be unsuitable, however, if dexterity is required. All gloves used for asbestos removal work must be disposed of as asbestos waste.

Regardless of whether gloves are used, asbestos removal workers must clean their hands and fingernails thoroughly after work.

Appropriate safety footwear (i.e. steel-capped rubber-soled work shoes or gumboots) shall be provided for all asbestos removal workers. This footwear should be lace less, because laces and eyelets are easily contaminated. When not in use, the safety footwear shall be stored upside down to minimise asbestos contamination inside the footwear. Storage facilities shall be provided to allow this.

Safety footwear must be decontaminated at the end of the job and upon leaving the work area or sealed in double bags for use on the next asbestos removal site (but not for any other type of work). Work boots that cannot be effectively decontaminated must be disposed of as asbestos waste.

10.4.3 Decontamination

Decontamination must occur within the remediation work area, whereby all tools and equipment and personal are decontaminated. Asbestos waste bins shall be provided within the asbestos removal area.

The contractor will allow the following (or similar) for personal decontamination:

- A designated area to remove spent PPE
- Lined bin or polyethylene bags for PPE disposal
- Water, containers and brush to wash boots and equipment
- All contaminated materials, including plastic sheeting and PPE etc, must be disposed of as asbestos waste.

10.4.4 Other Hazards

Other common earthworks hazards that require consideration and controls include (but not limited to):

- Underground/overhead utilities (NB There are overhead power lines along Foreshore Road near Site entrance)
- Working around plant and equipment
- Open excavations (including water)
- Heat/cold stress
- Physical hazards.

Other key elements to be covered in SWMS are:

- Consultation and training are to be provided to all workers who may be involved in works that could disturb or be exposed to asbestos
- All workers onsite should have adequate asbestos awareness training
- Daily toolbox meetings are to be carried out including induction into the unexpected finds procedure
- No smoking or eating within contaminated area
- Operators of earthworks plant are to have closed cabins and work within those closed cabins with air conditioning.

11 Conclusions

The remediation options analysis identified that on-site containment and a long-term management strategy is a practical and cost-effective remedial option to address Site contamination encountered/disturbed during redevelopment of the Site. This was driven by the expected volume of ground disturbance and availability of fill areas within the redevelopment design earthworks levels.

Based on preliminary discussions with Manildra, four potential onsite containment areas have been identified noting these are required to be confirmed based on design requirements. Preliminary considerations on the design requirements of onsite containment areas include recommendations for minimum capping profile requirements and accessibility to buried utilities.

SMEC considers the Site can be made suitable for the proposed development if the RAP is implemented. Subject to successful validation, restrictions would only apply to onsite containment areas of the Site if remediation is carried out as per the RAP and the contamination sources and extents are as per the current conceptual site model. Restrictions and ongoing management measures would be documented within a Long-Term Environmental Management Plan.

12 References

ANZG (2018), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, August 2018, accessed 23 March 2021, URL: http://waterquality.gov.au/anz-guidelines

ANZECC & ARMCANZ (2000), National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

Bowman, H.N. and Stewart T.R., Wollongong 1: 50,000 Geological Sheet 9028-1 (1974) Geological Survey of New South Wales, Sydney.

CMPS&F Environmental (1994) MSB Illawarra Ports Authority, Contamination Assessment of Port Kembla Outer Harbour, Vacant Land Parcels (October 1994)

Geological Survey of New South Wales, Department of Mines, Sydney (1985). - Geological Map of Wollongong – Port Hacking, 1:100,000

Friebel and Nadebaum (2011) Health screening levels for petroleum hydrocarbons in soil and groundwater, part 1: Technical development document, Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd) Technical Report Series No. 10

Government of Western Australia, Department of Health (2021), Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia, July 2021

National Environment Protection (Assessment of Site contamination) Measure 1999

NSW EPA (1995), Sampling Design Guidelines

Office of Environment and Heritage, 2019, Soil Landscapes of Central and Eastern NSW - v2, NSW Office of Environment and Heritage, Sydney.

NSW EPA (2017), Contaminated Land Management, Guidelines for the NSW Site Auditor Scheme (3rd edition), October 2017

NSW EPA (2020), Consultants Reporting on Contaminated Land, Contaminated Land Guidelines, April 2020

NSW Work Health and Safety Regulation 2017

Protection of the Environment Operations (Waste) Regulation 2014

SafeWork NSW (2019) Code of Practice: How to Manage and Control Asbestos in the Workplace

SafeWork NSW (2019) Code of Practice: How to Safely Remove Asbestos

SMEC Australia Pty Ltd (2021a) Preliminary Geotechnical and Contamination Investigation, Part Lot 6 DP 1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd (Ref: 30013038-R01, Rev 2 dated 05 May 2021)

SMEC Australia Pty Ltd (2021b) Detailed Site Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, Ref: 30013038-R04, Revision 1, dated 22 December 2021

SMEC Australia Pty Ltd (2022a) Targeted Site Investigation – Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, Ref: 30013038-R05, Revision 1, dated 02 May 2022

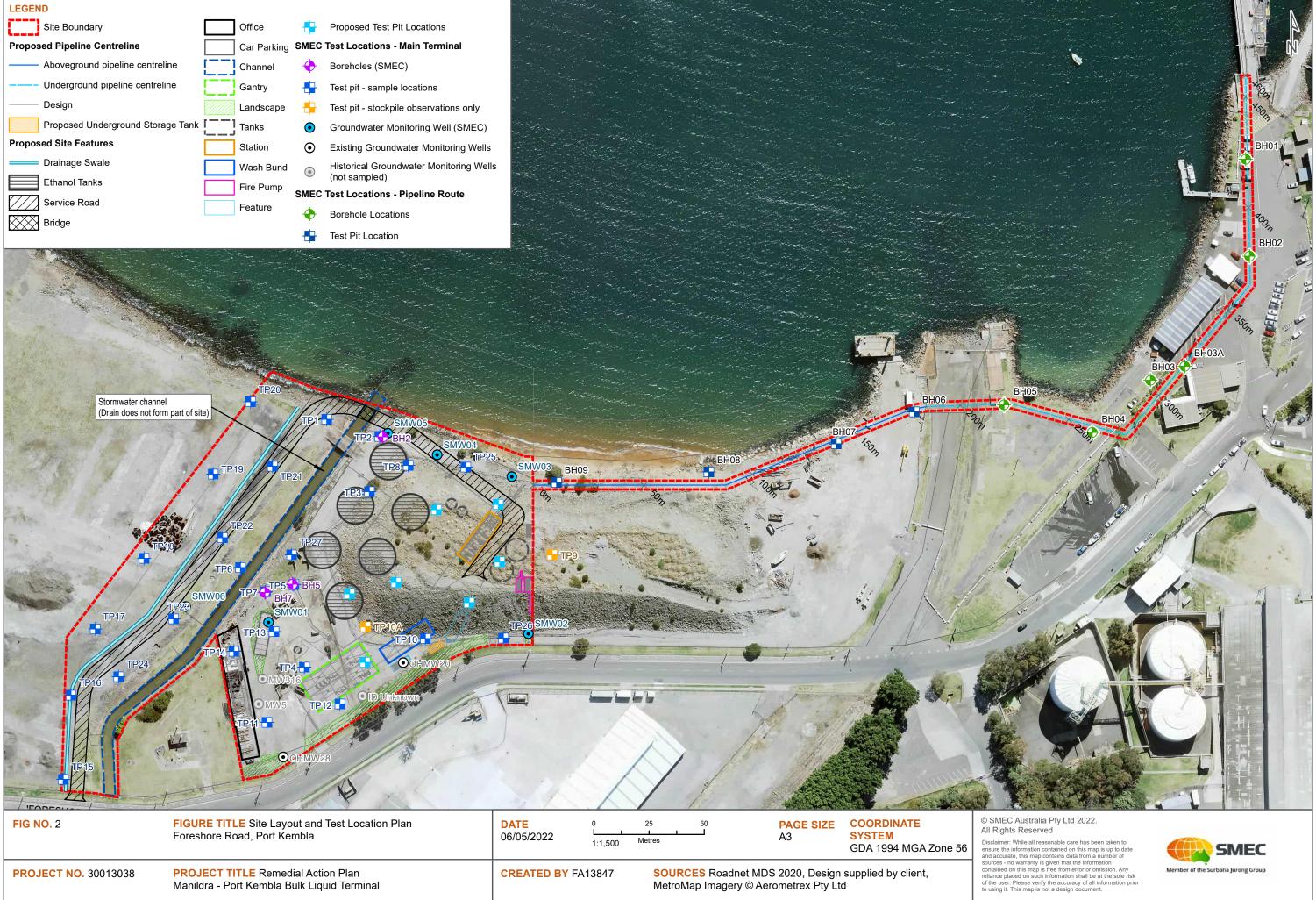
SMEC Australia Pty Ltd (2022b) Acid Sulfate Soils Management Plan, Manildra – Port Kembla Bulk Liquid Terminal, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, Ref: 30013038-R03, Revision 2, dated 06 May 2022

SMEC Australia Pty Ltd (2022c), Groundwater Assessment and Management Report, Manildra – Port Kembla Bulk Liquid Terminal, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, Ref: 30013038-R06, Revision 1, dated 26 May 2022

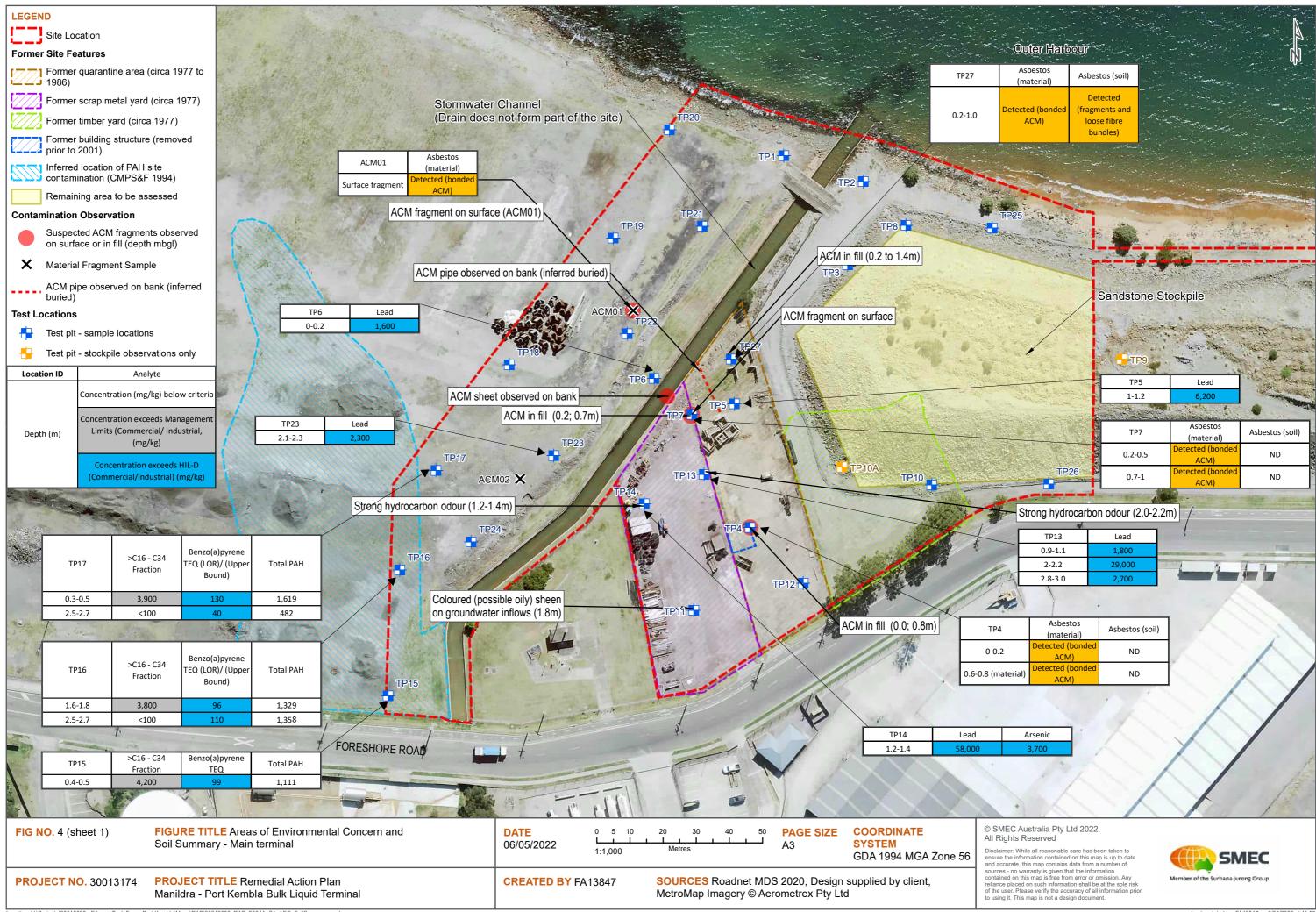
State Environmental Planning Policy No.55 – Remediation of Land, 1998

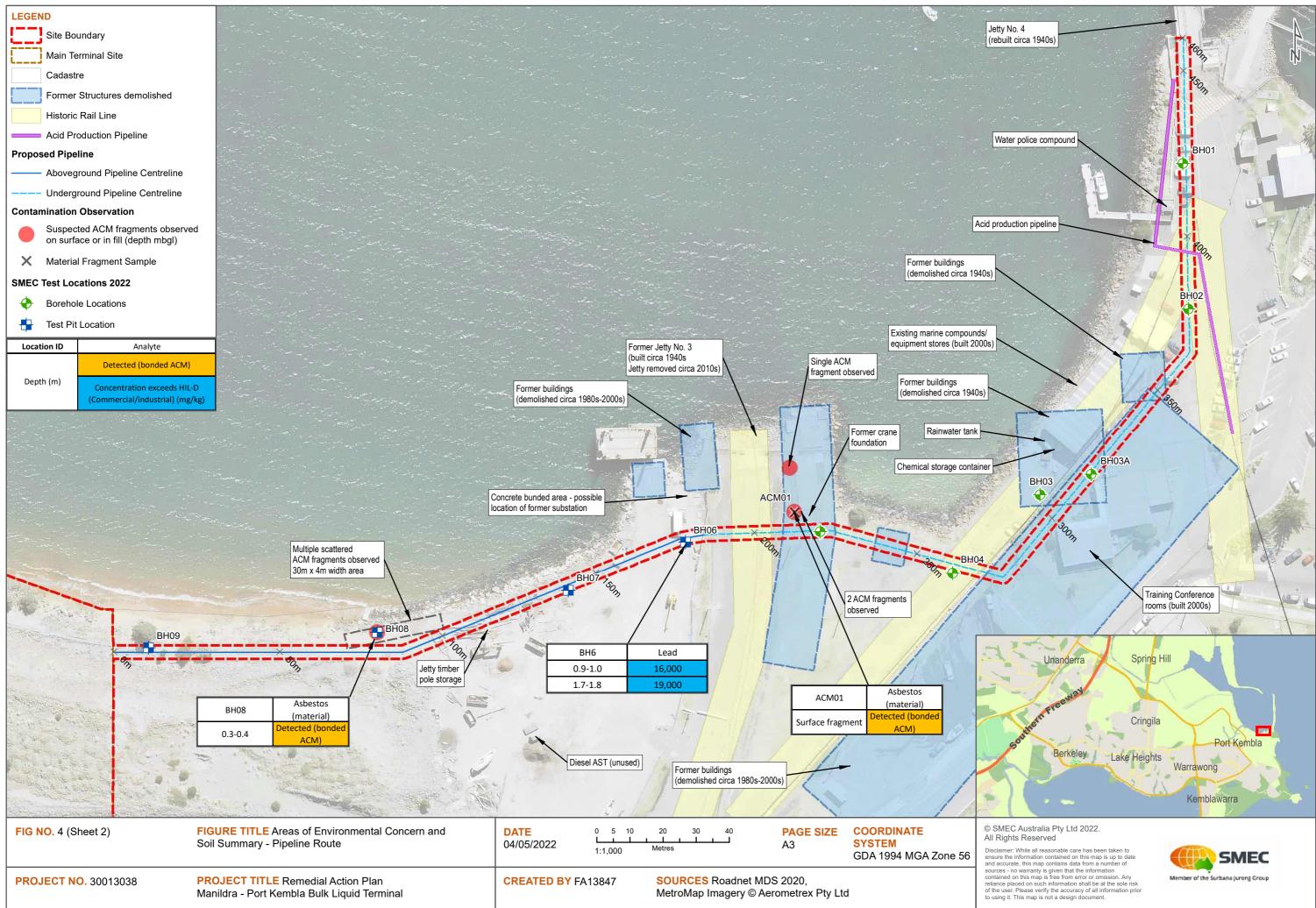
State Environmental Planning Policy (Three Ports) 2013

TFA Group Pty Ltd (2021), Civil Drawing Set – Issued for Tender, Drawing ref: 20399-C00 to C17, C20 and C21, dated 23.11.21


TFA Group Pty Ltd (2022), Proposed Pipeline Route – D.A Issue, Drawing ref: 20399-DA-P01 to P05, dated 11.03.2022

WA Department of Health 2009, Guidelines for the Assessment, Remediation and Management of Asbestos-contaminated Sites in Western Australia, May 2009


WA Department of Health 2021, Guidelines for the Assessment, Remediation and Management of Asbestos-contaminated Sites in Western Australia, 2021 (*NB This updated revision has not been endorsed by NSW EPA at time of this report*)


Appendix A Figures

Location: V:\Projectz\30013038 - Ethanol Tank Farm, Port Kembla\Maps\RAP\30013038_RAP_F005.mxd

Appendix B Previous results

Table E1 Summary of soil analytical results - Main terminal (DSI -SMEC, 2021b)

Table E1 Summary of soil analytical results - Pipeline route (TSI - SMEC, 2022)

Table B2 Summary of groundwater analytical results – Main terminal (*Updated 9/05/2022*, based on DSI - SMEC, 2021b)

							Asbestos			Heavy Metals			Leach	nability			BTEXN			_	TRH (NE	PM 1999 Fractio	ns)			RH (NEPM	2013 fract	ions)		1	PAHs		OCP	OPP PCB	B Pheno	ils
							Aspestos deerce dentification - Presence.	rsenic cadmium	hromium (total)	Jaddo;	Aercury	lickei	SLP Arsenic Lead	peon dns	lenzene	oluene (thylbenzene	n+p-xylene	-Xylene otal xylene	laphthalene	.6 - C9 Fraction	:10 - C14 Fraction	:15 - C28 Fraction	(5) (3) Fraction (sum)	6 - C10 Fraction	i.6 - C10 Fraction ninus BTEX (F1)	-C10 - C16 Fraction	-C10 - C16 Fraction minus Naphthal	.c16 - C34 Fraction	-C10 - C40 Fraction (sum)	Japhthalene	Penzo(a) pyrene	kenzo(a) pyrene TEQ (LOR) / Upper Bound) .um of PAHs	otal OCPs	otal OPPs	henol entachlorophenol	resols
					Harla of second	Units of measurement	N/A		mg/kg	mg/kg mg/kg					_			mg/kg mg/kg		_	_	mg/kg mg/k		_		ng/kg m	_	g/kg mg/kg	_	_		mg/kg mg/kg			kg mg/kg mg/k	
						rting (Eurofins laboratory) reporting (ALS laboratory)	0.01%w/w	2 0.4 5 4	2	5 5		5 5	_		_	0.1 0.1		0.1 0.3 0.5 0.5		10		50 50 100 100		20 10	10			100 100 100 100	_	0.5		0.5 0.5 0.5 0.5	0.05 to 0.2 0.2	0.2 to 2 0.5 0.2 0.1	10.0	
Contamination assessmer NEPM 1999 Table 1A (1) Hea				P, amended 2013) vel (HIL D - Commerical/ Industrial)																														2.000 to		
NEPM 1999 Table 1A (3) Hea	alth-ba	sed scre	ening level	for Vapour Intrusion (HSL D - Commercial / Industrial, Sand, 0-<1m)				3,000 900	3,600 2	1,500	/30 6,	,000 400,0	00		3	NL NL		230	NL						260					NL		40 4000	45 to 3,600	4,500	240,000 660	25,000
Friebel and Nadebaum 2011, Friebel and Nadebaum 2011,	I, Table	4 Health	n-based scri	eening level for Direct contact (HSL D Commercial / Industrial)										1,		9,000 27,000 20,000 85,000		81,000 130,00	0 11,000 0 29,000)					26,000 82,000	61	0,000 27 2,000 85	7,000 38,000 6,000 120,00	0	11,000 29,000						
Friebel and Nadebaum 2011, NEPM 1999 Table 1B (7) Man	I, Healt anagem	h-based ent Limi	screening le s (Commer	evel for Vapour Intrusion (Intrusive maintenance worker, Sand, 0-<2 m) relal/ Industrial, Coarse texture)											77	NL NL		NL	NL					700°		,000 ^a	3	,500 10,000)	NL						
Borehole ID		ample lepth	Samplir Date		Lab Report	PID (ppmv)																														
TP1	0	(m) .6-0.8	17/02/20	FILL: Gravelly SAND with cobbles: fine to coarse grained, dark grey 21 dark brown, gravel is fine to coarse grained, angular, iron slag, trac silt and iron material. FILL: SAND with gravel trace cobbles: fine to coarse grained, brown	re 775286	0.5	No asbestos detected	9.2 < 0.4	12	79 53	< 0.1	7 56		<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	.5	
TP1		2-2.2	17/02/20	21 gravel is fine to coarse grained, angular, iron slag, trace iron material.	775286	0.4		13 < 0.4	< 5	17 23	< 0.1	< 5 30		<	0.1	< 0.1 < 0.1	< 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5				
TP1		2.8-3	17/02/20	21 SAND: fine to coarse grained, pale orange, pale brown.	775286	0.5													-							-										
TP2	,	0-0.1	16/02/20	GRAVEL: fine to medium grained, angular, pale grey, grey. FILL: Gravelly SILT with sand: pale grey, pale orange, gravel is fine	775286	0.0	-	3 0.9	580	78 75	< 0.1	7.5 320	-				-		-																	
TP2	0	1-0.3	16/02/20	21 to coarse grained, angular, sand is fine to coarse grained, trace boulders, brick.	775286	0.0	No asbestos detected	27 9.2	34	410 350	0.7	17 1,60	0	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP2	0	6-0.8	16/02/20	21 FILL: Clayey SAND trace silt: fine to coarse grained, pale grey, orange, clay is low plasticity, trace boulders. FILL: Sandy CLAY with gravel: medium plasticity, dark grey, brown,	775286	0.0		12 3.5	39	310 190	0.3	17 530		<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100		< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP3 QC2 (Intra-laboratory	+	.2-0.4		21 sand is medium to coarse grained, gravel is fine to coarse grained, angular, with cobbles	775286	0.2	No asbestos detected	21 1.4		160 120		12 460				< 0.1 < 0.1						< 50 < 50						100 < 100				1.2 < 0.5		< 0.2 < 0.5		
duplicate of TP3/0.2-0.4) QC2A (Inter-laboratory		.2-0.4	15/02/20		775286	-		18 1.3		210 140		14 410		<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
duplicate of TP3/0.2-0.4)	, ,	.2-0.4	15/02/20	21 As above SAND: fine to coarse grained, pale brown, pale orange, with laminations of dark grow high plasticity clay traps coacholls	ES2107758	0.0	No asbestos detected	10 2.0 31 < 0.4		206 174 89 250		7.1 68	+		0.1	. 0.1 < 0.1		< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5		
TP3	+	0-0.2	15/02/20	FILL: Clayey GRAVEL trace silt: medium to coarse grained, angular,	775286	0.2	No asbestos detected	30 8.1		550 980		23 2,90				< 0.1 < 0.1					< 20	< 50 < 50		< 20	< 20			100 < 100				1.2 < 0.5	< 0.2	< 0.2 < 0.5		+
TP4/0-0.2 ACM		0-0.2	15/02/20	MATERIAL FRAGMENT: Bonded ACM Fragment (1) observed at 0-		-	Chrysotile and crocidolite						-																							
TP4	+	.6-0.8	15/02/20	FILL: Gravelly CLAY with sand: medium plasticity, dark grey, brown	1,	0.0	No asbestos detected				_		+				-						_						_							-
TP4/0.6-0.8 ACM	0	.6-0.8	15/02/20	to coarse grained, trace boulders and bricks. MATERIAL FRAGMENT: Bonded ACM Fragments (2) observed at 0.6 0.8m (Good condition, 120-150mm)	6- 775286	-	Chrysotile, amosite and crocidolite asbestos detected.				-								-	-	_		_						_	-						
TP4	1	.3-1.5	15/02/20	21 SAND: fine to coarse grained, pale brown.	775286	0.0		38 0.9	6	290 290	0.2	21 240	-	<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP5		0-0.2	15/02/20	FILL: Gravelly CLAY with sand: medium plasticity, dark grey, gravel 121 is medium to coarse grained, angular, sand is medium to coarse 122 organized, transport transport transport transport transport transport transport	775286	0.0	No asbestos detected	40 4.3	26	720 1,200	0.3	17 1,30	0	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
QC1 (Intra-laboratory duplicate of TP5/0.0-0.2)	, ,	0-0.2	15/02/20	grained, trace cobbles, trace silt. As above	775286	-		45 3.7	23	450 1,000	0.2	15 1,40	0	<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
QC1A (Inter-laboratory duplicate of TP5/0.0-0.2)	, '	0-0.2	15/02/20		ES2107758	-		36 4.0	16	628 932	0.3	12 1,27	0	<	0.2	<0.5 <0.5	<0.5	<0.5 <0.5	<1	<10	<50	<100 <10	<50	<10	<10	<50	<50 <	100 <100	<50	<0.5	<0.5	1.2 <0.5	< 0.2	< 0.2 < 0.1	1	
TP5		1-1.2	15/02/20	FILL: Clayey GRAVEL with sand: medium to coarse grained, poorly graded, angular, dark grey, clay is medium plasticity, sand is medium to coarse grained.	775286	0.0		35 5.7	31	650 6,200	0.7	19 2,20	0	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP5	1	.6-1.9	15/02/20	21 SAND: medium to coarse grained, pale brown.	777451	0.0		43 1.2	< 5	120 560	0.2	15 240	-		-		-		-		-		-			-		- -	-			- -				
TP6	1	0-0.2	17/02/20	FILL: SAND with gravel trace silt: fine to coarse grained, brown, dark grey, gravel is fine to coarse grained, angular, trace cobbles.	775286	0.7	No asbestos detected	49 7.0	62	2,100 1,600	0.5	48 4,90	0	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP6	0	.5-0.6	17/02/20	21 SAND: fine to coarse grained, pale grey, pale brown. FILL: Bouldery SAND with gravel: fine to coarse grained, dark grey,	777451	0.7		< 2 < 0.4	< 5	< 5 < 5	< 0.1	< 5 < 5	-		-						-		-						-							
TP7		.2-0.5		boulders are up to 0.8m in diameter, gravel is fine to coarse grained, angular to sub-angular. MATCHAL FORCHOIT, Product CAL Force of (1) above and 0.0.2. MATCHAL FORCHOIT, Product CAL Force of (1) above and 0.0.2.	775286	0.1	No asbestos detected Chrysotile, amosite and	25 6.1	17	440 510	0.3	14 1,90	0	<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP7/0.2-0.5 ACM		.2-0.5	15/02/20	0.5m (Good condition, 10mm length) FILL: Bouldery SAND with gravel: fine to coarse grained, dark grey,	//5280	-	crocidolite asbestos detected.			- -	-	- -				- -	-		-	-	-					-										+
TP7/0.7-1 ACM		0.7-1	15/02/20	21 boulders are up to 0.8m in diameter, gravel is fine to coarse oralned, angular to sub-angular. MATERIAL FRAGMENT: Bonded ACM Fragment (2) observed at 0.7-	775286	0.1	No asbestos detected Chrysotile asbestos detected.						+-		-		+-		-	-						-					\dashv					+
TP7		.2-2.4	15/02/20	SAND: fine to coarse grained, pale brown, with black carbatious	775286	0.3	discessos defected.	130 5.3	8	670 1,200	0.5	42 530	+-	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 1.6	-			
TP7	+	2.8-3	15/02/20	ramination.	775286	0.2			-								-		-	-	-					-			-		_					
TP8		.5-0.7	16/02/20	FILL: SAND trace gravel with clay: fine to coarse grained, grey, dari grey, gravel is fine to medium grained, angular, clay is low plasticit	k y, 775286	0.0	No asbestos detected	2.3 < 0.4	10	65 6	< 0.1	6.5 40	+-	<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP8	1	.5-1.7	16/02/20	trace silt. SAND: fine to coarse grained, red, orange, brown.	775286	0.3		17 < 0.4	< 5	41 110	< 0.1	6.2 60	1	<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5				
TP10	0	.2-0.4	17/02/20	FILL: Gravelly Silty SAND: coarse grained, dark grey, black, gravel if fine to coarse grained, angular, with iron slag and trace iron material.	775286	0.3	No asbestos detected	6.8 < 0.4	12	110 110	< 0.1	5.7 63		<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP10	-	0.8-1	17/02/20	FILL: Gravelly CLAY trace cobbles: high plasticity, dark brown, red trace iron material, trace coarse orained, angular with iron slag an trace iron material, trace coarse orained sand, FILL: Gravelly CLAY with sand: medium plasticity, dark	775286	0.2		9.6 0.8	21	160 390	0.1	18 410		<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	: 50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP11	0	.2-0.4	15/02/20	FILL: Gravelly CLAY with sand: medium plasticity, dark 21 grey, gravel is medium to coarse grained, angular, sand is medium to coarse grained, trace glass.	775286	0.8	No asbestos detected	36 8.6	21	270 1,100	0.5	16 3,20	0	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP11	1	.3-1.5	15/02/20	21 SAND: fine to coarse grained, pale brown	775286	1.3		340 < 0.4	7.9	210 300	< 0.1	6.3 90	-	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP12	0	.2-0.3	17/02/20	graver is tine to coarse grained, angular, iron stag.	775286	0.4	No asbestos detected	15 0.8	5.8	160 140	< 0.1	19 150	-	<	0.1 <	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP12		.2-1.4	17/02/20	Shells.	775286	0.4		22 1.1		160 22		230 52		<	0.1 <	< 0.1 < 0.1	< 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP12		2.8-3	17/02/20	STREILS.	775286	0.4		18 0.7		84 29		62 28	-			- -	-				-	-	-										ļ			
TP13		.2-0.4	17/02/20	FILL: Sandy GRAVEL with clay: fine to coarse grained, angular, iron stag.	775286	0.7	No asbestos detected	29 6.9		610 1,300		18 3,10	-	<	0.1	< 0.1 < 0.1	1 < 0.2	< 0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50	< 20	< 20	< 50	50 <	100 < 100	< 100	< 0.5	< 0.5	1.2 < 0.5	< 0.2	< 0.2 < 0.5	5	
TP13	0	.9-1.1	17/02/20	graded, brown, gravel is iron slag, sand is medium to coarse grained, trace brick.	775286	0.5		110 7.8	31	480 1,800	0.9	24 4,80	D		-																			<u> </u>		

				Asbestos	1		Heavy Metals			Leacha	bility			BTEXN			1	TRH (NEPN	1 1999 Fractions) [TRH (I	NEPM 2013	fractions)			PAH	ls	OCP	OPP PO	CB Phen	ols
				/seuce/																			laphtha									
				on - Pre																(F)			minus A			(inc.		(LOR)/				
				ntificati		otal)				Lead							5	ction	ction	ction (s	<u> </u>	r1)	action	action	action	action	e e	ne TEO			henol	
				tos Ider ce	5 En	alum (to	٠	2		Arsenic	Lead	و	enzene	xylene	xylene	halene	9 Fracti	C14 Fra	C28 Fra	C36 Fra	10 Frac	BTEX (- C16 Fi	- C34 Fi	- C40 Fi	halene	(a) pyre	(a) pyre r Bound r PAHs	OCPs	SPPs SPPs	CBS III	s
			Helte of excession	Asbes	Arsen	Chron	Coppe	Mercu	Nickel Zinc	ASLP	ASLP	Joiner	Ethylk	- d + E	o-Xyle	Napht	O - 90	C10	C29 -	010	9 9	minus >C10	VC10	> C16	V C34	Napht	Benzo	Benzo (Uppe	Total	Total	Phenc	Cresol
			Units of measurement ing (Eurofins laboratory)	0.01%w/w	2 0.4	5	5 5		g/kg mg/k 5 5		0.01 0.1	(g mg/	.1 0.1	0.2		0.5		20	ng/kg mg/kg 50 50	50 2	_	50	50	100	100 1	/kg mg/kg 00 0.5	0.5	mg/kg mg/k	0.05 to 0.2	0.2 to 2 0.	y/kg mg/kg mg/	1 <0.5
	nt criteria (NEPM 1999, amended 2013) th-based investigation level (HIL D - Commerical/ Industrial)	Limit of rep	porting (ALS laboratory)		5 4			0.1	2 5		0.2	0.5	.5 0.5	0.5	0.5	1	10	50	100 100	50	10 1	50	50	100	100 5	0 0.5	0.5	0.5 0.5		0.2 0. 2.000 to	.1 <0.5 <2	
NEPM 1999 Table 1A (3) Heal	th-based screening level for Vapour Intrusion (HSL D - Commercial / Industrial, Sand, 0-<1m) Table 4 Health-based screening level for Direct contact (HSL D Commercial / Industrial)				3,000 900	3,600 2	240,000 1,500	730 6	,000 400,00	00			IL NL		230 81.000						26		20,000	27.000 3	9.000	NL 11.000		40 400	45 to 3,600	4,500	7 240,000 660	25,000
Friebel and Nadebaum 2011, Friebel and Nadebaum 2011, I	Table B4 Health-based screening level for Direct contact (Intrusive maintenance worker) Health-based screening level for Vapour Intrusion (Intrusive maintenance worker, Sand, 0-<2 m)										1,100	0 120,0 NL	,000 85,000 IL NL		130,000 NL	29,000 NL					82,	00	62,000	85,000 1.	20,000	29,000 NL)					
Borehole ID	agement Limits (Commercial/ Industrial, Coarse texture) Samplie Depth Sampling Date Date	Lab Report	PID (ppmv)																	70	00°	1,000°		3,500 1	0,000							\Box
TP13	(m) Sandy CLAY: high plasticity, black clay and sand contaminated soil, 2-2.2 17/02/2021 hydrocarbons, oily smell, staining gloves, sand is fine to coarse	775286 / 777541	4.0		2,200 14.0	24	5,900 29,000	6.9	230 2,000	0.24	<0.01 < 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	140 1	1,400 780	2,320 <	20 <	20 240	240	2,000	320 2,	660 < 0.5	< 0.5	1.2 2.3	< 0.2	< 0.2 < 0	0.5	
TP13	grained. 2.8-3.0 17/02/2021 SAND: fine to coarse grained, pale brown, pale grey.	777451	0.6		120 5.1	34	480 2,700	3.2	< 5 810							< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100						
TP14	0-0.2 17/02/2021 GRAVEL: fine to medium grained, poorly graded, angular, pale grey,	775286	1.0		< 2 < 0.4	< 5	< 5 < 5	< 0.1	< 5 < 5													_										
TP14	0.5-0.7 17/02/2021 gravel is fine to coarse grained, angular, iron slag, sand is medium	775286	1.0	No asbestos detected	21 7.6	22	190 620	0.2	20 2,300		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100 < 0.5	< 0.5	1.2 < 0.	5 < 0.2	< 0.2 < 0	0.5	
TP14	to coarse grained, trace boulders and brick. 1.2-1.4 17/02/2021 Sandy CLAY: high plasticity, dark grey, black hydrocarbon contaminated soil, oily smell.	775286 / 777541	5.9		3,700 66.0	52	7,600 58,000	33.0	150 9,600	3.40	2.2 < 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	110	630 210	950 <	20 <	210	210	620	120 9	50 < 0.5	0.7	1.4 5.7	< 0.2	< 0.2 < 0	0.5	
TP14	1.8-2 17/02/2021 SAND: fine to coarse grained, pale brown, pale orange	775286	1.0		16 6.2	< 5	76 12	< 0.1	15 140		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100 < 0.5	< 0.5	1.2 < 0.	·			
TP14	2.5-2.7 17/02/2021 SAND: fine to coarse grained, pale brown, pale orange.	777451	0.9		< 2 < 0.4	< 5	< 5 < 5	< 0.1	< 5 < 5				- -			-				-		-										
QC3 (Intra-laboratory duplicate of TP14/2.5-2.7)	2.5-2.7 17/02/2021 As above	777451			< 2 < 0.4	< 5	< 5 < 5	< 0.1	< 5 < 5				- -			-																
TP15	0.0-0.1 12/10/2021 FILL Gravelly SAND: fine to coarse grained, dark grey, 'with foreign materials (glass fragment, brick, plastic).	833233	4.8	No asbestos detected	12 1.2	42	260 99	0.3	8.5 250		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	150 98	248 <	20 <	20 < 50	< 50	250	: 100 2	50 < 0.5	6.8	10.0 62.0	< 1	< 0.2 <	1 < 0.5 <	< 1
TP15	0.4-0.5 12/10/2021 FILL Clayey SILT: pale grey mottled pale yellow.	833233	7.6	No asbestos detected	5 0.9	44	210 92	0.5	7.3 88		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	74 3	3,700 1,100	4,874 <	20 <	20 88	88	4,200	600 4,	388 1.4	53.0	99 1110	8 < 1	< 0.2 <	1 < 0.5 <	< 1
TP15	1.8-1.9 12/10/2021 SAND: medium grained, pale yellow.	833233	6.2		17 1.0	< 5	28 37	< 0.1	< 5 92		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	5 < 0.1	< 0.2 < 0	0.1 < 0.5 <	1 < 0.5
TP16	0.3-0.5 12/10/2021 FILL Clayey GRAVEL: dark grey to black, with coal wash, trace silt.	833233	8.3	No asbestos detected	3 < 0.4	12	29 21	< 0.1	5.8 39		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	110 56	166 <	20 <	20 < 50	< 50	130	: 100 1	30 < 0.5	< 0.5	1.2 1.0	< 0.1	< 0.2 < 0	0.1 < 0.5 <	1 < 0.5
QA1 (Intra-laboratory duplicate of TP16/0.3-0.5)	- 12/10/2021 As above	833233		-	24 0.4	10	38 19	< 0.1	18.0 79		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100 < 0.5	< 0.5	1.2 < 0.	5 < 0.1	< 0.2 < 0	0.1 < 0.5 <	1 < 0.5
QA1A (Inter-laboratory duplicate of TP16/0.3-0.5)	- 12/10/2021 As above	ES2137909			<5 <1	14	27 29	< 0.1	3.0 26		<0.2	2 <0.	0.5 < 0.5	<0.5 <	:0.5 <0.5	<1	<10	<50	<100 <100	< 50 <	10 <	0 < 50	< 50	< 100	: 100 <	50 < 0.5	< 0.5	1.2 < 0.	5 < 0.2	< 0.2 <0	0.1 <0.5 <2	< 1
TP16	1.6-1.8 12/10/2021 FILL Clayey SILT: dark brown with mottled yellow, trace sub-rounded gravel.	833233	10.3	No asbestos detected	8 0.6	33	110 38	0.2	9.5 110		< 0.5	5 < 0	0.5 < 0.5	< 1 <	0.5 < 1.5	30	< 100	60 3	3,200 970	4,230 <	100 < 1	00 83	53	3,800	560 4,	143 23.0	47.0	96 1328	7 < 1	< 0.2 <	1 <0.5 <1	< 1
TP16	2.5-2.7 12/10/2021 FILL Clayey SILT: dark brown with mottled yellow, trace sub-rounded gravel.	833233	7.8	No asbestos detected	26 < 0.4	27	53 49	0.1	9.5 92		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	9	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100 24.0	60.0	110 1358	1 < 1	< 0.2 <	1 <0.5 <1	< 1
TP17	0.3-0.5 12/10/2021 FILL Clayey SILT: dark brown with mottled yellow, trace brck and angular to sub-angular gravel.	833233	2.8	No asbestos detected	13 1.0	33	180 68	0.1	3.0 150		< 0.1	1 < 0	0.1 < 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20	58 3	3,400 900	4,358 <	20 <	20 84	84	3,900	460 4,	3.5	70.0	130 1618	8 < 1	< 0.2 <	1 < 0.5 <	< 1
TP17	2.0-2.2 12/10/2021 FILL Silty CLAY: high plasticity, pale brown, with sub-rounded cobbles.	833233	5.0	No asbestos detected	2 < 0.4	36	150 17	< 0.1	8.0 88		< 0.1	1 < 0	0.1 < 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	< 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	< 0.1	< 0.2 < 0	0.1 < 0.5 <	1 < 0.5
TP17	2.5-2.7 12/10/2021 FILL Sandy CLAY: dark grey brown, with black staining from organic matter.	833233	11.9		19 0.8	41	260 320	0.2	3.0 220		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	< 100 <	1.0	25.0	40 482.	< 0.1	< 0.2 < 0	0.1 < 0.5 <	1 < 0.5
TP18	0.3-0.5 12/10/2021 FILL Sandy GRAVEL: well rounded and angular to sub-angular, red, trace 'foreign materials (electric wire)	833233	6.8	No asbestos detected	8 < 0.4	43	18 12	< 0.1	< 5 31		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	51 < 50	51 <	20 <	20 < 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	5 < 0.1	< 0.2 < 0	0.1	
TP18	2.0-2.2 12/10/2021 FILL Sandy GRAVEL: well rounded and angular to sub-angular, red	833233	7.6	No asbestos detected	20 < 0.4	14	68 48	< 0.1	3.0 670		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100 < 0.5	< 0.5	1.2 < 0.	< 0.1	< 0.2 < 0	0.1	
TP19	0.4-0.6 12/10/2021 FILL Sandy GRAVEL: well rounded and angular to sub-angular, red	833233	10.7	No asbestos detected	< 2 < 0.4	< 5	29 18	< 0.1	6.2 43		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	< 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 0.8	< 0.1	< 0.2 < 0	0.1	
TP19	1.7-1.9 12/10/2021 FILL Clayey GRAVEL: angular to sub-angular and rounded, dark brown to red, trace sand throughout.	833233	15.3	No asbestos detected	23 1.2	30	170 130	0.1 2	26.0 280		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	53 < 50	53 <	20 <	< 50	< 50	< 100	< 100 <	100 < 0.5	0.9	1.8 9.1	< 0.1	< 0.2 < 0	0.1	
TP20	0.1-0.2 12/10/2021 FILL SAND: fine to coarse grained, pale brown.	833233	8.7	No asbestos detected	2 < 0.4	14	130 8	< 0.1	< 5 47		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	< 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	5 < 0.1	< 0.2 < 0	0.1	
TP20	1.0-1.2 12/10/2021 SAND: medium grained, orange.	833233	9.6		< 2 < 0.4	< 5	< 5 < 5	< 0.1	< 5 < 5	-	< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	< 0.1	< 0.2 < 0	0.1	
TP21	0.0-0.3 12/10/2021 FILL Clayey GRAVEL: angular to sub-rounded, pale grey, with sand throughout	833233	22.3	No asbestos detected	< 2 < 0.4	200	< 5 < 5	< 0.1	< 5 < 5		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	: 100 <	100 < 0.5	< 0.5	1.2 < 0.	< 0.1	< 0.2 < 0	0.1	
TP21	1.6-1.8 12/10/2021 FILL SAND: coarse grained, with coarse grained sub-angular to sub-rounded gravel, trace fabric.	833233	24.0	No asbestos detected	50 0.7	5	200 360	0.1	1.0 180		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	5 < 0.1	< 0.2 < 0	0.1	
TP22	0.1-0.2 12/10/2021 FILL Sandy CLAY: brown, trace rootlets.	833233	14.0	No asbestos detected	7 0.8	350	160 59	< 0.1	8.2 130		< 0.1	1 < 0	0.1 < 0.1	< 0.2 <	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50	< 100	< 100 <	100 < 0.5	< 0.5	1.2 < 0.	< 0.1	< 0.2 < 0	0.1	
TP22	1.0-1.3 12/10/2021 FILL Clayey GRAVEL: angular to sub-angular, dark grey to black, with cobbles >60mm.	833233	13.3	No asbestos detected	3 < 0.4	11	41 25		6.9 57	-	< 0.1			< 0.2 <			< 20	< 20	< 50 < 50	< 50 <	20 <	20 < 50	< 50			100 < 0.5		1.2 < 0.			0.1	
TP22	2.0-2.3 12/10/2021 SAND: coarse grained, reddish yellow.	833233	12.6		15 < 0.4	< 5	20 34		5.2 69		< 0.1				0.1 < 0.3				< 50 < 50		20 <					100 < 0.5					0.1	
TP23	0.6-0.8 13/10/2021 FILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles FILL Clayey SAND: pale brown, low plasticity clay, with	833233	13.4	No asbestos detected	5 < 0.4	6	52 23		4.0 58		< 0.1				0.1 < 0.3				< 50 < 50		20 <					100 < 0.5		1.2 < 0.			0.1	
TP23	2.1-2.3 13/10/2021 bricks, ceramics, sub-angular gravel and sub-rounded cobbles	833233	12.9	No asbestos detected	210 5.0		640 2,300		10.0 550		< 0.1	-			0.1 < 0.3				< 50 < 50		20 <					100 < 0.5		1.2 < 0.	5 < 0.1		0.1	
TP24	0.2-0.4 13/10/2021 FILL Clayey GRAVEL: sub-angular, red, well rounded nodules.	833233	14.8	No asbestos detected	11 0.5		72 34		2.0 77		< 0.1				0.1 < 0.3				< 50 < 50		20 <		-			100 < 0.5					0.1	
TP24	nodules.	833233	13.1	No asbestos detected	11 < 0.4		62 58		8.8 87		< 0.1			< 0.2 <	-				< 50 < 50		20 <		< 50			100 < 0.5		1.3 4.0			.2	
TP25	0.3-0.5 13/10/2021 FILL Clayey SAND: dark brown, with angular gravel, trace rootlets. 2.2.2.4 13/10/2021 FILL SAND: coarse grained, yellow with grey laminae	833233	8.9	No asbestos detected	5 0.4		200 47		4.0 120		< 0.1				0.1 < 0.3				< 50 < 50		20 <					100 < 0.5					0.1	
TP25	throughout.	833233	9,5		15 0.6		37 150		1.0 86		< 0.1				0.1 < 0.3				< 50 < 50		20 <					100 < 0.5		1.2 < 0.			0.1	
TP25	2.8-3.0 13/10/2021 SAND: orange to yellow. 0.4.0.5 13/10/2021 FILL Sandy CLAY: low plasticity, dark brown, trace	833233	13.6		16 < 0.4		23 140	+ +	7.8 84		< 0.1	-			0.1 < 0.3				< 50 < 50		20 <					100 < 0.5		1.2 < 0.	-		0.1	
TP26 QA6 (Intra-laboratory	rootlets.	833233	17.4	No asbestos detected	25 1.6		470 500		2.0 500		< 0.1				0.1 < 0.3				< 50 68		20 <					100 < 0.5					0.1	
duplicate of TP26/0.4-0.5)	- 13/10/2021 As above	833233			38 1.7	39	580 560	0.2	9.0 1,000		< 0.1	1 < 0	0.1 < 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20	< 20	< 50 < 50	< 50 <	20 <	< 50	< 50	< 100	< 100 <	< 0.5	< 0.5	1.2 < 0.	< 0.1	< 0.2	0.1	

1				Asbestos	1			Heavy Metals			Le	eachability			BTEXN			TRH (NEPM 1999	Fractions)			TRH	(NEPM 2013	fractions)				PAHs	$\overline{}$	OCP	OPP	PCB	PhenoIs
				Abbestos Identification - Presence	Arsenic	Cadmlum	Chromium (total)	Copper	Mercury	Nickei	Zinc	ASLP Arsenic Lead	Benzene Toluene	Ethylbenzene	m+p-xylene	o-Xylene Total xylene	Naphthalene	C6 - C9 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 Fraction (sum)	C6 - C10 Fraction C6 - C10 Fraction mine BTFY (F1)	16 Fraction	>C10 - C16 Fraction minus Naphtha	>C16 - C34 Fraction	>C34 - C40 Fraction	>C10 - C40 Fraction (sum)	Naphthalene	Benzo(a)pyrene Benzo(a)pyrene TEO (LOR)/ (Upper Bound)	Sum of PAHs	Total OCPs	Total OPPs	Total PCBs	Pentachlorophenol
			Units of m		mg/kg	mg/kg	mg/kg m	g/kg mg/kg	mg/kg	mg/kg	mg/kg m	ng/L mg/L	mg/kg mg/kg	mg/kg	mg/kg m	g/kg mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg mg/k	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/l	kg mg/kg mg/
			Limit of reporting (Eurofins	laboratory) 0.01%w/w	2	0.4	5	5 5	0.1	5	5 0.0	.005 0.01	0.1 0.1	0.1	0.2	0.1 0.3	0.5	20 20	50	50	50	20 20	50	50	100	100	100	0.5	0.5 0.5	0.5 0.	0.05 to 0.2	0.2 to 2	0.5 <0.	
			Limit of reporting (ALS	laboratory)	5	4	2	5 5	0.1	2	5		0.2 0.5	0.5	0.5	0.5 0.5	1	10 50	100	100	50	10 10	50	50	100	100	50	0.5	0.5 0.5	0.5	0.2	0.2	0.1 <0.	.5 <2
Contamination assessment NEPM 1999 Table 1A (1) Hea		9, amended 2013) evel (HIL D - Commerical/ Industrial)																										lacksquare				2 000 to		_
	<u> </u>				3,000	900	3,600 240	0,000 1,500	730	6,000 4	000,000																		40	4000 45	45 to 3,600	4,500	7 240,0	00 660 25,0
		for Vapour Intrusion (HSL D - Commercial / Industrial, Sand, 0-<1m)											3 NL	NL 27,000			NL 11.000					260		20,000	27.000	20.000		NL 11.000						
		reening level for Direct contact (HSL D Commercial / Industrial) creening level for Direct contact (Intrusive maintenance worker)											430 99,00 1,100 120.00			81,000 130.00						26,00 82.00			27,000 85.000			11,000 29.000						
Friebel and Nadebaum 2011,	Health-based screening	evel for Vapour Intrusion (Intrusive maintenance worker, Sand, 0-<2 m)											77 NL	NL		NL	NL											NL						
NEPM 1999 Table 1B (7) Man	nagement Limits (Comme	rcial/ Industrial, Coarse texture)																				700 ^a	1,00	O ^a	3,500	10,000	-			4				
Borehole ID	Depth Date	Unit (Soil description)	Lab Report PID (ppmv)																														
QA6A (Inter-laboratory duplicate of TP26/0.4-0.5)	- 13/10/2	121 As above	ES2137909 -		17	<1	11 3	351 178	0.1	8.0	259		<0.2 <0.5	< 0.5	<0.5	0.5 <0.5	<1	<10 <50	<100	<100	<50	<10 <10	<50	< 50	< 100	< 100	<50	< 0.5	< 0.5 1.2	< 0.5	< 0.2	< 0.2	< 0.1	
TP26	1.6-1.8 13/10/2	FILL Clayey SAND: pale brown to orange, with angular to sub-rounded gravel, lenses of coal wash throughout.	833233 21	.9 No asbestos detected	33	3.7	6 2	240 690	2.1	11.0	220		< 0.1 < 0.1	< 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20 < 20	230	200	430	< 20 < 20	< 5	0 < 50	380	110	490	< 0.5	< 0.5 1.2	< 0.5	< 0.1	< 0.2	< 0.1	
TP26	2.2-2.4 13/10/2	FILL Clayey SAND: pale brown to orange, with angular to sub-rounded gravel, lenses of coal wash throughout.	833233 22	.6 No asbestos detected	120	3.3	27 1,	.600 840	1.4	56.0	1,100		< 0.1 < 0.1	< 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20 < 20	< 50	< 50	< 50	< 20 < 20	< 50	0 < 50	< 100	< 100	< 100	< 0.5	1.5 2.7	17.7	< 1	< 0.2	< 1	
TP27	0.0-0.2 13/10/2	221 FILL Silty CLAY: dark brown, with rootlets.	833233 1.	9 No asbestos detected	11	4.2	13 8	310 250	0.3	11.0	450		< 0.1 < 0.1	< 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20 < 20	< 50	< 50	< 50	< 20 < 20	< 5	0 < 50	< 100	< 100	< 100	< 0.5	< 0.5 1.2	< 0.5	< 0.1	< 0.2	< 0.1	
TP27	0.8-1.0 13/10/2	FILL Sandy CLAY: brown, with cobbles and boulders (200-600mm), trace foreign materials (metal rope, timber, rubber).	833233 3.	Chrysotile asbestos detecte (fibre cement fragments an loose fibre bundles)	i i					-				-	-	-	-							-										-
TP27	1.3-1.5 13/10/2	FILL Sandy CLAY: brown, with cobbles and boulders (200-600mm), trace foreign materials (metal rope, timber, rubber).	833233 4.	2 No asbestos detected	36	10.0	25 3	330 1,200	0.6	18.0	4,200		< 0.1 < 0.1	< 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20 < 20	< 50	< 50	< 50	< 20 < 20	< 5	0 < 50	< 100	< 100	< 100	< 0.5	< 0.5 1.2	< 0.5	< 0.1	< 0.2	< 0.1	
TP27	2.1-2.3 13/10/2	SAND: pale brown to orange and yellow.	833233 2.	3	69	3.1	< 5	230 560	0.3	25.0	700		< 0.1 < 0.1	< 0.1	< 0.2	0.1 < 0.3	< 0.5	< 20 < 20	< 50	< 50	< 50	< 20 < 20	< 50	0 < 50	< 100	< 100	< 100	< 0.5	< 0.5 1.2	< 0.5	< 0.1	< 0.2	< 0.1	
ACM01	- 12/10/2	MATERIAL FRAGMENT: Grey compressed fibre cement material observed on surface 8m north of TP22 (Good condition, 30-45mm length).	833233 -	- Chrysotile asbestos detected	L																													
ACM02	- 13/10/2	MATERIAL FRAGMENT: Black/ brown refractive brick observed 10m south of TP23	833233 -	No asbestos detected																							-	-		1-1				
TP27/0.2-1.0-ACM	0.2-1.0 13/10/2	MATERIAL FRAGMENT: Grey fibre cement material observed at 0.0- 1.0m (Good condition, 40-60mm length)	833233 -	Chrysotile asbestos detected																												-		
				Minimum N/A Maximum N/A														< 20 < 20 < 20 140														< 0.2	< 0.5 < 0.	.5 <1 <0 .5 <1 <0
				TOTAL 50														67 67											66 66					11 11 1

Colour legend

Concentration exceeds adopted human health criteria (HIL/HSL D)

Concentration exceeds adopted human health criteria (Intrusive maintenance worker)

Concentration exceeds adopted human health criteria (Management limits)

Sample contains asbestos

Table Notes:

NPM 1999

Friebel & Naddebaum

Friebel and Naddebaum 2011, CRC Care Technical Report No. 10 Health Screening Levels for petrolusm hydrocarbons in soil and groundwater. Part 2: Application Document Separate management limits for BTEX and naphtalene are not available hence these were not subtracted from the relevant fractions to obtain F1 & F2

HILLs

Health investigation Levels for Soil And Groundwater Part 2: Application Document Separate management limits for BTEX and naphtalene are not available hence these were not subtracted from the relevant fractions to obtain F1 & F2

HILLs

Health screening level

LOR

Limit of reporting

NL

Non limiting

Non limiting

Asbestos containing material

PID

Photolonisation detector

ppmv parts per million by volume

mg/kg

milligrams per kitogram

milligrams per littre

							Asbestos	Inorganics				Heavy Me	etals					ВТІ	EXN			TRH (I	NEPM 1999	Fractions)			TRH (NEPM 2013	fractions)				PAHs		ОСР	OPP PCB
						Units of measurement		pH (1:5 aqueous extract)	mg/kg	Cadmium by/bu	Chromium (total)	Copper	pead Maccury (Maccury Maccury	Territoria de la composición del composición de la composición del composición de la composición del composición de la composición del composición del composición del composición del composición del composición del composición d	Ziuc mg/kg	Вегхене	Toluene mg/kg	mg/kg mc	m +p-xylene m +p-xylene	g mg/kg n	Na phthalene sylow (2007) (200	by/fou by/con contraction	ම් C15 - C28 Fraction	mg/km	64/6w 64/6w	ba bayban ba bayban ba bayban ba bayban bayba ba bayba bayba ba ba ba ba ba ba ba ba ba ba ba ba b	minus BT >C10 - C	Sylva > C10 - C16 Fraction minus Naphthalene (F2)	mg/kgm >C16 - C34 Fraction	නි කි >C34 - C40 Fraction	>C10 - C40 Fraction (sum)	mg/kg	Skipson (a) pyrene Skipson (b) Skipson (b) Skipson (b) Skipson (c)	Sum of PAHs	mg/kg	Baylor Ba
						eporting (Eurofins laboratory)	0.01%w/w	0.1	2	0.4	5	5	5 0.	1 5	5	0.1	0.1	0.1 0	0.2 0.1	0.3	0.5 20	20	50	50	50	20 2	0 50	50	100	100	100	0.5	0.5 0.5	0.5	0.05	0.2 0.1
Contamination assessment				9, amended 2013) evel (HIL D - Commerical/ Industrial)	Limit	of reporting (ALS laboratory)			5		2		5 0.		5	0.2	0.5	0.5 0	0.5 0.5	0.5	1 10	50	100	100	50	10 1	0 50	50	100	100	50	0.5	0.5 0.5		0.2	0.2 0.1 2,000 to
				I for Vapour Intrusion (HSL D - Commercial / Industrial, Sand, 0-<1m)					3,000	900	3,600	240,000	1,500 73	0 6,000	400,000	3	NL	NL		230	NL					26	iO	NL				NL	40	4000	45 to 3,600	4,500 TO 7
Friebel and Nadebaum 2011, Friebel and Nadebaum 2011,	, Table	4 Health B4 Heal	h-based so	reening level for Direct contact (HSL D Commercial / Industrial) screening level for Direct contact (Intrusive maintenance worker)	")											1,100	99,000 120,000	27,000 85,000		81,000 1 130,000 2	0,000 0,000					26, 82,	000	20,000 62,000	27,000 85,000	38,000 120,000		11,000 29,000				
NEPM 1999 Table 1B (7) Man		ent Limit emple		level for Vapour Intrusion (Intrusive maintenance worker, Sand, U-<2 recreal/ Industrial, Coarse texture)	",												NL	INC		INL.						700 ^a	1,000		3,500	10,000		INL				
Borehole ID	D	epth (m)	Sampli Date		Lab Report	PID (ppmv)							\perp			\perp						_							_							
BH01	0.2	2 - 0.3	29/03/20	Fill (Roadbase): gravelly SAND, dark brown, medium grained san with angular to sub angular gravel	d 875262	5.1	No asbestos detected	8.2	7.3	<0.4	<5	210	18 <0	.1 <5	73	<0.1	<0.1	<0.1	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <2	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH01	3.0	3 - 0.9	29/03/20	Fill (Reworked natural): Clayey SAND, pale brown to grey, mediu grained sand with trace gravel	m 875262	4.3	-	8.2	-	-	-	-		-	-	-	-	-		-		-	-	-	-		-	-	-	-	-	-		-	-]	
BH01	1.4	- 1.5	29/03/20	Fill (Reworked natural): Clayey SAND, pale brown to grey, mediu grained sand with trace gravel	m 875262	3.9	No asbestos detected	8.7	2	<0.4	13	79	80 <0	.1 16	110	<0.1	<0.1	<0.1	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <2	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH02	0.1	- 0.2	5/04/20	Fill (Roadbase): gravelly SAND, dark brown, medium grained san with angular to sub angular gravel	d 877944	8.9	No asbestos detected	-	18	1.8	16	300	290 <0	.1 18	520	<0.1	<0.1	<0.1	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <2	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
QA3 (Intralab duplicate of BH02/0.1-0.2)	:	-	5/04/20		877944	-	-	=	5.4	1.6	13	280	220 <0	.1 18	400	<0.1	<0.1	<0.1 <	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <2	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
QA3A (Interlab duplicate of BH02/0.1-0.2)	f	-	5/04/20		ES2212526	-	-	-	11	2	10	371	260 <0	.1 9	377	<0.2	<0.5	<0.5 <	0.5 <0.5	5 <0.5	<1 <10	<50	<100	<100	<50	<10 <	10 <50	<50	<100	<100	<50	<0.5	<0.5 1.2	<0.5	<0.2	< 0.2 < 0.1
BH02	0.	9 - 1	5/04/20	grained sand with Sub angular gravel	877944	11.2	No asbestos detected	-	2.6	<0.4	26	120	14 <0	.1 16	71	<0.1	<0.1	<0.1 <	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH03	0.6	5 - 0.7	5/04/20	DIACK WICH HIGHEN	877944	6.3	No asbestos detected	-	19	2.7	19	460	1,200 0.	3 26	820	<0.1	<0.1	<0.1 <	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH03	1.4	l - 1.5	5/04/20	granieu sanu witir angular to sub angular graver	877944	12.9	No asbestos detected	-	5.4	0.7	23	160	170 <0	.1 18	270	<0.1	<0.1	<0.1 <	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <2	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH04	0.1	- 0.2	5/04/20	COdIWdSII	077311	4.0	No asbestos detected	-	6			370	250 0.		160	+	<0.1		:0.2 <0.1		<0.5 <20	<20	<50	<50	<50	<20 <2	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH04	+	5 - 0.6	5/04/20	Fill (Tenceil): Filty CLAV with cond. dark brown with trace restlet	877944	8.6	No asbestos detected	-	3.3		11			.1 27	1,100	+	<0.1		:0.2 <0.1		<0.5 <20		<50	<50	<50	<20 <2			<100	<100	<100		<0.5 1.2		<0.05	< 0.2 < 0.1
BH05			5/04/20	and sandstone graver	077511	7.2	No asbestos detected	-	18		40			.1 19	1,200	+ -	<0.1		:0.2 <0.1		<0.5 <20		57	68	125	<20 <			130	<100	130		<0.5 1.2		<0.05	< 0.2 < 0.1
BH05		1.5		22 Fill: Clayey SAND, brown	877944	8.4	No asbestos detected	-	7.4	+ +	21			.1 22	88	+ -	<0.1		:0.2 <0.1		<0.5 <20		<50	<50	<50	<20 <			<100	<100	<100		<0.5 1.2		<0.05	< 0.2 < 0.1
BH06	+	1 - 0.2		Fill: Sandy CLAY, dark brown with angular to sub angular gravel Fill (Coalwash): GRAVEL, fine to medium grained, dark grey to	877944	1.7	No asbestos detected	-	17	+ +	-		550 0	+	710	+	<0.1		:0.2 <0.1		<0.5 <20		180	170	350	<20 <		+	340	120	460		0.9 1.8	+ +	<0.5	< 0.2 < 0.1
BH06		9 - 1	4/04/20	black with trace sand Fill (Coalwach): CPAVEL fine to medium grained, dark grow to	877944	2.9	No asbestos detected	-	570	+ +	-	.,	16,000 0.5	+	24,000	+	<0.1		0.2 <0.1		<0.5 <20		220	340	560	<20 <			500	200	700		0.5 1.2	4.5	<0.5	< 0.2 < 0.1
BH06	+	7 - 1.8	4/04/20	black with trace sand	877944	3.6	No asbestos detected	-	570	+ +		0,000	19,000 0.3		44,000	+	<0.1		0.2 <0.1		<0.5 <20		68	76	144	<20 <			140	<100	140		<0.5 1.2		<0.5	< 0.2 < 0.1
BH07		0.2	4/04/20	medium grained. Fill: Clayey SAND, medium grained, brown, angular to	877944	1.6	No asbestos detected	-	2.6	+ +	39		39 <0 1,100 0.:	.1 11	66	+	<0.1		0.2 <0.1		<0.5 <20		<50	<50	<50 E2	<20 <			<100	<100	<100		<0.5 1.2		<0.05	< 0.2 < 0.1
BH07		9-1	4/04/20	sub-angular gravel.	877944 s 877944	2.9	No asbestos detected	-	30 10	+ +	140		1,100 0.		4,900	1	<0.1	<0.1 <	0.2 <0.1		<0.5 <20 <0.5 <20		<50 71	53	53 125	<20 <			<100 110	<100	<100 110		<0.5 1.2		<0.05	< 0.2 < 0.1
BH08 0 3-0 4		- 0.1	4/04/20	Fill: Sandy CLAY, dark brown, with angular to sub angular cobble Fill: Sandy CLAY, dark brown, with angular to sub angular cobble	_	4.3	No asbestos detected No asbestos detected	-	15					2 29	2,300	+	<0.1		0.2 <0.1		<0.5 <20		<50	<50	<50	<20 <			<100	<100	<100		<0.5 1.2		<0.05	< 0.2 < 0.1
BH08_0.3-0.4				and ACM fragments MATERIAL EDACMENT: Randed ACM Fragments (6) observed at 1	077544	4.8	No asbestos detected Chrysotile, amosite and	-	15	3.2	011	800	700 0.	29	2,300	<0.1	<0.1	<0.1	.u.z <0.1	<0.3	<20	<20	<50	Visit of the control of the contr	< 5U	<20 <	<50	<50	<100	<100	<100	<0.5	VU.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH08_0.3-0.4 ACM	+	1 - 0.2	4/04/20	Fill (topsoil): Silty SAND, brown, medium to coarse grained sand		0.9	rocidolite asbestos detected No asbestos detected	-	12	1	14	270	140 <0	.1 14	260	<0.1	<0.1	<0.1 <	:0.2 <0.1	1 <0.3	<0.5 <20	<20	<50	<50	<50	<20 <	20 <50	<50	<100	<100	<100	<0.5	<0.5 1.2	<0.5	<0.05	< 0.2 < 0.1
BH09 BH09		9 - 1		with rootlets 22 Fill: Silty clayey SAND, with angular to sub angular gravel	877944	1.9	No aspestos detected No aspestos detected	-	9.9	-	23			.1 17	410	+	<0.1		0.2 <0.1		<0.5 <20		<100	<100	<100	<20 <				<200	<200		<0.5 1.2		<0.05	< 0.2 < 0.1
ACM-01	U.	1 -		MATERIAL FRAGMENT: Bonded ACM Fragmens (2) observed at surface approximately 5m west of BH05 (Good condition,	877944		No aspestos detected Chrysotile asbestos detected	-	-		-	-			- 410	- 0.1		-		- 10.3		-	- 100	- 100	- 100		- 100	- 100	- 200	- 200	-					
DCI.LA1			J ₁ 04/ 20	202 Surface approximately 5m west of Brid's (Good Condition, 70x40x3mm)	0//544	Minimum Maximum	N/A	8.2	2	<0.4	<5 340	29	14 <0	.1 <5	66	<0.1	<0.1	<0.1 <		1 <0.3	<0.5 <20	<40	<50	<50 340	<50 560	<20 <	20 <50	<50	110	120	110 700	<0.5	<0.5 1.2 0.9 1.8	<0.5	<0.05 <0.5	< 0.2 < 0.1 < 0.2 < 1
						riaximum Total	N/A 21	3		9.6	21	21	21 2	1 21	21	21	21	21 2	21 21	21	21 21	21	21	21	21	21 2	1 21	21	21	21	21		21 21		21	21 21

Table Notes:

NEPM 1999

National Environment Protection (Assessment of Site Contamination) Measure (1999, as amended 2013), Schedule BI Investigation Levels for Soil And Groundwater Priced & Nadebaum 2011. CRC Care Technical Report No. 10 Health Screening Levels for petroluem hydrocarbons in soil and groundwater. Part 2: Application Document Search emanagement limits for BTEX and natablasene are not available hence these were not subtracted from the relevant fractions to obtain F1 & F2 HILLs Health Investication Levels

HSL Health Investication Levels

HSL Holls this creening level

LOR Limit of reporting

NL Non limiting

NC Not tested

ACM Abebasto containing material

PID Photoionisation detector pprmv parts per million by volume mg/kg milligrams per kilogram milligrams per litre

								Fiel	d parame	eters											Inorg	anics									$\overline{}$
					Units of	measurement	Hd	Specific Conductivity (Ec @ 25°C)	ි Temperature	% Dissolved Oxygen	Redox Potential	Ammonia as N	Ammonium as N	Nitrite as N	mg/L	Reactive Phosphorus as P	Total Phosphorus as P	Total Hardness as CaCO3	Total Acidity as CaCO3	Total Dissolved Solids (Calc.)	Calcium	Magnesium T	unipos mg/L	mg/L	Chloride mg/L	Fluoride mg/L	Sulphate as SO4 - Turbidimetric	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Hydroxide Alkalinity as CaCO3	Total Alkalinity as CaCO3
				Limit of	reporting (A	ALS laboratory)	0.01	1	0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01	1	1	1	1	1	1	1	1	0.1	1	1	1	1	1
				Limit of repo	rting (Eurof	ins laboratory)						0.01	0.01	0.02	0.02	0.01	0.01	5	10	10	0.5	0.5	0.5	0.5	1	0.5	5	20	10	20	20
Assessment criteria Laboratory limits of repo	orting - adopte	d screening lev	el for Total Recover	able Hydroc	arbons		\vdash																								
PFAS NEMP (2020) Ecol Friebel & Nadebaum 20 Sand)	ogical water qu 11 Table A2 Gi	uality guideline roundwater HSI	values (Table 5 Int Ls for vapour intrus	erim Marine ion (Commer	- 95% Spec rcial /industr																										
ANZG 2018 Default Guid	delines Values	for toxicants (N	Marine water – 95%	species prof	tection)							0.91																			
ANZECC & ARMCANZ (2 for slightly disturbed ma						-east Australia	7.0-8.5			80-110		1.7																			
Water Sample ID	Sample Date	Lab Batch	Observations		rg water vel Reduced Level (m	Evidence of oily sheen or NAPL?																									
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	6.46	2,019	23.9	5.6	122.8	<0.01		1.03	1.3	<0.01		1120		1380	396	33	52	12	38	7.5	692	489	<1	<1	489
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111										<0.01		1.02	1.06	<0.01		1140		1370	401	34	53	12	38	7.3	701	505	<1	<1	505
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367																												=	
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	N	6.48	2,880	23.6	3.7	-72.6	0.99		<0.01	0.12	<0.01		1460		1960	503	50	108	29	45	7.4	1460	398	<1	<1	398
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	N	6.82	14,224	21.8	5.9	129.8	0.69		0.02	0.09	<0.01		1720		10100	227	279	2950	73	4770	3.2	1560	475	<1	<1	475
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	N	6.75	1,901	20.8	2.1	137	<0.01	<0.01	0.06	3.76	0.02	0.19	1070	44	1230	383	28	49	8	37	8.1	721	459	<1	<1	459
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.86	0.55	N	6.61	2,960	20.6	3.0	-75.4	0.85	0.81	<0.01	0.03	<0.02	0.22	1600	57	1880	567	46	102	29	38	6.6	1570	402	<1	<1	402
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160										0.85	0.81	<0.01	0.03	<0.02	0.21	1620	57	1880	572	46	102	29	36	6.9	1550	395	<1	<1	395
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054										1.3	1.4	< 0.02	0.04	0.01	0.24	1600	28	2700	560	48	100	30	44	6.2	1700	380	< 10	< 20	380
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	N	6.38	23,158	20.6	4.8	72.16	0.77	0.71	<0.01	0.05	<0.01	0.07	3040	53	14800	354	525	5000	95	7550	2.2	2080	428	<1	<1	428

Colour legend: centration exceeds HSLs Friebel & Nadebaum (2011) luman-health Concentration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection Concentration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection oncentration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical stressors Concentration exceeds PFAS NEMP Laboratory limits of reporting exceed adopted criteria

Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No. 10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

ANZG (2018)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

^B 99% protection of species adopted to account for potential bioaccumulative effects

^C Low reliability values adopted

																								$\overline{}$
								Ι	Ι	BTEXN	_	_			TRH -	1999 fra	ctions			T	RH - 201	3 fraction	S	
							Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Xylenes (total)	Naphthalene	ТRН С6 - С9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	Sum of TPH C10-C36	ТRH C6 - С10	TRH C6 - C10 less BTEX (F1)	TRH >C10 - C16	TRH >C10 - C16 less Naphthalene (F2)	TRH >C16 - C34	TRH >C34 - C40
					Units of	measurement	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						LS laboratory)	0.001	0.002	0.002	0.002	0.001	0.002	0.005	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1
Assessment criteria			l	imit of repo	rting (Eurofi	ins laboratory)	0.001	0.001	0.001	0.002	0.001	0.003	0.01	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.05	0.05	0.1	0.1
Laboratory limits of report	rting - adopted	d screening lev	el for Total Recover	able Hydroc	arbons			I	I	I	I	I	0.005	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1
PFAS NEMP (2020) Ecolo	ogical water qu	ality guideline	values (Table 5 Inte	erim Marine	- 95% Spec																			
Friebel & Nadebaum 201 Sand)	11 Table A2 Gr	oundwater HSI	s for vapour intrusi	on (Commer	ciai /industr	nai, 2-<4m	4.9	NL	NL			NL								6.2		NL		
ANZG 2018 Default Guid	elines Values 1	for toxicants (N	larine water – 95%	species prof	tection)		0.7	0.18	0.08	0.075 ^E			0.050 ^B											
ANZG 2018 Default Guid	elines Values 1	for toxicants (N	larine water – 80%	species pro	tection)		1.3	0.33	0.16	0.15 ^E			0.120 ^B											
ANZECC & ARMCANZ (20 for slightly disturbed mar				nical stressor	s for South-	-east Australia																		
Water Sample ID	Sample Date	Lab Batch	Observations	Standin lev Depth (m bgl)		Evidence of oily sheen or NAPL?		ı	ı	ı														
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	0.02	<0.1	<0.1	<0.1	<0.1
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111					<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367					<0.001	<0.001	<0.001	<0.002	<0.001	<0.003	<0.01	<0.02	0.16	<0.1	<0.1	0.16	<0.02	<0.02	0.14	0.14	<0.1	<0.1
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.86	0.55	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160					<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054					< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.003	< 0.01	< 0.02	< 0.05	< 0.1	< 0.1	< 0.1	< 0.02	< 0.05	< 0.05	< 0.05	< 0.1	<0.1
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1

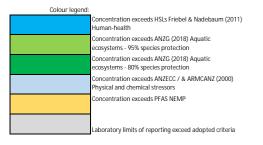


Table Notes:
Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No. 10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality, Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm 8}$ 99% protection of species adopted to account for potential bioaccumulative effects

^c Low reliability values adopted

																				Heavy	y Metals (Total,							$\overline{}$		——
								1		1	He	avy Metal	s (Dissol	ved)	1	1				l	ınfiltered)			P.A	AHs I			Pheno	olic compo	ounds
							uminium	senic	idmium	romium (total)	ıbalt (filtered)	hpper		pe	srcury	ckel	lenium	anium (filtered)	טנ	minium	uo	anganese	nthracene	nzo(a)pyrene	uoranthene	iphthalene	ienanthrene	tal PAH*	ntachlorophenol	enol	Other Phenols
					Units of	measurement	₹ ma/l	. ₩a/l	mg/L	ー さ mg/L	න mg/L	ළ mg/L	≝ mg/L	ma/l	mg/L	≡ mg/L	mg/L	mg/L	mg/L	₹ mg/L	Ĕ	≅ ma/l	₹	ug/l		ž ug/l	± μg/L	μg/L	μg/L	± μg/L	δ μg/L
				Limit of			mg/L	mg/L						mg/L							mg/L	mg/L	μg/L	μg/L	μg/L	μg/L				0.1	0.05 to
						LS laboratory)	0.01	0.001	0.0001	0.001	0.001	0.001	0.05	0.001	0.0001	0.001	0.01	0.001	0.005	0.01	0.05	0.001	0.1	0.05	0.1	0.1	0.1	0.1	0.05	0.1	0.1
Assessment criteria				Limit of repo	orting (Eurof	ins laboratory)	0.05	0.001	0.0002	0.001	0.001	0.001	0.05	0.001	0.0001	0.001	0.001	0.005	0.005	0.05	0.05	0.005	0.01	0.01	0.01	0.01	0.01	0.01			
	rting - adopte	d screening lev	el for Total Recover	rable Hydroc	arbons																										
Friebel & Nadebaum 201 Sand)	1 Table A2 Gr	oundwater HS	Ls for vapour intrus	ion (Comme	rcial /industi	riai, 2-<4m																				NL					
ANZG 2018 Default Guid	elines Values	for toyicante (1	Marine water 05%	species pro	tection)				0.0007B	0.0044 ^D		0.0013		0.00440	0.0001 ^B	0.007B			0.015				0.01 ^B	0.1 ^B	1.0 ^B	50 ^B	0.6 ^B		11	400	
ANZG 2018 Default Guid	elines Values	for toxicants (N	Marine water – 95%	species pro	tection)				0.0007	0.0044		0.0013		0.0044	0.0001	0.007			0.015				7.0	0.1	2.0	120	8.0		55	400	
ANZECC & ARMCANZ (20 for slightly disturbed man				nical stresso	rs for South	-east Australia																									
Water Sample ID	Sample Date	Lab Batch	Observations		ng water vel Reduced Level (m AHD)	Evidence of oily sheen or NAPL?		Т		ı	Т		1		•			I			ı	ı			Γ	ı	I				
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	0.03	0.044	0.0034	<0.001		0.019	0.57	0.016	<0.0001	0.127	0.05		0.494				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111					0.03	0.044	0.0033	<0.001		0.019	0.58	0.018	<0.0001	0.125	0.05		0.499				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367					<0.05	0.026	0.0041	0.001		0.022	0.12	0.007	0.0002	0.110	0.057		0.500				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	N	<0.01	0.066	<0.0001	<0.001		0.004	15.4	<0.001	<0.0001	0.019	<0.01		<0.005				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	N	<0.01	<0.001	0.0053	<0.001		<0.001	0.19	<0.001	<0.0001	0.010	<0.01		0.034				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	N	0.02	0.017	0.003	<0.001	0.008	0.036	0.18	0.014	<0.0001	0.094	0.06	0.008	0.849	0.66	2.38	0.072	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.86	0.55	N	<0.01	0.052	<0.0001	<0.001	0.006	<0.001	17.4	<0.001	<0.0001	0.027	<0.01	0.001	<0.005	0.07	20.2	1.15	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160					<0.01	0.053	<0.0001	<0.001	0.006	<0.001	17.0	<0.001	<0.0001	0.027	<0.01	0.001	<0.005	0.08	23.5	1.26	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054					< 0.05	< 0.001	< 0.0002	< 0.001	0.005	< 0.001	20.0	< 0.001	< 0.0001	< 0.001	< 0.001	<0.005	< 0.005	0.08	24	1.4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	N	<0.01	<0.001	0.0007	<0.001	0.137	0.026	4.31	<0.001	<0.0001	0.013	<0.01	<0.001	<0.005	0.130	4.78	6.71	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>

Colour legend: centration exceeds HSLs Friebel & Nadebaum (2011) luman-health Concentration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection Concentration exceeds ANZG (2018) Aquatic cosystems - 80% species protection Concentration exceeds ANZECC / & ARMCANZ (2000)
Physical and chemical stressors Concentration exceeds PFAS NEMP aboratory limits of reporting exceed adopted criteria

Table Notes:
Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality, Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm 8}$ 99% protection of species adopted to account for potential bioaccumulative effects

^c Low reliability values adopted

																							Halogen]			
							<u> </u>	ſ	1	1	0	CP	1		1	1	<u> </u>	Ol	PP	1	PCBs	(aka Vo	latile Orga	anic Com	pounds)	<u> </u>	PF	AS	
							Aldrin	Chlordane	DOT	Endosulfan	Endrin	Heptachlor	Lindane	Methoxychlor	Toxaphene	Total OCP	Chlorpyrifos	Fenitrothion	Temephos	Other OPP	Total PCBs	Total Fumigants	Halogenated Aliphatic Compounds	Halogenated Aromatic Compounds	Trihalomethanes	SOJd	Sum of PFHxS and PFOS	PFOA	Sum of PFAS (WA DER List)
					Units of	measurement	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				Limit of	reporting (A	ALS laboratory)	0.01	0.01	0.01	0.01	0.01	0.005		0.01		0.005-0.1	0.02	2	0.02	0.2 to 10	0.1	5	5 to 50	5	5	0.01	0.01	0.01	0.01
			I	Limit of repo	rting (Eurof	ins laboratory)																				0.01	0.01	0.01	0.05
Assessment criteria Laboratory limits of repo	ortina - adanta	d screening law	rel for Total Bosons	ahla Hudroo	arhone							_			I														
PFAS NEMP (2020) Ecolo	ogical water qu	uality guideline	values (Table 5 Inte	erim Marine	- 95% Spec																					0.13		220	
Friebel & Nadebaum 201	11 Table A2 Gi	roundwater HS	Ls for vapour intrusi	on (Commer	rcial /industr	rial, 2-<4m																							
Sand) ANZG 2018 Default Guid	delines Values	for toyloopto (A	Agring water DEO/	oncoice proj	tootion)		o oooF	0.004F	0.000 aF	0.005 ^B	0.004 ^B	0.000 4 ^F	0.007 ^F	0.004F	0.0006 ^F		0.009	0.001 ^F	0.05										
ANZG 2018 Default Guid ANZG 2018 Default Guid	delines Values	for toxicants (N	Marine water – 95%	species pro	tection)		0.003	0.001 ^F	0.0004	0.005	0.004	0.0004	0.007	0.004 ^F	0.0006		0.009	0.001	3.6										
ANZECC & ARMCANZ (2)				nical stressor	rs for South-	-east Australia																							
for slightly disturbed ma	irine ecosysten	ns, applying to	estuaries			1																							
Water Sample ID	Sample Date	Lab Batch	Observations	Standin lev Depth (m bgl)		Evidence of oily sheen or NAPL?																			1				
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
QA1 (Intra-laboratory duplicate of SMW01)	10/03/2021	EW2101111					<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
QA1A (Inter-laboratory duplicate of SMW01)	10/03/2021	779367																											
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.77	0.64	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td>0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>1</td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>1</td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td>1</td><td></td><td></td><td></td></lor<>	<5	<5	1			
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.38	0.51	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td>0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	< 5	<5				
SMW01	21/10/2021	EW2104433	Clear, no odour	2.11	0.46	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td>0.08</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td>0.08</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td>0.08</td></lor<>	<5	<5	0.08	0.08	<0.01	0.08
OHMW28	21/10/2021	EW2104433 / ES2140160		1.86	0.55	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<>	<5	<5	<0.01	<0.01	<0.01	<0.01
QA1 (Intra-laboratory duplicate of OHMW28)	21/10/2021	EW2104433 / ES2140160					<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<>	<5	<5	<0.01	<0.01	<0.01	<0.01
QA1A (Intra-laboratory duplicate of OHMW28)	21/10/2021	834054																								0.02	0.02	< 0.01	< 0.05
OHMW20	21/10/2021	834054 / 838322	Slight yellowish colour, slight rotten egg odour	2.44	0.45	N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></lor<>	<5	<5	<0.01	<0.01	<0.01	<0.01

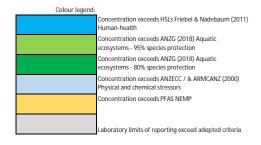
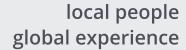


Table Notes:
Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

ANZECC & ARMCANZ 2000, National Water Quality, Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems


PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm 8}$ 99% protection of species adopted to account for potential bioaccumulative effects

^c Low reliability values adopted

Appendix C Engineering logs

Explanatory Notes of Abbreviations and Terms

Used on Borehole and Excavation Logs

General

The "Geological and Engineering Log" presents data from drilling or excavation operations where material recovery is soil and or rock. Data presented is a combination of material recovered, regular sampling and insitu testing. Excavations may present data obtained on the subsurface profile from observations of natural or man-made excavations. Logs may contain scaled graphical presentations, photography, or downhole imagery results. Logs may not contain all data types presented in these notes.

The "Non Core Drill Hole Engineering Log" presents data from drilling operations where a core barrel has not been used. The material is penetrated using methods other than those designed to recover core and is commonly soil or extremely to highly weathered. The "Cored Drill Hole Engineering Log" presents data from drilling operations where a core barrel has been used. The "Excavation - Geological Log" presents data obtained on the subsurface profile from observations of excavations, either natural or anthropogenic.

As far as is practicable, the data contained on the log sheet is factual. Some interpretation is inevitable with respect to the:

- assessment of material boundaries in areas of partial sampling and recovery,
- b. location of areas of core loss,
- c. description and classification of material,
- d. estimate of field strength, and
- e. identification of drilling induced fractures.

Material description and classification is generally based on AS1726-2017 (as amended).

Drilling Method

Code	Description
ADT	Auger drilling with TC-bit
ADV	Auger drilling V-bit
AS	Auger screwing
AT	Air track
CA	Casing advancer
CC	Concrete core
CTR	Cable tool rig
DB	Wash bore drag bit
НА	Hand auger
HAND	Hand methods
HF	Hollow flight auger
HMLC	Diamond core 63.5 mm diameter
HQ / HRQ	Wire line core barrel 63.5 mm diameter
HQ3	Wire line core barrel 61.1 mm diameter
NDD	Non destructive drilling
NMLC	Diamond core 51.9 mm diameter
NQ	Wire line core barrel 47.6 mm diameter
NQ3	Wire line core barrel 45.1 mm diameter
PT	Continuous push tube
PQ	Wire line core barrel 85.0 mm diameter
RAB	Rotary air blast
RC	Reverse circulation
RD	Rotary blade or drag bit
RR	Rock roller
RT	Rotary tricone bit
SD	Sonic drilling
TBX	Tube-X
VC	Vibro-core drilling
WB	Wash bore drilling

Drilling Penetration

Ease of penetration in non-core drilling

Term	Description
VE	Very easy
Е	Easy
F	Firm
Н	Hard
VH	Very hard

Support and Casing

Code	Description	Code	Description
С	Casing	Hw	114.3 mm
М	Mud	Nw	88.9 mm
W	Water	PVC 150	150 mm

Core Run

Core lifts are identified by a line and depth with core loss per run as a percentage. Core loss is shown in the core run unless otherwise indicated.

Defect Spacing

The average distance between defects is measured parallel to the core axis in mm and may be expressed as a range or average.

Angle / Orientation

Angle from horizontal and orientation to magnetic north.

For inclined cored boreholes the Alpha and Beta angles are presented for orientated core. Alpha (α) is measured relative to the core axis, whilst Beta (β) is measured clockwise from the reference line looking down the core axis in the direction of drilling.

Excavation Method

Term	Definition
N	Natural exposure
X	Existing excavation
BB	Tractor mounted backhoe bucket
EX	Hydraulic excavator
EH	Hydraulic excavator with hammer
В	Bulldozer blade
R	Ripper

Water / Drilling Fluid

The drilling fluid used is identified and loss of return to the surface is estimated as a percentage, generally of each core lift.

Symbol	Description
—	Water inflow
—	Water outflow
Water level: during drilling or immediately after completion of drilling	
	Groundwater level with date observed prior to introduction of fluids or after standpipe construction
Not observed	The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole / test pit.
Not encountered	The borehole / test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole / test pit been left open for a longer period.

The colour of a soil or rock is described in a moist/wet condition using simple terms, such as black, white, grey, red, brown, orange, yellow green or blue. These are modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours are described as a combination of these colours (e.g. orange-brown). Where a soil or rock consists of a primary colour with a secondary mottling it is described as (primary colour) mottled (first colour) and (secondary colour). Where colour is described outside of the material description it is for the interval.

Description of Soil

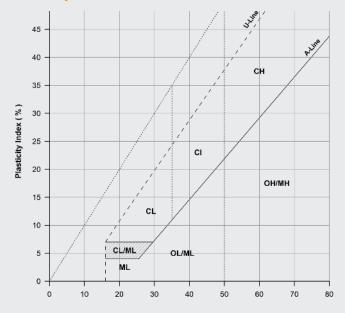
- vi. Soil name (BLOCK LETTERS)
- vii. Plasticity or particle size of soil
- viii. Colour (i.e. dominant colour of material)
- Secondary soil components names & estimated proportions, including their plasticity / particle characteristics, colour
- Minor soil components name, estimated proportions, including their plasticity / particle characteristics, colour
- Other minor soil components
- Moisture condition xii.
- xiii. Consistency / density
- xiv. Structure of soil, geological origin
- xv. Additional observations

Particle Size

Term		Grain Size	
Clay		< 2 µm	
Silt		2 – 75 μm	
	Fine	0.075 – 0.21 mm	
Sand	Medium	0.21 – 0.6 mm	
	Coarse	0.6 – 2.36 mm	
	Fine	2.36 – 6.7 mm	
Gravel	Medium	6.7 – 19 mm	
	Coarse	19 – 63 mm	
Cobbles		63 – 200 mm	
Boulders		> 200 mm	

Fine Grained and Coarse Grained Soils

Term	Description	
Fine Grained Soil (cohesive)	More than 35% of the material less than 63 mm is smaller than 0.075 mm (silts and clays)	
Coarse Grained Soil	More than 65% of the material less than 63 mm is larger than 0.075 mm (sands, gravels and cobbles)	


Descriptive Terms for Secondary and Minor Components

	In coarse grained soils				In fine grained soils	
Designation of Components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand / Gravel	Terminology
	≤5	trace	≤ 15	trace	≤ 15	trace
Minor	> 5, ≤ 12	with	> 15, ≤ 30	with	> 15, ≤ 30	with
Secondary	> 12	prefix	> 30	prefix	> 30	prefix

Plasticity - Fine Grained Soils

Liquid Limit (LL) %	Description	
≤ 35	Low plasticity (L)	
> 35 to ≤ 50	Medium plasticity (I)	
> 50	High plasticity (H)	

Plasticity Chart-Fine Grained Soils

Consistency Terms – Fine Grained Soils

Term	Undrained shear strength (kPa)	Indicative SPT (N) Blow Count	Field Guide to Consistency	
Very Soft (VS)	< 12	0 - 2 Easily penetrated several centimetres by fist, exudes between fingers w		
Soft (S)	12 – 25	2 - 4 Easily penetrated several centimetres by thumb, easily moulded by li finger pressure		
Firm (F)	25 – 50	4 – 8	Can be penetrated several centimetres by thumb with moderate effort, ar moulded between the fingers by strong pressure	
Stiff (St)	50 – 100	Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers		
Very Stiff (VSt)	100 – 200	15 – 30	Readily indented by thumb nail, still very tough	
Hard (H)	> 200	> 30	Indented with difficulty by thumb nail, brittle	
Friable (Fr)	-		Can be easily crumbled or broken into small pieces	

Density Terms – Coarse Grained Soils

Term	Density Index (%)	SPT (N) Blow Count	
Very Loose (VL)	< 15	0 – 4	
Loose (L)	15 – 35	4 – 10	
Medium Dense (MD)	35 – 65	10 – 30	
Dense (D)	65 – 85	30 – 50	
Very Dense (VD)	> 85	> 50	

Particle Characteristics - Coarse Grained Soils

Term	Description
Well graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

Angularity - Coarse Grained Soils

90	Rounded
	Sub-rounded
PP	Angular
O D	Sub-angular

Origin of Soil

Fill	Formed by anthropogenic activity	
Aeolian	Formed by wind	
Alluvial	Alluvial Formed by streams and rivers	
Colluvial Formed on slopes (talus)		
Estuarine Formed in marine environments		
Lacustrine Formed in lakes		
Residual	Formed by weathering insitu	

Soil Moisture

	Term	Code	Description	
Coarse Grained	Dry	D	Looks and feels dry and free running	
	Moist	М	Soil feels cool, darkened in colour, soils tend to stick together, soil grains do not run freely through fingers and no visible free water	
	Wet	W	Soil feels cool, darkened in colour, soils tend to stick together, free water on remoulding	
Fine Grained	Moist, Less than Plastic Limit	W < PL	Hard and friable or powdery, moisture content well below Plastic Limit	
	Moist, Near Plastic Limit	W ≈ PL	Soil feels cool, darkened in colour, can be moulded, near Plastic Limit	
	Moist, Wet of Plastic Limit	W > PL	Soil feels cool, dark, usually weakened, free water, moisture content well above Plastic Limit	
	Wet, Near Liquid Limit	W ≈ LL	Soil exudes easily	
	Wet, Wet of Liquid Limit	W > LL	Soil behaves as a liquid	

Boundary Classifications

Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well graded gravel-sand mixture with clay binder.

Graphic Symbols

	Asphalt		МН
	СН	靐	ML
1//	CI	(<u>#</u>) (8) (6) (6)	ОН
	CL	12 전 : 지한 경	OL
##	Concrete	10 50 10 50 10 50	PT
***	Fill	<i>%</i> .	SC
98	GC	%	SM
3900	GM	33	SP
000	GP	E E	SW
0.0	GW	<u>(78</u> 14 31 <u>78</u> 1	Topsoil

Soil Classification

Soils are described in general accordance with AS1726-2017 as shown below.

		N PROCEDU than 63 mm ar	RES and basing fractions on es	timated mass)		GROUP SYMBOL	PRIMARY NAME
s larger than 0.075		ion is	CLEAN GRAVELS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		GW	GRAVEL
	<i>γ</i> e	GRAVELS More than half of coarse fraction is larger than 2.36 mm	(Little or no fines)		ize or a range of sizes with zes missing, not enough fines s, no dry	GP	GRAVEL
ım and	aked e	S n half of n 2.36 r	GRAVELS w/ FINES		excess of non-plastic fines, strength; ≥ 12% silty fines	GM	SILTY GRAVEL
than 63 m	ole to the n	GRAVELS More than I larger than	(Appreciable amount of fines)		excess of plastic fines, strength; ≥ 12% clayey fines	GC	CLAYEY GRAVEL
the material less than More than 65% of the material is less than 63 mm and is larger than 0.075 mm A particle size of 0.075 is about the smallest size distinguishable to the naked eye	stinguishal	about the smallest size distinguishab SANDS More than half of coarse fraction is smaller than 2.36 mm	CLEAN SANDS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SW	SAND
	ıllest size dis		(Little or no fines)	Predominantly one size or a range of sizes with more intermediate sizes missing, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SP	SAND
	the sma	S nan half than 2.	SANDS w/ FINES (Appreciable amount of fines)	'Dirty' materials with excess of non-plastic fines, none to medium dry strength; ≥ 12% silty fines		SM	SILTY SAND
	sabout	SANDS More tha smaller th		'Dirty' materials with excess of plastic fines, medium to high dry strength; ≥ 12% clayey fines		SC	CLAYEY SAND
an)75 is	IDENTIFIC	ATION PROCEDURES ON FRACTIONS < 0.075 mm				
less this	ze of 0.(A particle size of 0.0 SILTS AND CLAYS Liquid Limit < 50%	DRY STRENGTH	DILATANCY	TOUGHNESS	GROUP SYMBOL	PRIMARY NAME
erial	ile siz		None to low	Slow to rapid	Low	ML	SILT
ILS mat 075	artic	AYS AYS Lid L	Medium to high	≥ 12% clayey fines	Medium	CL, CI*	CLAY
FINE GRAINED SOILS More than 35% of the material less than 63 mm is less than 0.075 mm	A	So ₂	Low to medium	Slow	Low	OL	ORGANIC SIL
			Low to medium	None to slow	Low to medium	MH	SILT
		AND	High to very high	None	High	CH	CLAY
		SILTS AND CLAYS Liquid Limit > 50%	Medium to high	None to very slow	Low to medium	ОН	ORGANIC CLAY
IIGHLY OF	RGANIC SO		entified by colour, odou	r, spongy feel and fred	uently fibrous texture	PT	PEAT

^{*} CL is low plasticity clay, CI is medium plasticity clay

Description of Rock

- i. Rock name (BLOCK LETTERS)
- ii. Grain size and mineralogy
- iii. Colour (i.e. dominant colour of material)
- iv. Fabric and texture
- v. Features, inclusions, minor components, moisture content and durability
- vi. Strength
- vii. Weathering and/or alteration
- viii. Rock mass properties discontinuities and structure of rock
- ix. Interpreted stratigraphic unit
- x. Additional observations including geological structure

Simple rock names are used to provide a reasonable engineering description, rather than a precise geological classification. The rock name is chosen by considering the nature and shape of the grains or crystals, the texture and fabric of the rock material, the geological structure and setting, and information from the geological map of the area. Further guidance on the naming of rocks can be found in AS1726-2017, Tables 15, 16, 17 and 18. Typical rock types are described below, though subject to site specific variations.

Rock Type	Description	Example of Rock Name
Sedimentary	Formed by deposited beds of sediments, have grains that are cemented together and often rounded. Significant porosity	COMMON: Conglomerate, Breccia, Sandstone, Mudstone, Siltstone, Claystone ≥90% CARBONATE: Limestone, Dolomite, Calcirudite, Calcarenite, Calcisiltite, Calcilutite PYROCLASTIC: Agglomerate, Volcanic Breccia, Tuff
Igneous	Formed from molten rock and have a crystalline texture. Typically massive and low porosity. Rock types are from coarse to fine grained.	HIGH QUARTZ CONTENT: Granite, Microgranite, Rhyolite MODERATE QUARTZ CONTENT: Diorite, Microdiorite, Andesite LOW QUARTZ CONTENT: Gabbro, Dolerite, Basalt
Metamorphic	Formed when rocks are subject to heat and/or pressure and have typically have directional fabric. Typically have low porosity and crystalline structure. Rock types are from coarse to fine grained	FOLIATED: Gneiss, Schist, Phyllite, Slate NON-FOLIATED: Marble, Quartzite, Serpentinite, Hornfels
Duricrust	Formed as part of a weathering profile and show evidence of being cemented in situ. Cementation is typically irregular and exhibits replacement textures.	Ferricrete (Iron oxides and hydroxides) Silicrete (Silica) Calcrete (Calcium carbonate) Gypcrete (Gypsum)

Note: () denotes dominant cementing mineralogy

Grain Size

Terms describing dominate grain size in sedimentary rocks.

Term	Grain size
Coarse Mainly 0.6 mm to 2.0 mm	
Medium	Mainly 0.2 mm to 0.6 mm
Fine	Mainly 0.06 mm (just visible) to 0.2 mm

Terms describing dominate grain size in igneous and metamorphic rocks

Term Grain size	
Coarse	Mainly greater than 2 mm
Medium	0.06 mm to 2 mm
Fine	Mainly less than 0.06 mm (just visible) to 0.2 mm

Texture and Fabric Sedimentary rocks

Thickness	Bedding Term
< 6 mm	Thinly laminated
6 – 20 mm	Laminated
20 – 60 mm	Very thinly bedded
60 – 200 mm	Thinly bedded
0.2 – 0.6 m	Medium bedding
0.6 – 2 m	Thickly bedded
> 2 m	Very thickly bedded

Igneous rocks

Term	Definition
Amorphous	Indicates that the rock has no obvious crystalline structure
Crystalline	A regular molecular structure, showing crystal structure and symmetry.
Cryptocrystalline	The texture comprises crystals that are too small to recognise under an ordinary microscope. Indistinctly crystalline.
Porphyritic	Indicates the presence of phenocrysts (relatively large crystals in a fine grained ground mass) in igneous rocks.
Flow banded	Indicates visible flow lines in volcanic rocks and some intrusive rocks
Glassy	Entirely glass like. No crystalline units and without crystalline structure.
Vesicular	A texture of volcanic rocks that indicates the presence of vesicles (small gas bubbles). Where the vesicles are filled with a mineral substance they are termed Amygdales and the texture is Amygdaloidal.

Metamorphic

Term	Definition	
Foliation	The parallel arrangement of minerals due to metamorphic process, which shall be defined by the terms in weak, moderate and strongly foliated.	
Porphyroblastic	A texture indicating the presence of porphyroblasts (larger crystals formed by recrystallization during metamorphism, such as garnet or staurolite in a mica schist).	
Cleavage	A type of foliation developed in fine grained metamorphic rocks such as slates.	

Bedding and Fabric Development

Туре	Definition
Massive	No obvious development of bedding – rock appears homogeneous
Poorly Developed	Bedding is barely obvious as faint mineralogical layering or grain size banding, but bedding planes are poorly defined.
Well Developed	Bedding is apparent in outcrops or drill core as distinct layers or lines marked by mineralogical or grain size layering.
Very Well Developed	Bedding is often marked by a distinct colour banding as well as by mineralogical or grain size layering.
Indistinct Fabric	There is little effect on strength properties
Distinct Fabric	The rock may break more easily parallel to the fabric

Rock Strength

Term (Code)	UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide to Strength
Very Low (VL)	0.6 - 2	> 0.03 to ≤ 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low (L)	2 - 6	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium (M)	6 - 20	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High (H)	20 - 60	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High (VH)	60 - 200	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High (EH)	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock strength is assessed by laboratory Uniaxial Compressive Strength (UCS) testing and/or Point Load Strength Index (PLT) testing to obtain the Is₍₅₀₎ the strength table implies a 20 times correlation between Is₍₅₀₎ and UCS used for classification. Note however, multiplier may range from 4 (e.g. some carbonated and low strength rocks) to 40 (e.g. some igneous rocks and/or some high strength rocks). A site specific correlation based on testing, previous investigation or literature may be used where available. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

Visual Log

A diagrammatic plot of defects showing type, spacing and orientation in relation to the core axis.

Defects open in situ or clay sealed Defects closed in-situ Drill induced fractures or handling breaks Infilled seam

Rock Weathering and or Alteration Classification

Term (Cod	e)	Definition		
Residual so	il (RS)	Soil developed on extremely weathered rock. The rock mass structure and substance fabric are no longer evident but the soil has not been significantly transported.		
Extremely v (XW) Extremely a		Rock is weathered to see that it has 'soil' proper disintegrates or can be but the texture of origin	ties, i.e, it either e remoulded in water,	
Highly weathered (HW) Highly Altered (HA)	Distinctly weathered (DW)* Distinctly Altered (DA)	Whole rock material is discoloured usually by extent that iron staining or bleaching and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable	*Where is it not practical to distinguish between 'HW' and MW'. Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores	
Moderately weathered (MW) Moderately Altered (MA)		Whole rock material is discoloured usually by staining that original colour of the fresh rock is no longer recognisable		
Slightly wea	thered (SW) red (SA)	Rock is slightly discold or no change of streng		
Fresh rock ((FR)	Rock shows no sign of staining.	f decomposition or	

Rock Core Recovery

TCR = Total Core Recovery (%)

Length of Core Recovered x 100 Length of Core run

SCR = Solid Core Recovery (%)

Sum Length of Cylindrical Core Recovered x 100 Length of Core run

RQD = Rock Quality Designation (%)

Sum Length of Sound Core Pieces > 100mm in length

Length of Core run

x 100

Types of Defects

Term		Code	Description	
Parting		PT	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (i.e. cleavage). May be opened or closed.	
Joint	Joint		A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or to planar anisotropy in the rock material. May be open or closed.	
Sheared Su	rface	SR	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.	
Sheared Zo	ne	SZ	Zone of rock material with roughly parallel, near planar, curved, or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	
Crushed Zo	ne ^a	CZ	A zone of broken and disturbed ground containing more than one identifiable Crushed Seam.	
Fracture Zo	Fracture Zone ^a		A zone of broken ground with parallel to opposing boundaries dominated by abundant, extremely closely to closely spaced defects, which may be intact or open, and planar, curved, undulating, irregular, or stepped, resulting in a dissected rock mass of angular trapezoidal, triangular or rectangular fragments.	
Seam (SE)	Sheared Seam	SS	Seam of soil material with roughly parallel almost planar boundaries, composed of soil materials with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	
	Crushed Seam	CS	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.	
	Infilled Seam	IS	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1 mm thick may be described as a veneer or coating on a joint surface.	
	Extremely Weathered Seam	XS	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.	
Fault ^b		FT	A fracture (defect) or fracture zone along which there has been an observable amount of displacement.	
Vein ^C		VE	Any fracture that contains mineralized material. Veins can display either crack-normal extension or shear displacement coupled with crack-normal extension.	
Vugh ^a		VG	An open void with secondary crystallisation which may be coated, partly or nearly completely filled.	
Void ^a		VO	An open space created through natural or anthropogenic processes, including, but not limited to, caves, kettles, tunnels, mines, pipes, piping, landslides, faulting, shearing, dissolution, & erosion.	
Mechanical Break		MB	A fracture or break induced or created by the sampling process (i.e. drilling (DB) handling (HB), drill lift (DL), excavation, or blasting).	

All definitions as per AS1726-2017, except:

Defect Planarity

Code	Description
CR	Curved – A defect with a gradual change in orientation
IR	Irregular – A defect with many sharp changes in orientation
PL	Planar – Defect forms a continuous plane without variation in orientation
ST	Stepped – A defect with distinct sharp steps or step
UN	Undulose – A defect with undulations

Defect Roughness

Code	Description
RO	Rough – Many small surface irregularities generally related to the grain size of the parent rock
SM	Smooth – Few or no surface irregularities related to the grain size of the parent rock
PO	Polished – Planes have a distinct sheen or a smoothness
SL	Slickensided – Planes have a polished, grooved or striated surface consistent with differential movement of the parent rock along the plane
VR	Very rough – many large surface irregularities, amplitude generally more than 1mm

a SMEC Field Manual, b British Standard BS 5930:2015, and C Glossary of Geology (Fifth Edition - revised) (2011), American Geosciences Institute.

Type of Structures

Term	Code	Description						
Bedding	BD	A layered arrangement of minerals parallel to the surface of deposition which has caused planar anisotropy in the rock substance.						
Cleavage	CV	An alignment of fine grained minerals caused by deformation.						
Schistosity	SH	A layered arrangement of minerals to each other						
Foliation	FO	A planar alignment of minerals caused by deformation.						
Void	VO	A completely empty space						
Dyke	DK	Sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature A sill is an intrusion of magma that spreads underground between the layers of another kind of rock						
Sill	SL							
Contact	CX	A contact between intrusive and stratigraphic units.						
Boundary	BN	A distinct boundary between two stratigraphic units						
Vugh	VG	An open void with crystalisation						

Note: Drill breaks (DB) and handling breaks (HB) are not included as natural discontinuity.

Discontinuity Spacing

Spacing (mm)	Description
> 6000	Extremely Widely Spaced
2000 - 6000	Very Widely Spaced
600 - 2000	Widely Spaced
200 - 600	Medium Spaced
60 - 200	Closely Spaced
20 - 60	Very Closely Spaced
< 20	Extremely Closely Spaced

Infill Material

Code	Name	Code	Name
Ар	Apatite	Ga	Galena
Ca	Calcite	Gp	Gypsum
Ch	Chlorite	Mn	Manganese
Cl	Clay	MnO	Manganese Oxide
Со	Coal	MS	Secondary mineral
Ер	Epidote	Ру	Pyrite
Fe	Limonite/ Ironstone/ Goethite	Um	Unidentified mineral
FeO	Iron oxide	Qz	Quartz
Fs	Feldspar	X	Carbonaceous
		Ze	Zeolite

Discontinuity Observation

Term	Code	Description							
Clean	CN	No visible coating or infill							
Stain	SN	No visible coating or infill but surfaces are discoloured by mineral staining							
Veneer < 1 mm	VN	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.							
Coating > 1 mm to < 10 mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.							
Filling (Filled) > 10 mm	FD	A visible filling of soil or mineral substance. Describe composition and thickness.							

Discontinuity Orientation

Code	Description
VT	Vertical
НО	Horizontal
RL	Top right to bottom left
LR	Top left to bottom right

Samples and Field Tests

Code	Description
В	Bulk disturbed sample
BLK	Block sample
С	Core sample
CBR	CBR Mould Sample
CPTu	Cone Penetration Test (with pore pressure)
DT	Dilatometer
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
FP	Pressuremeter
G	Gas sample
Н	Hydraulic fracturing
HP	Hand penetrometer test
T	Impression device
Is ₍₅₀₎	Point Load Index
K	Permeability
LB	Large bulk disturbed sample
N	Standard penetration test result (N* denotes SPT sample recovery)
0	Core orientation
Р	Piston sample
PID	Photoionisation detector reading in ppm
PP	Penetrometer
R	Hammer bouncing / refusal
SPT	Standard Penetration Test
U	Undisturbed push in sample
UCS	Uniaxial Compressive Strength
U50	Undisturbed tube sample (50 mm diameter)
U75	Undisturbed tube sample (75 mm diameter)
U100	Undisturbed tube sample (100 mm diameter)
VS	Vane shear test
• (A)	Axial Test
O (D)	Diametral Test

Laboratory Tests

Code	Description
ACM	Asbestos Containing Material
CD	Consolidated Drained
CU	Consolidated Undrained
LL	Liquid Limit
LS	Linear Shrinkage
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PBT	Plate Bearing Test
PI	Plasticity Index
PL	Plastic Limit
PSD	Particle Size Distribution
$\rho_{\scriptscriptstyle b}$	Bulk Density
ρρ	Particle Density
ρ_{d}	Dry Density
UU	Undrained Unconsolidated

Backfill / Standpipe Detail

	1 1					
Symbol	Description	Symbol	Description			
	Cement seal	7 7 7 7 7	Filter pack: sand filter			
	Grout backfill GP -Cement BE - Bentonite Cement		Filter pack: gravel filter			
	Un-slotted pipe		Bentonite seal			
	Slotted pipe	方梁	Cutting – excavated material backfill			
	Surface Completion: Monument Above Ground		Surface Completion: Gatic Ground Monument			

Completion Details

Irregular Lump test

Туре	Description
Collapse	Exploratory hole collapsed before reaching planned depth
Equipment Failure	Boring or excavator equipment operational failure
Flooding	Flooding of excavation
Machine Limit	Limit of machine capability reached
Obstruction	Obstruction preventing further advancement
Operator Limit	Limit of operator limit/safety reached
Possible services	Indication of possible services below
Services present	Services encountered during exploratory hole
Squeezing	Hole squeezing boring equipment
Target Depth	Depth reached as planned
Target Depth (Instrumentation Installed)	Depth reached as planned instrumentation installed
Target Depth (Standpipe Installed)	Depth reached as planned open standpipe constructed
Material Refusal	Material preventing further advancement

Status

Code	Description
-2	Historic
-1	For information
0	Preliminary
1	Checked
2	Draft
3	Final

Project Preliminary Geotechnical Investigation
Client Manildra Group Pty Ltd
Site Port Kembla
Job Number 30013038

East 307823.6 m St North 6183132.5 m Er Elevation 2.88 m Datum MGA94 Zone 56/AHD

Start Date 02/03/2021 End Date 02/03/2021 Contractor Numac
Rig Type Comacchio 205
Mounting Track

		0	Testing			1 00010		Batani		20110 00// (Oui	voj		
	Casing Support Water	_ RQ	Strongth	ا و ج		б			>-		Weathering & Alteration Rock Strength	Infer Rock St	rength					Borehole Identifier:	
_	. +	.oss CR)	Strength SPT, DCP, Is (50) (MPa) E PP (UCS kPa) SV (kPa)	abilit FInfl	E ^j é	Graphic Log	Depth		Moisture Condition Consistency Density		atior atior	Point I	0)	Defect Relative Spacing					BH2
thoc	sing opor ter	Juin L	SPT, DCP, Is(50) (MPa) E PP (UCS kPa SV (kPa)	, ĕ <u>e</u>	pth evat	phic .	ပိ		istur nditii nsist		athe Itera	Is(5 ● - A: O - Dian	netral (Strength (mm)	nal	Fabric, Structure &	Group	Origin, Stratigraphic Unit & General	
<u>S</u>	Sup	(G)	SV (kPa)	Le Pe.	ΩÜ	Gra	ັດ Depth ທ RL	Soil / Rock Material Description		Colour	& We Ro	M - 6.3	- ₂ ≥ ±	SOII-ROCK	Nisi Sis	Defect Description	Defects	Observations	Installation
_ 1	1				0.0 —		0.10	GRAVEL: fine to medium grained, angular,										CEMENTED SLAG	BH2
					_		2.78	pale grey, grey. FILL Gravelly SILT with sand: non plastic,	$ \cdot $.				FILL	
-					_			FILL Gravelly SILT with sand: non plastic, pale grey, pale orange, gravel is fine to coarse grained, angular, sand is fine to coarse	'			111		.					
-					-			grained, trace boulders, trace brick.						.					_
\vdash					0.5 —								i i -	-					0.5
<u>-</u>					-		0.70						!!!	. -					-
-60-03					-		2.18	FILL Clayey SAND trace silt: fine to coarse						.					-
10.8 20								grained, pale grey, orange, trace boulders.					!![]					
MEC 2.	mm (mm				1.0 —									_					1.0
Prj: SI	4.3 m				1.9							l i i i	i i þ	. i - i i i					_
0-08-X	(1)				-									.					-
7 202	1 - E				-							iii	iil	•					-
1 52.1	Casing - HW (114.3				-		1.50							. -					
Ib: SMEC	Steel (1.5 —		1.38	SAND: fine to coarse grained, pale brown, pale orange.	M L-				[AEOLIAN	1.5
1 sloo	"				_			pare orange.	l lwb				!!	.					_
Jatgel 7					-									.					-
20.09					-								111	·					-
10.02.0					2.0									- -					2.0
09:29					-							liii	iiþ	·					1
14/2021							SP												
\$ - I					_								ii	.					
ingFile.	★				2.5 — 0.4									- -					2.5
<draw< td=""><td></td><td></td><td></td><td></td><td>0.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>. - </td><td></td><td></td><td></td><td></td><td>-</td></draw<>					0.4									. -					-
- G					_								111	.					-
N G																			
001303	_				3.0 —		3.00 -0.12						11						3.0
APE 30					-0.1		-0.12	SAND with gravel: fine to coarse grained, pale grey, with brown, orange, white, gravel is fine grained, sub-angular to sub-rounded, trace						.				ESTUARINE?	-
ANDSC					-			grained, sub-angular to sub-rounded, trace sea shells.					ijŀ	- -					-
OLE L					-									.					-
B - R							_		MD -			liii	iit						
BRID BO					3.5 		SP		W					_ _					3.5
는 무 무					_									.					
NS_				02/03/21	-									. -					-
1B.GLB Log SMECHYBRID BOREHOLE LANDSCAPE 30013038 GINT GFJ <-Onewing*he> 0104/2021 06:29 10.000 to bayen Toda Libr. SMEC 2.107.2020-08-20 Prj. SMEC 2.108.2020-09-10				02/(-									. - -					-
ĕШ					4.0_	<u> • • • </u>					\perp	<u> </u>	1 1						

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

East 307823.6 m North 6183132.5 m Elevation 2.88 m

Start Date 02/03/2021 End Date 02/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

Inclination 90° Azimuth North

Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Method Casing Support Water (Gain/Loss) Run (TCR) RQD Testina Inferred Strength Borehole Identifier: Strength SPT, DCP, Is(50) (MPa), PP (UCS kPa), PP (US) (KPa) SV (kPa) Rock Strength Moisture Condition Consistency Density Graphic Log Defect BH₂ Sampling Code Relative Spacing Origin, Stratigraphic ck (mm) h Strength Group Fabric, Structure & Unit & General Soil-Rock Depth S RL Soil / Rock Material Description Colour Defect Description Defects Observations Installation 4.0 ESTUARINE? W MD SAND with gravel: fine to coarse grained, pale grey, with brown, orange, white, gravel is fine grained, sub-angular to sub-rounded, trace sea shells. (continued) -1.6 5.0 5.0 --2.1 5.5 --2.6 5.5 - $| \cdot |$ \perp ğ| # 6.0 -SP 6.0 -3.1 6.5 6.5 -3.6 \perp I I I7.0 -4.1 7.5 7.5 --4.6 \perp \perp I I I $I \cup I \cup I$ \perp

Testing

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307823.6 m North 6183132.5 m Elevation 2.88 m MGA94 Zone 56/AHD

Datum

Start Date 02/03/2021 End Date 02/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

		Ω	_	Testing											I £							•		
Method Casing	_	A Q	١,	Strength	, 0 √₹	_	Ď.			,	>		Weathering & Alteration Rock Strength	Roc	Inferr ck Str	ength	ı						Borehole Identifier:	
	1088	CR)	ည န	SPT, DCP,	abili k Inf	Ejg j	c Lc	ge		e = 2	renc		ering atio	F	Point Lo Is(50 • - Axia O - Diame).	Relati	ve Sna	efect acing					BH2
thoc sing	ain/L	Г.	Sampling Sampling Sampling	Strength SPT, DCP, (50) (MPa), (UCS kPa SV (kPa)	6 H	eva	Graphic Log	O Depth		Moisture Condition	nsis nsit		lter Sk S	-	⊃ - Diame	etral	Strend	gth (n	nm)	ual	Fabric, Structure &	Group	Origin, Stratigraphic Unit & General	
ö ĕ	<u>28</u> 8	<u>R</u>	g S	SV (kPa)	Le Pa	МÜ	Ď	O RL	Soil / Rock Material Description	\$00€	3 8	Colour	× × ×	, ≥ _	7 ∑ I ċ ≟	⁸ ⁴ β	SOII-IX	0 N	20 200 2000	<u>s</u>	Defect Description	Defects	Observations	Installation
						8.0 - 5.1			SAND with gravel: fine to coarse grained, pale grey, with brown, orange, white, gravel is fine	w I	MD - D							-					ESTUARINE?	
						_			grained, sub-angular to sub-rounded, trace sea shells. (continued)								_							_
						_								1!			-	- !	I					-
-						-											-	-						-
-						8.5 -5.6		SP						Тį	ij	İİ	-	- !						8.5 —
-						-											-	-						-
														l i		ii] i						
						_											_	-						_
						9.0 —		9.00 -6.12		W≈				Hi			_	-					RESIDUAL SOIL	9.0 —
-						-6.1		0.12	Clayey SAND: fine to coarse grained, pale green, pale grey, trace silt.	PL				1 !			-	- !					11201207120012	-
						-											-	-						-
3-1						_								1!			-	1!						_
						9.5 —								1 ¦				1						9.5 —
B						-6.6								Ţ	ij	i i	_	Į į	i i					-
§ - 6						-		00									-	-						-
MB WB						-		SC							ii	ii	-	- i						_
C.vv.cy Darger						-											-	_	I					-
						10.0 									11]						10.0 —
100,000														1 ']						_
-						-											-]						_
						_								1!			-	- !						-
						10.5 	///			+	Н						- 1	-						10.5 —
						-			I white, sand is fine to coarse grained, gravel is								-	1						-
									fine grained, angular.]						
						_		CI						Ιį	ij	i i	_	1						_
						11.0 —											-	-						11.0 —
5-						-8.1								l i	ii	ii	-	-						-
						-	4	11.25 -8.37									-						EXTREMELY LOW/ TO	-
								-0.57						li	ii]					EXTREMELY LOW TO VERY LOW STRENGTH WEATHERED ROCK AT TERMINATION DEPTH	
V						-11.5	24	11.50						1!					1 1				TERMINATION DEPTH	-11.5
-						-8.6			Hole Terminated at 11.50 m Refusal								-	-						-
						-											- [-
						-								1 '			-							-
						12.0											_	1!						_
						.2.0																	•	

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307782.7 m North 6183065.9 m Elevation 2.77 m MGA94 Zone 56/AHD

Datum

Start Date 01/03/2021 End Date 01/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

Inclination 90° Azimuth North Survey

		_		Testing	g		ber 300	01303	38	Datum		MGA94	Zone 56/Al				,				Sur	vey		
Method	Casing Support	(Gain/Loss)	Samplina	Strength SPT, DCP Is(50) (MPa PP (UCS kPa SV (kPa)	Permeability,	Depth (m)	<i>Erevation</i> Graphic Log	Soil Code	Depth RL		Moisture	Condition Consistency Density	Colour	Weathering	& Alteration Rock Strength	Roc P	nferred k Strei loint Load Is(50) ● - Axial - Diametra	ngth F	Relative strength oil-Rock	Defect Spacing (mm) nsix	Fabric, Structure & Defect Description	Group Defects	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH5
-						0.0	$\sim\sim$			FILL Gravelly CLAY with sand: medium plasticity, dark grey, gravel is medium to coarse grained, angular, sand is medium to coarse grained, trace cobbles, trace silt.													FILL	BH5
-	mu					0.5			2.47	FILL Clayey GRAVEL with sand: medium to coarse grained, poorly graded, angular, dark grey, sand is medium to coarse grained.									- -					0.5 —
AbT	Steel Casing - HW (114.3 mm) mm					1.0													- - - - - - -					1.0 — - -
	Steel					1.5			1.40 1.37	SAND: medium to coarse grained, pale brown.	-	M L- MD											AEOLIAN	- 1.5 — -
* - X	<u> </u>				Not Observed	2.0		SP											- - - - -					2.0 —
						2.5													- - - -					- - 2.5 —
				2.70m SPT 4, 3, 5 N=8					0.07	SAND: medium to coarse grained, pale grey.													ESTUARINE? 2.70: SPT Recovery: 0.2 m	- - -
WB-				3.15m		3.0										li								3.0 —
						3.5		SP																3.5 —
F. Cog								.]								11		! [

Project Preliminary Geotechnical Investigation
Client Manildra Group Pty Ltd
Port Kembla
Joh Number 30013038

East 307782.7 m St North 6183065.9 m Er Elevation 2.77 m Datum MGA94.7 one 56/AHD

Start Date 01/03/2021 End Date 01/03/2021 Contractor Numac
Rig Type Comacchio 205
Mounting Track

				Log	Site Job	Numb	er 300	t Kembla 13038	Elevatio Datum	n 2. M	.77 m IGA94	Zone 56/Al	HD				Mounting Trac	ICK		North Survey			MEC
Method	Casing Support Water	(Gain/Loss) Run (TCR) RQD	Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)		Depth (m) Elevation	Graphic Log	epo No No Soil / Rock Material Description	Moisture	Condition Consistency Density	Colour	Weathering & Alteration Rock Strength	Nock Suffillial	Inferred Rock Streng Point Load Is(50) - Axial O - Diametral	gth Relativ Streng Soil-Ro	Defect /e Spacing /th (mm)	Visca	Fabric, Structure & Defect Description	Grou Defec	ıp cts	Borehole Identifier: Origin, Stratigraphic Unit & General Observations	BH5	
						4.0 -			SAND: medium to coarse grained, pale grey. (continued)	М						_	-					ESTUARINE?	
-			ES	4.20m SPT 12, 15, 17 N=32					,,		D						- - -					4.20: SPT Recovery: 0.45 m	- -
10-10				4.65m		4.5 -										-	-						4.5 —
77:22 10.02.00.04 Datgel Tools Lib. SMEC 2.10.7 2020-08-20 Pt; SMEC 2.10.8 2020-09-10						5.0										- - - - -	- - - - -						5.0 — - -
ools Lib: SMEC 2.10.7				5.70m		5.5 -	- - - - - -									-							5.5 — -
33/2021 17:22 10:02:00:04 Datgel T			_	SPT 10, 14, 18 N=32 6.15m	Not Observed	6.0	- - - - - - -	SP								- - - -	-					5.70: SPT Recovery: 0.45 m	6.0 —
NT.GPJ < <drawingfile>> 31/03/2021</drawingfile>						6.5 - -3.7										-	-						6.5 —
ANDSCAPE 30013038 GINT.GPJ				7.20m SPT		7.0 -					MD					-	-					7.20: SPT Recovery: 0.45 m	7.0 —
I Log _SMEC HYBRID BOREHOLE LANDSCAPE			ES	5, 9, 10 N=19		7.5 – -4.7	- - - - - - - -				WID					- - - -	- - - - -					0.45 m	7.5 — - -
B.GLB						8.0_]!!!!						

Testing

Project Preliminary Geotechnical Investigation
Client Manildra Group Pty Ltd
Site Port Kembla
Job Number 30013038

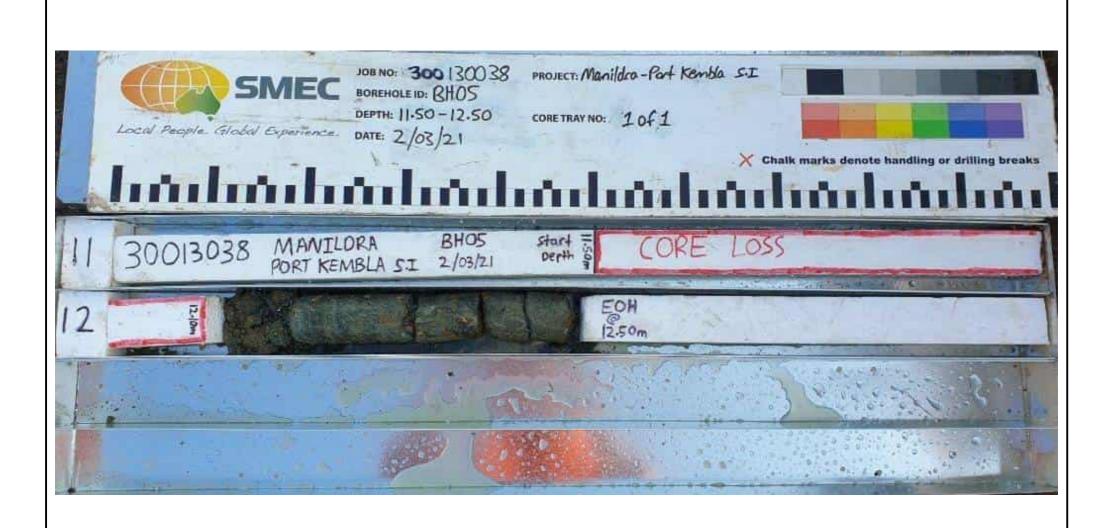
East 307782.7 m St North 6183065.9 m Er Elevation 2.77 m Datum MGA94 Zone 56/AHD

Start Date 01/03/2021 End Date 01/03/2021 Contractor Numac
Rig Type Comacchio 205
Mounting Track

Q	Testing	_						Inferre	vd.				•		
t oss) CR) RQ	Strength (2) SPT, DCP, (2)	Inflow (m) ion	<u>9</u>	Φ	on ency		ering ation trength	Rock Stre	ength ad Rela	Def	ect			Borehole Identifier:	ВН
Method Casing Support Water (Gain/Loss) Run (TCR) RQD	Strength SPT, DCP, Is(50) (MPa), e PP (UCS kPa), E SV (kPa)	Level & Inflo Depth (m) Elevation Graphic Log	⊕ O I≡ Depth S RL Soil / Rock M	בלי laterial Description S	Condition Consistency Density	Colour	Weathering & Alteration Rock Strength	O-Diame	ral Stre Se Soil-I SE T	ngth (m Rock	Wisual Visual	Fabric, Structure & Defect Description	Group Defects	Origin, Stratigraphic Unit & General Observations	Installation
		8.0	SAND: medium to c		M MD					-				ESTUARINE?	
										-					
.			-5.53 Clayey SAND trace grained, grey, mottle	gravel: fine to medium ed pale green, brown,							i i			RESIDUAL SOIL	
-	8.50m SPT 10, 11, 12 N=23	8.5	gravel is medium gr	ained, angular, trace silt.					-					8.50: SPT Recovery: 0.45 m	8.5
	10, 11, 12 N=23													0.45 m	
	8.95m	9.0									i i				9.0
		-6.2								- []					9.0
			sc												
.															
-		9.5							-	-					9.8
									i E I]	i i				
MB NB									-						
_		Do 10.0 -7.2 -1													10.0
.	10.20m	Q -7.2 //.	10.20												
	SPT 4, 6, 9 N=15		-7.43 CLAY with sand trac	ce gravel: medium Willed pale green, brown,	/≈ St									10.20: SPT Recovery: 0.45 m	
.			with white, sand is fi gravel is fine grained	ne to coarse grained.											
-	40.05:::	10.5									i i				10.5
	10.65m 10.65m PP=350kPa														
_	11.00m SPT	11.0	11.00	sand: medium plasticity,	Н				[11.00: SPT Recovery:	11.0
	SPT 12, 22, 26 N=48	-8.2	grey, mottled pale gravel is fine to med	reen, brown, with white, dium grained, angular,					-	<u> </u> i i	i i			0.45 m	
		1//	CI sand is fine to coars	e grained.							i i				
	11.45m		11.50												
†		11.5	-8.73 CORE LOSS 0.60m	(11.50-12.10)											11.5 11.5
NMLC 20 % Loss 20 % Loss 40%) 32%			'						-						
-20 % Loss R1 1.00m (40%) 32%			$\langle \ \ $												
			<u> </u>												

Project Preliminary Geotechnical Investigation
Client Manildra Group Pty Ltd
Site Port Kembla

Job Number 30013038


Testing

East 307782.7 m St North 6183065.9 m Er Elevation 2.77 m Datum MGA94 Zone 56/AHD

Start Date 01/03/2021 End Date 01/03/2021 Contractor Numac
Rig Type Comacchio 205
Mounting Track

		R	Г	resurig								_	_	Infer	red						
	6	, RC	'	Strength	lity,	~~	og			Ś		on and the	5 F	Infer Rock St Point I	trengt	h	Defect			Borehole Identifier:	DUE
Method	Casing Support Water	Run (TCR	Sampling	Strength SPT, DCP, Is(50) (MPa), PP (UCS kPa) SV (kPa)	Peřmeabi Level & In	Depth (m	Graphic Log	Soil Code Neptl RL	¹ Soil / Rock Material Description	Moisture Condition Consistency Density	Colour	Weathering & Alteration Rock Strength		Is(5	i0) xial netral	Relative Strength Soil-Roc	Spacing (mm)	Fabric, Structure & Defect Description	Group Defects	Origin, Stratigraphic Unit & General Observations	BH5 Installation
						12.0 	X	12.10	CORE LOSS 0.60m (11.50-12.10) (continued)												_
- 9	-sso	2% 12%			served			-9.33	DAPTO LATITE: fine to medium grained, pale green, speckled dark grey, orange, red.	'		XW SS		K		- -		12.10-12.18: Weathered Zone, Cl Infilled, XW.		IGNEOUS - INTRUSIVE	-
- NMLC	20 % Loss	R1 1.00m (40%) 32%			Not Observed							VL L				- 1				12.23: ls(50) = 0 MPa 12.26: ls(50) = 0.02 MPa	-
<u></u>	1 1 1	12.50			Ž	-12.5 		12.50					Ш							12.39: Is(50 = 0.13 MPa 12.43: Is(50 = 0.09 MPa	12.5
<u>_</u>						-9.7	- 1	-9.73	Hole Terminated at 12.50 m Target depth					$ \cdot $		-	-				-
SMECHYBRID BOREHOLE LANDSCAPE 30013036 GNT/GPJ < CDawning*be> 31/03/2021 17/22 10/22 00 04 Daige/Tools Lib. SMEC 2.10.7 2020-08-20 Pt; SMEC 2.10.8 2020-09-10							1														-
10.8 20]														
SMEC 2						13.0 -										-					13.0 —
-20 Prj:						-10.2	1									-					-
2020-08							1							<u> </u>	ijį		1:::1				
2.10.7							- 1									-					-
- SMEC						13.5 	1									- ! -					13.5 —
l l l]							111	ij]				
Datgel T																-					-
20.00							1									- !	_				-
2 10.02						14.0]							111]				14.0 —
17:2																-					-
31/03/2							1							111	ijį	- i	- i i i l				-
gFiley						14.5 —]										_				- 14.5 —
Drawin						-11.7										-					-
Š –							1							ijij	ij	- !	-				-
N -							1]				
300130						15.0 —										- -					15.0 —
CAPE						-12.2	1							111		-	-				-
- AND							1]				_
HACE HACE							1							111	İİ]				
- ABOR						15.5 — -12.7	1									- -	-				15.5 —
EC HYBI							1										-				-
SME]									Ē į					
UB.GLB Log																 					-
<u> </u>						_16.0 <u>—</u>										<u> </u>	<u> </u>				

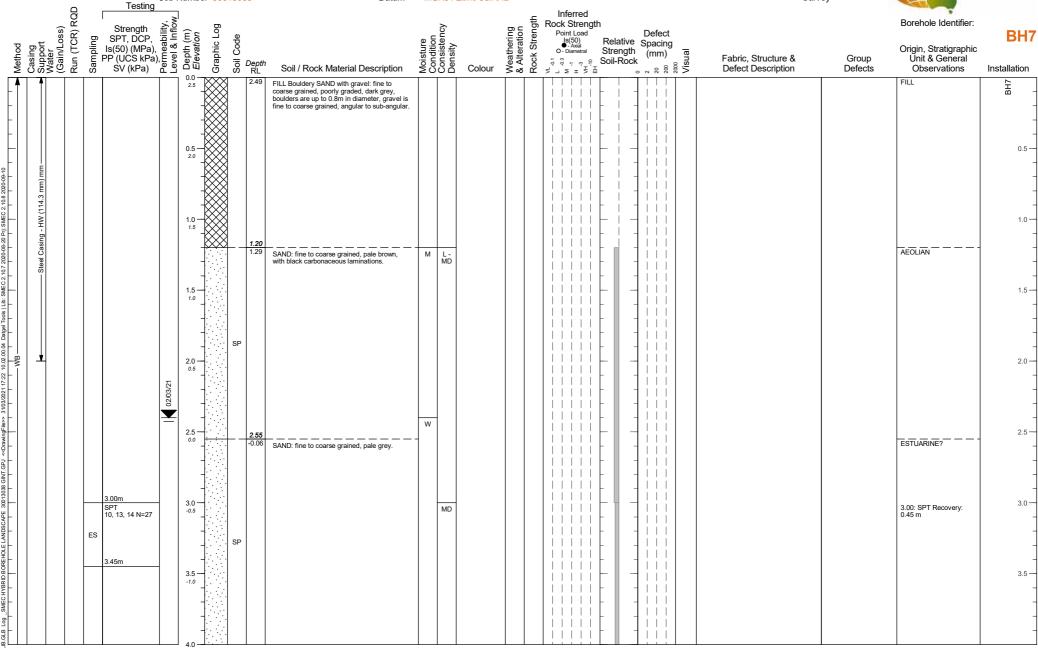
PointID: BH5 Depth Range: 11.50 - 12.50 m - 89277e28-d396-448a-b109-e6f0bb1b6f9d

Manildra Group Pty Ltd
Port Kembla
Preliminary Geotechnical Investigation &
Contamination Assessment
Core Photo - BH5

TZ	08/03/202	21
CHECKED	08/03/202	21
SCALE Not To S	Scale	A4
PROJECT № 30013038	FIGURE No 1/1	

Testina

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038


East 307770.1 m North 6183062.2 m Elevation 2.49 m

MGA94 Zone 56/AHD

Datum

Start Date 02/03/2021 End Date 02/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

Testing

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307770.1 m North 6183062.2 m Elevation 2.49 m MGA94 Zone 56/AHD

Datum

Start Date 02/03/2021 End Date 02/03/2021

Contractor Numac Rig Type Comacchio 205 Mounting Track

		_	Testing	1								16						•		
	Water (Gain/Loss) Run (TCR) RQD	- 1		Š .		_			_		Weathering & Alteration Rock Strength	Rock S	erred Strenat	h					Borehole Identifier:	
	ss) R)	_	Strength	ĘĘ	£ %	Š,	D		ر ق		ing	Poin	Load		Defe	ect				BH7
b g b	5 2 E	Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	eat ∞	th (i	Graphic Log	Depth		Moisture Condition Consistency Density	,	arat Str	Rock S Point Is(O-Di	SU) Axial ametral	Relativ Streng Soil-Ro	e Spac	ing			Origin, Stratigraphic	D 1111
Method Casing	ain (ain age)	Ĕ F	PP (UCS kPa	a), <u>E</u> 9	ebl /ev	ab ab	5 Denth		ond ond ons		eat Alte	0.3	- e e	Soil-Ro	ui (mn	200 (u. 2000 (u. Visual	Fabric, Structure &	Group Defects	Origin, Stratigraphic Unit & General	
žΰā	8≥0 ₹	Š	SV (kPa)	g 3	_ W	ত ট	n RL	Soil / Rock Material Description	žŏŏŏ	Colour	≥ જે હે	≥ ٰ۔ ٰ≥	<u></u>	i	20 20	% % % S % S	Defect Description	Defects	Observations	Installation
					4.0			SAND: fine to coarse grained, pale grey. (continued)	MD										ESTUARINE?	
					1:			(continued)							1!!					7
F															-					-
					+::									- 1		11				-
-					- ∤`.									- 1	+ ; ;	11				-
\vdash			4.50m SPT	_	4.5								iii	<u> </u>	-1ii	il			4 FO. CDT December	4.5
- I I		1	12, 15, 17 N=32		-2.0				D			I i i		- 1	4 i i	i I			4.50: SPT Recovery: 0.45 m	_
9-10]:							lii			111	i I				
020		ES].`															
0.82					[:															
0.5		4	4.95m		7:										1!!	11]
SWE					5.0										7 ! !					5.0 —
8					1:										1::	11				-
80-					1.							lii.			111	i I				-
7 200					1::							l i i		- 1	+ i i	i I				-
1 - 12														- 1	-					-
- SMEC					5.5 —									- 1	-					5.5 —
<u> </u>					-3.0									- 1	4!!	!				-
8 -					-[∹									- 1	4 ! !	-				_
atgel					4:								 		4	-				_
2 g]:]										4 1 1					
.WB —			6.00m		6.0	$ \cdot $;P					l i i			Jii	i I				6.0 —
2 5			SPT 12, 15, 20 N=35		-3.5		"								1.1				6.00: SPT Recovery: 0.45 m	0.0
17:23			,,		7:															
72021		ES			7:										1!!	!				1
31/03					1.:										1	-				1
<u>^</u>			6.45m		† :										1::	-				-
- Ming					6.5										7 ; ;	i I				6.5 —
Q-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							l i i		- 1	$\pm ii$	i I				-
ğ-					+;:									- 1	- 11					-
<u> </u>														- 1	-					-
8					-∤∴									- 1	4!!	!				-
20013					7.0										-	-				7.0 —
<u> </u>					-4.5									L I	4	-				_
DSC/					_]∷							111			111	il				
NE]:								iii		l i i	i I				
로 1]:							i i			Jii					7
BORE					7.															
UB GLB LOG_SMECHYBRID BORREHOLE LANDSCAPE_30013038 GNT GPJ <					7.5										7!!	11				7.5 —
품					1.										1!!	11				1
SWE					† ::										-					7
B					†:									 	1;;					+
BLB					+:								iii	 	Hii					+
عليا و					8.0	• .				<u> </u>							<u> </u>			

Testing

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

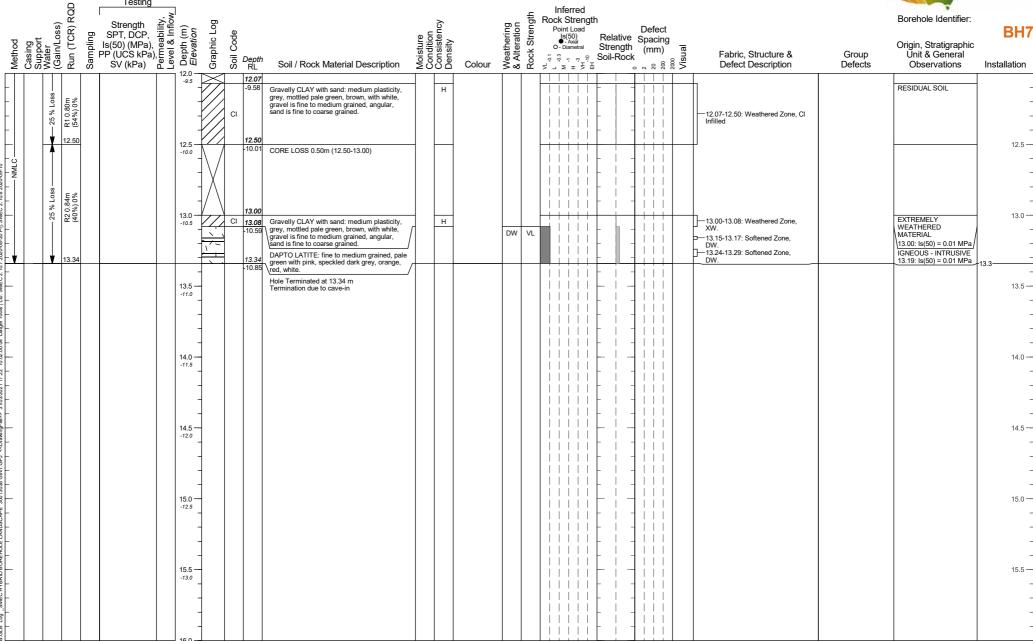
East 307770.1 m North 6183062.2 m Elevation 2.49 m MGA94 Zone 56/AHD

Datum

Start Date 02/03/2021 End Date 02/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

Q	Testing	_								Inferre	d				,		
Casing Support Water (Gain/Loss)	Strength SPT, DCP, DCP, IS(50) (MPa), E PP (UCS kPa), E OSV (kPa)	vel & Inflow epth (m) evation	Graphic Log	epoO Io Depth S RL		Moisture Condition Consistency Density		Weathering & Alteration	Rock F	Ck Stre Point Loa Is(50) • - Axial O - Diametr	ngth d Re sl Str	elative ength I-Rock	Defect Spacing (mm) lensi (mm) % No. No. No. No. No. No. No. No. No. No.	Fabric, Structure &	Group	Borehole Identifier: Origin, Stratigraphic Unit & General	вн
8 8 8 8 B	SV (kPa)	-0.8 <u>F</u>	Ö	S Depth			Colour	× × 0	2 🕺	1 M I	₹ <u>₽</u>	- COCK	2000 2000 Vis	Defect Description	Defects	Observations	Installation
		-5.5		SP	SAND: fine to coarse grained, pale grey. (continued)	D						- - -				ESTUARINE?	
		8.5 -		-6.01	Sandy CLAY with gravel: medium plasticity, grey, mottled pale green, brown, with white, sand is fine to coarse grained, gravel is fine grained, angular.	VSt				 		- - -				RESIDUAL SOIL	8.5
	9.00m SPT 5, 8, 14 N=22	9.0 -										-				9.00: SPT Recovery: 0.45 m	9.0
	9.45m 9.45m PP=450kPa	9.5 - -7.0										- - -					9.5
		10.0 - -7.5		CI								- - -					10.
		10.5 - -8.0									1						10.
- 55 % Loss -	11.20m SPT	11.0 -										- - - -				11.20: SPT Recovery:	11.
	4, 6, 27 N=33	11.5 - -9.0		-9.01 CI 11.70	Gravelly CLAY with sand: medium plasticity, grey, mottled pale green, brown, with white, gravel is fine to medium grained, angular, sand is fine to coarse grained.	Н				 		- - - -				0.45 m	11
-25 % Loss-		12.0 -		-9.21	CORE LOSS 0.37m (11.70-12.07)						1						

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla


Job Number 30013038

Testina

East North 6183062.2 m Elevation 2.49 m Datum MGA94 Zone 56/AHD

307770.1 m Start Date 02/03/2021 End Date 02/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

PointID: BH7 Depth Range: 11.70 - 13.34 m - 84780416-7c43-46e2-952b-9213f560e361

Manildra Group Pty Ltd
Port Kembla
Preliminary Geotechnical Investigation &
Contamination Assessment
Core Photo - BH7

DRAWN TZ	08/03/202	21
CHECKED	08/03/202	21
SCALE Not To S	cale	A4
PROJECT No 30013038	FIGURE No 1/1	

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla

Job Number 30013038

Testing

East 307798.2 m North 6183140.5 m Elevation 3.11 m

Datum

MGA94 Zone 56/AHD

Start Date 17/02/2021 End Date 17/02/2021

Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

	믕		resuriy									. Infe							
Casing Support Water (Gain/Loss)	R) R(<u>.</u>	Strength SPT, DCP, (50) (MPa), (UCS kPa), SV (kPa)	nflow nflow	<u>ٿ</u> د	Graphic Log	o)		ıcy		hering eration Strongth		trength	Defe	ect			Pit Identifier:	TP
ng ort 7/Los	Ę.	Sampling Ad all	SPT, DCP, . (50) (MPa),	eab I & I	th (r atio	hic	Code		Moisture Condition Consistency	<u>Ş</u>	Weathering & Alteration	Is(5 0 - Dia	0) F xial netral S	Relative Space	ina			Origin, Stratigraphic	
Supp Supp Nate Gair	Æ	ag PP	' (UCS kPa), SV (kPa)	Perm eve	Dep Ele	Grap	Depth	Soil / Rock Material Description	Mois	Colour	Wea & Alt	N K	S ۽ ڄ	oil-Rock	2000 (u Visual	Fabric, Structure & Defect Description	Group Defects	Unit & General Observations	Installati
			()		0.0	XXXI .	0.10	GRAVEL: fine to medium grained, poorly										CEMENTED SLAG	
		ES			7		3.01	graded, arigular, grey, pale grey.	-1									FILL ————	- TP01
]			FILL Gravelly SAND with cobbles: fine to coarse grained, dark grey, dark brown, grav is fine to coarse grained, angular, iron slag,	el			Hiii	[]					
						\bowtie		trace silt and iron material.											
					0.5							1111		- -					
	H				2.6									-					
		ES			+	\bowtie													
					1							i i i	iit	i i i	i				
					1.0	\boxtimes	1.00		_					-]					
					2.1		2.11	FILL SAND with gravel trace cobbles: fine to coarse grained, brown, gravel is fine to coar grained, angular, iron slag, trace iron materi	se l			Hiii							
					-	\bowtie		grained, angular, iron slag, trace iron materi	al.					-					
					-	\bowtie						1111							
casing used				Not Observed	-							1111	11-	-					
casin				t Obs	1.5 — 1.6	\bowtie								- -					
Š				2]	\boxtimes	1.70					li i i	i i [_i	i			L	
							1.41	SAND: fine to coarse grained, pale orange, pale brown.	M L M									AEOLIAN	
					4							Hiii	i i -		: I I				
	H				2.0									- -					
		ES			··· -										i				
					1								1		i I I				
]	· · · · s	SP					1111							
					2.5									- - [[: I I				
					0.6														
					+							1111	j į -	II - i i					
					†										· 1				
↓		ES			-3.0		3.00					liii	i i [111					3.0
					0.1			Hole Terminated at 3.00 m Termination due to cave-in											0.0
					-								j i -	1 - 1 1					
					+														
					<u>_</u> +								111						
					3.5														
]]					
					-								111						
					+														
			ents		4.0											Site Investigations unless otherwise		TH Date	17/02/20

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

Job Number 30013038

Testing

East 307822.2 m North 6183132.8 m Elevation 2.92 m MGA94 Zone 56/AHD

Datum

Start Date 15/02/2021 End Date 15/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

	۶	Ş	Testing										_	Infe	red								
	(SSO)	ار ج	Strength SPT, DCP,	ability, Inflow	(m) .o <i>u</i>	; Log	g		e oncy			aring ation	trength	ock S	trengt	Relat	ive en	efect				Pit Identifier:	TP02
Method Casing Support	Water (Gain/Lo	Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	Permea Level &	Depth Elevati	Graphic Log	epoo Jio Depth RL	Soil / Rock Material Description	Moisture Condition Consistency	Density	Colour	Weathering & Alteration	Rock St	Is(5	xiál netral ⇔ ♀ ⊞	Stren	gth (r	mm)	Visual	Fabric, Structure & Defect Description	Group Defects	Origin, Stratigraphic Unit & General Observations	Installation
		ES			0.0 		0.10	GRAVEL: fine to medium grained, angular, pale grey, grey.								-						CEMENTED SLAG FILL	TP02
		ES			-			FILL Gravelly SILT with sand: pale grey, pale orange, gravel is fine to coarse grained, angular, sand is fine to coarse grained, trace boulders, brick.								-							-
					0.5 										1 1	-	1 1						0.5 —
		ES			-		<u>0.70</u> 2.22	FILL Clayey SAND trace silt: fine to coarse grained, pale grey, orange, trace boulders.								_							-
11) 50000 50000 50000 1000 1000 1000 100					1.0 —			grained, pale grey, orange, trace boulders.									1 :						1.0
					1.9											-	- 1						1.0
					-											-	7						-
EX				,eq	1.5 —		1.50 1.42	SAND: fine to coarse grained, pale brown, pale orange.	M L	 MD							_ i					AEOLIAN	1.5 —
EX EX				Not Observed	-											-	i						-
No ca				z	2.0 —											-	- 1						2.0
_		ES			0.9		SP									-	i						-
			-		-										i i I I	-	-						-
					2.5 — 0.4									 		-							2.5 —
					-										1 1	-	- 1						-
			_		3.0		-0.03	SAND: fine to coarse grained, pale brown, pale orange.														ESTUARINE?	3.0
-		ES	-		-		SP									-	-						-
							3.40	Hole Terminated at 3.40 m		+							1		-				-3.4
					3.5 — -0.6			Target depth								-	-						3.5 —
B					-									 			_ 1						-
	4:				4.0_											!	1!					TIL	

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

East 307817.4 m North 6183107.7 m Elevation 3.33 m

Start Date 15/02/2021 End Date 15/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North

Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Testina ROD Inferred Strength Pit Identifier: Rock Strength Method Casing Support Water (Gain/Loss) Run (TCR) Ri Strength SPT, DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Weathering Rock Strength Point Load | S(50) | Relative (S(50) | Soil-Rock Strength | Soil-Rock | Soil-Graphic Log **TP03** Defect Sampling Code Relative Spacing Origin, Stratigraphic th (mm) lensi Group Depth Fabric, Structure & Unit & General Soil / Rock Material Description Installation Colour Defect Description Defects Observations 0.0 CEMENTED SLAG GRAVEL: medium to coarse grained, angular, pale grey, grey. 0 15 FILL FILL Sandy CLAY with gravel: medium plasticity, dark grey, brown, sand is medium to coarse grained, gravel is fine to coarse ES В grained, angular, with cobbles. 2.8 ES 1.0 -1.0 -1.5 -No casing used ES AEOLIAN 2.0 -SAND: fine to coarse grained, pale brown, L -MD pale orange, with laminations of dark grey clay, trace sea shells. 2.5 -2.5 0.8 SP 3.0 -0.3 ES V ESTUARINE? 0.03 Sand: fine to coarse grained, pale brown, pale orange, with laminations of dark grey clay, \perp SP 3.5 -3.5 - \perp -0.2 ES $I \cup I \cup I$ \perp Hole Terminated at 3.70 m Target depth

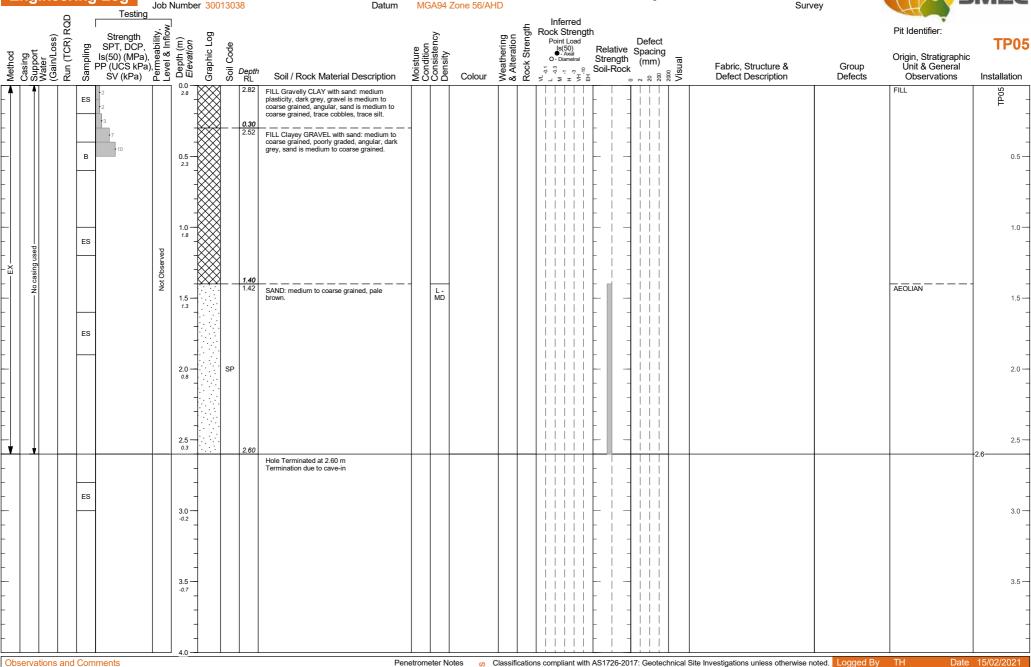
Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

East 307788.0 m North 6183028.5 m Elevation 2.44 m

Start Date 15/02/2021 End Date 15/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North Survey

Job Number 30013038 Datum MGA94 Zone 56/AHD Testina ROD Inferred Strength Pit Identifier: Strength SPT, DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Rock Strength Casing Support Water (Gain/Loss) Run (TCR) R Weathering & Alteration Rock Strendin Plant Plan Graphic Log **TP04** Defect Sampling Code Relative Spacing Origin, Stratigraphic ck (mm) h Strength Fabric, Structure & Group Unit & General Depth S RL Soil-Rock Installation Soil / Rock Material Description Colour Defect Description Defects Observations 0.0 FILL Clayey GRAVEL trace silt: medium to 0.00: -0.2m Bonded Fibro - potential ACM ES coarse grained, angular, pale grey, grey. 0.20 fragment observed 2.24 FILL Gravelly CLAY with sand: medium plasticity, dark grey, brown, red, black, gravel is fine to coarse grained, angular, sand is medium to coarse grained, trace boulders and bricks. 0.5 1.9 0.60: -0.8m Bonded ES Fibro - potential ACM fragment observed 1.0 1.0 -1.4 No casing used AEOLIAN Ξ SAND: fine to coarse grained, pale brown. L -ES 1.5 -0.9 SP Y 2.0 W 0.4 I I IES Hole Terminated at 2.50 m -0.1 Termination due to cave-in 3.0 --0.6 3.5 3.5 -1.1


Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

East 307783.2 m North 6183065.7 m Elevation 2.82 m

Start Date 15/02/2021 End Date 15/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Port Kembla

East 307759.1 m North 6183073.4 m Start Date 17/02/2021 End Date 17/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Inclination 90° Azimuth

Site Elevation 1.33 m Mounting Track North Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Method Casing Support Water (Gain/Loss) Run (TCR) RQD Testina Inferred Strength Pit Identifier: Rock Strength Strength STR. DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Weathering

& Alteration

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends Graphic Log **TP06** Defect Sampling Code Relative Spacing Origin, Stratigraphic ck (mm) h Strength Group Unit & General Depth Fabric, Structure & Soil-Rock Soil / Rock Material Description Observations Installation Colour Defect Description Defects 0.0 FILL SAND with gravel trace silt: fine to coarse grained, brown, dark grey, gravel is fine to coarse grained, angular, trace cobbles. FILL ES AEOLIAN 0.83 ES SAND: fine to coarse grained, pale grey, pale 0.8 No casing used SP Y 1.0 1.0 -W 0.3 MD \perp ESTUARINE? 0.03 Sand: fine to coarse grained, pale grey, pale ES SP brown. $I \cup I \cup I$ \perp Hole Terminated at 1.50 m -0.2 Termination due to cave-in 2.0 -2.0 --0.7 2.5 -2.5 -1.2 3.0 --1.7 35 3.5 --2.2

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla

Job Number 30013038

Testing

East 307770.4 m North 6183062.6 m Elevation 2.56 m MGA94 Zone 56/AHD

Datum

Start Date 15/02/2021 End Date 15/02/2021

Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

	g	Γ	resung	>									_	Inferred								
Casing Support Water	3S)	_	Strength SPT, DCP, Is(50) (MPa), EP (UCS kPa), SV (kPa)	Jey,	<u> </u>	Graphic Log	a		u Moisture Condition	ncy		ng .	Strength Local Strength	ck Stren			Defec	t			Pit Identifier:	TI
ot,	75.	Sampling	SPT, DCP, (Sp. 1865)	_ × 2	n (n atio	je .	Code		ure tion	ster ty		Weathering & Alteration	Stre	Is(50) - Axial - Diametral	Rel	lative	Snacin	n			Origin, Stratigraphic	
asin upp 'atei	sain un (E F	PP (UCS kPa),	s sel	Jept S/e/s	raph	⊡ Dep S RL	th	oist	onsi ensi		eatl Alte	SC ⁵	N E I ≥	e Soil∙	ength -Rock	(mm)	sua	Fabric, Structure &	Group	Unit & General	
ÜØ≶\	9 &	Ň	SV (kPa) 🐧	ָבֻ י		ڻ حص	2.50			٥٥	Colour	> ∞ ⊆	ř 🚽 _	, ≥ ± ₹	- E	•	8 8 8	% >	Defect Description	Defects	Observations FILL	Installa
					2.6	\otimes	2.50	coarse grained, dark grey, boulders are up	p to				-	111	i -	i -					FILL	
					-8	\bowtie		0.8m in diameter, gravel is fine to coarse grained, angular to sub-angular.	'						! -	-	111				0.20: -0.5m Bonded	'
		ES			-8	\bowtie									} }	-					0.20: -0.5m Bonded Fibro - potential ACM fragment observed	
					-{	\bowtie							i	iii	i t	i -	iii					
					0.5 —X	\bowtie									!	-						
					\nearrow	\otimes							-		¦ []						
					\mathbb{X}								l į	i i i	i [i	111				0.70: -1.0m Bonded Fibro - potential ACM	
		ES														-					fragment observed	
					1.0								-		i L	i –						
					1.6	\otimes								1 1 1	! -	! -	111					
					+	$\stackrel{\times}{\sim}$	1.20		, — M	1 -					}	-					AEOLIAN — — — —	-
 					- †∶			with black carbonaceous lamination.	.,	L - MD			l i	iii	i E I	-	iii					
casing used					1:										<u> </u>	-						
casin					1.5											_						
8].:								I į	i i i	<u> </u>		111					
					1:-																	
					1:		SP							111								
					2.0								- !	1 1 1	! [-]	-	111					
					0.6								-		}	-						
													l į	i i i	<u>i</u>	-	i i i					
		ES			-											1						
			•	-	2.5				w						ΙLΙ							
					0.1		2.6								! []							
					4:		-0.0	Sand: fine to coarse grained, pale brown, black carbonaceous lamination.	with				-			_					ESTUARINE?	
					-		SP						l i	iii	i F I	-	$ \cdot $					
		ES			- :-		3.0								}	-						
-					3.0		3.00	Hole Terminated at 3.00 m					T i	iii	1	1						3.0
					1			Target depth								-						
]										[¦]						
					1								!		! 	! -	111					
					3.5 —										-	-						
					-0.9								i	iii	i -	i -	iii					
					-										1 -	-						
					+									1	1 -	¦ -						
					†								i		!	į -	ijij					
bservation	ns and	Comi	ments		4.0						es	Classifica	tions co	mpliant w	ith AS17	726-201	7: Geote	echnical S	Site Investigations unless otherwis	se noted. Logged By	/ TH Date	1

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

East 307835.0 m North 6183119.6 m Elevation 3.79 m

Start Date 16/02/2021 End Date 16/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North

Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Method Casing Support Water (Gain/Loss) Run (TCR) RQD Testina Inferred Strength Pit Identifier: Rock Strength Strength SPT, DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Weathering

& Alteration

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends Graphic Log **TP08** Defect Sampling Code Relative Spacing Origin, Stratigraphic ck (mm) h Strength Group Depth Fabric, Structure & Unit & General Soil-Rock Soil / Rock Material Description Installation Colour Defect Description Defects Observations 0.0 CEMENTED SLAG GRAVEL: fine to coarse grained, angular, pale grey, grey. 0.15 FILL Silty GRAVEL with sand: fine to medium grained, poorly graded, angular, brown, red, gravel is iron slag, sand and is coarse FILL ES B grained, trace medium plasticity clay. FILL SAND trace gravel with clay: fine to 0.5 3.3 coarse grained, grey, dark grey, gravel is fine to medium grained, angular, trace silt. ES casing used Observed Š Š 1.0 -AEOLIAN 2.79 L -MD SAND: fine to coarse grained, red, orange, 2.8 ES SP 1.5 -1.5 -ES Hole Terminated at 1.70 m Termination due to cave-in 2.0 -2.0 -1.8 2.5 2.5 1.3 3.0 -0.8 35 3.5 0.3

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

307900.2 m North 6183079.3 m

East

Start Date 17/02/2021 End Date 17/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North

Elevation 14.64 m Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Method Casing Support Water (Gain/Loss) Run (TCR) RQD Testina Inferred Strength Pit Identifier: Rock Strength Strength SPT, DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Weathering

& Alteration

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends

Rock Strends Graphic Log **TP09** Defect Sampling Code Relative Spacing Origin, Stratigraphic ck (mm) h Strength Group Depth Fabric, Structure & Unit & General Soil-Rock Soil / Rock Material Description Observations Installation Colour Defect Description Defects 0.0 FILL FILL BOULDERS with gravel trace cobbles: brown, boulders are up to 0.6m in diameter, extremely to highly weathered sandstone, onion ring weathering. 14.24 FILL Clayey BOULDERS trace gravel: grey, trace sand, boulders are up to 0.6m in 14.1 diameter, moderately weathered to slightly weathered sandstone. 1.0 1.0 -13.6 No casing used Not Observed 1.5 · 1.5 2.0 2.0 -12.6 Hole Terminated at 2.40 m 2.5 -2.5 12.1 3.0 -11.6 35 3.5 -11.1

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla

Job Number 30013038

Testing

East 307842.8 m North 6183041.3 m Elevation 2.93 m MGA94 Zone 56/AHD

Datum

Start Date 16/02/2021 End Date 16/02/2021

Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

	片	Γ	resurig								_	Inferr								
Casing Support Water	ss) R(S)	_ '	Strength SPT, DCP, Is(50) (MPa), PP (UCS kPa) SV (kPa)	ility,	<u>. ،</u>	₋ og	ø)		ncy		hering eration Strenath	D 1 01	ength		efect				Pit Identifier:	TP1
on and a		Sampling	Is(50) (MPa),	neab	oth (r	Graphic Log	Code		Moisture Condition Consistency Density	ì	Weathering & Alteration Rock Strengt	Is(50 - Axi O - Diam	Re tral Str	elative Si	nacing	<u>8</u>			Origin, Stratigraphic	
Casi Supp	(Gal Run	Sam	PP (UCS kPa) SV (kPa)	Peri Leve	Der	Grap	Depti	Soil / Rock Material Description	Mois Con Den	Colour	Wea & Alf	Z N E	_າ ຸຊ Soi ັັັສີ	il-Rock	mm)	Visu	Fabric, Structure & Defect Description	Group Defects	Unit & General Observations	Installatio
1					0.0 —		2.93												CEMENTED SLAG	TP10
					-		0.20 2.73												FILL — — — — —	
		ES			-		0.40	dark grey, black, gravel is fine to coarse						-					1122	
					0.5.		2.53	material.	4				ijĿ	įjį						
					0.5 — 2.4 —	\bowtie		FILL Gravelly CLAY trace cobbles: high plasticity, dark brown, red brown, gravel is fine to coarse grained, angular with iron slag an trace iron material, trace coarse grained sand.	'											0
					-			trace iron material, trace coarse grained sand.						-						
		ES			-	\bowtie							i i	i † i	1.1					
		ES			1.0 —															1
l pes					1.9	\bowtie							i i -	1 - 1						
casing used					-															
No cas						\bowtie]						
					1.5 —								i i 📙	i 4 i						
					1.4										+++					
						\bowtie							i i t	<u>i</u> 1i	111					
				16/02/21	-		1.90 1.03												ESTUARINE?	_
		ES		16/0	2.0		CH 2.10	and pale grey laminations, trace fine to	W>PL										EO TO/WINE:	2
				\blacksquare	-		0.83		w				i i							
					_		SP	brown, trace sea stiens.												
,		ES			-		2.50							-						
++					-2.5 0.4		2.50	Hole Terminated at 2.50 m Termination due to cave-in												2.5
					-			Tomination due to dayo-in												
					-								!	-						
					3.0 —	1														
					-0.1															
					-								i i -	<u> </u>						
					-	1														
					3.5 —]						
					-0.6										i i l					
					-															
					-															
					40-							1!!!	! !							

Observations and Comments

Testing

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307815.8 m North 6183046.7 m Elevation 4.33 m MGA94 Zone 56/AHD

Datum

Start Date 16/02/2021 End Date 16/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

		Q		Testing											In	ferre	4						•		
Method	-	, S	'	Strength	اھ ج اھ ج		g			>	,		Weathering & Alteration	gt.	Rock	Stre	ngth							Pit Identifier:	
	, ,	CR)	Б	SPT, DCP,	abili Finf	Ξ̈́ĕ	٥ لر	ge		e tenc	_		ering atio	trer	Po	int Load Is(50) I - Axial Diametra	F	Relativ	e Sna	fect scina					TP10A
thoc	ter i		Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	, ĕ ē e ii '	pth eval	Graphic Log	OOO Depti		Moisture Condition Consistency	nsity		athe	S X	0-	Diametra	a S	Strengt oil-Ro	th (m	im)	nal	Fabric, Structure &	Group	Origin, Stratigraphic Unit & General	
C a	N S	2 2	Sar	SV (kPa)	Le Pa	ΩÜ	Ö	S Depti	Soil / Rock Material Description	≗ૈંડેડે	De	Colour	% ≪	Š	L 0.1	Σ I S	₹ E E	OII-RO	0 N 8	200	<u>s</u>	Defect Description	Defects	Observations	Installation
_ 🛉						0.0 -	\bowtie	4.33	FILL BOULDERS with cobbles with gravel: boulder grained, poorly graded, angular to								1 [FILL	TP10A
_							\bowtie		sub-angular, grey, pale grey, brown, pale brown, boulders up to 0.6m, extremely to								i	ì							₽ .
_							\mathbb{X}		highly weathered sandstone, onion ring weathering.							11	1	İ	_						
-							\mathbb{W}		_								-	l I	-						-
-						0.5 -		0.50 3.83							l i i	ii	i F	- i -	- i						0.5 —
-						3.0	₩		grey, pale grey, brown, pale brown, boulders up to 0.6m in diameter, moderately weathered	.							! -	Ţ	1!						-
-							\otimes		sandstone.								11	i	-						-
-	- pa				₽										Ιİ	Ϊİ	i t	İ	1						-
_×	casing used				serve	1.0 -	\bowtie										! [- -]						1.0 —
.	casi				Not Observed	3.3	\bowtie									11	i L	i	- i						1.0
- '	일 						\bowtie										1 -	- [4!	1 1 1					
-							₩										}	i							-
-							₩								i i		i F	İ	- i	i i					-
-						1.5 -	\bowtie										-	- -	-						1.5 —
-																ii	it	i	11						-
-							\bowtie										! [-] !						
-							\bowtie											i	-						-
<u> </u>	v .				-	—2.0 -	\bowtie	2.00			-				ш	\perp	1	<u> </u>	\perp	ш	_				2.0 2.0
						2.3	-		Hole Terminated at 2.00 m Target depth						1		-	l I	-						-
							1								l i i		i F	i	- i						-
							1								1 1		-	I I	1!						
-						0.5	1											İ	-						0.5
						2.5 -										11	! [2.5 -
							1 1											l I	-						-
							-									Ϊİ	i þ	i	- i						
							1										1 -	1	-						-
-						3.0 -	1										1	- ¦	∃ ¦						3.0 —
							1										!	- [1!						
																	1	Ì							-
															ΙİΪ	Ϊİ	į [į	_						-
_						3.5 -												-	-						3.5 —
.						0.8											i -	i	-						
.																	1-	Ţ	- !						
							1										11	1	-						
							1									Ϊİ	it	i	1 i						
						4.0			1					_											

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

East 307771.0 m North 6183003.4 m Elevation 2.38 m

Start Date 15/02/2021 End Date 15/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North

Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Casing Support Water (Gain/Loss) Run (TCR) RQD Testina Inferred Strength Pit Identifier: Rock Strength Strength SPT, DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Weathering & Alteration Rock Strength (200) (200 Graphic Log **TP11** Defect Sampling Code Relative Spacing Origin, Stratigraphic ck (mm) h Strength Group Depth Fabric, Structure & **Unit & General** Soil-Rock Soil / Rock Material Description Installation Colour Defect Description Defects Observations 0.0 CEMENTED SLAG GRAVEL: medium to coarse grained, angular, IP11 grey, pale grey. 0.20 FILL 2.18 FILL Gravelly CLAY with sand: medium ES plasticity, dark grey, gravel is medium to coarse grained, angular, sand is medium to coarse grained, trace glass. 1.9 FILL Clayey SAND trace gravel: medium to coarse grained, brown, pale brown, orange, gravel is medium to coarse grained, angular. B ES 1.0 1.0 -1.4 1.28 FILL SAND with cobbles: medium to coarse grained, orange, red brown, cobbles are extremely weathered, very low strength sandstone. AEOLIAN 1.08 L -MD SAND: fine to coarse grained, pale brown. ES 1.5 -0.9 1.5 -Y SP W 2.0 -2.0 -0.4 ES ESTUARINE? SAND: fine to coarse grained, pale brown. 2.5 2.5 --0.1 SP ES Hole Terminated at 3.00 m -0.6 Target depth 35 3.5 --1.1 **Observations and Comments**

Testing

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307804.1 m North 6183011.6 m Elevation 2.64 m

Datum

MGA94 Zone 56/AHD

Start Date 17/02/2021 End Date 17/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

		Q		Testing											lr	nferre	Ч								
	ŝ) RC	St	trength	ity, ¶ow	<u> </u>	g				S		g	ın ngth	Rocl	Stre	ngth		Defe					Pit Identifier:	TD 40
or od	Los	TCR.	SP SP	T, DCP, 0) (MPa)	eabil & In	th (m	jc L	ode		ure	isten Ity		herir :	Stre	,	Is(50) - Axial - Diametr		Relative Strengt	Defe Spaci	ina				Origin, Stratigraphic	TP12
Method Casing Support	Vate	Run (TCR Sampling	PP (L	trength T, DCP, 0) (MPa), JCS kPa), V (kPa)	evel	Dept Elev	Graphic Log	O O O O O O O O O O O O O O O O O O O	th Soil / Rock Material Description	Moisture Condition	consi	Colour	Veat	& Alteration Rock Strength	L VL	F 7	" {	Soil-Roo	ck (mm	Zigo (L Zigo (L Visual	Fabric,	Structure & Description	Group Defects	Unit & General Observations	Installation
2 0 W) > E	<u> </u>	T	v (Ki a)		0.0		0.10	ODA)/EL-fit	20		Coloui	7	<u>» ш</u>		ΣI	> <u></u>		7 7 7	7 7 7	Delect	Description	Delects	CEMENTED SLAG	
-						-		2.54	graded, angular, grey, pale grey. FILL Gravelly Silty SAND: fine to coarse	-1								-	_					FILL	TP12
		ES	;			_	\bowtie		FILL Gravelly Silty SAND: fine to coarse grained, dark brown, grey, gravel is fine to coarse grained, angular, iron slag.								i	_]						_
-						-											-	-	-						-
-						0.5 — 2.1											<u> </u>	-	i i	i I					0.5 —
		ES				_												- -							-
- - - -			<u>'</u>			-												- İ							-
-						-		0.90 1.74	FILL GRAVEL with cobbles trace sand: coars	se -								- ¦	-						-
-						1.0 — 1.6			grained, poorly graded, angular, dark grey, iron slag, sand is coarse grained, trace iron									- -	-						1.0 —
						_	\bowtie	1.20 1.44] []	j I				AEOLIAN — — — —	_
pesn l		ES	;			-		1.44	SAND: fine to coarse grained, pale brown, re brown, trace sea shells.	ed M	L - MD							-	-					AEOLIAN	_
EX —						-												-	-						-
No ca						1.5 —												_ '	_						1.5 —
-						-											-	-	-						-
-						-										ijį	ijŀ	-	- 11	i I					-
-		ES				2.0 —		SP										_ .	_						2.0
-		ES	5			0.6											1	-	-						-
-			-		21	-												-	111						-
- -					17/02/21	_																			-
-					Y	2.5				w								_ -	_						2.5 —
-						0.1		2. 60	Sand: fine to coarse grained, pale brown, red									-	111					ESTUARINE?	-
-						-		SP	brown, trace sea shells.									-							_
V		_				_		2.90	Hole Terminated at 2.90 m								1	4							-2.9
-						3.0			Termination due to cave-in								i	- ¦ -	-						3.0 —
-						_												- -	1						-
+						-											j	-	-	į I					-
- - -						-												-	-						-
						3.5 												- ·	-						3.5 —
						_												-	- 11						_
-						-												-	-						-
-						40-												<u> </u>] <u> </u>						_
		1 0-				4.0																			47/00/0004

Project Preliminary Geotechnical Investigation Client Manildra Group Pty Ltd Site Port Kembla

307774.2 m East North 6183044.4 m Elevation 2.59 m

Start Date 17/02/2021 End Date 17/02/2021 Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North

Job Number 30013038 Datum MGA94 Zone 56/AHD Survey Testina ROD Inferred Strength Pit Identifier: Rock Strength Strength SPT, DCP, Is(50) (MPa), Is(50) (MPa), PP (UCS kPa), PP (UCS kPa), PP (UCS kPa), SV (kPa) Moisture Condition Consistency Density Casing Support Water (Gain/Loss) Run (TCR) R Weathering Rock Strength Point Load | S(50) | Relative (S(50) | Soil-Rock Strength | Soil-Rock | Soil-Graphic Log Defect **TP13** Sampling Code Relative Spacing Origin, Stratigraphic th (mm) lensiv Depth Fabric, Structure & Group **Unit & General** Soil / Rock Material Description Installation Colour Defect Description Defects Observations 0.0 CEMENTED SLAG GRAVEL: fine to medium grained, angular, TP13 pale grey, grey. 0.20 FILL 2.39 FILL Gravelly CLAY trace cobbles: medium ES plasticity, dark grey, dark brown, gravel is fine to coarse grained, angular, iron slag. FILL Sandy GRAVEL with clay: fine to coarse 2.1 grained, poorly graded, brown, gravel is iron slag, sand is medium to coarse grained, trace ES 1.0 1.0 -1.6 1.5 1.1 casing used Ä å 2.0 -2.0 ESTUARINE? Sandy CLAY: high plasticity, dark grey/pale grey mottled clay and sand, sand is fine to F 0.6 ES CH 2.10: Strong hydrocarbon coarse grained. odour and possible black SAND: fine to coarse grained, pale brown, oil staining noted in L -MD 17/02/21 \sandy_clay_____ pale grey AEOLIAN SP Y 2.5 -2.5 -W ESTUARINE? Sand: fine to coarse grained, pale brown, pale ES 3.0 -SP -0.4 I I IES Hole Terminated at 3.50 m -0.9 Target depth

Project Client Preliminary Geotechnical Investigation Manildra Group Pty Ltd Site Port Kembla

East 307756.1 m North 6183035.6 m Elevation 2.40 m

Start Date 17/02/2021 End Date 17/02/2021

Contractor Ledacon Equipment TypeHitachi 13t Mounting Track

Inclination 90° Azimuth North

				Testing	Job I	Numb	er 300	1303	8	Datum	MG	A94 Z	Zone 56/AF	HD									Survey			IAIT
Method Casing Support	Water (Gain/Loss)	Run (TCR) RQD	Sampling	Strength SPT, DCP, s(50) (MPa) P (UCS kPa SV (kPa)	_	o Depth (m)	Graphic Log	Soil Code	Depth RL	Soil / Rock Material Description	Moisture Condition	Consistency Density	Colour	Weathering & Alteration	Kock Strength	Inferr Rock St Point L Is(50 • - Ax O - Diam	rength oad)) ial etral	Relativ Strengt	Def e Spad th (mi	fect cing m)	V Soud	Fabric, Structure of Defect Description		Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP14
- -			S			2.4			2.20	GRAVEL: fine to medium grained, poorly graded, angular, pale grey, grey. FILL Gravelly CLAY trace sand: high plasticity, brown, dark grey, gravel is fine to coarse grained, angular, iron slag, sand is medium to coarse grained, trace boulders and	-							- - -	- - - -						CEMENTED SLAG FILL	- TP14
 - - -		E	ES .			0.5 - 1.9				brick.								- - - -	- - - -							0.5 — - -
			SS.			1.0 -		СН	1.20 1.20	Sandy CLAY: high plasticity, dark grey/pale grey mottled with some decomposed organic	W>PL	F						- - -	- - - -	 					ESTUARINE?	- 1.0 — - -
EX - EX					17/02/21	1.5 - 0.9			1.40	SAND: fine to coarse grained, pale brown, pale orange.	M	L - MD						- - -	- - - -						1.30: Strong hydrocarbon odour and possible black (oil staining noted in sandy clay / AEOLIAN /	- 1.5 — -
- - - - -		E	ES			2.0 - 0.4		SP			W							- - - -	- - - - -							- 2.0 — -
- - - - -		E	ES .			2.5 -		SP	2.70	Sand: fine to coarse grained, pale brown, pale orange.					- 1			- - -	- - - -						ESTUARINE?	2.5 —
- - - - -						3.0 -				Hole Terminated at 2.70 m Target depth									- - - - -							
- - - -						3.5 -	_ - - - - -											- - - - -	- - - - -							- 3.5 — - -
<u></u>						4.0_																				

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307678.8 m North 6182977.6 m Elevation 3.073 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator Dimensions 3.00 m x 0.60 m Mounting Track

Ω	_	Testing		umbe	1 300130	JJ0	Datum	IVIG	A34 Z	JOHE C)O/AI II		l	c					Survey		
Method Casing Support Water (Gain/Loss) Run (TCR) RQD	Sampling Signal	Strength PT, DCP, 50) (MPa), (UCS kPa), SV (kPa)	Permeability, Level & Inflow	Depth (m) Elevation	Graphic Log Soil Code	Depth	Soil / Rock Material Description	Moisture	Consistency Density	Alteration	Weathering	Stren	Rock Poi J	ferred Strer nt Load s(50) - Axial Diametra	ngth d Re	elative trength oil-Rock	Defect Spacing (mm) ensign	Fabric, Structure & Defect Description	Group Defects	Pit Identifier: Origin, Stratigraphic Unit & General Observations	TP15
	≣S			3.1		0.20 2.87	FILL Gravelly SAND: fine to coarse grained, dark grey, with foreign materials (glass fragment, brick, plastic). FILL Clayey SILT: pale grey mottled pale yellow.	_							-					FILL (UNIT 1D)	
	≣S			0.5 —			0.60 m: becoming Clayey SAND, fine to medium grained, brown													0.65: copper pipe	0.5 -
- - -				-	<u></u>	0.90 2.17	FILL SAND: medium grained, pale yellow orange, with coarse grained gravel and cobbles, trace boulders, trace									-				diameter 20mm noted	
No casing used			Not Observed	1.0 —			coarse grained gravel and cobbles, trace boulders, trace foreign materials (concrete, reo wire).						 			-				1.20-1.40: a large	1.0 -
$\vdash \mid \mid \mid \mid \mid \mid \mid \mid \mid$	≣S ——		NotO	1.5 —		1.40 1.67	SAND: medium grained, pale yellow.	M	L											1.20-1.40: a large fragment of reinforced concrete pipe (diameter ~1.2m) was observed AEOLIAN	1.5 -
- - - - -	ES .			2.0 —	SF	o .										- -					2.0
- - - -				-		0.50										- - -				2.20: observed collapsing sands	
				-2.5 0.6 -		2.50	Hole Terminated at 2.50 m									-				2.50: collapsing sands	2.5
- - - - - - - -				3.0 —									 								3.0 -
- - -				3.5 —												-	. 				3.5
Observations and C				4.0												-		Site Investigations unless otherwise			12/10/2021

Testing

Project Client **Detailed Site Investigation** Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East North Elevation 4.043 m MGA94 Zone 56/AHD Datum

307682.3 m Start Date 12/10/2021 6183015.7 m End Date 12/10/2021

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator Dimensions 3.00 m x 0.60 m Mounting Track

		Q		resting											Inf	erred							
	ŝ) RG	'	Strength	lity, flow	<u> </u>	_o				cy		و و	g F	Rock	Streno Streno	gth		Defect			Pit Identifier:	TD4C
Method	Support Water (Gain/Loss)	Run (TCR) RQD	Sallipling PF	Strength SPT, DCP, s(50) (MPa), P (UCS kPa) SV (kPa)	Permeabi Level & In	Depth (m Elevation	Graphic Log	OO O Depth S RL	h Soil / Rock Material Description	Moisture	Condition Consistency Density	Alteration	Weathering	Rock Strength	0- [(50) - Axial Diametral	Re Str	elative rength il-Rock	Spacing	Fabric, Structure & Defect Description	Group Defects	Origin, Stratigraphic Unit & General Observations	TP16 Installation
A	1					0.0 -		4.04	FILL Gravelly SAND: dark grey, trace coarse grained angular to sub-angular gravel.									-				FILL	
- - -		E	s			- - -		0.30 3.74 0.50	FILL Clayey GRAVEL: dark grey to black, gravel consisting of mainly coalwash, trace silt.									-				0.30: distinct odour (sweet phenolic hydrocarbon)	- - -
						0.5 -		3.54	FILL Clayey SILT: pale brown with mottled yellow, tra- plastic, metal rod.	ce								-	1			FILL (UNIT 1D) 0.50: strong odour (sweet	0.5
Dagol Tools Lib.: SMEC 2.103 2021-08-30 Pt; SMEC 2.105 2020-08-10	No casing used	E	s 		Not Observed	1.0			plastic, metal rod.										- 1 1 1 1 1 1 1 1 1 1			U.5U: strong odour (sweet phenolic hydrocarbon)	1.0 —
- Ip: SWE	ž 				Z	1.5 —		1.60										-	- -				1.5 —
07/12/2021 09:24 10.02.00.04 Datgel Tools L		E	S			2.0 —		2.44	FILL Clayey SILT: dark brown with mottled yellow, tra sub-rounded gravel.	ce												1.80: strong odour (sweet phenolic hydrocarbon)	- - 2.0 — - -
ingFile>>						2.5 —												-]				2.5 —
<drawii< td=""><td></td><td>E</td><td>s</td><td></td><td></td><td>1.5</td><td></td><td>2.70</td><td>2.60 m: increase in moisture, presence of slag and</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> -</td><td> -</td><td></td><td></td><td></td><td></td><td>_</td></drawii<>		E	s			1.5		2.70	2.60 m: increase in moisture, presence of slag and								-	-					_
SMEC HYBRID BOREHOLE LANDSCAPE 30013038 GINT GPJ						3.0 — 1.0 — - - 3.5 —			gravel Hole Terminated at 2.70 m Termination due to slow progress on dense material										- 1 1 1 1 1 1 1 1 1 1				3.0 —
UB.GLB Log_SMEC HYBRID						0.5 - - - 4.0 —												-	-				- - -

Testing

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307693.2 m North 6183045.7 m Elevation 4.033 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

•	
Pit Identifier:	-
Origin Stratigraphia	T
Origin, Stratigraphic Unit & General	
Observations	Insta
CEMENTED SLAG	T
0.00-0.20: moderately cemented (dense to very	
dense cemented slag) - FILL (UNIT 1D)	1
(5	
0.50-0.90: slight sweet	
0.50-0.90: slight sweet phenolic hydrocarbon odour observed	
ododi obscived	
FILL	1
2 FOr atrana Cureat	
2.50: strong Sweet phenolic hydrocarbon	
odour	
L	1
AEOLIAN	
	AEOLIAN ED Date

Testing

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307715.4 m North 6183077.5 m Elevation 3.863 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

g	- 1	roomig	` . ≥	1								₽	lr De a'	ferre	d n ert/-					Pit Identifier:	
Casing Support Water (Gain/Loss) Run (TCR) RQD	Sampling	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	Permeability Level & Inflo	Depth (m) Elevation	Graphic Log	⊕ CO To Depth SO RL	Soil / Rock Material Description	Moisture	Condition Consistency	Density Alteration	Weathering	Stren	Po O-	Stre pint Loa Is(50) - Axial Diametra	d R ⊫ Si	elative trength oil-Rock	Defect Spacing (mm) langle (mm) spacing	Fabric, Structure & Defect Description	Group Defects	Origin, Stratigraphic Unit & General Observations	TP'
1 1				3.9		3.86	FILL GRAVEL: angular to sub-angular, pale grey to black, gravel consisting of mainly slag.	to		T					T			<u> </u>		FILL	
						<u>0.20</u> 3.66										-					
	ES						FILL Sandy GRAVEL: well rounded and angular to sub-angular, red, gravel mainly appears to be slag nudules. 0.30 m: trace wires									-]				
				0.5 — 3.4			o.co m. sase m.ee								-	-					
																-	1 1				
															1	-					
				1.0 -											İŁ	j -					
				2.9											-	-					
																-]				
			_												-	-					
No casing used			Not Observed	1.5 — 2.4												-	4				
No cas			Not O												-	-					
																-	1				
				2.0											<u> </u>	į -					
	ES															-]				
															-	-					
				2.5 —												-	1 1				
				1.4											-	-					
																-	1				
															<u> </u>	į -					
				3.0 -		0.86	SAND: medium grained, pale yellow.		1 L	-						i -				ESTUARINE?	
 						3.20	Hole Terminated at 3.20 m			+			+		+						
					1		Termination due to unstable pit wall collapsing									-					
				3.5 — 0.4	1										-	-					
					1											-	1				
															-	-					
				40-												<u> </u>					
ervations and	d Com	ments								es	Classifi	cation	s com	pliant	with AS	1726-20	17: Geotechnical S	Site Investigations unless otherwise	noted. Logged By	ED Date	12/10/202

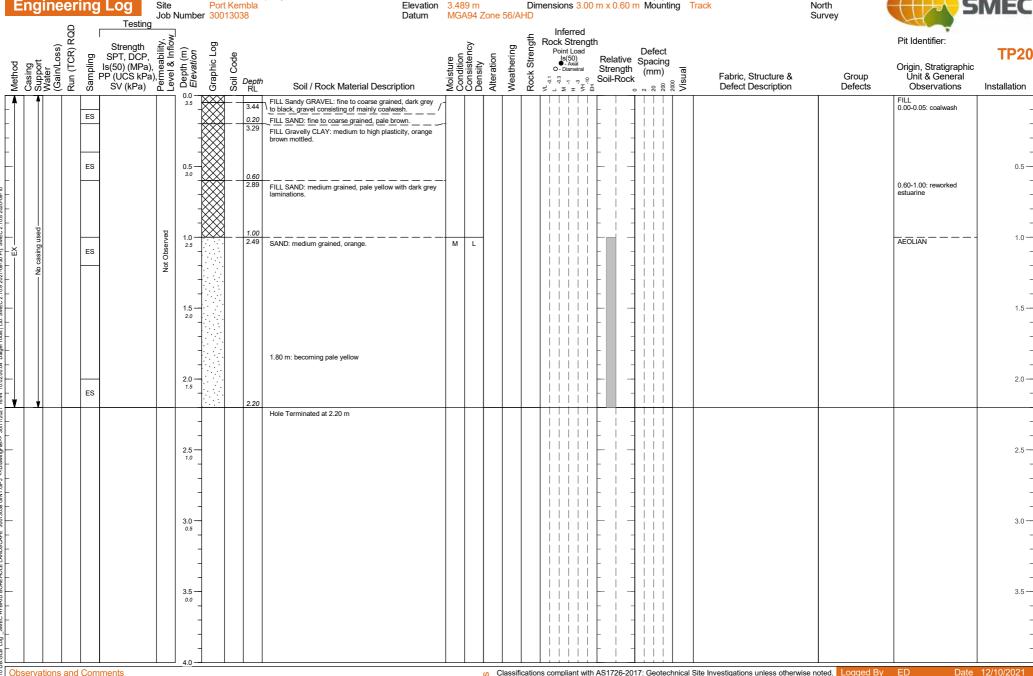
Testing

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307746.7 m North 6183115.7 m Elevation 3.590 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator


	占	T GGEN	J .	.]								_	- 1	nferre	ed						•	
Method Casing Support Water (Gain/Loss)	Ϋ́	Strength SPT, DCP Is(50) (MPa PP (UCS kPa SV (kPa)	<u>}</u>		g				ે		Ō	Rock Strength	Roc	k Stre	ength		Defeat				Pit Identifier:	TD 40
t t	Run (TCR)	SPT, DCP	, ቪ드	Depth (m) Elevation	Graphic Log	e		ē	Condition Consistency	, E	Weathering	ţĿ	Ρ	Is(50)		Relative	Defect e Spacing					TP19
por Por Por	E =	Is(50) (MPa), <u>e</u> «	zet vat	ž Š	3		, <u>j</u>	diti	ati y	ŧ	S	0	Is(50) ● - Axial - Diametr	ral 🎖	Strengtl	th (mm) 👨	- · · · · ·	•		Origin, Stratigraphic	
leth asi upi Vate	5 6	PP (UCS KP)	a), ⊑ a		ji ji	Depth	Soil / Rock Material Description	<u>i</u>	5 5 5	重量	/ea	20	0.	j - v	. ₋	Soil-Roc	th (mm) R	Fabric, Structu Defect Descrip	re &	Group Defects	Unit & General Observations	Installation
≥ 0 0 S S	<u>m</u> 0	SV (KFa)	Δ	0.0	U 0			2	001	<u>۸</u>	_>	nz	7 -	ΣI	⇒ ±		- × 8 8 8 >	Delect Descrip	uon	Delects		TISIAIIAUOTI
				3.6	\bowtie	3.59	FILL Sandy GRAVEL: angular to sub-angular, dark brown to dark grey, gravel consisting of mainly							 	- ¦	.					FILL 0.00-1.70: coalwash	_
					\bowtie		coalwash.							 	-							
				•	\otimes								¦	 			1					
					₩								H	 			1					-
- I I II I	-	-			 								H		i	i i	4 ; ; ;]					-
\vdash \mid \mid \mid \mid	ES	;		0.5 —	 								H		i F	- i -	- i i i					0.5 —
		_		3.1	\bowtie								Ιi	i i i	i L	i	4 i i i l					_
<u> </u>					\bowtie								Ιi	iii	i L	i	liiil					_
8-5													Ιi		i I	i						
																	1					_
? !-					\bowtie										1		-					-
				1.0 -	₩										-	- -	-					1.0 —
<u> </u>				2.6	\longrightarrow										1 -	. [-					-
<u> </u>					XXX																	_
					\bowtie											- 1						
															! [- 1						
					\bowtie								!		! -		1					_
No casing used			Not Observed	1.5	\bowtie		SAND laver at 1.50m to 1.70m, medium grained, pale	.					!		! -	- -						1.5 —
is E			psq	2.7	\otimes		SAND layer at 1.50m to 1.70m, medium grained, pale yellow to orange	·					!		! -	.	4 ! ! !					_
	_	_	ot O		\bowtie	1.70									! -		4 ! ! !					_
	ES	.	2		\bowtie	1.89	FILL Clayey GRAVEL: angular to sub-angular and rounded, dark brown to red, trace sand throughout.								-	.] ; ; ;]					_
No casing used	'`	`			\bowtie		rounded, dank brown to red, trace sails unoughout.								-							
					\otimes									 			1					
				2.0 -	₩₩									 		- -						2.0 —
					₩									 	-		4 ; ; ;]					-
307117021 10:44					 								H		iŀ	· i	4 ; ; ;]					_
					\bowtie								H	 I I I	iL	i	1					_
					\bowtie								Ιi	iii	iL	i	liiil					
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													Ιi	i i i	i I	i						0.5
				2.5 -									Ιi	iii	iΓ	- i -	7 i i i l					2.5 —
5-1111					\bowtie								l i		1	Ĺ	1111					-
					₩										1 -	1	-					-
						2.80 0.79				4					1 -						AEOLIAN — — — —	-
						0.79	SAND: medium grained, pale yellow.		I MD	'											AEOLIAN	_
8000				3.0 -																		3.0 —
8				0.6																		3.0
\$	ES	·		'	1	3.20									!		-					_
Solet Hard Boether Lavor		1	+			3.20	Hole Terminated at 3.20 m						+	 	+	_						
<u> </u>		1		-	1											. [-					-
		1														. [4					-
		1		3.5 —	1											_ -	_					3.5 —
<u> </u>				0.1													7					0.0
<u> </u>				'													1 ! ! !					
				'	1											1	1					-
		1		.	1									 		. [-
		1			1									 								-
		1		4.0 -									\perp		1							
Observations																		Site Investigations unless			ED Date	12/10/2021

Detailed Site Investigation Project Client Manildra Group Pty Ltd Site Port Kembla

East 307763.7 m North 6183148.4 m Elevation 3.489 m

Start Date 12/10/2021 End Date 12/10/2021 Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

Observations and Comments

Testing

Project Client **Detailed Site Investigation** Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307773.5 m North 6183119.3 m Elevation 3.268 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator Dimensions 3.00 m x 0.60 m Mounting Track

		2	resting											Infe	erred								
	<u>~</u>	Run (TCR) RQD Sampling	Strength	رة أورج	_	g				5		Weathering	E R	Rock S	Streng	gth						Pit Identifier:	
_	Support Water (Gain/Loss)	S, E	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	ig ap	E 6	Graphic Log	ooo O Depth RL		e g	Consistency Density	o	Weathering	<u> </u>	Poin	t Load (50) ^{Axial}	Rel	lative	Defect Spacing					TP21
hod	por in/L	트를	Is(50) (MPa)), E 8	pth svat	phic	ပိ		stur	sist	rati	at c	0 Y	O-D	iametral	Stre	ength -Rock	(mm) <u>a</u>	Fabric, Stru	oturo 9	Croup	Origin, Stratigraphic Unit & General	
Met. Cas	Nat Gai	Run (TCR Sampling	SV (kPa)	1), E &	De Ele	Gra	Depth	Soil / Rock Material Description	Š Š		₩	Ve	ָר קָר קר	0.0	- 5 ±	: Soil∙ ≖	-Rock	Visual (mm)	Defect Des	ciure & cription	Group Defects	Observations	Installation
	A		1 (/	$\ddot{\Box}$	0.0	iiiii	3.27				$\hat{}$		1		ΤŃ		,					CEMENTED SLAG	
├ T		ES			3.3	###		Clayey GRAVEL: angular to sub-rounded, pale grey, with sand throughout.						ΪĹ	iii	-	j -	liii l				0.00-0.30: weakly to moderately cemented	-
-		ES			-											-	-					slag	_
			4		_	 	<u>0.30</u> 2.97							1 1	!!!	-	! -					FILL	_
-					_		2.51	to black, with cobbles, gravel consisting of mainly	У							-	! -					0.30-1.60: coalwash	_
\vdash		ES			0.5 —	$\otimes\otimes$		coalwash.							1 1 1	_	i -						0.5 —
			_		2.8									i i	iii	_	i -						_
6					_	\bowtie								ΪĖ	iii	_	i _						_
0.00					_	$\otimes \otimes$											_						_
0.8 2														1 1			! _						_
022.					1.0	\bowtie																	1.0 —
NS C					1.0									1 1	1 1 1		-						1.0
8					Ī	\bowtie								ii	iii		i -						_
9					_									i i	iii	_	i -						_
139 20					_	$\otimes\!\!\otimes$									$ \cdot \cdot $								_
	d nsc				-									1 1		-	-						-
SWE - SWE	No casing used				1.5 	$\times\!\!\times\!\!\!\times$	1.60										-						1.5 —
<u> </u>	9		1		-		1.67		-					1 1		-	-					1.60-2.70: reworked	-
		ES			-			sub-angular to sub-rounded gravel, trace fabric.						i i	iii	-	i -					estuarine soil	-
Dagel Tools Lib: SMEC 2, 10.9 2021-08-30 Prj: SMEC 2, 10.8 2020-08-			+		-	\bowtie								ΪĹ	iii	-	j -						-
8 -					-	$\otimes \otimes$										-	-						-
30/11/2021 16:44 10.02.00.04					2.0											-	-						2.0 —
4 2 1					1.3											-	-						_
1 3					_									1 1		-	¦ -						_
1777					_	\bowtie								ii	iii	-	i -						-
					_									Ϊİ	ΪΪΙ	L	i _						-
<u> </u>					2.5 —	$\otimes\!\!\otimes$										L	_						2.5 —
< <drawingfile>></drawingfile>					0.8											_	! -						_
. 1 1 1						\bowtie	2.70							1 1		L_							_
F					_		0.57	SAND: yellow, trace sub-angular to angular gravel.	М	L							Ι.					AEOLIAN	_
														i i	iii		١.						_
30013038	V				2.0		3.00																2.0
					0.3			Hole Terminated at 3.00 m									1					3.00: water ingress	3.0
\$					_									1 1			-						
A P					_												-						
					_									ii	111	_	i -						_
ġ					-									i	ΙİΪ		i -						_
ă⊢					3.5 									$ \cdot $	$ \cdot \cdot $	_	-						3.5 —
SMEC HYBRID BOREHOLE LANDSCAPE					-												-						-
- L					-											-	-						-
"- B					-									1		-	-						-
GIB Log					-											-	i -						-
			1		4.0									<u> </u>			<u> </u>						

Testing

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307750.9 m North 6183086.9 m Elevation 3.525 m Datum MGA94 Zone 56/AHD

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

믔				1								_	Inferr	ed										
Support Water (Gain/Loss) Run (TCR) RQD		Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	<u>§</u> ,₹		b				5		ъ Б	ಕ Ro	ck Str	ength		_							Pit Identifier:	
t oss CR)	D	SPT, DCP,	ig ju	Depth (m) Elevation	Graphic Log	Ogenth S RL		o S	Consistency	드	Weathering	ē	Point Lo	ad)	Relativ	De Ve Sov	efect							TP
즐 ^뜨 측 F	j⊟	Is(50) (MPa)), <u>e</u> ≪	ati d	ξ	Š		Ę	<u> </u>	aţi	the (7	Is(50 - Axia O - Diame	il tral	Streng	re Spa	acing nm)	-					Origin, Stratigraphic	;
ate in	E	PP (UCS kPa	a), ⊑ §)eb	Гар	- Depth	3	ois		ter	ea.	Š Š	7 Z I	₂ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Soil-Ro	ck (''	nm)	sns	Fa	bric, Stru	cture &	Group Defects	Unit & General	
<u>ಸ≥ಲ ಜ</u>	Š	SV (kPa)	ي ۾	1 0.0-	Ō			ΣĊ	300	₹	ا ≷	בֿ ל	ד ∑ ר	₹⊞		0 7	20 200 200 200	5	De	fect Des	cription	Defects	Observations	Installat
↑				3.5	\bowtie	3.53	FILL Sandy CLAY: brown, trace rootlets.					!											FILL	
	ES											!		!!!	- !									
		1			XXX							- !	!!	!!!	- !	4!								
					-XXXI							- !		!!!	- !	4!								
					-XXXI							- !		!!!	- !	1!	1 1 1							
				0.5 -	\bowtie	0.50						- !		! ! [_ !		1 1							
				3.0	\bowtie	3.03	FILL Clayey GRAVEL: angular to sub-angular, dark grey to black, with cobbles >60mm, gravel consisting of	·				-		! !	- 1	7!	1 1 1						0.50-1.80: coalwash	
							mainly coalwash.					-	1 1		- !	1!	1 1 1							
					XXX							-	1 1	!	- !	-	1 1 1							
					-XXXI							-	1 1	:	- ¦	-								
					- XXX							-	1 1		- ¦		1 1 1							
		_	_	10-									1 1		_ ¦	-	1 1 1							
			Ned	1.0 - 2.5	\bowtie								1 1		- 1] ¦								
Casillo	ES		psel												-	1 1								
3			Not Observed										11	i i l	- ¦	:	111							
2		-	ž		XXX							Ηi	ii	i i E	- ¦	+ i								
					XXX							Ηi	ii	i i k	- i	-l i								
				1.5 -								Ηi	ii	i i l	_ i	J i	iil							
				2.0	\bowtie							Ηi	ii	i i I	i	Ηi	iil							
												Ηi	i i	i i I	- i	1 i	1 1							
					+							Ηi	i i	iil	- i	Ηi								
					 	1.80 1.73		М	٠.	-		Ηi	i i	i i ŀ	- 📑	Ηi							AEOLIAN — — —	-
					11	1.70	SAND: coarse grained, reddish yellow.	M	L			Ηi	Ϊİ	i i l	-	-li	1 1 1						/ LOLINIT	
				2.0 -												_ 1	\perp							
				1.5													++							
	ES				7: ::1												+							
					1 : 1										-	1	$ \cdot $							
+	+		+-		+ + +	2.30	Hole Terminated at 2.30 m	_		<u> </u>		++	++	+++	_	++	+++							
					-		Flore Ferninated at 2.00 m					1 '			-	- 1								
				2.5 -	4							!		!!!	- !	4!								
				1.0	_										_ !	_								
												!		!!!	!	1!	1 1 1							
					1							- !		!!!	-	1!								
					1							- !		!!!	- !	1!								
					-							- !		! !	- !	4!	1 1 1							
				3.0 -	4							- !		! ! !	- !									
				0.5]							-			-	1!								
													1 1		- 1									
					7								1 1		-	1 !								
					1								1 1		-	-	1 1 1							
					1								1 1		- ¦									
				3.5 -	4								1 1		- ¦	-								
				0.0]								1 1		-	1 :								
													1 1		- 1									
					1								1 1		-	-								
					1										- ¦	-								
					4										- ¦									
1 1																								

Observations and Comments

Testing

Project Detailed Site Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307728.8 m North 6183050.2 m Elevation 3.422 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

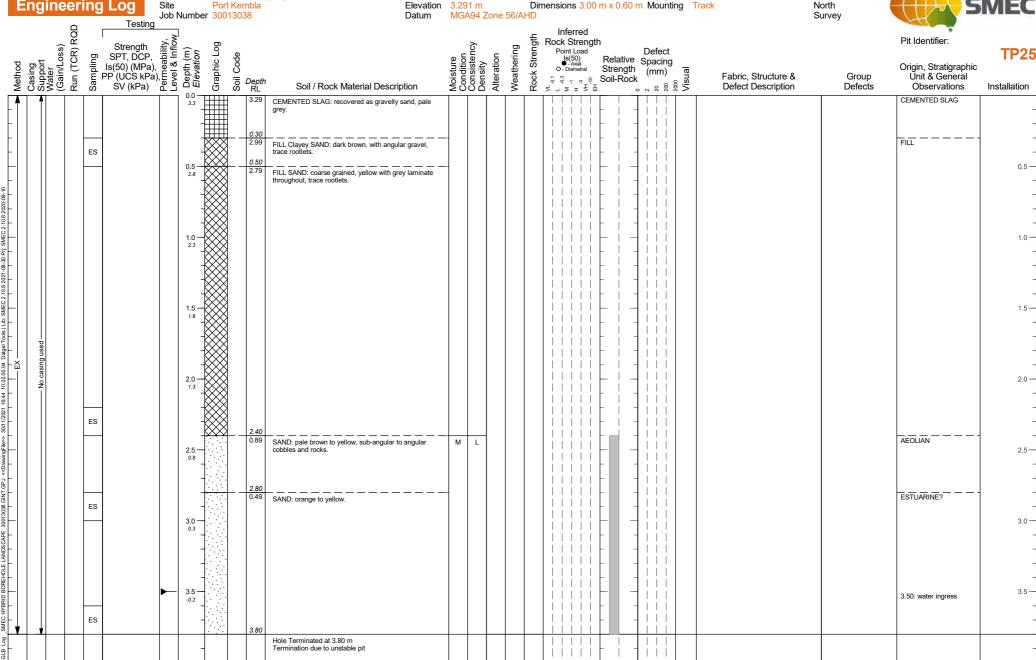
Testing Position Price	<i>!</i>
3.4 SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash. SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash.	
3.4 SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash. SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash.	TP23
3.4 SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash. SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash.	raphic
3.4 SILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash. FILL Clayey GRAVEL: sub-angular to sub-rounded, dark grey to black, low plasticity clay, with cobbles, gravel consisting of mainly coalwash.	
Consisting of mainly coalwash.	
	ısh _
	-
	-
	-
01-00-00000	0.5
4-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	-
Table	1.0
	1.5
1.5 — 1.5 —	1.5
	_
	2.0
1.4 2.10 2.10 3.32 FILI Clavey SAND: pale brown low plasticity day with 1.	
1.32 FILL Clayey SAND: pale brown, low plasticity clay, with bricks, ceramics, sub-angular gravel and sub-rounded	-
8	-
	-
2.5	2.5
2.60 m: concrete foundation pillar, bricks, ceramics	-
	-
	_
3.00 water incress	
1	s 3.0
통 -	
	3.5 —
Termination due to unstable edges	
0 1 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307703.9 m North 6183024.1 m Elevation 3.396 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator


Q	1	Testing											Infe	erred							
is) ?) RG	1	Strength	ility, Ilow	<u>-</u> د	go-				JCS	_	ng	R	nck S	Strenc	gth		Defect			Pit Identifier:	TP24
Method Casing Support Water (Gain/Loss) Run (TCR) RQD	Sampling	Strength SPT, DCP, Is(50) (MPa), PP (UCS kPa) SV (kPa)	neab I & Ir	oth (n <i>vatio</i> i	Graphic Log Soil Code	Depth		sture dition	Consistency Density	Alteration	Weathering Rock Strength	0110	Is(O - Di	Load 50) Axial ametral	Rela Stre	ative ength -Rock	Spacing			Origin, Stratigraphic Unit & General	1724
Meth Casi Supp Wate (Gai	Sam	PP (UCS kPa) SV (kPa)	Pern' Leve	Der	Grap	Depth RL	Soil / Rock Material Description	Rois	Con	Alter	Wea	Ş	N 6.3	- ° F	Soil- ∃	-Rock	2000 (mm) Nisual	Fabric, Structure & Defect Description	Group Defects	Unit & General Observations	Installation
- † †				0.0 — 3.4 —		3.40	FILL Clayey GRAVEL: sub-angular, red, well rounded nodules, gravel mainly appears well-rounded slag nodules.								-	-				FILL	_
				-			nodules.								-	-					+
	ES			-																	_
				0.5 —											-	<u> </u>					0.5 —
01-10				-																	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-			0.80 m: wire rope (~15mm diameter)								-	-					-
MEC 2.10				1.0 —																	1.0
nsed –			ved	2.4											-	-					-
1.10.9 2021-08-30 Prj	ES		Not Observed	-												<u> </u>]
sylec 2 to 9 2021-08-30 Prj. Swlec 2 to 8 2020-08-10			N N	-											-	<u> </u>					-
- I LIB: SME				1.5 — 1.9 —																	1.5 —
Datgel Tools Lib:				-											-	ļ -					-
D.04 Date				_										 	F						
10.02.00.04				2.0 —										 		_					2.0 —
021 09:24				-											F						
07/12/20	ES			-		2.40										-					
vingFile>>				-2.5 0.9		2.50	FILL Clayey SAND: pale brown to yellow, trace timber, sub-rounded cobble.	+				+	<u>i i</u>			i l					2.5
/ < <draw< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>Hole Terminated at 2.50 m Termination due to unstable pit</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td>_</td></draw<>				-			Hole Terminated at 2.50 m Termination due to unstable pit														_
SINT.GP				-											-	<u> </u>					-
1				3.0 —																	3.0
CAPE 30				0.4										 	-	-					-
LANDS				-									 	 		-					
T T				-											-	-					-
BRID BC				3.5 —																	3.5 —
SWEC #				-											-	<u> </u>					-
GLB LOg_SMEC HYBRID BOYELHOLE LANDS CAPE 3001309 GINTI GPJ <-CONWIND				-										111							=
Observations and	<u> </u>			4.0				<u>Ш</u>										to Investigations unless otherwise n		ED Date	12/10/2021

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla

East 307861.1 m North 6183118.8 m Elevation 3.291 m

Start Date 12/10/2021 End Date 12/10/2021 Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

Testing

Project **Detailed Site Investigation** Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307878.1 m North 6183041.6 m Elevation 2.915 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

5	ヺ		>								,	=	Infe	erred						•	
Method Casing Support Water (Gain/Loss)	Ž.	Strength SPT, DCP, Is(50) (MPa) PP (UCS kPa SV (kPa)	Ğ,₹	$\widehat{}$	g				ठ		Weathering	S R	Rock S	Streng	gth	-	- f 1			Pit Identifier:	
_ t _	ry B	SPT, DCP,	ᅙ	Depth (m) Elevation	Graphic Log	opo No Depth RL		e f	Condition	n O	Weathering	<u> </u>	Poin <u>I</u> s	t Load (50)	Rela	ative Sp	efect				TP2
	를 불	Is(50) (MPa)	, <u>8</u> ≪	zt da	ΡĘ	Ŝ		į į	sist Sity	aţic	the (0	O - D	(50) Axial iametral	Stre	ength (r	mm) 👨			Origin, Stratigraphic	
leth asi upp //ate	Run (10R Sampling	PP (UCS kPa), E 8	je je	Ta :	Depth	Soil / Rock Material Description	io is	666	<u>I</u> E	/ea	5	0.3	۰ _۳ _۴	Soil-F	·Rock '	Visual (mm	Fabric, Structure & Defect Description	Group Defects	Unit & General Observations	Installation
≥ 0 0 5 S B	r σ	SV (KPa)	د ۵	0.0 -				_≥(םטכ	⋖.	<u> </u>	ב ל	, ¬ ≥	= ≯	<u> </u>	ative Spength (r-Rock	< 2 2 2 2	Defect Description	Delects		Installation
_ ↑ ↑				2.9		2.92	CEMENTED SLAG: recovered as gravelly sand, pale grey.						1 1	1 1 1						CEMENTED SLAG	
					###	0.20	9.07.						1 1	1 1 1		1 11	1111				
						2.72		7					1 1	1 1 1	Г	1 11	11 L			FILL	1
					\bowtie		rootlets.						ii	i i i	i i	i 1 i	i i I - I				
.	ES				₩₩								iί	iii	- Fi	i Hi	iil L				
	-			0.5 -	\otimes								iί	iii	⊢ i	i + i	iil L				0.5
				2.4	\bowtie								ΪĹ	iii	l- i	i - i	iil L				
					\bowtie									\Box	L						
					\bowtie																
															[[
						1.00										1 1					
				1.0 	\bowtie	1.92	FILL Clavey SAND: pale brown to grange, with angular	-							-	-					1.0
No casing used			Not Observed	1.9	\otimes		FILL Clayey SAND: pale brown to orange, with angular to sub-rounded gravel, lenses of coal wash throughout.								- !	! - !	!!!				
Sing EX-			pse		\times								!!	!!!	!	! 4!	!!! !				
			ot C													! !	!!!!!!				
			z		\bowtie								1 1		L		::I				
				'	\bowtie								1 1	1 1 1		1 1 1	++1 L				
				1.5 — 1.4									1 1	1 1 1		-	1111				1
					\boxtimes								1 1	1 1 1	+ :	1 1 1	1111				
	ES												11	111	+ ;	1 11	11 L				
					\bowtie								ii	iii	- i	i 4 i	i i I - I				
					\bowtie								ii	iii	l i	i 4 i	iil L				
				2.0 —	\bowtie								iί	iii	Li	i I i	iil L				2.
				0.9									ΪĹ	iii	- Fi	i Ti	iil L				
													Ϊİ	111	T i	i Ti	iil L				
					\otimes											1 - 1					
	ES				\otimes										- 1	-					
<u> </u>	_		-		XXXI.	2.40						_	\perp	\sqcup	\vdash	\vdash					
				2.5 —	1 1		Hole Terminated at 2.40 m								_						2.
				0.4												!]!					
													!!	!!!		! !!	!!! !				
					1								1 !	1 1 1		! 1!	!!! !				
					1										-	! 1!	::I				
					1								1 1	1 1 1		1 11	++1 L				
				3.0 -	-								1 1	1 1 1		¦ - ¦	1111				3
				-0.1	1 1								1 1	1 1 1	- 1	1 41	1111				
													11	111	Li	1 11	11 L				
													ii	i i i	- 1 - 1	i Li	i i I - I				
					1								ii	iii	T i	i 1 i	iil L				
					1								ίi	iíi	l i	i fi	iil L				
				3.5 —	1								ίi	iii	⊢ i	i + i	iil L				3.
				-0.6	1								ii	ιii	- Fi	1 1 i					
					1								$ \cdot $	++i	ļ i	1 4 1					
														Ηİ	Li		ii				
														$ \cdot \cdot $							
					1									$ \cdot \cdot $							
neenvations an		l	_	4.0_														ito Invostigations unloss othonwise	<u> </u>	1	

Testing

Project Detailed Site Investigation Client Manildra Group Pty Ltd Site Port Kembla Job Number 30013038

East 307782.3 m North 6183079.2 m Elevation 3.045 m MGA94 Zone 56/AHD Datum

Start Date 12/10/2021 End Date 12/10/2021 Dimensions 3.00 m x 0.60 m Mounting Track

Contractor Ledacon Pty Ltd Equipment 13 Tonne Excavator

Strongh Septiment Septiment Septiment Septiment Septiment (Septiment Septime	ے	员		rooting		1								_	Infe	erred										
File	_ à	ĸ		Strongth	<u>§</u> ₹	٠	g				>		_	ŧ F	Rock S	Streng	jth								Pit Identifier:	
File	SSC	Ŕ, ⁵	<u> </u>	SPT. DCP.	iii Ir	£ 8	೨	<u>e</u>		n 5	- E	Ξ.	ij	Ē	Point Is/	Load 50)	Do.	lativo	Defe	ct						TP2
File	환유기식 년	E É	s Is	s(50) (MPa)	ĕa ∞	th (읊	ĕ		E :	غ يَّةٍ ≥	쓡	he	ξ	O - Di	Axial ametral	Str	enath	Spacii	ing -	=				Origin, Stratigraphic	
File	sir app ain	<u> </u>	É PF	P`(UCS kPa	í), Ę 🗟	ep/	ab	□ Denth		ist	SUS	ers	aat	충	1. 6.		Soil	-Rock	(mm	1)	SUS SUS			Group	Unit & General	
File	2889	ჳ წ	Ö	SV (kPa)	Le B	\Box	Ö	S RL	Soil / Rock Material Description	Σč	ဒီဝီဇီ	₹	š	გ ≥	, _ ≥	'≖",₹	Ε O σ	c (00.0	50 5	200	<u>~</u>	Defect Descri	ption	Defects	Observations	Installation
150	 						XXX																		FILL	
2.65 1.00		E	S			-	KXXII		•								-	-	1.1							
The control of the first of the form in larger into (uspected Auto) 1.5. In revision in Equation 1.5. In revision 1.5. In revi		_				-	\bowtie										-	-	1.1						0.00 4.00 4.004.51	
The control of the first of the form in larger into (uspected Auto) 1.5. In revision in Equation 1.5. In revision 1.5. In revi						_	\bowtie	2.00	FILL Sandy CLAY: brown, with cobbles and boulders (200-600mm), trace foreign materials (metal rope.								L								cement fragment	
50 50 50 50 50 50 50 50							\bowtie		timber, rubber) and fibre cement fragments (suspected																observed in good	
150 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found 150 m increase in tousiers, midal rope found in rop						-	\bowtie		ACM).								Г								fragments of length	
1.50 m: bornate in boulders, motal right forum 1.50 m: bornate in boulders, motal						0.5 -	KXXII											-							60-80mm	0.8
ES 1.5 m. Increase in boutdors, medial rice found 1.50 m. Increase in boutdors, medial rice found 1.50 m. Increase in boutdors, medial rice found 1.50 m. Increase in boutdors, medial rice found 1.50 m. Increase in boutdors, medial rice found 1.50 m. Increase in post condition, simple, or gradual rice for the rice for the rice found 1.50 m. Increase in boutdors, medial rice found in post condition, simple, or gradual rice for the r						2.5	\otimes										-	-								
ES 1.0 1.00 m: increase in boulders, metal reper bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: increase in bound 1.00 m: incre						-	KXXII.										L	1 _								
ES 1.50 m: increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase in boulders, metal inpo found good constros, single (eyg) 4-50 m. Increase i							\bowtie										L									
ES 1.5			_																							
ES 1.50 m: increase in boulders, metal rope found 1.30 ACM fore consent Ingrand closerved in Service Service Consent Ingrand Closerved in Service Service Consent Ingrand Closerved in Service Service Consent Ingrand Closerved in Service Se		l E	S			-	\bowtie																			
1.50 m: increase in boulders, metal rope found 1.50 m: increase in boulders, metal						1.0 —	₩										-	-								1.0
ES 1.50 m; increese in toulders, metal inger found 1.50 m; increese in toulders, metal inger						2.0	\bowtie										-	-								
ES 1.5 SAND pile brown to crange and yellow. 1.50 m: increase in boulders, metal repe found for pile brown to crange and yellow. 1.50 SAND pile brown to crange and yellow. M						_																				
ES							\bowtie																			
1.50 m. increase in boulders, metal rope found 1.60 SAND; palse brown to orange and yellow. 1.60 SAND; palse brown to orange and yellow. AEGUAN AEGUAN ESTUARINE? 2.50 2.50 Clayery SAND; bale brown to pale yellow. W 3.0 3.0 0.18 SAND; yellow. W 3.40 Hole Terminated at 3.40 m						-																			1.30: ACM fibre cement	
1.5		E	S			-	₩										-	-							good condition, single.	
1,80 1,80		-				1.5 —	₩										-	-							length 40mm	1.
20	peg					1.5	\bowtie		1.50 m: increase in boulders, metal rope found								-									
20	l g						\bowtie																			
20	Sasi							1.80																		
ES ES						-	ry y		SAND: pale brown to orange and yellow.	- м	L	1													AEOLIAN	
ES						-	1		, ,									1								
ES																		-								2.0
ES						1.0	- : :																			
ESTUARINE? 2.5 0.55 Clayery SAND: black. ESTUARINE? 2.70: water ingress W 3.0 3.1 3.5 4.9 Hole Terminated at 3.40 m		_																								
ES 2.50 0.55 Clayey SAND: black			S			-												1								
ES						-	1 1											1								
ES						-	1: 1										- 1	-								
ES		_	_			2.5 —												-							FOTUADINE	2.
2.80 2.90 Clayey SAND: pale brown to pale yellow. 3.0 - 0.15 SAND: yellow. 3.40 Hole Terminated at 3.40 m		F	s			0.5		0.55	Clayey SAND: black.											!					ESTUARINE?	
2.80 Clayey SAND: pale brown to pale yellow. 3.0 3.0 3.40 Hole Terminated at 3.40 m			Ŭ																	!						
2.90 Clayey SAND: pale brown to pale yellow. 0.15 SAND: yellow. 3.40 Hole Terminated at 3.40 m						-	///	2 00		w	1							1		!					2.70: water ingress	
3.0 — 3.40 Variable Vari						-	 // //	2:00	Clavey SAND: pale brown to pale yellow									1		!						
3.5 — 3.5 —						-	 								!!!		- 1	-		!						
3.5— -0.5 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1						3.0 —		0.10	SAND: yellow.						!!!			_		!						3
3.5— -0.5 Hole Terminated at 3.40 m						0.0]													!						
3.5— -0.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1																				!						
3.5 — Hole Terminated at 3.40 m						-	1											1		!						
3.5 — Hole Terminated at 3.40 m						-											-	-								
	<u> </u>	_	+		_	_		3.40				Н		_	<u> </u>	<u> </u>	_	\vdash		+	_					
						3.5 —			Hole Terminated at 3.40 m						1 1			-								3
						-0.5									1 1		L	1 1								
]								1 1		Γ									
						-	1								1 1	1 1 1										
						-	1								1 1	1 1 1	-	-								
						-									1 1		-	-								
						40.																				

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

308214.660 m East North 6183259.600 m Elevation 4.140 m MGA94 Zone 56/AHD

Datum

Start Date 29/03/2022 End Date 29/03/2022

Contractor Epoca Rig Type Geoprobe 7822DT Mounting Track

									>											Member of the Surbana	Jurong Group
			(ss)	≈	_ [Testing		ן ﴿	Depth (m)	Graphic Log	ø)			_	Consistency Density	_	ng		Borehole Identifier:	BH01
þo	g	ort	Water (Gain/Loss)	Run (TCR)	Sampling		PP (kPa) VS (kPa) Peak / Remoulded		_ ∞	th (r	hic I	Sode	Depth <i>RL</i>		Moisture Condition	iste ity	Alteration	Weathering	Rock Strength	Origin, Stratigraphic	Biloi
Method	Casing	Support	/ate 3air	<u>, </u>	amb	ODT	Peak / Remoulded	DOD	/ate eve	Jep Elev	irap	ē	Depth	Sail / Deal Metarial Description	loist	ons	Itera	/eat	fren	Origin, Stratigraphic Unit & General	Installation
	$\overline{}$	S	<u> </u>	<u> </u>	v I	SPT	PID (ppm)	DCP	د ک	0.0	U	S	RL 4.14		_≥0		_ <	_ >	<u> </u>	Observations ASPHALT	Installation
F										4.1				ASPHALT: dark grey, black.						//OFFINET	-
										-	XXX		0.10 4.04	FILL Gravelly SAND: medium grained, angular to sub-angular, dark brown.	1					FILL (ROADBASE)]
-										-	\bowtie			Ties Graveny Grand. Incording granted, angular to sub-angular, dark brown.						, ,	4
							0.20m PID= 5.1ppm			0.2 — 3.9	\bowtie										0.2
1.09-10					ES		PID= 5.1ppm			_	\bowtie]
8 2020										-	\bowtie										4
022.10										-	\bowtie										0.4
SWE										0.4 	\bowtie										0.4
-30 Prj										-	\bowtie										+
221-08										-	\bowtie			0.50: orange film (plastic)							
10.92										0.6 — 3.5	\bowtie										0.6
AEC 2.										3.5	XX										+
Lib: SA										-			0.70 3.44	FILL Clayey SAND: medium grained, pale brown, grey, trace gravel.	-					FILL — — — — —	
- sloo										-	\bowtie			FILL Clayey SAND. Medium grained, pale brown, grey, trace graver.							_
atgel T							0.80m			0.8 	\bowtie										0.8
0.04					ES		PID= 4.3ppm			-	\bowtie]
0.02.00									be/	-	\bowtie										4
743 1									Not Observed	-	\bowtie										+
022 1:									l of o	1.0 — 3.1	\bowtie										1.0
29/04/2									-	-	\bowtie										4
- 196 										-	\bowtie										-
awingF										12-	\bowtie										1.2
Ş –										1.2 — 2.9	\bowtie										
4.GPJ										-	\bowtie										-
01317										_	\bowtie]
ω 							1.40m			1.4 — 2.7	\bowtie			1.40: sand is getting coarser (orange)							1.4 —
- EN					ES		1.40m PID= 3.9ppm			2.7	\bowtie			1.40. Sand is getting coarser (orange)							†
MEC										-	\bowtie]
<u>8</u> -										-	\bowtie										4
APE.										1.6 — 2.5	\bowtie										1.6 —
NDSC -										_	\bowtie]
90 LA										-	\bowtie										-
A PI											\bowtie										. +
C HYB										1.8 	\bowtie										1.8
OG _SMEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ <commingflee> 2910402022 1743 10.02.00.04 Datget Tools (Lib.: SMEC 2.10.9.2021-08-30 Prj. SMEC 2.10.8.2020-08-10</commingflee>										-	\bowtie			Hole Terminated at 1.05 m							-
							_		L	-	$\times\!\!\times\!\!\times$		1.95	Hole Terminated at 1.95 m Refusal on suspected boulder							-
B.GLB										L _{2.0} _											

Project Pipeline Route TSI Client Manildra Group Site Port Kembla Job No 30013174

308216.380 m East North 6183215.660 m Elevation 4.260 m

Datum

MGA94 Zone 56/AHD

Start Date 04/05/2022 End Date 04/05/2022

Contractor Epoca Rig Type Geoprobe 7822DT Mounting Track

									>											Member of the Surbana	Jurong Group
			(ss)	€	_ [Testing		7 É	Depth (m)	Log	Φ			. =	Consistency Density	_	ing		Borehole Identifier:	BH02
pot	ng	20rt	er n/Lo	(TC	pling		PP (kPa) VS (kPa) Peak / Remoulded		- ×	oth (i	ohic	Cod			ture	siste sity	atio	ther	ngth	Origin, Stratigraphic Unit & General	
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Peak / Remoulded PID (ppm)	DCP	Wate	Der	Graphic Log	Soil Code	epth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Con	Alteration	Weathering	Rock Strength	Unit & General Observations	Installation
_										0.0 -			4.26	ASPHALT: black, cemented.						ASPHALT	
- 1													0.10								-
					ES		0.10m PID= 8.9ppm				\bowtie		4.16	FILL Silty SAND: fine to medium grained, dark grey, with angular to sub-angular gravel, moist.						FILL	
+										0.2 — 4.1	\bowtie										0.2
0-09-10											\bowtie		0.30								
0.8 202													3.96	FILL Gravelly SAND: fine to medium grained, brown, sub-angular gravel, with clay.	1						-
4EC 2.1							0.40m			0.4 —											0.4
Prj: SA					ES		PID= 12.6ppm			3.9	\bowtie										
1-08-30									l p		\bowtie										-
10.9 202									Not Observed	0.6											0.6
MEC 2.									Not O	0.6 -	\bowtie										-
Lib: St											\bowtie			0.70-0.80: less gravelly							
Tools										٠ .			0.80								-
4 Datge										0.8 — 3.5			3.46	FILL Gravelly Silty SAND: fine grained, pale brown, medium grained gravel.							0.8 —
02:00:0							0.90m PID= 11.2ppm				\bowtie										
743 10					ES		PID= 11.2ppm				\bowtie										-
2022 1										1.0 — 3.3											1.0
29/04											\otimes										-
ngFile>>											\bowtie		1.20								
<-Drawi							1			-1.2- 3.1		\dashv	1.20	Hole Terminated at 1.20 m Refusal on suspected boulder							1.2
4.GPJ														Refusal off suspected boulder							-
001317]										
- MOL3										1.4 — 2.9											1.4
EC EN																					
JIC SMI																					
APE_SC										1.6 -											1.6
ANDSC,										<u></u> / .											
7 507																					
HYBRIC										1.8 — 2.5											1.8
SMEC																					
GLB LOG_SINEC HYBRID LOG LANDSCAPE_SOIL SMEC EIVV WOL 30013174.GPJ <cdmwng file=""> 29/04/2022 1743 10.02.00.04 Daigei Tools [Lb.: SMEC 2.10.9.2021-08-30 Prj: SMEC 2.10.8.2020-08-10</cdmwng>																					-
IIB.GLE																					

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

308171.590 m East North 6183159.600 m Elevation 3.750 m MGA94 Zone 56/AHD Datum

Start Date 04/05/2022 End Date 04/05/2022

Contractor Epoca Rig Type Geoprobe 7822DT Mounting Track

									>										Member of the Surbana	Jurong Group
			(ss)	R	_ [Testing		7 녈	£ 4	-og	o)		_	ncy	_	ng		Borehole Identifier:	BH03
po	ng	oort	r الم	DE)	pling		PP (kPa) VS (kPa) Peak / Remoulded		~~~	ith (r atio	hic	Š O		ture	siste sity	atior	theri	gth.	Origin, Stratigraphic Unit & General	Billoo
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Peak / Remoulded PID (ppm)	DCP	Nate eve	Depth (m)	Graphic Log	og S Deptl S RL	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Unit & General Observations	Installation
	Г								Ĺ	0.0 	XXXI	3.75	FILL Silty CLAY: medium plasticity, dark brown, with gravel, trace rootlets, moist, soft.			Ò		T	FILL (TOPSOIL)	
Į.										_										
H					ES		0.10m PID= 9.1ppm			-										
L					ES					0.2 —										0.2
- 1 -										3.6										-
5020-06										-			0.30: timber (possibly sleeper)							
2.10.8										-			o.oc. amber (possibly sleeper)							
SMEC										0.4 -										0.4 —
30 Prj:										-										_
221-08										-										l d
10.920							0.60m			0.6 —		0.60 3.15		4					FILL (COALWASH)	0.6
MEC 2					ES		0.60m PID= 6.3ppm			3.2			FILL GRAVEL: fine to medium grained, dark grey-black, with mulch, moist.						TIEE (OONEWNOT)	
S LIP: S							0.70m			_			0.70-0.80: thin layer of clayey sand]
Tools					ES		PID= 9.4ppm			-										
Datge										0.8 -										0.8
2.00.04										-										
3 10.0									ved	-										
22 17:4									Not Observed	1.0 —										1.0 —
9/04/20									Not	2.0 -										
6>> 26										-										_
wingFi										12-		1.20							L	1.2
Name of the second										1.2 2.6		2.55	FILL Sandy CLAY: medium plasticity, brownish orange, moist, sand is coarse grained, with angular to sub-angular gravel.						FILL	-
74.GPJ										-]
300131										-										_
- WOL							1.40m PID= 12.9ppm			1.4 — 2.4										1.4 —
CEN					ES		PID= 12.9ppm			_]
L SME										-										
SOI										1.6										1.6
DSCAF										2.2										
N P										-										
3 D LO										-	\bowtie									-
C HYBI										1.8										1.8
SME										-										_
GLB LOG_SNREC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL30013174.GPJ <										-			Hole Terminated at 2.00 m							
IB.GL										_2.0_	KXXI		Hole Terminated at 2.00 m Target depth						<u> </u>	

Project Client Manildra Group
Site Port Kembla
Job No 30013174

East North Elevation Datum

MGA94 Zone 56/AHD

Start Date 04/05/2022 End Date 04/05/2022 Contractor Epoca
Rig Type Geoprobe 7822DT
Mounting Track

Inclination 90°
Azimuth
North
Survey NOT SURVEYE

				000											,			Member of the Surbana	Jurong Group
		ŝ	e e	Г		Testing		_ ∫ }	G o					cy		g		Borehole Identifier:	
р б	, t	, /Los	T,C	ling ,		PP (kPa) VS (kPa) Peak / Remoulded		'≅	th (m ation	ode			ure	sten ty	tion	Jerir	gth	Origin Stratigraphic	BH03A
Method	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Peak / Remoulded	DCP	Vate	© Depth (m) © Elevation Graphic Log	Soil Code	Depth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
2 0		> <u> </u>	ir.	σ 	571	PID (ppm)	DCP	_>_	0.0			ASPHALT: dark grey, cemented.	70	Т	_ <u> </u>		TE 05	ASPHALT	IIIStaliation
									- - - -	++	0.06	FILL Sandy CLAY: low plasticity, dark brown-brown, with angular to sub-angular gravel, moist.	-					FILL — — — — —	
-				ES		0.10m PID= 5.2ppm		8				The carry of the meaning, and promise many, and angular of the angular graves, model.							-
				ES				Not Observed	0.2										0.2
6-								lot Of											-
2020-02									***										
2.10.8										1	0.40								-
SWEC						0.40m PID= 8.2ppm			-0.4-XXX		0.40	Hole Terminated at 0.40 m Refusal on suspected concrete slab							0.4
30 Pri				ES		. 15 о.дры			-			Refusal on suspected concrete stab							-
051-08									1										
- 10.92									0.6										0.6
SMEC									1										
- F									-										_
100									0.8										0.8
Date Date									-										-
002.00.									1										
143 10									+										-
71 2022 17									1.0										1.0
29/04/;									4										_
_ JElle >									1										
Drawing —									1.2										1.2
₹ -									1										
13174.0									+										-
100,300									1.4										1.4 —
N -									4										-
MEC E									1										
SOIL									-										-
CAPE									1.6										1.6
13 LBI GLB Lbg_SNIEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ <									4										-
1000									1										
- ABRII									1.8										1.8 —
SMEC																			
F8 -									4										
B.GLB																			_
Observ	ations	and Com	ments									Classifications compliant with AS1726-2017: Geotechnical Site Investigati	nne unlae	e otherwie	e noted	Log	red By	ED Date	04/05/2022

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

308145.200 m East North 6183136.000 m Elevation 3.740 m MGA94 Zone 56/AHD

Datum

Start Date 04/05/2022 End Date 04/05/2022

Contractor Epoca Rig Type Geoprobe 7822DT Mounting Track

Inclination 90° Azimuth North Survey

Member of the Surbana Jurong Group

								>										Member of the Surbana	Jurong Group
		(ss	€			Testing		ן ַּ	Depth (m) Elevation	Graphic Log			_	Consistency Density	_	Вu		Borehole Identifier:	BH04
ъ в	, to	Water (Gain/Loss)	Run (TCR)	Sampling	,	PP (kPa)		. ≃	h (n atioi	lic L	Dept		Moisture Condition	ster ty	Alteration	Weathering	Rock Strength	Origin Stratigraphic	DI 104
Method	Support	ater iain	<u>)</u>	ш		PP (kPa) VS (kPa) Peak / Remoulded		ate	ept lev	apr	Dent		oist ondi	onsi	tera	eath	ž Š	Origin, Stratigraphic Unit & General	
ž č	್ರ್	_ ≥७	<u>~</u>	Š	SPT	PID (ppm)	DCP	ڍ ≲		ত ১	RL		Žŏ	۵۵	. ₹	_ ≥	<u> </u>		Installation
-									3.7	\boxtimes	0.05	FILL SLAG: dark grey, loosely cemented.						FILL (CEMENTED SLAG)	
-									-	\bowtie	3.69	FILL Clayey SAND: dark grey, with angular to sub-angular gravel, with coalwash throughout, moist.						FILL	-
+				ES		0.10m PID= 4ppm			-	\bowtie		HOS.							-
									0.2										0.2
e -									0.2 — 3.5	\bowtie									0.2
§ -									-		0.30								_
Took Lib. SMEC 2.10 8 2021-08-30 Pr; SMEC 2.10 8 2020-09-									-		3.44	FILL GRAVEL: fine to medium grained, black, with angular to sub-angular gravel, trace sand,	1					FILL (COALWASH)	-
- 10									-			moist.							
SWEC									0.4 — 3.3										0.4
<u></u>								ا ہ											
<u> </u>						0.50m PID= 8.6ppm		erve	-	\bowtie									-
-				ES		PID= 8.oppm		Not Observed	-	\bowtie									-
2.10								Not	0.6 — 3.1										0.6
NWEC _										\bowtie	0.70								
											0.70 3.04	FILL Silty SAND: fine to medium grained, black, with coalwash, with angular to sub-angular	1					FILL — — — — —	
- S									-			gravel, moist.							4
									0.8 	\bowtie									0.8
2 L									2.9										1 1
10.02.00.04 Datgel									-	\bowtie									
17:43									1.0 —	\bowtie									1.0 —
4/2022									2.7	\bowtie									1
59/0								\square	-		1.10								
]		Hole Terminated at 1.10 m Refusal on suspected boulder							
awing									1.2 —]									1.2
Ÿ-									2.5										4
<u> </u>									-	-									-
13174									-	1									-
8									1.4 —]									1.4
§ -									2.3]									1.4
									-	.									4
SWE									-	-									-
									-	1									1
APE									1.6 — 2.1	1									1.6 —
NDSC]									
<u>\$</u>									-										
≅ -									-										-
HAB									1.8 — 1.9										1.8
MEC									,										
GO SMEC HYBRID LOG LANDSCAPE, SOIL, SMEC ENV WOL, 30013174.69.1 «CDIAWINGFIRE)																			
<u>-</u>									-										
<u> </u>									_2.0-										

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

308105.270 m East North 6183148.440 m Elevation 3.360 m MGA94 Zone 56/AHD

Datum

Start Date 04/05/2022 End Date 04/05/2022

Contractor Epoca Rig Type Geoprobe 7822DT Mounting Track

									>										Member of the Surbana	Jurong Group
			(ss)	<u>R</u>	_ص ر		Testing		7 g	Ê £	Log	D		=	ency	_	ing		Borehole Identifier:	BH05
Method	ing	Support	er in/Lo	Run (TCR)	Sampling		PP (kPa) VS (kPa) Peak / Remoulded		е В В	pth (i	Graphic Log	3		Moisture Condition	siste sity	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General	
Met	Casing	Sup	Water (Gain/Loss)	Run	San	SPT	PID (ppm)	DCP	Water Level & Inflow	Del	Gra	Depth	Soil / Rock Material Description	Mois	Consistency Density	Alte	Wea	Roc Stre	Observations	Installation
-					ES		0.00m PID= 7.2ppm			0.0 -		3.36	FILL Silty CLAY: dark brown, with sand, trace rootlets and sandstone gravel.						FILL (TOPSOIL)	_
L																				=
-																				_
9-										0.2 -										0.2
5020-09-																				_
2.10.8												0.40								-
SMEC					ES		0.40m PID= 9.3ppm			0.4 — 3.0		2.96	FILL Clayey SAND: brown, with sandstone gravel (rounded to sub-rounded).	1					FILL	0.4
6-30 Prj																				-
9 2021-0																				7
C 2.10.8										0.6 -										0.6 —
ib: SME																				-
Tools II]
Datgel										0.8 -										0.8
5.00.04									bed ed											-
13 10.02									Not Observed											
022 17:4									Not	1.0 — 2.4			1.00: boulders encountered							1.0
29/04/2																				-
gFile>>																				
Drawin										1.2 - 2.2										1.2
GPJ &]
013174.																				
WOL 30							1.40m PID= 8.4ppm			1.4 — 2.0										1.4 —
CENV					ES		PID= 8.4ppm													
IL SME																				-
S S										1.6										1.6 —
NDSCA										1.8										
LOG LA																				
MBRID							1.80m			1.8 — 1.6										1.8 —
SMECH					ES		1.80m PID= 11.3ppm			1.6		1.90								
GLB LOG_SINEC HYBRID LOG LANDSCAPE_SOLL SMEC ENV WOL30013174.GPJ <cdnwwgfleb> 2904/2022 1743 10.02.00.04 Datget Tools (Lib.: SMEC 2.10.9.2021-09:30 Prj: SMEC 2.10.8.2020-09-10</cdnwwgfleb>											XXX	1.90	Hole Terminated at 1.90 m Refusal on suspected boulder							-
3.GLE											1									

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

308064.610 m East North 6183145.310 m Elevation 3.420 m MGA94 Zone 56/AHD

Datum

Start Date 04/04/2022 End Date 04/04/2022

Contractor Ledacon Rig Type 6.5T 300mm Bucket Mounting

Inclination 90° Azimuth North Survey

Member of the Surbana Jurong Group

							Testing		≥	_					_				Member of the Surbana	Jurong Group
			(ss)	€	ا		•		ㄱ 월	m) Na Log	Φ				incy	_	ing		Borehole Identifier:	BH06
po	ng	Support	Water (Gain/Loss)	Run (TCR)	Sampling		PP (kPa) VS (kPa) Peak / Remoulded		~ ~	Depth (m) Elevation Graphic Log	Soil Code			Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General	
Method	Casing	ddne	Vate Gair	gru	sam	SPT	Peak / Remoulded PID (ppm)	DCP	Vate	Dep Elev 3rap	<u>i</u>	Depth	Soil / Rock Material Description	Aois Sonc	ons ens	Itera	Veaf	Rock	Unit & General Observations	Installation
		() 	> = 	ш.		3F1	PID (ppili)	DCF	_ > _	0.0	- O	3.42		20	Т	_		T	FILL	Ilistaliation
- H										3.4			0.00: shell fragments and dried grass on surface FILL Sandy CLAY: dark brown, with angular to sub-angular gravel.							1
FI							0.10m PID= 1.7ppm			I →₩										
-					ES		PID= 1.7ppm			l - ₩										-
										0.2										0.2
-60-0										-										-
7.8 202										***										-
EC 2.10										0.4										0.4
ıj: SME					ES		0.40m PID= 1.9ppm			0.4										-
- B-30 P											-+	0.50 2.92	FILL Clayey SAND: coarse grained, reddish brown, with minor coalwash.	-						
2021-0										💥			FILL Gayey SAND: coarse grained, readish brown, with minor coalwash.							
2.10.9										0.6										0.6
SMEC																				
<u>=</u> -							0.70m PID= 1.1ppm			l -₩			0.70: yellow hollow pipe encountered							
- Tools					ES		PID= 1.1ppm			+		0.80								
Datge									- P	0.8		2.62	FILL Clayey SAND: medium grained, pale grey-brown.							0.8
- 00:04									serv	-		0.90								-
10.02					ES		0.90m PID= 2.9ppm		Not Observed			2.52	FILL GRAVEL: fine to medium grained, black, shiny, trace green gravel.						FILL (COALWASH)	_
17:43									2	1.0										1.0 —
74/202										2.4			1.00: metal cable (appox 30mm in diameter)							-
× 59/							1.10m			💥			1.10: boulder encountered (500mm)							
ng Filey					ES		PID= 2.3ppm			l -			1.10. boulder disourced (bootini)							-
- Orawi										1.2										1.2
Š l										💥										
3174.0										l -										-
L 3001										1.4										1.4 —
8 -										2.0			1.40: metal railway plate							
										l -₩										-
- SM																				
- SC										1.6										1.6 —
DSCAI										1.8										-
N I							1.70m			💥										
9 -					ES		1.70m PID= 3.6ppm			- 💥		100								-
SINEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ «COmwingFile» 2904/2021.7743 10.02.00.04 Datgel Tools Lib.: SMEC 2.10.9.2021-08-30.Prj. SMEC 2.10.8.2020-08-10		\vdash					┥			1.8	\dashv	1.80	Hole Terminated at 1.80 m							1.8
SMEC													Refusal on boulders							
GLB Log																				-
3.GLB																				_
9=							·			2.0										

Observations and Comments

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

308029.280 m East North 6183130.770 m Elevation 2.850 m MGA94 Zone 56/AHD

Datum

Start Date 04/04/2022 End Date 04/04/2022

Contractor Ledacon Rig Type 6.5T 300mm Bucket Mounting

									>										Member of the Surbana	Jurong Group
			ss)	€	_ [Testing		ı é	ب د	-og	d)		_	ncy	_	ng		Borehole Identifier:	BH07
po	ng	oort	ة الال	(TCI	pling		PP (kPa) VS (kPa) Peak / Remoulded		~~~	th (r	hic	Ö		ture	siste sity	atior	theri	gth.	Origin, Stratigraphic Unit & General	Diloi
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Dep Elev	Graphic Log	Deptr	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Unit & General Observations	Installation
Ē	\Box	Π	$\overline{}$, 		(pp)		$\bar{\Box}$	0.0 		2.85	FILL Silty SAND: medium grained, dark brown-brown, rootlets.			$\overline{}$	$\overline{}$	T	FILL (TOPSOIL)	
Į																				
-					ES		0.10m PID= 1.6ppm			-										-
L					ES					0.2		0.20								0.2
6 –					ES		0.20m PID= 2.8ppm			0.2 -		2.65	FILL Sandy CLAY: low plasticity, dark brown, black, moist, soft.						FILL	-
020-08										-										
10.8										-										1
SMEC.									_v	0.4 —		2.45	FILL Clayey SAND: medium grained, brown, angular to sub-angular gravel.	1						0.4
Pri: 8									Not Observed	-										
-1-08-3									ot Obs	-										-
0.920									ž	0.6										0.6
/EC2.										2.3			0.60: cobbles encountered, shell fragments							-
LB: SA										-										
Tools										-										-
Datgel										0.8 -										0.8
00.04										-										4
10.02					ES		0.90m PID= 2.9ppm			-										-
2 17:43										—1.0 —	\bowtie	1.00	List Tombet 4 4 400 m							1.0
04/202										1.9			Hole Terminated at 1.00 m Target depth							-
× 29/																				
ringFile										-	-									-
<-Draw										1.2 -										1.2
- GPJ										-										-
013174										-										
WOL 30										1.4 — 1.5										1.4 —
EN -										1.5										
SMEC										-]									
- SOF										-	-									
CAPE										1.6 —]									1.6
ANDS										-	-									-
9070																				
- HBRIE										1.8 -										1.8 —
SMEC										7.7										
Log _										-										
UB GLB Log _SMEC WYRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174 GPJ <- ChamwingFle>> 2804/2022 1743 16.02.00.04 Dalgat Toda Lib.: SMEC 2.10.9.021-08-30 PJ; SMEC 2.10.8.202-03-10										_2 n										_
5																			•	

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

307971.640 m East North 6183118.080 m Elevation 2.760 m MGA94 Zone 56/AHD

Datum

Start Date 04/04/2022 End Date 04/04/2022

Contractor Ledacon Rig Type 6.5T 300mm Bucket Mounting

									>											Member of the Surbana	Jurong Group
			ŝ	e e	١		Testing		ı ĕ	~~	g					ς		Б		Borehole Identifier:	BH08
σ,	_	Ľ	Los	Ŗ	jug '		PP (kPa)		' <u>⊏</u>	τ gig	io L	ode			ion	sten	ion	eri	듇	Origin Stratigraphia	БПОО
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level	8 0 Depth (m)	Graphic Log	Dep	oth <i>L</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
							0.00m PID= 4.3ppm			0.0 -	XXX	2.76		FILL Sandy CLAY: low plasticity, dark brown, moist, with angular to sub-angular gravel, cobbles (100mm).						FILL 0.00: ACM fragments	
L					ES		110- 4.0ррпп				\bowtie			(100mm).						FILL 0.00: ACM fragments observed on surface	
- 1																					
†										0.0											
٠										0.2 -										0.20-0.40: ACM fragments in northern wall of pit	0.2
																				an northon man or pic	
78 202					ES		0.30m PID= 4.8ppm														-
02:10									_	04-										0.35: ACM in pit	0.4
SWE _					ES		0.40m PID= 2.7ppm		ervec	0.4 -	\bowtie									0.40: ACM in pit, glass fragments	
8 -									Not Observed		\bowtie										
121-08									Š											0.50: nylon rope	1
0.920										0.6 -											0.6
- EC2.										2.2											-
NS –																					
3 8 1																					
T lgel T										0.8 -											0.8
2 L										2.0											
02:00																					
£ - +	+						-					0.9		Hole Terminated at 0.95 m							+
£										1.0 -	1			Hole Terminated at 0.95 m Refusal on boulders							1.0
/04/20										7.0	1										
å – 3											.										
ing File											+										
O D										1.2	1										1.2
<u> </u>]										
3174.0											-										-
- 300											1										4
o										1.4 — 1.4											1.4
											-										
- SM											1										
										1.6]										1.6
SCAPI										1.6											
₽ -											1										-
200											1										
MBRII										1.8 — 1.0											1.8 —
- F										1.0	1										
Log_SMEC FYRRID DG LANDSGAPE_SOUL SMEC ENV WOLLGOOTST'AGPJ. <pre>CDRwmgPflex> 28042/2027 174.5 10 122.00.4 Daggs Tools [Lib. SMEC 2.10.9 2021-08-30 Prj. SMEC 2.10.8 2020-08-10</pre>											1										
or Blo																					
<u>ال</u>										<u>2.0</u>	\bot										

Observations and Comments

Project Client Pipeline Route TSI Manildra Group Site Port Kembla Job No 30013174

East North Elevation Datum

MGA94 Zone 56/AHD

Start Date 04/04/2022 End Date 04/04/2022

Contractor Ledacon Rig Type 6.5T 300mm Bucket Mounting

Inclination 90° Azimuth North Survey NOT SURVEY

									>											Member of the Surbana	Jurong Group
			(ss)	<u>R</u>	_ [Testing		7 녈	٦ د	-og	(I)			_	ncy	_	ng		Borehole Identifier:	BH09
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & I	Depth (m)	Graphic Log	Soil Code Ri	epth R <i>L</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
_										0.0				FILL Silty SAND: medium to coarse grained, brown, with rootlets.						FILL (TOPSOIL)	
- - -					ES		0.10m PID= 0.9ppm					0.2	1.20								-
6-					ES		0.20m PID= 2.1ppm			0.2 -		-		FILL Silty Clayey SAND: black, with boulders (500mm).	1					FILL	0.2
UB GLB Log _SMEC HYBRID LOG LANDSCAPE_SOIL SNIEC ENV WOL 30013174.6PJ <-CDrawingfle>> 280402022 17:43 10:0200.04 Daigel Tools [Lib.: SMEC 2.109.3021-98-30 Pij: SNIEC 2.108.3020-9-10									Not Observed	0.4 —				0.40: with angular to sub-angular gravel							0.4 —
04 Datgel Tools Lib: SMEC 2.10.9 20									Z	0.6 -				0.80: more boulders and cobbles							0.6
17:43 10.02.00.0					ES		0.90m PID= 1.9ppm			—1.0 —		1.0	.00								1.0
JFile>> 29/04/2022														Hole Terminated at 1.00 m Target depth							-
74.GPJ < <drawing< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2 —</td></drawing<>										1.2 -											1.2 —
C ENV WOL 300131										1.4 —	-										1.4 —
OG LANDSCAPE_SOIL SME										1.6 —	-										1.6 —
JB.GLB LOG_SMEC HYBRID I										1.8 — - - - - 2.0—	-										1.8—

Project Client Site Job No

Pipeline Route TSI Manildra Group Port Kembla 30013174

East North Elevation 2.570 m Datum

307771.690 m 6183048.650 m

MGA94 Zone 56/AHD

Start Date 03/03/2021 End Date 03/03/2021 Contractor Numac Rig Type Comacchio 205 Mounting Track

Testing Testin										>											Member of the Surban	a Jurong Group
FILL CONCRETE TO A Prime model and material prime triple, that a great forms, great in fine to control greated, and prime triple triple and triple triple and triple triple and	77	_	ť	(sso-	CR)	ng				∟ lafo	(m)	c Log	ge			e e	tency	uo	ering	£		SMW01
FILL CONCRETE TO A Prime model and material prime triple, that a great forms, great in fine to control greated, and prime triple triple and triple triple and triple triple and	Method	Casing	oddng	Water (Gain/I	Run (T	Sampli	SPT	VS (kPa) Peak / Remoulded	DCP	Water Level 8	Depth Eleva	Graphi	Soil Co	Depth	Soil / Rock Material Description	Moistu Conditi	Consis Densit	Alterati	Weath	Rock	Origin, Stratigraphic Unit & General Observations	Installation
Part Consequent Content Part	A	1	T							Ī	0.0 - 2.6	XX			•			Ò	Ė			10
See 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-													2.37	coarse grained, angular, iron slag.						FILL	WELL
SP 2.50 SAND: fine to coarse grained, pale grey, grey, slight hydrocarbon odour. W 3.0 — SP 4.50 Hole Terminated at 4.50 m Target depth	C 2.10.8 2020-09-10	3 mm)————												2.07	FILL Sandy GRAVEL with clay: fine to coarse grained, poorly graded, brown, gravel is iron slag,							1.0
SP 2.50 SAND: fine to coarse grained, pale grey, grey, slight hydrocarbon odour. W 3.0 — SP 4.50 Hole Terminated at 4.50 m Target depth	.9 2021-08-30 Prj: SME	Casing - HW (114.:									1.6											
SP 2.50 SAND: fine to coarse grained, pale grey, grey, slight hydrocarbon odour. W 3.0 — SP 4.50 Hole Terminated at 4.50 m Target depth	Tools Lib: SMEC 2.10	Steel (0.00								1.5
Hole Terminated at 4.50 m Target depth										03/03/21	2.0			0.57	Clayey SAND clay: fine to coarse grained, dark grey, black, material smelling of hydrocarbons.	М	L - MD	-			ESTUARINE?	2.0 +
Hole Terminated at 4.50 m Target depth	ngFile>> 27/04/2022 16:2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										<i>[././</i>			SAND: fine to coarse grained, pale grey, grey, slight hydrocarbon odour.	w						
Hole Terminated at 4.50 m Target depth	0013174.GPJ < <drawii< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0</td></drawii<>										3.0 -											3.0
Hole Terminated at 4.50 m Target depth													SP									
Hole Terminated at 4.50 m Target depth	G LANDSCAPE_SOI										4.0 -1.4											4.0
	3RID LO		L								·			4.50								4.5
	EC HYE														Hole Terminated at 4.50 m Target depth							
	B.GLB L										_5 0-											

Project Client Site Job No

Pipeline Route TSI Manildra Group Port Kembla 30013174

East North Elevation 2.890 m Datum

307889.380 m 6183043.420 m

MGA94 Zone 56/AHD

Start Date 04/06/2022 End Date 04/06/2022 Contractor Epoca Rig Type Geoprobe 7822DT Mounting

									>											Member of the Surban	a Jurong Group
			ss)	8	_ 「		Testing		ן ∮	Depth (m)	bo-	o)			_	Consistency Density	_	ng		Borehole Identifier:	SMW02
ро	Б	Support	Water (Gain/Loss)	Run (TCR)	Sampling		PP (kPa) VS (kPa) Peak / Remoulded		~ <u>~</u>	th (r atio	Graphic Log	opo Soil Code Dept RL			Moisture Condition	siste sity	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General	Cimitoz
Method	Casing	ddng	Vate Gair	Sun	Sam	SPT	Peak / Remoulded PID (ppm)	DCP	Vate eve	Dep Elev	3rap	Dept	pth	Soil / Rock Material Description	Aois Sonc	Sons	Ntera	Veal	Sock Strer	Unit & General Observations	Installation
	\top	T 0,	_ > =	- Ш	, 	JF I	F ID (ppiii)	DOF	7	0.0 -		0.10		FILL SLAG: grey, fine to coarse grained, angular sand matrix.	W <pl< td=""><td>VL</td><td></td><td></td><td></td><td>FILL (CEMENTED SLAG)</td><td></td></pl<>	VL				FILL (CEMENTED SLAG)	
L										2.9		2.79	79 F	TILL CLAY: high plasticity, brown to black, trace fine to coarse grained sand, angular to ub-rounded gravel.		VS				FILL	
											\bowtie		SI	ub-rounded gravel.							S
-										-											
5-										_	\bowtie										
50-09-																					0.7
10.8 20										-											
MEC 2.										1.0 — 1.9											1.0
Prj: S										1.5			1.	.10: increasing brown		L					
11-08-3																					
0.9 202										-											
EC 2.1									ľ	-											
Lib: SA																					
Tools											\bowtie										
10.02.00.04 Datgel Tools Llb: SMEC 2.10.92021-08-30 Prj: SMEC 2.10.8 2020-09-10										2.0 — 0.9											2.0
-00.04										-											
10.02										_											1.0
2 16:28																					
/04/202										-											
SMEC ENV WOL 30013174,GPJ < <drawingfile>> 27/04/2022 16:28</drawingfile>										-		2.90									
wingFil										30-		-0.01		FILL Clayey Silty SAND: fine to medium grained, sub-rounded, black, low plasticity clay.							3.0
<oran< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0 </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></oran<>										3.0 											
74.GPJ										-											
1001317										-											
WOL3																					
CENV										-											
- SME										-											
E_SOIL										 4.0 	\bowtie	4.00	_								4.0
GLB Log _SMEC HYBRID LOG LANDSCAPE_										-1.1			H	Hole Terminated at 4.00 m Target Depth (standpipe installed)							
G LAN										-	1										
SID LO										-											
C HB										_											
SME																					
B Log										-	1										
H.G.										5.0 <u></u>										1	

Project Client Site Job No Pipeline Route TSI Manildra Group Port Kembla 30013174

East North Elevation 3.090 m

Datum

307881.900 m 6183114.520 m

MGA94 Zone 56/AHD

Start Date 20/04/2022 End Date 20/04/2022

Contractor Numac Drilling Rig Type Sonic Mounting Track

									>											Member of the Surbar	na Jurong Group
			(ss)	<u>R</u>	_ [Testing		ן ק	E S	Log	Φ				incy	_	ing		Borehole Identifier:	SMW03
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	PP (kPa) VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & I	Depth (m)	Graphic Log	Soil Code	epth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
SMEC 2.10.9 2021-08-30 Prj: SMEC 2.10.8 2020-09-10	•									0.0 - 3.1			3.09 0.80 2.29	FILL Gravelly CLAY: low to medium plasticity, pale brown, fine to coarse grained, angular gravel, with fine to coarse grained sand, with cobbles (60-80mm) comprising sandstone. FILL Sandy CLAY: low to medium plasticity, brown mottled orange, fine to coarse grained sand, with fine to medium grained gravel.	М	F				FILL	500MWS 6.5.2
27/04/2022 16:32 10:02:00.04 Datgel Tools Lib: SMEC 2:10:9:2021-00	— Casing —								20/04/22	2.0 -			2.30 0.79	2.00-2.30: SAND, medium grained, pale brown observed FILL Gravelly SILT: low plasticity, dark grey, fine to coarse grained gravel, with cobbles and boulders comprising latite (dark grey-black with shiny inclusions).		St				1.50: Driller noted some resistance	1.5
SMEC ENV WOL 30013174.GPJ <-DrawingFile>> 27/04/2022 16									<u></u>	3.0 - 0.1			3.30 0.21	3.00-3.30: Boulder encountered/penetrated SAND: medium grained, yellow-red.		L				3.00-3.30: Driller cored through boulder	20-
SMEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV	•									4.0		SP	4.50	4.00-4.50: becoming pale yellow Hole Terminated at 4.50 m							4.5
3.GLB Log_SMEC.F										5.0	-			Target Depth (standpipe installed)							

Project Client Site Job No Pipeline Route TSI Manildra Group Port Kembla 30013174

East North Elevation 2.960 m Datum

307848.120 m 6183124.300 m

MGA94 Zone 56/AHD

Start Date 20/04/2022 End Date 20/04/2022

Contractor Numac Drilling Rig Type Sonic Mounting Track

									>											Member of the Surbar	a Jurong Group
τ	_	, L	Loss)	CR	ing		PP (kPa) VS (kPa)		¬ lge ¬	(m) r	ic Log	əpc			io io	stency y	ioi	ering	£	Borehole Identifier:	SMW04
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling	SPT	VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level & Inflow	Depth Eleva	Graphic Log	Soil Code	epth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General Observations	Installation
-										0.0 — 3.0			2.96	FILL Gravelly SAND: fine to coarse grained, brown, fine to coarse grained gravel.	М	MD				FILL	6034 6034
2.10.8 2020-										-		1	1.00								10
ools Lib: SMEC 2.10.9 2021-08-30 Prj; SMEC										1.0 — 2.0 — -				FILL Sandy CLAY: low to medium plasticity, brown, medium to coarse grained sand, with fine to medium grained gravel.		F				1.00: Driller noted increased resistance (possible boulders)	15:
27/04/2022 16:32 10:02:00:04 Datgel T	Casing ——								20/04/22	2.0 —			2.70 0.26	2.30-2.50: Boulder encountered, Latite, dark grey, angular borken edges	_					ESTUARINE	2.0-
SMEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ <										3.0 —		SP		SAND: medium grained, yellow-red. 3.50-4.50: becoming pale yellow		L				ESTUANINE	2.0
SMEC HYBRIG	*									-		4	1.50	Hole Terminated at 4.50 m Target Depth (standpipe installed)							4.5
3.GLB Log										- 5 0	1										

Project Client Site Job No

Pipeline Route TSI Manildra Group Port Kembla 30013174

East North Elevation 2.860 m Datum

307825.760 m 6183134.070 m

MGA94 Zone 56/AHD

Start Date 20/04/2022 End Date 20/04/2022 Contractor Numac Drilling Rig Type Sonic Mounting Track

							- "		>								•		Member of the Surbar	na Jurong Group
			(ss)	ĝ	ь Г		Testing		Water Level & Inflow	Ê K	Log	Φ		a, ⊏	Consistency Density	_	ing	_	Borehole Identifier:	SMW05
Method	Casing	Support	Water (Gain/Loss)	Run (TCR)	Sampling -		PP (kPa) VS (kPa) Peak / Remoulded		el &	pth (Graphic Log	Soil Code Pland		Moisture Condition	nsiste nsity	Alteration	Weathering	Rock Strength	Origin, Stratigraphic Unit & General	
Z	Sa	Sup	Ğ ⊗ o	- Rur	Sar	SPT	PID (ppm)	DCP	Lev a	E Co	Gra	S Dep	th Soil / Rock Material Description	S S	De C	Alte	× ×	Stre		Installation
1	1									0.0 - 2.9		0.1	angular gravel.	_ D	L VD				FILL (CEMENTED SLAG)	- 4 4 4 5 A 4 4 A 4 A 4 A 4 A 4 A 4 A 4 A
										-			FILL CEMENTED SLAG.		"				0.10-0.40: heavily pulverised cemented	0.3 4 W
-										-		2.4	FILL Gravelly CLAY: black, pale grey, fine to coarse, sub-angular to sub-rounded gravel, with	M	F				material	_
9-10													sand, trace rootlets.							
SMEC 2.10.9 2021-08-30 Prj: SMEC 2.10.8 2020-09-10																				
22.10.8										1.0										1.0
rj: SME										1.0 — 1.9										
-08-30 F																				
1.9 2021																				1.5
EC 2.10												1.7								
Lib: SN												1.1		D	1					
I Tools Lib:										2.0										
4 Datge										2.0 - 0.9										
10.02.00.04 Datgel	Casing											2.3		. —						
16:32 10	١Ĭ								20/04/22			0.5	FILL Gravelly SAND: fine to coarse grained, brown, red brown, fine grained, sub-angular to sub-rounded gravel, trace pebbles, trace clay.	М	L					
27/04/2022									20/0											
- 1 1									-											
< <dragation co<="" company="" td="" =""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.0</td><td></td><td>3.0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dragation>										2.0		3.0	0							
										3.0 — -0.1		-0.1 3.2	EATTE BOOLDEROY CODDLEG.	W	VD				PULVERISED MATERIAL AROUND FRAGMENTS	
174.GPJ												-0.3		М	L				ESTUARINE (QUARTZ BASED)	
30013												SP								
NV WOI																				
SMEC ENV WOL 30013174.GPJ												-0.8		w	1					
SOILS																				
SCAPE										4.0]	SP								3.0
LOG LANDS																				
BRID LOG												4.5								4.5
SMEC HYB	 											7.0	Hole Terminated at 4.50 m Target Depth (standpipe installed)							-
MS_ go]									
GLB L.										50										
==	-									-5.U-				_		_	_			

Project Client Site Job No

Pipeline Route TSI Manildra Group Port Kembla 30013174

East North Elevation 3.410 m Datum

307734.250 m 6183055.700 m

MGA94 Zone 56/AHD

Start Date 04/06/2022 End Date 04/06/2022 Contractor Epoca Rig Type Geoprobe 7822DT Mounting

Inclination 90° Azimuth North Survey

Member of the Surbana Jurong Group

Training Part Par								Tootina		≥											Member of the Surbana	a Jurong Group
The Control of the Co				(ss)	<u>R</u>	ا م		- U		기 를	£ £	Log	Ð			=	ancy	_	ing			SMW06
The Control of the Co	pot	ng	20 LT	n/Lo	CTC	plin		PP (kPa) VS (kPa)		<u>~</u> ≪	oth (vatic	hic	5			ture	siste sity	atio	ther	gf.	Origin, Stratigraphic	
The Control of the Co	Vet	Sasi	dng	Nate Gai	Sun	Sam	SPT	Peak / Remoulded	DCP	Vate eve	Dep Elev	3rap	Dej	epth	Soil / Rock Material Description	Aois	Sons	lter	Vea	Sock Strer	Unit & General Observations	Installation
The content of the	ŕ	т	T					1 15 (pp.ii)		$\vec{\Box}$	0.0		,, <u>,</u>		· · · · · · · · · · · · · · · · · · ·		T	$\overline{}$	\top	Τ	FILL (TOPSOIL)	
2.77 File Study Claim of Calcium, Test in course grained, engaging to translated and WVT_	L										J. 7		3.3	3.31	FILL Clayey SAND: fine to coarse grained, sub-rounded to sub-angular, grey, trace gravel.	<u> </u>					0.00: 0.76m standpipe stick	
1.50											K	\bowtie	0.3	.30	FILL Silty Gravelly SAND: fine to coarse grained, sub-rounded to sub-angular, black, coalwash.	ļ	-				FILL	S
227 PLLS BITY DATE (1979) 10 10 11 11 11 11 11 11 11 11 11 11 11 1	-										-{	\bowtie			FILL Sandy Gravelly CLAY: red brown, fine to coarse grained, sub-angular to rounded sand, rounded coarse furnace slag gravel.	W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pl<>						
															FILL Silty SAND: grey.	М						
	0-09-1										K	\bowtie										
	18 202										-{	\bowtie										
	02.10										10-	\bowtie										1.0
	: SME										2.4	\bowtie										
	-30 P										-{	\bowtie										
	051-06										_{	\bowtie										
	.10.92											\bowtie										1.5
	MEC 2										-{	\bowtie										
	S LEP: S										_{	\bowtie										
	Tools										}	\bowtie										
	Datgel										2.0	\sim			SAND: fine to coarse grained, angular to rounded, yellow, quartz/lithic.	w	1				AEOLIAN	2.0
	0.04										1											
	10.02.0										:											
	6:32										†											
	2022 1										4.											
	27/04/																					
	<u>^</u>										1											
	awing										3.0											3.0
	Q										0.4											
	74.GP.										4	s	SP									
	00131										4											
	WOL3										ł											
	EN-										1:											
	SWEC										-[-											
	SOIL																					
	CAPE										4.0 -											4.0
	4NDS(4											
	71 90										:											
	BRID												4.5	.50								4.5
	을 -										-				Hole Terminated at 4.50 m Target Depth (standpipe installed)]
	-SMI																					
	B Log										1											1
	IB.GI										_5.0							<u> </u>	_	<u> </u>		

Appendix D Proposed design drawings

TFA Group Pty Ltd (2021), Civil Drawing Set – Issued for Tender, Drawing ref: 20399-C00 to C17, C20 and C21, dated 23.11.21

TFA Group Pty Ltd (2022), Proposed Pipeline Route – D.A Issue, Drawing ref: 20399-DA-P01 to P05, dated 11.03.2022

BULK LIQUIDS FACILITY PORT KEMBLA, NSW

CIVIL WORKS DRAWINGS

CIVIL	
DRG. No.	DRAWING TITLE
20399-C01	GENERAL CONSTRUCTION NOTES, DRAINAGE & EARTHWORKS
20399-C02	SITE GRADING & DRAINAGE PLAN SHEET 1 OF 2
20399-003	SITE GRADING & DRAINAGE PLAN SHEET 2 OF 2
20399-C04	STORMWATER PIT SCHEDULE & CONSTRUCTION DETAILS
20399-C05	PIT CONSTRUCTION DETAILS
20399-006	DISCHARGE OUTLET CONSTRUCTION DETAILS
20399-C07	BULK EARTHWORKS PLAN
20399-C08	CONCEPTUAL EROSION & SEDIMENT CONTROL PLAN
20399-009	EROSION & SEDIMENT PLAN CONSTRUCTION DETAILS
20399-C10	CONCRETE PAVEMENT LEGEND & CONSTRUCTION NOTES
20399-C11	SITE PAVEMENT PLAN SHEET 1 0F 2
20399-C12	SITE PAVEMENT PLAN SHEET 2 OF 2
20399-C13	SITE PAVEMENT DETAILS SHEET 1 OF 2
20399-C14	SITE PAVEMENT DETAILS SHEET 2 OF 2
20399-C15	SITE RETAINING WALL LONG SECTIONS
20399-C16	SECURITY FENCING DETAILS
20399-C17	PROPOSED DRIVEWAY CROSSOVER PLAN
20399-C20	RETAINING WALL DETAILS SHEET 1
20399-C21	RETAINING WALL DETAILS SHEET 2

TENDER ONLY
NOT FOR CONSTRUCTION

LOCALITY PLAN

NOT TO SCALE

GENERAL NOTES:

- ALL DIMENSIONS AND CO-ORDINATES ARE TO BE VERIFIED ON SITE BEFORE WORK COMMENCES.
- FIGURED DIMENSIONS ARE TO TAKE PRECEDENCE OVER SCALE READINGS.
 DURING CONSTRUCTION, BARRIERS, LIGHTS & SIGNS SHALL BE MAINTAINED TO ENSURE SAFE PASSAGE OF TRAFFIC AND PEDESTRIANS IN ACCORDANCE WITH THE REQUIREMENTS OF THE LOCAL AUTHORITY.
 ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AUSTRALIAN STANDARDS BY-LAWS AND
- ORDINANCES OF THE RELEVANT LOCAL AUTHORITY, AND WORKPLACE HEALTH AND SAFETY REQUIREMENTS.
 THE CONTRACTOR SHALL MAKE GOOD, AT HIS COST, ANY DAMAGE TO ANY SERVICE IF SUCH DAMAGE OCCURS AS
- A RESULT OF HIS OPERATIONS.
- ALL DISTURBED VERGE AREAS MUST BE REINSTATED WITH TURF.
- ALTER ANY SERVICES WHEN THE RELEVANT AUTHORITY OR ASSESSMENT MANAGER DETERMINES THAT THE WORK ASSOCIATED WITH THIS DEVELOPMENT HAVE IMPACTED EXISTING SERVICES.
- THE SURVEY INFORMATION SHOWN MAY NOT ADEQUATELY REFLECT CURRENT SITE CONDITIONS. THE CONTRACTOR SHALL ASSESS SITE CONDITIONS PRIOR TO COMMENCING CONSTRUCTION, ANY DISCREPANCIES IN THE SURVEY NFORMATION SHALL BE REPORTED TO THE SUPERINTENDENT. REFER TO SURVEY FOR DETAILS.
- EXISTING SERVICES SHOWN HAVE NOT BEEN CONFIRMED ON SITE. THE CONTRACTOR SHALL DETERMINE THE LOCATION AND DEPTH OF SERVICES WITHIN OR ADJACENT TO THE WORKS BY CONTACTING THE RELEVANT SERVICE AUTHORITY AND APPROVED UNDERGROUND SERVICES LOCATOR A MINIMUM OF 14 DAYS PRIOR TO COMMENCEMENT OF WORKS. ADVISE THE SUPERINTENDENT OF ANY DISCREPANCIES AND CLASHES BEFORE PROCEEDING. THE CONTRACTOR SHALL BE REQUIRED TO COORDINATE AND PROGRAM WORKS TO RESOLVE ANY CLASHES WITH RELEVANT SERVICE AUTHORITIES PRIOR TO COMMENCEMENT OF ANY WORKS. RESOLUTION OF CLASHES SHALL BE APPROVED BY THE RELEVANT SERVICE AUTHORITIES.
 ALL NEW WORK SHALL BE JOINED NEATLY TO EXISTING. PROPOSED LEVELS FOR CONNECTING TO EXISTING WORKS
- MAY BE VARIED WHERE NECESSARY ON SITE BY THE SUPERINTENDENT TO ACHIEVE A SATISFACTORY SMOOTH
- 7. THE CONTRACTOR IS RESPONSIBLE FOR THE REMOVAL AND DISPOSAL OF ALL RUBBISH AND SPOIL FROM THE SITE.

STORMWATER DRAINAGE NOTES:

- ALL DIMENSIONS ARE TO BE CHECKED ON-SITE BEFORE WORK COMMENCES
- FIGURED DIMENSIONS ARE TO TAKE PRECEDENCE OVER SCALE READINGS.
- DURING CONSTRUCTION, BARRIERS, LIGHTS & SIGNS SHALL BE MAINTAINED TO ENSURE SAFE PASSAGE OF TRAFFIC
- AND PEDESTRIANS IN ACCORDANCE WITH THE REQUIREMENTS OF THE LOCAL AUTHORITY.
 ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH S.A.A CODES & BY-LAWS AND ORDINANCES
- OF THE RELEVANT LOCAL AUTHORITY, AND WORKPLACE HEALTH AND SAFETY REQUIREMENTS. CONTRACTOR TO VERIFY ALL INVERT LEVELS, SURFACE LEVELS, COVER OVER DRAINAGE LINES, AND MINIMUM FALLS ARE CORRECT & OBTAINABLE PRIOR TO COMMENCEMENT OF WORKS.
- PIPES Ø375 AND LARGER TO BE REINFORCED CONCRETE OR FRC CLASS `2' APPROVED SPIGOT AND SOCKET WITH RUBBER RING JOINTS U.N.O.
- PIPES UP TO Ø300 SHALL BE SEWER GRADE PVC-U MINIMUM CLASS SN6 WITH SOLVENT WELDED JOINTS.
- PIPES SHALL BE LAID AS PER TYPICAL PIPE TRENCH DETAIL AND IN ACCORDANCE WITH AS1289 5.2.1.
- FOR TRENCHES NOT UNDER PAVEMENTS WHERE EXCAVATED MATERIAL MAY BE USED FOR BACKFILL, MATERIAL SHALL BE COMPACTED TO THE SAME DENSITY AS THE UNDISTURBED MATERIAL EITHER SIDE OF THE
- WHERE TRENCHES ARE IN ROCK, THE PIPE SHALL BE BEDDED ON A MINIMUM OF 50mm CONCRETE BED (OR 75mm BED OF 12mm BLUE METAL) UNDER THE BARREL OF THE PIPE.
- ENLARGERS, CONNECTORS AND JUNCTIONS TO BE PRECAST OR PROPRIETARY FITTINGS WHERE PIPES ARE LESS
- CARE IS TO BE TAKEN WITH LEVELS OF STORMWATER LINES. GRADES SHOWN ARE NOT TO BE REDUCED WITHOUT
- ALL FINISHED SURFACE LEVELS SHOWN ON GULLY GRATES AND MANHOLES ARE LOCATED ON THE CAST IRON
- ON COMPLETION OF PIPE INSTALLATION ALL DISTURBED AREAS MUST BE REINSTATED TO "AS FOUND" CONDITION
- THE CONTRACTOR SHALL MAKE GOOD, AT HIS COST, ANY DAMAGE TO ANY SERVICE IF SUCH DAMAGE OCCURS AS A RESULT OF HIS OPERATIONS.
- CONSTRUCT STORMWATER LINES, PITS AND MANHOLES IN ACCORDANCE WITH RELEVANT LOCAL AUTHORITY
- STANDARD DRAWINGS & SPECIFICATIONS IF NOT OTHERWISE DETAILED ON THE DRAWINGS.

 ALL PITS/MANHOLES DEEPER THAN 1000mm TO BE FIXED WITH GALV. STEEL PROPRIETARY STEP IRONS
- ALL UNDERGROUND SERVICES ARE TO BE PROVEN ONSITE AND THE CONTRACTOR TO LIAISE WITH RELEVANT AUTHORITIES REGARDING ANY IMPACTS PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION WORKS...

EARTHWORKS NOTES:

SURGRADE PREPARATION :

- 1. AREAS UPON WHICH FILL IS TO BE PLACED SHALL BE CLEARED, GRUBBED AND STRIPPED. THE TOTAL AREA ON WHICH FILL IS TO BE PLACED SHALL BE FREE OF SOFT AREAS, WITH THE TOP 150mm OF THE NATURAL SUBGRADE MATERIAL COMPACTED TO 95% STANDARD MAXIMUM DRY DENSITY (MDD-S) COMPACTED AT OPTIMUM MOISTURE CONTENT (OMC) \pm 3% PRIOR TO FILLING. THE AREA SHALL BE PROOF ROLLED IN THE PRESENCE OF THE SUPERINTENDENT TO DETERMINE POORLY COMPACTED, SOFT OR UNSTABLE AREAS WITH UP TO 4 PASSES OF EITHER:

 - MINIMUM 8 TONNE (STATIC WEIGHT) VIBRATING STEEL SMOOTH DRUM ROLLER,
- OPERATING UNDER FULL AMPLITUDE VIBRATION, ROLLING AT APPROXIMATELY 2KM/HF
- MINIMUM 20 TONNE (STATIC WEIGHT) RUBBER TYRED, ROLLER, WITH PRESSURE 900kPa MINIMUM, ROLLING AT 3-4KM/HF 2. WHERE DIRECTED BY THE SUPERINTENDENT, SOFT, WET OR UNSTABLE AREAS SHALL BE EXCAVATED AND THE UNSUITABLE MATERIAL REUSED ON SITE EITHER BY DRYING OUT OR FOR MIXING WITH IMPORTED MATERIAL TO ENABLE COMPACTION AS FILLING.
- 3. THE BOTTOM OF SUCH EXCAVATION SHALL BE COMPACTED WITH APPROVED EQUIPMENT TO 95% MDD-S, COMPACTED AT OMC ± 3% PRIOR TO BACKFILLING WITH APPROVED FILL MATERIAL.
- 4. ON NO ACCOUNT SHALL ANY FILL BE PLACED BEFORE APPROVAL OF THIS AREA IS GIVEN BY THE SUPERINTENDENT.
 5. QUANTITIES OF UNSUITABLE MATERIAL NOT OTHERWISE APPARENT BY SITE INSPECTION AT TIME OF TENDER SHALL BE INSPECTED AND AGREED
- WITH THE SUPERINTENDENT WHEN ENCOUNTERED AT PROOF ROLLING.
 6. WHERE SIGNIFICANT GROUND WATER IS ENCOUNTERED AFTER REMOVAL OF EXISTING FILL A GRANULAR BRIDGING LAYER SHALL BE PROVIDED PRIOR TO PLACING OF GENERAL FILL. THE BRIDGING LAYER SHALL BE 75mm MAX SIZE 'BALLAST' ROCK WITH A GEOSYNTHETIC SEPARATION LAYER BETWEEN ANY BRIDGING LAYER AND THE OVERLYING FILL. REFER ENGINEER FOR SPECIFIC DETAILS.

FILL MATERIAL

- 1. THE CONTRACTOR SHALL ALLOW TO IMPORT ALL FILL MATERIAL TO THE SITE IN EXCESS OF ON SITE CUT TO FILL. WITH HIS TENDER THE CONTRACTOR SHALL PROVIDE DETAILS OF ALL IMPORTED MATERIAL PROPOSED TO BE USED AS FILL INCLUDING, BUT NOT LIMITED TO, THE SOURCES OF FILL, PLASTIC INDEX, LINEAR SHRINKAGE, PARTICLE GRADINGS, CALIFORNIA BEARING RATIO (CBR). ANY MATERIAL TEST INFORMATION PROVIDED MUST BE CARRIED OUT BY A NATA REGISTERED LABORATORY. DURING TENDER NEGOTIATIONS MORE EXTENSIVE TESTING MAY BE REQUESTED TO CONFIRM THE QUALITY OF PROPOSED FILL FROM SPECIFIC SITES NOMINATED AS ORIGINS OF FILL AS WELL AS SITE INSPECTIONS.
- 2. QUALITY CONTROL TESTING OF IMPORTED FILL SHALL BE UNDERTAKEN BY A NATA APPROVED LABORATORY AS PART OF LEVEL "1" SUPERVISION TO ENABLE CERTIFICATION THAT ALL FILL MATERIALS MEETS THE MINIMUM STANDARDS ACCEPTED BY THE PRINCIPAL. THIS WILL INCLUDE PLASTIC INDEX, LINEAR SHRINKAGE, PARTICLE GRADINGS, CBR AS CONSIDERED NECESSARY.

 3. GENERAL FILL QUALITY: WELL GRADED GRANULAR MATERIAL HAVING PROPERTIES AS FOLLOWS:
- MAXIMUM PARTICLE SIZE: - PLASTICITY INDEX: <15% LIQUID LIMIT: - CBR

FILL CONSTRUCTION

- 1. ALL FILL MATERIAL SHALL BE PLACED, SPREAD AND COMPACTED IN UNIFORM LAYERS NOT EXCEEDING 150mm COMPACTED THICKNESS. DURING PLACEMENT OF FILL, THE MOISTURE CONTENT SHALL BE CONTROLLED WITHIN -3% AND +1% OF OMC. EACH LAYER AS IT IS PLACED SHALL BE COMPACTED TO 98% MDD-S BEFORE THE FOLLOWING LAYER IS PLACED. FILL MATERIAL WHICH BECOMES EXCESSIVELY WET AFTER PLACEMENT SHALL BE DRIED OUT AND RE-COMPACTED TO 98% MDD-S, OR SHALL BE REPLACED WITH APPROVED MATERIAL AGAIN COMPACTED TO 98% MDD-S, AT THE CONTRACTOR'S EXPENSE.
- 2. DENSITY TESTS SHALL BE CARRIED OUT BY A NATA APPROVED LABORATORY. REWORK AND RETEST AREAS WHICH DO NOT ACHIEVE DENSITY UNTIL THAT DENSITY IS ACHIEVED AT THE CONTRACTOR'S EXPENSE.
- 3. TESTS SHALL BE CARRIED OUT AT NOT LESS THAN ONE TEST PER 500m³ OR ONE TEST PER LAYER PER 2500m² WHICHEVER REQUIRES THE MORE TESTS; DISTRIBUTE THE TESTS EVENLY THROUGHOUT THE FILL.
 4. A COPY OF ALL TESTS RESULTS SHALL BE FAXED DIRECTLY TO THE SUPERINTENDENT BY THE LABORATORY IMMEDIATELY WHEN THE TEST
- RESULTS ARE AVAILABLE AND THEN TO THE CONTRACTOR. A REPORT OF ALL COMPACTION TESTING WILL BE REQUIRED WITH THE FILL CERTIFICATION DETAILING EXACT LOCATIONS AND LEVEL OF TESTS UNDERTAKEN AND ALL REMEDIAL WORK UNDERTAKEN AND RETESTED.
- 5. SUPERVISION OF FILLING OPERATIONS BY A NATA APPROVED LABORATORY WILL BE REQUIRED TO ENABLE CERTIFICATION THAT ALL FILL HAS BEEN PLACED AND COMPACTED IN ACCORDANCE WITH THIS SPECIFICATION TO LEVEL '1' IN ACCORDANCE WITH AS3798

GRADING TO FORMATION LEVEL:

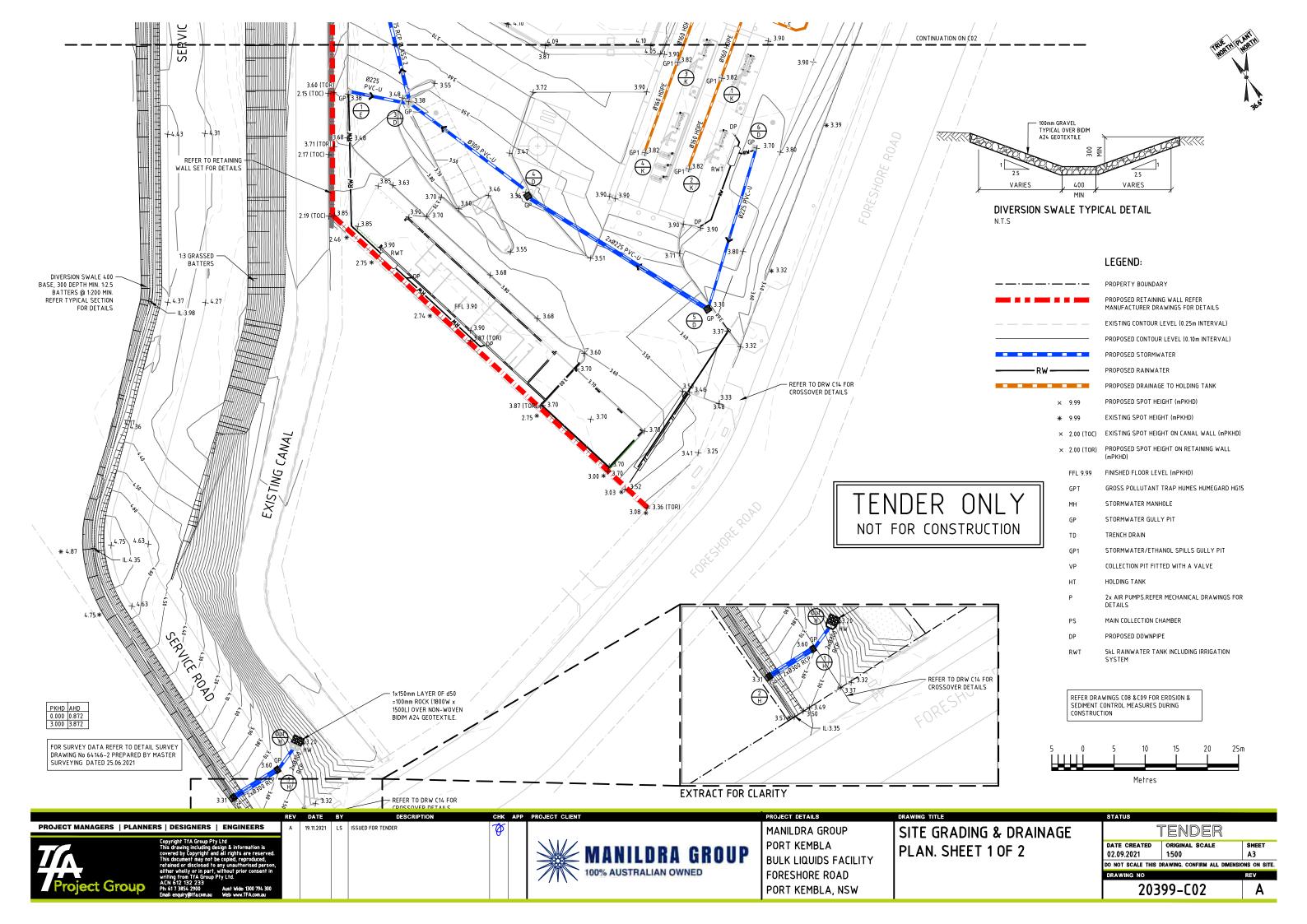
1. ON COMPLETION OF EXCAVATION OR FILLING AS SPECIFIED, THE FORMATION SHALL BE GRADED TO CONFORM ACCURATELY TO THE LINES, GRADES AND CROSS-SECTION SHOWN ON THE DRAWINGS CONFORMING TO A LEVEL TOLERANCE OF ± 20mm GENERALLY. PROVIDE EVEN GRADES GENERALLY

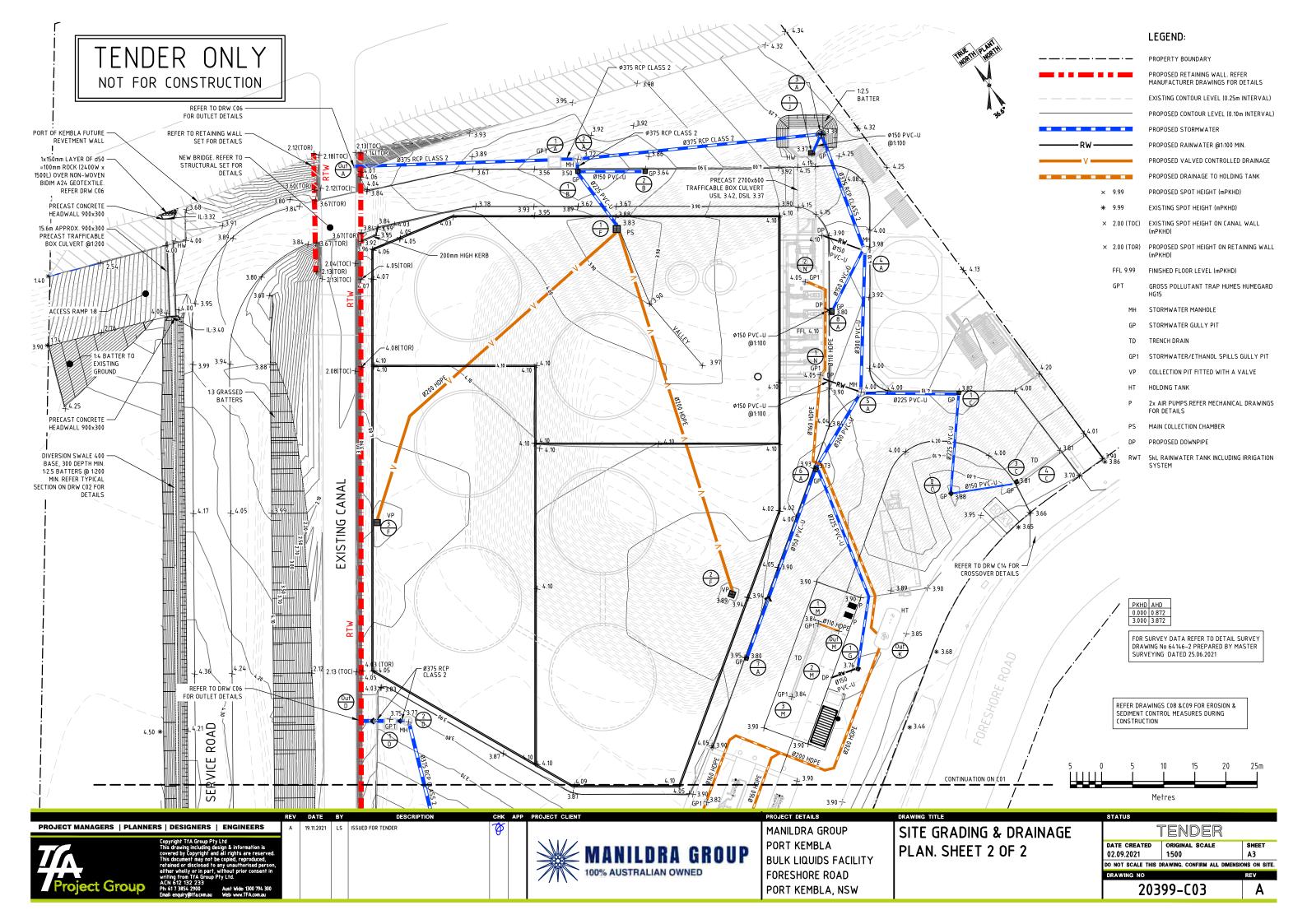
ENVIRONMENTAL PROTECTION:

- THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUPPLYING, ERECTING AND MAINTAINING EROSION AND SEDIMENT CONTROL DEVICES ON THE SITE AND ENTRY TO THE SITE TO COMPLY WITH ALL STATUTORY AND LOCAL GOVERNMENT REQUIREMENTS.
- 2. THIS MAY INVOLVE THE CONSTRUCTION OF SEDIMENT FENCES TO THE PERIMETER OF THE SITE TO PREVENT CONTAMINATED STORMWATER ENTERING WATERWAYS AND ALSO APPROPRIATE MEASURES TO PREVENT TRACKING OF MATERIALS ONTO PUBLIC ROADS. IN ADDITION THE CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO ELIMINATE DUST NUISANCE FROM THE SITE.

TENDER ONLY NOT FOR CONSTRUCTION

REV DATE BY 19.11.2021 LS ISSUED FOR TENDER


MANILDRA GROUP PORT KEMBLA


PROJECT DETAILS

BULK LIQUIDS FACILITY FORESHORE ROAD PORT KEMBLA, NSW

GENERAL CONSTRUCTION NOTES, DRAINAGE & EARTHWORKS

TENDER DATE CREATED ORIGINAL SCALE 19.11.2021 NTS DO NOT SCALE THIS DRAWING, CONFIRM ALL DIME 20399-C01

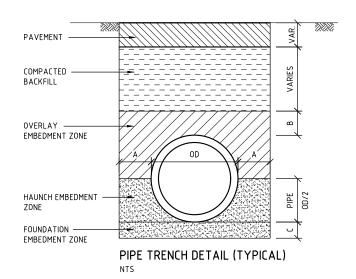
A TRAINE THE TAX TO SEE					=.
STRUCTURE No	STRUCTURE DESCRIPTION	GRATE/LID TYPE	SL	IL US	IL DS
OUT/A ×	OUTLET THROUGH RETAINING WALL	N/A	-	2.14	2.12 ×
1/A	HUMES HUMEGARD HG15	CLASS 'B' LIDS BY HUMES	3.50	2.46	2.46
2/A	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'B' GALV. OR C.I. LID & FRAME	3.72	FROM 3/A 2.50 FROM 1/B 2.66	2.48
3/A	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'B' GALV. OR C.I. LID & FRAME	3.38	FROM 1/J & 4/A 2.79	2.77
4/A	1200mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'D' GALV. OR C.I. LID & FRAME	3.98	2.96	2.94
5/A	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'D' GALV. OR C.I. LID & FRAME	4.00	FROM 6/A 3.15 FROM 1/B 3.15	3.13
6/A	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.73	3.04	3.02
7/A	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.80	-	3.36
8/A	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.80	-	3.07
1/B	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.50	FROM 2/B 2.70 FROM 1/F 2.70	2.68
2/B	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.64	-	2.81
1/C	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	3.32	3.30
2/C	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.88	3.42	3.40
3/C	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.81	3.56	3.52
4/0	8.5m OF ATCO SK2-00 POWER DRAIN SLOPED CHANNEL	CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.81 TO 3.81	3.61	3.56
OUT/D ×	OUTLET THROUGH RETAINING WALL	N/A	-	2.23	2.13
1/D	HUMES HUMEGARD HG15	CLASS 'D' LIDS BY HUMES	3.75	2.26	2.26
2/D	1050mm DIAM. PRECAST CONCRETE MANHOLE	600 DIAM. CLASS 'D' GALV. OR C.I. LID & FRAME	3.77	2.29	2.27
3/D	900 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.38	FROM 1/E: 2.45 FROM 4/D: 2.45	2.43
4/D	900x600 CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900x600 CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.36	2.64	2.62
5/D	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.30	2.91	2.89
6/D	600 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	600 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.70	-	3.15
1/E	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.38	-	2.55
1/F ×××	1200mm SQ. CAST IN-SITU GULLY PIT FITTED WITH A ISOLATION VALVE	1200 SQ. CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.83	FROM 3/F: 2.78 FROM 2/F: 2.78	2.76
2/F ××	900 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE FITTED WITH AN ISOLATION VALVE	900 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.89	-	3.29
3/F ××	900 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE FITTED WITH AN ISOLATION VALVE	900 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.87	-	3.27
1/G	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'B' GALV. OR C.I. GRATE & FRAME	3.76	-	3.21
OUT/H	300 DIAM. PRECAST CONCRETE TWIN-CELL PIPE HEADWALL	N/A	3.39	2.55	2.54 ×
1/H	900x600 CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900x600 CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.60	2.64	2.62
1711					
2/H	900x600 CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	900x600 CLASS 'B' GALV. OR C.I. GRATE & FRAME	3.31	-	2.69

	STORMWATER	PIT/MANHOLE SCHEDULE			
STRUCTURE No	STRUCTURE DESCRIPTION	GRATE/LID TYPE	SL	IL US	IL DS
OUT/K	30kL DOUBLE WALLED FRP TANK ENVIROTANK MODEL DWT H30	LIDS BY ENVIROTANK	VARIES	FROM 1/K:2.74 FROM 1/N: 2.50	REFER TO P&ID
1/K	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	3.17	3.15
2/K	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	-	3.32
3/K	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.38	3.24	3.22
4/K	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.82	-	3.39
OUT/M	ABOVE GROUND PUMP CONNECTION. REFER P&IDS FOR DETAILS	N/A	4.10	4.10	REFER TO P&IC
1/M	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.84	3.58	3.58
2/M	300Wx300Hx12m LONG CAST IN-SITU TRENCH DRAIN WITH 200mm THICK WALLS & BASE	CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.84 TO 3.84	3.64	3.58
3/M	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	3.84	-	3.64
1/N	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	4.05	3.27	3.05
2/N	450 SQ CAST IN-SITU GULLY PIT WITH 200mm THICK WALLS & BASE (WATER SEALED)	450 SQ CLASS 'D' GALV. OR C.I. GRATE & FRAME	4.05	-	3.45

- EXISTING LEVELS TO BE CONFIRMED ONSITE PRIOR TO START OF CONSTRUCTION WORKS
- PIT TO BE FITTED WITH A 200mm WIDE x 200mm HIGH PENSTOCK VALVE MODEL ZWA INSTALLED STRICTLY AS PER MANUFACTURER RECOMMENDATIONS
- *** PIT TO BE FITTED WITH A 225mm WIDE x 225mm HIGH PENSTOCK VALVE MODEL ZWA INSTALLED STRICTLY AS PER MANUFACTURER RECOMMENDATIONS
- *** REFER TO MECHANICAL SET FOR ETHANOL SPILL LINE PUMP SYSTEM TO BE INSTALLED IN THIS PIT

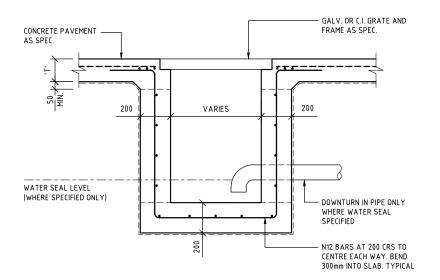
PIPE TRENCHING NOTES:

EMBEDMENT ZONE MATERIAL: 5mm OR 10mm SCREENINGS, OR ALTERNATIVELY
WASHED SCREENED BEDDING SAND TO GRADING SPECIFIED BELOW TO BED ZONE.
SIEVE SIZE (mm) PASSING (% BY MASS)

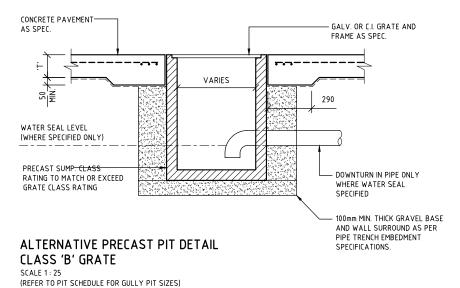

OUT OF THE PASSING (% BY MASS)

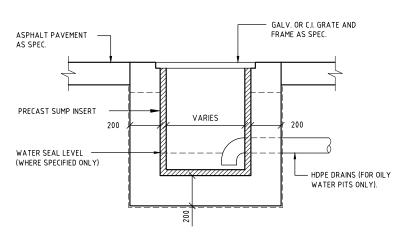
PASSING (% BY MASS)

EVE SIZE (IIIII)	PASSING (%
19.0	100
2.36	40-100
0.425	15-70
0.075	3-30


- 2. BACKFILL TO CONSIST OF APPROVED SUBGRADE REPLACEMENT MATERIAL WITH A MINIMUM CALIFORNIA BEARING RATIO OF 15, PLACED IN 150mm LAYERS AND COMPACTED UNTIL THE DRY DENSITY IS NOT LESS THAN 98% STANDARD MAXIMUM DRY DENSITY
- 3. COMPACTED BACKFILL SHALL BE GRANULAR FILL COMPRISING CRUSHED ROCK (75mm MAXIMUM SIZE, NON PLASTIC OPEN GRADED MATERIAL) OR CRUSHER RUN RECYCLED CONCRETE. WHERE APPROVED UNDER SPECIAL CIRCUMSTANCES, STABILISED SAND (1 PART CEMENT TO 12 PARTS SAND BY VOLUME) OR CONTROLLED LOW STRENGTH MATERIAL OR LEAN MIX CONCRETE OR CLASS 3 MATERIAL MAY BE BE PERMITTED.
- COMPACTED BACKFILL UNDER FOOTPATHS AND BIKEWAYS: EXCAVATED MATERIALS MAY BE USED PROVIDED ADEQUATE COMPACTION CAN BE OBTAINED. ALTERNATIVELY USE GRANULAR FILL OR SAND.
- WHERE APPROVED, SELECTED MATERIAL FROM EXCAVATIONS SHALL BE PLACED IN 150mm LAYERS & COMPACTED TO A MINIMUM CONSOLIDATION OF 98% STANDARD COMPACTION.
- INCREASE EXCAVATION LOCALLY AT SPIGOT AND SOCKET JOINTS (RIGID PIPES) TO ENSURE MINIMUM BOTTOM COVER AS SHOWN.

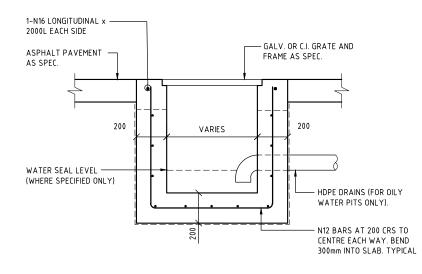
TENDER ONLY NOT FOR CONSTRUCTION


PIPE TRENCH TABLE						
PIPEØ	Α	В	С			
<u>></u> 75 <u><</u> 150	100	100	75			
>150 <300	150	150	100			
<u>></u> 300 <u><</u> 450	300	150	100			
>450 <u><</u> 900	300	150	100			
>900 <u><</u> 1500	300	200	100			
>1500 <4000	0.25 x OD	300	150			


REV DATE BY CHK APP PROJECT CLIENT PROJECT DETAILS PROJECT MANAGERS | PLANNERS | DESIGNERS | ENGINEERS 02.09.2021 LS ISSUED FOR TENDER STORMWATER PIT SCHEDULE MANILDRA GROUP TENDER PORT KEMBLA DATE CREATED | ORIGINAL SCALE & CONSTRUCTION DETAILS 02.09.2021 NTS A3 **BULK LIQUIDS FACILITY** DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENS ONS ON SITE. 100% AUSTRALIAN OWNED FORESHORE ROAD 20399-C04 PORT KEMBLA, NSW

TYPICAL CAST IN-SITU PIT DETAIL

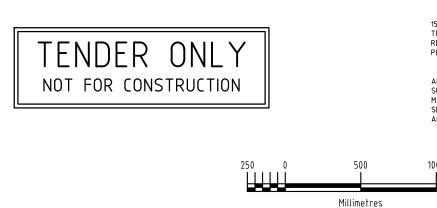
SCALE 1: 25 (REFER TO PIT SCHEDULE FOR GULLY PIT SIZES)

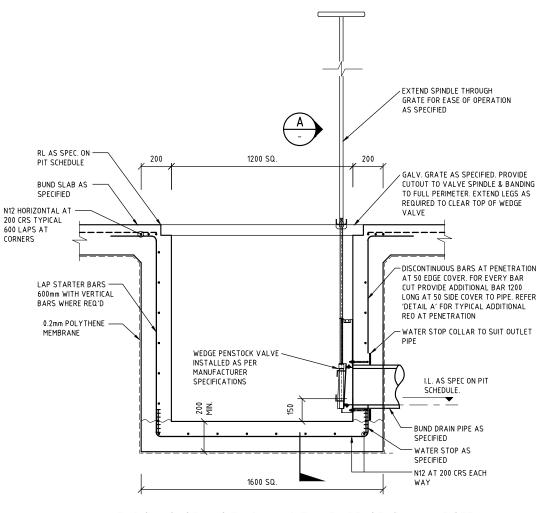

ALTERNATIVE PRECAST PIT DETAIL

(REFER TO PIT SCHEDULE FOR GULLY PIT SIZES)

GALV. OR C.I. GRATE AND FRAME AS SPEC CONCRETE PAVEMENT AS SPEC. 3-L11TM, 50 BTM, COVER 450 LAPS AT CORNERS VARIES 350 WATER SEAL LEVEL (WHERE SPECIFIED ONLY) DOWNTURN IN PIPE ONLY EXCEED GRATE CLASS RATING WHERE WATER SEAL SPECIFIED 100mm MIN. THICK GRAVEL BASE AND WALL SURROUND AS PER PIPE TRENCH EMBEDMENT SPECIFICATIONS.

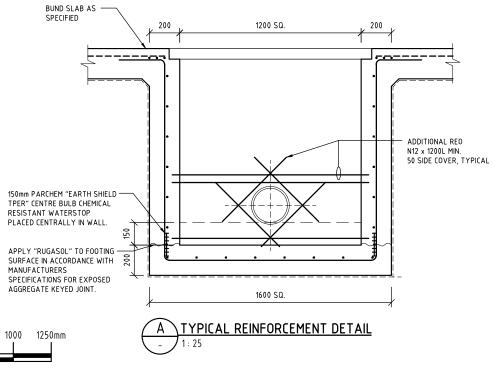
ALTERNATIVE PRECAST PIT DETAIL CLASS 'C' & CLASS 'D' GRATES


(REFER TO PIT SCHEDULE FOR GULLY PIT SIZES)



TYPICAL CAST IN-SITU PIT DETAIL

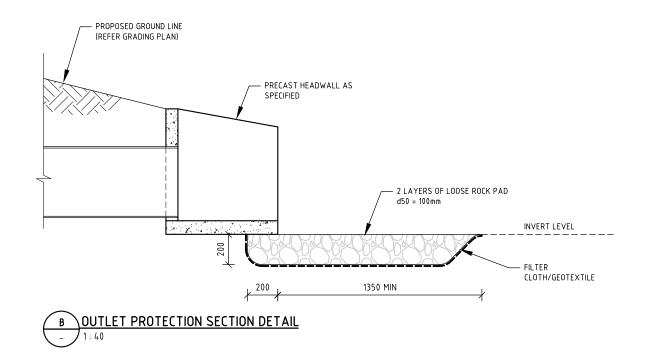
SCALE 1: 25 (REFER TO PIT SCHEDULE FOR GULLY PIT SIZES)

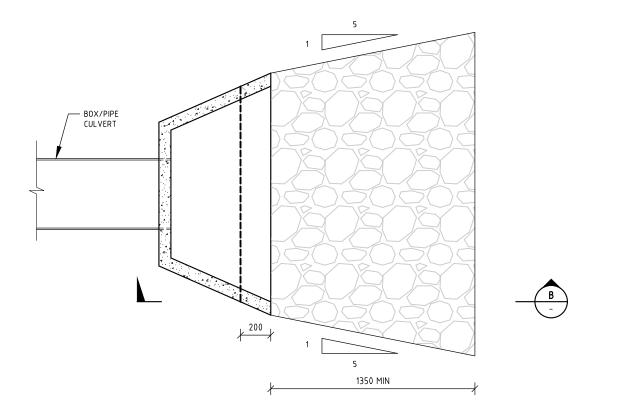

CHK APP PROJECT CLIENT

TYPICAL CAST IN-SITU GULLY PIT WITH PENSTOCK VALVE DETAIL

SCALE 1: 25 (REFER TO PIT SCHEDULE FOR GULLY PIT SIZES)

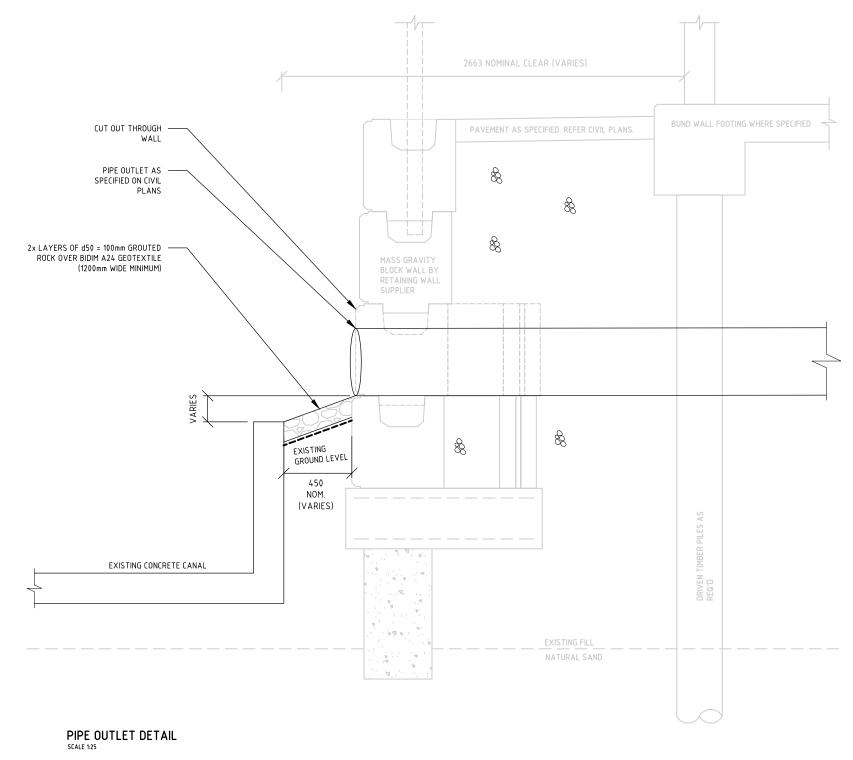
19.11.2021 LS ISSUED FOR TENDER

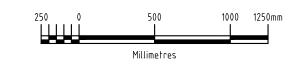

REV DATE BY

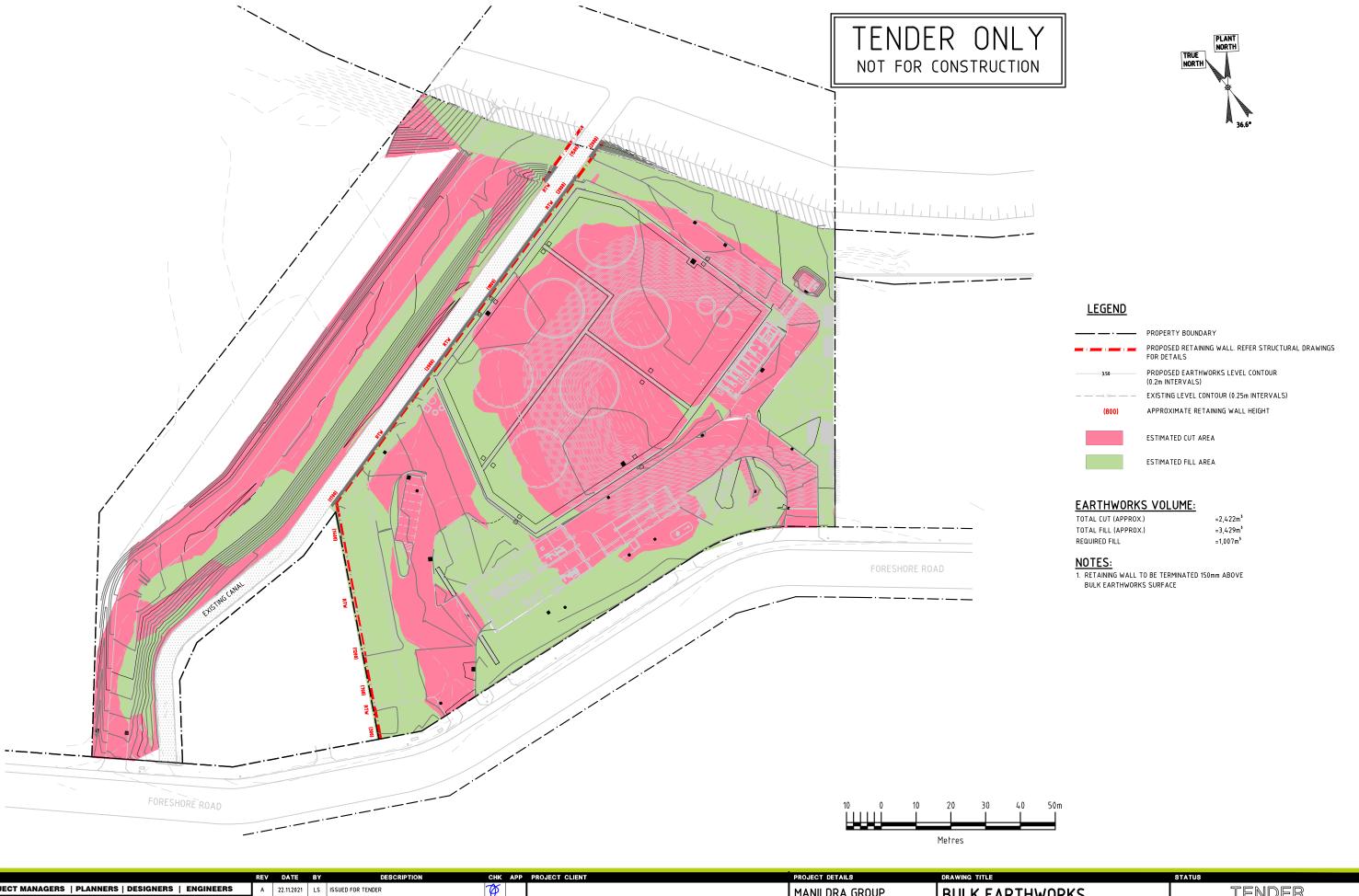


PROJECT DETAILS MANILDRA GROUP PORT KEMBLA **BULK LIQUIDS FACILITY** FORESHORE ROAD PORT KEMBLA, NSW

PIT CONSTRUCTION DETAILS

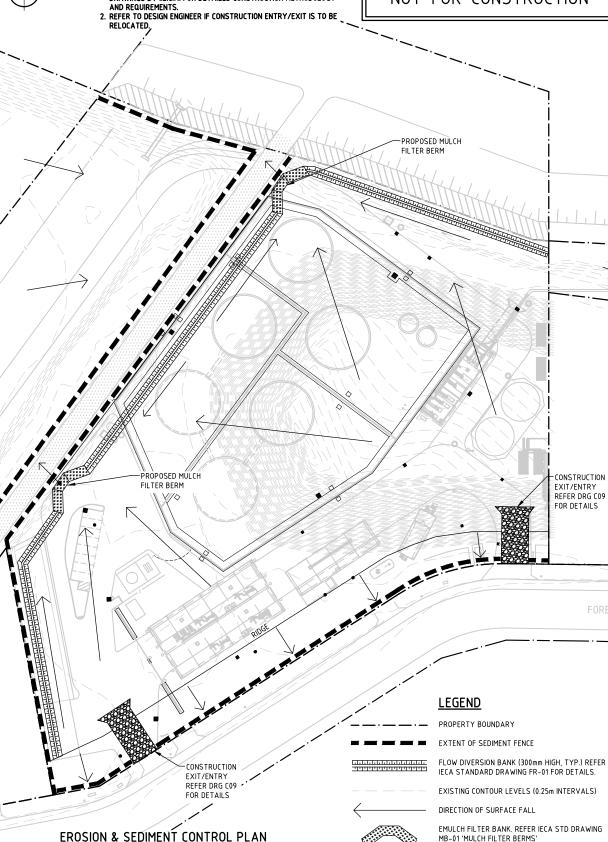

TENDER DATE CREATED ORIGINAL SCALE 02.09.2021 1:25 A3 DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENS ONS ON SITE. 20399-C05




TYPICAL OUTLET PROTECTION DETAIL SCALE 1: 25 (REFER TO DRW CO2, CO3 & CO4 FOR HEADWALL SIZES)

TENDER ONLY NOT FOR CONSTRUCTION

CONSTRUCTION EXIT - ROCK PAD MATERIALS:


- ROCK: WELL GRADED, HARD, ANGULAR, EROSION RESISTANT ROCK, NOMINAL DIAMETER OF 50 TO 75mm (SMALL DISTURBANCES) OR 100 TO 150mm (LARGE DISTURBANCES). ALL REASONABLE MEASURES MUST BE TAKEN TO OBTAIN ROCK OF NEAR UNIFORM SIZE.
- FOOTPATH STABILISING AGGREGATE : 25 TO 50mm GRAVEL OR AGGREGATE.
 GEOTEXTILE FABRIC : HEAVY-DUTY, NEEDLE -PUNCHED, NON-WOVEN FILTER CLOTH ('BIDIM' A24 OR EQUIVALENT).

INSTALLATION:

- CLEAR THE LOCATION OF THE ROCK PAD, REMOVING STUMPS, ROOTS & OTHER VEGETATION TO PROVIDE A FIRM FOUNDATION SO THAT THE ROCK IS NOT PRESSED INTO SOFT GROUND. CLEAR SUFFICIENT WIDTH TO ALLOW PASSAGE OF LARGE VEHICLES, BUT CLEAR ONLY THAT NECESSARY FOR THE EXIT. DO NOT CLEAR ADJACENT AREAS UNTIL THE REQUIRED EROSION & SEDIMENT CONTROL DEVICES ARE IN PLACE.
- IF THE EXPOSED SOIL IS SOFT, PLASTIC OR CLAYEY, PLACE A SUB-BASE OF CRUSHED ROCK OR A LAYER OF HEAVY-DUTY FILTER CLOTH TO PROVIDE A
- PLACE THE ROCK PAD FORMING A MINIMUM 200mm THICK LAYER OF CLEAN.
- IF THE ASSOCIATED CONSTRUCTION SITE IS UP-SLOPE OF THE ROCKPAD, THUS CAUSING STORMWATER RUNOFF TO FLOW TOWARD THE ROCK PAD, THEN FORM A MINIMUM 300mm HIGH FLOW CONTROL BERM ACROSS THE ROCK PAD TO DIVERT SUCH RUNOFF TO A SUITABLE SEDIMENT TRAP.
- THE LENGTH OF THE ROCK PAD SHOULD BE AT LEAST 15m WHERE PRACTICABLE, & AS WIDE AS THE FULL WIDTH OF THE ENTRY OR EXIT & AT LEAST 3m. THE ROCK PAD SHOULD COMMENCE AT THE EDGE OF THE OFF-SITE SEALED ROAD OR PAVEMENT.
- FLARE THE END THE ROCK PAD WHERE IT MEETS THE PAVEMENT SO THAT THE WHEELS OF TURNING VEHICLES DO NOT TRAVEL OVER UNPROTECTED SOIL.
- IF THE FOOTPATH IS OPEN TO PEDESTRIAN MOVEMENT, THEN COVER THE COARSE ROCK WITH FINE AGGREGATE OR GRAVEL, OR OTHERWISE TAKE WHATEVER MEASURES ARE NEEDED TO MAKE THE AREA SAFE

1. EROSION AND SEDIMENT CONTROL MEASURES ARE TO BE DESIGNED AND INSTALLED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION AUSTRALASIA (I.E.C.A.) – "BEST PRACTICE FOR EROSION AND SEDIMENT CONTROL." REFER STANDARD DRAWINGS BY I.E.C.A. FOR DETAILED CONSTRUCTION METHODOLOGY

TENDER ONLY NOT FOR CONSTRUCTION

SEDIMENT AND EROSION CONTROL NOTES:

ALL THE SEDIMENT & EROSION CONTROL MEASURES TO BE IN ACCORDANCE WITH LOCAL COUNCIL'S GUIDE LINES.

PRIOR TO THE COMMENCEMENT OF CONSTRUCTION:

AVOID STRIPPING & EXCAVATING UNTIL READY TO BUILD INSTALL SEDIMENT FENCES

SPECIFICATION:

- SILT FENCE SHALL NOT BE REMOVED UNTIL SITE HAS BEEN PAVED & SURFACED.
- 2. BUND WALLS SHALL BE LOCATED AROUND ALL PITS & MAINTAINED UNTIL THE CATCHMENT AREA HAS BEEN PAVED.
- KERB DRAIN EXCLUDER SHALL INCORPORATE TRAFFIC CONTROL BARRICADES IN ACCORDANCE WITH AS1742.3 - 1985, & SHALL NOT BE PLACED UNTIL WORKS ARE BEING CARRIED OUT ON THE
- FOOTPATH AREA, OR AS OTHERWISE DIRECTED BY COUNCIL.
 ALL SEDIMENT TRAPS, EXCLUDERS, BUND WALLS SHALL BE INSPECTED & CLEANED AFTER EACH STORM EVENT. DAMAGED OR CLOGGED BUNDING ARE TO BE REMOVED AND REPLACED.
- THE BUILDER SHALL CARRY OUT ANY ADDITIONAL WORKS DEEMED NECESSARY AND DIRECTED BY COUNCIL TO BE CARRIED OUT.
- THE SEDIMENT CONTROL PLAN SHALL BE IMPLEMENTED PRIOR TO ANY WORKS BEING CARRIED OUT ON SITE.

HOLD POINTS:

INSPECTION OF EROSION AND SEDIMENT CONTROL DEVICES MUST BE UNDERTAKEN BY THE SUPERVISING OR SUPERINTENDENT ENGINEER AT A MINIMUM AT THE FOLLOWING HOLD POINTS

- PRIOR TO COMMENCEMENT OF BULK EARTHWORKS PRIOR TO LIVE CONNECTION OF NEW STORMWATER DRAINAGE TO
- THE EXISTING SYSTEM. PRIOR TO ANY IN STREAM WORKS
- PRIOR TO ON MAINTENANCE OR OFF MAINTENANCE INSPECTION.
- AT INTERVALS NOT EXCEEDING ONE MONTH

COPIES OF INSPECTION REPORTS SHALL BE KEPT ON SITE.

SEDIMENT BARRIERS:

INSTALL SEDIMENT FENCE(S) ALONG THE LOW SIDE OF THE SITE AND IDEALLY ALONG A LINE OF CONSTANT LAND LEVEL TO PREVENT THE CONCENTRATION OF STORMWATER RUNDER IN AREAS WHERE IT IS EITHER UNDESIRABLE OR IMPRACTICAL TO BURY THE LOWER EDGE OF THE SEDIMENT FENCE, THE LOWER 200mm (MIN) PORTION OF THE FABRIC SHOULD BE PLACED 0 THE GROUND UP-SLOPE OF THE FENCE AND BURIED UNDER A 100mm (MIN)LAYER OF AGGREGATE. SEDIMENT FENCES ON BUILDING SITES CAN BE STAPLED TO

APPROXIMATELY 40mm SQUARE HARDWOOD POSTS OR WIRE TIED

FIFI D INLET GUILLIES

SEDIMENT CONTROLS FOR STORMWATER INLETS LOCATED WITHIN THE PROPERTY BOUNDARIES MAY CONSIST OF GEOTEXTILE FABRIC PLACED EITHER DIRECTLY OVER THE GRATED INLET OR AROUND THE INLET SUPPORT BY A TIMBER FRAME, FIELD INLET PROTECTION IS NECESSARY WHERE INLETS DRAIN AREAS OF BARE AND UNPROTECTED SOIL. DURING STORMS, PONDING SHOULD BE ALLOWED TO OCCUR AROUND THE STORMWATER INLET TO ASSIST IN THE SETTING OUT OF SEDIMENTS.

PAVEMENT INLET GULLY

A ROADSIDE INLET BARRIER IS TO BE INSTALLED, SO THAT IT SHOULD NOT BE ALLOWED TO FULLY BLOCK THE INLET STRUCTURE ON A HILLSIDE, SEDIMENT BARRIERS MAY CONSIST OF A TEMPORARY DAM CONSTRUCTED FROM SAND AND GRAVEL BAGS AT LEAST 4 METRES UP SLOPE FROM THE GULLY INLET.

BUILDING OPERATIONS:

- ERODABLE MATERIAL MISTAKENLY PLACED WITHIN THE ROAD RESERVE (INCLUDING ACCIDENTAL SPILL AGE AND TRACKING DE SUCH MATERIALS ONTO THE ROAD) THAT CAN NOT BE PREVENTED THROUGH REASONABLE MEANS, MUST BE:
 (a) REMOVED IMMEDIATELY IF RAINFALL IS IMMINENT OR OCCURRING. (b) REMOVED PRIOR TO THE END OF THE DAY'S WORK IF RAINFALL NOT EXPECTED. MATERIALS SHOULD BE SWEPT FROM THE ROAD, NOT WASHED DOWN THE GUTTER.
- ALL SOLID WASTE SHOULD BE STORED ON SITE IN SUCH A MANNER THAT IT IS PREVENTED FROM LEAVING THE SITE EITHER BY THE ACTION OF WIND OR WATER
- SMALLER MATERIALS, SUCH AS LITTER, SHOULD BE CONTAINED IN COVERED BINS OR LITTER TRAPS FORMED ON THREE SIDES BY A GEOTEXTILE WIND BREAK.
- CONCRETE WASTE WASTED FROM TRUCKS AND MIXERS UNITS SHALL BE CONTAINED ON SITE AND SHALL NOT BE PLACED IN A POSITION WHERE IT COULD REASONABLY BE EXPECTED TO WASH FROM THE SITE AND HARM THE ENVIRONMENT.
- DUST SUPPRESSION OPERATIONS SHALL BE UNDERTAKEN TO MINIMISE THE RISK OF DUST RISE, INCLUDING WATER TRUCKS. MULCHING, EROSION CONTROL BLANKETS, SOIL BINDERS, VEHICLE SPEED LIMITS & STOCKPILE STABILISATION.

BULK EARTHWORKS:

- AVOID STRIPPING & EXCAVATING UNTIL READY TO BUILD.
- CONSTRUCTION OF AN ENTRY/EXIT POINT TO THE SITE SHOULD BE MANAGED SO THAT SEDIMENT IS NOT TRACKED OFF THE SITE.
- TOP SOIL SHOULD BE STOCKPILED ON SITE FOR LATER USE.
 WHERE PRACTICABLE MAINTAIN KERB VEGETATION IN A HEALTHY STATE DURING THE CONSTRUCTION PROGRESS.
 WHEN UP SLOPE WATER IS DIVERTED AROUND A WORK SITE IT IDEALLY
- SHOULD BE DISCHARGED AS SHEET FLOW THROUGH AN UNDISTURBED AREA BESIDE THE WORKS.

STOCKPILES:

- STOCKPILES ARE NOT TO BE STORED ON THE FOOTPATH OR THE ROAD
- WHERE NECESSARY STOCKPILE LOSSES CAN BE MINIMISED WITH THE USE OF
- ALL STOCKPILES AND BUILDING MATERIAL SHOULD BE LOCATED WITHIN SEDIMENT CONTROL ZONE.
- TO MINIMISE EROSION AND THE LOSS OF SAND AND SOIL STOCKPILES SHOULD BE NOT LOCATED WITHIN AN OVERLAND FLOW PATH. IF IT IS IMPRACTICAL TO AVOID STORMWATER RUNOFF BEING DIRECTED. TO A STOCKPILE, THEN A PERIMETER BANK SHALL BE CONSTRUCTED UP SLOPE OF THE STOCKPILE TO DIRECT RUNOFF IN A CONTROLLED MANNER AROUND

GENERAL MAINTENANCE:

- SEDIMENT FENCES SHOULD BE REPLACED IF THE FABRIC IS RIPPED OR OTHERWISE DAMAGED. THE MAINTENANCE OF THE SEDIMENT FENCES INCLUDES THE REMOVAL OF SEDIMENT DEPOSITED UP SLOPE OF THE FENCE
- AND RETRENCHING THE FABRIC WHEN THE FENCE IS 25% FULL. FOLLOWING STORM EVENTS, THE ROAD RESERVE AND ALL SEDIMENT BARRIERS SHOULD BE INSPECTED AND ANY EXCESSIVE RESIDUE SHOULD BE APPROPRIATELY REMOVED.

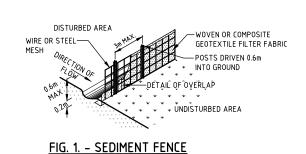
SITE REHABILITATION:

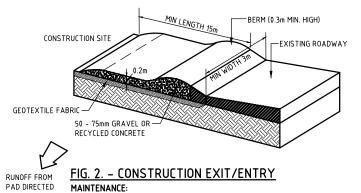
ALL GROUND DISTURBED BY THE CONSTRUCTION ACTIVITY SHOULD BE PROMPTLY AND PROGRESSIVELY STABILISED SO IT CAN NO LONGER ACT AS A SOURCE OF SEDIMENT.

SERVICES TRENCHES:

TO AVOID UNNECESSARY SOIL EROSION, SERVICE TRENCHES SHOULD BE BACK FILLED, CAPPED AND COMPACTED TO A LEVEL AT LEAST 75-100mm ABOVE THE ADJOINING GROUND LEVEL.

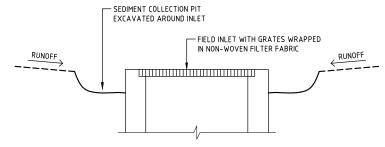
OPERATION & MAINTENANCE


- EROSION & SEDIMENT CONTROL MEASURES SHALL BE INSPECTED: A. DAILY (WHEN WORK IS OCCURRING ON SITE) OR WEEKLY (WHEN WORK IS NOT OCCURRING ON SITE)
- B. WITHIN 24 HOURS OF EXPECTED RAIN
- WITHIN 18 HOURS OF A RAINFALL EVENT (ie AN EVENT OF SUFFICIENT INTENSITY AND DURATION TO CAUSE RUNOFF).
- EROSION & SEDIMENT CONTROL MAINTENANCE MEASURES SHALL BI TRIGGERED WHEN THE CAPACITY OF THE MEASURE FALLS BELOW 75%. THE MAINTENANCE SHALL BE PERFORMED BY THE END OF THE DAY PRIOR TO LONG PERIODS OF SHUT DOWN (GREATER THAN 5 DAYS) THE SITE
- SHALL EITHER TO BE PROVIDED WITH TEMPORARY GROUND COVER (AT LEAST 70% EFFECTIVE COVER) OR HAVE ALL EROSION AND SEDIMENT CONTROL MEASURES TO BE CONTINUALLY OPERATED DURING THE SHUTDOWN, INCLUDING ONGOING MONITORING AND SEDIMENT BASIN CLEANOUTS.
- SHUTDOWN PERIODS IN EXCESS OF 3 MONTHS ARE TO HAVE 100% LONG TERM SITE COVERAGE SUCH AS HYDROMULCH OR GEOFABRIC.
- STORMWATER RELEASE LIMITS
- ALL RELEASES OF STORMWATER CAPTURED ON-SITE, UNLESS OTHERWISE NOTED MUST NOT EXCEED THE FOLLOWING LIMITS:
- A. 50mg/L OF TOTAL SUSPENDED SOLIDS (TSS) AS A MAXIMUM CONCENTRATION.
- B. TURBIDITY (NTU) VALUE LESS THAN 10% ABOVE BACKGROUND
 C. pH VALUE MUST BE IN THE RANGE 6.5 TO 8.5 EXCEPT WHERE, AND TO THE
- EXTENT THAT, THE NATURAL RECEIVING WATERS LIE OUTSIDE THIS RANGE
- WEATHER FORECASTS SHALL BE MONITORED AND IN THE EVENT OF HEAVY RAIN FORECAST ALL MAINTENANCE AND PREVENTION METHODS SHALL BE IMPLEMENTED


STOCKPILE MANAGEMENT

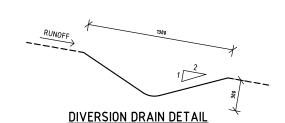
SAND MATERIAL

- A. NO COVER REQUIRED WHEN WIND EROSION AND DUST CONTROL IS NOT AN
- B. SYNTHETIC COVER IS REQUIRED WHEN THE CONTROL OF WIND EROSION IS REQUIRED FOR SAFETY, TO BE INSTALLED BY THE END OF THE DAY.
- A. NO COVER REQUIRED WHEN WIND EROSION AND DUST CONTROL IS NOT AN
- B. MULCHING, CHEMICAL STABILISERS, SOIL BINDERS, IMPERVIOUS BLANKETS OR VEGETATIVE COVER IS REQUIRED WHEN:
- >28 DAY STOCKPILING OF DISPERSIVE SOILS
 >28 DAY STOCKPILING OF CLAYEY SOILS WHERE TURBIDITY CONTROL IS DESIRABLE >5/10 DAY STOCKPILING OF SOILS DURING MONTHS OF EXTREME/HIGH
- EROSION RISK (JAN, FEB, MAR, APR, NOV, DEC)
- ALL STOCKPILES OF CLAYEY SOILS WHEN TURBIDITY CONTROL IS



THE ENTRANCE SHOULD BE MAINTAINED SO THAT IT PREVENTS TYRES FROM TRACKING.
DRESSING WITH ADDITIONAL AGGREGATE IF REQUIRED.

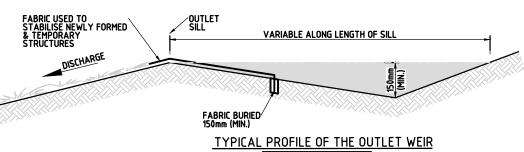
WRAP FILTER CLOTH-OVER GRATE. 100¢ AG. PIPE WRAPPED IN FILTER CLOTH PLACED TO COVER THE EXTENTS OF LINTEL OR BACKSTONE & FILLED WITH 20mm GRAVEL.

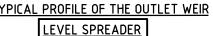


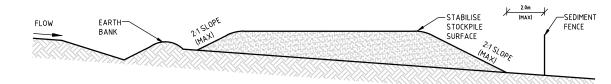
KERB INLET PROTECTION DETAIL

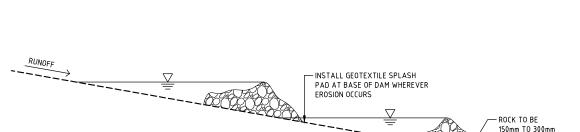
GRATED INLET SEDIMENT TRAP DETAIL

CATCH DRAIN DETAIL CATCH DRAINS TO BE RUN AT MAX. 0.5% GRADE

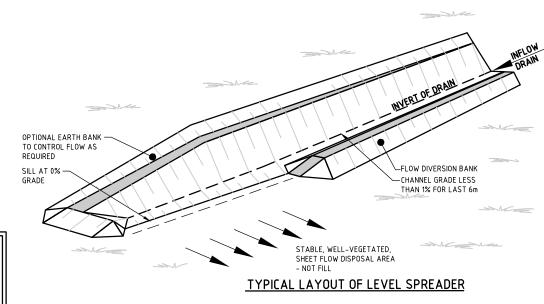


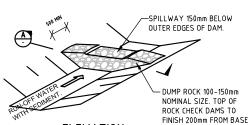

DIVERSION DRAIN TO BE LINE WITH GEOFABRIO

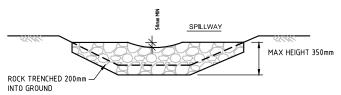

3. REGULARLY REMOVE SEDIMENT FROM ROADWAY.


LEVEL SPREADER INSTALLATION:

- THE OUTLET SILL OF THE SPREADER SHOULD BE PROTECTED WITH EROSION CONTROL MATTING TO PREVENT EROSION DURING THE ESTABLISHMENT OF VEGETATION. THE MATTING SHOULD BE A MINIMUM OF 1200mm WIDE EXTENDING AT LEAST 300mm UPSTREAM OF THE EDGE OF THE OUTLET CREST & BURIED AT LEAST 150mm IN A VERTICAL TRENCH. THE DOWNSTREAM EDGE SHOULD BE SECURELY HELD IN PLACE WITH CLOSELY SPACED HEAVY-DUTY WIRE STAPLES AT LEAST 150mm LONG.
- 2. ENSURE THAT THE OUTLET SILL (CREST) IS LEVEL FOR THE SPECIFIED LENGTH.
- 3. IMMEDIATELY AFTER CONSTRUCTION, TURF, OR SEED & MULCH WHERE APPROPRIATE, THE LEVEL SPREADER.




CHECK DAM LONGITUDINAL DETAIL REFER SECTION DETAIL FOR PERPENDICULAR PROFILE


TO SEDIMENT TRAP.

MANILDRA GROUP
100% AUSTRALIAN OWNED

PROJECT DETAILS MANILDRA GROUP PORT KEMBLA **BULK LIQUIDS FACILITY** FORESHORE ROAD PORT KEMBLA, NSW

EROSION & SEDIMENT CONTROL PLAN CONSTRUCTION DETAILS

STATUS						
TENDER						
DATE CREATED	ORIGINAL SCALE	SHEET				
14.09.2021	AS SHOWN	A3				
DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SI						
DRAWING NO REV						
20399-C09 A						

LEGEND:

200mm HIGH KERB

150mm HIGH KERB

BUND FLOOR:

150mm THICK CONCRETE SLAB WITH SL82 MESH AT 50 TOP & BTM. COVER ON 0.2mm POLYTHENE OVER 50mm CLEAN SAND BEDDING JOINTS AT 5m CENTRES TYPICAL WITH "EARTHSHIELD T-PER REAR GUARD WATER STOPS. JOINT SEALANT AS PER TYPICAL DETAIL. APPROXIMATE AREA 3270m²

GRAVEL HARDSTAND (REMAINDER OF SITE)

150mm THICK 20mm DRAINAGE GRAVEL ON GEOFABRIC LINER OVER COMPACTED SUBGRADE. APPROXIMATE AREA 2800m2

HEAVY DUTY VEHICLE PAVEMENT:

200mm THICK CONCRETE SLAB WITH SL92 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE (DGS20) APPROXIMATE AREA 1490m2

LIGHT DUTY VEHICLE PAVEMENT:

150mm THICK CONCRETE SLAB WITH SL82 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE (DGS20) APPROXIMATE AREA 1260m²

2-COAT SPRAY SEAL FOOTPATH

100 0/A THICKNESS: 2-COAT BITUMEN SPRAY SEAL WITH CHIP COAT (C170 20/7mm) ON 100mm CBR80 (SOAKED) BASE (DGB20) OVER APPROXIMATE AREA 661m2

CROSSOVER PAVEMENT:

200mm THICK CONCRETE FOOTPATH CROSSOVER WITH SL92 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE (DGS20). APPROXIMATE AREA 120m2

100mm THICK CONCRETE SLAB (BROOM FINISH) WITH SL72 MESH AT 40 TOP COVER ON 0.2mm POLYTHENE OVER 50mm SAND BEDDING MATERIAL APPROXIMATE AREA 150m2

2-COAT SPRAY SEAL DRIVEWAY/ROAD:

250 O/A THICKNESS: 2-COAT BITUMEN SPRAY SEAL WITH CHIP COAT (C170 20/7mm) ON 100mm CBR80 (SOAKED) BASE (DGB20) OVER 150mm CBR45 (SOAKED) BASE (DGS20) APPROXIMATE AREA 2317m²

BUND FOOTINGS

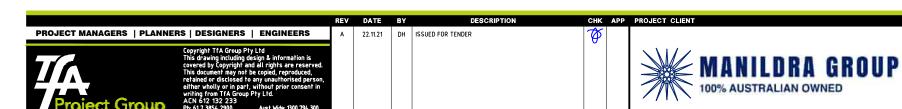
AS DETAILED APPROXIMATE AREA 760m2

LANDSCAPING:

APPROXIMATE AREA 1353m²

BUILDING/GANTRY/STRUCTURE SLABS:
AS DETAILED. TYPICALLY 200mm CONCRETE SLAB WITH SL92 MESH AT 50 TOP COVER ON 0.2mm POLYTHENE OVER 150mm THICK CBR45 BASE 9DGS20). APPROXIMATE AREA 1560m2

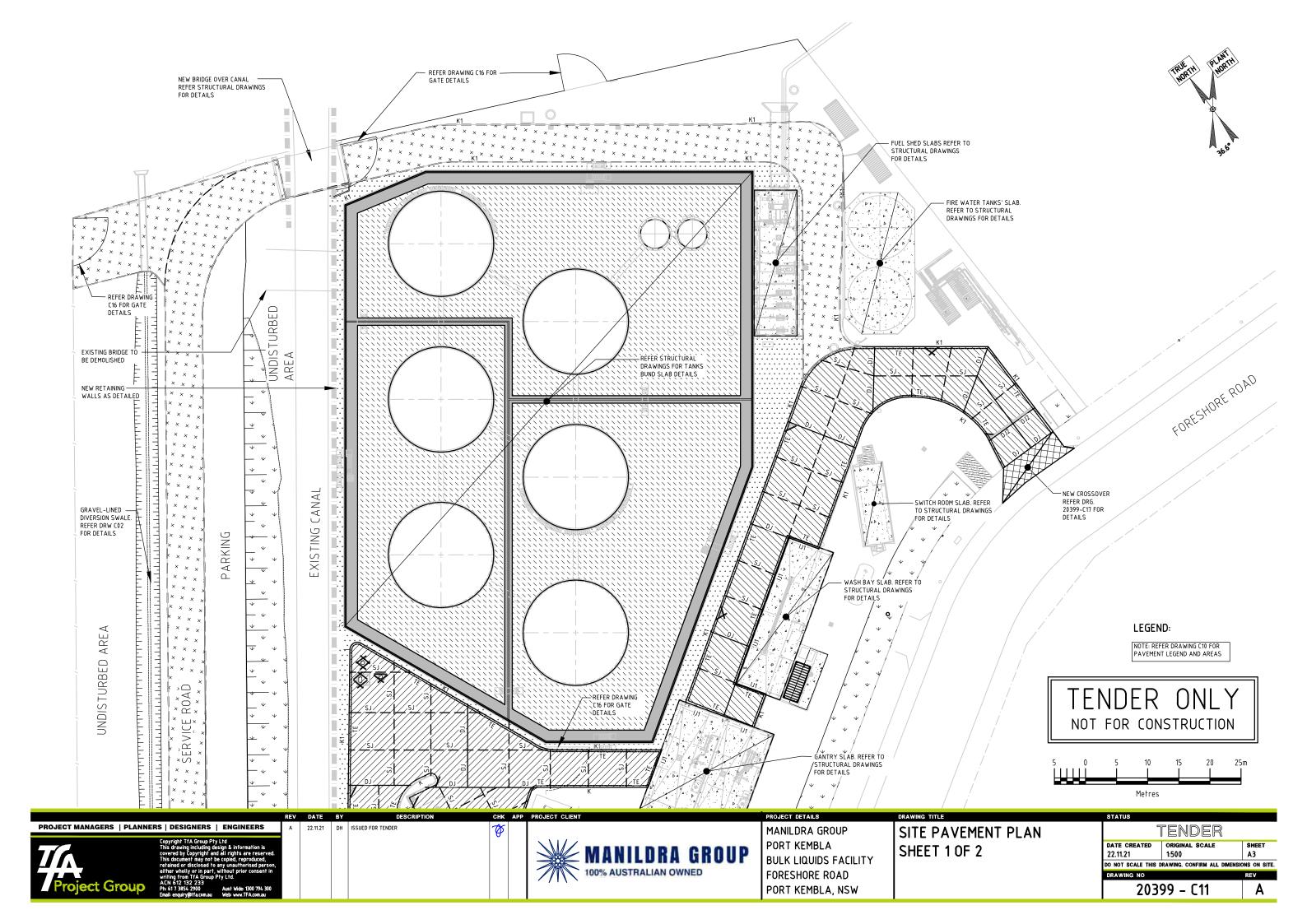
CONCRETE NOTES:

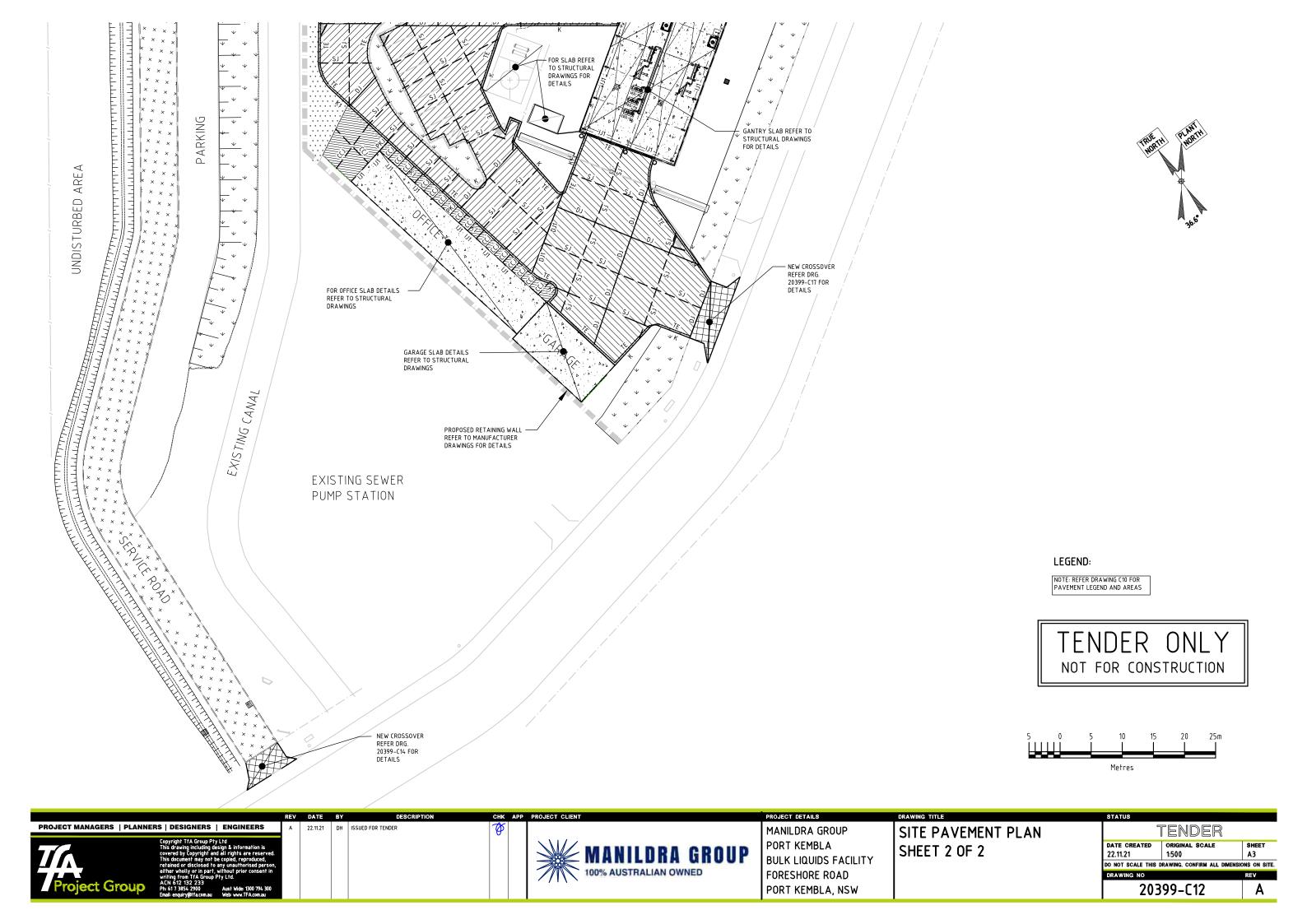

- ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AS3600.
- CONCRETE QUALITY:

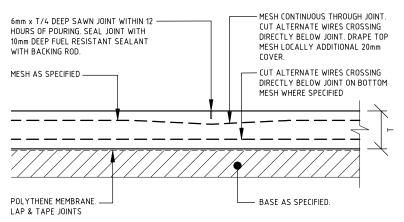
ELEMENT	SLUMP	MAX. SIZE AGG.	CEMENT TYPE	AS 3600 F'C	ADMIX
BUILDING SLABS, FOOTINGS, PAVEMENTS	80	20	GP	N40	NIL
TANK BASES, BUND FLOOR/WALLS	80	20	GP	N40	XYPEX C-5000
MASS CONCRETE BLINDING	100	20	GP	N20	NIL

- SIZES OF CONCRETE DO NOT INCLUDE THICKNESS OF APPLIED FINISHES.
- CONSTRUCTION JOINTS WHERE NOT SHOWN SHALL BE LOCATED TO THE APPROVAL OF THE ENGINEER.
- NO HOLES OR CHASES OTHER THAN THAT SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE MADE IN CONCRETE MEMBERS WITHOUT THE PRIOR APPROVAL OF THE ENGINEER.
- REINFORCEMENT IS REPRESENTED DIAGRAMMATICALLY. IT IS NOT NECESSARILY SHOWN OF TRUE
- SPLICES IN REINFORCEMENT SHALL BE MADE ONLY ON THE POSITIONS SHOWN. THE WRITTEN APPROVAL OF THE ENGINEER SHALL BE OBTAINED FOR ANY OTHER SPLICES. WHERE LAP LENGTHS ARE NOT SHOWN, THEY SHALL SATISFY THE REQUIREMENTS OF AS3600 OR AS FOLLOWS:-FABRIC - 1 SQUARE +25mm

f'c	N12	N16	N32		
25	850	1150	1500	2200	2600
32	750	1000	1300	1950	2300
40	650	900	1150	1750	2100

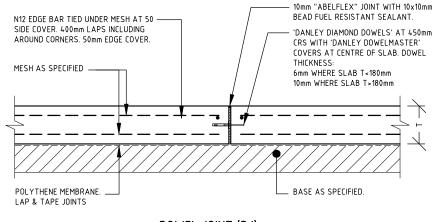

- PIPES OR CONDUITS SHALL NOT BE PLACED WITHIN THE CONCRETE COVER TO REINFORCEMENT WITHOUT THE APPROVAL OF THE ENGINEER.
- ALL STEEL WIRE MESH SHALL BE SUPPLIED IN FLAT SHEETS.
 THE CONTRACTOR SHALL NOTIFY THE ENGINEER 24 HOURS BEFORE REINFORCEMENT IS COMPLETED. THE CONTRACTOR SHALL ALLOW AFTER COMPLETION OF THE REINFORCEMENT, TWO HOURS FOR THE ENGINEERS INSPECTION.
- CONCRETE SHALL NOT BE ORDERED UNTIL REINFORCEMENT IS APPROVED BY THE ENGINEER.
- CONCRETE FINISHING, CURING AND STRIPPING TO BE IN ACCORDANCE WITH THE RELEVANT AUSTRALIAN STANDARDS. CONCRETE TO BE CURED A MINIMUM OF 7 DAYS AFTER POURING BY EITHER APPLYING A SPRAYED MEMBRANE FORMING CURING COMPOUND COMPATIBLE WITH ANY SUBSEQUENT FINISHES TO BE APPLIED TO THE CONCRETE SURFACES, OR COVERING WITH
- POLYTHENE SHEETING SECURELY HELD IN POSITION. CLEAR CONCRETE COVER TO REINFORCEMENT SHALL BE AS INDICATED.
- ALL REINFORCEMENT SHALL BE SUPPORTED ON APPROVED CHAIRS AT A MAXIMUM SPACING OF 1000mm CENTRES IN EACH DIRECTION TO PROVIDE THE CORRECT COVER.
- THE SUPPLY, DELIVERY, SAMPLING AND TESTING OF CONCRETE SHALL BE IN ACCORDANCE WITH AS1379. RESULTS OF CONCRETE CYLINDER SAMPLE TESTING SHALL BE FORWARDED TO THE

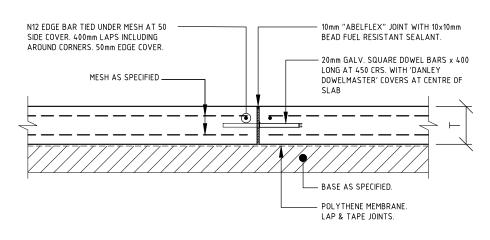



PROJECT DETAILS MANILDRA GROUP PORT KEMBLA **BULK LIQUIDS FACILITY** FORESHORE ROAD PORT KEMBLA, NSW

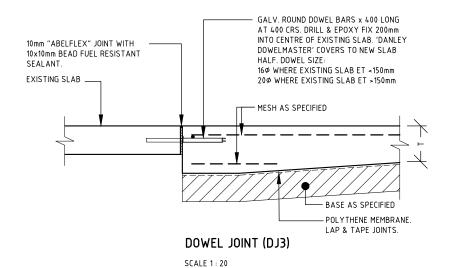
CONCRETE PAVEMENT LEGEND & CONSTRUCTION NOTES

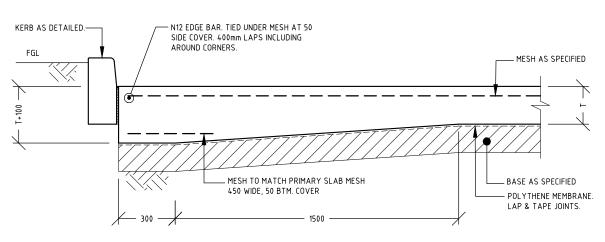
TENDER DATE CREATED ORIGINAL SCALE 22.11.21 NTS A3 DO NOT SCALE THIS DRAWING, CONFIRM ALL DIMENS IONS ON SITE. 20399-C10

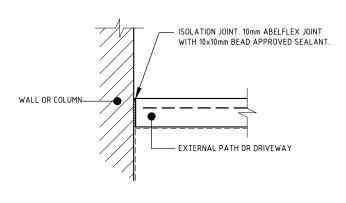



TYPICAL SAW JOINT (SJ)

SCALE 1: 20

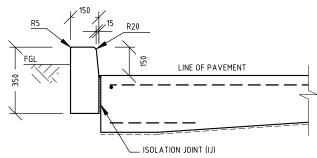

DOWEL JOINT (DJ)


SCALE 1: 20



ALTERNATIVE DOWEL JOINT (DJ)

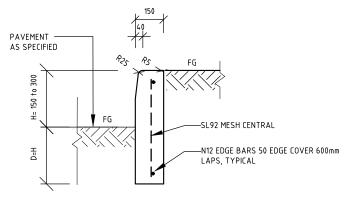
SCALE 1: 20



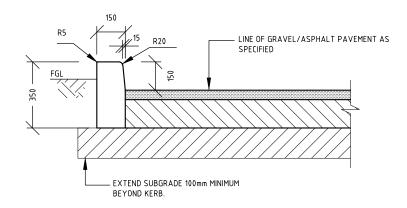
ISOLATION JOINT (IJ)

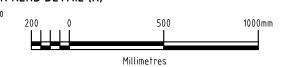
SCALE 1: 20

SCALE 1: 20

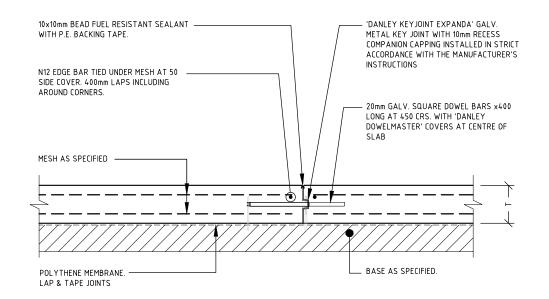


BARRIER KERB DETAIL (K)

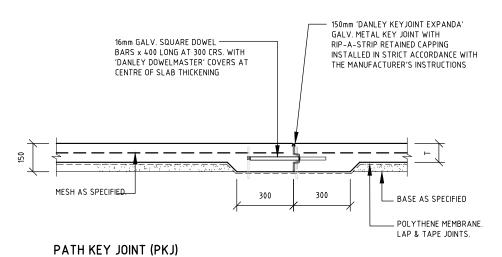

SCALE 1: 20

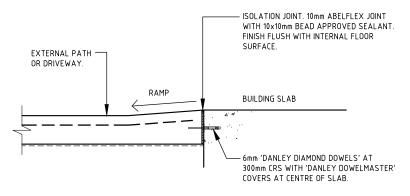


BARRIER KERB DETAIL (K1)

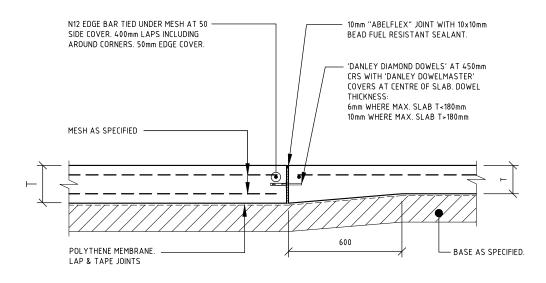

PROVIDE JOINTS IN KERB TO MATCH JOINTS IN PAVEMENT SCALE 1: 20

BARRIER KERB DETAIL (K)

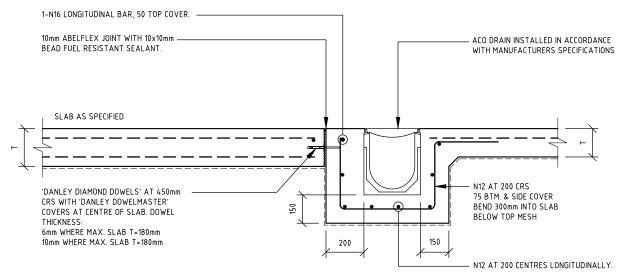




KEY JOINT (KJ)

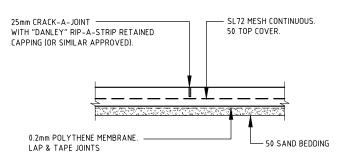

SCALE 1: 20

ISOLATION JOINT (IJ1)
(AT DOORWAY ONLY)

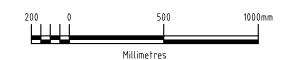

SCALE 1: 20

DOWEL JOINT (DJ1)

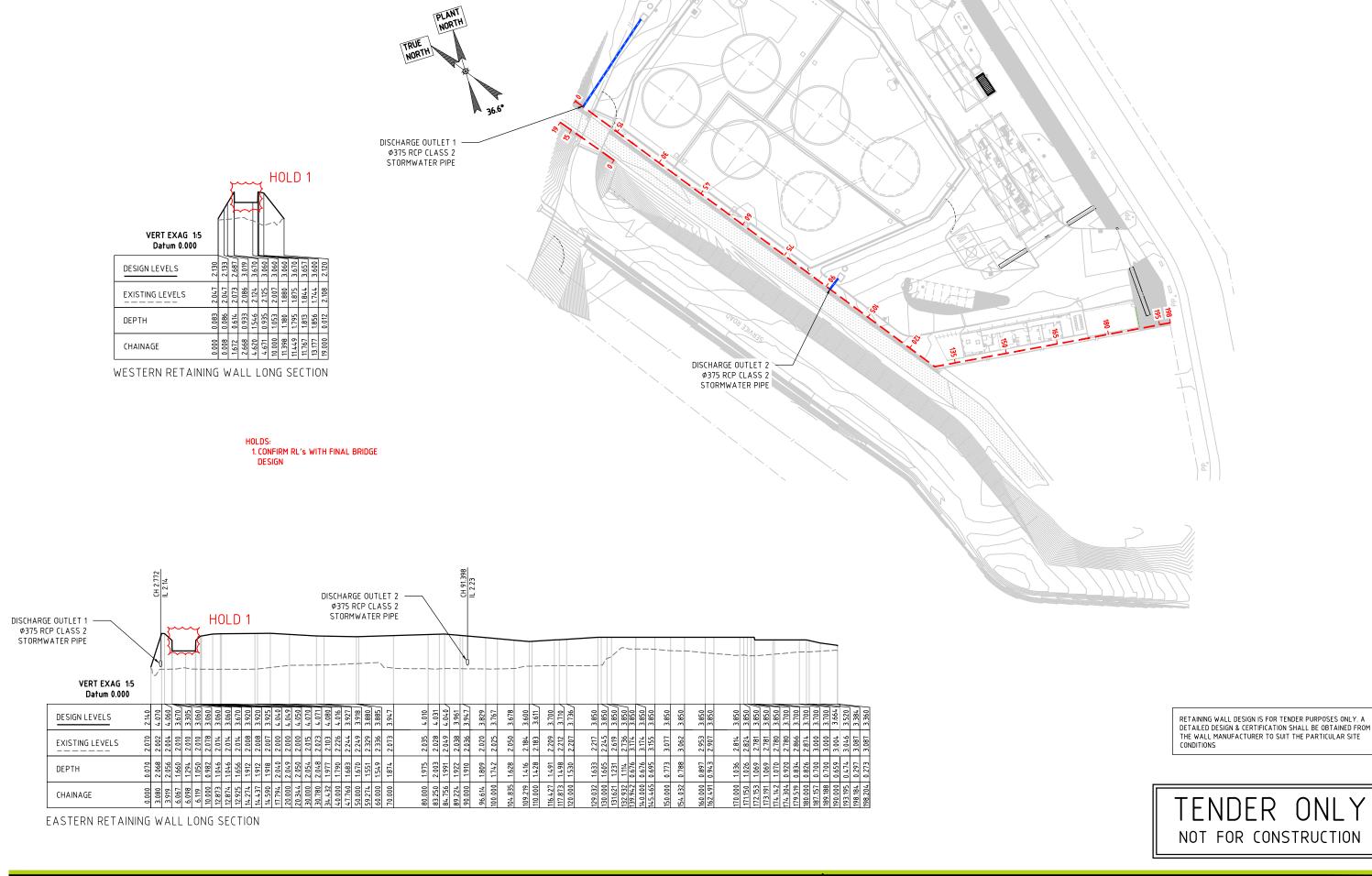
SCALE 1: 20


TENDER ONLY
NOT FOR CONSTRUCTION

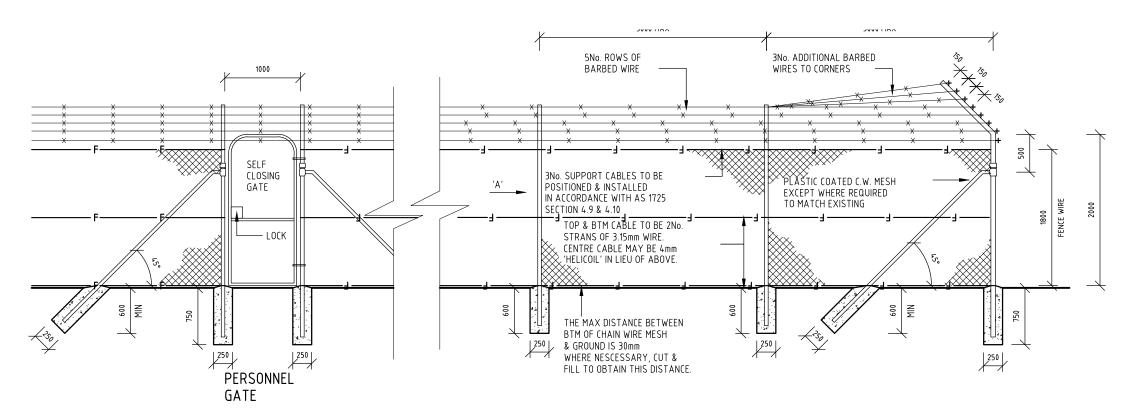
DOWEL JOINT (DJ2)

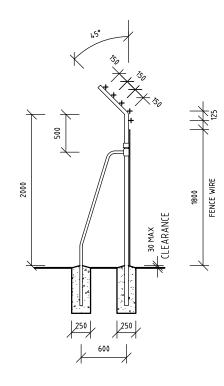

SCALE 1: 20

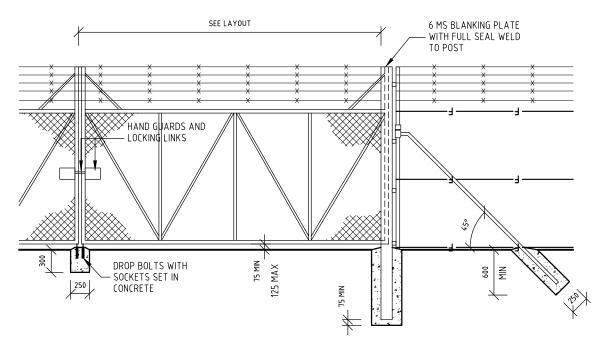
ACO TRENCH DRAIN SECTION WITH DOWEL JOINT SCALE 1: 20 $\,$



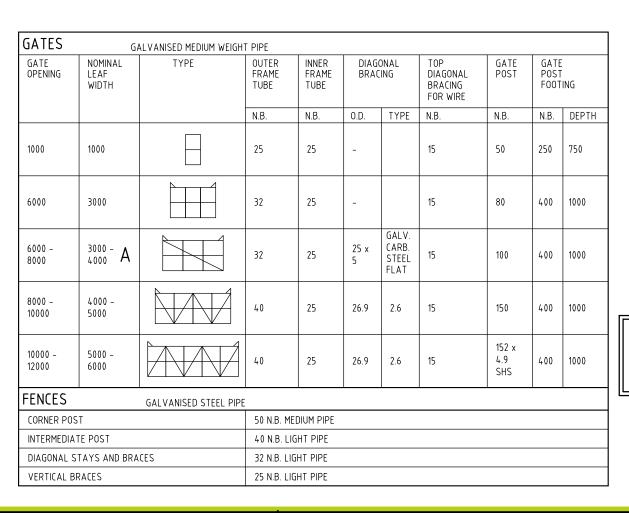
PATH CRACK CONTROL JOINT (CCJ)


SCALE 1: 20




PROJECT DETAILS PROJECT MANAGERS | PLANNERS | DESIGNERS | ENGINEERS SITE RETAINING WALL LS ISSUED FOR TENDER MANILDRA GROUP TENDER PORT KEMBLA ORIGINAL SCALE DATE CREATED MANILDRA GROUP
100% AUSTRALIAN OWNED **LONG SECTIONS** AS SHOWN Α3 15.11.21 **BULK LIQUIDS FACILITY** DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SITE. FORESHORE ROAD PORT KEMBLA, NSW 20399-C15 Α

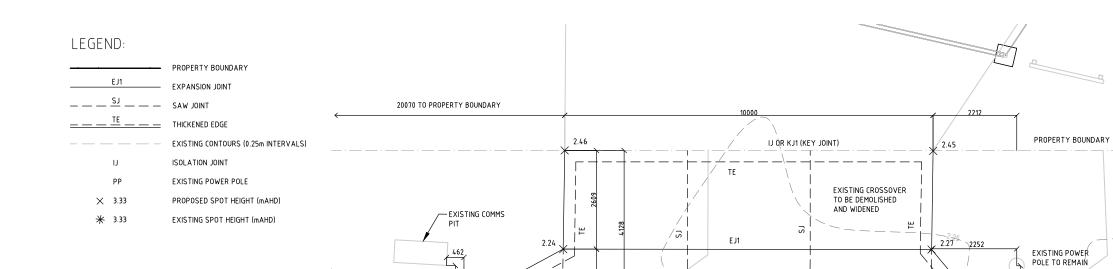
VERTICAL BRACE VIEW 'A'


CORNER AND INTERMEDIATE PANELS

LARGE GATES INTERNAL & EMERGENCY ACCESS ONLY

NOTE:

PALISADE GATES WITH SPIKES (MAIN TRUCK ENTRY/EXIT)

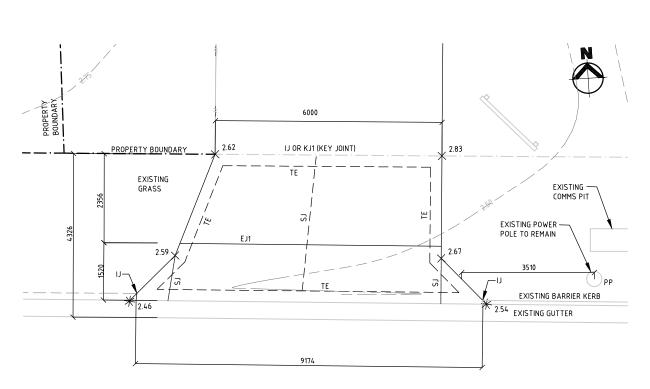


NOTES:

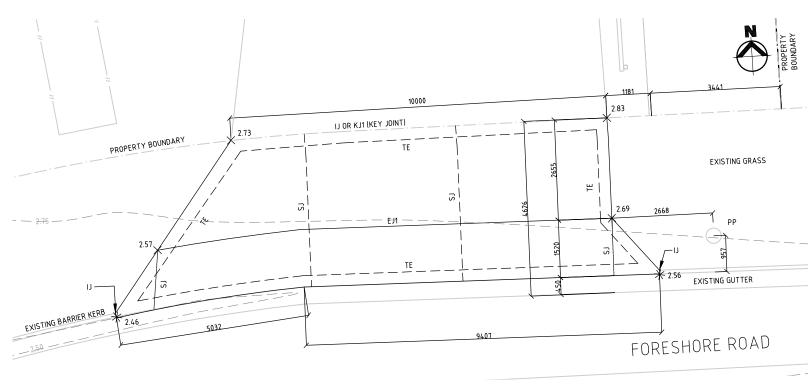
- 1. ALL FENCE COMPONENTS TO BE PAINTED BLACK
- 2. CHAIN WIRE TO BE BLACK PLASTIC COATED

TENDER ONLY NOT FOR CONSTRUCTION

	F	REV D	ATE BY	1	DESCRIPTION	CHK	APP	PROJECT CLIENT	PROJECT DETAILS	DRAWING TITLE	STATUS		
PROJECT MANAGERS PLANNERS DESIGN	IERS ENGINEERS	A 17.1	1.2021 LS	ISSUED FOR TENDE	?	\$			MANILDRA GROUP	SECURITY FENCING	7	TENDER	_
Copyright TfA This drawing in covered by Con	Group Pty Ltd cluding design & information is pyright and all rights are reserved.							MANILDRA GROUP	PORT KEMBLA	DETAILS		ORIGINAL SCALE AS SHOWN	SHEET
This document retained or discribed whether whether the contractions are the contractions and the contraction of the contractio	may not be copied, reproduced, closed to any unauthorised person,											RAWING. CONFIRM ALL DIMENSI	ONS ON SITE.
writing from Ti	A Group Pty Ltd.							100% AUSTRALIAN OWNED	FORESHORE ROAD		DRAWING NO		REV
Project Group Ph: 617 3854 25 Email: enquiry@f1	Aust Wide: 1300 794 300 fa.com.au Web: www.TFA.com.au								PORT KEMBLA, NSW		203	99-C16	A



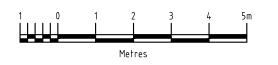
FOR PAVEMENT DRAWING DETAILS REFER WOLLONGONG CITY COUNCIL ENGINEERING STANDARD DRAWINGS


CONCRETE CROSSOVERS SHALL BE 200mm THICK CONCRETE N32 CONCRETE WITH SL92 MESH AT 40 TOP COVER OVER 0.2mm POLYMER OVER CBR 45 SUBBASE (DGB20)

TENDER ONLY NOT FOR CONSTRUCTION

WESTERN CROSSOVER DETAIL SCALE 1:100

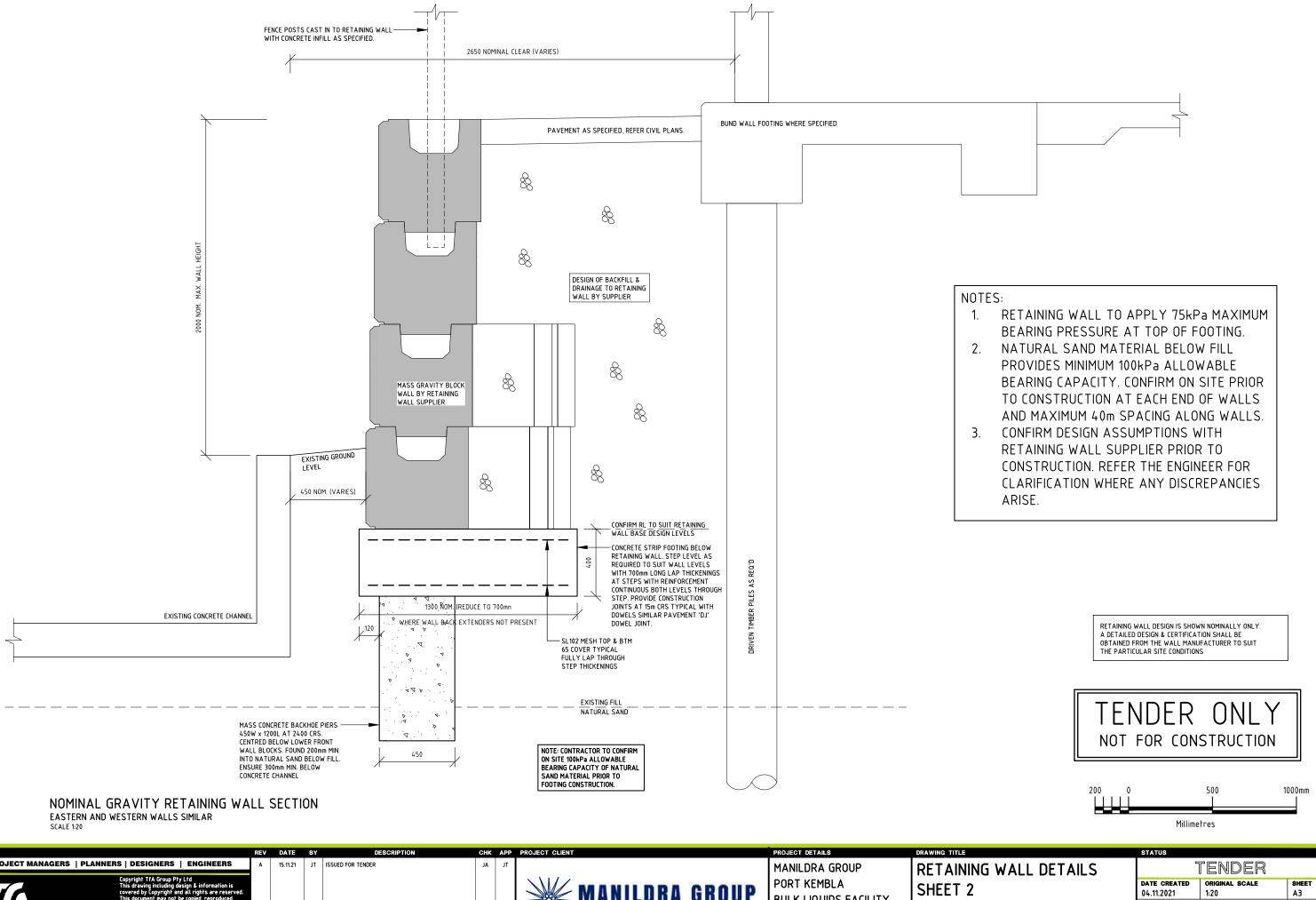
SERVICE ROAD CROSSOVER DETAIL SCALE 1:100

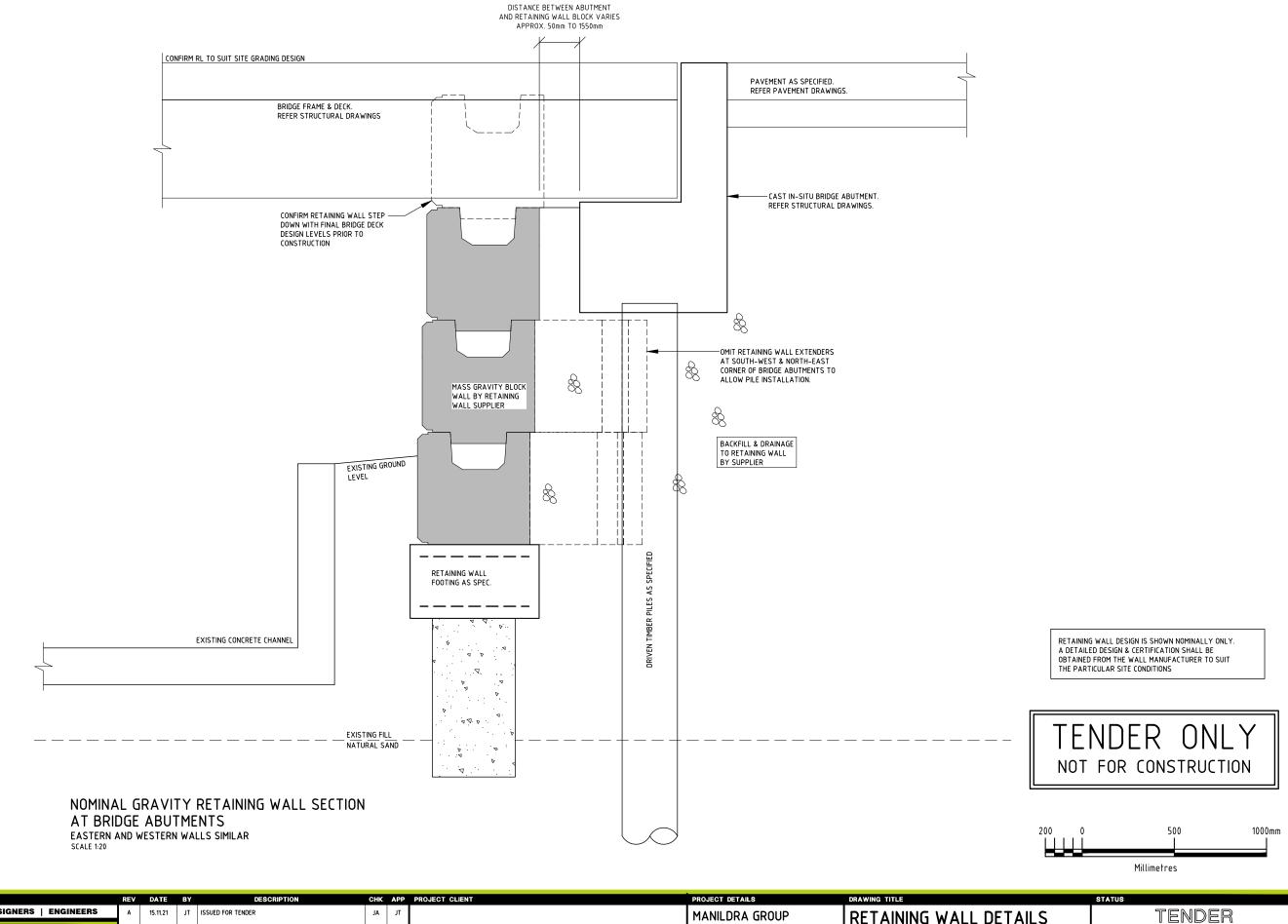


FORESHORE ROAD

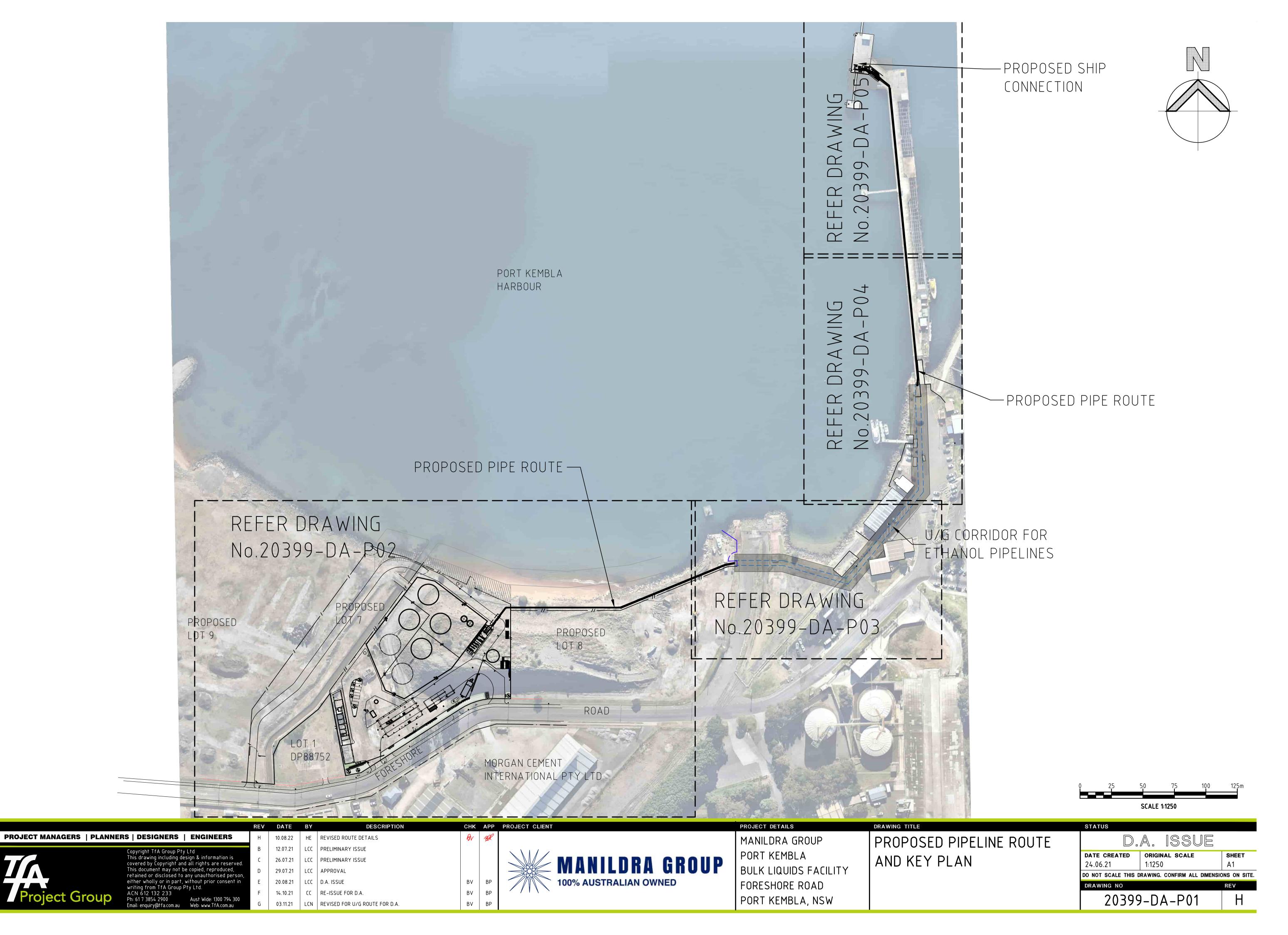
EXISTING CROSSOVER TO BE DEMOLISHED AND LANDSCAPED

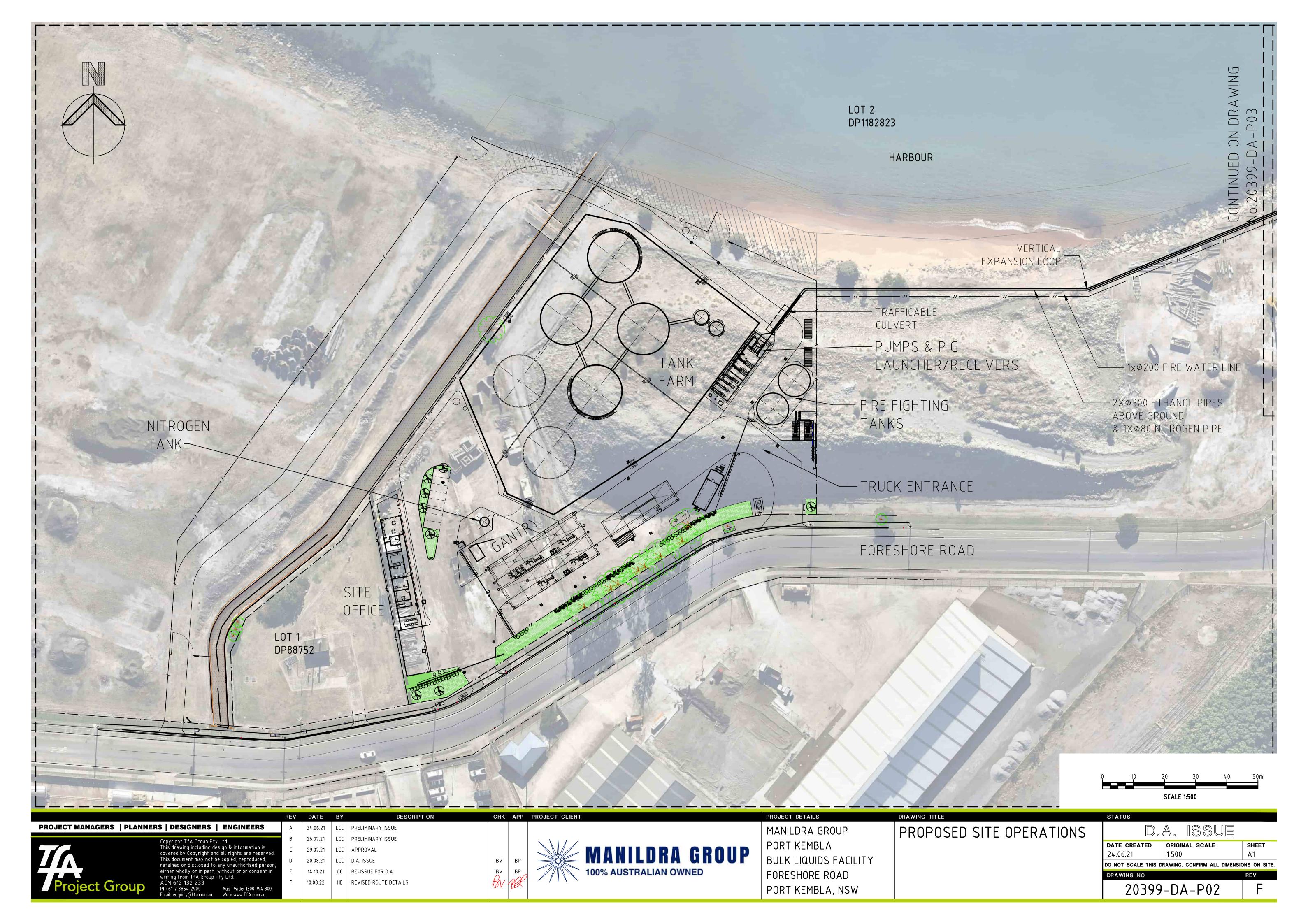
BARRIER KERB & GUTTER AS PER WOLLONGONG STD DRAWING C10

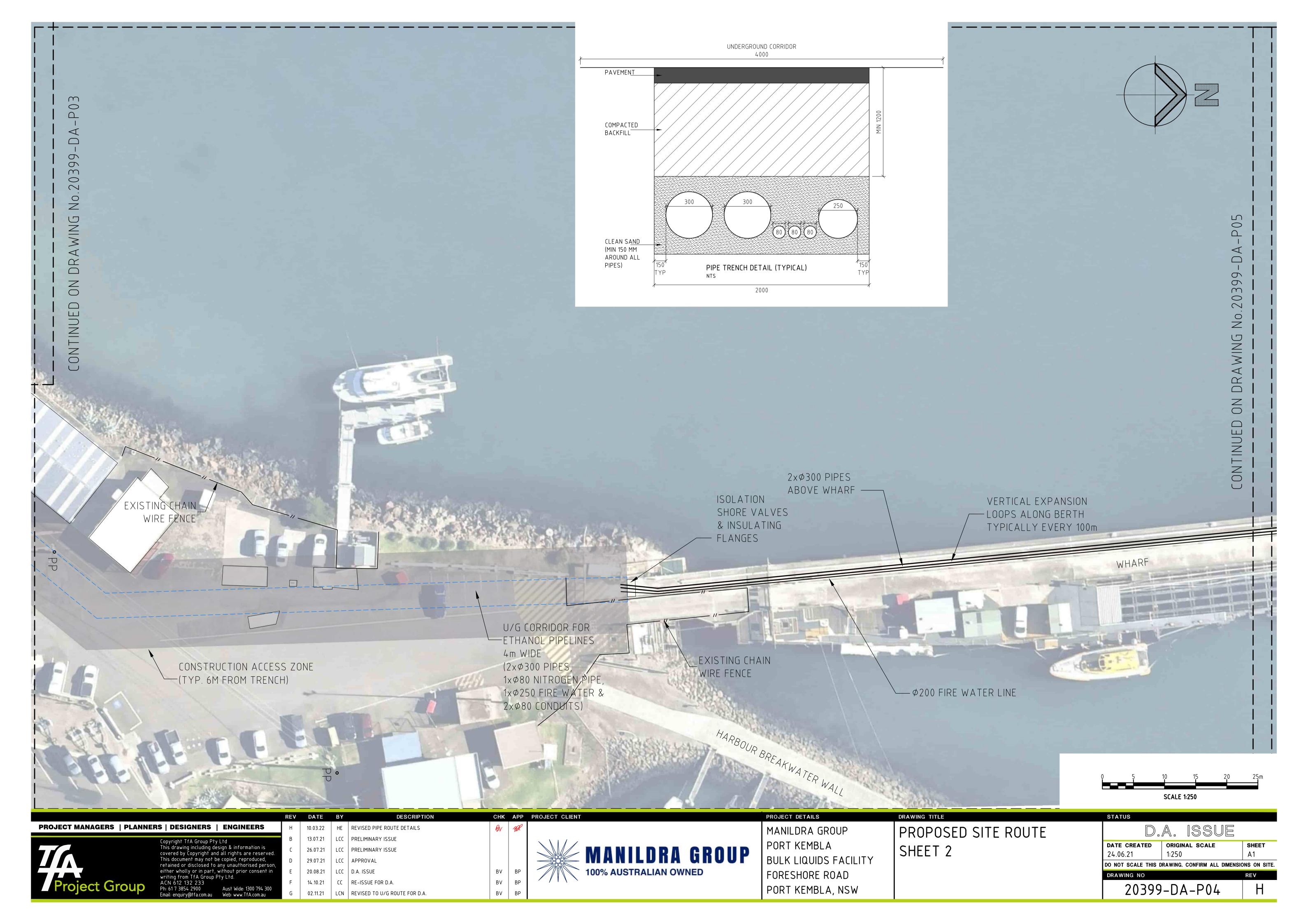

EASTERN CROSSOVER DETAIL SCALE 1:100


EXISTING GRASS

EXISTING BARRIER KERB
EXISTING GUTTER


REV DATE BY PROJECT DETAILS PROJECT MANAGERS | PLANNERS | DESIGNERS | ENGINEERS 19.11.2021 LS ISSUED FOR TENDER PROPOSED DRIVEWAY TENDER MANILDRA GROUP PORT KEMBLA DATE CREATED ORIGINAL SCALE MANILDRA GROUP
100% AUSTRALIAN OWNED **CROSSOVER PLAN** 19.11.2021 **BULK LIQUIDS FACILITY** DO NOT SCALE THIS DRAWING. CONFIRM ALL DIME FORESHORE ROAD 20399-C17 PORT KEMBLA, NSW





Copyright TfA Group Pty Ltd
This drawing including design & information is
covered by Copyright and all rights are reserved.
This document may not be copied, reproduced,
retained or disclosed to any unauthorised person,
either wholly or in part, without prior consent in
writing from TfA Group Pty Ltd.
ACN 612 132 233
Ph: 61 7 3854 2900
Email: enquiry@tfa.com.au

ACN 612 1300 794 300
Email: enquiry@tfa.com.au 100% AUSTRALIAN OWNED 20.08.21 LCC D.A. ISSUE ΒV FORESHORE ROAD BV 14.10.21 CC RE-ISSUE FOR D.A. PORT KEMBLA, NSW 10.03.22 HE REVISED ROUTE DETAILS

DO NOT SCALE THIS DRAWING. CONFIRM ALL DIMENSIONS ON SITE. 20399-DA-P05

Appendix E Unexpected Finds Procedure

Purpose

This procedure describes the actions to be taken in the event that previously unidentified material suspected of being contaminated is found during Site earthworks.

Induction/Training

This Procedure is applicable to all activities conducted by all Site workers that have the potential to encounter contaminated material during earthworks.

The Principal Contractor shall ensure that all personnel are to be inducted on the identification of potential contaminated material and the requirements with this procedure during the inductions and safety toolbox talks.

What is and Unexpected Find?

In the context of this procedure an unexpected find is where evidence of contamination is identified during the course of works that has not been previously identified at the Site or is not already being managed or controlled by another procedure. Examples of unexpected finds may include, but not limited to those described in Table E1 below.

Table E1 Typical Unexpected Finds

Unexpected contamination source type	Typical observations
Asbestos containing material (ACM) or Friable forms of asbestos	Occurrences of bonded fibre cement sheeting in relatively good condition are expected and should be managed as outlined within the RAP. Less common, but potential friable forms of asbestos include asbestos lagging (within pipe lagging), loose fill asbestos insulation), flexible materials (asbestos brake pads) or bonded ACM which that is in a degraded condition such that it can be broken or crumbled by hand pressure.
Buried wastes	Pockets of buried materials with higher concentration of wastes – different to what has previously been observed. May include building and demolition wastes, industrial waste, medical wastes, agricultural waste, animal carcases and may contain ACM. May include putrescible material (larger volumes of buried vegetation).
Chemical containers	Buried fuel or chemical drums/containers/tanks.
Coal tar asphalts	Typically, black asphaltic or tarry material with strong tarry odour or similar.
Industrial contaminated materials or liquids	Soils containing higher volumes of ash, slag, coal, bitumen or other 'non-natural' material. Unusually discoloured material. Soils with unusual (non-natural) odours.

Unexpected finds procedure

The Unexpected Finds Procedure is illustrated in the Figure E1 below and outlined in Table E2.

Figure E1: Flowchart of unexpected finds procedure

Table E2 Unexpected finds procedure

Procedural steps	Details
	STOP ALL WORK in the immediate/affected area.
1. Unexpected find	Immediately notify the Site Supervisor
encountered	Isolate/barricade the area
	Recommence works in an alternative area where practicable.
	Environmental Representative to be notified to assess the unexpected find and provide advice as to the required scope of a contamination investigation in the area of the find.
2. Assess the area	The assessment may require sampling of the material(s) as determined by the Environmental Representative.
	The Environmental Representative (in consultation with the Site Supervisor) will determine the appropriate management measures to be implemented.
	For any work in identified areas the Environmental Representative shall advise as to levels of Personal Protective Equipment (PPE) required.
3. Environmental management and work health safety	A specific Environmental Work Method Statement (EWMS) may be required depending on the extent and magnitude of the contamination.
management	Prior to any contamination investigation, management or remediation activities appropriate Safe Work Method Statements (SWMS) will be updated or prepared for review and approval by the Environmental Representative.
Remedial action and clearance	If excavation and offsite disposal is selected as the preferred remedial option, this will be carried out under the instruction of the Environmental representative with appropriate waste classification and validation/clearance.
5. Recommence works	Recommence works once remedial works have been implemented.

Appendix F Containment area calculations

Excavation - Note 6	Dimensions - Note 1			Calculated spoil volume estimates				
	Length (m)	Width (m)	Depth (metres, below ground level)	A. In-situ excavation volume - Note 2 (m ³)	B. Ex-situ spoil volume (incl. bulking factor) - Note 3 (m ³)	C. Estimated volume of installation - Note 4 (m ³)	D. Estimated surplus spoil volume - Note 5 (m³)	
Deep Exc 1	3	3	4.5	41	53	15	27	
Deep Exc 2	3	3	4.5	41	53	15	27	
Deep Exc 3	10	5	4.5	225	293	61	128	
Gravity retaining walls - continous slab	220	1.3	1	143	186	114	157	
Gravity retaining walls - backhoe piers	110	0.5	1	28	36	28	36	
Stormwater pipework	600	0.5	1	150	195	107	152	
Pipeline route	280	2.0	2	1008	1310	336	638	
					-	Combined spoil volume (m³)		
					<u> </u>	Assumed proportion 'contaminated' soil	50%	
						Estimated 'Contaminated' spoil volume (m³)		

Table Notes

- 1 Dimensions are 'indicative only' based on preliminary drawings and required to be confirmed.
- 2 In-situ volume assumes rectangular prism (i.e. vertical shoring)
- 3 Ex-situ volume assumes a 1.3 bulking factor
- 4 Estimated volume of installation is approximate only and required to be confirmed
- 5 Estimated surplus spoil volume estimated based on the following: D = B + C A (assumes spoil reused as backfill within excavation)

IMPORTANT NOTE All volumes are preliminary estimates only for informint the RAP and subject to change based on design and actual site conditions. Under no circumstances should these volumes be used for cost/tender estimation purposes.

Appendix G Data quality indicators

DQIs for the project will be based on the field and laboratory considerations in NEPM Schedule B2 Appendix B, (NEPC 1999), which include:

- Completeness a measure of the amount of useable data (expressed as %) from a data collection activity
- Comparability the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event
- Representativeness the confidence (expressed qualitatively) that data are representative of each media present on the Site
- Precision A quantitative measure of the variability (or reproducibility) of data
- Accuracy a quantitative measure of the closeness of reported data to the true value.

The DQIs adopted for this assessment and checking of compliance is discussed in Table G-1 to G-5 below.

Table G1 - Data quality indicators - Completeness

Completeness					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
All critical locations will be sampled	Samples will be collected as per Section 6 (investigation) and Section 8.3 (validation)		All critical samples analysed.	Samples will be analysed as per Section 6 (investigation) and Section 8.3 (validation)	
All samples collected	Samples will be collected from relevant media as per Section 6 (investigation) and Section 8.3 (validation)		All analytes analysed according to sampling plan	Samples will be analysed as per Section 6 (investigation) and Section 8.3 (validation)	
SOPs appropriate and complied with	SMEC SOPs/Field instructions will be implemented		Appropriate methods and limits of reporting	Samples will be analysed by laboratories NATA accredited for the analyses to be performed and appropriate methods will be used. LORs will be less than or equal to the assessment criteria.	
Experienced sampler	An experienced SMEC environmental consultant will conduct the sampling		Sample documentation complete	CoCs will be returned, signed, and dated by laboratory. NATA endorsed laboratory certificates will be completed in accordance with NEPC (1999). Field documentation will be completed in accordance with SMEC SOPs.	
Documentation correct	Samples will be handled and transported under		Sample holding times complied with	Samples will be analysed within holding times	

appropriate chain of custody documentation. Sample Receipt Advice (SRA) (or equivalent) from the laboratory will be reviewed to assess that samples are received cool and in good condition. Calibration certificates for the field instruments will be provided daily (or in accordance with manufacturers		specified by NEPC (1999, amended 2013)	
recommended calibration interval).			

Table G2 – Data quality indicators - Comparability

Comparability					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
Same SOPs used on each occasion	SMEC SOPs/field instructions will be implemented		Same sample analytical methods used	The same NATA accredited laboratory will be used to undertake analyses of all primary samples collected for this study. The laboratory will use the same analytical methods for each sample for each analytical parameter	
Experienced sampler	An experienced SMEC environmental consultant will conduct the sampling.		Same sample limits of reporting (LOR)		
Climatic conditions (temperature, rainfall, wind)	Sampling for this work will be completed when necessary. Climatic conditions are not expected to cause issues for comparability of data		Same laboratories (justify/quantify if different)		
Same types of samples collected	Samples will be collected in the appropriate laboratory supplied container specific to the analyses performed.		Same units (justify/quantify if different)		

Table G3 – Data quality indicators - Representativeness

Representativeness						
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance	
Appropriate media sampled according to sample plan	Samples will be collected and analysed as listed in Section 6 (investigation) and Section 8.3 (validation). Any variations will be justified.		All samples analysed according to sample plan	Samples will be collected and analysed as listed in Section 6 (investigation) and Section 8.3 (validation). NATA accredited environmental testing laboratories will implement a quality control plan conforming to Schedule B (3) 'Guideline on Laboratory Analysis of Potentially Contaminated Soils' of the National Environment Protection (Assessment of Site Contamination) Measure 1999.		
All media identified in sample plan sampled	Samples will be collected and analysed as listed in Section 6 (investigation) and Section 8.3 (validation).		All samples analysed according to sample plan	Samples will be collected and analysed as listed in Section 6 (investigation) and Section 8.3 (validation).		

Table G4 – Data quality indicators – Precision

Precision					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
SOPs appropriate and complied with	SMEC SOPs/field instructions will be implemented		Analysis of laboratory duplicates	The number of duplicate analyses should be the smaller of one per process batch or one per 10 samples.	
Analysis of: field duplicates	Collection of field duplicate samples including: • Field intra-laboratory duplicate samples (1 in 20 samples). • Field interlaboratory duplicate samples (1 in 20 samples). Note: Field duplicates excluded for asbestos gravimetric sampling.		Analysis of: field duplicates	Field duplicates have relative percentage difference (RPD) control limits: • Less than 50% (soil) or 30% (groundwater), where result is greater than 10 times limit of reporting (LOR). • No limit where result is less than 10 times LOR.	
	Experienced and trained staff to carry out sampling. Sampling methodologies appropriate and complied with.		Analysis of: laboratory duplicates	Laboratory duplicates have relative percentage difference (RPD) control limits: Results <10 times the LOR: No Limit Results between 10- 20 times the LOR:	

		RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% In accordance with laboratory specific QC Acceptance criteria.	
	Analysis of laboratory- prepared volatile trip spikes (only if volatile contaminants are being tested)	Trip spikes recoveries were recorded between 60% and 110% for volatile contaminants (TRHC6- C10/BTEX)	
	Analysis of laboratory- prepared volatile trip blanks (only if volatile contaminants are being tested)	Trip blanks were free of detectable concentrations of volatile contaminants (TRHC6-C10/BTEX)	

Table G5 - Data quality indicators - Accuracy (Bias)

Accuracy (bias)					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
SOP appropriate and complied with	SMEC SOPs/field instructions will be implemented		Analysis of field blanks	A laboratory prepared trip blank will be analysed for soil sampling (as defined in AS4482.2-1999 and NEPC (1999). Results are to be less than the LOR	
Rinsate blank	Where reusable sampling equipment is utilised (if any) a rinsate blank will be analysed and results compared against the PQL		Analysis of method blank	Method blanks will be analysed as per NEPC (1999) at least 1 per process batch (typically 1 in 20). Results to be less than LOR	
Trip spike	Trip spikes are collected and analysed together with samples		Analysis of matrix spike	Matrix spikes will be analysed as per NEPC (1999) (one matrix spike per soil type per process batch). Results to be within laboratory acceptance limits based on NEPC (1999). Acceptance limits are on the laboratory certificates (typically 70-130%, depends on analyte. A lower range typically accepted for phenols 30%-130%)	

Preservation, transport, and storage	Samples appropriately preserved in laboratory supplied containers, stored, and transported correctly and within holding times	Analysis of surrogate spike	Surrogates will be analysed as per NEPC Schedule B3 (1999). All samples spiked where appropriate (e.g. chromatographic analysis of organics). Acceptance limits 70% to 130% (inorganics), or 50% to 150% (organics).	
		Analysis of laboratory control samples	Laboratory control samples (LCS) will be analysed as per NEPC Schedule B3 (1999) (at least 1 per batch). Results to be within laboratory acceptance limits based on NEPC (1999). Acceptance limits are on the laboratory certificates (typically 70-130%, depends on analyte)	
		Analysis of laboratory- prepared spikes	Spikes will be analysed as per NEPC Schedule B3 (1999). Recovery results to be within laboratory acceptance limits based on NEPC Schedule B3 (1999). Acceptance limits are on the laboratory certificates.	

SMEC

Level 2, 6-8 Regent Street, Wollongong NSW 2500

Phone: +61 2 4243 4400

Email: Wollongong@smec.com

www.smec.com